
 

 

 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

INSTITUTO DE INFORMÁTICA 

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO 

 

 

 

 

 

 

 

 

 

 

 

DANIEL PALOMINO 

 

 

 

Application-driven temperature-aware solutions for video coding 
 

 

 

 

 

 

 

Tese apresentada como requisito parcial para a 

obtenção do grau de Doutor em Ciência da 

Computação. 

 

 

Orientador: Prof. Dr. Altamiro Susin 

Co-orientador: Prof. Dr. Luciano Agostini  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Porto Alegre 

2017 



 

 

 

CIP – CATALOGAÇÃO NA PUBLICAÇÃO 

 

 

Palomino, Daniel 

Application-driven temperature-aware solutions for video coding 

[manuscrito] / Daniel Palomino. – 2017. 

87 f.:il.  

Orientador: Altamiro Susin; Co-orientador: Luciano Agostini. 

Tese (Doutorado) – Universidade Federal do Rio Grande do Sul. 

Programa de Pós-Graduação em Computação. Porto Alegre, BR – RS, 

2017.  

1. Gerenciamento de temperatura. 2. Codificação de vídeo. 3. 

HEVC. 4. Conhecimento da aplicação. 5. Gradientes de temperature. 6 

Plataformas de hardware. 7. Arquiteturas. 8. Circuitos integrados I. 

Susin, Altamiro.  II. Agostini, Luciano. III. Application-driven 

temperature-aware solutions for video coding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

Reitor: Prof. Carlos Alexandre Netto 

Vice-Reitor: Prof. Jane Fraga Tutikian 

Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves 

Diretor do Instituto de Informática: Prof. Carla Maria Dal Sasso Freitas 

Coordenador do PPGC: Prof. João Luiz Dihl Comba 

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro 



 

 

 

ACKNOWLEDGMENTS 

Em primeiro lugar, gostaria de agradecer aos cidadãos brasileiros que financiaram o meu 

curso de doutorado através da universidade pública e gratuita e também pela bolsa de 

doutorado que recebi pelo período de dois anos. Vou me esforçar para retribuir essa grande 

oportunidade dentro da própria universidade pública, agora como docente. 

Gostaria de agradecer também a todos os amigos e conhecidos que facilitaram a minha 

vida nesses quatro anos. Em especial àqueles que, com caronas, facilitavam meu 

deslocamento entre Pelotas e Porto Alegre. 

Gostaria de agradecer a todo apoio que tive da minha família, em especial os meus pais, 

que foram os grandes patrocinadores dessa oportunidade, não só financeiramente, mas 

também psicologicamente. 

Um agradecimento especial à minha esposa, Carolina, pelo incentivo e pela paciência nos 

momentos mais difíceis. O carinho dela foi de suma importância para que eu conseguisse 

atravessar o doutorado inteiro (que não é fácil) e chegar até aqui. 

Agradeço também ao grupo de colegas e amigos (Cláudio Diniz, Felipe Sampaio, Eduarda 

Monteiro, Cauane Silva, Leonardo Soares, Matheus Grellert) que dividiram o laboratório 215 

do INF comigo durante o período do curso e ao professor Sérgio Bampi que, mesmo não 

sendo meu orientador formalmente, sempre me apoiou bastante. Além disso, um 

agradecimento ao pessoal do Chair for Embedded Systems – CES do KIT em Karlsruhe na 

Alemanha por ter me recebido para o estágio sanduíche em 2013, em especial ao professor 

Jörg Henkel, o doutor Muhammad Shafique e o doutor Hussam Amrouch por terem 

contribuído diretamente para minha tese. 

Finalmente, um agradecimento aos meus professores orientadores. O co-orientador 

Luciano Agostini, que foi o primeiro a me oportunizar o trabalho com pesquisa científica, 

ainda nos tempos de graduação na UFPel e está junto na caminhada desde lá. O orientador 

Altamiro Susin, que foi meu orientador também de mestrado e me deu a oportunidade e a 

confiança de terminar esse curso de doutorado em uma universidade de qualidade como a 

UFRGS.  

 

 

  



 

 

 

ABSTRACT 

This thesis presents application-driven temperature-aware solutions for next generation video 

coding systems, such as the High Efficiency Video Coding (HEVC). Different from state-of-

the-art works, the proposed solutions raise the abstraction of temperature management to the 

application-level, where video coding characteristics and video content properties are used to 

leverage thermal-aware solutions for video coding with low QoS (Quality of Service) 

degradation. Several video coding and temperature analyses are performed to understand the 

behavior of temperature when encoding different video sequences. Based on the analyses 

results, different approaches are proposed to mitigate the temperature effects on video coding 

systems. Application-driven temperature management for HEVC uses run-time encoder 

configuration selection to keep temperature under safe operational state while providing good 

visual quality results. Temperature optimization using approximate computing uses content-

driven approximations to reduce the on-chip temperature of HEVC encoding. Application-

driven temperature-aware scheduler leverages application-specific knowledge to guide a 

scheduling technique targeting reducing the spatial temperature gradients that are resulted 

from the unbalance workload nature of multi-threaded video coding application. The 

proposed solutions are able to provide up to 10 °C of chip temperature reduction with 

negligible compression efficiency loss. Besides, when compared with previous works the 

resulted objective video quality (PSNR) is from 12 dB up to 20 dB higher. Moreover, the 

proposed scheduler eliminates spatial temperature gradients greater than 5 ºC of multi-core 

architectures. As conclusion, this thesis demonstrates that leveraging application-specific 

knowledge and video content properties has a significant potential to improve temperature 

profiles of video coding systems while still keeping good quality results. 

 

Keywords: Temperature management, video coding, HEVC, application-driven, temperature-

aware, application knowledge, temperature gradients, hardware platforms, architectures, 

integrated circuits. 

  



 

 

 

Soluções para o gerenciamento de temperatura de sistemas de codificação de vídeo 

RESUMO 

 

Esta tese apresenta soluções para o gerenciamento e otimização de temperatura para sistemas 

de codificação de vídeo baseados nas características da aplicação e no conteúdo dos vídeos 

digitais. Diferente dos trabalhos estado-da-arte, as soluções propostas nesta tese focam em 

técnicas de gerenciamento de temperatura no nível da aplicação e características da aplicação 

codificação de vídeo e as propriedades dos vídeos digitais são explorados para desenvolver 

soluções termais para a codificação de vídeo com baixas perdas na qualidade de serviço das 

aplicações. Diversas análises são realizadas considerando a aplicação de codificação de vídeo 

para entender o comportamento da temperatura durante o processo de codificação para 

diferentes sequências de vídeo. Com base nos resultados das análises, soluções com diferentes 

abordagens são propostas para atenuar os efeitos da temperatura nos sistemas de codificação 

de vídeo. Gerenciamento de temperatura baseado nas características da aplicação para o 

padrão de codificação HEVC usa uma técnica de seleção de configuração em tempo de 

execução para manter a temperatura abaixo dos limites seguros de operação com bons 

resultados de qualidade de vídeo. Otimização de temperatura baseado em computação 

imprecisa usa aproximações baseadas em conteúdo para reduzir a temperatura de chips 

executando o HEVC. Um escalonador de tarefas que usa características da aplicação para 

guiar o escalonamento de threads focando na redução dos gradientes espaciais de temperatura 

que são resultantes do desbalanceamento natural de cargas entre as threads da aplicação. As 

soluções propostas são capazes de reduzir em até 10 ºC a temperatura do chip com perdas 

insignificantes na eficiência de compressão. Os resultados de qualidade objetiva (medida 

usando PSNR) são de 12 dBs até 20 dBs maiores quando comparados com trabalhos da 

literatura. Além disso, o escalonador de tarefas proposto é capaz de eliminar os gradientes 

espaciais de temperatura maiores que 5 ºC para arquitetura multi-cores. Como principal 

conclusão, esta tese demonstra que as técnicas de gerenciamento de temperatura que usam o 

conhecimento da aplicação de maneira conjunta com as propriedades dos vídeos digitais tem 

um alto potencial para melhorar os resultados de temperatura de sistemas de codificação de 

vídeo mantendo bons resultados de qualidade visual dos vídeos codificados. 

 

Palavras-chave: Gerenciamento de temperatura, codificação de vídeo, HEVC, conhecimento 

da aplicação, gradientes de temperatura, plataformas de hardware, arquiteturas, circuitos 

integrados.  

  



 

 

 

FIGURES LIST 

Figure 3.1: Hybrid video coding framework. ........................................................................................ 23 
Figure 3.2: Motion estimation parameters. ........................................................................................... 24 
Figure 3.3: HEVC quad-tree encoding structure (PALOMINO, SHAFIQUE, et al., 2016). ............... 25 
Figure 3.4: Example of best division for encoding a CTU. .................................................................. 26 
Figure 4.1: Infra-red thermal measurement setup (CES-KIT, 2013). ................................................... 30 
Figure 4.2: Bottom-view of the chip showing the cooling mechanism (CES-KIT, 2013). ................... 31 
Figure 4.3: Layout of Intel Atom 45nm dual-core processor (CHIP-ARCHITECT, 2010). ................. 31 
Figure 4.4: Temperature measurement methodology using tool chain. ................................................ 32 
Figure 5.1: Temperature cycles for two sequences with idling core. .................................................... 35 
Figure 5.2: Temperature analysis using frequency scaling for low motion sequence. .......................... 35 
Figure 5.3: Temperature analysis for high motion sequence with two cores. ....................................... 36 
Figure 5.4: Temperature distribution for different complexity frames. ................................................ 37 
Figure 5.5: Temperature, bit rate and PSNR for different QPs. ............................................................ 38 
Figure 5.6: Temperature distribution over time for different QP values. .............................................. 38 
Figure 5.7: Thermal maps for different QPs. ........................................................................................ 39 
Figure 5.8: Temperature, bit rate and PSNR for different CTU sizes. .................................................. 39 
Figure 5.9: Temperature distribution over time for different CTU sizes. ............................................. 40 
Figure 5.10: Thermal maps for different CTU sizes. ............................................................................ 40 
Figure 5.11: Temperature, bit rate and PSNR for different # RF and SA size. ..................................... 41 
Figure 5.12: Thermal maps for different number of reference frames. ................................................. 41 
Figure 5.13: Thermal maps for different search area sizes. .................................................................. 41 
Figure 5.14: Temperature variation distribution between current and previous frames. ...................... 43 
Figure 5.15: Evaluating the accuracy of temperature predictor. ........................................................... 44 
Figure 5.16: Configuration points for temperature reduction. .............................................................. 45 
Figure 5.17: Frames complexity distribution of evaluated sequences. ................................................. 47 
Figure 5.18: Temperature profile encoding different sequences under different thresholds. ................ 48 
Figure 5.19: Thermal maps of the die for encoding RaceHorses. ......................................................... 48 
Figure 5.20: Coding efficiency results. ................................................................................................. 48 
Figure 5.21: Comparison with related works. ....................................................................................... 49 
Figure 6.1: Example of possible data approximations (PALOMINO, SHAFIQUE, et al., 2016). ....... 51 
Figure 6.2: Quality results for algorithm/data approximate computing modes. .................................... 53 
Figure 6.3: CTUs workload encoding the BasketballDrive (second frame) sequence for all 

Approximation Modes. ......................................................................................................................... 53 
Figure 6.4: High/Low detailed regions (1920x1080 pixels). ................................................................ 54 
Figure 6.5: BD-PSNR losses comparison. ............................................................................................ 55 
Figure 6.6: Workload reduction comparison. ........................................................................................ 55 
Figure 6.7: Texture/motion color maps using variance. ........................................................................ 57 
Figure 6.8: Temperature profile for different sequences. ...................................................................... 59 
Figure 6.9: Average temperature for all tested sequences. .................................................................... 59 
Figure 6.10: Thermal maps of BasketballDrill (a) AC OFF (b) AC ON .............................................. 60 
Figure 6.11: Thermal maps of BQMall (a) AC OFF (b) AC ON .......................................................... 60 
Figure 6.12: Quality results. .................................................................................................................. 61 
Figure 6.13: Comparison of quality results with related works. ........................................................... 61 



 

 

 

Figure 7.1: Workload maps of threads in the video encoding process. ................................................. 63 
Figure 7.2: Workload behavior of threads for various frames. ............................................................. 64 
Figure 7.3: Workload variation between threads. ................................................................................. 64 
Figure 7.4: BasketballDrive two threads two cores. ............................................................................. 65 
Figure 7.5: BasketballDrive four threads four cores. ............................................................................ 65 
Figure 7.6: BasketballDrive eight threads eight cores. ......................................................................... 65 
Figure 7.7: Scheduling scheme overview. ............................................................................................ 66 
Figure 7.8: Correlation between threads workload of consecutive frames. .......................................... 67 
Figure 7.9: Content dependent workload prediction error. ................................................................... 69 
Figure 7.10: Maximum temperature results. ......................................................................................... 71 
Figure 7.11: Thermal maps two cores for BasketballDrive encoding. .................................................. 72 
Figure 7.12: Thermal maps four cores for BasketballDrive encoding. ................................................. 72 
Figure 7.13: Thermal maps eight cores for BasketballDrive encoding. ................................................ 72 

 

  



 

 

 

TABLES LIST 

Table 2.1: State-of-the-art works classification. ................................................................................... 19 
Table 3.1: Summary of coding parameters and their impact on resulted coding attributes. ................. 27 
Table 4.1: Sequences used on video coding experiments. .................................................................... 33 
Table 5.1: Encoder parameters used to build our model. ...................................................................... 45 
Table 6.1: Algorithm and data approximation modes. .......................................................................... 52 
Table 6.2: Sequences used for error tolerance evaluation. .................................................................... 52 
Table 6.3: Threshold values used to classify CTU resilience. .............................................................. 57 
Table 7.1: Maximum temperature and spatial gradient results. ............................................................ 71 

 

  



 

 

 

ABREVIATION LIST 

AC Approximate Computing 

AVC Advanced Video Coding 

BD-PSNR Bjontegärd-Delta Peak Signal-Noise to Ratio 

CABAC Context Adaptive Binary Arithmetic Coding 

CAVLC Context Adaptive Variable Length Coding 

CPU Central Processing Unit 

CTU Coding Tree Unit 

CU Coding Unit 

dB Decibel 

DCT Discrete Cosine Transform 

DTM Dynamic Thermal Management 

DTS Digital Thermal Sensor 

DVFS Dynamic Voltage and Frequency Scaling 

DVS Dynamic Voltage Scaling 

FIR Finite Impulse Response 

FS Frequency Scaling 

HCI Hot-Carrier Injection 

HD High Definition 

HEVC High Efficiency Video Coding 

IR Infra-Red 

JCT-VC Joint Collaborative Team on Video Coding 

MPEG Moving Picture Experts Group 

MPSoC Multi Processor System on Chip 

MSE Mean-Squared Error 

NBTI Negative Bias Temperature Instability 

PC Personal Computer 



 

 

 

PECI Platform Environment Control Interface 

PSNR Peak Signal-Noise to Ratio 

QoS Quality of Service 

QP Quantization Parameter 

RF Reference Frames 

RGB Red Green Blue 

SA Search Area 

SAD Sum of Absolute Differences 

  



 

 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ........................................................................................................ 3 

ABSTRACT .............................................................................................................................. 4 
FIGURES LIST ........................................................................................................................ 6 
TABLES LIST .......................................................................................................................... 8 
ABREVIATION LIST ............................................................................................................. 9 
TABLE OF CONTENTS ....................................................................................................... 11 

1 INTRODUCTION ............................................................................................................... 13 
2 STATE-OF-THE-ART ........................................................................................................ 16 
2.1 Thermal related problems ............................................................................................................................ 16 
2.2 State-of-the-art works ................................................................................................................................... 17 
3 VIDEO CODING OVERVIEW ......................................................................................... 22 
3.1 Digital video data representation (how video data is represented) ........................................................... 22 
3.2 Hybrid video coding framework (how video coding works) ...................................................................... 22 
3.3 HEVC Standard (it is complex but it can be configured) .......................................................................... 25 
3.3.1 HEVC coding structure ................................................................................................................................ 25 
3.3.2 HEVC encoder configuration ....................................................................................................................... 26 
3.4 Coding efficiency metrics (different ways to evaluate coding efficiency) ................................................. 27 
3.5 Opportunities of temperature optimization for video coding .................................................................... 28 
4 TEMPERATURE MEASUREMENT METHODOLOGIES ......................................... 30 
4.1 IR-Camera setup ........................................................................................................................................... 30 
4.2 Tool Chain setup ............................................................................................................................................ 32 
4.3 DTS (Digital Thermal Sensor) setup ............................................................................................................ 33 
4.4 Video coding experimental methodology ..................................................................................................... 33 
5 APPLICATION-DRIVEN DYNAMIC THERMAL MANAGEMENT FOR HIGH 

EFFICIENCY VIDEO CODING .......................................................................................... 34 
5.1 Thermal analysis of the HEVC encoder ...................................................................................................... 34 
5.1.1 Thermal analysis of different sequences ....................................................................................................... 34 
5.1.2 Thermal analysis of different HEVC parameters ......................................................................................... 38 
5.2 Application-driven dynamic temperature management for video coding ................................................ 42 
5.2.1 Problem formulation ..................................................................................................................................... 42 
5.2.2 Application-level temperature prediction ..................................................................................................... 42 
5.2.3 Application-level thermal management ........................................................................................................ 44 
5.3 Experimental results and comparison with related works ........................................................................ 46 
6 THERMAL OPTIMIZATION USING APPROXIMATE COMPUTING ................... 50 
6.1 Error tolerance analysis for video coding ................................................................................................... 50 
6.1.1 Opportunities of approximate computing on video coding .......................................................................... 51 
6.1.2 Analyzing the error tolerance of HEVC under different application-level approximations ......................... 51 
6.2 Thermal optimization through adaptive approximate computing ............................................................ 56 
6.2.1 Error Resilience Classification ..................................................................................................................... 56 
6.2.2 Content-driven adaptive approximation management .................................................................................. 58 
6.3 Experimental results and comparison with related works ........................................................................ 58 
7 APPLICATION-DRIVEN THERMAL-AWARE SCHEDULING ................................ 62 
7.1 Analysis of threads workloads ...................................................................................................................... 62 
7.1.1 Thread’s workloads in video coding systems ............................................................................................... 62 
7.1.2 Workload difference impact on thermal profiles .......................................................................................... 64 



 

 

 

7.2 Application-driven scheduling scheme ........................................................................................................ 66 
7.2.1 Problem formulation ..................................................................................................................................... 66 
7.2.2 Application-level thread workload prediction .............................................................................................. 67 
7.2.3 Temperature-aware scheduler ....................................................................................................................... 69 
7.3 Experimental results ..................................................................................................................................... 70 
8 CONCLUSIONS .................................................................................................................. 73 
8.1 Summary of thesis main contributions ........................................................................................................ 73 
9 PUBLICATIONS ................................................................................................................. 75 
9.1 Publications resulted from thesis contributions .......................................................................................... 75 
9.1.1 hevcDTM: Application-Driven Dynamic Thermal Management for High Efficiency Video Coding ......... 75 
9.1.2 TONE: Adaptive Temperature Optimization for the Next Generation Video Encoders .............................. 75 
9.1.3 Thermal Optimization using Adaptive Approximate Computing for Video Coding .................................... 75 
9.1.4 Application-Driven Temperature-Aware Scheduling of Multi-Threaded Workloads on On-Chip Systems 

(submitted) ............................................................................................................................................................. 75 
9.2 Other publications during Ph.D. course ...................................................................................................... 75 
9.2.1 Energy Evaluation of the HEVC Decoding for Different Encoding Configurations .................................... 75 
9.2.2 Avaliação do Potencial Máximo de Speedup Usando Tiles para Compressão de Vídeo Paralela Segundo o 

Padrão HEVC (mention of honor) ......................................................................................................................... 75 
9.2.3 Adjusting Video Tiling to Available Resources in a Per-frame Basis in High Efficiency Video Coding .... 75 
9.2.4 Speedup-Aware History-Based Tiling Algorithm for the HEVC Standard .................................................. 76 
9.2.5 Fast HEVC Intra Mode Decision Algorithm Based on New Evaluation Order in the Coding Tree Block .. 76 
9.2.6 Adaptive content-based Tile partitioning algorithm for the HEVC standard ............................................... 76 
REFERENCES ....................................................................................................................... 77 
APPENDIX A – RESUMO – PORTUGUÊS ....................................................................... 82 

 

 



 

 

 

1 INTRODUCTION 

Video services have widely spread in the consumer, communication and industrial 

markets in the past years. Several devices such as TVs, smartphones, tablets are able to 

reproduce digital videos and most of these devices also have the capability of video 

encoding/decoding. According to (CISCO, 2013) video based services will consume 80%-

90% of the global internet traffic by 2017. High resolutions such as 4k (4096×2160 pixels) 

and 8k (7680×4320 pixels) and high immersion provided by Multiview and 3D technologies 

are rising to improve the user experience. As these new features demand much more data than 

previous HD videos, the efficiency of video compression plays an important role to make 

possible the use of such improvements in daily used applications. In this context, video 

compression standards such as High Efficiency Video Coding (HEVC) (ITU-T, 2013) have 

recently been released to provide the high compression efficiency (i.e., low bit rates with high 

video quality) to fulfil the demands of high-end video contents. However, the computational 

complexity of the video coding process has increased when compared with previous standards 

such as MPEG-2 and H.264 (VANNE, VIITANEN, et al., 2012). 

The high complexity of the HEVC can be well complemented by the high integration 

density due to the continuous technology shrinking of the transistor feature sizes. The 

transistor shrinking together with the microarchitectural advancements provided the high-

performance computing systems with many processing cores, operating in parallel and at high 

clock frequencies. However, the expected voltage scaling did not followed the transistor 

shrinking due to the failure of Dennard’s scaling (DENNARD, GAENSSLEN, et al., 1974) 

(BOHR, 2007) that has resulted in high power densities (power/area) and consequently 

elevated on-chip temperatures (thermal hotspots). 

High on-chip temperatures can lead to higher cooling costs (HENKEL, BAUER, et al., 

2013) which are more challenging for embedded systems since they have limited space to 

allow sink devices. Furthermore, thermal hotspots negatively affect the chip reliability and 

lifetime since most of the aging effects are aggravated at high temperatures (HENKEL, 

BAUER, et al., 2013) (GNAD, SHAFIQUE, et al., 2015). In addition to thermal hotspots, 

high spatial and temporal temperature variations also have a negative impact on system 

reliability and performance (PECHT, LALL e HAKIM, 1992). 

Many computing intensive applications may be split into several threads and thus can be 

suitably parallel processed by multi-core systems. This is the case of image and video 

processing, computer graphics, image synthesis and videogames, many artificial intelligence 

algorithms like neural networks, data mining and control and instrumentation, to say only the 

most common ones. More than that, the computational complexity of some algorithms may be 

gracefully reduced by approximate computation to accomplish deadlines or to lower power 

dissipation. The management of tasks’ parametrization and distribution among the processing 

elements is tricky because it is complex and cannot consume too much power itself. 

Video processing (especially video coding) is an important application domain with 

respect to temperature since it is very data and compute intensive. With the new video coding 



 

 

14 

standards, like HEVC, trends of Multiview and 3D videos, the computational complexity of 

applications dealing with this type of content increases radically, which impacts on the 

thermal profiles of the encoding system. Besides, the workload variations generated by the 

video processing applications translate to temperature variations and spatial and/or temporal 

thermal gradients, thus leading to thermal problems as mentioned above. 

There are several literature works that deal with temperature issues focusing in all 

different computing stack levels. Solutions at design-time and at run-time are employed in 

hardware (FISHER, CHEN, et al., 2011) (EBI, FARUQUE and HENKEL, 2009) 

(BARTOLINI, CACCIARI, et al., 2013) and system (COSKUN, ROSING and GROSS, 

2008) (COSKUN, ROSING, et al., 2008) (KUMAR, SHANG, et al., 2008) levels in order to 

mitigate the temperature effects. Traditionally, Dynamic Thermal Management (DTM) is 

discussed by literature works in order to deal with the temperature issues at run-time. The 

main goal of DTM techniques is to keep the system below a safe operating temperature while 

maintaining real-time constraints for time/performance critical applications.  

In case of video coding/decoding, the quality of service (i.e., bit rate vs. quality) is 

sacrificed to guarantee safe temperature levels. However, it is possible to mitigate these 

temperature effects if application-specific characteristics and video properties are taken into 

account on developing thermal management techniques for video coding systems. 

The main goal of this thesis is to mitigate temperature effects on video coding systems at 

the application level. This approach differs from most of the state-of-the-art works by raising 

the concept of dynamic thermal management from hardware and system levels to the 

application level such that the temperature can be managed proactively based on the video 

coding application characteristics and video content properties. As result, our proposed 

techniques are successful on managing temperature of video coding systems considering 

different hardware platforms with low overhead in the final video quality. 

