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ABSTRACT

Line detection algorithms are used by many application fields, such as computer vi-
sion and automation, as a basis for more complex analysis. For instance, line information
can be used as input to object detection algorithms or even attitude estimation in flying
robots. One way to detect lines is to use an isotropic nonlinear filtering procedure called
the Wide Line Detector (WLD). This algorithm is effective to highlight the line pixels
in gray scale images, separating dark or bright lines. However, line detection algorithms
are not normally concerned with the pixel-wise estimation of thickness. If available, such
information could be further explored by computer vision algorithms. Furthermore, color
is extensively used in computer vision as an object discriminant, but not by the WLD.
In this work, we propose the extension of the WLD to color images. We also develop a
method that allows the estimation of the line width locally using only the density informa-
tion and no border or center line information. Finally, we develop a new monotonically
increasing kernel that is more efficient and yet effective to detect lines than the mono-
tonically decreasing kernels used by the WLD. Finally, we devise a way ro obtain the
wideline thickness from the density estimate obtained from the similarity between pix-
els, reverting the process used by the WLD to determine which kernel should be used.
We perform several experiments with the proposed method, considering different param-
eters, and comparing it to the traditional WLD algorithm to assess the effectiveness of the
method.

Keywords: Wide Line Detector, Color Wide Line Detector, isotropic filtering, local den-
sity estimate.





RESUMO

Um Detector de Linhas Largas para imagens coloridas e Estimativa Local de
Largura da linha

Algoritmos de detecção de linhas são usados em muitos campos de aplicação, tais
como visão computacional e automação como base para análises mais complexas. Por
exemplo, a informação de linha pode ser usada como dado de entrada para algoritmos de
detecção de objetos ou mesmo para a estimativa da orientação espacial de robôs aéreos.
Uma das formas de detectar linhas é através do uso de um processo de filtragem não linear
chamado de Wide Line Detector (WLD). Esse algoritmo é eficaz na marcação de pixels de
linha em imagens em tons de cinza, separando linhas claras ou linhas escuras. Contudo,
os algoritmos de detecção de linha não estão normalmente preocupados com a estimativa
de largura local individual associada a um pixel. Se disponível, tal informação poderia
ser explorada por algoritmos de visão computacional. Além do mais, a informação de
cor também é extensivamente usada em visão computacional como um discriminante de
objetos, mas o WLD não a usa. Neste Trabalho, nós propusemos a extensão do WLD
para imagens em cores. Nós também desenvolvemos um novo kernel monotonicamente
crescente que é mais eficiente e mais robusto para detectar linhas do que que os kernels
monotonicamente decrescentes usados pelo WLD. Por fim, desenvolvemos uma maneira
de obter uma estimativa de largura de linha partindo da densidade local associada a si-
milaridade entre pixels, revertendo o processo usado pelo WLD para estimar qual kernel
deve ser usado. Diversos experimentos foram realizados com o método proposto conside-
rando diferentes parâmetros, além da comparação com o WLD tradicional, para analizar
a eficácia do método.

Palavras-chave: Estimativa de Densidade Local, Detector de Linhas Largas, Kernels Iso-
trópicos, Kernels Monotonicamente Decrescentes, Kernels Monotonicamente Crescentes,
Differenças de Cores Perceptuais.
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1 INRODUÇÃO

A detecção de objetos relevantes, tais como faces e ruas de uma dada imagem, é
uma tarefa difícil para a visão computacional e reconhecimento de padrões. Uma forma
de abordar este problema é começar com a detecção de estruturas básicas, de tal modo
que estruturas mais complexas possam ser obtidas posteriormente. Por exemplo, linhas
e estruturas curvilineares tem um papel importante em diferentes áreas, incluindo in-
teligência artificial e reconhecimento de padrões (LI; LIU; QIAN, 2009; SUN; LIU, 2009;
WANG; WU; HU, 2009), na medicina (ZHANG; LIU, 2007; LIU; ZHANG, 2008; JIAN-
GUO et al., 2009; PAKTER et al., 2010) e imagens aéreas (FISCHLER; TENENBAUM;
WOLF, 1981; LIU et al., 2008; CHIANG et al., 2009). Estas estruturas curvilineares nor-
malmente variam ao longo de seu cumprimento, por exemplo, a direção de ruas, a largura
dos galhos de uma árvore, etc. O processo de detecção de tais estruturas envolve a de-
marcação do agrupamento completo de pixels que o compõem uma imagem digital, para
extrair estruturas importantes como direção comprimento e largura.

Em robótica, estruturas curvilineares fornecem informações valiosas sobre o ambiente
e sobre o robô em diferentes tarefas, incluindo localização de objetos de interesse, além
de tarefas de controle, estabilização e orientação. A pesquisa corrente sobre Veículos
Aéreos não Tripulados (VANTs) mostra que estas estruturas podem ser usadas inclusive
para obtenção de informação sobre a localização do robô. Métodos tradicionais baseados
no horizonte e geometria epipolar possuem diversas limitações incluindo a falta de estru-
turas, necessidade de extrair os parâmetros a partir de decomposição de matrizes (BAZIN
et al., 2008). Além disso, a informação de GPS pode ser imprecisa quando a aeron-
ave (MONDRAGON et al., 2010) voa baixo. Mesmo os odômetros visuais de drones
podem falhar em baixas altitudes (GUIZILINI; RAMOS, 2011). Portanto, técnicas ino-
vadoras de reconhecimento de estruturas básicas podem abrir espaço para novas estraté-
gias para melhorar o controle dinâmico de drones. Por exemplo, BAZIN et al. (2008)
usam câmeras catadióptricas ao invés de câmeras tradicionais, para extrair um grande
número de linhas, estimando o os pontos de fuga da imagem e os rastreando durante lon-
gas sequências de vídeo de forma precisa e robusta. Eles exploram a forte regularidade
exibida em estruturas conhecidas pelo homem presentes em áreas urbanas. HWANGBO;
KANADE (2011) observa que esta regularidade exibe segmentos de linha que são parale-
los ou ortogonais ao vetor da força da gravidade. Usando esta informação o VANT pode
estimar sua própria pose, incluindo posição altitude e orientação, além de corrigir erros
de odometria acumulados. Os segmentos de linha são classificados usando um conjunto
de premissas sobre a quantidade de pontos de fuga existentes1 na cena. Mondragoń et

1Quando uma cena tridimensional é projetada em um plano usando uma transformação projetiva, o
ponto de fuga é um ponto no plano de projeção onde duas ou mais linhas paralelas (mas não paralelas ao
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al. (MONDRAGON et al., 2010) propõe um algoritmo online de estimativa 3D da pose
do drone usando estruturas métricas e projetivas de marcadores terrestres ou do próprio
heliporto com respeito ao sistema de coordenadas calibrado do VANT. O algoritmo es-
tima com sucesso a posição 3D do helicóptero em baixas altitudes em tempo real. Com
esta estimativa é possível realizar tarefas de controle complexas como pouso autônomo
e tarefas de carga e descarga. Todos estes trabalhos se aproveitam de estruturas visuais
elementares presentes no ambiente.

A informação de cor é também bastante relevante para a robótica em muitas áreas.
Ela pode ser usada para classificar vegetação automaticamente em ambientes naturais us-
ando imagens aéreas de alta resolução obtida em vôos de baixa altitude (REID; RAMOS;
SUKKARIEH, 2011); para navegação usando câmeras monoculares em Veículos Ter-
restres não Tripulados (UGVs) usados em ambientes perigosos tais como áreas de con-
taminação química, radioativa ou biológica, evitando a necessidade de descontaminação
de pessoal e sensores (MIKSIK et al., 2011); para checar se a sequência de cor de fios
e cabos está correta, enquanto estes estão sendo presos a conectores por um robô de in-
speção de cabos (GHIDONI; FINOTTO; EMANUELEMENEGATTI, 2011); ou usada
juntamente com informação ode textura por algoritmos de segmentação para classificar
rios, céu e margens (ACHAR et al., 2011). Note que cabos e rios são ambos estruturas
curvilineares largas com cores específicas.

Recentemente, LIU; ZHANG (2005); LIU; ZHANG; YOU (2007) introduziu um al-
goritmo de detecção de estruturas curvilineares chamado de Detector de Linhas Largas
(WLD) baseado no algoritmo SUSAN de processamento de imagens (SMITH; BRADY,
1997). O WLD funciona em imagens em escala de cinza em cada pixel para cada pixel. A
estimativa é uma soma ponderada de medidas de similaridade obtidas ao comparar o pixel
central com os outros pixels dentro do kernel. Depois disso, o WLD determina se o pixel
central pertence a uma linha ou à imagem de fundo usando um conjunto de equações (ver
Capítulo 4). LIU; ZHANG; YOU (2007) determinam o tamanho do kernel a priori, de
acordo com a largura máxima da linha a ser detectada. O algoritmo requer a seleção de
linhas claras ou escuras a priori. Além disso, é sugerido que a largura da linha possa ser
obtida pelo seguinte processo: 1) a linha completa é marcada usando o WLD, seguida da
aplicação de um algoritmo de geração de esqueletonização; 2) o resultado deste processo
é usado com as bordas para subsequentemente medir a largura (espessura) da linha.

1.1 Contribuições

Este trabalho propõe melhorias ao método WLD. Primeiro, estendemos o método para
trabalhar com imagens coloridas. O algoritmo tradicional desconsidera a informação de
cor. Segundo, enquanto o WLD originalmente usa a relação entre estimativa de densidade
e largura para selecionar o tamanho de kernel que detecta todas as linhas até um valor
máximo de espessura (fornecido a priori), nós desenvolvemos uma função de transferên-
cia que converte a estimativa de densidade em uma largura correspondente para todos os
pixels que podem ser detectados pelo algoritmo. Esta função gera um mapa de largura
associado a todas os pixels de todas as estruturas curvilineares presentes na imagem. Em
seguida, propusemos um novo kernel que não é monotonicamente decrescente. O uso
de tal kernel reduz o custo computacional da detecção de linhas em relação ao algoritmo
tradicional, uma vez que ele requer um raio menor que o dos usados tradicionalmente
pelo algoritmo. Isso resulta em menos pixels no processo, além de manter ou melhorar os

plano de projeção) convergem.
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resultados do algoritmo.

1.2 Estrutura desta Dissertação de Mestrado

Esse trabalho é organizado da seguinte forma. O Capítulo 3 apresenta trabalhos atuais
sobre detecção de estruturas curvilineares em imagens. O Capítulo 4 revê os conceitos
principais do WLD, com foco em como o WLD estima o raio do kernel. Nós apresenta-
mos o método proposto, chamado de Color Wide Line Detector (CWLD), no Capítulo 5,
juntamente com experimentos e imagens artificiais. Primeiro, é explicado como adaptar
diferenças de cor para o método WLD para gerar o CWLD. Então, executamos experi-
mentos que mostram que kernels monotonicamente crescentes são mais eficientes que os
monotonicamente decrescentes. A função que converte a estimativa de densidade local em
largura de linha, para kernels monotonicamente decrescentes e crescentes conclui o capí-
tulo. O Capítulo 6 apresenta experimentos e resultados em imagens naturais, incluindo
a comparação de efetividade entre CWLD e WLD para detectar linhas; uma análise de
desempenho de cada kernel para detectar pixels pertencentes a linhas; e análise estatística
da estimativa de largura obtida em cada imagem natural, com diferentes combinaçães de
kernel e diferença de cor. Tabelas com os resultados completos são extraídas e reapre-
sentadas parcialmente ao longo do Capítulo para facilitar o entendimento dos resultados.
O Capítulo 7 apresenta a conclusão e trabalhos futuros, fornecendo comentários sobre os
melhores resultados obtidos considerando diferenças de cor e kernels. Incluímos ainda
um apêndice com contendo algumas equaçães de conversão de cores e de diferença de
cor relevantes para este trabalho.
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2 INTRODUCTION

The detection of relevant objects, such as faces and roads from a given image, is a
difficult task for computer vision and pattern recognition. One way to approach this prob-
lem is to start with the detection of basic structures, so that more complex information
can be obtained thereafter. For instance, lines and curvilinear structures play a vital role
in different sub-areas, including machine intelligence and pattern recognition (LI; LIU;
QIAN, 2009; SUN; LIU, 2009; WANG; WU; HU, 2009), medical (ZHANG; LIU, 2007;
LIU; ZHANG, 2008; JIAN-GUO et al., 2009; PAKTER et al., 2010) and aerial imag-
ing (FISCHLER; TENENBAUM; WOLF, 1981; LIU et al., 2008; CHIANG et al., 2009).
These curvilinear features commonly vary across their length, e.g., the direction of roads,
the width of tree branches, etc. The detection process of such basic structures involves
the highlighting of the whole group of image pixels that comprises them, to extract char-
acteristics such as direction and width.

In robotics, curvilinear features provide valuable information about the environment
and the robot for different tasks, including target localization, control and orientation
tasks. Current research on Unmanned Aerial Vehicles (UAVs) shows that these features
are quintessential for the localization problem. Traditional methods based on horizon
and epipolar geometry have several limitations that include lack of features, need to re-
trieve motion parameters from matrix decomposition, and the rotation-translation ambi-
guity (BAZIN et al., 2008). Also, the GPS information is often inaccurate if the aircraft
is flying at low altitudes (MONDRAGON et al., 2010). Even the traditional UAV visual
odometers fail at low altitudes (GUIZILINI; RAMOS, 2011). Therefore, they open space
to new strategies to improve UAV dynamic control. For instance,BAZIN et al. (2008)
use catadioptric instead of traditional perspective cameras to extract a large number of
lines, estimate the associated vanishing points, and track them even during long video
sequences accurately and robustly. They explore the strong regularity of available man-
made structures present in urban areas. HWANGBO; KANADE (2011) observe that this
regularity exhibits line segments that are either parallel or orthogonal to the gravity force
vector. Using this information, the UAV can estimate its own attitude and correct accu-
mulated errors. They classify line segments using a set of assumptions about the number
of vanishing points1 in the scene (horizontal and vertical). The resulting algorithm uses
the line segments directly instead of the vanishing points to obtain another robust attitude
estimation algorithm. MONDRAGON et al. (2010) proposes a real time UAV 3D pose es-
timation to obtain metric and projective components of a landmark or helipad with respect
to the UAV calibrated camera coordinate system. The algorithm successfully estimates

1When a three dimensional scene is projected into a plane using a perspective transformation, the van-
ishing point is a point in the projection plane where two parallel lines (not parallel to the view plane)
converge.



20

the helicopter’s 3D position at low altitudes. With this estimate it is possible to perform
complex control tasks such as accurate positioning at low altitudes, autonomous landing
and payload dropping.

Color information is also relevant for robotics in a broad range of areas. It has been
used to automatically classify vegetation in natural environments based on high resolution
aerial imagery acquired by a low flying UAV (REID; RAMOS; SUKKARIEH, 2011); for
navigation with a monocular camera by Unmanned Ground Vehicles (UGVs), used in
hazardous environments, such as chemical, nuclear and biological contamination areas,
avoiding complications with sensor decontamination (MIKSIK et al., 2011); to check if
the color sequence of wires are correct, while the cables are being crimped to connectors
by a cable inspection robot (GHIDONI; FINOTTO; EMANUELEMENEGATTI, 2011);
or used along with texture information by a segmentation algorithm to classify river, sky
and shore (ACHAR et al., 2011). In the cable sequence analysis and classification of
rivers, note that both the cables and rivers are wide lines with specific colors.

LIU; ZHANG (2005); LIU; ZHANG; YOU (2007) introduced a robust curvilinear
feature detection method called Wide Line Detector (WLD) based on the SUSAN image
processing framework (SMITH; BRADY, 1997). The WLD works on gray scale images
at every pixel, in combination with an isotropic kernel to obtain the local density esti-
mate. This estimate is a weighted sum of the similarity measures obtained by comparing
the central pixel with every other pixel. After, the WLD determines if the central pixel
belongs to a line or background region using a set of equations (see Chapter 4). Liu et al.
determine the kernel size a priori, according to the maximum line width that should be
detected. The algorithm also requires the selection of bright or dark lines a priori. Fur-
thermore, they suggest (LIU; ZHANG; YOU, 2007) that the line width could be obtained
through the following process: 1) the whole line is marked, using the WLD, and thinned,
using any thinning algorithm. 2) the result of the thinning algorithm is used, together with
the line border, to subsequently measure the line width.

