
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RENATO FERNANDES HENTSCHKE

Algorithms for Wire Length Improvement
of VLSI Circuits With Concern to Critical

Paths

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Ricardo Reis
Advisor

Prof. Dr. Marcelo Johann
Coadvisor

Porto Alegre, June 2007

CATALOGAÇÃO NA PUBLICAÇÃO

Hentschke, Renato Fernandes

Algorithms for Wire Length Improvement of VLSI Circuits
With Concern to Critical Paths / Renato Fernandes Hentschke. –
Porto Alegre: PPGC da UFRGS, 2007.

175 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2007. Advisor: Ricardo Reis; Coadvisor: Marcelo Johann.

1. Placement. 2. Routing. 3. 3D Circuits. 4. Critical Paths.
5. Physical Design. 6. Algorithms. 7. CAD. 8. Microelectronics.
I. Reis, Ricardo. II. Johann, Marcelo. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquíria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Prof. Luciana Porcher Nedel
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

"1D is not enough; 2D is good; 3D is even better!"
—

ACKNOWLEDGMENTS

Initially and most importantly, I’d like to thank my family which I am very proud of,
starting with my parents Suzana and Carlos. They both provided me with an excellent
formation at home and also at school. Suzana, as the best mom in the world, always
gave me the all the care and affection I need to work and to live. Carlos gave me a lot of
insight and advices on how to live my professional life and don’t miss good opportuni-
ties. My wife (recently married) Carolina, with all her love and will to help, have been
indirectly involved in the development of the thesis reading texts, watching presentation
practices and all the support she could provide. All my family members participated on
my formation and particularly here I would like to thank them for their trustfulness on
my ability to work professionally. I’d like to include the names of my sister Cristina, my
“afilhado” Arthur and other important family names: Machado, Marcia, Gabriel, Eliz-
abeth, Paulo, Paula, Eduardo, Claudia, Joaquim, Eunice, Carolina, Evany, Olga,
Arlindo.

Secondly, I’d like to thank people who have been involved on my academic formation,
starting with my advisors Ricardo Reis and Marcelo Johann. Ricardo has been my
advisor since 1998 (9 years now). During this time, I had the opportunity to learn not
just technical contents but many important teachings for my life. Ricardo is always very
helpful to offer me opportunities abroad which led me to travel a lot. Marcelo works
with me since 1998 as well. Since the beginning, Marcelo is an example of technically
successful researcher. I should mention that a big chunk of my PhD work started with
many of his ideas and our work together.

A special acknowledge to the students Guilherme Flach and Felipe Pinto which
worked very hard to code the global placer and other smaller but important tasks. Their
very long work schedule was driven by their strong will to work and grow as researchers
and developers. Their contribution to this work is very significant. My bet is that both
have a very promising future.

Other people with important participation on the work: Sandro Sawicki, my personal
friend and neighbor (same building) that worked with me on the I/O pins section; we
had very important conversations on technical and non-technical issues, specially during
barbecues at the top of our building. Fabio Cecin, my friend since we developed games at
Amok, contributed significantly with my computer science formation; I could learn a lot
from him during our shared rides to the University with the cost of some tokens. Eduardo
D’Avila, my friend since under-graduation course and Crazy Birds partner playing guitar,
vocals and sax, contributed with Simulated Annealing equations, specially at the time
of my masters. Eduardo and Fabio are reference top programmers for me. Gustavo
Wilke, my friend and grad student from the same advisor, besides being a good friend
and partner for billiards and other sports, contributed with my paper writing and research

skills with important advices and reviews. Lucas Brusamarello, my friend and also
Crazy Birds partner (Bass Guitar and Keyboards), was my first student as co-advisor for
his under-grad final project; we exchanged many ideas on Simulated Annealing, latex
and unix. Gustavo Neuberger, my friend and financial advisor, participated with me
on CADAthlon 3 times; his technical skills contributed a lot to our 2nd place on 2005.
Reginaldo Tavares, my friend and UERGS partner, that worked with me for some time
on logic and physical synthesis. Glauco Valim dos Santos, my routing trees partner,
provided valuable contributions to the routing work of this thesis.

It is also very worth mentioning other friends: Fernando Paixao Cortes, Felipe Mar-
ques, Cristiano Lazzari, Alessandro Girardi, Antonio Carlos Beck Filho (Caco),
Julio Mattos, Adriel Ziesemer Jr., Fernanda Lima Kasternsmith, Luigi Carro,
Lisane Brisolara2, Cristina Meinhart, Marcelo Lubaszewski. They all participated
on my technical and academic formation being my co-workers at projects I participated.

One important experience for me was the IBM internship from 2004 to 2005. At this
time I met many friends and technical references worth mentioning. Reinaldo Bergam-
aschi introduced me to my manager there, besides being very supportive in technical and
speciality non-technical issues in the US. Jaganathan Narasimham, my mentor at IBM
with all his experience, that worked with me in the AMAZE algorithm and other projects
there, teaching me a lot about EDA. I was very fortunate to have the opportunity to work
with him. David Kung that in fact offered me the internship and Ruchir Puri that were
my managers, providing excellent technical feedback. Hua Xiang that worked with me
on a 3D Circuits project.

Other people with contributions to the thesis: Renan Fonseca (Elmore delay), Diogo
Fiorentin (Partitioning Algorithm), Robert Patti (information of Tezzaron technology),
Rhett Davis (help on 3D technologies), Charles Alpert and Steve Quay (support of
AHHK algorithm), John Lillis and Milos Hrkic (P-Trees support), Sachin Sapatnekar
(advices on 3D circuits).

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 11

LIST OF FIGURES . 13

LIST OF TABLES . 17

ABSTRACT . 19

RESUMO . 21

1 INTRODUCTION . 23

2 SUMMARY OF CONTRIBUTIONS . 27
2.1 3D-Placement . 27
2.1.1 Z-Place flow . 27
2.1.2 I/O Pins Handling . 27
2.1.3 Global Placement . 28
2.1.4 Handling Critical Paths . 28
2.1.5 3D-Via Placement . 28
2.2 Steiner Routing with AMAZE . 29
2.3 Dictionary of terms . 29

3 3D CIRCUITS AS A NOVEL DESIGN PARADIGM 31
3.1 3D Assembly . 31
3.2 3D-Vias Technologies and Integration Strategies 32
3.3 Useful Technology Details of 3D-Vias . 33
3.3.1 Tezzaron Technologies . 34
3.3.2 MITLL 3D technology . 36
3.3.3 Summary of Important Data From the Studied Technologies 38
3.4 Potential advantages of 3D VLSI Circuits 40
3.5 Impacts on Design . 41
3.5.1 Thermal Issues . 41
3.5.2 Yield Issues . 42
3.5.3 3D-Via Issues . 42
3.5.4 Design methodologies . 44
3.6 Impacts on cell placement . 49
3.6.1 Review of existing placement algorithms 50
3.6.2 Low complexity (and fast) algorithms 52
3.6.3 Blockage Aware Placement . 52