 We address the goal of this thesis with the following key contributions: 

1. Thermal analysis and workload distribution on video coding: we have performed 

an extensive thermal analysis of the video coding application in order to study the 

thermal behavior of the encoding process using different methodologies for 

temperature measurement. We have used a Peltier-based infra-red thermal 

measurement setup to have accurate thermal reports from the video coding application 

running into a real processor. We also have evaluated temperature of video coding 

systems using a well-known thermal modeling tool with two other performance/power 

simulators. The digital thermal sensors (DTS) of recent processors also have been used 

to measure temperature. Moreover, we have measured workload distribution 

considering a parallel video coding system and the impact on the temperature profiles. 

2. Relationships between video coding characteristics and video content properties 

with temperature: we have analyzed temperature response considering different 

encoding configurations, different encoding algorithms and different video content 

properties. Based on these analysis we have built relationships between these different 

application knowledges and temperature in order to provide hints for designing thermal 

solutions for video coding systems. 

3. Application-driven dynamic thermal management for video encoders: we propose 

an adaptive temperature optimization technique for the next generation video encoders. 

It exploits both application-specific knowledge and video content properties in order to 

manage the temperature of advanced video coding systems at the application layer. 

The proposed technique performs application-level prediction of the temperature trend 

followed by an application-level thermal management policy. It dynamically manages 

the temperature by performing an adaptive encoder configuration selection while 

providing minimum penalties in terms of bit rate and video quality. 



 

 

15 

4. Thermal optimization using adaptive approximate computing for video coding: 
we propose a thermal optimization technique that adaptively employs varying degree 

of approximations at both algorithm and data levels in order to reduce the temperature 

associated with the high efficiency video coding process while maintaining quality 

results. The concept of imprecise computing is used adaptively depending upon the 

varying resilience properties of coding different regions with different content 

properties. With this technique, we demonstrate the potential to improve thermal 

profile of video coding systems. 

5. Application-driven temperature-aware scheduling of multithreaded workloads on 

multicore-systems: we propose a temperature-aware scheduling technique for on-chip 

multicore systems executing multi-threaded video coding. It leverages application-

specific knowledge to guide the scheduling technique in order to mitigate temperature 

effects generated by the unbalanced workload distribution across different threads 

when the video coding applications is considered.  

The rest of this thesis is organized as follows: chapter 2 presents the state-of-the-art works 

related to temperature management. Chapter 3 presents a video coding overview with basic 

concepts to understand the contributions of this work. Chapter 4 shows the methodologies 

used to perform all analyses and all evaluations presented in this thesis. Chapters 5, 6 and 7 

give detailed description of the main contributions of this work. Chapter 8 present the main 

conclusions related to the contributions presented and also point future works towards the end 

of this thesis. Finally Chapter 9 shows the main publications resulted from the Ph.D. course 

period. 

 



 

 

 

2 STATE-OF-THE-ART 

2.1 Thermal related problems 
 

For many years technology advancements were based in two main reasons. First, the 

growing number of transistors in a chip as observed by the Moore’s law (MOORE, 2009) that 

states the number of transistors in a chip approximately doubles every 24 months. Due to the 

transistor feature size shrinking it is possible to put more components in the same chip area. 

Also, smaller components lead to tighter register to register paths which made possible to 

increase the operational clock frequency of circuits. The second reason is the advancements 

on microarchitecture by extracting instruction level parallelism from application using 

techniques such as pipeline, superscalar and simultaneous multithreading (SMT) 

(STALLINGS, 2010). Due to these technology advancements, CPUs have become high-

performance computing systems with many processing cores operating at high clock 

frequencies. However, power density (power/area ratio) is no longer constant with technology 

scaling due to the failure of Dennard’s voltage/current scaling down prediction (BOHR, 

2007). For instance, power density grows from 2W/mm
2
 in 65nm technology to 7.2W/mm

2
 

for 45nm (LINK and VIJAYKRISHNAN, 2006).  

High power densities result in high on-chip temperature/thermal hotspots (LINK and 

VIJAYKRISHNAN, 2006). With high temperature the first problem that arises is associated 

with cooling costs. Cooling techniques are necessary for high performance devices in order to 

keep the chip temperature under safe operational limits. Cooling costs are related to 

technology price of designing and implementing advanced techniques to cool down the 

temperature of devices. From the embedded circuits perspective, in addition to the energy 

consumption by the circuit itself, there are concerns about the cooling costs related to area 

(for instance, to employ a heat sink) and energy (for instance, to power a cooler) since 

embedded devices usually have limited area and power constraints. 

Moreover, thermal hotspots negatively affect the reliability and lifetime of devices 

(HENKEL, BAUER, et al., 2013) (HENKEL, EBI, et al., 2013). The two key mechanisms 

that increase the delay of transistors during their normal, failure-free operation are Negative 

Bias Temperature Instability (NBTI) and Hot-Carrier Injection (HCI) (BERNSTEIN, 

NASSIF, et al., 2006). Both NBTI and HCI cause a gradual elevation of the threshold voltage 

(Vt) incurring on increased transistor switching delay where high temperature is one of the 

main factors inducing these aging effects. For instance, temperature impacts exponentially in 

the NBTI effect and linearly in the HCI effect (TIWARI and TORRELLAS, 2008). 

Electromigration, stress migration and dielectric breakdown are other failure mechanisms 

which cause permanent device failures that are aggravated by high temperatures and thermal 

hotspots (HENKEL, BAUER, et al., 2013). 

In addition to thermal hotspots, spatial and temporal variations in temperature (or 

temperature gradients) have also a negative impact on system reliability and performance. 

Spatial temperature variation (or spatial temperature gradient) is the temperature difference 



 

 

17 

that may occurs across the chip between any two points. Temporal temperature variation (or 

temporal temperature gradient) is the temperature difference that may occur within a time 

window of chip operation. Temporal temperature variations causes accelerated package 

fatigue, plastic deformation of materials, and can lead to cracks and other permanent failures 

(COSKUN, ROSING, et al., 2008). Temporal gradients increase failure rate when the 

magnitude and frequency of temperature cycles increase. A 10 °C increase in the magnitude 

of temperature cycles can cause about a 16× decrease in mean time to failure for metallic 

structures (JEDEC, 2006). These temperature cycles are generated either by low frequency 

power changes such as system power on/off cycles, or by workload rates changes and power 

management decisions, which are more frequent. Spatial temperature variations cause 

performance and logic failures (COSKUN, ROSING, et al., 2008). Global clock networks are 

especially vulnerable to spatial variation. Every 20 degrees increase in temperature causes 5-

6% increase in Elmore delay in interconnects resulting in clock skew problems (AJAMI, 

BANERJEE and PEDRAM, 2005).  

All the above mentioned temperature problems become even more challenging when 

process variation is considered. Process variation is the deviation of transistor parameters 

from their normal specifications. The difficulty of controlling the precision of the fabrication 

process due to decreasing of feature size is the main factor that causes process variation. 

Studies have shown that for high performance microprocessors in 180nm technology, 

measured variation is found to be as high as 30% in performance and 20 times in chip level 

leakage within a single wafer (BORKAR, KARNIK, et al., 2003). 

Therefore, temperature management/reduction is one of the primary design objectives 

especially for embedded systems that have limited power and area to employ complex 

thermal solutions. This way, it is important to develop thermal techniques in order to provide 

better thermal profiles and reliable operation of systems. 

 

2.2 State-of-the-art works 
 

There are different ways to deal with the above mentioned temperature problems. 

Traditionally techniques to reduce the temperature effects in microprocessor chips were 

handled at package level by heat sinks of different material and coolers. Also, there are 

techniques that propose different solutions at design-time (such as temperature-aware 

placement) to forecast and avoid thermal hotspots by statically evaluating several benchmarks 

applications (HUNG, ADDO-QUAYE, et al., 2004) (ZHANG, OGRENCI-MEMIK, et al., 

2015). 

In this thesis, the main focus is Dynamic Thermal Management (DTM), which is 

employed in most of the literature works to deal with temperature problems at run-time. DTM 

techniques use diverse low power techniques in order to control/keep temperature under safe 

operational thresholds that are usually defined by chip vendor. The most common low-power 

techniques used in literature and a set of related works are listed below. 

Low power techniques at run-time: 

Task migration: This technique can be employed on architectures with more than one 

processing unit. For a particular reason, for instance, to balance power between processing 

units, a given running application can be moved from its core to another core. The overhead 

associated with task migration is the time and power that takes to move all cached memory 

content between two different processing elements. 

Dynamic Voltage and Frequency Scaling (DVFS): This technique is used to reduce power 

by either reducing the voltage supply, which has a squared impact in the total power, and/or 

by reducing the operational frequency, which impacts linearly in the total power. Reducing 



 

 

18 

voltage and/or frequency has a direct impact on power. However, it can dramatic reduce the 

performance, which may compromise applications with tight timing constraints.  

Clock gating: This technique is performed at hardware level to stop the clock frequency. 

This way, the dynamic power is reduced since transistors switching operations are stopped. 

Power gating: This technique shuts down either the whole chip or parts of the chip to 

avoid both dynamic and static power. 

Low power techniques at design-time 

Optimizing the number of transistors: This type of technique aims at reducing the total 

number of transistors by replacing the current circuit for an equivalent with fewer transistors. 

Transistor gate sizing: This technique selects cells (for each gate in a circuit) among 

different implementations in a given library to optimize the total power of the circuit 

(combination of gate sizing and threshold voltage) according to time constraints. 

The work (YEO, LIU and KIM, 2008) proposes a predictive dynamic thermal 

management technique for multicore systems. The authors use predictors to estimate future 

temperature behavior based on steady state temperature and workload. Task migration is used 

to move the running application from the possible overheated core to the future coolest core. 

This way, overall chip temperature is reduced in exchange for application performance. 

Average temperature can decrease about 10%, and peak temperature by 5 ºC with less than 

1% impact of performance. 

The work (COSKUN, ROSING and GROSS, 2008) proposes temperature balancing 

solution for MPSoCs with low performance cost. They use autoregressive moving average 

(ARMA) modeling for estimating future temperature based on previous temperature 

measurements. With the predicted temperature, the authors propose a job allocation policy to 

balance workload among cores in an MPSoC based on the spatial temperature difference 

between cores. In the works (COSKUN, ROSING, et al., 2008) and (COSKUN, ROSING and 

GROSS, 2009) the authors extended this idea to reduce temporal variations in temperature by 

using an adaptive dynamic temperature scheduling using both variation in the applications 

workload and history-based temperature prediction. The results show 60% reduction in hot 

spot occurrences, 80% reduction in spatial gradients, and 75% reduction in thermal cycles on 

average. 

A hybrid dynamic thermal management technique is proposed in (KUMAR, SHANG, et 

al., 2008). It can use both hardware-based and software-based DTM techniques in a 

coordinated fashion to enable a more fine-grained approach to tackle thermal emergencies. 

The authors developed a regression-based thermal model to predict temperature based on 

hardware performance counter found in modern processors. Based on the predicted 

temperature, task migration (in the software layer) and clock gating (in hardware layer) are 

used to deal with thermal emergencies. The proposed hybrid technique is able to manage 

temperature at different levels with an average execution-time overhead of 10.4% opposed to 

the purely hardware-based DTM that achieves 23.4% overhead. 

The work (FISHER, CHEN, et al., 2011) also proposes a thermal-aware scheduling 

solution for multicores. However, opposed to the workload balancing solutions, in this paper, 

the authors propose a run-time hardware configuration of processors in a homogenous 

multicore system to avoid peak temperature of sporadic real-time tasks. The ideal speed of 

each core is derived by the proposed model considering the time constraints of each task. 

Depending on the multicore platform the temperature improvement can achieve up to 22 ºC.  

In (EBI, FARUQUE and HENKEL, 2009) the authors propose an agent-based power 

distribution approach to balance the power consumption of multi/many-core architectures in a 

pro-active way. System thermal state is considered on distributing the power throughout the 

chip. The authors claim that this solution is more efficient and more scalable than usual DTM 

techniques since it can perform better in many-cores systems (hundreds and thousands of 



 

 

19 

cores). The proposed agent solution acts in a group of cores to do self-configuration and self-

optimization (changing hardware settings) with the main goal of distributing the power evenly 

over the chip. In the work (EBI, KRAMER, et al., 2011) the authors improve the thermal 

solution by applying a temperature prediction and also defining voltage islands for the many-

core system to avoid the overhead of using separate voltage level for each core. A hierarchical 

approach is proposed where higher layers use regional core information to perform 

coordination between local cores. The solution reaches a decrease in peak temperature of 

around 4% while also decreasing the number of deadline misses in periodic applications when 

compared to a fully distributed approach. 

The work (ZANINI, ATIENZA, et al., 2009) aims at achieving a smooth thermal control 

action in contrast to approaches that avoid thermal violations by forcing abrupt operating 

points changes (e.g. processor shutdown). The authors propose a thermal management policy 

yielding a smooth optimum control on working frequencies and voltages of multicore 

systems. The problem is based on model predictive control (MPC) using a control-theoretic 

approach. This way, dangerous thermal profiles are avoided and also temperature variation 

over time is reduced between 2.5× and 5× in comparison with previous methods. In the works 

(BARTOLINI, CACCIARI, et al., 2011) and (BARTOLINI, CACCIARI, et al., 2013) the 

authors extend the idea of using MPC for thermal management by proposing a fully-

distributed solution. The MPC complexity is reduced by splitting it in a set of simpler 

interacting controllers, each allocated to a core in the system. Frequency and voltage 

configurations are set individually at run-time for each core by the low complexity MPCs. 

The work (CHO, KERSEY, et al., 2013) presents the effects of spatiotemporal power 

multiplexing as an execution principle for many-core architectures for managing temperature. 

The authors exploit lateral heat flow and thermal capacity of materials to redistribute the 

generated heat in a many-core chip by using task migration. Faster migration, i.e., a smaller 

migration interval, can result in lower maximum temperature and better spatiotemporal 

uniformity in temperature. As results the work shows that better energy efficiency is achieved 

even considering the energy overhead of several core transitions. 

All these state-of-the-art works propose solutions for controlling temperature at different 

layers of the computing stack. Also, they target two goals regarding temperature problems 

that arise at different types of architectures. There are solutions targeting reducing the 

peak/average temperature of the chip focusing on single-core architectures. The other type of 

solutions target reducing the peak/average temperature and also the spatial temperature 

gradients focusing on multi-cores architectures. We classify these works as in Table 2.1 in 

order to have a better visualization where each state-of-the-art work acts in the computing 

stack layer to perform thermal management and also which type of architecture is focused. 

Table 2.1: State-of-the-art works classification. 

 Single-core Multi-core 

Hardware-level 

(FISHER, CHEN, et al., 2009) 

(EBI, FARUQUE and HENKEL, 2009) 

(EBI, KRAMER, et al., 2011) 

(ZANINI, ATIENZA, et al., 2009) 

(BARTOLINI, CACCIARI, et al., 2011) 

(BARTOLINI, CACCIARI, et al., 2013) 

 

System-level  

(YEO, LIU and KIM, 2008) 

(COSKUN, ROSING and GROSS, 2008) 

(COSKUN, ROSING, et al., 2008) 

(COSKUN, ROSING and GROSS, 2009) 

(KUMAR, SHANG, et al., 2008) 

(CHO, KERSEY, et al., 2013) 



 

 

20 

 

All the above mentioned works sacrifice system performance in exchange of better 

thermal profiles by using low-power techniques in both hardware (DVFS) and system layers 

(OS scheduling). None of these works consider the application characteristics on defining 

their thermal techniques. They all basically use temperature history information to either react 

to thermal emergencies or predict future temperature. Without application knowledge the 

reactivity of thermal management can be slow. Moreover, the performance degradation 

imposed by these solutions may be intolerable for some applications (in particular for real-

time applications), since the adaptation to the new timing constraints is performed by 

decreasing the resulting quality of the application. The above system-level schedulers 

consider that workloads of different threads (same application) are always the same, which is 

not true for all applications. Video coding/decoding is an example where the workloads can 

vary abruptly between threads and along time and temperature history based schedulers may 

fail on predicting future application behavior. 

There are also DTM techniques for specifically targeting video coding/decoding systems. 

The work (SRINIVASAN and ADVE, 2003) proposes a predictive DTM control algorithm 

for MPEG (Moving Picture Experts Group) encoding. The authors use profiling information 

from static evaluation that frames of the same type will present similar IPC demand and 

power dissipation and consequently similar temperature results. With this information they 

reconfigure the hardware resources (e.g., instruction window size, number of active functional 

units) in a way that temperature does not achieve the specified threshold with low 

performance degradation. However, the assumption that frames of the same type have same 

workload may not be true since the workload is highly dependent on the content being 

encoded. 

In (LEE, PATEL and PEDRAM, 2006) the authors propose a DTM algorithm to distribute 

the available slack time between different frames to achieve thermally safe state of the 

microprocessor chip during MPEG-2 decoding. A time demand prediction is proposed based 

on the GOP (group of pictures) structure. When the temperature threshold is achieved the 

DTM technique stalls the processor for some cycles in order to reduce the power dissipation. 

If the predicted number of stall cycles is larger than the available time to decode the next 

frame the proposed DTM uses two levels of quality degradation. Spatial quality degradation 

by skipping some operations in the decoding process and temporal quality degradation by 

skipping the decoding of an entire frame, i.e., displaying the same frame twice. The author 

extended this idea in (LEE, PATEL and PEDRAM, 2008) with an additional DVFS scheme to 

adapt the hardware configuration according to the predicted frame processing demand. Spatial 

and temporal quality degradations are used again when thermal emergencies are detected. In 

these two works the key target is to lower the temperature irrespective of the incurred video 

quality loss, which may be significant in presence of frame drops. 

The work (YEO and KIM, 2008) proposes a hybrid DTM based on statistic characteristics 

of multimedia applications (for instance, MPEG-4 and H.264/AVC decoding). First a 

prediction step estimates the cycle demand for decoding a given frame. The prediction is 

performed using history of a fixed window size of previous decoded frames. With the 

estimated cycle demand the DTM adapts frequency to perform the decoding of following 

frames. If the temperature threshold is reached the frequency should be readjusted. In this 

work, the performance is not guaranteed for real time decoding and quality degradation steps 

will be necessary to attend the time constraints. 

The work (MARCU, MILOS and TUDOR, 2010) presents a power-thermal analysis of 

multimedia applications. CPU usage, memory usage, communication bandwidth usage and 

complexity of the algorithms for decoding video benchmarks are measured to provide specific 

set of metrics for the power and thermal efficiency evaluation of the multimedia application 



 

 

21 

on different mobile devices. The authors suggest that in order to obtain better results both the 

application level and system level should be involved in thermal management. In fact, this is 

exactly what this thesis is focused on, i.e., to develop application level solutions for thermal 

management targeting the video coding application. 

The work (FORTE and SRIVASTAVA, 2010) proposes a thermal-aware video coding 

solution using a hybrid video encoder. The proposed encoder uses Distributed Video Coding 

(DVC), that shifts encoder computations to the decoder to have a low complexity encoder) 

and Predictive Video Coding (PVC) as a way to balance the workload between encoder and 

decoder. The solution offloads the encoder computations for motion estimation to the decoder 

in order to balance the encoder/decoder workload, reducing the overall temperature of the 

encoder. However, as the encoder is not fully performed, it results in more data to be 

transmitted between the source (encoder) and receiver (decoder) which leads to increased 

communication power/energy. 

The work (MIRTAR, DEY and RAGHUNATHAN, 2012) proposes an adaptation 

technique for the video encoding application targeting in the inherent effects of dynamic 

thermal management techniques. It selects a tolerable video quality degradation mode based 

on reconfiguring the video coding application parameters to compensate for the quality 

degradation effects of different DTM policies, i.e., the application reacts to future thermal 

emergencies to avoid the drastic quality degradation effects imposed by DTM techniques. 

All these state-of-the-art DTM works for video coding propose solutions that take the 

multimedia application general characteristics into consideration to perform better 

temperature management. However, all these works mainly target old video coding standards 

such as MPEG-2 and H.264/AVC. Therefore, they may not be efficiently applied to recent 

video encoders due to their novel and highly complex coding tools. High Efficiency Video 

Coding (HEVC)  (ITU-T, 2013), Google’s VP9 (WEBM, 2013) and the Chinese Audio Video 

Coding Standard (AVS) (ZHENG, ZHENG, et al., 2013) have recently been developed to 

provide better compression ratios keeping the same video quality. Moreover, these works do 

not account for the application-specific characteristics and video content properties that may 

provide a potential for more efficient application-level temperature optimization for video 

coding systems. 

In summary, to address the thermal related challenges there is a prominent need for 

application-driven dynamic thermal management solutions that efficiently control temperature 

of video coding systems while still providing high video quality. Moreover, it is important to 

consider the recent and more complex video coding standards (like HEVC) on designing 

novel thermal management solutions due to the new complex tools. Finally, application-

specific characteristics and video content properties can be used to improve temperature 

profiles of video encoding systems. 



 

 

 

3 VIDEO CODING OVERVIEW 

In this chapter the basic concepts of digital video and the video coding application are 

presented. 

 

3.1 Digital video data representation (how video data is represented) 
 

Usually, a digital video is composed by a sequence of equally sized pictures (called 

frames) and the picture size is defined by two dimensions of pixels (resolution). The video 

resolution is a representation of the amount of pixels of each frame in both dimensions. For 

instance, in a full HD resolution video each frame is composed of 1920 columns of pixels and 

1080 lines of pixels (1920x1080) in a matrix fashion. As higher is the resolution better is the 

perception of the video details. The movement perception occurs when these frames are put in 

sequence with a given number of frames being displayed per second. The frequency necessary 

for movement perception for the visual human system is, at least, 24 frames per second 

(RICHARDSON, 2003). However, with the latest demand for higher resolutions the 

frequency of frames per second may increase to keep a smooth movement perception. 

Digital videos are represented by color spaces where each pixel is separated in color 

components. This way, the video encoders can better deal with each color component 

separately by applying specific algorithms, achieving higher compression ratios. Several color 

spaces such as RGB (Red Green Blue) and YCbCr (Y-luminance, Cb-chrominance blue, Cr-

chrominance red) (RICHARDSON, 2003) have been used to depict digital pictures. The well-

known RGB color space divides each pixel in three color components: R (red), G (green) and 

B (blue). The YCbCr is also composed by three components: luminance (Y), chrominance 

blue (Cb) and chrominance red (Cr), which uses a luminance component with a blue and red 

deviation to define the color when displaying the pixel (RICHARDSON, 2003). The YCbCr 

color space is the most used by recent video encoders such as HEVC since different types of 

algorithms applied separately to luminance and chrominance samples increases the resulted 

coding quality in comparison with other color spaces. 

 

3.2 Hybrid video coding framework (how video coding works) 
 

The main goal of the video coding application is to represent the high amount of data of 

digital videos with less information as possible. This is performed using a set of coding tools 

that are designed considering the inherent presence of data redundancy in digital videos. 

There are basically three different types of data redundancy exploited by the coding 

algorithms in most of the current video coding standards. Spatial redundancy comes from the 

correlation among pixels in one frame. For instance, a region where pixels have the same 

value (e.g., a blue sky in the background) could be exploited to improve compression. 



 

 

23 

Temporal redundancy comes from the correlation among neighbor temporal frames that are 

likely to be very similar. Finally, entropic redundancy is about the amount of similar symbols 

generated by the video coding process. For 3D and multi-view videos, there is also other 

redundancy information that can be exploited by specific coding tools. For instance, on multi-

view videos the inter-view information (i.e., similarities between two video streams captured 

from neighbor cameras) can be used on the video coding process as another source of 

redundancy. 

In order to exploit each one of the above mentioned redundancies the current video coding 

standards, like HEVC, use the block based hybrid video coding framework. Each frame is 

divided into smaller blocks and the whole coding process is performed block by block in a 

raster scan order. The hybrid video coding framework is based on three well-established 

steps: (1) predictions, (2) residual treatment and (3) entropy coding. Figure 3.1 shows a 

generic block diagram of the hybrid video coding process. 

 

Spatial

Prediction

Temporal

Inter-view

Transforms

Residual

Quantization

CAVLC

Entropy

CABAC
Input
Video

Coded
Video

 
Figure 3.1: Hybrid video coding framework. 

 

 The prediction step is composed by algorithms that focus on finding the best 

representations of a given block being encoded using a set of redundancy references. The set 

of redundancy references can be composed, for instance, by the spatial and temporal neighbor 

blocks already coded. The prediction step builds a block using the neighbor blocks as 

references (called predicted block) and the difference between the original block and the 

predicted block is the output of the prediction step. It is important to note that there are 

different algorithms to generate this predicted block considering both spatial and temporal 

redundancies. 

The temporal prediction step is performed mainly by motion estimation algorithms. The 

motion estimation goal is to find the best representation of the current block being encoded on 

the temporally neighboring frames. Figure 3.2 shows the main parameters that are considered 

by any motion estimation algorithm. 



 

 

24 

Current frame Reference frame

Current
block

Reference frames list

Search Area

–=

Current
block

Candidate
block

Similarity
value Similarity criterion

 
Figure 3.2: Motion estimation parameters. 