2.1 Contributions

In this work we propose some improvements to the WLD method. First, we extend
it to work with color images. The original method disregards color information, working
only with gray scale images. Second, while the WLD originally uses the relation between
density estimate and width to select the minimum kernel size that can detect all the line
features up to the maximum line tickness (provided a priori), we developed a transfer
function that converts the density estimate into a corresponding line width for all the line
pixels that can be detected by the kernel. This function generates a map of widths associ-
ated to the curvilinear features detected in the entire image. The line width can be used to
classify different aspects of a real environment, for instance, a mobile robot could extract
the lines of a wall or floor to determine its position accurately. Furthermore, it could be
used in combination with a tracking algorithm (COMANICIU; RAMESH; MEER, 2000)
to monitor user motion for recognizing gestures. Then, we propose a new kernel that is
not monotonically decreasing. The use of such kernel reduces the computational cost of
line detection, since it requires smaller kernel radius than the others. This results in few
pixels to process, while maintaining or improving the quality of the results.
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2.2 Structure of this Dissertation

This Work is organized as follows. Chapter 3 presents the current work on curvilinear
line detection. Chapter 4 reviews the main concepts of the WLD, with a focus on how the
WLD estimates the size of the kernel radius. We demonstrate our method, called Color
Wide Line Detector (CWLD), in Chapter 5, together with some experiments with artifi-
cial images. First, we explain how to adapt the color-differences to the WLD to generate
the CWLD. Then, we perform several experiments that show that the monotonic increas-
ing kernels are more efficient than monotonic decreasing kernels. The transfer-functions
that convert the local density estimates into width measurements, for both the monotonic
increasing and decreasing kernels, conclude this chapter. Chapter 6 presents the experi-
ments and results considering natural images, including the comparison of effectiveness
between CWLD and WLD to detect lines; the performance analysis of each kernel to de-
tect line pixels; and the statistical analysis of the width estimations obtained for each nat-
ural images, with different combinations of kernels and color-difference equations, with
detailed tables, which contain complete statistical information from this work. Through-
out the Chapter, we present relevant parts from these tables, making use of smaller ta-
bles showing relevant information to improve text readability. Chapter 7 presents the
conclusion and future works, providing comments regarding the best results with color-
difference and kernel, as well as the possible ramifications of this work. We also include
an Appendix section, containing some color transformations and color-difference equa-
tions relevant to this work.
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3 RELATED WORK

In this Chapter, we present relevant works related to the scope of this Work. One of
the first techniques developed in the image processing field to detect structures (like lines,
circles, etc.) was the Hough Transform (DUDA; HART, 1972). It detects structures like
lines, circles or other desired features only when the corresponding equation is available.
To detect a line, for instance, the algorithm takes advantage of the point line duality to
construct a voting histogram. Basically, it uses the attributes of the line to count and store
the number of matching pixels in the histogram. The most probable lines are those with
the highest number of votes. Similar approaches apply to any feature, other than lines, that
needs to be detected. The Hough transform has a couple of problems. For instance, it does
not filter adequately all false positive features detected (GIOI et al., 2010) and the voting
map can use a considerable amount of memory or be affected by aliasing (FERNANDES;
OLIVEIRA, 2008).

The method proposed by GEMAN; JEDYNAK (1996) detects 1-D linear structures
from a starting point and specific direction in the line. It is used to track highways over
long distances in real time without manual intervention. Basically, it considers that a main
road is constructed from an ordered and equally spaced sequence of small line segments
with width and length equal to 2 and 12 pixels, respectively. Two subsequent segments
have an angular constraint, i.e., the angle between them must be in the interval of [+5,−5]
degrees. The algorithm analyzes local image data, around the current position, to deter-
mine the line continuation that has a relative brightness difference similar to that of the
line being currently built. On the other hand, FISCHLER; TENENBAUM; WOLF (1981)
algorithm detects and delineates curvilinear structures, such as roads, in low-resolution
aerial images. It combines information from different sources, including the output of
several line and edge detectors, and the road maps available. A road is detected using
graph search and dynamic programming techniques.

KWEON; KANADE (1994) propose a method for building high-level terrain descrip-
tions from an elevation map. The contour lines obtained from this map are analyzed using
directional derivatives to extract terrain features such as peaks, pits, ridges, and ravines in
gray scale.

KOLLER et al. (1995) use a nonlinear combination of linear filters to search for lines
across scale-space. Their method does not deal with complex structures, like crossings
and junctions, and has difficulty to interpret the different meanings of structures across
scales. This happens because structures from a given scale might merge or disappear in
larger scales. LINDEBERG (1996) improves the scale-space analysis performing auto-
matic scale selection. This selection uses maxima over scales and aims to better interpret
structures like edges, ridges and corners.

STEGER (1998) uses differential geometry and Gaussian masks to estimate the first
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and second derivatives of an image, to obtain wide line information. This method selects
the center lines as the maxima over scale-space. After, it uses a modification of Canny
edge detector (CANNY, 1986) to identify the edges and estimate the line width with sub-
pixel precision.

The method proposed by ZHANG; LIU (2007) marks the pixels and estimates the cen-
ter line of vessels in retinal images. First, it defines, a priori, the length, l, and the width,
w, of the minimum vessel to be detected. Then, the method generates several line seg-
ments s0 with length l, starting from every pixel,p, in the image in different orientations,
θ. From each pixel that belongs to a given segment, the method draws two segments,
s1 and s2, that are perpendicular to the former segment with length slightly higher than
the w. For all pairs of segments s1 and s2 generated from s0, the method determines
the segment mean intensity, that is, the average of the intensities of the pixels belonging
to the segment. Next, they calculate the contrast ratio, c, between the generating pixel
and the mean intensity of the pixels belonging to the segment. The method considers
s0 as a vessel pixel if the number of perpendicular segments, whose c is less or equal a
given perceptual contrast threshold, is sufficiently large. This method is relevant because
it introduces the concept of perceptual contrast (ZHANG; LIU, 2007).

QIN-LI et al. (2008) proposes a dark (or bright) line detection method based on the
first order derivative of the Gaussian function. This method uses a set of oriented Gaussian
derivative filters, where the zero crossings are considered as the center lines. The line
width is simultaneously estimated using the difference between the local maximum and
minimum. This method does not perform well in noisy images and the tests are provided
for few images only.

LI; CHANG; ZHU (2009) propose an approach to detect lines based on density es-
timation. This density is calculated using a set of rules to speed-up the calculation, for
instance, pixels whose intensity value is zero are disregarded, what is particularly conve-
nient for binary images. They apply thresholding rules over the obtained density estimate
to perform background pixels removal. However, the resulting image is not entirely free
of undesirable pixels, so a noise removal technique is employed. After, they perform a set
of procedures including non-maximum suppression to detect the center line pixels. Fi-
nally, they connect them to generate the vector representation of the detected lines. This
method is very efficient, and claims to be the first to use the density estimate, but it was
devised after the WLD (LIU; ZHANG, 2005; LIU; ZHANG; YOU, 2007), and they differ
only in how the density estimate is computed and how the segmentation is performed.

GIOI et al. (2010) proposed a line segment detector (LSD) that runs in linear time
O(n) and does not require parameter tuning. It detects and controls false positive features
generating accurate results. The algorithm uses a combination of region growing and geo-
metric structure matching to detect segments. It does not enhance all pixels of curvilinear
features and often generates aliased segments that do not always match exactly the feature
edges.

The WLD (LIU; ZHANG, 2005; LIU; ZHANG; YOU, 2007) detects lines by means
of a non-linear isotropic filtering algorithm. The method estimates the line direction find-
ing the longest axis of symmetry. It detects bright or dark lines using a step function that
selects bright or dark responses. This method is particularly useful to segment curvilinear
features, because it eliminates the need to detect edges. Edge detection can be difficult,
since it can easily be influenced by noise. In addition, determining specific edge posi-
tions can be subjective (ZHANG; LIU, 2007). Edge detection in color images is still an
active research topic (VERMA, 2010). We observed that the density estimation could be
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improved in the WLD using perceptual color-differences instead of intensity differences.
The addition of color allows the detection of line pixels in natural color images, as you
will see in Chapter 6. Moreover, the WLD also uses an interesting relationship between
density estimate and the line width to determine the smallest kernel needed to detect a line
of width w – thickness. We take advantage of this relationship to develop a new kernel
that is more efficient than those proposed by the WLD. It also allows the extraction of
the line width locally, through a transfer-function that receives the local density estimate
as input and returns the line width estimation, without using the the center line or the
borders. This modifications give rise to our method called the CWLD. The WLD and the
CWLD algorithms are discussed in the next Chapters. The WLD was taken as the basis
for this work because we are particularly interested in extracting higher level information
from kernel density estimates – e.g. the line thickness. The idea of extracting complex
information from a singled function is of particular interest to the authors of the present
work.
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4 REVISITING THE WIDE LINE DETECTOR

The WLD applies a nonlinear filter to a gray scale image that combines a chosen
circular mask, a set of functions and rules to determine the line pixels. Initially, the WLD
computes the Weighed Mask having Similar Brightness (WMSB)

m(p0) =
∑
p

s(p0,p)K(||p− p0||) (4.1)

for every pixel in the image, where p0 is the center pixel in the kernel at position (x0, y0),
p is a pixel in the kernel and K(.) is the kernel profile and

s(p0,p) = sech

[(
I(p0)− I(p)

t

)5
]

(4.2)

where t is the brightness contrast threshold, which is the standard deviation of the inten-
sities in the image, sech(.) is the hyperbolic secant function and I(.) is the pixel inten-
sity. Equation 4.2 is a smoothing function used to avoid simple binary decision cut when
I(p0)− I(p) > t.

The WLD uses the uniform,Ku(.), and Gaussian,Kg(.), kernel profiles asK(.). Their
responses are represented by

Ku(d) =

{
a , if d ≤ r

0 , otherwise
(4.3)

Kg(d) =

{
exp

(
−d2
2r2

)
, if d ≤ r

0 , otherwise
(4.4)

where a is the height of the uniform kernel, typically a = 1, and r is the radius of the
kernel. Even though only such kernels have been used, the theory behind the method is
valid for monotonically decreasing kernels (LIU; ZHANG; YOU, 2007).

After, the line response L(p) is computed

L(p) =

{
mmax −m(p) , if m(p) < mmax

0 , otherwise
(4.5)

where mmax is a geometric threshold used to accept a pixel as belonging to the line. L(p)
will be computed considering that p is the kernel center. When L(p) = 0, the pixel p is
considered as background. Otherwise, p is a line pixel, with probability proportional to
L(p).
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Figure 4.1: A1+A2 corresponds to the volume occupied by λ when it is centered in the
kernel, while A2+A3 is the volume of the same line when one of its edges crosses the
center of the kernel.

w/2

w

A1 A2 A3

r

w/2

To understand that, consider a line λ that is parallel to the vertical Cartesian axis, with
width w, crossing an isotropic kernel K with radius r and volume VK , as in Figure 4.1.

The volume occupied by λ is defined by

Vλ =

∫ ∫
λ

K(||(x, y)||)dxdy (4.6)

considering that the kernel center is at p0 = (0, 0). It corresponds to the continuous
version of Equation 4.1 in ideal conditions. That is, s(p0,p) ≈ 1 insofar I(p0)− I(p)→
0. For values of (I(p0)− I(p)) larger than t, s(p0,p) = 0. We can see that Vλ ∈ VK .

The portion Vλ occupied by λ is associated to the volume VK by two equations. The
first one is given when the edge of λ touches the center of K.

VE(w, r) =

w∫
0

√
r2−x2∫

−
√
r2−x2

K(||(x, y)||)dxdy (4.7)

When the kernel is at the center of the line, we reach a point where each half of the
line occupies equal volume. In this case, the following equation is valid

VC(w, r) =

w
2∫

−w
2

√
r2−x2∫

−
√
r2−x2

K(||(x, y)||)dxdy (4.8)

According to Liu et al. (LIU; ZHANG; YOU, 2007), if the kernel is uniform or
monotonically decreasing, when the kernel center is inside a line region, the inequality
VE ≤ Vλ ≤ VC is true. This can be observed on Figure 4.1. From that, Liu defines
mmax = αVK , where α ≈ 1/2 and depends on the K(.) used. When a pixel p belongs
to a line VE ≤ m(p) ≤ VC , that is, a line pixel has been detected if m(p) < αVK (see
Equation 4.5).

Liu determines the minimum kernel radius, r, required to detect all the lines with
width less than or equal to w, analyzing the relationship between w and the kernel volume
occupied by the line according to its position inside the kernel. Figures 4.2 (a) and (b)
illustrate this relationship for Ku and Kg considering Equations 4.7 and 4.8, respectively.
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Figure 4.2: The relationship of w (as the ratio of r, i.e., w/r) and Vλ (as the ratio of VK ,
i.e., Vλ/VK) using (a) Ku and (b) Kg considering Equations 4.7 and 4.8.
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They show that by increasing the line width, Equations 4.7 and 4.8 reach VK/2 at
different widths. That is, if Equation 4.7 is used, both kernels return the density estimate
of VK/2 when w = r, while if we use Equation 4.8 we reach the same distribution at
considerably smaller widths: w ≈ 0.8r for Ku and w ≈ 0.75r for Kg. This implies that
any line having w > 0.8r for Ku and w > 0.75r for Kg will no longer be completely
detected and hence will be considered as background, since depending on its position,
VC > VK/2, i.e., m(p) ≥ mmax in Equation 4.5.

Finally, Equation 4.2 is modified with the addition of a step function to detect bright
or dark lines:

s(p0,p) =

 sech
[(

∆(p,p0)
t

)5
]

, if ∆(p0,p) > 0

1 , otherwise
(4.9)

and

∆(p0,p) =

{
I(p0)− I(p) for bright lines detection
I(p)− I(p0) otherwise

(4.10)
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5 COLOR WIDE LINE DETECTOR

In this Chapter, we present the core of this work. It corresponds to an extension of
the WLD, called Color Wide Line Detector (CWLD). The CWLD presents three impor-
tant differences over the WLD. First, it considers color information to detect wide lines.
Second, it uses a new efficient kernel that detects wider lines than those used by the orig-
inal WLD considering that they have the same kernel radius. Lastly, it uses a transfer
function that computes the line width locally from the relationship of width and density
distribution associated with the line response. This process does not require center line
and border information to compute the line width. In the following Section we describe
formally the CWLD, presenting the equations to elicit lines and their width.

5.1 Incorporating color information

As mentioned in Chapter 4, the WLD identifies lines only in gray scale images using
the WMSB. In this section, we generalize the WLD to use color-difference, ∆E, instead of
intensity difference. We call this generalization the Weighed Mask having Similar Colors
(WMSC). Basically, the WMSC is equal to the r.h.s. of Equation 4.9 considering

s(p0,p) =

 sech
[(

∆E(p0,p)
t

)5
]

, if ∆C(p0,p) > 0

1 , otherwise
(5.1)

and

∆C(p0,p) =

{
Q(p0)−Q(p) , for bright lines detection
Q(p)−Q(p0) , otherwise

(5.2)

where ∆E(p,p0) is the color-difference between p and p0, and Q(.) is the appropriate
intensity indicator defined by the selected color space.

Choosing ∆E(p,p0) is not an easy task since the color models available may not be
suitable for complex scenarios involving color comparison. Color appearance is highly
associated with each individual, i.e., the color experience, such as looking at a reddish
evening sky, is subjective for every one of us (qualia problem (CRICK, 1995)). Indus-
tries commonly use CIE (Commission Internationale de l´Eclairage) L∗a∗b∗ and L∗C∗h
as reference (FAIRCHILD, 2005; BERNS, 2000), because these spaces were designed
to be perceptually uniform (FAIRCHILD, 2005). Theoretically, similar colors should
have difference smaller than 1 unit in this space. However, in practice CIE L∗a∗b∗ and
L∗C∗h produce differences larger than 1 unit even for some perceptually similar colors.
As a result, several color-difference equations have been proposed (a review is presented
in (LUO, 2002)).
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For color images, the information at each pixel is now a color vector, so we need to
convert the line response equations from Chapter 4 accordingly. The first step is to use
the norm of the color-difference vector, instead of the pixel intensity difference. For the
RGB color space, ∆E(p,p0) is the Euclidean distance between the color of pixels p and
p0. Q(p), in this case, is the intensity, computed by

Q(p) = I(p) = αR(p) + βG(p) + γB(p)

where R(.), G(.) and B(.) are the color components red, green and blue, respectively, of
pixel p and α, β, γ ∈ [0, 1] are the weighing factors given according to the Illuminant.
For CIE L∗ difference we use Equations 4.9 and 4.10 , where I(p) is replaced by CIE
luminance L∗ of pixel p. For other CIE color spaces, we associate ∆E as the chosen
available color-difference. In this case, as ∆E alone does not provide enough information
to classify bright or dark lines in an image, we set Q(p) as the luminance L∗ of pixel p.