3.6.4 Mixed Size Placement . 53
3.6.5 Timing-Driven Placement . 53
3.6.6 Power-Driven Cell Placement . 54
3.6.7 Thermal-Driven Cell Placement . 54
3.6.8 True 3D engines . 55
3.6.9 3D-Vias placement . 56
3.6.10 Movable Obstacles in Placement . 57
3.6.11 Summary of reviewed works on 3D placement 57
3.7 Z-Place Overview . 58

4 Z-PLACE: ALGORITHMS FOR 3D PLACEMENT 59
4.1 Introduction . 59
4.2 Placement benchmarks . 59
4.3 Proposed 3D Placement Flow . 59
4.4 I/O Pins Handling . 60
4.4.1 Problem Definition . 63
4.4.2 Proposed algorithm . 64
4.4.3 Experimental Setup . 66
4.4.4 Experimental Results . 68
4.4.5 Partial Conclusions . 71
4.5 Global Placement . 73
4.5.1 Fastplace Review . 74
4.5.2 Cell Shifting . 74
4.5.3 Add Spreading Forces . 75
4.5.4 Iterative Local Refinement . 76
4.5.5 3D Integration Strategies Under Z-Place 77
4.5.6 Problem Formulation . 77
4.5.7 Z-Place Global Placement Flow . 79
4.6 3D Quadratic Placement . 79
4.6.1 3D Cell Shifting . 80
4.6.2 3D Iterative Refinement . 83
4.7 Experimental Results . 85
4.7.1 Summary of Partial Conclusions . 87
4.8 Detailed Placement . 88
4.8.1 Cell Sweeping . 91
4.8.2 Threshold Accept Improvement . 92
4.9 3D-Via Placement . 97
4.9.1 Problem Formulation . 97
4.9.2 3D Via Placement and Legalization . 98
4.9.3 Experimental Results . 100
4.9.4 Removing and avoiding overlaps between cells and 3D-Vias 102
4.9.5 Conclusions . 103
4.10 Whole Z-Place Experimental Results . 104
4.11 Critical Paths Handling . 106
4.11.1 Problem Definition . 108
4.11.2 Proposed Algorithm . 109
4.11.3 Experimental Results . 110
4.11.4 Partial Conclusions . 115

5 FAST AND EFFICIENT MAZE ROUTING STEINER TREES 117
5.1 Introduction . 117
5.2 Problem Definition . 118
5.3 Tree Topologies . 119
5.3.1 Delay Analysis . 119
5.3.2 Topologies for Delay and Wire Length Trade-off 121
5.4 Review of existing algorithms . 122
5.4.1 Algorithms for Steiner Tree Construction 122
5.4.2 Review of Path Search Algorithms . 123
5.5 Amaze Algorithm to generate Steiner Trees 125
5.5.1 A∗ for Steiner routing . 125
5.5.2 Biasing technique for wire length optimization 127
5.5.3 Sharing Factor on Maze Search . 133
5.5.4 Path Length Factor on Maze Search . 133
5.6 Run Time Improvement Techniques . 134
5.6.1 Application specific grid . 134
5.6.2 Simplified heuristic function (h) calculation 135
5.6.3 Specialized Open List . 136
5.6.4 Biasing Implementation . 137
5.7 Experimental Results . 137
5.7.1 Steiner Wire Length Experiments . 137
5.7.2 Steiner Delay Experiments . 138
5.7.3 Steiner Trade-off analysis . 141
5.7.4 Blockage analysis . 142
5.8 Application to Timing Driven Routing 143
5.9 AMAZE for 3D circuits . 144

6 CONCLUDING REMARKS . 147
6.1 3D Placement . 147
6.2 Routing . 148

REFERENCES . 149

APPENDIX A ALGORITMOS PARA A REDUÇÃO DO COMPRIMENTO
DOS FIOS DE CIRCUITOS VLSI CONSIDERANDO CAM-
INHOS CRíTICOS . 159

A.1 Introdução . 159
A.2 Circuitos 3D Como Um Novo Paradigma de Projeto 161
A.2.1 Dados de tecnologia de circuitos 3D . 161
A.2.2 Potenciais vantagens de circuitos 3D . 162
A.3 Z-Place: Algoritmos para posicionamento 3D 164
A.3.1 Introdução . 164
A.4 Roteamento de Steiner com o algoritmo AMAZE 170
A.4.1 Melhorando o tamanho das árvores com a técnica de biasing 171
A.4.2 Melhorando o atraso para conexões críticas 173
A.4.3 Melhorando o tempo de CPU . 174
A.5 Conclusões . 175

LIST OF ABBREVIATIONS AND ACRONYMS

2D Bi-dimensional

3D Tri-dimensional

CAD Computer-aided Design

CPU Central Processing Unit

CRS Compress Row Storage

DFS Depth First Search

DRAM Dynamic Random Access Memory

DP Detailed Placement

E/S Entrada e saída

GP Global Placement

I/O Input and Output

IC Integrated Circuit

ILP Integer Linear Programming

LD Logic Distance

MIT Massachusetts Institute of Technology

MITLL Massachusetts Institute of Technology Lincoln Laboratory

MMC Multiple Markov Chains

MRST Minimum Rectilinear Steiner Tree REVIEW THIS ONE

PLF Path Length Factor

RLM Random Logic Macro (Random Logic Block)

SF Sharing Factor

SOI Sillicon on Insulator

SoC System-on-a-chip

SRAM Static Random Access Memory

SA Simulated Annealing

TA Threshold Accept

TSV Tezzaron Super Via

VLSI Very Large Scale Integration

LIST OF FIGURES

Figure 3.1: A didactic picture of 3D circuit, tiers of active area and metal layers . 31
Figure 3.2: Illustration of the integration and interconnect technologies: (a) wire

bonded; (b) microbump in a 3D-package; (c) microbump face-to-
face; (d) contactless with buried dumps; (e) contactless with inductive
technology; (f) Through Vias with Bulk; (g) Through Vias with SOI.
Extracted from (DAVIS, W. et al, 2005). 33

Figure 3.3: A picture of 3D Stacked circuits from Tezzaron technology using
Super-Vias. Extracted from (TEZZARON HOMEPAGE, 2005). . . . 35

Figure 3.4: A picture of two Stacked circuits from Tezzaron technology using
Super-Contacts to connect to I/O pins placed on the back-side of the
wafer Bulks. Extracted from (PATTI, 2006a). 36

Figure 3.5: Tezzaron Technology with Super-Contacts and face-to-face connection. 37
Figure 3.6: A 3D Model of the MITLL process, showing two inter-tier vias and

one transistor in each tier. Extracted from (DAVIS, W. et al, 2005). . . 38
Figure 3.7: Cross-sectional picture of the 3D-Chip highlighting the 3D-Vias con-

necting them face-to-face. Extracted from (SUNTHARALINGAM,
V. et al, 2005). 38

Figure 3.8: A summary of some new issues introduced in CAD and design due
to 3D-Vias. 44

Figure 3.9: 3D circuit allows a mixed integration of different nature blocks with
diminished noise effects . 46

Figure 3.10: IP cores can be partitioned into 3D with improvements on circuit wiring 46
Figure 3.11: Random logic blocks could be broken into 3D. 48
Figure 3.12: Logic into 3 tiers. 49