 

The current frame is the frame that is being coded. The current block is the block that is 

being encoded inside the current frame. The reference frames list is the set of previously 

coded frames that can be used as reference to perform the motion estimation of the current 

block. It is important to mention that more than one reference frame can be used to perform 

the motion estimation of one block. The motion estimation will look for similar blocks in the 

reference frames considering a pre-defined search area. Although the search area can be 

defined as the size of the whole frame, it is common to limit the search area around the co-

located block in the reference frame (as in Figure 3.2). There are several different motion 

estimation algorithms, i.e., different ways of finding the best representation of the current 

block in the reference frames. Finally, a similarity criterion is calculated between the current 

block and a set of candidate blocks from the search area generating a set of similarity values. 

The motion estimation algorithm will choose the candidate block that is most similar to the 

current block considering the calculated similarity value. A similarity function is applied to 

the set of all similarity values as in equation (3.1), where N is the number of candidate blocks 

and the “–“ (dash) operator represents a generic similarity criterion where the CurrentBlock is 

compared with a CandidateBlock. A minimization function is applied to the union of all 

calculated similarity values, since as smaller is the difference between the CurrentBlock and 

the CandidateBlock higher is the similarity. The most used similarity criterion is the Sum of 

Absolut Differences (SAD) calculation. 

 

𝑚𝑖𝑛 (⋃(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑙𝑜𝑐𝑘 − 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐵𝑙𝑜𝑐𝑘𝑖)

𝑁

𝑖=1

) (3.1) 

 

The residual treatment step in the hybrid video coding framework (figure 3.1) also 

exploits the spatial redundancy in digital videos. Two dimensional transforms, such as DCT 

(Discrete Cosine Transform) and Hadamard (RICHARDSON, 2003) are applied to the 

residual information generated by the prediction step. The transforms are applied to separate 

the low and high frequencies of the input data. After that, a quantization process is performed 

adaptively considering the coefficients generated from the transformation process. For 



 

 

25 

instance, the quantization strength will be high on frequencies that are less perceptive to the 

human eye and low to those frequencies that contribute more to the perception of the human 

eye. The quantization process plays an important role on the video coding process to achieve 

high compression ratios. However, this is a lossy process (i.e., information will not be 

recovered by the decoding process) which makes the quantization strength configuration 

crucial to define the final visual quality of the encoded video. 

 The entropy coding step uses different algorithms to reduce the redundancy in the 

symbols generated after the quantization process. Context Adaptive Variable Length Coding 

(CAVLC) and Context Adaptive Binary Arithmetic Coding (CABAC) (RICHARDSON, 

2003) are examples of algorithms that perform entropy coding. 

 

3.3 HEVC Standard (it is complex but it can be configured) 
 

The HEVC is one of the next generation video coding standards that have recently been 

developed to provide high compression ratios for the new high-end video contents. HEVC 

follows the hybrid video coding process as its predecessor H.264. It provides 2x higher 

compression ratios when compared to its predecessor H.264/AVC (OHM, SULLIVAN, et al., 

2012) (SULLIVAN, OHM, et al., 2012) by incorporating an advanced set of novel coding 

tools. However, the computational complexity of the coding process can reach 3.2x when 

comparing the HEVC standard with its predecessor H.264/AVC (VANNE, VIITANEN, et al., 

2012). 

 

3.3.1 HEVC coding structure 

 

The new HEVC coding structure plays an important role in the compression ratios 

achieved by the standard. The coding process is structured as a recursive quad-tree 

partitioning of the basic Coding Tree Unit (CTU – 64x64 pixels). The CTU can be divided, in 

a hierarchical fashion, in four parts from 64x64 to 8x8 generating the so called Coding Units 

(CU) as demonstrated in figure 3.3. The 64x64 CU can be divided into four 32x32 CUs. Each 

one of the 32x32 CUs can be divided again into four 16x16 CUs. Finally, each one of the 

16x16 CUs can be divided again into four 8x8 CUs. This flexibility is useful to match the 

encoding process to the variety of different video content possibilities. For instance, 

heterogeneous and high detailed image regions may be better encoded using smaller CU sizes 

while homogenous and less detailed regions may be better encoded with larger CUs. 

 

64x64 32x32 16x16 8x8

 
Figure 3.3: HEVC quad-tree encoding structure (PALOMINO, SHAFIQUE, et al., 2016). 

 

Each one of all generated CUs is analyzed by all encoding tools to determine an 

appropriate compression mode. After that, the best division in terms of coding efficiency (for 

instance, bit rate and visual quality) is chosen. Figure 3.4 shows an example of one possible 

division. 



 

 

26 

CTU – 64x64

64

64

32

32
16

16

8
8

 
Figure 3.4: Example of best division for encoding a CTU. 

 

This high number of possibilities to encode one CTU highly improves the HEVC coding 

efficiency in terms of bit-rate and visual quality when compared to older standards. However, 

the computational complexity associated with processing all CTUs considering all CU sizes 

highly increases in comparison with older standards. For instance, H.264 limits the encoding 

process to blocks no larger than 16x16 pixels. 

 

3.3.2 HEVC encoder configuration 

 

The HEVC standard is indeed more complex than old video coding standards and this is 

the main reason why the compression ratios are expressively higher. However, it is possible to 

configure the coding process targeting different goals, such as less complexity or better 

coding quality. There are several encoder parameters that can be used to tune bit-rate, visual 

quality and computational complexity of the coding process. In this thesis we focus on four of 

these parameters since they have strong and direct impact on coding results. 

QP: The QP is the quantization parameter. It defines the strength of cut that will be 

applied on each resulting coefficient from the transforms in the residual step. The quantization 

is applied adaptively to each generated coefficient considering the perception impact on the 

human eye. The quantization will prepare the coefficients for the entropy coding step. As 

close to zero “0” is the value of a coefficient easier is the process of entropy coding (less 

complex) to generate a compressed video with fewer bits. However, this parameter should be 

used carefully since high QP values can dramatic reduces the quality of the compressed video. 

CTU maximum size: Although the CTU default size is 64x64 the coding process can 

configure this parameter to be smaller. It means that the recursive division can start from 

other sizes such as 32x32, 16x16 and 8x8. With the CTU maximum size configured smaller 

than 64x64 less possibilities needs to be evaluated by the encoder and the computational 

complexity can be reduced. However, this can negatively impact in the bit-rate and visual 

quality results. 

Number of reference frames: This parameter sets the number of reference frames that 

can be used in the motion estimation process. High number of reference frames implies in 

more effort from the motion estimation process since more candidate blocks will be evaluated 

by the similarity criterion. However, it opens space to the motion estimation to find more 

similar candidate blocks, which improves the result. With low number of reference frames, 



 

 

27 

the motion estimation can be performed faster at a cost of not finding the best candidate 

block.  

Size of search area: This parameter sets the size of search area for motion estimation, i.e., 

the limits where the motion estimation algorithm will look for candidate blocks to represent 

the current block. Following the same idea as the number of reference frames, bigger search 

areas implies in more effort from the motion estimation, but also in better results. While for 

smaller search areas the motion estimation will perform faster at a possible cost of not finding 

the best possible candidate block. 

In summary each one of the above mentioned coding parameters has a different 

contribution on the coding results. Number of bits, visual quality and complexity are directly 

affected by each one of these parameters. Table 3.1 summarizes the coding parameters and 

their influences on the coding efficiency. It is important to note that it is possible to configure 

the parameter of the coding process in order to reduce its complexity. However, every 

configuration towards reducing complexity will come with possible damage in the quality of 

the encoded video. Each green arrow in Table 3.1 is a good effect of changing one of the 

coding parameters while a red arrow means a bad effect. 

 

Table 3.1: Summary of coding parameters and their impact on resulted coding attributes. 

Coding Parameter Compression Efficiency Complexity 

QP    

   

CTU size    

   

Reference Frames    

   

Search area    

   
 

3.4 Coding efficiency metrics (different ways to evaluate coding efficiency) 
 

 The success of devices and applications that deal with high resolution digital videos is 

possible due to the high compression rates provided by latest video coding standards (like 

HEVC). These high compression rates come from the new high complex coding tools and 

also because the video coding process allows some degree of data loss. There are different 

metrics to evaluate the generic concept of coding efficiency. 

The first one is the bit-rate generated after the coding process. This is a simple 

measurement of the amount of bits used per unit of time by the coded video (usually bits per 

second). Looking only from the bit-rate perspective, smaller bit-rate values can mean better 

coding efficiency. The bit-rate metric can be considered more important than other coding 

efficiency metrics when band-width is limited and real-time transmission is a constraint to 

consider in the video coding system. 



 

 

28 

The second important metric is the visual quality after the coding process. This is a metric 

not easy to measure and evaluate since there is a subjective component. Although there are 

subjective metrics to evaluate video sequences, the methodology of gathering groups of 

people to evaluate and score image quality makes harder the frequent use of this type of 

measurement. Objective metrics have become very popular to perform image quality 

evaluation due to the difficult of using subjective metrics. The objective metrics basically 

calculates a distortion value between the decoded video with the original video. 

The most known objective video quality metric used by most literature works on video 

coding is the Peak Signal-to-Noise Ratio (PSNR in decibel), which is defined in equation 

(3.2). 

 

𝑃𝑆𝑁𝑅𝑑𝐵 = 20. 𝑙𝑜𝑔10(
𝑀𝐴𝑋

√𝑀𝑆𝐸
) (3.2) 

 

In equation (3.2), MAX means the maximum value that a luminance sample can be (2
n
-1, 

where n is the number of bits used to represent a luminance sample) and MSE is the Mean-

Squared Error, defined in equation (3.3). 

 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑(𝑅𝑖,𝑗 − 𝑂𝑖,𝑗)

2
𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (3.3) 

 

In equation (3.3), m and n are the frame dimensions in pixels (height and width, 

respectively) and O and R are the luminance components in the original and reconstructed 

decoded frame, respectively. 

For instance, a video coding system targeting high PSNR values will generate high bit-rate 

values. On the other hand, if the video coding system targets low bit-rates the final visual 

quality will be degraded. This inversely proportional relation between both coding efficiency 

metrics bit-rate and visual quality was a problem to compare coding efficiency between two 

different coders. If the first coder presents better bit-rate results than the second coder and the 

second coder presents better PSNR results than the first coder it is hard to determine which 

coder is better.  

In order to provide a metric that can be used to compare two coders, (BJONTEGARD, 

2001) describes a method for calculating the average difference between two rate-distortion 

curves considering two metrics: (1) BD-Rate, which measures the percentile (%) of bit-rate 

variation between two coders for the same visual quality and (2) BD-PSNR, which measures 

the PSNR variation (dB) between two coders for the same bit-rate. 

The last coding efficiency metric discussed in this thesis is the computational intensity 

demand of the video coding process. This is an important metric for this work, since high 

temperature generation is usually related with high computational intensity demands. This 

way, this is a metric that will be often evaluated in this work. The time (in seconds) to code 

one video sequence is used, in this work, as a metric for computational intensity. 

 

3.5 Opportunities of temperature optimization for video coding 
 

As mentioned in previous sub-chapters, latest video coding standards present high 

computational complexity when compared to previous standards. It means that video coding 

applications with real-time constraints will demand high computational intensity from the 

hardware platform where the system is running on to be performed. Consequently, the video 



 

 

29 

coding system can generate undesirable high temperatures that can jeopardize the safe 

operational state of the system (as discussed in chapter 2.1). This way, in case of thermal 

emergencies reconfigurations needs to be performed in the video coding system to avoid 

unsafe temperature levels. As discussed in chapter 2.2 there are techniques that perform this 

reconfigurations in both hardware-level and system-level at a cost of quality degradation in 

the final application result.  

Considering the video coding there are application specific opportunities to exploit 

towards mitigating the temperature effects on video coding systems keeping the coding 

efficiency loss at minimum. 

Application natural resilience to error: most known video coding standards, such as 

MPEG-2, H.264 and HEVC, uses the hybrid video coding framework that includes data lossy 

algorithms. These algorithms exploit the limited perception of the human eye 

(RICHARDSON, 2003) system to eliminate unnecessary information of the digital video. 

This information elimination is controlled by the coding configuration parameters. Moreover, 

matching algorithms in the Motion Estimation process have natural resilience to error since 

even when the optimal match is not found, in some cases, a sub-optimal match can be enough 

to provide a good quality result. This way, it is possible to exploit this application natural 

resilience to error in order to mitigate the temperature effects on video coding systems. 

Application workload dependent on content: different from many applications where 

the computational workload is defined by the amount of data required to be processed, in the 

video coding application, the workload is mainly affected by the video content. Usually, high 

detailed and high motion video regions are harder to encode than low detailed and low motion 

regions. This knowledge can be used to drive temperature-aware solutions that keep good 

quality results. 

High configurability: as summarized in section 3.3.2 there are encoder parameters that 

can be configured to reduce the total computational workload of the encoding process with 

impact on the compression efficiency results. 

Trade-off between temperature and compression efficiency: Temperature management 

algorithms can exploit the trade-off between temperature and compression efficiency by 

appropriate choosing of the encoder parameters.  

Video coding parallel tools are not efficient distributing workload: the parallel tools of 

video coding standards can be optimized to improve temperature profiles of multi-core 

systems. As the video coding computational workload is dependent on content, equally 

division of the information among different processing units may incur in undesired spatial 

temperature gradients. 

In this thesis, we exploit the above mentioned opportunities targeting improving the 

temperature profile of video coding systems. We employ temperature-aware solutions driven 

by these opportunities of temperature optimization for video coding using different algorithms 

and techniques at the application-level. 

 

 



 

 

 

4 TEMPERATURE MEASUREMENT METHODOLOGIES 

In this chapter we present three different methodologies that are used along this work to 

collect temperature results considering all evaluations performed in this thesis. Namely IR-

Camera setup, Tool Chain setup and DTS setup. We also present the general methodology 

used for encoding video sequences when extracting the temperature results. 

 

4.1 IR-Camera setup 
 

To circumvent the information deficiency on the thermal distribution across modern 

processor chips and to accurately analyze their thermal behavior when executing complex 

real-world applications such as video coding, we have performed our first thermal evaluations 

considering a real-time thermal imaging of a processor using an infra-red camera setup (CES-

KIT, 2013). It facilitates researchers and designers to develop, optimize and evaluate thermal 

management policies. 

The setup is built by removing the whole cooling system (fan, metal heat sink, and 

packaging) of the processor chip as it is an infra-red opaque in order to expose its die for 

measuring the emitted thermal radiations. Consequently, to keep the processor temperature in 

a safe range without affecting the thermal imaging, alternate IR-transparent cooling 

mechanisms are used. Figure 4.1 shows the components of the IR-camera based setup used to 

measure temperature from the chip. 

 

IR Camera

CPU chip

Thermal map

Water-cooling unit to cool 

down the thermoelectric device  

Voltage 

supply
Linux Ubuntu 

kernel

 
Figure 4.1: Infra-red thermal measurement setup (CES-KIT, 2013). 



 

 

31 

A Bottom View

Water 
heat sink

Thermoelectric 
device

Copper plate

Thermal pad

 
Figure 4.2: Bottom-view of the chip showing the cooling mechanism (CES-KIT, 2013). 

 

State-of-the-art works deploy thermal setups (MESA-MARTINEZ, BROWN, et al., 

2008), (REDA, 2011) and (LIAN, KNOX, et al., 2012) introduce an additional transparent 

layer of mineral oil between the IR-camera and the die-under measurement for cooling. This 

can disturb the thermal imaging due to its thickness and thermal convection (PALOMINO, 

SHAFIQUE, et al., 2014). Therefore, we use an oil-free measurement setup (CES-KIT, 2013) 

that provides more clear thermal imaging (Figure 4.1 and Figure 4.2). It allows the processor 

to work within operational conditions and does not require adding any new layer between the 

die-under-measurement and the IR-camera lens. It employs a thermoelectric device that 

continuously cools down the chip from the bottom side (i.e. right below where the chip is 

located on the printed circuit board) in order to maintain a safe operation. When the electrical 

current flows through the thermoelectric device, it generates a temperature variation between 

both device sides making on side cold and the second one hot. By tuning the voltage fed into 

the thermoelectric device, a wide range of applied chip cooling can be obtained to support 

different kinds of processor requirements. 

In this IR-camera based methodology, an Intel Atom 45nm dual-core processor operating 

at a maximum frequency of 1.8 GHz (layout presented in Figure 4.3) is used. The on-chip 

temperatures are directly measured using a DIAS pyroview 380L compact IR-thermal camera 

capable of precisely capturing temperatures with accuracy of ±1 °C and a spatial resolution of 

50 µm per pixel (DIAS, 2013). The real-time thermal images are taken and sent to a PC (at a 

frame rate of 50 Hz) that analyzes them to build the corresponding thermal maps of the 

measured processor over time. 

 

 
Figure 4.3: Layout of Intel Atom 45nm dual-core processor (CHIP-ARCHITECT, 2010). 



 

 

32 

4.2 Tool Chain setup 
 

The second methodology used in this thesis to extract temperature values is performed 

using an integrated tool chain of GEM5, McPAT, and HotSpot tools. 

First, we use the GEM5 (BINKERT, BECKMAN, et al., 2011) simulation infrastructure 

which is a merge of M5 (BINKERT, DRESLINSKI, et al., 2006) and GEMS (MARTIN, 

SORIN, et al., 2005) simulators. GEM5 provides a flexible, modular simulation system that is 

capable of evaluating a broad range of systems. It offers a diverse set of CPU models, system 

execution modes, and memory system models. In this thesis, we use a 32nm 2 GHz out-of-

order Alpha as targeted processor. We simulate the video coding application over a Linux 

installation. We also consider different topologies varying the number of cores from one to 

eight to evaluate parallel video coding scenarios. The output of GEM5 is a set of usage 

statistic values of all system components. As we intend to evaluate temperature generation on 

cores our setup is interested on collecting only the core usage statistics. 

The core usage statistics generated by GEM5 is used to feed the McPAT (LI, STRONG, et 

al., 2009) tool. McPAT is an integrated power, area and timing modeling framework that 

supports design space exploration for multicore configurations ranging from 90nm to 22nm. It 

is designed to work with a variety of performance and thermal simulators. McPAT allows 

users specify low-level configuration details. It also provides default values when the user 

specifies only high-level architectural parameters. In our setup, we use McPAT to generate 

power traces and high-level chip layout (cores and memory cache) from GEM5 core statistics 

and system configuration. 

Finally, HotSpot (SKADRON, STAN, et al., 2003) thermal modeling tool is used to 

generate the temperature profile and thermal maps of the application simulation. Hotspot is an 

accurate and fast thermal model to evaluate temperature profiles in architecture studies. It was 

built as an equivalent circuit of thermal resistances and capacitances corresponding to 

microarchitecture blocks and essential aspects of the thermal package (SKADRON, STAN, et 

al., 2003). One of the advantages of Hotspot is the compatibility with lots of 

power/performance tools, such as McPAT, which facilitates put the tools to work together. 

The communication between the GEM5, McPAT and Hotspot used in this work is shown in 

Figure 4.4. 

 

Temperature methodology using tool chain

GEM 5 simulator

Application

core core core

Cores usage statistics

McPAT power 
simulator

power traces of cores

HotSpot thermal 
modeling tool

Thermal profiles

 
Figure 4.4: Temperature measurement methodology using tool chain. 



 

 

33 

4.3 DTS (Digital Thermal Sensor) setup 
 

The third methodology used in this work to perform thermal analysis and collect 

temperature results from the proposed techniques is based on digital thermal sensors (DTS) 

using the Platform Environment Control Interface (PECI) (BERKTOLD and TIAN, 2010). 

Modern processors usually have a digital thermal sensor to measure cores temperature 

independently in real time. Temperature may be used to control fan speed in the system or 

used by costumers to develop advanced power management or thermal control schemes 

(BERKTOLD and TIAN, 2010). 

 We obtain temperature results from an Intel i7 processor using the Linux monitoring 

sensors software. The video coding application is restricted to one core, i.e., task migration is 

disabled. This way, it is possible to obtain the resulted temperature of only the video coding 

application. Temperature readings are performed every 500 milliseconds by a python written 

script with only the operational system basic applications running together with the video 

coding application. 

 

4.4 Video coding experimental methodology 
 

For all video coding experiments the High Efficiency Video Coding (HEVC) standard is 

used. Table 4.1 shows the set of sequences that are used along all experiments presented in 

this thesis. All sequences are encoded using the HEVC test Model (HM) software following 

the recommendation document provided by the standardization committee (BOSSEN, 2012). 

Different HM software versions are used since this work started right after the HEVC 

standardization and the software is constantly being updated to new versions. 

 

Table 4.1: Video sequences used on video coding experiments. 

Sequences Resolution (pixels) 

BQMall 832x480 

BasketballDrill 832x480 

RaceHorses 832x480 

Keiba 832x480 

PartyScene 832x480 

BQTerrace 1920x1080 

BasketballDrive 1920x1080 

Cactus 1920x1080 

 

In the next chapters we give detailed description of the temperature-aware solutions for 

video coding designed in this work. The main characteristic among all proposed techniques is 

that the abstraction of temperature management is raised to the application-level where the 

video coding application characteristics and video sequences content are explored to allow 

efficient temperature management with low quality degradation. 

 



 

 

 

5 APPLICATION-DRIVEN DYNAMIC THERMAL 

MANAGEMENT FOR HIGH EFFICIENCY VIDEO 

CODING 

The first temperature-aware solution proposed in this work is an application-driven 

dynamic thermal management (DTM) technique for the high efficiency video coding (HEVC) 

standard. For designing an application-driven DTM policy, we perform an extensive thermal 

analysis of the HEVC standard and study the thermal behavior of different coding 

configurations and video sequences. 

 

5.1 Thermal analysis of the HEVC encoder 
 

This first thermal analysis is performed using our IR-camera based setup. The main goal is 

to measure temperature when encoding different video sequences with HEVC under different 

scenarios to understand how video content properties (like motion/texture intensity) can 

directly affect the computational effort needed to encode each sequence and consequently the 

temperature behavior. 

 

5.1.1 Thermal analysis of different sequences 

 

Thermal analysis for different video sequences considering Core Idling: For this first 

thermal analysis we consider same arrival time for each frame in the video coding process. It 

means that all video sequences were encoded considering the same time window per frame. 

Therefore, if one video frame is encoded earlier, the core is put in the idle state to reduce the 

temperature. Figure 5.1 show the core temperature over time for two test video sequences: 

“RaceHorses” with high motion intensity (red line) and “BQMall” with low motion intensity 

(blue line). For the high motion sequence the temperature stays high for most of the time due 

to less idle period, while for the “BQMall” sequence the temperature goes down earlier and 

stays low for a larger time. The average temperature
1
 of encoding the low motion sequence is 

2.5 ºC lower than encoding the high motion one. This shows that reducing the workload 

directly influences the cooling period of a core. Hence, the workload of a high motion 

sequence can be reduced to increase the cooling down period. 

                                                 
1
 In this work, average temperature means the mean of all measured temperatures within a 

frame encoding interval. 



 

 

35 

40

45

50

55

60

2500 2550 2600 2650 2700
Te

m
p

e
ra

tu
re

 (
�C

)
Time (sec)

RaceHorses BQMall

 
Figure 5.1: Temperature cycles for two sequences with idling core. 

 

Thermal analysis for different video sequences considering frequency scaling: an 

alternate method to reduce the average temperature is executing the workload at a low 

frequency while stretching the execution time so that the encoding finishes near the next 

frame arrival time; otherwise the core is put to the idle mode. Figure 5.2 (a) shows the core 

temperature over time for the same two video sequences when reducing the operating 

frequency by 25% of the maximum frequency (1.8 GHz to 1.35 GHz) for the low motion 

sequence
2
. This results in a decrease in the peak/maximum core temperature from 56.4 ºC to 

53.9 ºC. Figure 5.2 (b) shows the thermal map extracted by the infra-red camera
3
 at two 

interesting points in time before going to the idle state (peak1 and peak2). It shows that for the 

same arrival time the maximum temperature of the low motion sequence is lower than that for 

the high motion sequence. 

40

45

50

55

60

2500 2550 2600 2650 2700

Te
m

p
e

ra
tu

re
 (

°C
)

Time (sec)

RaceHorses (1.8 GHz) BQMall (1.35 GHz)

peak2

peak1

 
(a) Temperature cycles using frequency scaling. 

62 �C
60 �C
58 �C

56 �C
54 �C

52 �C

50 �C

48 �C

46 �C
44 �C

peak1 peak2

 
(b) Thermal maps using frequency scaling. 

Figure 5.2: Temperature analysis using frequency scaling for low motion sequence. 

                                                 
2
 Voltage scaling is not available on our Atom board. 

3
 The thermal maps are mirrored with the die floorplan since this is how the infrared camera 

shows the images. 



 

 

36 

Thermal analysis for different video sequences considering parallelism in HEVC 

using Multiple Tiles: another challenging scenario is considering tighter deadlines. In such a 

case the low motion sequence may finish in time, but the high motion sequence needs more 

performance to finish the encoding process in time. This can be achieved by using the 

HEVC’s tile-level parallelism, i.e. partitioning the frame into two parts and executing two 

threads on two cores in parallel. Figure 5.3 (a) shows the temperature over time for two 

sequences with a tighter deadline. The “RaceHorses” sequence is parallelized on two cores 

using two tiles to achieve high throughput so that both sequences finish their execution at the 

same time. If this is before the next frame’s arrival time, the cores are put to the idle state (see 

sudden temperature drop). The use of two cores for the “RaceHorses” encoding leads to 5 ºC 

higher temperature when compared to the “BQMall” encoding. Figure 5.3 (b) shows the 

temperature state of the die at the end of frames encoding (peak1 and peak 2) using the 

thermal maps. 