In this work, we have tested several color-difference equations (CIELAB 1976L∗a∗b∗,
CIE 1994, CIE 2000 and CMC(l, c) (FAIRCHILD, 2005)), the gray scale (original WLD),
CIE L∗ differences and the simple RGB Euclidean distance. In our experiments (see Sec-
tion 6) we have observed that CIE color-differences produce consistent results with the
threshold of 5 units for some images, which is also in accordance to previous observation
that similar colors are distant from each other of at most 5 units (FAIRCHILD, 2005).
However, we also observed in our experiments that this threshold was sometimes too sus-
ceptible to noise. As the WLD uses the standard deviation of the gray scale intensities of
the image (LIU; ZHANG; YOU, 2007), we decided to use the same strategy, calculating
the standard deviation of the color-differences instead of using a fixed threshold of 5 units.

The separation of bright and dark lines using Equations 4.10 or 5.2 artificially aug-
ments the density estimate to remove undesired lines (bright or dark), classifying them as
background. It does that through Equations 4.5, 4.9 and 4.10. That is, the dark (bright)
pixel responses are excluded by setting the density estimate to values wider than mmax,
i.e. set to background. When a pixel shows a response for dark (bright) lines, probably
this pixel is mostly darker (brighter) than its surrounding pixels, that is, I(p0)− I(p) < 0
for most of the pixels (or I(p) − I(p0) < 0 to exclude bright lines). In this way, when
Equation 4.10 sets every pixel comparison with negative values to 0, the resulting value
of Equation 4.9 becomes one. As a consequence, the density estimate of such pixels reach
values greater than mmax, and therefore they are excluded through Equation 4.5. Besides,
the wide line borders may have very low density estimates when compared to those asso-
ciated with the other line pixels. As the WLD augments the density of border pixels, their
line responses can become visually more similar to those of the other line pixels.

This separation strategy, employed by the WLD and CWLD, may lead to problems for
two main reasons. First, it is not trivial to know when a line is perceptually dark or bright
from color information alone (NAYATANI, 1997; NAYATANI; SAKAI, 2008). Second,
a line may not be completely darker or brighter than the surroundings. For instance,
consider the scenario of Figure 5.1, which corresponds to a gray line surrounded by a
mixed black and white background.

Figures 5.2 (a) and (b) present respectively the binary line response (L(p), see Equa-
tion 4.5) and the associated local density estimates (m(p)) for bright lines, while Fig-
ures 5.2 (c) and (d) present the same information for dark lines. In Figure 5.2 (b) and (d)
the brighter the pixel, the higher the density estimate. In Figures 5.2 (a) and (c), the white
pixels are those considered as line while the black pixels are those that were classified as
background. The results were obtained using the WLD.
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Figure 5.1: An ideal line with half-bright and half-dark surroundings.

Figure 5.2: The WLD bright binary response (a) and its local density estimates (b) forKu,
followed by the dark binary response (c) and the corresponding local density estimates
(d) using the same kernel. For the density estimates, the brighter the pixel the higher the
density estimate

(a) (b)

(c) (d)
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Figure 5.3: The (a) binary response for bright lines using the CWLD, along with (b) the
corresponding local density estimates, followed by (c) the binary response for dark line
detection and (d) its local density estimates. For the density estimates, the brighter the
pixel the higher the density estimate

(a) (b)

(c) (d)

The WLD fails to detect most of the wide line pixels. This happens because the
local density estimates augment excessively, leading the pixel associated to be wrongly
considered as background and, consequently, to detection failure. In Figures 5.2 (b) and
(d), there are white pixels in region associated to the line that have high density estimates
and, therefore, have been classified as background. Figure 5.1 shows the same experiment
using CWLD withKu and CIE 1976 color-difference. Observe that the results present the
same WLD problem. Moreover, a side effect of this approach is that the density estimate
becomes too unreliable to map the density estimate to any other measurement.

To deal with these problems we change the Equation 5.1 to

s(p0,p) = sech

[(
∆E(p0,p)

t

)5
]

(5.3)

disregarding the dark and bright separation strategies represented by the conditions in the
Equation. The results obtained for the CWLD are shown in Figures 5.4 (a) and (b), which
illustrate the binary line response and the local density estimates respectively. Disregard-
ing also this condition in Equation 4.9 we obtain the same results for the WLD in gray
scale (see Figures 5.4 (c) and (d)). This strategy successfully detects all line pixels with-
out corrupting density estimate information. However, some false positives can be seen in
Figures 5.1 (a) and (c), next to the line endings, because this line is not only surrounded
by brighter or darker pixels.

False positives are always generated in regions where the surrounding pixels have
small density distribution, including the background pixels next to the line endings in
the example above or curve surroundings. The false positives caused by high curvature
regions can be removed enlarging the kernel only if the line is completely surrounded
by background pixels of the same color. This enlargement augments the contribution of
background pixels in the density computation eliminating this type of false positive, as
we can see in Figure 5.5
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Figure 5.4: The binary response of the CWLD without bright or dark filters (a) along with
its local density estimate (b). The same information is provided for the WLD in (c) and
(d). For the density estimates, the brighter the pixel the higher the density estimate

(a) (b)

(c) (d)

Figure 5.5: A curve with homogeneous background (a), followed by the CWLD responses
using kernels with radius of 75 (b), 78 (c) and 80 pixels (d).

(a) (b)

(c) (d)
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Figure 5.6: The binary line response for the line filtering specific undesired colors.

Figure 5.5 (a) shows a curve inside a region with homogeneous background in a binary
image. Figures 5.5 (b) and (c) show the result of the CWLD using a uniform kernel of
radius of 75 and 78 pixels, respectively. In these figures we observe the presence of false
positives that diminish as the kernel radius augments. In Figure 5.5 (d), the kernel radius
is equal to 80 pixels and large enough to remove all the false positive pixels. When the line
is not surrounded by background pixels of the same color, we can use color information
to cut out undesired line responses according to application requirements. For instance,
in Figure 5.1 simply removing black and white pixels responses solve the problem, as we
can see in Figure 5.6.

5.2 Monotonically increasing kernels

Section 4 showed that the kernel radius limits the lines that can be detected. The max-
imum line width w and kernel radius r are related by the following inequations: w < 0.8r
for Ku and w < 0.75r for Kg. By definition, values of w and r that violate these inequa-
tions imply Vλ > VK/2, i.e., the line pixel may be erroneously classified as background.
This also means that to detect wide lines we need kernels with big radius.

A large kernel may offer some disadvantages that must be taken into consideration.
First, it implies in high computational cost, since the kernel considers more pixels in the
calculations. Second, a large kernel receives more influence from outlier pixels, which
can affect the filter response. For instance, the filter might fail to detect two lines that
are too close to each other, because the distance between them is smaller than the kernel
radius.

To minimize these problems, we propose a different kernel K(.) that is a combination
of an uniform kernel with a monotonically increasing kernel based on the complement of
the oblate Ellipsoid. It detects thicker lines than previous kernels with the same size. We
observed that for Ku, the height of each kernel sample is always the same, therefore the
only factor that influences the line response is its area inside the kernel (see Section 4). In
monotonically decreasing kernels, e.g. Kg, the height of the kernel sample varies along
the kernel, increasing the differences between the responses associated to VC and VE . This
can be seen comparing Figures 4.2 (a) and (b). Our new kernel, K(d), uses its monotonic
increasing characteristic to compensate the decay of density as the kernel moves from the
center to the edge of the line. It is defined by

K(d) =

 r

(
a+ b

(
1−

√
1− d2

r2

))
if d ≤ r

0 otherwise
(5.4)

where a and b are respectively the height of the uniform cylinder and the length of the
semi-axis of the oblate ellipsoid. These values are chosen to obtain the same result for VC
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Figure 5.7: The relationship of w (as the rate of r) and Vλ (as the rate of VK) using K and
Equations 4.7 and 4.8. Note that forK, VC and VE are plotted together with the maximum
Vλ(w, r,∆w) at each width value.
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and VE for a w (Equations 4.7 and 4.8, respectively), when Vλ is maximum (Vλ = VK/2).
This will force the two equations to get closer to each other again, the opposite behavior
of Ku and Kg. This is equivalent to

w∫
0

√
r2−x2∫

−
√
r2−x2

K(||(x, y)||)dxdy =

w
2∫

−w
2

√
r2−x2∫

−
√
r2−x2

K(||(x, y)||)dxdy

Solving this Equation, we see that a
b
≈ 0.14681, resulting in Figure 5.2, which present

VC = VE = VK/2 when w = r. It means that the same kernel can detect thicker lines.
Still, as the kernel is no longer monotonically decreasing, we cannot state that VE ≤ Vλ ≤
VC . Thus, we must obtain the maximum and minimum Vλ at each width, moving the line
position from the kernel center to the kernel border. The maximum, Vλmax , and minimum,
Vλmin

, values for Vλ are obtained using Equation

Vλ(w, r,∆w) =

w
2

+∆w∫
−w

2
+∆w

√
r2−x2∫

−
√
r2−x2

K(||(x, y)||)dxdy (5.5)

and varying the displacement between the centers of the line and the kernel ∆w consid-
ering that 0 ≤ w ≤ r and |∆w| ≤ w/2. Figure 5.2 illustrates that when w ≈ r, i.e.,
w/r ≈ 0.97 – theoretically.

Table 5.1 shows the minimum radius required to detect a horizontal bar shaped line
with width of 16 pixels using Ku, Kg, both defined in Chapter 4, K and a Gaussian kernel
approximation with square mask, Ks, of size 2r+1 used by Liu (LIU; ZHANG; YOU,
2007).

Ks(d) = exp

(
−d2

2r2

)
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Figure 5.8: The minimum radius required to detect a bar shaped line rotated by several
degrees.
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and computed for all pixels inside the mask considering the distance, d, from the pixel in
the center of the mask, p0, to every pixel inside it.

Table 5.1: Minimum Kernel Radius

Kernel Minimum Radius

K 17 pixels
Ks 18 pixels
Ku 20 pixels
Kg 22 pixels

Initially, comparing onlyKu andKg, we can see thatKu detects the line with a smaller
radius than Kg, which is in accordance to Chapter 4. Whereas Ks needed a smaller kernel
than Kg and Ku, since it uses a larger area to compute its density distribution (squared vs
circular areas). On the other hand,K has the best results than the others, but similar toKs.
That may suggest that there is no significant difference between K and Ks for detecting
wide lines. However, if we consider the same line rotated by several degrees, we note
that this conclusion is not consistent in every case. Figure 5.2 shows the minimum kernel
radius needed to detect a line under several rotations using all kernels.

From these results, Ks does not outperform Ku when the line is rotated between 30◦

and 60◦. Besides, the kernel radius required to detect the line using Ks oscillated consid-
erably as the line was rotated, making the required radius dependent on the rotating angle.
This happened because the density distribution is affected by the shape of the kernel used
in the calculations. K presented more stable results across the rotating angles. Figure 5.9
shows the rate increase in the radius using Ku, Kg and Ks compared to K for the results
in Figure 5.2.

Observe that the radius increment can be in the range from 5% to 30% , moreover,
an augment in the radius implies in quadratic augment of the amount of pixels analyzed.
That makes K more efficient computationally in this experiment when compared to the
other kernels. In Section 6 we perform more experiments to validate our kernel.
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Figure 5.9: Rate increase required to make Ku, Kg and Ks to detect all line pixels, when
compared to K.
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5.3 Line width estimation

Liu (LIU; ZHANG; YOU, 2007) only determined what was the required radius to
detect the thickest line using monotonically decreasing kernels. Here, our goal is to con-
struct an univocal relationship between density estimate and line width using the theory
behind the WLD and CWLD. We start presenting this relationship in a slightly different
way than Chapter 4 and 5.2 in Figure 5.10 for Ku, Kg and K, inverting the graph orien-
tation, that is, width as a function of density estimate. It shows that none of the kernels
provides a unique relationship between width and density estimate, since it depends on
∆w, i.e., the displacement between the center line and the center of the kernel. Consid-
ering Ku and Kg. this relationship results in larger ranges of w for each Vλ insofar as VC
and VE approach VK/2. To diminish this range we can select a unique curve, Vλfit(w, r),
that maps univocally each Vλ to a single w estimate. As Liu (LIU; ZHANG; YOU, 2007)
proved that for Ku and Kg, VE ≤ m(p) ≤ VC , we have chosen the curve that provides
equal amount of errors for the cases of VC and VE , that is

Vλfit(w, r) =
VC(w, r) + VE(w, r)

2
(5.6)

As K is a monotonically increasing kernel, m(p) values are not always between VC
and VE . Therefore, Equation 5.6 has to be modified to accommodate the maximum and
minimum values of width considering K. Figure 5.10 (c) shows these two additional
functions considering Equation 5.5 and the different values of ∆w. Even for these values,
we can see that the range of w inK is still small, resulting in width estimates that are more
precise for wide lines than the ones obtained with Ku and Kg. This is another advantage
of choosing to approximate VC to VE when Vλ = VK/2. Now we modify Equation 5.6 to

Vλfit(w, r) =
Vλmax(w, r) + Vλmin

(w, r)

2
. (5.7)

where
Vλmax(w, r) = max

∆w
(Vλ(w, r,∆w)) (5.8)
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Figure 5.10: The relationship of w (as the ratio of r, i.e. w/r) and Vλ (as the ratio of VK ,
i.e. Vλ/VK), for Ku, Kg and K. Note that for K, VC and VE are plotted together with the
minimum and maximum Vλ(w,∆w) at each width value.
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Figure 5.11: An ideal horizontal line (a) and its width estimates represented as intensities
using Ku is shown in (b), where the wider the thickness measured, the higher the pixel
intensity. Note in (b) the normalized width estimates decay at the extremities of the line.

(a) (b)

Table 5.2: Ideal Line Width Measurement Analysis (actual width = 16 pixels)

Kernel Minimum Radius Mean Width Estimate MSE

Ks 18 pixels 13.87 pixels 0.0242
Kg 22 pixels 16.18 pixels 0.0105
Ku 20 pixels 16.09 pixels 0.0087
K 17 pixels 15.61 pixels 0.0067

and
Vλmin

(w, r) = min
∆w

(Vλ(w, r,∆w)) (5.9)

To obtain the pixel wise line width from the estimated volume occupied by the line,
Vλ, we construct the function

w(p) = f(Vλ) (5.10)

from data obtained numerically.
For further precision for the width estimates applied to natural images, we decided to

calculate the density estimate through a region growing algorithm. We use as seed the
central pixel color. If the pixel under analysis has a similar color to the central pixel, i.e.,
the color-difference is below a threshold, the region is allowed to grow in that direction.
This way, we reduce undesired density estimate interference. That is, lines too close to
each other, or even unconnected regions with similar colors are no longer considered in
the density estimate. This strategy can be expensive, since it performs the region grow for
every pixel of the line in a region of specific kernel radius. Thus, it is recommended for
natural images with strong interference problems.

Now consider again a bar shaped line with width of 16 pixels as shown in Figure 5.11
(a). Figure 5.11 (b) shows the local width estimates, represented as intensities, computed
at each pixel using Ku for the line in 5.11 (a). Table 5.2 shows the mean estimate and
the mean square error (MSE) associated with the local width estimate when using each
kernel with the smallest radius, computed previously, that can detect all line pixels.

The mean width estimate and MSE using Ks did not show good results when com-
pared to the other kernels. This happened because the density estimate of Ks is computed
considering the entire square region of the kernel, instead of a circular region. Therefore,
the mean width estimate obtained using Ks underestimates the influence of the additional
pixels of the square region of the kernel, taking the mean to a considerably smaller value
than the actual line width. In the same test, Ku outperformed Kg, what was also expected
since for Ku the difference between VC and VE is smaller than Kg (compare Figures 5.10
(a) and (b)), resulting in smaller error in the width estimates for Ku. Finally, the proposed
kernel K presented the best MSE, but not the closer mean estimate.
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Table 5.3: Ideal Line Width Measurement Analysis without Edge Pixels

Kernel Minimum Radius Mean Width Estimate MSE

Ks 18 pixels 14.13 pixels 0.0152
Kg 22 pixels 16.52 pixels 0.0041
Ku 20 pixels 16.42 pixels 0.0023
K 17 pixels 15.88 pixels 0.0004

These results led to further investigation of the width estimate. Observe that there are
two anomalies in Figure 5.11 (b), represented by a smooth intensity decay pattern towards
each of the extremities of the line. Such pattern is independent of the width of the line
and it appears for all the kernels considered so far. This type of anomaly is caused by the
behavior of the local density estimates in these regions. Figure 5.12 presents the behavior
of the density estimates at a distance d from one of the edges of the line for Ku, Kg and
K considering VC and VE . Each kernel uses the minimum radius required to detect the
wide line completely (see Table 5.2). The distance d is in the range, r ≥ d ≥ 0, where r
is the kernel radius and position 0 corresponds to the limit between line and background.
For the density calculation, the kernel center is displaced along the center line, for VC and
along the edge of the line, for VE .