Figure 4.1: Proposed Placement flow for 3D Circuits 61
Figure 4.2: Migration (from 2D to 3D) of a netlist with pre-placed I/O Pins . . . 63
Figure 4.3: An ilustration of the logic distance between I/O pins (a) and a part of

the correspondent complete graph (b) 65
Figure 4.4: A group of partitions (a) are assigned to tiers (b) using Simulated

Annealing; the effective number of 3D-Vias is shown in (c) 66
Figure 4.5: An illustration of the Alternate Pins algorithm (a) resulting in a two

tier circuit (b) with perfectly balance I/O pins; the Unlocked Pins
algorithm (b) uses hMetis to partition the whole Netlist, which could
result in unbalanced pins (d). 67

Figure 4.6: The percentage improvement on 3D-Via count of unbalancing the I/O
pins. 71

Figure 4.7: The regular bin structure used in the cell shifting method. 74
Figure 4.8: A cell movement and the force created represented by a spring. . . . 76
Figure 4.9: 3D Integration Strategies: (a) face-to-face, (b) face-to-back and (c)

back-to-back. 77
Figure 4.10: Sliced cube model with invalid coordinates and I/O in all tiers. 78
Figure 4.11: The global placement flow. 80
Figure 4.12: 3D integration strategies and how they impact the area distribution:

(a) face-to-face and (b) face-to-back. 81
Figure 4.13: The Z-Cell Shifting methodology (a) and the 3D Cell Shifting algo-

rithm (b). 82
Figure 4.14: The visual effect of the 3D Cell Shifting methodology in a circuit

with 3 tiers. 83
Figure 4.15: The Via count and 3D wire length (in cm) trade-off. 85
Figure 4.16: Detailed Placement flow on Z-Place 90
Figure 4.17: Data Structure used to store cell positions for detailed placement . . . 91
Figure 4.18: The effect of cell sweeping over the benchmark ibm01. 91
Figure 4.19: Example of static Annealing Schedules 96
Figure 4.20: The placement of 3D-Vias; (a) placement of cells; (b) placement of

face-to-face vias; (c) placement of face-to-back vias; (d) mixed inte-
gration. 98

Figure 4.21: An example of legally placed 3D-Vias 99
Figure 4.22: 3D-Vias ant their respective bounding boxes. 99
Figure 4.23: Initial Placement of the 3D-Vias in the centroid of the net bounding

box. 99
Figure 4.24: A Tetris algorithm for legalizing the 3D-Vias. (a) Represents an ini-

tial solution; (b) shows step 2 that slices the area into rows; (c) ilus-
trates the steps 4-10 which drops the cells into the circuit; (d) shows
the final solution. 101

Figure 4.25: An example of a 3D-Via Placement with the proposed Tetris algo-
rithm for ibm01 with 5375 3D-Vias 107

Figure 4.26: An example of a 3D-Via Placement with ILP algorithm for ibm01
with 5375 3D-Vias . 108

Figure 4.27: A detail on the 3D-Via placement obtained by the Tetris algorithm . . 108
Figure 4.28: Run time contribution of Z-Place steps averaged from ibm01 to ibm12. 110
Figure 4.29: An illustration of the proposed method for avoiding 3D-Vias with

critical connections. 113

Figure 5.1: Example of spanning tree (a), Steiner tree (b) and rectilinear Steiner
tree (c) . 119

Figure 5.2: A didactic view of Elmore delay and the downstream capacitance. . . 120
Figure 5.3: Steiner Topologies for delay optimization; (a) net; (b) Minimum

Steiner Tree (MST); (c) Minimum Arborescence (MSA); (d) Inter-
mediate topology between (b) and (c) - Bounded Radius Steiner Tree
(BRST); (e) Star topology; (f) Critical Sink Approach (CSA) 122

Figure 5.4: Comparison between the searched area of Dijkstra’s algorithm and
A∗ with different estimators . 126

Figure 5.5: A step of the AMAZE algorithm; (a) provides the current configu-
ration of the routing tree and the remaining nodes to be routed; (b)
provides the next configuration, after one adding a node to the tree. . 127

Figure 5.6: The reason for using multiple targets in A* instead of getting the
closest node; (b) shows the steps taken by a routing algorithm that
gets the next node using Manhattan Distance; (c) shows the steps by
getting the actual closest node instead. The final tree in (c) is smaller
than in (b). 128

Figure 5.7: Illustration of a routing situation favorable to wirelength minimiza-
tion (a) and a favorable situation for the isolation of the paths (b). . . 130

Figure 5.8: An illustration of the biasing technique and the affected target. (a)
shows one target that is excluded because it is behind the target. (b)
shows one target that is closer to the existing tree than to the routing
bounding box. (c) is an example of a target that will affect the biasing
point. In this situation, the path will go into the direction of node v. . 131

Figure 5.9: Visualization of trees (a) without biasing and (b) with biasing. 132
Figure 5.10: Histogram showing the impact of biasing on nets taken from a placed

circuit. The big majority of nets is not affected by biasing, but almost
none is affected negatively while improvements can be in the order
of 20%. 133

Figure 5.11: Effect of sharing factor on maze search. 134
Figure 5.12: Effect of path length factor on maze search. 135
Figure 5.13: The best tree for delay of (a) AMAZE, (b) DAHHK and (c) P-Trees. . 140
Figure 5.14: Delay and wire length range of the studied algorithms. Within this

range you can trade WL for delay. The worst case wire length leads
to best delay vice-versa. 141

Figure 5.15: Example of blockage handling with both AMAZE and P-Trees; (a)
and (b) refer to P-Trees solution without and with a blockage respec-
tivelly; (c) and (d) refer to the AMAZE. 142

Figure 5.16: AMAZE algorithm applied to 3D Routing. 145

LIST OF TABLES

Table 2.1: Dictionary of terms . 30

Table 3.1: Manufacturing methods for 3D-ICs sorted by granularity from
coarser to finest. 31

Table 3.2: Summary of 3D ICs technologies for integration and communication
of several tiers. Extracted from (DAVIS, W. et al, 2005) 32

Table 3.3: Summary of 3D ICs technologies for integration and communication
of several tiers. Extracted from (GUPTA, S. et al, 2005) 36

Table 3.4: Summary of collected data for 3D-Vias. 39
Table 3.5: Summary of placement algorithms and related tools 51
Table 3.6: Feature list of existing 3D placers: (A) true 3D, (B) 3D-Via trade-off,

(C) 3D-Via Upper Bound, (D) Different kinds of 3D-Via considered,
(E) Area balance considering 3D-Vias, (F) 3D-Via Placement, (G)
3D-Vias occupying cells space, (H) Concern to critical paths 57

Table 4.1: Benchmark Information of IBM Suite. 60
Table 4.2: Benchmark information obtained from real circuits VHDLs. 62
Table 4.3: Comparison of the I/O pins distribution in the tiers considering the

three studied algorithms averaged from ibm01 to 1bm18. 68
Table 4.4: Total number of 3D vias for the proposed algorithm. 69
Table 4.5: Comparison of the total number of 3D vias for the three studied algo-

rithms for I/O pin partitioning over the others. 70
Table 4.6: Maximum number of 3D-Vias for proposed algorithm. 71
Table 4.7: Comparison of the maximum number of 3D vias for the three studied

algorithms for I/O pin partitioning over the others. 72
Table 4.8: Comparison of the 3D-Vias Area Impact Considering the Three Al-

gorithms. 72
Table 4.9: The Unbalance of the I/O pins measured by the Standard Deviation . 73
Table 4.10: Experimental results for 2 tiers face-to-face 86
Table 4.11: Experimental results for 2 tiers face-to-back 86
Table 4.12: Experimental results for 2 tiers back-to-back 87
Table 4.13: Experimental results with 3 tiers disposed in face-to-face (1 micra)

and face-to-back (5 micra) respectively. C denotes the cells area on
the tier, while V denotes the area ocupied by 3D-Vias on the same tier. 88