 

42

47

52

57

62

1880 1930 1980 2030

Te
m

p
e

ra
tu

re
 (

°C
)

Time (sec)

RaceHorses BQMall

peak1

peak2

 
(a) Temperature cycles using two cores. 

62 �C
60 �C
58 �C

56 �C
54 �C

52 �C

50 �C

48 �C

46 �C
44 �C

peak1 peak2

 
(b) Thermal maps using two cores. 

Figure 5.3: Temperature analysis for high motion sequence with two cores. 

 

Thermal analysis of video content properties: as already mentioned, the efficiency and 

complexity of advanced video coding tools are usually driven by the properties (e.g. 

motion/texture) of the input sequence. For instance, the motion estimation algorithms search 

for similarities among the sequence content across different frames (see chapter 3.2). In case 

of videos with irregular, textured, and complex moving objects, it is harder for the motion 

estimation to find a good match. Therefore, video properties such as motion/texture intensity 

will highly influence the coding complexity and resulting temperature for a given sequence 

and even for different frames within the sequence. For this thermal analysis of video content 

properties we classify the frames of a sequence in different complexity classes using the 

method devised in (SHAFIQUE, ZATT, et al., 2012) (equations 5.1 and 5.2). Without the loss 

of generality, we use the texture intensity to classify the frame complexity 𝐶𝑓 as low, medium 



 

 

37 

or high (see equation 5.2). The texture is calculated using variance 𝑣𝑓 of the luminance 

samples 𝜌𝑖 in one frame of dimension 𝑛 × 𝑚 as presented in equations (5.1). The threshold 

values 𝑇ℎ𝑣𝑖 are statically calculated. Using such a complexity classification, we will be able 

to observe how these properties influence on temperature behavior. 

 

𝑣𝑓 =  
1

𝑛 × 𝑚
∑ (𝜌𝑖 − 𝜌𝑎𝑣𝑔)

2
𝑛×𝑚

𝑖=0

 (5.1) 

𝐶𝑓 =  {

𝑙𝑜𝑤 𝑖𝑓(𝑣𝑓 ≤ 𝑇ℎ𝑣1)

𝑚𝑒𝑑𝑖𝑢𝑚 𝑖𝑓(𝑇ℎ𝑣1 < 𝑣𝑓 ≤ 𝑇ℎ𝑣2)

ℎ𝑖𝑔ℎ 𝑖𝑓(𝑣𝑓 > 𝑇ℎ𝑣2)

 (5.2) 

 

Figure 5.4 shows the average temperature distribution for different complexity classes 

when encoding different sequences, e.g. RaceHorses (medium-to-high complexity) and 

BQMall (medium-to-low complexity. It is possible to observe that sequence properties directly 

influence temperature behavior of the HEVC video coding process. The high complexity 

frames will lead to higher temperatures while for the low and medium complexity frames the 

temperature distribution is relatively lower. The temperature difference between the high and 

the low complexity frames can be up to 10 ºC. Another observation from figure 5.4 is that 

high complexity frames have more “concentrated distribution” since the steady temperature is 

achieved only when these type of frames are encoded. Moreover, the high temperature 

distribution is mainly from the consecutive high complexity frames of videos like 

RaceHorses. The distribution of medium/low complexity frames are less concentrated since 

these types of frames are intercalated between each other in the evaluated sequences. The 

temperature of encoding theses frames is influenced by the “encoding temperature history”. 

 

High

Medium
Low

  

Figure 5.4: Temperature distribution for different complexity frames. 

 

Summary of different sequences analysis: The above thermal analysis demonstrates that 

video properties (such as motion/texture intensity) directly influence the generated 

temperature for HEVC encoding considering different scenarios. Also, it is possible to 

observe that there is potential of applying Dynamic Thermal Management (DTM) 

mechanisms (e.g. core idling or frequency scaling) in order to have safe operational 

temperature on video coding systems. Therefore, one of the key challenges is to leverage the 

video content properties of sequences to enable application-level temperature management 

during the HEVC encoding. 



 

 

38 

 

5.1.2 Thermal analysis of different HEVC parameters 

 

In the following, we analyze the impact of key parameters employed by all the advanced 

video encoder on the CPU temperature and encoding quality (in terms of PSNR and bit rate). 

The parameters analyzed in this work are the same described in chapter 3.3.2: maximum size 

of the coding tree unit (CTU), quantization parameter (QP) and number of reference frames 

(RF) and search area (SA) used for the motion estimation algorithm. Independent parameter 

analysis is performed to understand their impact on temperature. 

Analyzing the impact of QP on temperature: The QP is a parameter used to control bit 

rate and it consequently influence on the final visual quality. Figure 5.5 shows the average 

temperature, bit rate, and PSNR values while figure 5.6 shows the temperature over time for 

four different QP values (22, 27, 32, and 37). It is noticeable that the QP selection can provide 

average temperature reductions of 2ºC between each value. This provides a hint that QP 

changing can be used for designing an application-level temperature optimization algorithm. 

However, this parameter needs a careful selection to avoid significant quality loss as shown in 

figure 5.5 (white bar). Figure 5.7 shows thermal maps of the steady temperature for the same 

four QP values. 

 

0

20

40

60

80

40

44

48

52

56

22 27 32 37

B
it

 R
at

e
 (

1
0

0
xk

b
p

s)
 

P
SN

R
 (

d
B

)

A
vg

. 
Te

m
p

e
ra

tu
re

 � C

PSNR Bit Rate Avg. Temp.

 
Figure 5.5: Temperature, bit rate and PSNR for different QPs. 

 

35

40

45

50

55

60

0 10 20 30

Te
m

p
e

ra
tu

re
 �

C

Frames

22 27 32 37

 
Figure 5.6: Temperature distribution over time for different QP values. 

  



 

 

39 

  

 

(a) QP 22 (b) QP 27 

 ,  

(c) QP 32 (d) QP 37 

Figure 5.7: Thermal maps for different QPs. 

 

Analyzing the impact of maximum CTU size on temperature: The HEVC standard 

achieves high compression efficiency using large-sized blocks in a coded tree unit (CTU) 

structure with different coding unit (CU) sizes. Unlike earlier standards, HEVC allows for 

selecting the maximum CTU size among 64x64, 32x32 and 16x16 pixels to capture different 

object sizes for improved compression efficiency. However, different CTU sizes lead to 

varying thermal profiles. Figure 5.8 shows the average core temperature, bit rate, and PSNR 

values while figure 5.9 shows the temperature over time for different CTU sizes. Bigger 

CTUs lead to high encoding effort per video area, since more options are available for block 

partitioning resulting in high temperatures. When using a CTU size of 32 instead of 64, the 

average temperature is decreased by 5ºC and the bit rate increases by 2.17%. Figure 5.10 

shows an example of thermal maps at the steady temperature when encoding the RaceHorses 

sequence with different CTU sizes. 

 

0

20

40

60

80

40

44

48

52

56

64 32 16

B
it

 R
at

e
 (

1
0

0
xk

b
p

s)
 

P
SN

R
 (

d
B

)

A
vg

. 
Te

m
p

e
ra

tu
re

 � C

PSNR Bit Rate Avg. Temp.

 
Figure 5.8: Temperature, bit rate and PSNR for different CTU sizes. 

 

59  C

57  C

55  C

53  C

51  C

49  C

47  C

45  C

43  C
41  C



 

 

40 

35

40

45

50

55

60

0 10 20 30

Te
m

p
e

ra
tu

re
 �

C

Frames

64 32 16

 
Figure 5.9: Temperature distribution over time for different CTU sizes. 

 

 
(a) CTU 16 

 
(b) CTU 32 

 
(c) CTU 64 

 
Figure 5.10: Thermal maps for different CTU sizes. 

 

Analyzing the impact of Number of Reference Frames and Search Area on 

Temperature: the number of reference frames and the search area control the complexity and 

quality of motion search (especially for objects with repetitive and high motion). However, 

higher values of these parameters also lead to higher temperature. Figure 5.11 (a) shows the 

average core temperature, bit rate, and PSNR values for three different selections for the 

number of reference frames used (1, 2, and 4). When using more reference frames, the 

temperature of the system is higher. Moreover, the average temperature decreases by 4 ºC 

when using 2 instead of 4 reference frames at the cost of insignificant quality loss (less than 

0.01 dB). Figure 5.11 (b) shows the average temperature, bit rate, and PSNR values for three 

different search area sizes (128, 64, and 32). Note that for all three different search areas, 

there is a slight temperature difference (less than 0.5 ºC). This is due to the type of motion 

estimator used (i.e. EPZS (JCT-VC, 2013) available in the HM software version 11.0) as it 

does not explore the entire search space and adaptively terminates when a good match is 

found. Therefore, in this case, changing the search area size does not impact the resulting 

temperature significantly. However, for a different type of motion estimator, it may change. 

Figures 5.12 and 5.13 show the thermal maps for the steady temperature considering the 

different number of reference frames and search area sizes analyzed, respectively. 

59  C

57  C

55  C

53  C

51  C

49  C

47  C

45  C

43  C
41  C



 

 

41 

0

20

40

60

80

40

44

48

52

56

4 2 1

B
it

 R
at

e
 (

1
0

0
xk

b
p

s)
 

P
SN

R
 (

d
B

)

A
vg

. T
e

m
p

e
ra

tu
re

 � C
PSNR Bit Rate Avg. Temp.

 

0

20

40

60

80

40

44

48

52

56

128 64 32

B
it

 R
at

e
 (

1
0

0
xk

b
p

s)
 

P
SN

R
 (

d
B

)

A
vg

. 
Te

m
p

e
ra

tu
re

 � C

PSNR Bit Rate Avg. Temp.

 
(a) Number of reference frames (b) Search area 

Figure 5.11: Temperature, bit rate and PSNR for different # RF and SA size. 

 

   
 (a) #RF 4 (b) #RF 2 (c) #RF 1 

Figure 5.12: Thermal maps for different number of reference frames. 

 

 

   
 (a) SA 128 (b) SA 64 (c) SA 32 

Figure 5.13: Thermal maps for different search area sizes. 

 

Summary of parameters analysis
4
: Encoder parameters determine the thermal behavior 

(average temperature and temperature variations). The following observations are explored by 

the first temperature management solution designed in this work. 

 Reducing CTU maximum size from 64 to 32 reduces the average temperature by 5 

ºC. 

 Reducing QP by 5 reduces the temperature by 2 ºC. However, it has a serious 

impact on the bit rate and PSNR degradation. 

 Reducing the number of reference frames from 4 to 2 lowers the temperature by 4 

ºC with negligible video quality loss. 

 For adaptive motion estimators, changing the search area does not have a 

significant impact on temperature. 

                                                 
4
 These temperature results are specific for the studied processor, i.e. Intel Atom. For a high 

frequency processor, the temperature variations between different properties and 

configuration parameters may even be larger. 

59  C

57  C

55  C

53  C

51  C

49  C

47  C

45  C

43  C
41  C

59  C

57  C

55  C

53  C

51  C

49  C

47  C

45  C

43  C
41  C



 

 

42 

5.2 Application-driven dynamic temperature management for video coding 
 

The first temperature solution for video coding proposed in this work is an adaptive 

thermal management technique for HEVC. Following the main idea of this work the proposed 

solution raises the abstraction of temperature management to the application level such that 

video quality degradations can be lowered. This first solution performs (1) application-level 

temperature prediction; and (2) application-level temperature management. Before explaining 

these two components of the application-driven solution, we formulate the temperature 

optimization problem. 

 

5.2.1 Problem formulation 

 

Our temperature solution for video coding accounts for three attributes resulted from the 

encoding process: (1) 𝑇 as the CPU temperature in ºC, (2) 𝑄 as the video quality in terms of 

PSNR and (3) 𝐵 as the resulted bit rate. The main goal of the proposed thermal solution is to 

minimize QoS (Quality of Service) degradation in terms of bit rate and PSNR, while keeping 

the current temperature 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 under a specified temperature threshold 𝑇𝑡ℎ as in equation 

5.3. 

 

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑇𝑡ℎ, such that, 𝑀𝑎𝑥{𝑄} and 𝑀𝑖𝑛{𝐵} (5.3) 

 

To achieve this goal, the temperature management at the application-level is performed by 

appropriate selection of the encoding parameters that determines the workload and affects the 

resulting temperature. In order to perform efficient parameter selection we designed an 

application-level temperature prediction. 

 

5.2.2 Application-level temperature prediction 

 

Equation 5.4 shows a simple application-level temperature predictor at the frame 

granularity. For a given time interval (e.g. between the encoding of two frames), the predicted 

temperature 𝑇𝑛𝑒𝑥𝑡 (i.e. predicted temperature expected to be obtained after encoding the 

current frames) can be estimated using: the current temperature 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (temperature at 

current point in time) and the temperature variation between encoding of current and previous 

frames. 

 

𝑇𝑛𝑒𝑥𝑡 = 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ∆𝑇 (5.4) 

 

For obtaining accurate temperature prediction, modeling of the ∆𝑇 component in equation 

5.4 is the main challenge. As discussed in chapter 5.1.1, the temperature behavior of encoding 

sequences is highly correlated with sequence content properties. These video properties can 

be leveraged to obtain hints for temperature prediction. However, using the knowledge of 

only the current frame may not be sufficient because the temperature distribution is also 

affected by the content of frames previously encoded (as shown in sub-chapter 5.1.1). 

Therefore, it is important to account for the complexity class of the current frame and the 

previous frame, i.e. the complexity difference between two consecutive frames. Considering 

that, we model the ∆𝑇  parameter as a function of the complexity difference between previous 

and current frames and their respective temperature distributions. Considering the three frame 

complexity levels (low, medium, and high), we can formulate nine possible temperature 



 

 

43 

variation distributions depending upon the complexity difference between previous and 

current frames. 

Figure 5.14 shows two of the nine possible temperature variation distributions when the 

complexity between previous and current frame changes (a) from high-medium-high and (b) 

from low-medium-low. These temperature variation distributions illustrate that temperature 

behavior does not follow the sequence complexity structure. It means that if the current frame 

complexity is higher than that of the previous, the temperature will increase while if the 

current frame complexity is lower than that of the previous, the temperature will decrease. 

This complexity variation between previous and current frames provides a good hint for 

temperature prediction. 

 

Medium 
to High

High to 
Medium

 

Low to 
Medium

Medium
to Low

 
(a) high-medium-high (b) low-medium-low 

Figure 5.14: Temperature variation distribution between current and previous frames. 

 

Since the standard deviation of theses temperature variation distributions is not zero, using 

always the same value for ∆𝑇 for a given complexity transition at run time can lead to high 

prediction errors. Therefore, our temperature prediction also uses the error history to improve 

the prediction accuracy. 

Based on the above discussion, we define our prediction model in equation 5.5. The 

predicted temperature 𝑇𝑝 for the upcoming/current sequence frame is a summation of current 

temperature 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and temperature variation ∆𝑇. In equation 5.6 the ∆𝑇 parameter is 

calculated using 𝑇𝑣 which is the temperature variation between previous and current frame 

plus the error history. At run time, the 𝑇𝑣 parameter is obtained from the probability 

distribution functions after computing the complexity difference between the current and 

previous frame (i.e. one out of nine cases as discussed above). The error history is calculated 

as the mean value of all errors in a time window 𝑤 (which is the number of previous frames 

that will be considered to calculate the error) to compensate for the prediction error. Here, the 

error 𝑒 is calculated as the difference between the measured temperature 𝑇𝑚 (from the 

temperature sensors) and the prediction temperature 𝑇𝑝 (as in equation 5.7). 

 

𝑇𝑝 = 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ∆𝑇 (5.5) 

∆𝑇 =  𝑇𝑣 +  ∑ 𝑒𝑖

𝑤

𝑖=0

𝑤⁄  (5.6) 

𝑒 = 𝑇𝑚 − 𝑇𝑝 (5.7) 

 



 

 

44 

Figure 5.15 shows the accuracy of our application-level temperature prediction for two 

test sequences PartyScene and Keiba. For the first three frames the algorithm is not used, 

since the system is warming up from an idle period, i.e. the temperature increases regardless 

the complexity level changes between frames. After this warming up period, the prediction 

starts. It is possible to observe that the predicted temperature (blue line) is indeed close to the 

measured temperature (red line) for both sequences. In fact the error of our prediction is of 

only 1.1% on average for the evaluated sequences. 

 

45

50

55

60

0 10 20 30

A
vg

. 
Te

m
p

e
ra

tu
re

 �
C

Frames

Measured Predicted

Warming up

Prediction starts

 

45

50

55

60

0 10 20 30

A
vg

. 
Te

m
p

e
ra

tu
re

 �
C

Frames

Measured Predicted
Warming up

Prediction starts

 
(a) PartyScene (b) Keiba 

Figure 5.15: Evaluating the accuracy of temperature predictor. 

 

5.2.3 Application-level thermal management 

 

Based on the predicted temperature for the current sequence frame (𝑇𝑝), our application-

driven temperature management solution evaluates if 𝑇𝑝 may potentially exceed the safe 

thermal limit and it reacts accordingly to keep the temperature below the thermal threshold. 

As discussed in chapter 5.1.2, different sets of encoder parameters will result in different 

temperature, PSNR and bit rate. Our solution controls the encoder temperature at run time by 

dynamically selecting an appropriate encoder configuration (i.e. set of encoder parameters) 

for the current sequence frame, while providing minimum penalties in terms of bit rate and 

video quality (PSNR) loss. Our solution employs: 

(1) Design-time Pareto analysis of different configurations for encoding various test video 

sequences form different complexity classes. The outcome is a set of Pareto-optimal 

configuration points. 

(2) Run-time configuration selection: depending upon the predicted temperature, an 

appropriate configuration is selected from the Pareto-optimal points.  

 

5.2.3.1 Temperature-aware configuration selection 

 

The problem of optimal encoder parameters configuration selection can be solved by 

Pareto analysis (DAS, 1999) at design-time. Algorithm 5.1 shows how we extract the optimal 

Pareto curve for each encoder parameter configuration point for a set of test video sequences. 

For our experiments, only one Pareto curve is provided as input. For each configuration point 

𝑐𝑖 we encode a test video sequence 𝑣𝑖 in order to extract the resulted temperature 𝑡𝑖, bit rate 

𝑏𝑖𝑡𝑖 and PSNR 𝑝𝑠𝑛𝑟𝑖. Then, with all bit rate and PSNR results mapped into temperature 

points, we can choose the encoder configuration point that provides the desired temperature 

𝑑𝑖 maximizing the 𝑝𝑠𝑛𝑟𝑖 and minimizing the 𝑏𝑖𝑡𝑖. 



 

 

45 

 
 

Since we use real temperature traces and due to time restrictions, we use only a sub-set of 

the encoder parameters to build our model. Table 5.1 shows the parameter values we adopt. 

These parameters are well-studied and recommended by the video standardization committee 

of HEVC (BOSSEN, 2012). Considering the analyzed parameters and all combinations, we 

are interested in the combinations that optimize temperature reduction with our target 

attributes (bit rate, PSNR) as shown in Algorithm 5.1. 

 

Table 5.1: Encoder parameters used to build our model. 

Parameters QP #RF SA CTU 

Values 22, 27, 32, 37 1, 2, 4 128,64,32 64, 32, 16 

 

Figure 5.16 shows the configuration points space for all combinations of number of 

reference frames, search area, and maximum size of coding units with a given QP considering 

average temperature reduction with PSNR loss and bit rate increase for the RaceHorses 

sequence. For other QPs, the curves are scaled. Figure 5.16 (a) illustrates that there are many 

configuration points decreasing the average temperature but at the cost of high PSNR loss. 

The same happens in figure 5.16 (b) where two different configuration points can provide the 

same temperature reduction but with a different bit rate impact. This way, it is possible to 

achieve good temperature reduction with low penalties in the encoding results by choosing 

appropriate encoding parameters. 

 

 

3,8

3,9

4,0

4,1

0 2 4 6 8 10 12

P
SN

R
 lo

ss
 (

d
B

)

Temperature Reduction �C

- Config. points
- Optimal curve

 

-100

0

100

200

300

400

500

0 2 4 6 8 10 12

B
R

 In
cr

e
a

se
 (

kb
p

s)

Temperature Reduction �C

- Config. points
- Optimal curve

 
(a) PSNR (b) Bit rate 

Figure 5.16: Configuration points for temperature reduction. 

 

 

Algorithm 5.1 Extraction of Pareto optimal curve 

Input: Configuration points C, Video Sequences V; 

1: let T be all temperature points; 

2: for each v Є V and each c Є C do: 

3: encode vi with configuration ci and get temperature ti; 

4: get biti and psnri; 

5: update point ti in T with biti and psnri; 

6: end for; 

7: let D be the desired temperature points; 

8: for each v Є V and each d Є D do: 

9: select ci while maximizing{psnri} and minimizing{biti} to satisfy di; 

10: end for; 



 

 

46 

5.2.3.2 Run-time adaptive temperature management 

 

Based on the run time predicted temperature 𝑇𝑝 for the current frame, our solution 

dynamically selects appropriate configuration from the design-time Pareto-optimal points. 

The configuration selection is illustrated in algorithm 5.2. The algorithm starts with initial 

configuration (line 2) and the current temperature 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is measured from the sensors (line 

3). For each frame 𝑓, it classifies complexity (line 5) that will be used in the prediction ∆𝑇 

(line 6-7). After the temperature prediction, it checks if the temperature exceeds the 

temperature threshold 𝑇𝑡ℎ (line 8). In case of temperature violation, the algorithm reacts by 

selecting a new set of configuration parameters 𝑐 based on the Pareto analysis that ensures 

temperature reduction with minimum losses in bit rate and PSNR (line 9). Finally, we encode 

the frame 𝑓 with configuration 𝑐 (line 10) updated the current temperature (line 11), the error 

list (line 13) and the complexity of previous frame (line 14). 

It is important to note that, the bit rate and PSNR results are scaled for different sequences 

but the best configuration points are mainly affected by the encoder parameters. The Pareto-

curve is recalculated only if the parameters used to build the model change. 

 

 
 

5.3 Experimental results and comparison with related works 
 

For evaluating our thermal management solution the input Pareto-curve is obtained from 

the RaceHorses sequence. Therefore, to avoid data biasing, we use four additional sequences 

(PartyScene, Keiba, BasketballDrill and BQMall). Our setup is the same IR-thermal camera 

based used for the thermal analysis. Figure 5.17 illustrates the distribution of frames in the 

evaluated sequences considering the proposed complexity classification (low, medium and 

high). The PartyScene, RaceHorses and Keiba contain medium-to-high while the 

BasketballDrill and BQMall sequences have medium-to-low complexity frames. We evaluate 

our technique for three threshold temperatures 𝑇𝑡ℎ 54 ºC, 50 ºC and 46 ºC, as also used by 

state-of-the-art work (LEE, PATEL and PEDRAM, 2008) showing how our technique 

adaptively controls the temperature of the video coding system. 

Algorithm 5.2 Video quality-aware Temperature Management 

Input: Pareto points P, video V, Temperature Threshold Tth; 

1: error_list = [ ]; 

2: c = initial configuration; 

3: 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = measure_temperature(); 

4: for each frame f Є V do: 

5: Cnext = classify_complexity(f); 

6: ∆𝑇 = Tv(Cnext, Cprevious) + mean(error_list); 

7: Tp = Tcurrent + ∆𝑇; 

8: if Tp > Tth do: 

9: c = pareto_selection(P, Tth); //reaction 

10: end if; 
11: encode(f, c); 

12: Tcurrent = measure_temperature(); 

13: error = Tcurrent – Tp; 

14: update_error_list(error); 

15: Cprevisou = Cnext; 

16: end for;  



 

 

47 

 

0%

20%

40%

60%

80%

100%

Party R.Horses Keiba Basket BQMall
Low Medium High  

Figure 5.17: Frames complexity distribution of evaluated sequences. 

 

Figure 5.18 (a)-(e) shows the thermal curves during a part of the encoding process for the 

PartyScene, RaceHorses, Keiba, Basketball and BQMall sequences in terms of peak 

temperature-per-frame being encoded to take various scenarios into account. First, we 

compare our application-driven temperature management technique with the three evaluated 

temperature thresholds 𝑇𝑡ℎ values to the “no thermal optimization” case (i.e. the HM default 

configuration is used in the whole encoding process). It is possible to note that our technique 

successfully keeps the CPU temperature under the specified 𝑇𝑡ℎ values by adapting the 

encoder configurations. As soon as the predicted temperature approaches to 𝑇𝑡ℎ value, our 

configuration selection dynamically adapts the encoder parameters in such a way that it 

decreases the current temperature while minimizing the impact on PSNR and bit rate. For 

medium-low complexity sequences like BasketballDrill and BQMall it takes more time for 

increasing the temperature while for medium-high complexity sequences the temperature 

increases quicker. It means that our temperature management solution will react earlier in 

case of the high complexity video sequences. 