From Figure 5.12 we see that the density estimate decreases despite the fact that the
width of the line remains the same. Insofar as the kernel approaches the end of the line,
the presence of background pixels augments, leading to density estimation errors, what
ultimately results in width estimation errors. Therefore, such width estimates tend to be
less reliable for lines with small length (similar to the diameter of the kernel). Since we
now know that the pixels in these regions do not perform well in the width estimation,
we can perform the same width measurement experiment for the ideal line neglecting the
anomalous pixels at the extremities of the line. Such results are presented in Table 5.3.

Table 5.3 shows that the removal of such pixels with the previously mentioned anomaly
from the width measurement calculation changed the performance for all the kernels when
compared to Table 5.2. Also, now K has better performance than all the other kernels,
followed by Ku, Kg and Ks respectively.

Now we study the same line at several different rotations. Figure 5.13 presents width
estimation results for the bar shaped line when rotated by several degrees of rotation.
Responses for the angles from 90◦ to 180◦ are supposed to be symmetric responses to
the interval we have tested here. As the line is rotated, it has to be smoothed to display
accurate edges. The presence of smoothed edge pixels, due to aliasing problems, adds
additional error to the measurement. The amount of edge pixels is higher near 45◦, what
justifies the errors for all kernels shown in Figure 5.13.

Figures 5.13 shows that Ks performance varies considerably across the rotation an-
gles. This is a consequence of using the entire square mask in the density estimate cal-
culation, that is, the same line presents different density estimates according to the line
orientation inside the kernel. As a result, the width measurement becomes dependent on
the orientation of the line. For this same test, Ku and Kg provided better, or at least as
good as, results than K because to detect the line completely, their radius had to be in-
creased, leading to smaller error between VC and VE . This can be understood by looking
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Figure 5.12: The density estimate at the edge and center at positions next to the transition
between line and background for Ku (a), Kg (b) and K (c). The transition between line
and background occurs at position 1 in the end of the chart.
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Figure 5.13: Width estimates obtained using all the kernels for an ideal bar shaped line of
known width rotated by several degrees.
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at Figures 5.10 (a) and (b). Insofar the kernel radius gets bigger than the line width, the
difference between the available measurements becomes smaller, making the error associ-
ated to the width estimate smaller, at the expense of increased computation cost for these
kernels. At this time K did not provide the most accurate measurements when compared
to the other two kernels. This can be explained by Figure 5.10 (c), where the difference
between maximum and minimum estimates slightly augments, before starting to decrease
again.

Further, Figures 5.3 (a), (c), (e) and (g) present the contour map with the width esti-
mates on the same cross-section of pixels using different kernel radii for Ks, Ku, Kg and
K, respectively. For this test we have selected the cross-section of an ideal horizontal line
with width of 16 pixels at the central position along the line length, to avoid the previ-
ously mentioned density estimate decay at the edge regions. Figures 5.3 (b), (d), (f) and
(h) present the mean, maximum and minimum width values computed using Ks, Ku, Kg

and K at the cross-section.
Figure 5.3 provides a clearer picture of the performance of the width estimate with

all the kernels. It shows how the line detection behaves as the kernel radius gets bigger.
When the width is 0, it means that the algorithm classified the pixel as a background pixel.
We can see that K detects all pixels from the cross-section as line pixels using a smaller
kernel radius, 17 pixels, than all the other kernels. In addition, with smaller radii the width
estimates for Ku and Kg are less consistent or void when compared to K. These two
observations imply that the computational cost of K is considerably smaller than those of
Ku and Kg. Moreover, Ks minima and maxima are bounded, but clearly below the actual
ideal line width. One could argue that a straightforward solution would be to scale the
estimates of Ks to solve this problem. However, as we have already shown, Ks estimates
are not isotropic, that is, such solution would have to consider the line orientation in
the computation. In a nutshell, we can see that Ku, Kg and K can extract local width
information for the ideal line case. To the best knowledge of the author, this is the first
time that width is extracted from the density distribution, computed using a kernel.
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Figure 5.14: Contour map obtained when applying the CWLD algorithm to each pixel of
the same cross-section of a line with width 16 pixels, using Ks (a), Ku (c), Kg (e) and K
(g), but with varying kernel radius. The analysis of mean, maximum and minimum width
values is also provided in Ks (b), Ku (d), Kg (f) and K (h) in the same conditions.
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6 EXPERIMENTS

In this Chapter, we present several results using natural images. We start defining the
ground truth and the statistical error measures used to evaluate the CWLD. We perform
several tests using the CWLD in the images, varying color-differences and kernels, to
compare the effectiveness to detect lines, and also to determine the CWLD performance
to measure width.

6.1 The ground truth

Defining which pixels belong to a given line is difficult in natural images, because
this depends on the edge interpretation and the color perception by the human eye, which
varies for each subject. As we have chosen to use perceptually uniform color spaces
in the CWLD, the ground truth construction starts with the manual selection of the line
pixels in the natural images to be tested. This results in the binary images shown in
Figures 6.1 (d)-(f), obtained from (a)-(c), respectively. We use it to assess the capacity
of the CWLD to detect line pixels. Here, we compute the ratio of pixels that the CWLD
marks accurately as line pixels when compared with the amount of line pixels of the
ground truth. We also compute this ratio for the WLD and compare it to the one obtained
using the CWLD, considering Ku, Kg, Ks and K with varying widths. These results are
shown in Sections 6.3 and 6.4.

We do not count false detections at this time, since the definition of what is not a
curvilinear feature can be somewhat subjective. For instance, the background of natural
images sometimes presents curvilinear features that are not of interest. Besides, the WLD
and CWLD require robust false detection mechanisms. We discuss that in the conclusions
and future work Chapter (see Chapter 7).

Afterwards, we perform the thinning of the binary images (GUO; HALL, 1989) to
obtain the approximation of the center line, that for now on we call only center line.
Figures 6.1 (g)-(i) show the centerline of binary images in (d)-(f), respectively. Then, to
each point in the center line, we determine the nearest pixel in each border of the binary
line and calculate the Euclidean distance between them. That is, using the pixels of the
center line we obtain the normal vectors, preceded by the derivatives, at every pixel of
the center line. Then, we use these vectors together with the binary image to obtain the
boundary pixels. Next, we calculate the Euclidean distance between the two border pixels
of the line (obtained from (d)-(f)). Since we calculate the distance between the center of
the two edge pixels, we add one unit to this distance to adjust the half pixel missing at
each border, something between 1 and

√
2 pixels. We correct the thinning errors manually

and select a line that is used for comparative purposes, marking some reference points, as
shown in (j)-(l). The distance already calculated for the pixels of the selected line is the
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ground truth width used in the width estimation experiments. In this work we perform
the comparison between width estimation produced by the CWLD and WLD and ground
truth width only at the pixels of the center line. This aims to facilitate the visualization
and analysis of results.

6.2 Error Analysis

The metrics used in this work are based on distribution-based similarity measures and
traditional error measures. Given a set of ground truth widths G = {gi}ni=1 with expected
mean value µg and standard deviation σg and, the a set of width estimates W = {wi}ni=1

generated by the WLD/CWLD, with expected mean value µw and σw, the correlation,
ρ(G,W), is defined as

ρ(G,W) =
E [(G− µg)(W − µw)]

σgσw
(6.1)

The absolute mean error, ξabs, is given by:

ξabs =
1

n

n∑
i=1

|wi − gi| (6.2)

Using the same information, we obtain the Mean Square Error between G and W

MSE(G,W) =
1

n

n∑
i=1

(wi − gi)2 (6.3)

then, the corresponding Root Mean Square Deviation

RMSE(G,W) =
√
MSE(G,W) (6.4)

and the Normalized Root Mean Square Deviation

NRMSE(G,W) =
RMSE(G,W)

wmax − wmin
(6.5)

where wmax − wmin define the range of observed values.
Regarding the distribution-based similarity measures, we assume that sets G and W

have Probability Distribution Functions, PG and PW respectively. Then, we can calculate
the Bhattacharrya Coefficient, BC(G, W), through

BC(G,W) =
∑
r∈X

√
PG(r)PW(r) (6.6)

where X is the domain that represents all possible widths. Insofar as BC(G,W) → 1,
the more similar the sets PG and PW are. BC(G,W) enables the computation of the
Hellinger Distance

HD(G,W ) =
√

1−BC(G,W) (6.7)

and also, the Bhattacharrya Distance, defined by

BD(G,W ) = − lnBC(G,W) (6.8)
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Figure 6.1: Our ground truth width is obtained from images (a)-(c). First, a binary image
containing some of the lines is generated by marking the line pixels manually((d)-(f)).
After, the thinning method is applied to (d)-(f) to obtain the center line shown in (g)-(i).
Then, the ground truth width is obtained using the border information from (a)-(c) and
the center line information from (g)-(i). Finally, we correct thinning errors manually and
select a line from the image, marking some reference points for analysis (j)-(l).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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where, the closer the measure is from zero, the closer the two distributions are1.
Furthermore, we provide the median and also the percentile at 75% of the Cumulative

Distribution Function of the error in pixels, ξ, between G and W. The median is the
error value, M , where probability that ξ ≤ M and ξ ≥ M are both ≈ 0.5. Similarly,
the percentile at 75% is the error value, τ , where probability that ξ ≤ τ is ≈ 0.75, and
the probability that ξ ≥ τ is ≈ 0.25. These statistics give an overview of the trend of the
magnitude of the error distribution from 50% to 75% of the distribution.

We also used the Kolgomorov-Smirnov Hypotheses Test, KS. It performs a non-
parametric goodness-of-fit analysis using the differences between the cumulative prob-
ability distributions of the ground truth, CG, and the estimated widths provided by the
CWLD (where the WLD is a subset of the CWLD), CW. Here, we are interested in the
hypothesis H0, i.e., the probability that the two distributions are the same. If H0 is re-
jected, we accept H1. It means that the two distributions are different. H0 is rejected
or accepted using the significance of 5%, 1% or 0.1%. This involves the number of esti-
mates, n (the same for G and W in our case), and the same domain X, defined previously.
The criteria used to accept H0 is

KS = D

√
n

2
≤ Kα (6.9)

with
D = sup

r∈X
(||CW(r)− CG(r)||) (6.10)

whereKα depends on the desired significance and is obtained through the tables provided
by Smirnov in his work (SMIRNOV, 1948). H0 is accepted if KS ≤ Kα, otherwise H0

is rejected and H1 is accepted. This test shows if the ground truth and the CWLD width
estimates can be considered similar or not. It is a very difficult test, because it rejects the
hypothesis if there is a large difference between just one pair of bins. Therefore, if the
results show the acceptance of H0, it means that the distributions are similar and that the
width estimates can be correct.

Finally, another metric used is the hit count of correct estimates

Hits(G,W) =
1

n

n∑
i=1

Ψ(gi, wi). (6.11)

where

Ψ(gi, wi) =

{
1 , if ||gi−wi||

gi
≤ φ

100

0 , otherwise
(6.12)

where φ can be 10%, 20% or 30%. Where it should be noted that thin lines offer a real
challenge to the CWLD, since at 10%, 20% or 30% the error must be smaller than a pixel.

6.3 Line Detection

In this section, we compare the CWLD and WLD using three natural images and their
gray scale versions. In all experiments, we keep the same attributes for the WLD and

1When considering two distributions, care must be taken, since two similar distributions do not neces-
sarily imply measurements in the same order. Still, this is an indication of how similar the two distributions
of measurements are and their correlation.
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Figure 6.2: Comparison of line detection using the WLD and CWLD. Figures (a)-(c)
correspond to the detection using the WLD, while (d)-(f) correspond to the binary line
detection using the CWLD, using images shown in Figure 6.1 (a)-(c).

(a) (b) (c)

(d) (e) (f)

CWLD (kernel size, kernel type, etc.) for both methods, e.g., the kernel used is Ks with
a radius of 30 pixels. The main difference is the threshold used to determine if a pixel
belongs or not to a line. The CWLD uses the standard deviation of the CIE 2000 color-
difference as threshold (see Chapter 5), while the WLD uses the standard deviation of
the gray scale intensities of the image (see Liu et. al (LIU; ZHANG; YOU, 2007)). No
pre or post-processing is applied to the results, such as smoothing filters, morphologic
reconstruction or binarization.

Figures 6.1 (a)-(c) are the tested natural images. Figures 6.2 (a)-(c) are the detection
results using the WLD, while Figures 6.2 (d)-(f) correspond to the binary line detection
using the CWLD. Comparing Figures 6.1 (d)-(f) (ground truth) and the individual CWLD
detection results, we can see that they are remarkably similar.

Specifically, Figure 6.2 (a) shows that the WLD does not detect most of the line when
compared to the result produced by the CWLD in Figure 6.2 (d). Careful analysis of this
natural image reveals the level of noise, making the whole detection extremely difficult. In
the same way, Figure 6.2 (e) shows that the CWLD not only detects more line pixels, but it
also presents visibly less false positives than the WLD shown in Figure 6.2 (b). Figure 6.1
(c) is also challenging, because the colors of the linear features are not exactly the same.
Still, the WLD presents more detection failures than the CWLD (compare Figures 6.2 (c)
with 6.2 (f)). Overall, in this experiment, a qualitative analysis shows that the WLD has
more detection failures than the CWLD.

Figure 6.3 shows the detailed views of the tests presented in Figure 6.2 for further
inspection. The CWLD is visibly more effective to detect line pixels, i.e., color-difference
did improve the effectiveness of line detection.



52

Figure 6.3: (a)-(c) present the detailed comparative views of the results from the WLD
and CWLD, shown in Figure 6.2. For each Figure, the images on the left represent the
WLD, while those on the right, the CWLD.

(a) (b) (c)

6.4 Qualitative Analysis

In this section, we verify if K can detect line pixels with smaller radius than the other
kernels considering the same natural images from the previous experiment. At this time,
we verify how the line pixel detection behaves forKu, Ks, Kg andK, insofar we augment
the kernel radius, using the same color-difference, CIE 2000. Basically, we compare the
number of line pixels of the ground truth with those marked by the CWLD.

Figures 6.4 (a)-(c) correspond respectively to the rate of line pixel detection for Fig-
ures 6.1 (a)-(c). For each image, we show the results for Ku, Ks, Kg and K, increasing
the kernel radius of 1 unit, successively. That is, we perform 37 passes of the algorithm
for each image. Again, we do not apply pre or post-processing to the results, such as
smoothing filters, morphologic reconstruction or binarization.

Observe that K enables the detection of more line pixels with smaller radii than Ku,
Kg andKs. Section 5.2 showed that, for an ideal line, the line pixel detection effectiveness
for each kernel followed the resulting sequence (from best to worst): K, Ks, Ku and Kg.
Looking at Figures 6.4 (a)-(c), the same sequence of kernel effectiveness arises for all
images. K curve rises faster than the monotonic decreasing kernels. Hence, these results
are consistent with the theory exposed in Chapters 4 and 5, i.e., the kernel K needs a
smaller radius to detect a thick line than the kernels Ku, Kg and Ks.

6.5 Width Estimates

In this section we analyze the CWLD regarding its local width estimation in the same
natural images from the previous experiments. We evaluate the performance of the CWLD
using several combinations of color-differences (CIE 2000, CIE 1994, CMC 1984, CIE
1976, RGB Euclidean distance, L∗ and gray scale) and kernels (K, Ks, Ku and Kg). To
enable a better visualization of the results we compare the estimation obtained from the
CWLD with the measurements obtained only at the pixels of the center line. For each
kernel we use the smallest kernel that detects most the line pixels, which can be sampled
from Figure 6.4. Table 6.1 shows the radius in pixels used for each kernel.