Table 4.14: Experimental results with 3 tiers disposed in face-to-face (1 µm) and
face-to-back (25 µm) respectively. C denotes the cells area on the
tier, while V denotes the area ocupied by 3D-Vias on the same tier. . 89

Table 4.15: Experimental results with 4 tiers disposed in face-to-face, back-to-
back and face-to-face respectively with 3D-Via pitches 1µm (f2f) and
10µm (b2b). 89

Table 4.16: Experimental results with 4 tiers disposed in face-to-face, back-to-
back and face-to-face respectively with 3D-Via pitches 1µm (f2f) and
15µm (b2b). 90

Table 4.17: Experimental results with 4 tiers disposed in face-to-face, face-to-
back and face-to-back respectively with 3D-Via pitches 1µm (f2f)
and 5µm (f2b). 90

Table 4.18: Experimental results for our 3D-Via placement algorithm on easy in-
stances for 5µm and 10µm pitch. Run times are measured in seconds. 102

Table 4.19: Experimental results for our 3D-Via placement algorithm on easy in-
stances for 25µm . 103

Table 4.20: Experimental results for our 3D-Via placement algorithm on hard in-
stances for 5µm and 10µm pitch. 104

Table 4.21: Experimental results for our 3D-Via placement algorithm on hard in-
stances for 25µm . 105

Table 4.22: Experimental results obtained by running the ILP algorithm for 3D-
Via placement. 106

Table 4.23: Experimental results for 2 tiers face-to-face. Run times are measure
in seconds. 111

Table 4.24: Comparison of Lim (2 tiers), Fastplace (1 tier), Fastplace + Domino
(1 tier), Z-Place (1 tier) with Z-Place in 2 tiers face-to-face. 111

Table 4.25: Experimental results for 3 tiers face-to-face. Run times are measure
in seconds. 112

Table 4.26: Comparison of Fastplace (1 tier), Fastplace + Domino (1 tier), Z-
Place (1 tier) with Z-Place in 3 tiers face-to-face / face-to-back. Run
times are measure in seconds. 112

Table 4.27: Baseline experimental results on benchmarks with timing informa-
tion; # t denotes number of tiers, # V denotes 3D-Vias count, # CV
denotes critical 3D-Vias count, C WL denotes critical wire length . . 114

Table 5.1: Impact of the biasing technique in average for WL (measure in µm
and run time (s). Imp rows represent the improvement achieved by
using the biasing technique. 132

Table 5.2: Wire length comparison of AMAZE with optimal trees (GeoSteiners)
and other heuristics . 138

Table 5.3: Delay Comparison of AMAZE to DAHHK and P-Trees in a (300 µm
× 300 µm) area . 139

Table 5.4: Delay Comparison of AMAZE to DAHHK and P-Trees in a (100 µm
× 100 µm) area . 140

Table 5.5: Steiner delay comparison with blockages between AMAZE and P-Trees143

ABSTRACT

This thesis targets the wire length improvement of VLSI circuits considering critical
elements of a circuit. It considers the problem from two different perspectives: placement
and routing.

On placement, it explores methods to perform placement of 3D circuits considering
issues related to vertical interconnects (3D-Vias). A complete flow, starting from the I/O
pins handling, global placement, detailed placement and 3D-Via placement is presented.
The I/O pins algorithm spreads the I/Os evenly and aids the placer to obtain a reduced
number of 3D-Vias. The global placement engine based on Quadratic algorithm considers
the technology information and 3D-Via pitch to reduce wire length and balance the cells
distribution on 3D. Critical connections can be handled by insertion of artificial nets that
lead to 3D-Via avoidance for those nets. Finally, 3D-Vias are placed by a fast algorithm
based on Tetris legalization. The whole framework enforces the potential benefits of 3D-
Circuits on wire length improvement and demonstrates efficient algorithms designed for
3D placement that can be incorporated in new tools.

On routing, a new flexible Steiner tree algorithm called AMAZE is proposed, com-
bining existing and new methods that are very effective to produce short wire length and
low delay to critical elements. A biasing technique provides close to optimal wire lengths
while a path length factor and a sharing factor enables a very wide delay and wire length
trade-off. While AMAZE presents significant improvements on a industry standard rout-
ing algorithm (Maze Routers), it produces routing trees with comparable speed and beter
delay than heuristic Steiner tree algorithms such as AHHK and P-Trees.

Keywords: Placement, Routing, 3D Circuits, Critical Paths, Physical Design, Algo-
rithms, CAD, Microelectronics.

RESUMO

Algorítmos para redução do comprimento dos fios de circuitos VLSI considerando
caminhos críticos

Esta tese objetiva propor algorítmos para a redução do tamanho dos fios em circuitos
VLSI considerando elementos críticos dos circuitos. O problema é abordado em duas
perspectivas diferentes: posicionamento e roteamento.

Na abordagem de posicionamento, a tese explora métodos para realizar posiciona-
mento de um tipo particular de circuito VLSI, que são conhecidos como circuitos 3D.
Diferente de trabalhos anteriores, este tese aborda o problema considerando as conexões
verticais (chamadas 3D-Vias) e as limitações impostas pelas mesmas. Foi realizado um
fluxo completo, iniciando no tratamento de pinos de entrada e saída (E/S), posicionamento
global, posicionamento detalhado e posicionamento das 3D-Vias. A primeira etapa espa-
lha os pinos de E/S de maneira equilibrada objetivando auxiliar o posicionamento para
obter uma quantidade reduzida de 3D-Vias. O mecanismo de posicionamento global ba-
seado no algorítmo de Quadratic Placement considera informações da tecnologia e reque-
rimento de espaçamento de 3D-Vias para reduzir o comprimento das conexões e equilibrar
a distrubuição das células em 3D. Conexes críticas podem ser tratadas através da insercão
de redes artificiais que auxiliam a evitar que 3D-Vias sejam usadas em conexões críticas
do circuito. Finalmente, 3D-Vias são posicionadas por um algorítmo rápido baseado na
legalizaçãao Tetris. O framework completo reforça os potenciais benefícios dos circui-
tos 3D para a melhora do comprimento das conexões e apresenta algorítmos eficientes
projetados para circutos 3D podendo estes serem incorporados em novas ferramentas.