 

40

45

50

55

60

0 10 20

P
e

ak
 t

e
m

p
e

ra
tu

re
 (

�C
)

# Frames

No Opt. 54 °C 50 °C 46 °C

 

40

45

50

55

60

0 10 20

P
e

ak
 t

e
m

p
e

ra
tu

re
 (

�C
)

# Frames

No Opt. 54 °C 50 °C 46 °C

 
(a) PartyScene profile (b) RaceHorses profile 

40

45

50

55

60

0 10 20

P
e

ak
 t

e
m

p
e

ra
tu

re
 (

�C
)

# Frames

No Opt. 54 °C 50 °C 46 °C

 

40

45

50

55

60

0 10 20

P
e

ak
 t

e
m

p
e

ra
tu

re
 (�

C
)

# Frames

No Opt. 54 °C 50 °C 46 °C

 
(c) Keiba profile (d) BasketballDrill profile 



 

 

48 

40

45

50

55

60

0 10 20

P
e

ak
 t

e
m

p
e

ra
tu

re
 (�

C
)

# Frames

No Opt. 54 °C 50 °C 46 °C

 
(e) BQMall profile 

Figure 5.18: Temperature profile encoding different sequences under different thresholds. 

 

Figure 5.19 compares the thermal maps when using “no thermal optimization” with our 

thermal management set to 54 ºC for encoding the RaceHorses sequence. It is noticeable that 

when using our solution the temperature of the die decreases since different encoder 

configuration is chosen to alleviate the computational intensity of the video coding process. 

 

  

56  C
54  C
52  C
50  C
48  C
46  C
44  C
42  C
40  C
38  C  

(a) No optimization (b) Our 54 ºC  

Figure 5.19: Thermal maps of the die for encoding RaceHorses. 

 

Figure 5.20 shows the impact of our temperature management technique in terms of (a) 

PSNR and (b) bit rate in comparison with “no thermal optimization” for the same five 

sequences. The degradation in PSNR increases as the 𝑇𝑡ℎ decreases. However, as our 

technique is able to perform appropriate encoder parameter selection, the degradation is low. 

When 𝑇𝑡ℎ is set to 54 ºC the average PSNR loss is of only 0.007 dB while the bit rate slightly 

increase 0.99% on average for all sequences. When 𝑇𝑡ℎ is set to the lowest value of 46 ºC the 

degradation is higher, but not higher than 1.81 dB in terms of PSNR and 0.84% of bit rate 

increase on average. Furthermore, for medium-low complexity sequences like BQMall and 

BasketballDrill, the degradation on coding efficiency is lower for both PSNR and bit rate than 

for medium-high sequences like PartyScene, RaceHorses and Keiba. It occurs, since for 

reducing the temperature of high complexity sequences, the encoder configuration provided 

by our solution needs to reduce the workload more than for low complexity sequences. 

30

32

34

36

38

40

42

R. Horses Keiba Party B. Drill BQMall

P
SN

R
 (

d
B

)

No Opt. 54°C 50°C 46°C  

0

10

20

30

R. Horses Keiba Party B. Drill BQMall

B
it

 r
at

e
 (

1
0

x 
kb

p
s)

No Opt. 54°C 50°C 46°C  
(a) PSNR (b) Bit rate 

Figure 5.20: Coding efficiency results. 



 

 

49 

We also compare the quality impact of using our temperature management solution with 

the dynamic thermal management technique proposed by (LEE, PATEL and PEDRAM, 

2006) (LEE, PATEL and PEDRAM, 2008). These works use frame drop rates varying from 

5.7% to 83.3% depending upon the sequence to keep the temperature under the temperature 

threshold 𝑇𝑡ℎ. For comparison purposes we assume that one frame drop implies on using the 

information of the previous encoded frame in replacement to the dropped frame. For instance, 

if the frames drop rate is 10% it means that for every 10 frames one is discarded and replaced 

by the previous frame. This is similar to the state-of-the-art work that employ frame drop on 

the decoder and copy for display. We establish three frame drop rates, 10%, 20% and 50% to 

illustrate the negative impact on video quality of using such thermal management technique in 

comparison with our application-driven solution with threshold set to 54 ºC. Figure 5.21 

shows the PSNR for five sequences where our technique achieves better quality results than 

state-of-the-art for all frame drop rates. The frame drop technique significantly degrades the 

video quality. On the other hand, our technique optimizes not only the temperature but also 

the resulted encoder attributes (PSNR and bit rate) through a temperature-aware configuration 

selection which is a more sophisticated approach compared to naively dropping frames. When 

the frame drop rate is only 10% the PSNR impact can be of about 12 dB and for 50% the 

degradation can achieve 20 dB. Such quality degradation is typically intolerable for the users 

of high-end encoding devices. 

 

0

10

20

30

40

50

R. Horses Keiba Party B. Drill BQMall

P
SN

R
 (

d
B

) Our

10%

20%

50%

 
Figure 5.21: Comparison with related works. 

 

Our proposed application-driven dynamic thermal management solution is generic and 

suitable to any hardware platform, since it is applied at the application-level using video 

coding characteristics. Since our solution uses information from the encoder itself, such as 

parameters and luminance samples (to calculate frame complexity), the time overhead in the 

whole encoding process is negligible. For instance, the texture intensity calculation for the 

next frame can be performed while the current frame is being encoded. 

 



 

 

 

6 THERMAL OPTIMIZATION USING APPROXIMATE 

COMPUTING 

The second temperature-aware solution proposed in this work is a thermal optimization 

technique that uses the concept of approximate computing adaptively in order to reduce 

temperature of HEVC encoding while maintaining good quality results. 

Recently, the concept of approximate computing has gathered a lot of attention and has 

been seen as an attractive way to improve performance or power efficiency by compromising 

the application quality within the tolerable ranges (VENKATARAMANI, CHAKRADHAR, 

et al., 2015). The basic idea of approximate computing is to explore the application resilience 

to errors to reduce the total amount of computation at the software and/or hardware level. 

Several studies have applied approximate computing techniques at different layers of the 

computing stack, for instance, circuit design (RAMASUBRAMANIAN, 

VENKATARAMANI, et al., 2013) (GUPTA, MOHAPATRA, et al., 2011), architectures 

(CHIPPA, VENKATARAMANI, et al., 2014) (CHIPPA, MOHAPATRA and ROY, 2014), 

and application software (VENKATARAMANI, RANJAN, et al., 2014) (CHAKRADHAR 

and RAGHUNATHAN, 2010) to reduce power consumption but have not yet explored their 

impact on the thermal profile optimization. Due to inherent resilience of various functional 

blocks (like motion estimation) and varying levels of user perception, video coding (HEVC in 

our case) is a well-suited application for approximate computing and it can tolerate a varying 

degree of error in the output visual quality after the encoding process. 

Earlier works have explored concepts of curtailing mode computations (CORREA, 

ASSUNÇÃO, et al., 2014), compute effort scaling (CHAKRADHAR and 

RAGHUNATHAN, 2010), and efficient data management (SHAFIQUE, ZATT, et al., 2012) 

to trade computational complexity and power consumption with the output visual quality, 

respectively. However, state-of-the-art works have not yet explored the potential of 

approximate computing to alleviate the on-chip thermal profiles in complex video coding 

systems equipped with HEVC. 

The main idea of this thermal optimization solution is to adaptively employ approximate 

computing depending on the video content properties and the application knowledge in order 

to explore the tradeoffs between on-chip temperatures, computational complexity and visual 

quality. 

 

6.1 Error tolerance analysis for video coding 
 

We present an analysis of error tolerance for the HEVC encoder application to derive 

interesting observations that are leveraged for designing an efficient content-aware 

approximate computing technique for video coding. Imprecise or approximate computing at 

the application layer can exploit several basic methods to improve power efficiency by 

selectively eliminating operations/computations at the algorithm and data levels. 



 

 

51 

 

6.1.1 Opportunities of approximate computing on video coding 

 

As presented in chapter 3.3.1, the HEVC encoding process is structured as recursive quad-

tree partitioning of the basic Coding Tree Unit (CTU – 64x64 pixels). However, the recursive 

process does not need to go always down to the deepest 8x8 division. Actually, in many 

cases, depending upon the CTU content properties (for instance, homogeneous blocks with 

low motion) the 64x64 size is sufficient to have a good coding efficiency. In case, the 

recursive partitioning stops at the bigger CU size (i.e. it does not go to the deepest level in the 

quad-tree), the computation complexity of the coding process can significantly be reduced as 

all other coding steps will only be applied over the generated partitions. However, the coding 

efficiency-wise best partition may not exist in the set of generated partitions, which may 

result in degraded coding efficiency. 

For the selected partitions, the coding process is performed by exploiting the spatial and 

temporal correlations through so-called Intra- and Inter-Predictions. While the inter-

prediction processes typically employs matching functions like sum of absolute differences 

(SAD) (see chapter 3.4), the intra-prediction process employs prediction generation FIR 

(Finite Impulse Response) filters considering the neighboring pixels. These matching and 

prediction generation functions are composed of primitive pixel-level operations (like 

addition, subtraction, and multiplication), which can be approximated at different levels of 

granularity (ranging from circuit (GUPTA, MOHAPATRA, et al., 2011), loop perforation 

(SIDIROGLOU-DUOSKUS, MISAILOVIC, et al., 2011) to data approximations 

(SHAFIQUE, ZATT, et al., 2012)) while still achieving reasonably good prediction results. 

For instance, figure 6.1 shows different possibilities of applying the data approximations, 

where the x:y notation means that for a set of y pixels only x are used in the calculation of the 

matching and prediction functions. Such data approximations can perturb the algorithm and 

may lead to different prediction values and coding modes, and thereby affecting the coding 

efficiency results. Aggressive and poor guided data approximations may lead to serious video 

quality degradation. 

 

   
(a) 1:2 (b) 1:4 (c) 1:8 

Figure 6.1: Example of possible data approximations (PALOMINO, SHAFIQUE, et al., 

2016). 

 

6.1.2 Analyzing the error tolerance of HEVC under different application-level 

approximations 

 

Without the loss of generality, we employ two basic application-level approximate 

computing method to the HEVC: (1) Loop Perforation (SIDIROGLOU-DUOSKUS, 



 

 

52 

MISAILOVIC, et al., 2011) to prune the quad-tree coding structure; and (2) data 

approximation through pixel sub-sampling during the prediction process. Using this we define 

four different approximation modes (AM-0 to AM-3) in order to evaluate the error tolerance of 

video sequence regions. Table 6.1 shows the type of approximations used for each mode. AM-

0 corresponds to no approximation, while AM-3 corresponds to the most aggressive 

approximation mode. The approximations at the algorithm level are represented by the 

maximum quad-tree depth. It limits the depth that the quad-tree coding structure will divide 

the 64x64 CTU. The approximations at the data level are represented by the pixel sub-

sampling from 1:1 to 1:8. Each approximation mode is a composition of a particular 

algorithm-level approximation and a particular data-level approximation, and it will be 

applied to every CTU in a frame of a given video sequence. Note, in the generic form, an 

approximation mode can be defined as a particular combination of different 

hardware/software-level approximations form a set of basic approximation methods. 

 

Table 6.1: Algorithm and data approximation modes. 

Approximate Mode Maximum Quad-Tree Depth Data Sub-Sampling 

AM-0 4 (until 8x8) 1:1 

AM-1 3 (until 16x16) 1:2 

AM-2 2 (until 32x32) 1:4 

AM-3 1 (until 64x64) 1:8 

 

Considering the above presented approximation modes, we have performed a set of 

experiments to analyze the error tolerance of different test video sequences (BOSSEN, 2012). 

Table 6.2 shows the sequences used in this error tolerance evaluation of HEVC. HEVC test 

Model (HM) software version 16.0 (JCT-VC, 2015) was used for encoding the test video 

sequences. The approximation modes are applied CTU by CTU for all video sequences. From 

these experiments, final visual quality and computational complexity reduction are obtained. 

The resulting output visual quality is the metric used to illustrate the error tolerance of a given 

sequence while computational complexity reduction is used as the abstract metric to show the 

potential for improving the temperature profile, as temperature is a function of the workload. 

 

Table 6.2: Sequences used for error tolerance evaluation. 

Sequences Resolution (pixels) 

BQMall 832x480 

BasketballDrill 832x480 

RaceHorses 832x480 

BQTerrace 1920x1080 

BasketballDrive 1920x1080 

Cactus 1920x1080 

 

In the first experiment, we have encoded all sequences using all approximation modes 

described in table 6.1 for all CTUs in order to check the approximation effects on both visual 

quality and computational complexity. Figure 6.2 shows the quality results of this experiment 

in terms of BD-PSNR loss (BJONTEGARD, 2001) (in dB) after applying the approximation 

modes AM-1, AM-2, and AM-3 compared to the AM-0 mode (i.e. when no approximation are 

performed). 

It is noticeable that the quality loss increases as the approximation modes go further in the 

quad-tree pruning and in the sub-sampling degrees achieving almost 1.5 dBs of quality loss 

for the AM-3 applied to the RaceHorses sequence. The algorithm-level approximation in the 



 

 

53 

quad-tree limits the CTU division in region with high motion/texture, where encoding with 

smaller blocks is essential to get good quality results. Also, the data level approximations 

imposed by the sub-sampling affects the quality, mainly in heterogeneous regions, where each 

pixel contributes in a different way to the matching function calculation. Moreover, there is a 

different ratio in the quality loss between sequences, for example, the BQTerrace sequence is 

less affected by the approximation modes in comparison with the RaceHorses sequences. This 

happens, since different video sequences have different amount of motion/texture properties 

and different correlation potential (see chapter 5.1.1). 

 

 

0

0,5

1

1,5

BQMall BQTerrace BasketDrive BasketDrill RaceHorses Cactus

B
D

-P
SN

R
 lo

ss
 (

d
B

) AM-1 AM-2 AM-3

 
Figure 6.2: Quality results for algorithm/data approximate computing modes. 

 

Figure 6.3 shows the impact of using the approximation modes on the computational 

complexity of encoding one frame (second frame) of the BasketballDrive sequence. The 

workload map is formed by squares that represent the time (normalized to the range of the 

CTU times) to encode each CTU in the frame considering all approximation modes. 

 

  

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0  

(a) AM-0 (b) AM-1 

  
(c) AM-2 (d) AM-3 

Figure 6.3: CTUs workload encoding the BasketballDrive (second frame) sequence for all 

Approximation Modes. 



 

 

54 

 

Following the quality loss results, the workload reduces as the approximation modes prune 

more the quad-tree structure and the sub-sampling degree increases. The algorithm-level 

approximations by eliminating some of the quad-tree depths denote the avoidance of the 

processing of all coding tools used to evaluate each one of the eliminated blocks. Besides, the 

sub-sampling is applied to the blocks that were not eliminated by the algorithm-level 

approximations. It is important to note that even with the approximation modes, the workload 

of some CTUs do not reduce in the same proportion. In fact, in some cases the CTU workload 

increases as demonstrated in some of the CTUs when the AM-3 is applied (figure 6.3 (d)). 

This happens, since other coding tools can negatively be affected by the quad-tree pruning, 

and the computational complexity of some algorithm routines may increase (like CABAC 

Entropy Coding) to achieve better encoding. 

Although using the proposed approximation modes for all CTUs seem to be a good way to 

reduce the workload associated with the video encoding process and consequently to improve 

the thermal profiles, there are significant quality losses in most of the tested sequences. When 

the AM-3 mode is applied, there is about 1 dB of BD-PSNR loss for all sequences except the 

BQTerrace and almost 1.5 dB for the RaceHorses sequence. When the AM-1 mode is applied 

the BD-PSNR losses are very low. On the other hand, the total workload reduction may not be 

sufficient to reduce the temperature of the encoding system. Therefore, it is necessary to find 

a better way to use these approximation modes where good quality results can be achieved 

together with low temperatures. 

An interesting observation can be found in the case of BQTerrace quality results in figure 

6.2. The BD-PSNR losses are very low even when the AM-3 mode is applied. This happens 

since this sequence have more low texture/motion regions than the other sequences, and 

therefore, using both algorithm and data-level approximation do not impact the output quality 

much. This denotes that there are regions in a video frame that are more resilient to the 

approximation errors while there are some other regions that are more sensitive to the 

approximations. Figure 6.4 shows two frames form two sequences (BasketballDrive and 

BQTerrace) where we have identified some low/high detailed areas that can be more or less 

affected by the approximations explored in this chapter. The low and high detailed regions are 

selected based on the texture and motion properties of the objects in a frame. 

 

High detailed Low detailed
 

High detailed Low detailed
 

(a) BasketballDrive (b) BQTerrace 

Figure 6.4: High/Low detailed regions (1920x1080 pixels). 

 

In order to support the hypothesis that applying the approximation modes selectively to 

some characterized resilient video regions can be less harmful to the final output quality while 

still contributing to the workload reduction, we have performed a second set of experiments. 



 

 

55 

In these experiments, we selected regions with low texture/motion properties for applying the 

three approximation modes and encoded two frames shown in figure 6.4. 

Figure 6.5 shows the BD-PSNR losses where the approximation modes being applied to 

all regions in the frames are compared to applying the approximation modes only to those 

regions characterized as low detailed (i.e. red rectangles in figure 6.4). Note that the BD-

PSNR losses are very low (close to the zero value) for both sequences. Additionally, even 

when the AM-3 mode is applied, the BD-PSNR losses stay below 0.1 dB, which is almost 

imperceptible. Our analysis shows that high workload reduction can be achieved at low 

quality degradation if all three approximation modes can be applied selectively to only the 

resilient regions in the video sequences. We refer to this as “content-driven adaptive 

approximate computing”. 

 

0

0,2

0,4

0,6

AM-1 AM-2 AM-3 AM-1 AM-2 AM-3B
D

-P
SN

R
 lo

ss
 (

d
B

) All regions Low detailed regions

BQTerrace BasketballDrive
 

Figure 6.5: BD-PSNR losses comparison. 

 

Figure 6.6 shows the normalized workload reduction of applying the approximation 

modes only in the low-detailed regions and compares it to the workload of applying the 

approximation modes to all regions. It shows that even when the approximation modes are 

applied only to the low-detailed regions, the workload reduction is significant. Considering 

the AM-3 mode in the low-detailed regions, the BQTerrace sequence shows workload 

reduction close to the AM-1 mode (red circles in figure 6.6) with less than half of the BD-

PSNR losses (red circles in figure 6.5). Moreover, there is a potential of more workload 

reduction if all the approximation modes could be applied to all frame selectively depending 

upon the properties of their different regions. 

 

0
0,2
0,4
0,6
0,8

1

AM-1 AM-2 AM-3 AM-1 AM-2 AM-3

N
o

rm
. 

W
o

rk
lo

ad

All regions Low detailed regions

BQTerrace BasketballDrive
 

Figure 6.6: Workload reduction comparison. 

 



 

 

56 

Summary of analysis: Approximate computing at the algorithm-level by pruning the 

quad-tree coding structure and at the data-level by sub-sampling the matching function 

calculation can provide significant workload reductions in the HEVC process. However, in 

order to improve the tradeoff between workload reduction (and consequently the on-chip 

temperature) and the resulted visual quality, different degrees of approximations (i.e. different 

approximation modes) need to be applied adaptively according to the error 

tolerance/resilience of different video regions. The resilience of a video region can be 

formulated as a function of its texture and motion properties. 

 

6.2 Thermal optimization through adaptive approximate computing 
 

The main idea of this thermal solution is to adaptively employ different approximation 

modes to reduce the temperature associated with the HEVC video coding process. The main 

goal of this technique is to minimize both temperature and application QoS degradation in 

terms of BD-PSNR. To achieve such a goal, the temperature optimization at the application-

level is obtained through a content-driven approximate computing technique that exploits 

video properties to classify the resilience of different regions of the video sequence in order to 

control the selection of approximation modes during their encoding. 

 

6.2.1 Error Resilience Classification 

 

As demonstrated in chapter 6.1, some video regions exhibit higher resilience to 

approximation than others, i.e. tolerate more error and incur low visual quality loss. It shows 

that if regions can be characterized in terms of their error resilience, it is possible to obtain 

high workload reduction at low quality penalties. Our analysis showed that, in general, 

regions with low motion/texture intensity (low-detailed and homogeneous regions) are the 

ones with higher resilience to the approximation errors. On the other hand, regions with high 

motion/texture intensity (high-detailed and heterogeneous regions) are more sensitive to the 

approximation errors. Therefore, we formulate the resilience of video regions as a function of 

their texture and motion properties. 

Towards this end, we first estimate the texture and motion intensity of different CTUs of 

the input video sequence. For each 64x64 CTU, we calculate the variance among the 

luminance samples within the CTU as in equation 6.1 using the model of (SHAFIQUE, ZATT 

and HENKEL, 2012). Then, we compute the normalized variance of all CTUs within a frame 

using equation 6.2, since the most important information from the variance calculation is to 

compare regions in terms of their error resilience level and identify the ones with the high 

resilience value. It is important to point out that the variance calculation overhead is less than 

0.1% (BLUMENBERG, PALOMINO, et al., 2013). 

 

𝑣𝐶𝑇𝑈 =  
1

4096
∑ (𝜌𝑖 − 𝜌𝑎𝑣𝑔)

2
4096

𝑖=1

 (6.1) 

𝑛𝑜𝑟𝑚_𝑣𝐶𝑇𝑈 =
𝑣𝐶𝑇𝑈 − 𝑚𝑖𝑛𝐹𝑟𝑎𝑚𝑒(𝑣𝐶𝑇𝑈)

𝑚𝑎𝑥𝐹𝑟𝑎𝑚𝑒(𝑣𝐶𝑇𝑈) − 𝑚𝑖𝑛𝐹𝑟𝑎𝑚𝑒(𝑣𝐶𝑇𝑈)
 (6.2) 

 

Figure 6.7 shows a color map where each square represent the normalized variance value 

for each CTU for the second frames of BasketballDrive and BQterrace sequences. It is 

possible to observe that the low-variance values indicate low texture/motion regions while 

high-variance values are found in regions where there is more detailed texture/motion 



 

 

57 

information. Note, most of the low-variance regions also match with the selected regions of 

the second experiment in figure 6.4. 

  

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0  

(a) BasketballDrive normalized variance map. 

  
(b) BQTerrace normalized variance map. 

Figure 6.7: Texture/motion color maps using variance. 

 

Based on this CTU-level normalized variance information, we define the following four 

resilience levels to classify each CTU using the equation 6.3: Resilient, Medium Resilient, 

Medium Sensitive, and Sensitive. This classification will be used for characterizing different 

CTUs in a video frame and for selecting an approximation mode during the CTU encoding. 

Without the loss of generalization and for illustrative purposes, we choose four different 

resilience levels in order to match with our four approximation modes used for the evaluation 

of the proposed concepts. 

 

𝛤 = {

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡
𝑀𝑒𝑑𝑖𝑢𝑚 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑡
𝑀𝑒𝑑𝑖𝑢𝑚 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 

𝑖𝑓(𝑛𝑜𝑟𝑚_𝜐𝐶𝑇𝑈 < 𝑇ℎ𝑣1)
𝑖𝑓(𝑇ℎ𝑣1 ≤ 𝑛𝑜𝑟𝑚_𝜐𝐶𝑇𝑈 < 𝑇ℎ𝑣2)
𝑖𝑓(𝑇ℎ𝑣2 ≤ 𝑛𝑜𝑟𝑚_𝜐𝐶𝑇𝑈 < 𝑇ℎ𝑣3)

𝑖𝑓(𝑛𝑜𝑟𝑚_𝜐𝐶𝑇𝑈 ≥ 𝑇ℎ𝑣3)

 (6.3) 

 

The threshold values in equation 6.3 were obtained through regression analysis 

(considering a step size of 0.05) using a small subset of test video sequences, which are 

different from the set of test video sequences used for evaluation, in order to avoid data 

biasing. For defining the threshold value 𝑇ℎ𝑣1 corresponding to the level Resilient, test video 

sequences were encoded with the AM-3 mode in the regression analysis. The threshold 

selection was performed considering the quality degradation behavior and the workload 

reduction in the regression tests. Similar methodology was adopted for obtaining the other 

two threshold values 𝑇ℎ𝑣2 and 𝑇ℎ𝑣3. Table 6.3 shows the final thresholds obtained through 

the regression analysis providing the best tradeoff between workload reduction and visual 

quality loss. 

 

Table 6.3: Threshold values used to classify CTU resilience. 

Thresholds 𝑇ℎ𝑣1 𝑇ℎ𝑣2 𝑇ℎ𝑣3 

Values 0.1 0.2 0.3 



 

 

58 

 

6.2.2 Content-driven adaptive approximation management 

 

Based on the proposed resilience classification of CTUs in the HEVC encoding process, 

our technique uses the obtained threshold values in table 6.3 to define the degree of 

approximations that will be employed for each CTU encoding. Algorithm 6.1 shows the flow 

of our light-weight approximate mode selection heuristic. For each frame in a video sequence, 

the variance of each CTU is extracted and added to a variance list v_list (line 1 to 5). Then the 

normalized variance value is calculated for each CTU to classify the CTU resilience to 

approximation errors (line 8). According to the classification, one of the four approximation 

modes is selected for the CTU encoding process (line 10 to 13). For CTUs that are classified 

as Sensitive, no approximations are performed in the CTU encoding. 