Table 6.2 presents the mean, variance, standard deviation and minimum and maximum
width values (in pixels) for Figure 6.1 (a), considering different combinations of color-
differences and kernels. Table 6.3 shows the results, using the same combinations of
kernels and color-differences presented previously, for Figure 6.1 (b), while Table 6.10
presents the results obtained for Figure 6.1 (c). The results shown in these tables permit
to compare the variations of ground truth and the CWLD under different color-differences
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Figure 6.4: The detection ratio of the CWLD for all kernels. Figures (a)-(c) are associated
to the natural images shown in Figure 6.1 (a)-(c), respectively.

(a)

(b)

(c)
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Table 6.1: Radius in pixels used in the width estimation
Kernel Figure 6.1 (a) Figure 6.1 (b) Figure 6.1 (c)

Kg 32 28 29
Ku 30 26 29
Ks 28 24 28
K 25 22 27

and kernels. As the WLD originally does not estimate the widths of lines locally, we adapt
it to use the same strategy employed by the CWLD to estimate widths. These results are
presented as the CWLD using grayscale difference in all tables of this section.

Figures 6.5, 6.6 and 6.7 display the Error Distribution in pixels for Figures 6.1 (a)-(c),
respectively, using different color-differences and kernels. Each color-difference chart
includes the error distributions using Ku, Ks,K and Kg.

Note that the information so far is not sufficient to analyze the results, in the next
section we present further detailed statistical tests.

6.5.1 Detailed Statistics

We provide two summary tables to make the visualization of statistical results clearer.
Table 6.11 shows what color-difference achieved the best scores for each statistic, consid-
ering Figures 6.1 (a)-(c) individually. Table 6.12 shows the kernels with the best results
for each statistic, considering Figures 6.1 (a)-(c) separately. A more detailed view of Ta-
ble 6.11 and 6.12 is shown in Tables 6.4 and 6.5, for Figure 6.1 (a); Tables 6.6 and 6.7,
for Figure 6.1 (b); and Tables 6.8 and 6.9, for Figure 6.1 (c). The detailed Tables are also
presented and were partitioned in two pages due to the large number of data. In each table
the bold font is used to point out the best results to facilitate the analysis.
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Table 6.2: Ground Truth and Estimation data using different kernels and color-differences
for Figure 6.1 (a)

Ground CIELAB L* CMC
Truth Ku Ks k Kg Ku Ks k Kg

Mean 15.58 9.95 8.53 10.36 10.12 16.01 14.64 15.18 16.36
Variance 13.71 101.45 83.34 89.10 106.79 32.58 30.35 25.91 34.55
Std. Dev. 3.70 10.07 9.13 9.44 10.33 5.71 5.51 5.09 5.88

Max 25.50 27.07 24.32 24.57 28.00 26.62 23.91 24.45 27.26
Min 7.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ground CIELAB 1976 CIELAB 1994
Truth Ku Ks k Kg Ku Ks k Kg

Mean 15.58 16.25 14.87 15.24 16.56 16.66 15.13 15.56 17.01
Variance 13.71 26.07 24.54 21.49 27.02 25.51 25.27 21.10 27.55
Std. Dev. 3.70 5.11 4.95 4.64 5.20 5.05 5.03 4.59 5.25

Max 25.50 25.24 22.96 23.30 27.92 27.08 24.53 23.49 27.10
Min 7.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ground CIELAB 2000 Grayscale
Truth Ku Ks k Kg Ku Ks k Kg

Mean 15.58 15.34 14.12 14.51 15.66 11.92 10.04 11.55 11.98
Variance 13.71 24.38 21.86 20.54 26.01 98.47 82.92 82.62 104.68
Std. Dev. 3.70 4.94 4.68 4.53 5.10 9.92 9.11 9.09 10.23

Max 25.50 21.62 21.50 24.59 22.48 26.96 24.44 24.63 27.96
Min 7.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ground RGB Distance
Truth Ku Ks k Kg

Mean 15.58 16.39 14.49 15.80 16.73
Variance 13.71 55.26 53.16 41.77 59.47
Std. Dev. 3.70 7.43 7.29 6.46 7.71

Max 25.50 27.04 24.50 24.58 28.02
Min 7.07 0.00 0.00 0.00 0.00
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Table 6.3: Ground Truth and Estimation data using different kernels and color-differences
for Figure 6.1 (b)

Ground CIELAB L* CMC
Truth Ku Ks k Kg Ku Ks k Kg

Mean 7.70 6.78 6.19 6.60 6.85 7.48 6.86 7.22 7.55
Variance 35.21 17.57 15.11 16.39 18.00 21.95 19.36 19.39 22.65
Std. Dev. 5.93 4.19 3.89 4.05 4.24 4.68 4.40 4.40 4.76

Max 20.88 19.13 17.91 19.64 19.68 20.40 19.18 19.08 20.60
Min 1.00 0.00 0.00 0.00 0.00 0.25 0.17 0.38 0.23

Ground CIELAB 1976 CIELAB 1994
Truth Ku Ks k Kg Ku Ks k Kg

Mean 7.70 8.14 7.48 7.84 8.23 6.75 6.20 6.49 6.81
Variance 35.21 25.91 23.13 22.05 26.66 18.79 16.23 16.98 19.22
Std. Dev. 5.93 5.09 4.81 4.70 5.16 4.33 4.03 4.12 4.38

Max 20.88 21.69 19.84 19.27 21.04 19.72 17.96 17.90 20.13
Min 1.00 1.64 1.46 1.44 1.63 0.05 0.18 0.00 0.01

Ground CIELAB 2000 Grayscale
Truth Ku Ks k Kg Ku Ks k Kg

Mean 7.70 7.58 6.94 7.29 7.65 6.14 5.60 5.93 6.20
Variance 35.21 21.03 18.45 18.45 21.97 15.08 12.70 14.10 15.46
Std. Dev. 5.93 4.59 4.30 4.29 4.69 3.88 3.56 3.76 3.93

Max 20.88 20.39 18.38 18.42 20.85 18.75 17.04 17.42 19.02
Min 1.00 0.25 0.17 0.38 0.23 1.28 1.05 0.93 1.29

Ground RGB Distance
Truth Ku Ks k Kg

Mean 7,70 5.75 5.28 5.55 5.83
Variance 35.21 15.94 13.40 15.16 16.20
Std. Dev. 5.93 3.99 3.66 3.89 4.02

Max 20.88 18.24 17.42 17.32 19.04
Min 1.00 0.01 0.03 0.00 0.02



57

Table 6.4: Statistics for image 1
CIELAB L* CMC CIELAB 1976 CIELAB 1994

Ku Ks k Kg Ku Ks k Kg Ku Ks k Kg Ku Ks k Kg

ρ 0.13 0.11 0.23 0.13 0.71 0.69 0.73 0.72 0.79 0.75 0.79 0.79 0.78 0.72 0.76 0.77
MSE 136.74 139.37 114.12 140.42 16.28 16.95 12.37 17.67 10.36 11.27 8.35 11.35 11.34 12.34 8.90 13.35

RMSE 11.69 11.81 10.68 11.85 4.03 4.12 3.52 4.20 3.22 3.36 2.89 3.37 3.37 3.51 2.98 3.65
NRMSE 0.43 0.49 0.43 0.42 0.15 0.17 0.14 0.15 0.13 0.15 0.12 0.12 0.12 0.14 0.13 0.13

ξabs 9.40 9.25 8.02 9.67 2.99 2.82 2.51 3.17 2.47 2.39 2.12 2.64 2.57 2.39 2.14 2.83
M 7.03 6.52 4.49 7.86 2.40 2.12 1.85 2.68 2.07 1.86 1.56 2.31 2.15 1.82 1.57 2.40
τ 15.62 15.73 15.23 15.62 3.91 3.44 3.34 4.20 3.28 3.07 2.70 3.53 3.42 2.95 2.76 3.81

KS(5%, 1.36) 8.73 10.13 7.97 8.73 5.17 3.61 3.61 5.48 5.09 2.79 3.07 5.48 5.42 3.31 3.75 6.11
KS(1%, 1.63) 8.73 10.13 7.97 8.73 5.17 3.61 3.61 5.48 5.09 2.79 3.07 5.48 5.42 3.31 3.75 6.11
KS(.1%, 1.95) 8.73 10.13 7.97 8.73 5.17 3.61 3.61 5.48 5.09 2.79 3.07 5.48 5.42 3.31 3.75 6.11

BC 0.51 0.52 0.60 0.50 0.87 0.84 0.90 0.85 0.89 0.88 0.91 0.88 0.89 0.89 0.92 0.87
BD 0.67 0.66 0.52 0.69 0.14 0.17 0.10 0.16 0.12 0.12 0.10 0.13 0.12 0.12 0.09 0.14
HD 0.70 0.70 0.63 0.71 0.36 0.40 0.31 0.39 0.33 0.34 0.30 0.34 0.33 0.33 0.29 0.36

Hits(< 10%) 11.5% 13.3% 22.5% 9.6% 31.5% 36.7% 43.5% 29.5% 36.6% 43.9% 49.8% 33.1% 37.6% 44.1% 49.6% 33.6%
Hits(< 20%) 24.4% 31.3% 39.3% 22.6% 61.8% 64.5% 70.0% 58.0% 69.7% 67.3% 75.6% 65.1% 65.8% 70.6% 74.5% 63.4%
Hits(< 30%) 39.0% 43.6% 49.0% 35.4% 81.6% 82.3% 82.5% 78.4% 84.4% 83.7% 85.8% 83.5% 84.7% 84.1% 85.9% 82.0%
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Table 6.5: Statistics for image 1 - Continuation of Table 6.4
CIELAB 2000 Grayscale RGB Distance

Ku Ks k Kg Ku Ks k Kg Ku Ks k Kg

ρ 0.79 0.77 0.78 0.80 0.19 0.16 0.19 0.17 0.54 0.47 0.54 0.53
MSE 9.13 10.90 9.07 9.59 111.66 116.32 99.78 118.23 40.04 42.53 29.65 44.05

RMSE 3.02 3.30 3.01 3.10 10.57 10.78 9.99 10.87 6.33 6.52 5.44 6.64
NRMSE 0.14 0.15 0.12 0.14 0.39 0.44 0.41 0.39 0.23 0.27 0.22 0.24

ξabs 2.30 2.50 2.26 2.44 8.17 8.07 7.17 8.62 4.58 4.32 3.64 4.97
M 1.87 2.00 1.76 2.06 5.39 4.03 3.59 6.22 3.23 2.42 2.24 3.60
τ 3.11 3.45 3.02 3.27 15.00 15.23 14.42 15.23 5.68 5.06 4.63 6.23

KS(5%, 1.36) 3.42 3.12 2.30 4.19 6.93 8.60 6.65 7.12 7.42 5.15 6.49 7.91
KS(1%, 1.63) 3.42 3.12 2.30 4.19 6.93 8.60 6.65 7.12 7.42 5.15 6.49 7.91
KS(.1%, 1.95) 3.42 3.12 2.30 4.19 6.93 8.60 6.65 7.12 7.42 5.15 6.49 7.91

BC 0.89 0.88 0.89 0.89 0.58 0.58 0.66 0.55 0.74 0.77 0.81 0.71
BD 0.11 0.13 0.11 0.12 0.54 0.54 0.42 0.60 0.30 0.26 0.21 0.34
HD 0.33 0.35 0.33 0.33 0.65 0.64 0.58 0.67 0.51 0.48 0.43 0.54

Hits(< 10%) 41.1% 40.8% 44.7% 35.1% 15.3% 19.2% 28.2% 11.7% 24.9% 34.0% 39.0% 19.3%
Hits(< 20%) 70.3% 64.8% 72.3% 68.7% 33.4% 39.3% 45.0% 27.6% 48.3% 55.8% 60.3% 44.7%
Hits(< 30%) 85.6% 82.2% 84.4% 85.2% 46.3% 50.5% 52.5% 40.9% 66.9% 69.4% 72.0% 63.1%
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Table 6.6: Statistics for image 2
CIELAB L* CMC CIELAB 1976 CIELAB 1994

Ku Ks k Kg Ku Ks k Kg Ku Ks k Kg Ku Ks k Kg

ρ 0.81 0.82 0.76 0.82 0.84 0.85 0.80 0.85 0.88 0.89 0.84 0.89 0.82 0.84 0.78 0.83
MSE 13.38 14.59 16.46 12.73 10.41 10.60 13.17 9.79 8.13 7.39 10.47 7.72 12.48 13.68 15.57 11.95

RMSE 3.66 3.82 4.06 3.57 3.23 3.26 3.63 3.13 2.85 2.72 3.24 2.78 3.53 3.70 3.95 3.46
NRMSE 0.19 0.21 0.21 0.18 0.16 0.17 0.19 0.15 0.14 0.15 0.18 0.14 0.18 0.21 0.22 0.17

ξabs 2.62 2.69 2.94 2.54 2.25 2.24 2.57 2.20 2.05 1.93 2.30 2.01 2.52 2.56 2.88 2.44
M 1.72 1.74 1.88 1.59 1.46 1.40 1.67 1.49 1.35 1.36 1.45 1.36 1.66 1.75 1.99 1.61
τ 3.56 3.51 4.22 3.48 2.95 2.88 3.51 2.80 2.69 2.57 3.09 2.73 3.33 3.21 3.83 3.30

KS(5%, 1.36) 2.62 2.78 2.66 2.56 1.57 2.14 2.30 1.70 2.27 1.57 2.02 2.40 2.40 2.69 2.72 2.37
KS(1%, 1.63) 2.62 2.78 2.66 2.56 1.57 2.14 2.30 1.70 2.27 1.57 2.02 2.40 2.40 2.69 2.72 2.37
KS(.1%, 1.95) 2.62 2.78 2.66 2.56 1.57 2.14 2.30 1.70 2.27 1.57 2.02 2.40 2.40 2.69 2.72 2.37

BC 0.90 0.90 0.88 0.90 0.93 0.93 0.89 0.94 0.92 0.94 0.89 0.92 0.93 0.90 0.88 0.93
BD 0.10 0.11 0.13 0.10 0.07 0.08 0.11 0.06 0.09 0.06 0.11 0.09 0.07 0.10 0.13 0.07
HD 0.31 0.32 0.34 0.31 0.26 0.27 0.33 0.25 0.29 0.24 0.32 0.29 0.26 0.31 0.35 0.27

Hits(< 10%) 16.2% 15.4% 13.7% 15.8% 20.1% 20.3% 19.7% 20.5% 24.0% 24.2% 25.0% 25.0% 15.4% 16.8% 12.7% 16.0%
Hits(< 20%) 32.8% 30.1% 27.9% 33.6% 42.8% 36.9% 40.0% 40.8% 46.9% 44.3% 41.0% 47.1% 33.2% 33.6% 30.9% 36.1%
Hits(< 30%) 48.8% 45.1% 47.1% 50.6% 57.2% 57.8% 52.3% 57.8% 60.0% 61.9% 56.6% 58.4% 51.6% 49.8% 48.0% 52.0%
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Table 6.7: Statistics for image 2 - Continuation of Table 6.6
CIELAB 2000 Grayscale RGB Distance

Ku Ks k Kg Ku Ks k Kg Ku Ks k Kg

ρ 0.85 0.86 0.81 0.86 0.84 0.85 0.79 0.84 0.79 0.80 0.73 0.79
MSE 10.00 10.14 12.73 9.38 14.06 16.26 17.04 13.48 17.71 19.75 21.08 16.98

RMSE 3.16 3.19 3.57 3.06 3.75 4.03 4.13 3.67 4.21 4.44 4.59 4.12
NRMSE 0.16 0.17 0.20 0.15 0.21 0.25 0.25 0.21 0.23 0.26 0.27 0.22

ξabs 2.21 2.18 2.52 2.15 2.69 2.83 3.03 2.62 2.97 3.09 3.35 2.88
M 1.41 1.40 1.61 1.43 1.75 1.96 2.12 1.77 1.93 2.07 2.44 1.87
τ 2.82 2.73 3.46 2.78 3.58 3.61 4.09 3.43 3.99 4.06 4.49 3.90

KS(5%, 1.36) 1.82 2.30 2.37 1.89 2.85 2.98 2.91 2.88 2.88 2.98 2.94 2.85
KS(1%, 1.67) 1.82 2.30 2.37 1.89 2.85 2.98 2.91 2.88 2.88 2.98 2.94 2.85
KS(.1%, 1.95) 1.82 2.30 2.37 1.89 2.85 2.98 2.91 2.88 2.88 2.98 2.94 2.85