Na abordagem de roteamento, um novo algorítmo para obtenção de árvores de Steiner
chamado AMAZE é proposto, combinando métodos existentes com novos métodos que
são efetivos para produzir fios curtos e de baixo atraso para elementos críticos. Um técnica
de biasing atua na redução do tamanho dos fios, obtendo resultados próximos da solução
ótima enquanto que dois fatores de timing chamados path-length factor e sharing factor
propiciam melhora do atraso para conexões sabidas como críticas. Enquanto que AMAZE
apresenta melhorias significativas em um algorítmo padrão na indústria de CAD (Maze
Routers), ele produz árvores de roteamento com uso de CPU comparável com algorítmos
heurísticos de árvore de Steiner e menor atraso.

Palavras-chave: posicionamento, roteamento, circuitos 3d, síntese fisica.

23

1 INTRODUCTION

Microelectronics design automation is a very vast field of science. For half a century,
people have been researching new techniques to automate some parts of the design tasks.
Such tasks were related to massive manual work, such as placement and routing (physi-
cal design) of standard cells. As the years passed, new design steps were automated and
today the whole design flow has associated CAD tools. At the same time, new challenges
to CAD research appeared, to cope with new design and technology problems. The tech-
nology for IC fabrication shrunk dimensions systematically offering more resources for
designers. Moore’s Law (MOORES LAW: MADE REAL BY INTEL INNOVATION,
2005) says that every year doubles the transistor count. This complexity growth demands
better CAD algorithms for a successful automation of the design. At the same time, the
dimension of the components in a microchip is being measured in nanometers, leading to
many manufacturing related new challenges to be dealt by both designers and CAD en-
gineers. Nowadays, technology drives the advances on CAD as much as the tight design
requirements.

One of the most important issues imposed by recent technologies are related to circuit
wires. First, consider the design size growth while the component sizes are becoming
dramatically smaller. This scenario imposes larger, denser and more complex wiring net-
works. Secondly, consider that the delay of active elements decreased faster than the
interconnect delay. Today, interconnect resistance is extremely relevant, while it was ig-
nored in the past. For these reasons, interconnect delay is responsible for more than 50%
of a circuit delay. Thirdly, consider the manufacturing and parasitics problems on re-
cent technologies, which basically imposes strict design rules for a more regular layout.
Interconnect regularity is a more complex issue due to the randomized topology of a cir-
cuit netlist. Finally, consider circuit power, which is strongly affected by the capacitance
of circuit nodes. The large wires create considerably large capacitance amounts to be
charged or discharged. In conclusion, fast design cycle, routability1, timing, power and
manufacturability are strongly affected by interconnect complexity of a design.

In order to cope with wire related problems, the effort of reducing wire length is a
very relevant issue on CAD research. Shorter wires are faster, dissipate less power, lead
to less complex wiring networks affecting routability and manufacturability. As a very
relevant topic, wire length reduction has been largely addressed by industry and academia
research. Among the proposed techniques, new algorithms for synthesizing circuits are
one of the more effective means.

The many stages on CAD design flow can be grouped in four consecutive steps: sys-

1Routability is defined by the ability of routing algorithms to route all wires under electrical and topo-
logical restrictions

24

tem level synthesis, high level synthesis, logic synthesis and physical synthesis. System
level tasks are related to modeling of the whole system, partitioning in hardware and
software and finally synthesizing the code to a lower level according to the nature of the
application. High level synthesis is related to the hardware synthesis of a behavioral de-
scription. Logic synthesis is responsible for the boolean optimization and mapping to an
adequate gate set that can be implemented in the physical level. Physical synthesis is re-
sponsible for the translation of a netlist into a viable silicon implementation that respects
all electrical issues to guarantee that the circuit will run properly considering the design
specifications.

Physical synthesis step is a very complex step since it is strongly affected by the
nanometer design constraints. It is composed by subtasks as follows. In a cell based
methodology, the gates should be efficiently sized and the nets buffered in order to balance
capacitive loads and driving strength to meet timing constraints. These gates must be
properly placed in the die, which lies into the placement problem. As these gates should
be connected by wires, placement stage determines the sizes of all the wires and for this
reason it is a very critical stage in the CAD flow. After placement, the routing problem
connects the circuit elements with metal wires. The reader can refer to (SHERWANI,
1998) for more basic information of Physical Design subtasks.

Physical design is directly responsible for handling the interconnect related issues and
must work on wire length optimization. Nowadays, there is a huge amount of work on
wire length driven placement and routing algorithms. However, with the constant grow-
ing design complexity together with constant technology shrinking, there is a constant
demand for new solutions. Particularly, timing and power optimization are more recent
problems that impact significantly placement and routing, demanding constant update of
algorithms. Timing and power analysis are able to identify critical components of the
circuit that could receive special concern and consequently shorter wire length than the
circuit average. The timing-driven and power-driven placement and routing algorithms,
largely studied in the literature, are examples of such methodologies.

Technology shirking used to be one important tool to improve delay and power of
VLSI circuits. Today, wire related problems tend to increase dramatically at each new
technology node. Note that the size of elements in a VLSI circuit are close to atomic
dimensions. This scenario suggests the research for alternative solutions.

Recently, the 3D circuit technologies were proposed. The 3D circuits, that are start-
ing to be a reality in the industry, arrive as a possible improvement to the interconnect
paradigm. It is expectable that arranging the chip components in a 3D space can re-
duce the interconnect length between the components. In fact, It has been demonstrated
by some recent work ((DAS, S. et al, 2004), (ABABEI; MOGAL; BAZARGAN, 2005),
(DAVIS, W. et al, 2005), (BANERJEE, K. et al, 2001) and many others that 3D circuits
can potentially reduce wire lengths. It is also shown that the wire length improvement
is proportional to the circuit size (OBENAUS; SZYMANSKI, 1999). However, timing
improvement is still an open issue. It is reasonable to consider that a 3D implementation
of a design can improve timing compared to a 2D implementation. To achieve that, new
algorithms and theoretical models must be developed.

There is massive interest from both industry and academia in 3D integration issues.
Major companies like IBM, Intel, Samsung, Micron, Cadence and Infineon are some
examples. There are also some very interesting work coming from startups, such as Zip-
tronix, Xanoptix and Tezzaron. From Academia, there is strong initiative from MIT, Cor-
nell University, University of Minessotta, Stanford University, IMEC, Purdue University

25

and Tohuku University. There exists research on 3D integration from technology perspec-
tive (such as copper bonding, SOI stacked layers, diffusion soldering, and others), design
perspective (stacked memories, commercial solutions for stacked processor and memory)
and CAD perspective (new algorithms and tools). More details can be found at Tezzaron
home-page (3D ICS INDUSTRY SUMMARY, 2005) (TEZZARON HOMEPAGE, 2005).
They provide a wide range picture of companies, universities and initiatives related to 3D
ICs.

The 3D circuits open a huge research space for CAD algorithms, specially in the phys-
ical design level. New algorithms must be provided in order to handle 3D arrangement
of circuit elements and to take full benefit of technology while considering new issues
caused by the 3D integration. Today, the research in this field is still on the early years.
Consider the 3D placement problem, for instance. The richness and variety of techniques
that led to significant improvement on 2D circuit placement over the decades will be able
to deliver similar maturity on the 3D placement field.