 

 
 

6.3 Experimental results and comparison with related works 
 

For evaluation, we perform thermal simulations when encoding different sequences using 

HEVC while considering two methodologies. The first methodology uses the digital thermal 

sensor (DTS) based setup (see chapter 4.3) and the second methodology uses the tool chain 

setup (see chapter 4.2) to generate thermal maps. All temperature results for both 

methodologies were collected using the HEVC test Model (HM) software version 16 (JCT-

VC, 2015). The variance threshold values were obtained from the BQTerrace and 

BasketballDrive sequences. Therefore, to avoid data biasing, we use five additional sequences 

to evaluate the quality results of our content-driven approximate computing technique and to 

include a wide range of scenarios considering diverse texture/motion intensity. 

Figure 6.8 shows the thermal profiles extracted using the DTS methodology for encoding 

four sequences with and without our approximation technique. It can be observed that the 

temperature values are smaller when our technique is employed. This happens since there is a 

significant workload reduction in the encoding process provided by our technique. For the 

BasketaballDrill sequence, our technique did not achieve temperature reduction as good as 

Algorithm 6.1 Approximate mode selection heuristic. 

Input: sequence S; 

1: v_list = [ ]; 

2: for each frame f Є S do: 

3: for each CTU cu Є f  do: 

4: vCTU = extract_variance(ctu); 

5: update_v_list(vCTU); 

6: end for; 
7: for each CTU ctu Є f  do: 

8: norm_vCTU = [vCTU – min(v_list)] / [max(v_list) – min(v_list)]; 

9: case norm_vCTU: 

10: resilient: encode(ctu, AM-3); 

11: medium resilient: encode(ctu, AM-2); 

12: medium sensitive: encode(ctu, AM-1); 

13: sensitive: encode(ctu, AM-0); 

14: end case; 

15: end for; 

16: end for; 



 

 

59 

that for the BasketballDrive. This can be attributed to the high number of low texture/motion 

CTUs (i.e. more resilient regions) in BasketballDrive, and thereby using more aggressive 

approximations. In contrast, for BasketballDrill, due to the more high-textured CTUs, less 

aggressive or no approximations were employed when encoding those CTUs. 

 

20

30

40

50

60

0 10 20 30 40 50

Te
m

p
e

ra
tu

re
 (

°C
)

Frames

AC OFF AC ON

 

20

30

40

50

60

0 10 20 30 40 50

Te
m

p
e

ra
tu

re
 (

°C
)

Frames

AC OFF AC ON

 
(a) BasketballDrill (b) BasketballDrive 

20

30

40

50

60

0 10 20 30 40 50

Te
m

p
e

ra
tu

re
 (

°C
)

Frames

AC OFF AC ON

 

20

30

40

50

60

0 10 20 30 40 50

Te
m

p
e

ra
tu

re
 (

°C
)

Frames

AC OFF AC ON

 
(c) BQTerrace (d) Cactus 

Figure 6.8: Temperature profile for different sequences. 

 

Figure 6.9 the average temperature results for all tested sequences using the DTS 

methodology. Our content-driven adaptive approximate computing technique achieved low 

temperatures for all sequences in comparison to the regular HEVC encoding without any 

approximations. It can be observed that our technique significantly improves the thermal 

profiles (e.g. 15 ºC reduce temperature in Cactus), though there are some sequences where the 

average temperature reduction is only 5 ºC (BQMall). On average, for all sequences, our 

technique achieved 10 ºC of temperature reduction. The difference in temperature reduction 

among different sequences is attributed to their diverse distributions of low-resilience CTUs 

that limit the applicability of aggressive approximations. 

 

0

10

20

30

40

50

BasketDrill BasketDrive BQMall BQTerrace Cactus RaceHorses

A
vg

. T
e

m
p

.(
°C

) AC OFF AC ON

 
Figure 6.9: Average temperature for all tested sequences. 

 

Figures 6.10 and 6.11 show the thermal maps extracted from the second evaluation 

methodology based on the tool chain for two sequences. From these figures it can be observed 



 

 

60 

that our technique successfully improves the temperature profile of video coding systems. The 

left-side hotter maps represent the steady-state temperature when using the regular HEVC 

encoding without any approximations, while the right-side colder maps represent the steady-

state temperature of the HEVC encoding when using our technique, In summary, the 

temperature reduction for all sequences using the tool chain methodology was also about 10 

ºC on average. 

 

 
(a) 

 
(b) 

60 C
58 C
56 C
54 C
52 C
49 C
47 C
46 C

 

Figure 6.10: Thermal maps of BasketballDrill (a) AC OFF (b) AC ON 

 

 
(a) 

 
(b) 

60 C
58 C
56 C
54 C
52 C
49 C
47 C
46 C

 

Figure 6.11: Thermal maps of BQMall (a) AC OFF (b) AC ON 

 

Figure 6.12 show the impact of our technique on the output quality loss (in terms of BD-

PSNR) when compared to the regular HEVC encoding without using our technique. The 

quality degradation for all tested cases is on average 0.48 dBs (excluding sequences that were 

used on training the threshold values). Even for the worst-case results (i.e the RaceHorses 

sequence), our technique incurs a maximum BD-PSNR loss of 0.66 dBs, while in the best 

case (i.e the Keiba sequence) it incurs the maximum BD-PSNR loss of only 0.31 dBs. We 

also compared the BD-PSNR losses of our technique with statically using the AM-3 mode (the 

most aggressive approximation mode with the highest workload savings). For all cases our 

technique presents better output quality results than employing only the AM-3 mode, which is 

attributed to the resilience-driven adaptive approximation control. 

 

Core

L2

Core

L2

Core

L2

Core

L2



 

 

61 

0

0.5

1

1.5

BQMall BQTerrace BasketDrive BasketDrill RaceHorses Cactus Keiba

B
D

-P
SN

R
 lo

ss
 (

d
B

) AC ON AM-3

 
Figure 6.12: Quality results. 

 

We compare quality results of our approximate computing based temperature optimization 

technique with the dynamic thermal management policy proposed in (LEE, PATEL and 

PEDRAM, 2006) (LEE, PATEL and PEDRAM, 2008) that use frame drop rates to control 

temperature. Again, we consider that a frame drop mean that the encoder replaces it by the 

information of the last-encoded frame and skips the encoding process. We also compare 

quality results with the application-driven dynamic thermal management proposed in the 

previous chapter (PALOMINO, SHAFIQUE, et al., 2014a) (PALOMINO, SHAFIQUE, et al., 

2014b) that uses run-time encoder configuration to keep the temperature under a defined 

threshold. The quality results are reported corresponding to the same temperature reduction 

cases, e.g., 10 ºC reduction. 

Figure 6.13 shows the quality comparison in terms of PSNR for encoding four sequences 

with the HEVC. Our technique is able to outperform previous works in most of the evaluated 

cases. When comparing with the frame drop based technique, our approximate computing 

based technique present the best results in all cases. The quality degradation of dropping 20% 

of the frames leads to a PSNR loss of 8 to 16 dBs. This significant quality loss is usually not 

tolerable for users on encoding devices. When comparing with thermal management policy 

that change encoder configurations at run-time, the approximate computing technique present 

better results for three sequences and similar result for the BQMall sequence. This happens 

because there are some encoder parameters, such as the QP, that can significantly degrade 

quality. Higher QP values introduce error in the encoding process, generating quality loss. 

When applied to sequence regions that are too sensitive to errors, it may increase the quality 

losses. On the other hand, the approximate computing based technique takes into account the 

texture and motion properties of different sequence regions and adaptively employs varying 

degree of approximations. Consideration of resilience properties of different regions help in 

achieving better quality results than other technique that do not account for such information. 

 

0

20

40

60

RaceHorses Keiba BasketDrill BQMall

P
SN

R
 (

d
B

)

Our AC

(PALOMINO, SHAFIQUE, et al., 2014)

20% (LEE, PATEL and PEDRAM, 2008)

 
Figure 6.13: Comparison of quality results with related works. 



 

 

 

7 APPLICATION-DRIVEN THERMAL-AWARE 

SCHEDULING 

The third temperature solution for video coding proposed in this work is an application-

driven thermal aware scheduling technique for on-chip multicore systems executing multi-

threaded workloads in order to deal with possible spatial temperature variation that has 

negative effects on the system reliability (see chapter 2.1). 

The main idea of multicore architectures is to provide a hardware platform where 

applications can run in parallel. The application performance is improved when the total data 

to be computed is equally split into threads. While threads are completely independent, they 

can run in different cores at the same time and the speed up provided by the parallel 

processing should be proportional to the number of threads. However, this is not true for 

applications where the computation of threads is affected by the characteristics of the data and 

not only for the amount of data being processed. Video coding is an example of such 

application where thread’s workloads are not proportional to the amount of data. Additionally, 

this behavior will directly impact in the thermal profiles of a multicore system running the 

video coding application. In order to measure this workload behavior of the multi-threaded 

video coding and the thermal impact considering a multicore scenario, we first perform an 

extensive analysis following the tool chain methodology (chapter 4.2). 

 

7.1 Analysis of threads workloads 
 

We have performed several analysis related to the unbalance nature of workload between 

threads for video coding. All analyses were performed considering the HEVC test Model 

software version 16. The workload associated with each thread is measure in terms of 

encoding time. Then, we have performed an analysis to measure how the workload unbalance 

nature of the video coding application impacts on the thermal profiles of multicore systems. 

We have analyzed three different topologies varying the number of cores (2, 4 and 8 cores). 

 

7.1.1 Thread’s workloads in video coding systems 

 

The efficiency and computational complexity of advanced video coding tools are basically 

driven by the properties of the input video. The main principle of video coding tools is to 

search for similarities among the sequence content across different frames. The computational 

complexity associated to encode a particular region of a sequence is highly correlated to 

properties such as motion and texture intensity. As extensive discussed in previous chapters, 

regions with low presence of details and low motion intensity between frames usually are less 

complex to encode than highly detailed regions with high motion intensity between frames. 

However, this aspect is not considered when splitting data of video sequences for parallel 

encoding. 



 

 

63 

In state-of-the-art video coding standards like HEVC, by default, the pixels in one frame 

are equally split between threads in a matrix fashion (number of rows and columns) for 

parallel encoding. While the data to be processed is balanced for all threads, the workload 

associated with encoding each thread may not be due to the video content properties within 

each thread. This way, the variation of workloads between threads will be highly dependent 

on the content being encoded. Moreover, this workload variation will affect the thermal 

profile of the multicore system where the application is running on. 

Figure 7.1 (a) and (b) show color maps of normalized workload between threads 

considering a 2x2 division for two frames of different sequences, frame 2 of PartyScene 

(832x480 pixels) sequence and frame 3 of BasketballDrive (1920x1080 pixels) sequence. 

Each colored square refers to the relative workload for a single coding tree unit (CTU) (64x64 

pixels). For the PartyScene sequence it is possible to see that the workload of thread 0 is more 

computational intensive than all other threads, while thread 1 presents the lowest workload. 

The same behavior is noticeable for the BasketballDrive sequence, where the workload of 

thread 2 is higher than others, while thread 1 is less computational intensive. Even though the 

number of CTUs is as equally divided as possible among the threads, the workload is not 

balanced between them. This happens due to the direct relation between data properties and 

resulted workload. Regions such as thread 0 in sequence (a) and thread 2 in sequence (B) 

have more motion and/or texture intensity than the other regions. This way, they will demand 

much more computation from the encoder than the other regions that are easier to encode. 

 

  

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0  (a) PartyScene frame 2. (b) BasketballDrive frame 3. 

Figure 7.1: Workload maps of threads in the video encoding process. 

 

The workload difference between threads when encoding one frame is noticeable due to 

the data content in each thread. In real video scenarios only some objects are moving across 

the sequence frames and this is the characteristic that drive this unbalance workload nature of 

threads when video are being encoded. This behavior continues along all frames, since motion 

and texture intensive regions will usually occur in different areas of the sequence frame. We 

have performed an analysis along 50 frames to show that this workload difference continues 

happening. Figure 7.2 (a) and (b) show the thread’s normalized workload when encoding the 

same two sequences considering a 2x2 division. 

For the PartyScene sequence figure 7.2 (a) thread t0 is much more computational 

intensive than the other threads, while in the BasketballDrive sequence, thread t2 presents 

higher workload. The highest workload region in one frame can change its location according 

to the sequence scene motion. However, this unbalance workload behavior will continue 

existing between the threads, since there will always be regions with higher motion/texture 

intensity than other regions. 

 

Thread 0 Thread 1

Thread 2 Thread 3

Thread 0 Thread 1

Thread 2 Thread 3



 

 

64 

15

20

25

30

35

0 10 20 30 40 50

W
o

rk
lo

ad
 (

%
)

Frames

 t 0  t 1  t 2  t 3

 

15

20

25

30

35

0 10 20 30 40 50

W
o

rk
lo

ad
 (

%
)

Frames

 t 0  t 1  t 2  t 3

 
(a) PartyScene 832x480. (b) BasketballDrive 1920x1080. 

Figure 7.2: Workload behavior of threads for various frames. 

 

Another important aspect is to know how much this thread’s workloads can differ between 

each other. Figure 7.3 (a) and (b) show the workload variation between thread for the same 

two sequences (PartyScene and BasketballDrive), where the bar graphs are normalized in the 

less computational intensive thread (thread t3 for PartyScene and thread t1 for 

BasketaballDrive). This analysis was performed considering the same scenario in figure 7.2, 

i.e. workload different along encoding of 50 frames. 

While the most computational intensive thread t0 for the PartyScene sequence can be 

almost 40% more computational intensive than thread t3, for the BasketballDrive sequences 

thread t2 is more than 60% more intensive than thread t1. The workload difference between 

the threads achieved 60% considering simulation performed with only 4 threads (2x2 split). 

When more threads are used these workload differences will be even higher, since the 

computation intensity of high motion/texture regions will be more concentrated within a 

thread. It is important to note that this workload difference between threads will directly 

impact the thermal profile of the hardware platform where the video coding application will 

be running in parallel. 

 

0

10

20

30

40

50

60

70

 t 0  t 1  t 2  t 3

W
o

rk
lo

ad
 V

ar
ia

ti
o

n
 (

%
)

 

0

10

20

30

40

50

60

70

 t 0  t 1  t 2  t 3

W
o

rk
lo

ad
 V

ar
ia

ti
o

n
 (

%
)

 
(a) PartyScene 832x480. (b) BasketballDrive 1920x1080. 

Figure 7.3: Workload variation between threads. 

 

7.1.2 Workload difference impact on thermal profiles 

 

Applications such as video coding have deadlines associated with the tasks. For instance, 

in a real time video broadcasting, the encoding job must finish before a defined deadline to 

keep the frame rate (number of frames per second) constant for the video being transmitted. 

Considering a parallel video coding scenario, the thread’s deadlines will be defined 

considering a proportional part of the time window per frame based on the number of parallel 

thread and number of processing units being used for the encoding. This means that threads 

with high difference in the workload intensity will be more or less computational intensive 

along the deadline window. Moreover, this variation of workload within the deadline window 



 

 

65 

will impact in the thermal profiles of the parallel hardware platform where the application is 

being processed. 
Following the Tool Chain setup, we have evaluated sequences encoding with two (2x1), 

four (2x2) and eight (2x4) threads for the BasketballDrive sequence. Figure 7.4 shows the 

accumulated workload map for encoding 50 frames using two threads assigned to a two cores 

chip. The thermal map shows how the workload difference between the threads affects the 

temperature profile of the chip. It is noticeable the temperature difference between core 0 and 

core 1. In fact, for the steady temperature this difference is of 10 ºC. Figure 7.5 shows the 

accumulated workload maps when using four threads for encoding the video sequence 

mapped to a four core chip. In this case, thread 0 and thread 2 are the most computational 

intensive. This reflects in the thermal profile of the cores running these threads, since core 0 

and core 2 achieve 81 ºC as maximum temperature while core 1 and core 3 achieved 74 ºC 

and 71 ºC respectively. Finally, Figure 7.6 shows the last evaluated case where the sequence 

is divided into eight threads that are mapped to an eight core processor. Once more, the most 

computational intensive threads (thread t0 and t4) generate high temperature differences 

across the chip. Core 0 and core 4 achieves as maximum temperature 83 ºC and 82 ºC while 

other cores temperature are below 73 ºC. 

 

 

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0  

 

  
Figure 7.4: BasketballDrive two threads two cores. 

 

 

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0  

 

  
Figure 7.5: BasketballDrive four threads four cores. 

 

 

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0  

 

 
 

Figure 7.6: BasketballDrive eight threads eight cores. 

 

Thread 0 Thread 1

79  C
75  C
70  C
65  C
59  C
55  C
51  C
47  C

Thread 0 Thread 1

Thread 2 Thread 3

81  C
76  C
72  C
67  C
62  C
58  C
53  C
49  C

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

Th
re

ad
 6

Th
re

ad
 7

83  C
78  C
73  C
69  C
64  C
59  C
54  C
51  C



 

 

66 

In summary, the unbalanced workload nature of the multithreaded HEVC video coding 

application directly impact in the temperature profile of the hardware platform running the 

encoder. Threads that have different workload distribution will generate unbalanced thermal 

profiles with high spatial temperature gradients that are not desirable when reliability issues 

are considered. As threads workload distribution are mainly affected by the properties and 

characteristics of the video sequence, this information can be used to appropriate schedule the 

threads of new frames to the cores in a way to reduce the spatial temperature gradients and 

consequently the overall temperature of the chip. 

 

7.2 Application-driven scheduling scheme 
 

In this chapter we present the proposed application-driven temperature-aware scheduling 

scheme for multithreaded workloads that uses the application knowledge and the current 

temperature status of cores for assigning threads to cores in a multicore hardware platform. 

Figure 7.7 provides an overview of the proposed scheduling scheme. Current chips typically 

contain several thermal sensors, and these sensors data can be continuously read and written 

into memory to be processed by the operational system. Also, on the application level, the 

workload associated with the thread is predicted and passed to the application-driven 

scheduler. Then, the scheduler can use both application knowledge and current thermal status 

to guide the assignment of each thread in a temperature-aware fashion. 

 

Application Multicore platform

Threads
workload

core core core

core core core

Thread 0 Thread 1

Thread 2 Thread 3

HEVC encoder

Current 
thermal 
status

Application-driven 
temperature-

aware scheduler

Threads before 
scheduling

.
.

.

.

Threads after 
scheduling

. .

 
Figure 7.7: Scheduling scheme overview. 

 

In the following, we provide details of the proposed scheduling scheme. First we present 

the application-level workload prediction and how data and application characteristics can 

provide potential for a temperature-aware scheduler. Finally, we present our temperature-

aware scheduler technique. 

 

7.2.1 Problem formulation 

 

The temperature-aware scheduling problem can be characterizes as follows. Given a set of 

𝑛 cores 𝐶 = {𝑐0,  𝑐1, … , 𝑐𝑛} and a set of 𝑚 threads 𝑇 = {𝑡0, 𝑡1, … , 𝑡𝑚}, the main goal of our 

scheduling scheme is to assign all threads in 𝑇 to all cores in 𝐶 in order to minimize the 

spatial temperature gradients, i.e. the temperature difference between the hottest and the 

coldest cores. Also, with this strategy, we expect that the maximum overall temperature of the 

chip also reduces. 



 

 

67 

To achieve this goal, the temperature-aware scheduling scheme assigns each thread to 

each core considering the set of current temperature status of each core as 

𝑇𝑆 = {𝑡𝑠𝑐0, 𝑡𝑠𝑐1, … , 𝑡𝑠𝑐𝑛} and also the set of workloads associated with each thread 𝑊 =
{𝑤𝑡0, 𝑤𝑡1, … , 𝑤𝑡𝑚} in order to balance the temperature distribution across the chip. The set of 

workloads 𝑊 is extracted based on an application-level prediction model that uses video 

characteristics to accurate predict the workload of each thread. 

 

7.2.2 Application-level thread workload prediction 

 

The design of an efficient temperature-aware scheduler requires a good workload 

predictor, since the workload associated with threads is the most influent aspect to define the 

thermal behavior of the system. For application such as video coding, the thread’s workloads 

are highly dependent on the video characteristics. Also, this dependence is the main reason for 

workload differences between threads, which significantly affect the temperature profiles. For 

instance, the thread’s workloads are known only after the encoding process. However, it is 

possible to predict the workload of each thread looking to the video properties associated with 

each part of the video being encoded. The main goal of the proposed application-level thread 

workload prediction is to know how the workload of encoding on frame is distributed across 

the threads based on the video characteristics and application knowledge to support an 

appropriate scheduling of threads in the multicore hardware platforms. 

Nowadays high resolution videos are captured with 30-60 frames per second. From this 

characteristic, one important video property arises: two consecutive frames in a sequence are 

likely to be very similar. Actually, temporal content correlation is one important property that 

is exploited in most of the video coding tools. Moreover, it means that the information 

generated after encoding one frame may be useful to predict the next frame encoding 

behavior. Considering a multi-threaded video coding application, the workload associated 

with each thread being separately encoded tends to be similar between consecutive frames. 

We have performed an analysis in order to measure this temporal content correlation in terms 

of thread workload between two consecutive frames, i.e., the workload of threads collocated 

in the same position between two consecutive frames are compared. Figure 7.8 shows the 

results of this analysis for two sequences with four threads per frame, the axis are the 

normalized measured workload for each thread in the previous frame (axis y) and the 

measured workload for each collocated thread in the current frame (axis x). 

0.4

0.35

0.3

0.25

0.2

0.15

0.1
0.1 0.15 0.2 0.25 0.3 0.35 0.4

Workload current frame

W
o

rk
lo

a
d

 p
re

v
io

u
s
 f

ra
m

e

ρ=0.88

 
Workload current frame

W
o

rk
lo

a
d

 p
re

v
io

u
s
 f

ra
m

e

0.4

0.35

0.3

0.25

0.2

0.15

0.1
0.1 0.15 0.2 0.25 0.3 0.35 0.4

ρ=0.99

 
(a) PartyScene 832x480. (b) BasketballDrive 1920x1080. 

Figure 7.8: Correlation between threads workload of consecutive frames. 

 



 

 

68 

 It is possible to see that there is a strong correlation between the measured workload of 

threads considering two consecutive frames. For instance, we have calculated the linear 

correlation coefficient 𝜌 for five sequences and it ranges from 0.88 for the PartyScene 

sequence to 0.99 for the BasketballDrive sequence. This temporal content correlation between 

two consecutive frames provides a good hint to predict how the workload of one frame is 

distributed among the threads for the next frame. 

Even though there is a strong correlation between the thread’s workload of two 

consecutive frames, it is important to notice that this information is not enough to have a 

robust workload prediction for each thread. Either objects moving through the scene or the 

camera moving may change abruptly the workload distribution among each thread of the 

video being encoded. This way, it is necessary to consider this possible workload distribution 

variation between frames in order to have an accurate workload prediction for each thread. 

Also in this case, analyzing video properties variation between frames can lead to a good 

workload variation prediction. 

As previously discusses, texture is one important video property regarding its influence in 

the workload intensity in the video coding process. Again we deploy the technique proposed 

by (SHAFIQUE, ZATT and HENKEL, 2012) that uses variance of the luminance samples to 

extract texture information from video frames. Equation 7.1 shows how the thread texture 

level 𝑡𝑙 is extracted of frames being encoded where 𝑚 and 𝑛 are the thread horizontal and 

vertical limits in number of coding tree units (CTUs). Equation 7.2 shows how the variance is 

calculated for a single coding (64x64=4096 pixels). The texture difference between threads in 

the current frame and collocated threads in the previous frame is other good hint to track 

workload variation between thread for two consecutive frames. 

 

𝑡𝑙 = ∑ ∑ 𝜐𝐶𝑇𝑈

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (7.1) 

𝜐𝐶𝑇𝑈 =
1

4096
∑ (𝜌𝑖 − 𝜌𝑎𝑣𝑔)2

4096

𝑖=1

 (7.2) 

 

Based on these both premises: (1) there is strong temporal content correlation between two 

consecutive frames; and (2) measure texture variation between two consecutive frames is a 

good hint to track workload variation between frames; we define our application-level thread 

workload prediction as follows. 

Given a set of workload measures as the temporal content correlation information 

𝑊𝑀 = {𝑤𝑚𝑡0, 𝑤𝑚𝑡1, … , 𝑤𝑚𝑡𝑚} of the previous frame and a set of texture levels of the 

current frame 𝑇𝐿𝐶 = {𝑡𝑙𝑐𝑡0, 𝑡𝑙𝑐𝑡1, … , 𝑡𝑙𝑐𝑡𝑚} and texture levels of the previous frame 𝑇𝐿𝑃 =
{𝑡𝑙𝑝𝑡0, 𝑡𝑙𝑝𝑡1, … , 𝑡𝑙𝑝𝑡𝑚} each 𝑤𝑝𝑡𝑖 in the set of workload predictions 

𝑊𝑃 = {𝑤𝑝𝑡0, 𝑤𝑝𝑡1, … , 𝑤𝑝𝑡𝑚} is predicted using a content dependent function 𝑓 as in 

equation 7.3. 