BC 0.92 0.91 0.88 0.93 0.90 0.88 0.87 0.90 0.90 0.88 0.87 0.91
BD 0.08 0.09 0.13 0.07 0.10 0.12 0.14 0.10 0.11 0.13 0.14 0.09
HD 0.28 0.30 0.35 0.26 0.31 0.34 0.36 0.31 0.32 0.35 0.36 0.29

Hits(< 10%) 21.1% 22.3% 19.9% 22.1% 14.8% 12.3% 11.3% 16.0% 12.3% 12.3% 9.4% 14.5%
Hits(< 20%) 45.1% 38.3% 40.2% 43.9% 26.8% 29.1% 25.0% 27.0% 23.8% 25.6% 21.3% 26.6%
Hits(< 30%) 57.4% 61.7% 54.5% 57.8% 48.4% 44.3% 40.4% 49.4% 43.2% 41.6% 35.2% 45.5%
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Table 6.8: Statistics for image 3
CIELAB L* CMC CIELAB 1976 CIELAB 1994

Ku Ks k Kg Ku Ks k Kg Ku Ks k Kg Ku Ks k Kg

ρ 0.35 0.35 0.30 0.01 0.83 0.83 0.76 0.64 0.81 0.82 0.75 0.82 0.83 0.83 0.75 0.67
MSE 58.37 46.50 68.64 67.39 10.65 8.21 12.94 18.57 9.11 8.76 12.12 9.06 10.05 8.22 12.96 17.10

RMSE 7.64 6.82 8.29 8.21 3.26 2.87 3.60 4.31 3.02 2.96 3.48 3.01 3.17 2.87 3.60 4.13
NRMSE 0.32 0.28 0.35 0.34 0.14 0.12 0.15 0.18 0.13 0.12 0.15 0.13 0.13 0.12 0.15 0.17

ξabs 5.88 5.02 6.36 6.14 2.04 1.66 2.19 2.34 1.67 1.89 1.98 1.63 1.91 1.65 2.10 2.20
M 4.57 3.81 4.92 4.61 1.19 0.82 1.10 1.21 0.82 1.24 0.94 0.79 0.99 0.77 1.06 1.04
τ 9.12 7.83 10.21 8.82 2.27 1.84 2.33 2.36 1.82 2.23 2.19 1.78 2.04 1.80 2.21 2.14

KS(5%, 1.36) 13.09 11.03 13.63 11.97 5.99 1.97 5.83 5.27 0.88 3.99 0.88 0.83 5.80 1.79 4.60 5.27
KS(1%, 1.63) 13.09 11.03 13.63 11.97 5.99 1.97 5.83 5.27 0.88 3.99 0.88 0.83 5.80 1.79 4.60 5.27
KS(.1%, 1.95) 13.09 11.03 13.63 11.97 5.99 1.97 5.83 5.27 0.88 3.99 0.88 0.83 5.80 1.79 4.60 5.27

BC 0.72 0.79 0.72 0.71 0.96 0.98 0.95 0.95 0.98 0.96 0.98 0.98 0.95 0.97 0.96 0.94
BD 0.33 0.23 0.33 0.34 0.05 0.02 0.05 0.05 0.02 0.04 0.02 0.02 0.05 0.03 0.04 0.06
HD 0.53 0.46 0.53 0.54 0.21 0.15 0.22 0.23 0.13 0.21 0.16 0.14 0.22 0.17 0.20 0.24

Hits(< 10%) 10.4% 20.4% 13.2% 9.4% 29.3% 43.8% 30.0% 27.5% 40.2% 23.7% 37.4% 41.0% 32.2% 45.1% 35.3% 31.2%
Hits(< 20%) 21.3% 31.4% 23.4% 20.0% 54.9% 68.0% 55.8% 52.3% 64.9% 53.4% 60.5% 66.4% 60.5% 68.6% 56.9% 58.5%
Hits(< 30%) 30.5% 38.5% 31.5% 28.4% 70.1% 77.1% 69.5% 67.8% 77.6% 72.5% 74.2% 79.8% 71.6% 78.3% 71.6% 70.6%
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Table 6.9: Statistics for image 3 - Continuation of Table 6.8
CIELAB 2000 Grayscale RGB Distance

Ku Ks k Kg Ku Ks k Kg Ku Ks k Kg

ρ 0.85 0.85 0.77 0.83 0.36 0.54 0.30 0.06 0.77 0.75 0.75 0.52
MSE 7.76 6.95 11.02 8.86 56.72 34.31 68.18 63.77 13.37 12.54 13.53 24.05

RMSE 2.79 2.64 3.32 2.98 7.53 5.86 8.26 7.99 3.66 3.54 3.68 4.90
NRMSE 0.12 0.11 0.14 0.12 0.31 0.24 0.34 0.33 0.15 0.15 0.15 0.20

ξabs 1.61 1.67 1.91 1.62 5.74 4.12 6.27 5.93 2.09 1.86 2.14 2.50
M 0.75 0.98 0.78 0.72 4.29 2.28 4.71 4.26 1.02 0.78 1.05 1.04
τ 1.72 1.93 2.03 1.72 8.71 6.98 10.01 8.53 2.15 1.78 2.24 2.24

KS(5%, 1.36) 2.53 1.62 1.91 2.64 12.87 7.19 13.27 11.84 4.69 1.39 4.04 4.19
KS(1%, 1.63) 2.53 1.62 1.91 2.64 12.87 7.19 13.27 11.84 4.69 1.39 4.04 4.19
KS(.1%, 1.95) 2.53 1.62 1.91 2.64 12.87 7.19 13.27 11.84 4.69 1.39 4.04 4.19

BC 0.98 0.97 0.98 0.97 0.72 0.88 0.72 0.72 0.94 0.98 0.96 0.94
BD 0.02 0.03 0.02 0.03 0.33 0.13 0.32 0.32 0.06 0.02 0.04 0.06
HD 0.15 0.18 0.15 0.16 0.53 0.35 0.52 0.53 0.24 0.15 0.20 0.24

Hits(< 10%) 46.1% 32.0% 42.9% 45.2% 10.6% 19.1% 13.3% 10.6% 32.6% 43.4% 34.8% 30.5%
Hits(< 20%) 69.2% 64.8% 64.1% 70.1% 22.5% 39.7% 24.3% 20.9% 58.0% 66.9% 56.3% 58.3%
Hits(< 30%) 77.5% 79.5% 76.1% 78.5% 32.2% 53.7% 32.2% 30.3% 70.5% 77.8% 70.5% 68.7%
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Figures 6.8 and 6.9 display the absolute errors in pixels for Figures 6.1 (a)-(c) using
the two best color-differences, namely CIE 2000 and CIE 1976, respectively, as we saw
in Table 6.11. These figures are useful to isolate the line regions with more errors for each
test image.

6.6 Analysis of the Results

Tables 6.2, 6.3 and 6.10 show that the mean values for color-differences, namely CIE
1976, CMC 1984, CIE1994, CIE 2000 and RGB, are similar to those of the ground truth,
specially for perceptual color-differences such as CIE and CMC. The mean results for
the RGB Euclidean distance oscillate for each natural image, but with slightly better val-
ues than those obtained using L∗ and the gray scale differences in Figures 6.1 (a) and
(c). L∗ and the gray scale differences have mean values similar to the ground-truth only
in Figure 6.1 (b). The results for the variances, and corresponding standard deviations,
show slightly increased differences between ground-truth and the CWLD estimation. The
best variance results are obtained with perceptual color-differences, followed by RGB,
L∗ and the gray scale differences. That happens for several reasons including noise,
color-difference errors, density estimation errors, etc. Besides, the CWLD determines
the local width considering a relatively large surrounding region, so it can smooth lines,
whose width varies abruptly inside the kernel region. Despite that, the statistical analysis
highlights the combination of color-differences and kernels provides the best estimates
regarding the local line width.

In relation to the correlation statistic, the closer the result is to 1, the stronger is the
correlation between the ground truth and the estimation. For gray scale and L∗ intensity
differences, the correlation results are weak for Figures 6.1 (a) and (c) independently
of the kernel used, whereas Figure 6.1 (b) shows strong correlation (>0.7) using these
differences (see Tables 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9), also independently of the
kernel used. The correlation values are slightly better using the RGB Euclidean distance
(especially for Figure 6.1 (c)). A kernel comparison is not needed here, since all of them
scored well (>0.7) using perceptual color-differences, still we point out thatKg (ρ ≈ 0.80,
CIE 2000), Ks and Kg (both ρ ≈ 0.89, CIE 1976) and, Ku and Ks (both ρ ≈ 0.85, CIE
2000) showed the best results for Figures 6.1 (a), (b) and (c) in Table 6.12, respectively.
Besides, if we look at the correlation values for perceptual color-differences, such as the
CMC(l, c) and CIE color-differences, they show a strong correlation between the ground
truth and the CWLD estimation for all figures. This is an indication that the perceptual
color-differences may be more effective than gray-scale differences to obtain reasonable
density estimates, and, consequently, good width estimations. Here, CIE 1976 and CIE
2000 outperformed the other color-differences (see also Table 6.11).

In relation to the MSE and RMSE, the smaller their value, the better the results
are. Again, the worst results are for the gray scale and L∗ differences, followed by
the RGB Euclidean distance. The best results once more occur when perceptual color
differences are used, with CIE 1976 and CIE 2000. The best individual kernel perfor-
mances for Figure 6.1 (a) were K (RMSE ≈ 2.89, CIE 1976), Ku(RMSE ≈ 3.02,
CIE 2000), Kg(RMSE ≈ 3.1, CIE 2000) and Ks(RMSE ≈ 3.3, CIE 2000). Con-
versely, Figure 6.1 (b) results were obtained using CIE 1976 for all kernels in the fol-
lowing sequence: Ks(RMSE ≈ 2.72), Kg(RMSE ≈ 2.78), Ku(RMSE ≈ 2.85) and
K (RMSE ≈ 3.24) pixels. Finally, the results for Figure 6.1 (c) were obtained using
CIE 2000 with Ks(RMSE ≈ 2.64), Ku(RMSE ≈ 2.79), Kg(RMSE ≈ 2.98), and K
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Table 6.10: Ground Truth and Estimation data using different kernels and color-
differences for Figure 6.1 (c)

Ground CIELAB L* CMC
Truth Ku Ks k Kg Ku Ks k Kg

Mean 7.86 12.33 11.10 13.06 11.13 9.25 8.25 9.07 8.82
Variance 25.07 33.64 30.02 34.51 31.99 25.87 22.70 23.43 24.38
Std. Dev. 5.01 5.80 5.48 5.87 5.66 5.09 4.76 4.84 4.94

Max 26.00 26.21 24.47 26.33 25.35 26.08 23.71 26.13 25.28
Min 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ground CIELAB 1976 CIELAB 1994
Truth Ku Ks k Kg Ku Ks k Kg

Mean 7.86 7.99 7.13 7.82 7.99 9.09 8.07 8.90 8.72
Variance 25.07 24.01 20.87 22.22 25.15 25.41 22.29 23.13 24.15
Std. Dev. 5.01 4.90 4.57 4.71 5.02 5.04 4.72 4.81 4.91

Max 26.00 25.84 21.95 26.45 25.27 25.45 21.61 25.77 25.41
Min 2.00 0.77 0.61 0.00 0.00 0.00 0.00 0.47 0.00

Ground CIELAB 2000 Grayscale
Truth Ku Ks k Kg Ku Ks k Kg

Mean 7.86 8.43 7.53 8.30 8.42 12.20 10.08 12.96 11.09
Variance 25.07 23.64 20.82 21.66 24.84 33.56 37.46 34.92 31.84
Std. Dev. 5.01 4.86 4.56 4.65 4.98 5.79 6.12 5.91 5.64

Max 26.00 24.17 20.60 25.44 25.36 26.20 21.74 26.50 25.35
Min 2.00 0.27 0.21 0.49 0.00 0.00 0.30 0.00 0.00

Ground RGB Distance
Truth Ku Ks k Kg

Mean 7.86 9.07 8.06 8.87 8.50
Variance 25.07 27.63 24.30 25.16 24.57
Std. Dev. 5.01 5.26 4.93 5.02 4.96

Max 26.00 26.14 23.74 26.49 25.15
Min 2.00 0.00 0.00 0.00 0.00
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Table 6.11: Best Color-Difference Results for Figures 6.1 (a), (b) and (c)
Statistic Figure 6.1 (a) Figure 6.1 (b) Figure 6.1 (c)

ρ CIE2000(.79) CIE1976(0.89) CIE2000(0.77)
MSE CIE1976(8.35) CIE1976(7.39) CIE2000(6.95)

RMSE CIE1976(2.89) CIE1976(2.72) CIE2000(2.64)
NRMSE CIE1976,1994&2000(.12) CIE1976(0.14) CIE2000(0.11)

ξabs CIE1976(2.12) CIE1976(1.93) CIE2000(1.61)
M CIE1976(1.56) CIE1976(1.35) CIE2000(0.72)
τ CIE1976(2.70) CIE1976(2.56) CIE2000(1.72)

KS(5%) - - CIE1976(0.83) & RGB(1.39)
KS(1%) - CMC & CIE1976(1.57) CIE1976,RGB & 2000(1.62)
KS(.1%) - CMC & CIE1976(1.57) RGB,CIE1976,2000 & 1994(1.79)

BC CIE1994(0.92) CMC & CIE1976(0.94) CMC, CIE1976 & 2000(0.98)
BD CIE1994(0.09) CMC & CIE1976(0.06) CMC, CIE1976 & 2000(0.02)
HD CIE1994(0.29) CIE1976(0.24) CIE1976(0.13)

Hits(10%) CIE1976(49.8%) CIE1976(25%) CIE2000(46.1%)
Hits(20%) CIE1976(75.6%) CIE1976(47.1%) CIE2000(70.1%)
Hits(30%) CIE1994(85.9%) CIE1976(61.9%) CIE1976(79.8%)

Table 6.12: Best Kernel Results for Figures 6.1 (a), (b) and (c)
Statistic Figure 6.1 (a) Figure 6.1 (b) Figure 6.1 (c)

ρ Kg (0.8) Ks & Kg (0.89) Ku & Ks (0.85)
MSE K (8.35) Ks (7.39) Ks (6.95)

RMSE K (2.89) Ks (2.72) Ks (2.64)
NRMSE K, Kg & Ku (0.12) Ku & Kg (0.14) Ks (0.11)

ξabs K (2.12) Ks (1.93) Ku (1.61)
M K (1.56) Ku (1.35) Kg (0.72)
τ K (2.70) Kg (2.57) Ku & Kg (1.72)

KS(5%) - - K, Kg & Ku (0.88)
KS(1%) - Ks & Ku (1.57) K, Kg & Ku 0.88), Ks (1.39)
KS(.1%) - Ku, Ks (1.57) & Kg (1.70) K, Kg & Ku 0.88), Ks (1.39)

BC K (0.92) Kg & Ks (0.94) K, Ks, Kg & Ku (.98)
BD K (0.09) Kg & Ks (0.11) K, Ks, Kg & Ku (.02)
HD K (0.29) Ks (0.24) Ku (0.13)

Hits(< 10%) K (49.8%) Kg & K (25%) Ku (46.1%)
Hits(< 20%) K (75.6%) Kg (47.1%) Kg (70.1%)
Hits(< 30%) K (85.9%) Ks (61.9%) Kg (79.8%)
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(RMSE ≈ 3.32) pixels. These results can be explained by the characteristics of each
image. Figure 6.1 (a) is the one with straighter shape, favoring K. Figure 6.1 (b) is
difficult because the curvilinear feature does not have an uniform color across the line
regions, spreading the density distributions among the colors. Figure 6.1 (c) has more
curves, supporting monotonic decreasing kernels. This happens because at regions with
high curvature the kernel considers much more pixels than it should, since it takes into
consideration not only a small part of the curve, but the curve as a whole. That is, the
curve fills almost completely the entire kernel region. As the K is monotonically increas-
ing, the contribution of pixels next to the limits/borders of K is high. This results in an
undesired increase of the density estimate and, consequently, in the obtained width esti-
mate. This does not happen with Ku, Kg and Ks, since those pixels have small weight to
contribute to the density estimate.