This thesis targets the wire length improvement of VLSI circuit considering critical
elements of a circuit. It considers the problem from two different perspectives: placement
and routing. On placement, it explores methods to perform placement of 3D circuits con-
sidering issues related to vertical interconnects (3D-Vias - see section 2.3 while searching
for wire length improvement. A very significant volume of new methods and contribu-
tions are presented in the text and fully validated in a tool called Z-Place. On routing, a
new flexible algorithm called AMAZE is proposed, combining existing and new methods
that are very effective to produce short wire length and low delay to critical elements.
While AMAZE presents significant improvements on a industry standard routing algo-
rithm (Maze Routers), it produces routing trees with enough flexibility that enables it to
be used on several applications such as wire length estimation (Steiner tree, timing driven
Steiner tree), buffering, global routing. It could potentially be applied to 3D routing as
well.

The text is organized as follows. Chapter 2 summarizes the contributions of the the-
sis for a better and objective reading of the text. Chapter A.2 presents the 3D circuits
and discusses how to take advantage of the technology to produce short wire lengths
considering existing research. Chapter A.3 presents Z-Place algorithms, containing the
contributions of this thesis to the 3D placement community. Chapter 5 reviews existing
routing algorithms relevant to the scope of this thesis on flexible algorithms as well as
presents AMAZE algorithm and properties, containing the contributions of this thesis to
the routing community. Finally, chapter A.5 presents a summary of the conclusions of the
PhD research that appear throughout the text on “partial conclusion" sections.

26

27

2 SUMMARY OF CONTRIBUTIONS

For a better reading of this text, this chapter presents a summary of the new contribu-
tions presented all over the text. This thesis presents algorithms for wire length improve-
ment on VLSI circuits with concern to critical paths. The algorithms basically handle two
distinct problems: cell placement and routing.

With the advent of 3D circuits and the demand for placement solutions that are able
to effectively take advantage of its potential, the cell placement algorithms on this thesis
were designed to handle 3D placement. The algorithms represent a complete flow for
getting a block of cells and placing them fully legally into various tiers of active area,
minimizing wire length. In summary, the placement flow consists of: a method to han-
dle I/O pins, a method to place cells globally while planning 3D-Vias at the same time,
detailed placement algorithms, a method to place 3D-Vias and finally a method to handle
critical connections into 3D avoiding them to take expensive 3D-Vias. At each step, there
are algorithms and partial conclusions presented in the text.

In the routing side, a fast and flexible algorithm is presented. It combines existing and
new methods that are very effective to produce short wire length and low delay to critical
elements.

2.1 3D-Placement

2.1.1 Z-Place flow

Z-Place performs the tasks of: I/Os handling (section A.3.1.2), global placement (sec-
tion A.3.1.3), detailed placement, 3D-Vias placement (section A.3.1.5). The detailed
placement is basically a windowed Threshold Accept (DUECK; SCHEUER, 1990) im-
provement within each tier. The planning of inter-tier connections (3D-Vias) is performed
at the global placement as well as the handling of critical wires (section A.3.1.4).

2.1.2 I/O Pins Handling

An algorithm for I/O pins partitioning and placement targeting 3D circuits is proposed
(HENTSCHKE; JOHANN; REIS, 2006). The method starts from a standard 2D place-
ment of the pins around a flat rectangle and outputs a 3D representation of the circuit
composed of a set of tiers and pins placed at the four sides of the resulting cube. The
proposed algorithm targets a balanced distribution of the I/Os that is required both for
accommodating the pins evenly as well as to serve as an starting point for cell placement
algorithms that are initially guided by I/O’s locations, such as analytical placers. More-
over, the I/O partitioning tries to set pins in such a way that it favors the cell placer to
reach a reduced number of 3D-Vias. The method works in two tasks: first partition the

28

I/Os considering the logic distances as weights; second, fix the I/Os and perform par-
titioning of the cells. The experimental results show the effectiveness of the approach
on balance and number of 3D-Vias compared to simplistic methods for I/O partitioning,
including traditional min-cut algorithms. Since our method contains the information of
the whole circuit compressed in a small graph, it could actually improve the partitioning
algorithm at the expense of more CPU time.

2.1.3 Global Placement

Under a horizontally sliced cube model, the task of the global placement is to propose
a placement of all cells within one of the available tiers; a second task is to perform a
reasonable 3D-Via planning considering the characteristics of the target technology.

The main placement engine is analytic targeting at Quadratic wire length minimiza-
tion. Our placer has similar features to the one from (VISWANATHAN; PAN; CHU,
2005) for 2D circuits. We apply 3D Cell Shifting in order to spread the cells that are ini-
tially placed in invalid and overlapped coordinates concentrated at the center of the cube.
The 3D cell shifting enforces a true 3D behavior of Z-Place.

Global placement has constraints related to 3D-Vias feasibility and area balance. The
Z-Cell Shifting methodology (HENTSCHKE, R. et al, 2006) sorts the cells and obtains
threshold points considering all 3D-Vias in order to assign groups to tiers. Finally, an
iterative refinement stage provides a greedy heuristic that optimizes linear 3D wire length
while controlling the 3D-Vias to be within the upper bound (HENTSCHKE, R. et al,
2007a).

Experimental results demonstrated that by manipulating this upper bound we can play
with a trade-off between number of 3D-Vias and 3D wire length. The trade-off is trig-
gered by the 3D-Via’s area; Z-Place adapts itself to the technology, improving the wire
length only if there is available space for that. We studied the trend of adding more tiers
against 2D solutions provided by Fastplace tool (VISWANATHAN; PAN; CHU, 2005)
and verified that our best efforts (with small pitch 3D-Vias) produces improvements of
15% for 2 tiers, 20% for 3 tiers and finally 27% for 4 tiers in average.

2.1.4 Handling Critical Paths

We exploit the problem of keeping critical paths with no 3D-Via connections. There
are several issues on 3D-Vias that would make them not attractive to critical wires, such
as large capacitance and resistance related both to the 3D-Via itself as well as the wires
and vias needed to connect to it, crossing all metal layers.

In order to keep the cells on the same critical path together, an artificial pin connecting
all cells in a critical path is inserted in the netlist. The connection has a high weight for
the Z axis in contrast with a low (or zero) weight for X or Y . Experimental results on a
benchmark set of 14 circuits placed into 2, 3 and 4 tiers demonstrated the effectiveness of
the approach by reducing the number of critical 3D-Vias from several hundreds to zero in
all benchmarks. The total wire length and number of 3D-Vias were only slightly affected
(0.03% and 2% in average).

2.1.5 3D-Via Placement

3D-Vias are assigned to layers between the circuit tiers (HENTSCHKE; REIS, 2007).
The problem of 3D-Vias placement consists of placing the 3D-Vias with no overlap with
other 3D-Vias in the same layer. Since cell placement is fixed, positions inside the net

29

bounding box are preferred and wire length minimization is used as target function. We
present a heuristic based on the Tetris legalization approach (KHATKHATE, A. et al,
2004) for the 3D-Via legalization. Our experimental results show that the algorithm can
accommodate the 3D-Vias in such a way that wire length overhead is close to zero in easy
instances and still very low for harder instances (in most of the cases it is less than 0.1%
and it is less than 5% in all cases). Compared to an existing approach (YAN, H. et al,
2005), it obtains slightly better results with an advantage of orders of magnitude on run
time.