 

𝑤𝑝𝑡𝑖 = 𝑓(𝑊𝑀, 𝑇𝐿𝐶, 𝑇𝐿𝑃) = 𝑤𝑚𝑡𝑖 + ∆𝑡𝑙𝑡𝑖 (7.3) 

∆𝑡𝑙𝑡𝑖 = 𝑡𝑙𝑐𝑖 − 𝑡𝑙𝑝𝑖 (7.4) 

 

The 𝑓 function uses temporal content correlation and texture variation between two 

consecutive frames as in equation 7.4 to predict the workload of each thread in the video 

coding process. We have performed a simulation with other two sequences (BQMall and 

RaceHorses) using our content dependent workload prediction in order to see the error of the 



 

 

69 

prediction using this approach. Figure 7.9 presents the error histograms in percentile when 

using our workload prediction. The error is measured comparing the predicted workload of 

each thread in one frame in terms of percentage and the measured workload after the 

encoding. From the histograms, we can conclude that using temporal content correlation and 

texture variation between two consecutive frames provides accurate workload prediction 

considering threads for a parallel video coding application. 

 

Fr
e

q
u

e
n

cy

Error (%)  

Fr
e

q
u

e
n

cy

Error (%)  
(c) BQMall 832x480. (d) RaceHorses 832x480. 

Figure 7.9: Content dependent workload prediction error. 

 

7.2.3 Temperature-aware scheduler 

 

Based on the prediction of the workload distribution among threads and the current 

temperature status of the cores, the proposed application-driven temperature-aware scheduler 

will react to minimize the spatial temperature gradients of the multicore chip. Our scheduler is 

always monitoring two variables of the encoding system. The first one is the workload 

distribution among threads being encoded that is given by our application-level temperature 

predictor and the second one is the temperature status of the cores from the hardware sensors. 

As our scheduler focuses on minimizing the spatial temperature gradients across the chip, the 

difference between the hottest and the coldest cores is the attribute we want to minimize. 

Algorithm 7.1 summarizes our temperature-aware scheduler that works in two main steps. 

1) Monitoring variables: the video coding process is performed frame by frame. Before on 

frame encoding, our scheduler is interested on acquiring the workload distribution across the 

threads that will be used to perform the parallel encoding processing. It means that our 

content dependent prediction is performed for each thread in a frame to predict the workload 

intensity 𝑤𝑝𝑡𝑖 associated with this thread. The content dependent function 𝑓 uses the set of 

measured workloads from the previous frame 𝑊𝑀, and the texture variation extracted from 

the current and the previous frame 𝑇𝐿𝐶, 𝑇𝐿𝑃 (line 4-10). Additionally, the cores temperatures 

are also monitored to check the temperature difference between the core with highest 

temperature and the core with lowest temperature (line 11-14). This difference is the current 

spatial temperature gradient 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑆𝑇𝐺 that is compared to a threshold 𝑆𝑇𝐺𝑡ℎ value to 

decide whether or not the scheduler should react to this temperature difference (line 15). 

2) Reacting to large spatial gradients: our scheduler is triggered when the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑆𝑇𝐺 is 

higher than a pre-defined threshold limit. The scheduler, then, uses the accurate workload 

prediction information of each thread to assign them to the cores in a temperature-aware 

fashion. The scheduler policy is to send the highest workloads to the coldest cores in order to 

improve temperature balance among the cores. The threads are sorted considering its 



 

 

70 

workload intensity in the frame form low to high. Also, the cores are sorted from the hottest 

core to the coldest core. Finally, the scheduler is responsible to assign each thread to one core 

based on the thread’s workloads and the current temperature status. The scheduler starts 

assigning the least intensive thread to the hottest core to the most intensive thread to the 

coldest core (line 16-20). 

 

 
 

7.3 Experimental results 
 

For evaluating our application-driven temperature-aware scheduler we use the same tool 

chain based setup as described in chapter 4.2. We have encoded different sequences 

(PartyScene, RaceHorses, BasketballDrive and BQMall) with different content characteristics 

for evaluating our scheduler and compare the resulted thermal profiles with an application-

unaware scheduler. We consider an application-unware scheduler as the ordered mapping of 

threads to cores, i.e. thread t0 is mapped to core c0 and so on. We also have used the same 

hardware configurations with 2, 4 and 8 cores and the video frames split into 2, 4 and 8 

threads. The spatial temperature gradient threshold 𝑆𝑇𝐺𝑡ℎ was set to 5 ºC. 

The bar graphs in figure 7.10 (a), (b) and (c) show the maximum temperature achieved for 

each core considering the BasketballDrive sequence. For all architectural configurations, the 

spatial temperature difference between the hottest and coldest cores is about 10 ºC when an 

application-unware scheduler is used. However, when using our temperature-aware scheduler 

the temperature difference drops to less than 1 ºC for two and four cores. Considering the 

scenario with eight cores, the temperature difference was reduced to 3 ºC. This spatial 

gradient reduction was possible since our scheduler reacts to high temperature differences 

between the cores by scheduling the threads with high workload to the coldest cores and the 

threads with low workloads to the hottest cores. 

Algorithm 7.1 Application-driven temperature-aware scheduler scheme 

Input: threads T, cores C, Spatial Gradient Threshold SGTth; 

1: for each frame f Є V do: 

2: WP = [ ] 

3: TS = [ ] 

4: for each thread t Є T do: 

5: WM.extract() 

6: TLC.extract() 

7: TLP.extract() 

8: wpti = f(WM,TLC,TLP) 

9: WP.append(wpti) 

10: end for 
11: for each core c Є C do: 

12: tsi = get_temperature(ci) 

13: TS.append(tsi) 

14: end for 
15: current_STG = max(TS) – min(TS) 

16: if current_STG > STGth do: 

17: WP.sort() 

18: TS.reverse_sort() 

19: schedule(T,WP,TS)   //reaction 

20: end for 



 

 

71 

 

60

70

80

90

unware scheduler our scheduler

Core_0 Core_1

 

60

70

80

90

unware scheduler our scheduler

core_0 core_1 core_2 core_3

 
(a) Max temperature two cores (b) Max temperature four cores 

60

70

80

90

unware scheduler our scheduler

core_0 core_1 core_2 core_3
core_4 core_5 core_6 core_7

 
(c) Max temperature eight cores 

Figure 7.10: Maximum temperature results. 

 

Besides the spatial temperature gradient reduction achieved when using our scheduler, the 

maximum overall temperature is also reduced. Additionally, the percentage of time that the 

cores experience high spatial temperature variations was also reduced. Table 7.1 shows the 

average temperature results for the four evaluated sequences in terms of maximum 

temperature (in ºC) of the chip and the percentage of time with spatial temperature gradients 

higher than 5 ºC and 10 ºC for all evaluated sequences. The spatial gradient threshold SGTth 

was set to 5 ºC. 

 

Table 7.1: Maximum temperature and spatial gradient results. 

 unaware scheduler Our scheduler (STGth = 5 ºC) 

#cores 2 4 8 2 4 8 

Max temp (ºC) 83.2 84.3 83.2 78.8 79.8 76.9 

%time > 5 ºC 43.7 44.3 43.7 0.0 0.0 0.0 

%time > 10 ºC 4.6 4.6 5.6 0.0 0.0 0.0 

 

The maximum temperature achieved by the chip was reduced in about 4.5 ºC for the 

scenarios with two and four cores. For the experiments with eight cores the maximum 

temperature was reduced in more than 6 ºC. The time that the cores presented spatial 

temperature gradients higher than 10 ºC was reduced from about 5% for all cases to zero and 

from more than 40% to zero for spatial temperature gradients higher than 5 ºC. All these 

results are well demonstrated in figures 7.11, 7.12 and 7.13 where thermal maps are presented 

when using our application-driven temperature-aware scheduler (right maps) in comparison 

with an unaware scheduler (left maps). These maps refer to the BasketballDrive sequence. 

All temperature distributions showed in the maps in the left side are resulted from the 

unbalanced nature of threads in the video coding application. As there is no scheduling 

considering the workload of each thread and the multi-threaded video coding application has 

workload unbalance nature, the temperature distribution is not uniform. Threads with high 

workloads are constantly assigned to the same cores which generate hotspots and large spatial 



 

 

72 

gradients on the chip. On the other hand, when our application driven temperature-aware 

scheduler is employed the temperature distribution among the cores is much more spread. As 

the threads assignment to cores is guided by the spatial temperature gradient threshold STGth, 

our technique avoids that the difference between the hottest and the coldest core exceeds the 

threshold. This way, not only the spatial gradients are reduced, but also the temperature 

distribution is much more uniform in comparison with using an unware scheduler. 

 

 
(a) unware scheduler 

 
(b) our scheduler  

Figure 7.11: Thermal maps two cores for BasketballDrive encoding. 

 

 

 
(a) unware scheduler 

 
(b) our scheduler  

Figure 7.12: Thermal maps four cores for BasketballDrive encoding. 

 

 

 

 
(a) unware scheduler 

 
(b) our scheduler  

Figure 7.13: Thermal maps eight cores for BasketballDrive encoding. 

79  C
75  C
70  C
65  C
59  C
55  C
51  C
47  C

81  C
76  C
72  C
67  C
62  C
58  C
53  C
49  C

83  C
78  C
73  C
69  C
64  C
59  C
54  C
51  C



 

 

 

8 CONCLUSIONS 

For multimedia embedded systems under tight constraints, where temperature, 

performance, and quality cannot be compromised significantly, we introduce a set of 

application-driven temperature-aware solutions for video coding. The main idea of all 

presented solutions is to raise the concept of temperature management to the application level 

where application characteristics and data content properties are leveraged towards improving 

the temperature profiles of video coding systems with low degradation in the Quality of 

Service for video end users. 

 

8.1 Summary of thesis main contributions 
 

Application-driven dynamic thermal management for HEVC: we presented an 

application-level temperature management technique for HEVC. It keeps the temperature 

within safe operating limits while keeping the video quality degradation to as minimal as 

possible. Extensive analysis for different video sequences and different encoder 

configurations provides design hints for developing the proposed thermal management policy. 

We developed an application-level temperature predictor, a design-time Pareto-optimal 

analysis of different encoder configuration, and a run-time policy that dynamically selects an 

encoder configuration depending upon the predicted temperature and specified thermal 

threshold. Managing thermal behavior of encoders through sophisticated configuration 

selection enables minimizing the video quality degradation. 

Thermal optimization using approximate computing: we introduced a temperature 

optimization technique using adaptive approximate computing for video coding systems. It 

employs an adaptive content-driven approximate computing technique that classifies regions 

of a given video sequence with respect to their resilience properties as a function of their 

texture and motion characteristics. Based on the resilience level, different approximation 

modes are employed to reduce the on-chip temperature of the HEVC encoding process. 

Different approximation modes are realized through both algorithm-level and data-level 

approximation computing mechanisms. The results illustrate the temperature reduction 

potential of the proposed adaptive approximate computing technique and benefit of 

considering the resilience knowledge to lower the output video quality losses compared to 

state-of-the-art works. As conclusion, approximate computing bears a significant potential for 

temperature optimization when employed selectively considering the variable resilience 

properties of the input data sets. 

Application-driven thermal-aware scheduler: we designed an application-driven 

temperature-aware scheduler for multi-threaded video coding application. We investigated the 

unbalance nature of multi-threaded video coding and its impact on the temperature profiles 

for different multicore scenarios. We introduce a temperature-aware scheduler that uses 

application and data characteristics of threads encoding video sequences to reduce the thermal 



 

 

74 

impact of such unbalance workloads on multicore chips. Our solution uses a content 

dependent workload predictor to map the high workload threads to the coldest cores 

according to a spatial temperature gradient threshold. As results, we demonstrate through 

temperature results and thermal maps that our technique is successful on reducing the spatial 

temperature variations and also the maximum temperature of the multicore chip. 

The thesis results demonstrate that thermal management can be performed at the 

application level successfully. In the proposed techniques, the application adapts itself to 

thermal issues by using application characteristics and input data content providing thermal-

safe profiles without compromising the application quality. 

It is important to notice that all solutions described in this thesis were tested only in the 

hardware platforms described in the temperature methodology section. It is expected that 

other hardware platforms present different thermal profiles in comparison with those used in 

the proposed solutions. As the video coding application demands high computational effort, 

modern hardware platforms usually use a set of dedicated hardware modules for performing 

the most computational intensity tools of the video coding process. However, the main 

concept proposed in this thesis (raise the abstraction of thermal management to the 

application-level) can still be used to improve thermal profiles of these different hardware 

platforms. For instance, all application-level solutions proposed in this thesis can take as input 

the current temperature status of different hardware modules (if necessary) to drive the 

application reaction to thermal emergencies in this dedicated processing units. 

As future works, we intend to employ the main concept of this thesis (raise the concept of 

thermal management to the application level) to other high performance applications starting 

with other multimedia data intensive applications as they have potential to generate undesired 

temperature results. We also intend to evaluate jointly hardware/software solutions, where the 

application can feed the hardware with information to enhance the hardware low-power 

decisions (DVFS, power gating, clock gating, etc…) providing safe temperature profiles with 

low overhead. 

 

 



 

 

 

9 PUBLICATIONS  

9.1  Publications resulted from thesis contributions 
 

9.1.1 hevcDTM: Application-Driven Dynamic Thermal Management for High Efficiency 

Video Coding 

Daniel Palomino, Muhammad Shafique, Altamiro Susin, Jörg Henkel. 

Design, Automation and Test in Europe (DATE), 2014. 

 

9.1.2 TONE: Adaptive Temperature Optimization for the Next Generation Video 

Encoders 

Daniel Palomino, Muhammad Shafique, Altamiro Susin, Jörg Henkel. 

International Symposium on Low Power Electronics and Design (ISLPED), 2014. 

 

9.1.3 Thermal Optimization using Adaptive Approximate Computing for Video Coding  

Daniel Palomino, Muhammad Shafique, Altamiro Susin, Jörg Henkel. 

Design, Automation and Test in Europe (DATE), 2016. 

 

9.1.4 Application-Driven Temperature-Aware Scheduling of Multi-Threaded 

Workloads on On-Chip Systems (submitted) 

Daniel Palomino, Muhammad Shafique, Altamiro Susin, Jörg Henkel. 

Transaction on Circuits and Systems for Video Technology (TCSVT), 2017. 

 

9.2 Other publications during Ph.D. course 

9.2.1 Energy Evaluation of the HEVC Decoding for Different Encoding Configurations 

Douglas Correa, Daniel Palomino, Luciano Agostini, Bruno Zatt 

Latin American Symposium on Circuits and Systems (LASCAS), 2017 

 

9.2.2 Avaliação do Potencial Máximo de Speedup Usando Tiles para Compressão de 

Vídeo Paralela Segundo o Padrão HEVC (mention of honor) 

Iago Storch, Daniel Palomino, Bruno Zatt, Luciano Agostini 

Simpósio Brasileiro de Telecomunicações (SBRT), 2016 

 

9.2.3 Adjusting Video Tiling to Available Resources in a Per-frame Basis in High 

Efficiency Video Coding 

Giovani Malossi, Daniel Palomino, Cláudio Diniz, Sérgio Bampi, Altamiro Susin 

International NEWCAS Conference (NEWCAS), 2016 



 

 

76 

 

9.2.4 Speedup-Aware History-Based Tiling Algorithm for the HEVC Standard 

Iago Storch, Daniel Palomino, Bruno Zatt, Luciano Agostini 

International Conference on Image Processing (ICIP), 2016 

 

9.2.5 Fast HEVC Intra Mode Decision Algorithm Based on New Evaluation Order in the 

Coding Tree Block 

Daniel Palomino, Eduardo Cavichioli, Muhammad Shafique, Luciano Agostini, Jörg 

Henkel, Altamiro Susin 

International Picture Coding Symposium (PCS), 2013 

 

9.2.6 Adaptive content-based Tile partitioning algorithm for the HEVC standard 

Cauane Blummenberg, Daniel Palomino, Bruno Zatt, Sergio Bampi 

International Picture Coding Symposium (PCS), 2013 

 

 



 

 

 

REFERENCES 

AJAMI, A.; BANERJEE, K.; PEDRAM, M. Modeling and Analisys of Nonuniform Substrate 

Temperature Effects on Global ULSI Interconnects. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD), v. 24, n. 6, p. 849-861, June 

2005. 

BARTOLINI, A. et al. A Distributed and Self-Calibrating Model-Predictve Controller 

for Energy and Thermal Management of High-Performance Multicores. Design, 

Automation and Test in Europe (DATE). [S.l.]: [s.n.]. 2011. p. 1-6. 

BARTOLINI, A. et al. Thermal and Energy Management of High-Performance Multicores: 

Distributed and Self-Calibrating Model-Predictive Controller. Transactions on Parallel and 

Distributed Systems (TPDS), v. 24, n. 1, p. 170-183, January 2013. 

BERKTOLD, M.; TIAN, T. CPU Monitoring with DTS/PECI. Intel Corporation. [S.l.], p. 

23. 2010. 

BERNSTEIN, K. et al. High-performance CMOS variability in the 65-nm regime and beyond. 

IBM Journal of Research and Development, v. 50, n. 4.5, p. 433 - 449, July 2006. 

BINKERT, N. et al. The M5 Simulator: Modeling Networked Systems. Journal IEEE 

MICRO, v. 26, n. 4, p. 52-60, July 2006. 

BINKERT, N. et al. The gem5 Simulator. ACM SIGARCH Computer Architecture News, 

New York, v. 39, n. 2, p. 1-7, May 2011. 

BJONTEGARD, G. Calculation of average PSNR differences between RD-curves. ITU - 

Telecommunications Standardization Sector. Austin, p. 1-4. 2001. 

BLUMENBERG, C. et al. Adaptive Content-Based Tile Partitioning Algorithm for the 

HEVC Standard. Picture Coding Symposium (PCS). [S.l.]: [s.n.]. 2013. p. 185-188. 

BOHR, M. A 30 Year Retrospective on Dennard's MOSFET Scaling Paper. Solid-state 

circuits society newsletter, v. 12, n. 1, p. 11-13, 2007. 

BORKAR, S. et al. Parameter Variations and Impact on Circuits and Microarchitecture. 

Design Automation Conference (DAC). [S.l.]: [s.n.]. 2003. p. 338-342. 

BOSSEN, F. Common test conditions and software reference configurations. ITU-

T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC). [S.l.]. 2012. 

CES-KIT, C. F. E. S., 2013. Disponivel em: <http://ces.itec.edu.br>. Acesso em: 2013. 

CHAKRADHAR, S.; RAGHUNATHAN, A. Best-effort computing: Re-thinking parallel 

software and hardware. Design Automation Conference (DAC). [S.l.]: [s.n.]. 2010. p. 865-

870. 



 

 

78 

CHIP-ARCHITECT. Chip-Architect, 2010. Disponivel em: <http://www.chip-

architect.com/news/2010_09_04_AMDs_Bobcat_versus_Intels_Atom.html>. Acesso em: 

2015. 

CHIPPA, V. et al. StoRM: A Stochastic Recognition and Mining processor. International 

Symposium on Low Power Electronics and Design (ISLPED). [S.l.]: [s.n.]. 2014. p. 39-44. 

CHIPPA, V.; MOHAPATRA, D.; ROY, K. Scalable Effort Hardware Design. Transactions 

on Very Large Scale Integration (TVLSI), v. 22, n. 9, p. 2004-2016, 2014. 

CHO, M. et al. Power Multiplexing for Thermal Field Management in Many-Core Processors. 

Transactions on Components, Packaging and Manufacturing Technology (TCPMT), v. 

3, n. 1, p. 94-104, January 2013. 

CISCO. Cisco Visual Networking Index: Forecast and Methodology, 2012 - 2017. [S.l.], 

p. 29. 2013. 

CORREA, G. et al. Fast HEVC Encoding Decisions Using Data Mining. Transactions on 

Circuits and Systems for Video Technology (TCSVT), v. 25, n. 4, p. 660-673, 2014. 

COSKUN, A. et al. Static and Dynamic Temperature-Aware Scheduling for Multiprocessor 

SoCs. IEEE Transactions on Very Large Scale Integration Systems (TVLSI), v. 16, n. 9, 

p. 1127-1140, September 2008. 

COSKUN, A.; ROSING, T.; GROSS, K. Proactive Temperature Balancing for Low Cost 

Thermal Management in MPSoCs. International Conference on Computer-Aided Design 

(ICCAD). [S.l.]: [s.n.]. 2008. p. 250 - 257. 

COSKUN, A.; ROSING, T.; GROSS, K. Utilizing Predictors for Efficient Thermal 

Management in Multiprocessor SoCs. Transactions on Computer-Aided Design of 

Integrated Circuits and Systems (TCAD), v. 28, n. 10, p. 1503-1514, October 2009. 

DAS, I. On characterizing the “knee” of the Pareto curve based on Normal-Boundary 

Intersection. Structural optimization, v. 18, n. 2-3, p. 107-115, 1999. 

DENNARD, R. et al. Design of ion-implanted MOSFET's with very small physical 

dimensions. Journal of solid-state circuits, v. 9, n. 5, p. 256-268, 1974. 

DIAS, I. C. PYROVIEW 380L compact, 2013. Disponivel em: <http://www.dias-

infrared.com/pdf/pyroview380l_eng.pdf>. Acesso em: 15 Julho 2013. 

EBI, T. et al. Economic Learning for Thermal-Aware Power Budgeting in Many-core 

Architectures. International Conference on Hardware/Software Codesign and System 

Synthesis (CODES+ISSS). [S.l.]: [s.n.]. 2011. p. 189-196. 

EBI, T.; FARUQUE, M.; HENKEL, J. TAPE: Thermal-Aware Agent-Based Power Economy 

for Multi/Many-Core Architectures. International Conference on Computer-Aided Design 

(ICCAD). [S.l.]: [s.n.]. 2009. p. 302-309. 

FISHER, N. et al. Thermal-aware global real-time scheduling and analysis on multicore 

systems. Journal of Systems Architectures, v. 57, n. 5, p. 547/560, Maio 2011. 

FORTE, D.; SRIVASTAVA, A. Energy- and Thermal-Aware Video Coding via 

Encoder/Decoder Workload Balancing. International Symposium on LoW-Power 

Electronics and Design (ISLPED). [S.l.]: [s.n.]. 2010. p. 207-212. 

GNAD, D. et al. Hayat: Harnessing Dark Silicon and variability for aging deceleration and 

balancing. Design Automation Conference (DAC). [S.l.]: [s.n.]. 2015. p. 1-6. 



 

 

79 

GUPTA, V. et al. IMPACT: IMPrecise adders for low-power approximate computing. 

International Symposium on Low Power Electronics and Design (ISLPED). [S.l.]: [s.n.]. 

2011. p. 409-414. 

HENKEL, J. et al. Reliable On-Chip Systems in the Nano-Era: Lessons Learnt and Future 

Trends. Design Automation Conference (DAC). [S.l.]: [s.n.]. 2013. 

HENKEL, J. et al. Thermal Management for Dependable On-Chip Systems. Asia and 

South Pacific Design Automation Conference (ASP-DAC). [S.l.]: [s.n.]. 2013. p. 113-118. 

HUNG, W. et al. Thermal-Aware IP Virtualization and Placement for Networks-on-Chip 

Architecture. International Conference on Computer Design. [S.l.]: [s.n.]. 2004. p. 430-437. 

ITU-T. SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS - Infrastructure 

of Audiovisual Services - Coding of Moving Video - High Efficiency Video Cdoing. [S.l.]. 

2013. 

JCT-VC. HM 11.0 Reference Software, 2013. Disponivel em: <http://hevc.hhi.franhofer.de/>. 

JCT-VC. HM 16.0 Reference Software, 2015. Disponivel em: <http://hevc.hhi.franhofer.de/>. 

JEDEC, S. S. T. A. Failure Mechanisms and Models for Semiconductor Devices. JEDEC 

publication JEP122C. [S.l.]. 2006. 

KUMAR, A. et al. System-Level Dynamic Thermal Management for High-Performance 

Microprocessors. Transactions on Computer-Aided Design of Integrated Circuits and 

Systems (TCAD), v. 27, n. 1, p. 96-108, Janeiro 2008. 

LEE, W.; PATEL, K.; PEDRAM, M. Dynamic Thermal Management for MPEG-2 

Decoding. International Symposium on Low Power Electronics and Devices (ISLPED). [S.l.]: 

[s.n.]. 2006. p. 316-321. 

LEE, W.; PATEL, K.; PEDRAM, M. GOP-Level Dynamic Thermal Management in MPEG-2 

Decoding. Transactions on Very Large Scale Integration (TVLSI), v. 16, n. 6, p. 662-672, 

June 2008. 

LI, S. et al. McPAT: An Integrated Power, Area, and Timing Modeling Gramework for 

Multicore and Manycore Architectures. International Symposium on Microarchitecture 

(MICRO). [S.l.]: [s.n.]. 2009. p. 469-480. 

LIAN, C. et al. Development of a Flexible Chip Infrared (IR) Thermal Imaging System 

for Product Qualification. Semiconductor Thermal Measurement and Management 

Symposium (SEMI-THERM). [S.l.]: [s.n.]. 2012. p. 337-343. 