TheNRMSE indicates the amount of residual variance, which shows how the observed
measurements will scatter around the RMSE in the case of a normal distribution. How-
ever, the line width distribution does not necessarily follow a normal distribution. We
again observe less scattering for perceptual color-differences with the best results for CIE
1976 and CIE 2000. Figure 6.1(a) presented the smallest values of NRMSE ≈ 12% with
Kg (CIE 1976), K (CIE 1976 and 2000) and Ku (CIE 1994), followed by Ks using CIE
1994 with NRMSE = 14.3%. Figure 6.1(b) was particularly hard, because of the large
variation of the line color. However, all the individual kernels obtained the best results
using CIE 1976, whereKu,Kg,Ks andK hadNRMSE equal to 14.2%, 14.3%, 14.8% and
18.2%, respectively. Figure 6.1 (c) reveals the following best results obtained using CIE
2000, where Ks, Ku, Kg and K with 11.0%, ≈ 12%, ≈ 12% and 14%, respectively. By
and large, we see that the kernel performance is influenced by the features of the images
analyzed. For instance, the results for Figure 6.1 (a) are affected to the noise in the image.
The results for Figure 6.1 (b) were affected by the river banks with different colors, as we
have already mentioned. Figure 6.1 (c) has shown the best results using CIE 2000, since
the river is blue and CIE 2000 has an underlying ability to deal with bluish colors (LUO,
2002), lacking in previous perceptual color differences. However, it is impressive how the
CIE 1976 formula, proposed 24 years before CIE 2000, presents such consistent results
even today.

Thereafter, we analyze the absolute mean error, ξabs, measured in pixels. Notably, ξabs
reinforces the previous results, with best scores for CIE 1976 and CIE 2000, followed
by the other perceptual color-differences analyzed in this work. RGB and intensity dif-
ferences showed the worst performances. At this time, for Figure 6.1 (a), we have K
with ξabs = 1.56 and Ks with ξabs = 1.82, both using CIE 1976, while Ku and Kg had
ξabs = 1.87 and ξabs = 2.06, respectively, both using CIE 2000. Then, for Figure 6.1 (b),
Ks, Kg, Ku and K had ξabs = 1.93, ξabs = 2.01, ξabs = 2.05 and ξabs = 2.3, respec-
tively, all using CIE 1976. Lastly, Figure 6.1 (c) presents the best results, with Ku and Kg

having ξabs = 1.61 and ξabs = 1.62, respectively, both using CIE 2000. While, Ks had
ξabs = 1.65 using CIE 1994 and K had ξabs = 1.91 using CIE 2000.

Using the median and percentile at 75%, both measured in pixels, CIE color-differences
show the best results. At this time, we can see how the error is distributed across the sam-
ples, since the median and the percentile at 75% display the error values ordered from
the smallest to the largest error at specific points of the distribution. This means that, if
the median is small, half of the errors is less or equal to the median. In the same way, if
the percentile error at 75% is small, 75% of the errors is less or equal to the percentile
error. The combined analysis is also important, because we can see if the error does not
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grow drastically from the median to the given percentile. The results for Figure 6.1 (a)
showed that the best medians for K(using CIE 1976), Ks (using CIE 1994), Ku (using
CIE 2000) and Kg (using CIE 2000) were 1.56, 1.82, 1.87 and 2.06 pixels, respectively,
while K, Ks, Ku and Kg had the Percentile (75%) equals to 2.70, 2.95, 3.11 and 3.27
pixels, respectively, considering the color-differences used previously for medians. For
Figure 6.1 (b), the best median and percentile results were obtained both using CIE 1976.
The medians were equal to 1.35, 1.36, 1.36 and 1.45 for Ku, Ks, Kg and K, respectively,
and the Percentile were equal to 2.69, 2.57, 2.73 and 3.09 pixels for the same sequence
kernel. For Figure 6.1 (c) the median values (using CIE 2000) were Kg, Ku, Ks and K
with 0.72, 0.75, 0.77 and 0.78 pixels, respectively, while the Percentile results were Ku

and Kg (both using CIE 2000) with 1.72 pixels, followed by Ks (using RGB Euclidean
distance) with 1.78 pixels, and K (using CIE 2000) with 2.03 pixels. These results are
important, because they show that for an image with wide lines such as Figure 6.1 (a),
the error for 75% of the samples can be smaller than 3 pixels. Also, Figure 6.1 (b), with
non-uniform color lines, showed a similar values, however the mean width of the line is
half of the one from Figure 6.1 (a). Hence these results are not as good as the previous
one, with 75% of the samples with errors that are less or equal to 2.57 in the best case.
Figure 6.1 (c) presented the best results, with medians with errors smaller than a pixel, and
percentile errors of up to two pixels. We see that the proposed CWLD estimate provides
useful results to estimate lines.

The Kolgomorov-Smirnov Hypothesis results are provided with three significance lev-
els (5.0%, 1,0%and 0,1%) to determine Kα, which are used to accept or reject H0, ac-
cording to Equations 6.9 and 6.10. For the significance levels 5%, 1% and 0.1%, Kα is
equal to 1.36, 1.63 and 1.95, respectively. For Figure 6.1 (a), H0 was rejected consider-
ing all significance levels, where the best result was obtained using K using CIE 2000,
i.e., KS = 2.3, which is above the threshold needed by any significance level to accept
H0. For Figure 6.1 (b), H0 was accepted only with significance levels of 1% and 0.1%
using Kg and Ku with CIE 1976 (both with KS = 1.57). Still, in Figure 6.1 (b), H0 was
accepted with significance level of 0.1% using Kg with CMC 1984 (KS = 1.70); and
Ku (KS = 1.82) and Kg (KS = 1.89), both with CIE 2000. In Figure 6.1 (c), H0 was
accepted for all the three significance levels with Ku, Kg or K using CIE 1976, and also
for Ks with the RGB Euclidean distance. When using Ks, H0 was also accepted for the
significance levels of 1% and 0.1% for CIE 2000 (KS = 1.62), and also for the signifi-
cance level of 0.1% using CIE 1994 (KS = 1.79). RGB presents good results sometimes
for some figures and kernels, while the results produced by perceptual color-differences
are more consistent. In some of the tests, the CWLD estimation could be considered very
similar to the ground-truth. Even in Figure 6.1 (a), where the test almost passed, probably
due to the noise. In a nutshell, the results shows that the CWLD is probably similar to the
ground truth, depending on the image quality.

Regarding the Bhattacharrya Coefficient, we can see that the best values, i.e. BC ≈
1, are those from the perceptual color-differences for the three images. The distances
of Bhattacharrya and Hellinger reflect the same behavior, since they are based on the
Bhattacharrya coefficient. However, for these measures, the closer they are from zero, the
better the results are. Besides, if we analyze the Bhattacharrya Coefficient alone or the
Bhattacharrya Distance, the results are not enough for comparison purposes, since they are
very similar. On the other hand, the Hellinger distance results are more visible than those
of the Bhattacharrya Coefficient or the Bhattacharrya Distance. For instance,K shows the
best results (using with CIE 1994) with HD = 0.29 for Figure 6.1 (a), followed by all the
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other kernels withHD ≥ 0.33 using different perceptual color-differences. For Figure 6.1
(b), Ks obtained HD = 0.24 (using CIE 1976), Kg obtained HD = 0.25 (using CMC
1984),Ku obtainedHD = 0.26 (using CIE 1976) andK obtainedHD = 0.31 (using CIE
1976). For Figure 6.1 (c), Ku andKg obtainedHD = 0.13 andHD = 0.14, respectively,
both using with CIE 1976. While Ks with CMC and K with CIE 2000, both obtained
HD = 0.15. Comaniciu et al. (COMANICIU; RAMESH; MEER, 2000) have shown that
the Hellinger distance is closely associated with the MSE and also that it is a metric.
Probably, that is the reason we could see the results more clearly through the Hellinger
Distance than with the Bhattacharrya Coefficient or the Bhattacharrya Distance. Results
confirm the scores of perceptual color-differences and also the same tendency of previous
results for the kernels, with K showing the best results for Figure 6.1 (a), while the other
kernels are slightly better than K with the other Figures. We should mention that these
statistics are non-parametric. That is, if the probability distributions are the same, but the
measurements are in different orders, i.e., the widths are in different positions in the line,
the results may be misleading.

In relation to the Hit counts measure, we use 10%, 20% and 30% of acceptance.
As it is solely based on the relative error (see Section 6.2), if a line has width of ten
pixels, only 1 pixel of error is acceptable at 10% acceptance. This is a rigorous test for
the thin lines, since it approaches the image discretization limits. This is the case for
the mean width (see Tables 6.2 and 6.3) of the measured lines from Figures 6.1 (b) and
(c), but not for Figure 6.1 (a). Figure 6.1 (a) presented the best results, since the mean
width is wider than the other two Figures (see Table 6.10). For this Figure, K (using CIE
1976) obtained 49.8%, 75.6% and 85.8%; Ks (using CIE 1994) obtained 44.1%, 70.6%
and 84.1%; Ku obtained 41.1%, 70.3% and 85.6%; and Kg obtained 35.1%, 68.7% and
85.2%, all of the them consider acceptance rates of 10%, 20% and 30% respectively.
Figure 6.1 (b) presented slightly inferior results, using CIE 1976 for all the kernels, where
Ks obtained 24.2%, 44.3% and 61.9%; Ku obtained 24%, 46.9% and 60%; Kg obtained
25%, 47.1% and 58.4% for acceptances of 10%, 20% and 30%; andK obtained 25%, 41%
and 56.6%, all of the them consider acceptance rates of 10%, 20% and 30% respectively.
For Figure 6.1 (c) the best results were different among each acceptance level. The best
result for the acceptance rate of 10% were obtained by Ku with 46.1%, Kg with 45.2%
(both using CIE 2000), Ks with 45,1% (using CIE 1994) and K with 42.9 (using CIE
2000). For the same figure, the best results for the acceptance rate of 20% were obtained
using Kg with 70.1% (both using CIE 2000), Ku with 69.2%, Ks with 68.6% (using CIE
1994) and K with 64.1% (using CIE 2000). Still in Figure (b), the best results for the
acceptance rate of 30% were obtained using Kg with 79.8% (both using CIE 2000), Ks

with 79.5% (using CIE 1994), Ku with 77.6% and K with 76.1% (using CIE 2000). In
summary, the best results attest the good performance of CIE perceptual color differences.
Figure 6.1 (a) has wider lines than the other images, thus the good results were already
expected. Figure 6.1 (b) was the most challenging to the algorithm, because it has some
long thin lines and the color problem, discussed previously, that led to the weak results.
The best results of Figure 6.1 (c) were obtained using CIE 2000, due to its bluish color,
as mentioned previously in this section. However, the thin lines combined with the large
number of curves in this image contribute to the reasonable result when compared to
Figure 6.1 (a).

Lastly, Figures 6.5, 6.6 and 6.7 present the Error distributions for Figures 6.1 (a),
(b) and (c), respectively. For each figure, (a)-(g) show the results obtained using CMC
1984, CIE 1976, CIE 1994, CIE 2000, RGB Euclidean distance, gray scale difference
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and L∗ differences, respectively. Each chart displays the results using Ku, Kg, K and Ks.
These figures only reinforce the statistical results, where we can see bad performances for
the RGB, grayscale and L∗ color-differences in Figures 6.5 (e)-(g); in Figure 6.6 (e)-(g);
and in Figure 6.7 (e)-(g). They also show the good performances for perceptual color-
differences, mainly for CIE 2000 and CIE 1976. These figures also show that there is
a small amount of errors with high magnitude, but the error distribution in pixels does
not provide enough to visualize the locations of these errors. Figures 6.9 (a)-(c) show
the errors along the line using CIE 1976 for Figures 6.1 (a)-(c), respectively. Figure 6.8
(a)-(c) show the same data, but using CIE 2000. We point out these two color-differences,
CIE 2000 and CIE 1976, because they produced the best results in the previous tests.
Figures 6.9 and Figure 6.8 display line portions with the largest errors for the three im-
ages. They are present mainly in the regions of high curvature and those where the color-
difference was not enough to separate the line from the background. These errors permit
to identify the two constraints of the current version of the CWLD algorithm. First, it is
not suited for lines with regions of high curvature features. It has better results in images
that do not have lines with sharp angles. Special treatments are required to correct the
density estimate in those regions. Finally, we cannot calculate the line width appropri-
ately if the color-difference and the CWLD threshold are not adequate to the given image,
i.e., the method will fail. Observe that we have chosen natural images because they illus-
trate these conditions. Figure 6.1 (a) has considerable compression noise; Figure 6.1 (b)
has lines that are not easily separated from the background using colors; and Figure 6.1
(c) has several regions with lines of high curvature.

6.7 Limitations

Overall we have shown the importance of color-differences when compared to gray
scale images, however we point out that with bad illumination conditions, color differ-
ences do not work properly. Furthermore, line detection is poor depending on the back-
ground, and further changes should be made to the algorithm to improve its line detection
results.

Regarding width estimates, we highlight that algorithm does not perform well when
the structures are too curved, since it deforms the underlying density estimate. Similarly,
the quality of the color-difference equation also affects the method, along with illumina-
tion conditions as above. Also, the pixels at the beginning and end of line structures are
also not measured correctly since the kernel is not completely crossed by the structure,
cutting out part of the density estimate used by the method to determine the line thickness.
Further development is required to deal with these conditions and improve the thickness
estimates. Furthermore, the proposed kernel K suffers from sampling problems at the
edges as the radius gets smaller, this is expected since the higher weights of the kernel is
at its extremities.

Finally, the method can be computationally costly when applied to all pixels in the
image. Still, it is efficient when it is applied for estimation of other higher level infor-
mation, such as pose estimation or the river width at specific positions, desired pixels of
an image. This is where the advantage of the method lies. The algorithm can obtain the
thickness (or width) estimate of arbitrary pixel positions using a non-parametric strategy
on-the-fly.
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Figure 6.5: Error Distribution for Figure 6.1 (a). The color differences shown are the
CIE 1976 (a); CMC 1984 (b), CIE 1994 (c); CIE 2000 (d); RGB distance (e); gray-scale
difference,i.e., the WLD (f); and CIE L∗ difference (g). Observe that the CIE and CMC
color differences perform better than 1D based differences.

(a) (b)

(c) (d)

(e) (f)

(g)
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Figure 6.6: Error Distribution for Figure 6.1 (b). The color differences shown are the
CIE 1976 (a); CMC 1984 (b), CIE 1994 (c); CIE 2000 (d); RGB distance (e); gray-scale
difference,i.e., the WLD (f); and CIE L∗ difference (g). Observe that the CIE and CMC
color differences perform better than 1D based differences.

(a) (b)

(c) (d)

(e) (f)

(g)
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Figure 6.7: Error Distribution for Figure 6.1 (c). The color differences shown are the
CIE 1976 (a); CMC 1984 (b), CIE 1994 (c); CIE 2000 (d); RGB distance (e); gray-scale
difference,i.e., the WLD (f); and CIE L∗ difference (g). Observe that the CIE and CMC
color differences perform better than 1D based differences.

(a) (b)

(c) (d)

(e) (f)

(g)
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Figure 6.8: The absolute error at each pixel for Figures 6.1 (a), (b) and (c) considering the
CIE 2000 color-difference. Observe that regions next to curves present the high incidence
of errors for all the images, while regions with low curvature present small errors.

(a)

(b)

(c)
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Figure 6.9: The absolute error at each pixel for Figures 6.1 (a), (b) and (c) considering
the CIE 1976 color-difference. Observe that regions next to curves present the high inci-
dence of errors for all the images, while regions with low curvature present small errors.
Furthermore, the results are very similar to Figure 6.8.

(a)

(b)

(c)



75

7 DISCUSSIONS AND FUTURE WORK

In this Work, we proposed a new method for detecting wide lines in color images.
We have shown the robustness of perceptual color differences when compared to a trivial
gray scale difference to detect line pixels. We also developed a new kernel that is more
efficient than the previous ones to detect line pixels. Experiments confirmed that, on
average, the proposed kernel K detects widelines with smaller kernel radius than Ku, Kg

and Ks. Finally we have developed a new method to obtain the line width, using the
density estimate. We tested it with several combinations of kernels and color-differences
using different statistical metrics.

The use of different statistical measures is one of the contributions of this Dissertation,
applied to assess the effectiveness the method along with the different color-difference
equations, and color spaces. We show that the effectiveness of each statistical measure
varies. In particular, we could see the results more clearly through the Hellinger Distance
than with the Bhattacharrya Coefficient or the Bhattacharrya Distance. This confirms
previous findings showng that the Hellinger distance (metric) is a powerful statistical
tool, closely associated with the MSE. In summary, comparing distributions should be
done carefully, since not all of them fit all situations, but they can be useful if the metric
is chosen appropriately.