2.2 Steiner Routing with AMAZE

AMAZE (HENTSCHKE, R. et al, 2007b) addresses the problem of generating good
topologies of rectilinear Steiner trees using path search algorithms. On run time, clever
usage of heuristic search methods and a constant time insertion data structure to store the
elements to be routed leads to a very fast algorithm (415 runs on 7 pin nets consumed
0.94s).

A biasing technique that favors wire sharing with future path searches proposed for
wire length improvement produces trees that are within 2% from optimal topologies in
average. By introducing a sharing factor (marking some wires prohibited for sharing)
and a path-length factor (reducing driver-to-sink distance) we show how to trade-off wire
length for delay. Our experimental results show that AMAZE is more effective to optimize
delay to critical sinks than state-of-the-art heuristics for Steiner trees, such as AHHK
(from 26% to 40%) and P-Trees (from 1% to 30%) while keeping the properties of a
routing algorithm. We also analyzed the ability of AMAZE to handle blockages and
verified experimentally that AMAZE produces tree with better delay to the critical sinks
than P-Trees from 6% (5 pin nets) to 21% (9 pin nets).

While AMAZE presents significant improvements on a industry standard routing al-
gorithm (Maze Routers), it produces routing trees with enough flexibility that enables it to
be used on several applications such as wire length estimation (Steiner tree, timing driven
Steiner tree), buffering, global routing.

2.3 Dictionary of terms

Some terms used throughout the text are not accurately used in the existing literature
since they might have different meanings. In order to precisely define the terms, table 2.1
presents basic definitions as they are used in this thesis.

30

Table 2.1: Dictionary of terms
3D circuits A VLSI Circuit with multiple layers of active area such that

they are stacked in the vertical dimension.
3D-Vias Any connection between a pair of adjacent tiers

Bulk Every VLSI chip is composed by a very thick silicon block on
the back side; the active area is built in a thin slice of the silicon,
composing the top of the chip. Metal layers are deposited on
the top of the active area. The Bulk is exactly the silicon block
that sustains the chip.

Critical wires Some wires in the circuit must receive an special concern of
the tool because they are part of a timing (or power) critical
region of the circuit. Usually they receive an extra weigh or
special algorithm such that their length will be smaller than
non-critical wires.

I/O Pin I/O Pin designate the I/O interface of a block in the circuit. The
I/O pins are placed on the boundary of the block and serves the
purpose of communicating the block with other blocks. The
layout of an I/O pin would be simply a small metal peace.

I/O Pad An I/O Pad is the interface of a chip with the external world.
An I/O Pad can be placed anywhere in the chip, but is usu-
ally placed in the boundaries. The layout of an I/O Pad is a
big metal block (big enough to connect to external wires) with
some circuitry (buffers) to interface the outside world currents
with inner circuit currents

Integration Strategy The style of integration between a pair of adjacent tiers. It can
be either face-to-face, face-to-back or back-to-back. A tier has
an active layer and metal layers on the top. The f̈aceöf a tier is
the metal layers, while the active area is the b̈ack.̈

SOI SOI is a manufacturing technology that separates the silicon
substrate into two blocks with a buried insulator layer. The bot-
tom silicon that does not have any active functionality; it just
serves the purpose of sustaining the chip structure (otherwise it
could break). The silicon in the top contains the transistors and
other active elements. It is very thin compared to the bottom
silicon.

Tier An active layer of the 3D VLSI circuit
Through Vias An special type of 3D-Via that is used only for face-to-back or

back-to-back integrations. The Through Vias dig a hole in the
active area and go though it to connect to a tier (or a pad) on
the back side.

Via Via is used in the text to designate the regular via that connects
a metal layer with an adjacent metal layer.

31

3 3D CIRCUITS AS A NOVEL DESIGN PARADIGM

A 3D circuit can be understood as a VLSI chip with stacked active layers called tiers.
Figure A.1 provides a didactic view of a 3D Chip with intercalated active layers and metal
layers. This organization is subject to the integration strategy (see section 3.2). More
details on the technologies, how they are manufactured and impacts on design method-
ologies will be presented are provided in the following sections.

Active Area (transistors)

Metal Layers

Active Area (transistors)

Active Area (transistors)

Metal Layers

Metal Layers

Figure 3.1: A didactic picture of 3D circuit, tiers of active area and metal layers

3.1 3D Assembly

This section is written based on recent publications from (GUPTA, S. et al, 2005) and
(PATTI, 2006a). More details can be retrieved from the referred papers.

According to (PATTI, 2006a), the assembly of 3D Chips is performed in different
integration granularities. This methods are summarized in table 3.1, from the coarser
grain to the finest possible grain.

Chip stacking is simply the vertical stacking of fully pre-manufactured chips. The
chips have regular buffered I/O connections integrated usually by wire bonding (DAVIS,
W. et al, 2005). Since all inter-chip communication must pass through the I/O buffers

Table 3.1: Manufacturing methods for 3D-ICs sorted by granularity from coarser to finest.
Chip Stacking

Die-on-Wafer Stacking
Wafer-Level Stacking
Transistor Stacking

32

Table 3.2: Summary of 3D ICs technologies for integration and communication of several
tiers. Extracted from (DAVIS, W. et al, 2005)

Integration Technology Communication Technology Figure Index
Wire Bonded Wires outside the chip figure 3.2.(a)
Microbump Routing on 3D package figure 3.2.(b)

Face-to-face connection figure 3.2.(c)
Contactless Capacitive connection figure 3.2.(d)

Inductive connection figure 3.2.(e)
Through Via Bulk figure 3.2.(f)

SOI figure 3.2.(g)

going outside of the chip, this methodology does not provide any advantage to circuit
performance and power, reducing only the area occupied by the chip on the board. This
technique is applied for cell-phones and other portable devices.

Die-on-wafer stacking is performed by stacking individual tested dies into a host
wafer. Positions of the host wafer can be also pre-tested. The individual dies are placed
using a pick-and-place equipment, that is a bottleneck for the cost, quality and size of
inter-chip communication. Patti (PATTI, 2006a) reports that the placement misalignment
today is about 10 µm. Depending on the type of 3D-Via used to communicate the dies
(via types are summarized in section A.2.1), this method can provide higher integration
density compared to chip stacking. Currently, several startup companies announced their
technology for 3D integration based on die-to-wafer stacking, such as ZyCube, Ziptronix
and Xan3D (PATTI, 2006a).

Wafer-level stacking bonds entire wafers into a stack. Tezzaron is one company
working with this kind of integration. Compared to die-on-wafer stacking, Tezzaron’s
technology (GUPTA, S. et al, 2005) achieves better alignment (1 µm) and a more planar
surface, leading to more integrated communication.

Both die-on-wafer and wafer-level integration strategies are used commercially in the
present days. Finally, the transistor stacking methodology is an ideal integration of ac-
tive layers fabricated in the same wafer, dismissing any equipment for wafer alignment.
Today, those devices cannot be fabricated mainly due to high temperature processes dur-
ing the wafer manufacturing. Basically, the technology for fabricating high-performance
transistors demands temperatures that would destroy any copper or aluminum used to
manufacture metal layers bellow it. There is ongoing research in order to solve this issue
and this technology is promising in the future.