LINK, G. M.; VIJAYKRISHNAN, N. Thermal Trends in Emerging Technologies. 

International Symposium on Quality Electronic Design (ISQED). [S.l.]: [s.n.]. 2006. p. 625-

632. 

MARCU, M.; MILOS, C.; TUDOR, D. Power-Thermal Analysis of Multimedia 

Applications. International Workshop on Thermal Investigations of ICs and Systems 

(THERMINIC). [S.l.]: [s.n.]. 2010. p. 1-6. 

MARTIN, M. et al. Multifacet's General Execution-driven Multiprocessor Simulator (GEMS) 

Toolset. ACM SIGARCH Computer Architecture News, v. 33, n. 4, p. 92-99, November 

2005. 

MESA-MARTINEZ, F. et al. Measuring Power and Temperature From Real Processors. 

International Symposium on Parallel and Distributed Processing (ISPDP). [S.l.]: [s.n.]. 2008. 

p. 1-5. 



 

 

80 

MIRTAR, A.; DEY, S.; RAGHUNATHAN, A. Adaptation of Video Encoding to Address 

Dynamic Thermal Management Effects. International Green Computing Conference 

(IGCC). [S.l.]: [s.n.]. 2012. p. 1-10. 

MOORE, G. E. Cramming more components onto integrated circuits. IEEE Solid-State 

Circuits Society Newsletter, v. 20, n. 3, p. 33 - 35, 2009. 

OHM, J.-R. et al. Comparison of the Coding Efficiency of Video Coding Standards—

Including High Efficiency Video Coding (HEVC). Transactions on Circuits and Systems 

for Video Technology (TCSVT), v. 22, n. 12, p. 1669-1684 , October 2012. 

PALOMINO, D. et al. hevcDTM: Application-Driven Dynamic Thermal Management for 

High Efficiency Video Coding. Design, Automation and Test in Europe (DATE). Dresden: 

[s.n.]. 2014. p. 1-4. 

PALOMINO, D. et al. TONE: Adaptive temperature optimization for the next generation 

video encoders. International Symposium on Low Power Electronics and Design (ISLPED). 

[S.l.]: [s.n.]. 2014. p. 33-38. 

PALOMINO, D. et al. Thermal Optimization using Adaptive Approximate Computing 

for Video Coding. Design, Automation and Test in Europe (DATE). [S.l.]: [s.n.]. 2016. p. 

1207-1212. 

PECHT, M.; LALL, P.; HAKIM, E. B. The influence of temperature on integrated circuit 

failure mechanisms. Quality and Reliability Engeneering International, v. 8, n. 3, p. 167-

176, 1992. 

RAMASUBRAMANIAN, S. et al. Relax-and-Retime: A Methodology for Energy-Efficient 

Recovery Based Design. Design Automation Conference (DAC). [S.l.]: [s.n.]. 2013. p. 1-6. 

REDA, S. Thermal and Power Characterization of Real Computing Devices. Jornal on 

Emerging and Selected Topics in Circuits and Systems (JETCAS), v. 1, n. 2, p. 76-87, 

June 2011. 

RICHARDSON, Y. H.264/AVC and MPEG-4 Video Compression - video Cdoing for 

Next-Generation Multimedia. [S.l.]: [s.n.], 2003. 

SHAFIQUE, M. et al. Adaptive power management of on-chip video memory for 

multiview video coding. Design Automation Conference (DAC). [S.l.]: [s.n.]. 2012. p. 866-

875. 

SHAFIQUE, M.; ZATT, B.; HENKEL, J. A complexity reduction scheme with adaptive 

search direction and mode elimination for multiview video coding. Picture Coding 

Symposium (PCS). [S.l.]: [s.n.]. 2012. p. 105-108. 

SIDIROGLOU-DUOSKUS, S. et al. Managing performance vs. accuracy trade-offs with 

loop perforation. SIGSOFT symposium and the 13th European conference on Foundations 

of software engineering (ESEC/FSE). [S.l.]: [s.n.]. 2011. p. 124-134. 

SKADRON, K. et al. Temperature-Aware Microarchitecture: Modeling and Implementation. 

Transactions on Architecture and Code Optimization (TACO), New York, v. 1, n. 1, p. 

94-125, March 2003. 

SRINIVASAN, J.; ADVE, S. Predictive Dynamic Thermal Management for Multimedia 

Applications. International Conference on Supercomputing (ICS). [S.l.]: [s.n.]. 2003. p. 109-

120. 

STALLINGS, W. Arquitetura e Organização de Computadores. 8ª. ed. [S.l.]: Pearson, 

2010. 



 

 

81 

SULLIVAN, G. et al. Overview of the High Efficiency Video Coding (HEVC) Standard. 

Transactions on Circuits and Systems for Video Technology (TCSVT), v. 22, n. 12, p. 

1649-1668, October 2012. 

TIWARI, A.; TORRELLAS, J. Facelift: Hidding and Slowing Down Aging in Multicores. 

MICRO 41. [S.l.]: [s.n.]. 2008. p. 129-140. 

VANNE, J. et al. Comparative Rate-Distortion-Complexity Analysis of HEVC and AVC 

Video Codecs. Transactions on Circuits and Systems for Video Technology (TCSVT), v. 

22, n. 12, p. 1885-1898, October 2012. 

VENKATARAMANI, S. et al. AxNN: energy-efficient neuromorphic systems using 

approximate computing. International Symposium on Low Power Electronics and Design 

(ISLPED). [S.l.]: [s.n.]. 2014. p. 27-32. 

VENKATARAMANI, S. et al. Computing Approximately, and Efficiently. Design, 

Automation and Test in Europe (DATE). [S.l.]: [s.n.]. 2015. p. 48-751. 

WEBM. VP9 Video Codec Summary. VP9 Video Codec, 2013. Disponivel em: 

<http://www.webmproject.org/vp9/>. Acesso em: February 2014. 

YEO, I.; KIM, E. Hybrid Dynamic Thermal Management Based on Statistical 

Characteristics of Multimedia Applications. International Symposium on Low Power 

Electronics and Design (ISLPED). [S.l.]: [s.n.]. 2008. p. 321-326. 

YEO, I.; LIU, C.; KIM, E. Predictive Dynamic Thermal Management for Multicore 

Systems. Design Automation Conference (DAC). [S.l.]: [s.n.]. 2008. p. 734 - 739. 

ZANINI, F. et al. Multicore Thermal Management with Model Predictive Control. 

European Conference on Circuit Theory and Design (ECCTD). [S.l.]: [s.n.]. 2009. p. 711-714. 

ZHANG, K. et al. Minimizing Thermal Variation Across System Components. 

International Parallel and Distributed Processing Symposium (IPDPS). [S.l.]: [s.n.]. 2015. p. 

1139-1148. 

ZHENG, J. et al. Overview of AVS Broadcasting Standard for High Definition Video. 

China Summit & International Conference on Signal and Information Processing (ChinaSIP). 

[S.l.]: [s.n.]. 2013. p. 250-254. 

 



 

 

82 

APPENDIX A – RESUMO – PORTUGUÊS 

Soluções para o gerenciamento de temperatura de sistemas de codificação de vídeo 

 

A1. Resumo 

Esta tese apresenta soluções para o gerenciamento e otimização de temperatura para 

sistemas de codificação de vídeo baseados nas características da aplicação e no conteúdo dos 

vídeos digitais. Diferente dos trabalhos estado-da-arte, as soluções propostas nesta tese focam 

em técnicas de gerenciamento de temperatura no nível da aplicação e características da 

aplicação codificação de vídeo e as propriedades dos vídeos digitais são explorados para 

desenvolver soluções termais para a codificação de vídeo com baixas perdas na qualidade de 

serviço das aplicações. Diversas análises são realizadas considerando a aplicação de 

codificação de vídeo para entender o comportamento da temperatura durante o processo de 

codificação para diferentes sequências de vídeo. Com base nos resultados das análises, 

soluções com diferentes abordagens são propostas para atenuar os efeitos da temperatura nos 

sistemas de codificação de vídeo. Gerenciamento de temperatura baseado nas características 

da aplicação para o padrão de codificação HEVC usa uma técnica de seleção de configuração 

em tempo de execução para manter a temperatura abaixo dos limites seguros de operação com 

bons resultados de qualidade de vídeo. Otimização de temperatura baseado em computação 

imprecisa usa aproximações baseadas em conteúdo para reduzir a temperatura de chips 

executando o HEVC. Um escalonador de tarefas que usa características da aplicação para 

guiar o escalonamento de tarefas focando na redução dos gradientes espaciais de temperatura 

que são resultantes do desbalanceamento natural de cargas entre as tarefas da aplicação. As 

soluções propostas são capazes de reduzir em até 10 ºC a temperatura do chip com perdas 

insignificantes na eficiência de compressão. Os resultados de qualidade objetiva (medida 

usando PSNR) são de 12 dBs até 20 dBs maiores quando comparados com trabalhos da 

literatura. Além disso, o escalonador de tarefas proposto é capaz de eliminar os gradientes 

espaciais de temperatura maiores que 5 ºC para arquitetura multi-cores. Como principal 

conclusão, esta tese demonstra que as técnicas de gerenciamento de temperatura que usam o 

conhecimento da aplicação de maneira conjunta com as propriedades dos vídeos digitais tem 

um alto potencial para melhorar os resultados de temperatura de sistemas de codificação de 

vídeo mantendo bons resultados de qualidade visual dos vídeos codificados. 

 

A2. Introdução 

Serviços baseados em vídeo estão cada vez mais populares nos mercados de consumo e de 

comunicação. Dispositivos como TVs, smartphones, tablets são capazes de reproduzir e 

capturar vídeos digitais. Vídeos digitais utilizam muitos dados para serem representados e por 

isso tecnologias de compressão de vídeos são essenciais para o sucesso de aplicações que 

lidam com este tipo de mídia, principalmente com a crescente popularização dos vídeos de 



 

 

83 

ultra alta resolução e também com as tecnologias de imersão como o 3D. Padrões de 

codificação de vídeo como o HEVC (ITU-T, 2013) são desenvolvidos para lidar com essa 

grande quantidade de dados, entretanto, para serem capazes de comprimir de forma adequada 

vídeos de ultra alta resolução os algoritmos presentes nos codificadores de vídeos atuais 

possuem grande complexidade computacional (VANNE, VIITANEN, et al., 2012). 

A alta complexidade dos novos codificadores de vídeo é complementada pelos sistemas de 

alta capacidade de processamento disponíveis hoje em dias. Esses sistemas se tornaram 

computacionalmente poderosos devido a duas razões principais: (1) a miniaturização dos 

transistores que permitiu um aumento da densidade desses dispositivos por área e (2) os 

avanços nas pesquisas em micro arquitetura que propiciaram o aumento da capacidade de 

extração de paralelismo a nível de instrução. Entretanto, a miniaturização dos transistores não 

foi seguida por uma redução na tensão de alimentação desses dispositivos na mesma 

proporção (DENNARD, GAENSSLEN, et al., 1974), e consequentemente a densidade de 

potência por área aumentou resultando em altos níveis de temperatura nos circuitos digitais. 

Elevadas temperaturas no chip aumentam os custos com resfriamento, que é mais 

desafiante em sistemas embarcados onde as restrições de área e energia são mais intensas. 

Além disso, altas temperaturas afetam negativamente os efeitos de aging nos circuitos 

integrados (HENKEL, BAUER, et al., 2013) e gradientes espaciais e temporais reduzem a 

confiabilidade e o desempenho dos circuitos digitais (PECHT, LALL e HAKIM, 1992). 

Existem vários trabalhos na literatura que lidam que lidam com os efeitos da temperatura 

nos circuitos digitais. Tradicionalmente, a técnica de gerenciamento térmico dinâmico é 

discutida na maioria dos trabalhos da literatura, onde o principal objetivo é manter a 

temperatura dentro de níveis adequados com menos penalidades possíveis nas restrições de 

tempo real e de desempenho das aplicações. Além disso, existem alguns trabalhos que focam 

em gerenciamento térmico para codificação/decodificação de vídeos. 

O objetivo desta tese é atenuar os efeitos de temperatura em sistemas de codificação de 

vídeo atuando no nível da aplicação. A abordagem desta tese difere dos trabalhos da 

literatura, pois o conceito de gerenciamento térmico é trazido do nível do hardware para ser 

tratado pelo nível da aplicação, onde a temperatura é gerenciada com base nas características 

da aplicação e no conteúdo dos vídeos digitais. Como resultado, as técnicas propostas nessa 

tese demonstram que é possível gerenciar a temperatura no nível da aplicação com baixa 

perda de desempenho no resultado final da aplicação. 

 

A3. Soluções de gerenciamento térmico para a codificação de vídeo  

Nesta tese, três metodologias diferentes foram utilizadas para adquirir os resultados de 

temperatura. 

A primeira metodologia utiliza uma câmera infravermelha que filma um processador 

rodando a aplicação de codificação de vídeo. A segunda metodologia é baseada em três 

simuladores (BINKERT, BECKMAN, et al., 2011) (LI, STRONG, et al., 2009) (SKADRON, 

STAN, et al., 2003), que executam a aplicação de codificação de vídeo com vídeos reais. A 

terceira metodologia utiliza um sensor de temperatura que está presente nos processadores 

mais modernos. 

Para todas as metodologias, sequências de vídeo são codificadas utilizando o software 

HEVC test Model (HM) (JCT-VC, 2015)seguindo as recomendações da comunidade de 

codificação de vídeo (BOSSEN, 2012). 

Para o desenvolvimento de todas as soluções de gerenciamento/otimização de temperatura 

propostas nessa tese, várias análises de temperatura foram realizadas. Essas análises tornaram 

possível o entendimento do efeito das características da aplicação de codificação de vídeo e o 

conteúdo dos vídeos digitais na temperatura final dos sistemas de codificação de vídeo 



 

 

84 

 

A3.1 Solução de gerenciamento térmico dinâmico utilizando parâmetros de 

configuração 

 

 A primeira solução de gerenciamento térmico em tempo real para a codificação de vídeo 

apresentada neste trabalho utiliza a técnica de frentes de Pareto (DAS, 1999) para escolher o 

melhor conjunto de parâmetros de configuração para a aplicação buscando manter a 

temperatura dentro de um limiar previamente definido. O algoritmo A1 mostra as principais 

etapas dessa solução. 

O algoritmo utiliza a temperatura atual e mais um conjunto de características de 

complexidade dos quadros do vídeo que serão codificados para prever a temperatura futura 

após a codificação desses quadros. Se a temperatura tende a extrapolar o limiar previamente 

definido o algoritmo faz uma escolha de novos parâmetros de configuração para a aplicação 

de codificação de vídeo objetivando a redução da temperatura com a menor perda de 

qualidade possível. Esse processe se repete para cada quadro do vídeo a ser codificado. 

 

 
 

Como resultados, o algoritmo foi capaz de manter a temperatura dentro dos níveis pré-

estabelecidos sem comprometer de forma intensa a qualidade final do vídeo codificado. Além 

disso, os resultados obtidos por essa solução foram melhores quando comparados com 

soluções da literatura. 

 

A3.2 Solução de otimização de temperatura utilizando computação aproximada 

 

A segunda solução proposta nesta tese utiliza o conceito de computação aproximada para 

otimizar/reduzir a temperatura de sistemas de codificação de vídeo. A computação 

aproximada é uma técnica que introduz erros na computação a ser realizada em troca de 

algum benefício colateral (em geral redução de energia). Neste trabalho, a ideia da 

computação aproximada é utilizada de maneira adaptativa de acordo com a resiliência a erros 

das regiões dos vídeos que e serão executados objetivando a redução dos níveis de 

temperatura em circuitos que executam a codificação de vídeo. As características dos vídeos a 

serem codificados são utilizadas para definir os níveis de resiliência de cada região do vídeo. 

Algoritmo A1 Video quality-aware Temperature Management 

Input: Pontos de pareto P, vídeo V, Limiar de temperatura Tth; 

1:   error_list = [ ]; 

2: c = initial configuration; 

3: 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = measure_temperature(); 

4: for each frame f Є V do: 

5: Cnext = classify_complexity(f); 

6: ∆𝑇 = Tv(Cnext, Cprevious) + mean(error_list); 

7: Tp = Tcurrent + ∆𝑇; 

8: if Tp > Tth do: 

9: c = pareto_selection(P, Tth); //reaction 

10: end if; 
11: encode(f, c); 

12: Tcurrent = measure_temperature(); 

13: error = Tcurrent – Tp; 

14: update_error_list(error); 

15: Cprevisou = Cnext; 

16: end for;  



 

 

85 

Em seguida, modos de aproximação (MAs) com diferentes intensidades são aplicados de 

maneira adaptativa na codificação do vídeo. Os modos de aproximação utilizam aproximação 

de cálculos em nível algorítmico (alguns algoritmos são podados e não são realizados de 

forma completa) e em nível de dados (alguns dados são ignorados no momento da 

computação). 

O algoritmo A2 resume como essa técnica é utilizada neste trabalho. Cada quadro do 

vídeo é dividido em regiões. Para cada região é extraído o nível de resiliência a erros dessa 

região, ou seja, o quanto essa região é sensível à introdução de erros (quanto mais sensível for 

a região, maior vai ser o impacto negativo de se introduzir erros no resultado de qualidade 

final da codificação). Após classificar cada região do vídeo de acordo com o seu nível de 

resiliência, a técnica aplica diferentes níveis de aproximação (utilizando modos de 

aproximação). Em regiões classificadas como resiliente, modos de aproximação mais intensos 

são aplicados, ou seja, modos que introduzem mais erros no processo de codificação. Em 

regiões mais sensíveis, modos de aproximação menos intensos são utilizados. Dessa maneira, 

é possível reduzir a demanda por computação, e consequentemente a temperatura do sistema 

de codificação, sem comprometer de maneira intensa a qualidade final do vídeo codificado. 

 

 
 

Como resultado, a solução de gerenciamento térmico que utiliza computação aproximada 

foi capaz de reduzir em média 10 °C a temperatura de sistemas de codificação de vídeo em 

troca de uma baixa perda de qualidade no vídeo codificado. Além disso, quando comparada 

com trabalhos da literatura, a técnica proposta neste trabalho foi similar ou superior. 

 

A3.3 Esquema de escalonador de tarefas baseado na aplicação 

 

A terceira solução proposta nesta tese foca em reduzir os gradientes espaciais de 

temperatura em arquitetura multi processadas processando a codificação de vídeo de forma 

paralela. A intensidade computacional da aplicação codificação de vídeo é principalmente 

influenciada pelo conteúdo dos vídeos digitais. Isso significa que quando um vídeo digital é 

igualmente dividido entre unidades de processamento para realizar a codificação de vídeo 

paralela existe um desbalanceamento natural de carga computacional entre as diferentes 

unidades de processamento, o que resulta em gradientes de temperatura. Deste modo, esta 

Algoritmo A2 Approximate mode selection heuristic. 

Input: sequence S; 

1: v_list = [ ]; 

2: for each frame f Є S do: 

3: for each CTU cu Є f  do: 

4: vCTU = extract_variance(ctu); 

5: update_v_list(vCTU); 

6: end for; 
7: for each CTU ctu Є f  do: 

8: norm_vCTU = [vCTU – min(v_list)] / [max(v_list) – min(v_list)]; 

9: case norm_vCTU: 

10: resilient: encode(ctu, AM-3); 

11: medium resilient: encode(ctu, AM-2); 

12: medium sensitive: encode(ctu, AM-1); 

13: sensitive: encode(ctu, AM-0); 

14: end case; 

15: end for; 

16: end for; 



 

 

86 

técnica utiliza m esquema de escalonamento de tarefas para reduzir os gradientes espaciais de 

temperatura provocados pelo desbalanceamento natural de carga computacional na 

codificação de vídeo paralela. 

O algoritmo A3 resume as principais etapas do esquema de escalonamento proposto. A 

primeira etapa consiste em um monitoramento de variáveis que são utilizadas pelo esquema 

de escalonamento. Entre as variáveis estão: os níveis de temperatura de cada unidade de 

processamento, as características dos quadros sendo processados e a distribuição de carga 

computacional de quadros anteriormente codificados. Todas essas variáveis são utilizadas 

para definir o escalonamento das diferentes tarefas geradas pela aplicação. O algoritmo refaz 

o escalonamento das tarefas toda vez que um limiar de gradiente de temperatura é atingido. 

Dessa forma, o algoritmo utiliza os resultados de uma etapa de predição de carga 

computacional para definir qual tarefa será assinalada a cada unidade de processamento. Às 

unidades de processamento que possuem níveis altos de temperatura são assinaladas as tarefas 

menos custosas em termos de carga computacional, enquanto que as unidades de 

processamento com baixos níveis de temperatura são assinaladas com as tarefas mais custosas 

em termos de carga computacional. 

 

 

 
 

Como principais resultados, a técnica de escalonamento de tarefas foi capaz de reduzir a 

zero o tempo em que gradientes de temperatura eram superiores a 5 °C e 10 °C em sistema de 

codificação de vídeo multiprocessados. Além disso, foi possível atingir níveis de temperatura 

menores para o sistema inteiro quando comparado com a não utilização da técnica proposta. 

 

 

 

 

Algoritmo A3 Application-driven temperature-aware scheduler scheme 

Input: threads T, cores C, Spatial Gradient Threshold SGTth; 

1:  for each frame f Є V do: 

2: WP = [ ] 

3: TS = [ ] 

4: for each thread t Є T do: 

5: WM.extract() 

6: TLC.extract() 

7: TLP.extract() 

8: wpti = f(WM,TLC,TLP) 

9: WP.append(wpti) 

10: end for 
11: for each core c Є C do: 

12: tsi = get_temperature(ci) 

13: TS.append(tsi) 

14: end for 
15: current_STG = max(TS) – min(TS) 

16: if current_STG > STGth do: 

17: WP.sort() 

18: TS.reverse_sort() 

19: schedule(T,WP,TS)   //reaction 

20: end for 



 

 

87 

A4. Conclusões 

Esta tese introduz um conjunto de soluções de gerenciamento de temperatura para 

codificação de vídeo aptas a garantir qualidade quando requisitos de temperatura e 

desempenho são rígidos. A principal ideia utilizada para o desenvolvimento das soluções 

propostas é trazer o conceito de gerenciamento térmico do nível do hardware para o nível da 

aplicação, de maneira que a aplicação responde pró ativamente às violações de temperatura 

que venham a ocorrer em sistemas de codificação de vídeo. As características da aplicação e o 

conteúdo dos vídeos digitais são utilizados para melhorar os perfis de temperatura com baixa 

degradação na qualidade dos vídeos. Os resultados demonstraram que o gerenciamento 

térmico pode ser realizado no nível da aplicação com sucesso. 

Como trabalhos futuros, nós pretendemos empregar o principal conceito desta tese em 

outras aplicações de alto desempenho, iniciando com outras aplicações multimídias que 

tenham potencial de gerar resultados de temperatura indesejados. Também é planejado avaliar 

soluções que atuem tanto no nível do software quanto do hardware, onde a aplicação pode 

alimentar o hardware com informação para enriquecer as decisões para reduzir a temperatura. 

 

A5. Referências 

BINKERT, N. et al. The gem5 Simulator. ACM SIGARCH Computer Architecture News, 

New York, v. 39, n. 2, p. 1-7, May 2011. 

BOSSEN, F. Common test conditions and software reference configurations. ITU-

T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC). [S.l.]. 2012. 

DAS, I. On characterizing the “knee” of the Pareto curve based on Normal-Boundary 

Intersection. Structural optimization, v. 18, n. 2-3, p. 107-115, 1999. 

DENNARD, R. et al. Design of ion-implanted MOSFET's with very small physical 

dimensions. Journal of solid-state circuits, v. 9, n. 5, p. 256-268, 1974. 

HENKEL, J. et al. Reliable On-Chip Systems in the Nano-Era: Lessons Learnt and Future 

Trends. Design Automation Conference (DAC). [S.l.]: [s.n.]. 2013. 

ITU-T. SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS - Infrastructure 

of Audiovisual Services - Coding of Moving Video - High Efficiency Video Cdoing. [S.l.]. 

2013. 

JCT-VC. HM 16.0 Reference Software, 2015. Disponivel em: <http://hevc.hhi.franhofer.de/>. 

LI, S. et al. McPAT: An Integrated Power, Area, and Timing Modeling Gramework for 

Multicore and Manycore Architectures. International Symposium on Microarchitecture 

(MICRO). [S.l.]: [s.n.]. 2009. p. 469-480. 

PECHT, M.; LALL, P.; HAKIM, E. B. The influence of temperature on integrated circuit 

failure mechanisms. Quality and Reliability Engeneering International, v. 8, n. 3, p. 167-

176, 1992. 

SKADRON, K. et al. Temperature-Aware Microarchitecture: Modeling and Implementation. 

Transactions on Architecture and Code Optimization (TACO), New York, v. 1, n. 1, p. 

94-125, March 2003. 

VANNE, J. et al. Comparative Rate-Distortion-Complexity Analysis of HEVC and AVC 

Video Codecs. Transactions on Circuits and Systems for Video Technology (TCSVT), v. 

22, n. 12, p. 1885-1898, October 2012. 