Specifically, analyzing all the statistics available, the perceptual color-differences of-
fered a better density estimate and, as a result, a better width measurement and line detec-
tion. In particular, we can see that both CIE 1976 and CIE 2000 consistently presented the
best results. CIE 2000 presented the best results for Figure 6.1 (c), where a bluish line is
tested. This is not surprising, since this color-difference equation was designed to correct
errors in the blue centers present in all the previous formulas. The WLD and the CWLD
using L∗ presented worse results than the CWLD using color vectors for measuring the
line width and line detection. Notably the RGB Euclidean distance was better than the
monochromatic differences, but worse than perceptual color differences. However, when
the CWLD uses the CIE color-differences, it can be affected by the illumination condi-
tions.

Still, this work shows that color information can indeed be superior to gray scale im-
ages, but it also have shown that the behavior of each color-difference equation is not
stable across images, what opens space to future improvements of such equations with
computer vision in mind. The evolution of color-difference equations and the develop-
ment of color appearance models will lead to new and enhanced ways to determine the
color-difference. Nevertheless, the CWLD can easily take advantage of new perceptually
uniform color spaces and new color-difference equations. Even though several kernels
and color-differences tested in this work can provide visually similar local density esti-
mates, the resulting values may vary a lot more than one might expect. Moreover, we
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have adapted the computation of the brightness contrast threshold in the WLD, for the
CWLD, resulting in an intuitive relative metric to analyze the calculated threshold. Our
tests have shown that there is much room to improve this threshold. Figure 6.1 (b) is a
good example of that, where we need a better criteria to compare the lines.

We also developed and confirmed with experiments that it is possible to obtain a local
width estimation (pixel-wise) using only the kernel density data, for each of the kernels
studied. However, our method presented the smallest errors with somewhat straight fea-
tures, whereas the errors were large high curvature regions. We have shown that Ku and
Kg sometimes can produce slightly better measurements than K, but at the cost of using
a bigger kernel radius. Despite that, all the kernels performed reasonably well estimating
the line width at each pixel. The proposed kernel seems to be slightly more affected by
noise (compression noise) and curvature interference than the monotonically decreasing
kernels, but much less than we suspected. Furthermore, the CWLD in many ways can be
seen as a modified medial axis transformation, but instead of marking the center line, it
gives the line width at all line pixels. This eliminates the need to accurately detect the
center line and edges, which is important mainly when a simple local estimate is required
(i.e., test one pixel alone. e.g., in the center of an image while using a UAV camera).

The tests using Ku and Kg with varying radius showed that, insofar as the kernel
radius increases, the line pixels are gradually marked from the borders to the center line
(see Figure 5.3 in Section 5.3). On the other hand,increasing the kernel radius, K marks
the line pixels mostly in a uniform way, sometimes going from the center line towards
the borders much faster than Ku and Kg (see Figure 5.3 in Section 5.3). These two
behaviors could be combined to improve detection, diminishing the kernel size at the same
time. In addition, with the aid of morphologic algorithms, such as region growing, it is
possible to mark line pixels faster or even correct detection errors. Also, Kg results seem
to result understimates the actual line thickmess, but measurements using such kernel
seem more linear than the other ones with respect to orientation. Still, a scale parameter
could be defined to try to correct such errors, but further tests would be required to test
the effectiveness of such changes.

The algorithm has shown considerable amount of false positives mainly due to the fact
that this is a density based approach. That is, the algorithm sets every low density pixel to
a line pixel. Removing small features, i.e. false positives, should be done carefully, since
it might lead to the removal of valid line pixels as well, generating holes in segmented
lines or removing them completely. Another strategy used by the WLD is the removal
of groups of pixels with eccentricity greater than a specific threshold (LIU; ZHANG;
YOU, 2007). We plan to investigate these and other pre and post processing methods to
minimize false detection and maximize the correct segmentation.

The construction of K was based on a single condition, i.e., VC = VE = VK/2, and
even though the results are quite robust to decrease the kernel size. In the future, we in-
tend to investigate other conditions and functions to create a more efficient and precise
kernel for width estimation and line detection. As the CWLD is also based on bar-shaped
lines, the width measurement could be improved further. This could be achieved by in-
corporating more information, such as curvature, to the algorithm. It would be intriguing
to extend the algorithm to 3D datasets separating surfaces automatically using the same
principle of the CWLD/WLD.

Finally, we might use the CWLD width information together with the output of other
line detection algorithms to develop new image compression algorithms or even a new
background removal algorithm, leading to other branches of investigation. It can be
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relevant for image segmentation, feature extraction, non-parametric tracking and other
computer vision tasks, particularly to non-parametric methods such as Mean-Shift (CO-
MANICIU; RAMESH; MEER, 2000; COMANICIU; RAMESH, 2000). Line detection
can useful for robot localization, however new algorithms should be devised to use thick-
ness information.
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APPENDIX A COLOR CONVERSION

Given a RGB color in the normalized color space, it is possible to convert it to the
XYZ color space applying the following transformation represented by Equation A.1:

 X

Y

Z

 = [M ]

 r

g

b

 (A.1)

where
[
r g b

]τ represents the tristimulus values. They are calculated from the given nor-
malized input RGB vector,

[
R G B

]τ , typically through Equation A.2: r

g

b

 =

 Rγ

Gγ

Bγ

 (A.2)

where γ is used to approximate the behavior of the human vision, regarding each one of the tri-
stimilus perception values.

The matrix [M ] represents the change from coordinate system and each value corresponds
to the maximum value that each of the primaries of the given RGB color system can reach. It is
important to say that [M ] is precomputed and can be obtained from the primaries of the given RGB
color space:

[
Xr Yr Zr

]τ ,
[
Xg Yg Zg

]τ and
[
Xb Yb Zb

]τ , all of them represented
in XYZ space according to Equations A.3 and A.4:

[M ] =

 Xr,max Xg,max Xb,max

Yr,max Yg,max Yb,max

Zr,max Zg,max Zb,max

 (A.3)

where each corresponding value of Matrix A.3 is the maximum values that each of the components
of the primaries can achieve with the given illuminant.

[M ] =

 Xr Xg Xb

Yr Yg Yb

Zr Zg Zb


 Lr,max 0 0

0 Lg,max 0

0 0 Lb,max

 (A.4)

The vector
[
Lr,max Lg,max Lb,max

]τ in the diagonal matrix of Equation A.4 represent
the maximum luminances for each primary of the given RGB coordinate system. To obtain them
we must equal the white point,

[
XW YW ZW

]τ , and the color white in the RGB color space,
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[
1 1 1

]τ manipulating Equation A.1 using Equation A.4. This will result in Equations A.5
and A.6:  XW

YW

ZW

 = [M ]

 1

1

1

 (A.5)

obtaining:  XW

YW

ZW

 =

 Xr Xg Xb

Yr Yg Yb

Zr Zg Zb


 Lr,max

Lg,max

Lb,max

 (A.6)

since in Equation A.6, the primaries and the whitepoint are known for the given RGB color space,
the vector

[
Lr,max Lg,max Lb,max

]τ is given by Equation A.7: Lr,max

Lg,max

Lb,max

 =

 Xr Xg Xb

Yr Yg Yb

Zr Zg Zb


−1  XW

YW

ZW

 (A.7)

this scales the values of each primary to its maximum value.
However, some devices use the rather different sRGB color space, in this case a slightly more

complex function is used (see Equations A.8 and A.9): r

g

b

 =

 φ(R)

φ(G)

φ(B)

 (A.8)

where φ(x) is represented by:

φ(x) =

{
x/12.92321 , if x ≤ 0.0392857

(x+0.055
1.055 )2.4 , otherwise

(A.9)

Given a color, (X,Y,Z), in the (XYZ) color space, its conversion to CIE 1976 L*a*b* in the
Cartesian space is given by Equations A.10, A.11 and A.12 (GONZALES; WOODS, 2007):

L∗ = 116h

(
Y

YW

)
− 16 (A.10)

a∗ = 500

[
h

(
X

XW

)
− h

(
Y

YW

)]
(A.11)

b∗ = 200

[
h

(
Y

YW

)
− h

(
Z

ZW

)]
(A.12)

where h (.) is the result of Equation A.13:

h(x) =

{
3
√
x , if x > 0.008856

7.787x+ 16/116 , otherwise
(A.13)

This same color space can also be represented in as cylindrical coordinate system, the CIE
L∗C∗abhab, that can be constructed using Equations A.14 and A.15.

C∗ab =
√
a∗2 + b∗2 (A.14)

hab = arctan (a∗/b∗) (A.15)
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APPENDIX B COLOR-DIFFERENCE

In this work we use color-difference equations with different results. A review of the research
on color-difference is presented by Luo (LUO, 2002).

B.1 RGB color-difference
Using the color components of a RGB image, we can compute the color-difference between

two colors, (R1, G1, B1) and (R2, G2, B2), through the Euclidean distance between the two color
vectors

∆E∗RGB =
√

(R2 −R1)2 + (G2 −G1)2 + (B2 −B1)2 (B.1)

B.2 CIE Color-differences
CIE color spaces are typically good in this work, because perceptually similar colors are in a

narrow interval (typically around 5.0 units in the CIE L∗a∗b∗ space)(FAIRCHILD, 2005). This
fact enables the easy interpretation of the color-difference threshold, t, required for the CWLD.
There are several ways to compute the CIE L∗a∗b∗ color-difference. Below we present those that
were used in this paper.

B.2.1 CIE ∆E∗ab 1976

The simplest color-difference equation is associated with the Euclidean distance of two CIE
L∗a∗b∗ colors, (L∗1, a

∗
1, b
∗
1) and (L∗2, a

∗
2, b
∗
2), as shown in Equation B.2 (BERNS, 2000)

∆E∗ab =
√

(L∗2 − L∗1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2 (B.2)

The color distance can also be calculated from the CIE cylindrical coordinate system (CIE
L∗C∗abh). To obtain ∆E∗ab having two colors in the cylindrical coordinate system, (L∗1, C∗1 , h1)
and (L∗2, C∗2 , h2), the Equations B.4, B.5, and B.6 are used (BERNS, 2000).

∆L∗ = L∗2 − L∗1 (B.3)

∆C∗ab =
√
a∗22 + b∗22 −

√
a∗21 + b∗21 (B.4)

∆H∗ab =
a∗1b
∗
2 − a∗2b∗1

0.5
√
C∗1C

∗
2 + a∗1a

∗
2 + b∗2b

∗
1

(B.5)

∆E∗ab =
√

∆L∗2 + (∆C∗ab)
2 + (∆H∗ab)

2 (B.6)

The regions of Just Noticeable Difference (JND) are approximated through ellipses. Such
ellipses vary according test conditions.
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B.2.2 Color Measurement Committee CMC(l:c) Color-Difference Equation

Color-difference equations proposed before the CMC(l:c) exhibited wrong behaviors for very
dark and near neutral colors. Also, the lightness weighting function of previous formulas was not
good enough for textiles. Therefore, the CMC decided to improve the color-difference equation by
adding weights to each component of the formula together with two constants, l and c, to weight
lightness and chroma relative to hue (BERNS, 2000).

The formula is presented in Equation B.7:

CMC(l : c) =

√(
∆L∗

lSL

)
+

(
∆C∗ab
cSC

)
+

(
∆H∗ab
SH

)
(B.7)

where:

SL =

{
0.004097L∗

1+0.01765L∗ , if L∗ ≥ 16

0.511 , otherwise
(B.8)

SC =
0.0638C∗ab

1 + 0.0131C∗ab
+ 0.638 (B.9)

SH = SC(TF + 1− F ) (B.10)

where:

F =

√
C∗4ab

C∗4ab + 1900
(B.11)

T =

{
0.511 , if 164◦ ≤ hab ≤ 345◦

0.38 + |0.4 cos(hab + 35)| , otherwise
(B.12)

B.2.3 CIE ∆E∗94 1994

In order to improve the color-difference uniformity measurements the CIE ∆E∗76 was modified
based on the evaluation of empirical data obtained by experiments with the CMC(l:c) equation.
The CMC equation was simplified and the results were improved for some datasets(FAIRCHILD,
2005). Again there are parametric factors to adjust the relative weighting of lightness, chroma
and hue. Given two colors in the cylindrical coordinate system CIE L∗C∗h, (L∗1, C∗1 , h1) and
(L∗2, C∗2 , h2), CIE 1994 is obtained through

∆E∗94 =

√(
∆L∗

KLSL

)
+

(
∆C∗ab
KCSC

)
+

(
∆H∗

KHSH

)
(B.13)

where:
KL = KC = KH = 1 (B.14)

for reference conditions.
The lightness, chroma and hue weighing functions SL, SC andSH , respectively, can be com-

puted by:
SL = 1 (B.15)

SC = 1 + 0.045C∗ab (B.16)

SH = 1 + 0.015C∗ab (B.17)

where the value of C∗ab is the CIE chroma value of the reference color. However, if the reference
cannot be deemed:

C∗ab =
√
C∗1C

∗
2 (B.18)



83

where C∗1 and C∗2 are the chroma values for the two colors being compared. In this work we
consider the color in the center of the kernel as the reference color.

Unfortunately, some problems are known to this equation, such as the wrong perceptual dif-
ference around blue and gray centers (LUO; CUI; RIGG, 2001).

B.2.4 CIE ∆E∗00 2000

CIE 2000 addresses some corrections with bluish colors through a rotation term, RT , as well
as other compensations for neutral colors, lightness, SL, chroma,SC , and hue, SH . Given two
colors in the cylindrical coordinate system CIE L∗C∗h, (L∗1, C∗1 , h1) and (L∗2, C∗2 , h2), and their
respective Cartesian coordinates in the CIE L∗a∗b∗ space, (L∗1, a∗1, b∗1) and (L∗2, a∗2, b∗2), we can
obtain the CIE 2000 color-difference between then through

∆E∗00 =

√(
∆L′

SL

)2

+

(
∆C ′

SC

)2

+

(
∆H ′

SH

)2

+RT
∆C ′∆H ′

SCSH
(B.19)

where the lightness difference, ∆L′, is

∆L′ = L∗2 − L∗1 (B.20)

The compensation for lightness is given by

SL = 1 +
0.015(L̄− 50)2√
20 + (L̄− 50)2

(B.21)

where
L̄ =

L∗1 + L∗2
2

(B.22)

The chroma difference, ∆C ′, is

∆C ′ = C ′2 − C ′1 (B.23)

where
C ′1 =

√
a′21 + b∗21 (B.24)

C ′2 =
√
a′22 + b∗22 (B.25)

and
a′1 = a∗1 +

a∗1
2

(1− υ) (B.26)

a′2 = a∗2 +
a∗2
2

(1− υ) (B.27)

where

υ =

√
C̄7

C̄7 + 257
(B.28)

and
C̄ =

C∗1 + C∗2
2

(B.29)

The compensation for chroma, SC , is given by

SC = 1 + 0.045C̄ ′ (B.30)

where
C̄ ′ = C ′1 + C ′2 (B.31)
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The hue difference, ∆H ′, is

∆H ′ = 2
√
C ′1C

′
2 sin

(
∆h′

2

)
(B.32)

where

∆h′ =


h′2 − h′1 , if ||h′1 − h′2|| ≤ π
h′2 − h′1 + 2π , if ||h′1 − h′2|| > π , and h′2 ≤ h′1
h′2 − h′1 − 2π , if ||h′1 − h′2|| > π , and h′2 > h′1

(B.33)

and

h′1 = arctan

(
b∗1
a′1

)
mod 2π (B.34)

h′2 = arctan

(
b∗2
a′2

)
mod 2π (B.35)

The compensation for hue, SH , can be obtained through

SH = 1 + 0.015C̄ ′T (B.36)

where
T = 1− 0.17 cos

(
H̄ ′ − π

6

)
+ 0.24 cos

(
2H̄ ′

)
+ 0.32 cos

(
3H̄ ′ π30

)
−0.20 cos

(
4H̄ ′ − 21 π

60

) (B.37)

and

H̄ ′ =

{
h′2+h′1+2π

2 , if ||h′1 − h′2|| > π
h′2+h′1

2 , if ||h′1 − h′2|| ≤ π
(B.38)

The rotation term, RT , used to correct problems with bluish colors is obtained through

RT = −2υ sin

[
π

6
exp

(
−
(
H̄ ′ − 275◦

25

)2
)]

(B.39)

This color-difference demands double precision calculations and a careful analysis when ap-
plying the square-root of some Equations, since we may fall outside the < numbers.
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