3.2 3D-Vias Technologies and Integration Strategies

This section studies the ways of integrating two or more tiers into a single chip and
how they can communicate. According to (DAVIS, W. et al, 2005) the integration and
communication technology can be classified as shown in table 3.2 and illustrated by figure
3.2 (extracted from (DAVIS, W. et al, 2005)).

The wire bonded technology was already mentioned in the previous section at the
description of chip stacking. Tiers of different sizes are stacked and I/O Pads are placed
in the boundary of the tiers in such a way that they are not blocked by the upper tier. The
main disadvantage of this technology is that wires are out of the chip scope, so they must
be buffered and the pads consume very large areas.

33

Microbump technology provides gold micro contacts (bumps) placed in the top metal
layer (sometimes the top two metal layers may be blocked for other routing). For this
technology, chips can be stacked face-to-back and the package itself can provide rout-
ing space (3D package). On the other-hand, stacking the chips in a face-to-face fashion
provides simpler (and consequently better) routing requiring no wiring channels in the
package. The tiers are placed in such a way that their respective bumps are physically
connected. Face-to-face integration is limited to two tiers.

The contactless technologies can be summarized as capacitive and inductive coupling.
The capacity coupling technologies require the chips to be placed face-to-face because the
contacts have a very tight proximity constraint. Inductive coupling is usually integrated
face-to-back.

Finally, Through Vias consists of digging a hole through the tier for face-to-back
comunication. Sometimes, such as in MITLL 3D technology, the first two tiers are in-
tegrated face-to-face while the rest of the tiers are stacked face-to-back. Even two chips
connected face-to-face will need face-to-back communication with the I/O pads, as re-
viewed in the next section. Due to silicon polishing issues, the traditional Bulk technolo-
gies require a much larger pitch compared to SOI processes for 3D, such as in the MITLL
(more details are provided in section 3.3.2). But still in the face-to-face integration, the
technology for digging the hole in the oxide and depositing metal is similar.

Figure 3.2: Illustration of the integration and interconnect technologies: (a) wire bonded;
(b) microbump in a 3D-package; (c) microbump face-to-face; (d) contactless with buried
dumps; (e) contactless with inductive technology; (f) Through Vias with Bulk; (g)
Through Vias with SOI. Extracted from (DAVIS, W. et al, 2005).

3.3 Useful Technology Details of 3D-Vias

For simplicity, for now on, we call 3D-Via every connection between a pair of adjacent
tiers, applicable for any kind of technology.

A technology for 3D-Circuit fabrication is based on: a methodology for assembling
the stack (chip-level, wafer-level, etc...); a polishing technique to improve integration; a

34

technology for aligning the chips; a technology for bonding the chips together (organic
glues, metal-to-metal, etc.). Today, a variety of those technologies are found, impacting
geometry, routing and electrical characteristics of 3D-Vias. For instance, 3D-Via pitch is
strongly affected by the quality of the alignment of the stacked wafers. Assuming that
those methodologies are currently under research, we can expect that 3D-Vias technolo-
gies will improve and provide smaller pitches in the near future.

Two technology geometry numbers have a very important impact on chip design and
CAD: 3D-Via pitch and length. The pitches determine the amount of 3D-Vias that can
be effectively used within a certain area. It also determines how close the vertical con-
nections can be placed. 3D-Via length is important to compute the effective wire length.
More importantly, in order to connect to a 3D-Via, a wiring network that goes through all
the metal layers. The length of this network should be accounted in wire length. Note
that this distance goes through a number of metal layers, depending whether the integra-
tion is face-to-face or face-to-back. In a face-to-face integration, a connection between
adjacent tiers must go though twice the number of metal layers of a chip (or the sum
the number of metal layers in both chips); in the face-to-back integration, only the metal
layers of one chip must be traversed. The metric 3D wire length is used to compute wire
length accounting also for the Z axis. It can be computed simply by adding the usual Half
Perimeter (SHERWANI, 1998) to the effective distance on the Z axis.

Routing characteristics of 3D-Vias are also very important to the design of 3D VLSI
chips. Some 3D-Vias technologies demand blocking of metal layers; that can vary from
only the top metal layers to the whole set. Still, even if the 3D-Via requires only the top
layer, some routing must be done to connect it to a transistor.

Electrical characteristics are very important in order to compute delay and power con-
sumed by those connections. Obviously that high capacitances and resistance could po-
tentially invalidate the use of 3D-Vias for critical connections in the circuit; however, even
in favorable scenarios, inter-tier connections still have to go through all the metal layers
and regular vias, which is also costly.

3.3.1 Tezzaron Technologies

As mentioned above, Tezzaron Technologies are based on wafer level assembly. The
3D-Via technology can be either Through Vias and Microbump contacts integrated at the
wafer level. The wafers are bonded in a metal-to-metal methodology. Tezzaron provides
many internet links, articles and information on their website (TEZZARON HOMEPAGE,
2005).

Tezzaron connects tiers either integrated in face-to-face or face-to-back. Every tier
of the 3D chip contains Copper Pads that are used by all inter-tier connections. For the
face-to-face connection, the direct physical contact of the Copper Pads serves as the 3D-
Via connecting the devices. For face-to-back connections of tiers t1 and t2, the Copper
Pad in tier t1 must be connected to a Through Via that goes through the bulk of t2; the
ending point of the connection on t2 will depend on the technology being used. Tez-
zaron currently has two Through Via technologies: Super-Via and Super-Contact (both
are trademarks of Tezzaron) (PATTI, 2006a)(GUPTA, S. et al, 2005).

The Super-Via technology builds an entire piece of metal that connects the Copper Pad
of tier t1 to the Copper Pad of tier t2, passing though all the metal layers. For this reason
it obviously blocks routing in all metal layers in that particular area. Figure 3.3 shows a
picture of the actual chip provided by Tezzaron. The picture shows 3 wafers integrated in
face-to-face (wafers 1 and 2) and face-to-back (wafers 2 and 3). The picture also provides

35

some data on the vertical distances of the chip. This data will be used later to build table
A.1 in section A.2.1. Note that face-to-face communication is done by direct physical
contact of Copper Pads similarly to the Microbump technology, while the face-to-back
connections make use of Super-Vias.

Observe the following facts from figure 3.4:

• Wafer 1 is connected to wafer 2 in a face-to-face fashion. The 3D-Vias connecting
them are simply direct contact of Copper Pads.

• Wafer 2 and 3 integration is face-to-back. The connection between them (see the
only connection on the right side of the picture) is accomplished by a Super-Via
that connects the Copper Pad of Wafer 3 to the Copper Pad of wafer 2.

• Wafer 1 is connected to I/O Pads that are placed on the back-side of its Bulk (in a
back-side metal layer). This connection can also be considered face-to-back and is
done with Super-Vias.

• Wafer 3 is also connection to I/O Pads with Super-Vias.

Figure 3.3: A picture of 3D Stacked circuits from Tezzaron technology using Super-Vias.
Extracted from (TEZZARON HOMEPAGE, 2005).

The second generation of Tezzaron process introduced the Super-Contact technology,
which does not use all metal layers above the contact immersed in the active area. Figure
3.4 shows another microscopic picture of an actual Tezzaron chip with Super-Contact.
The upper right corner of the picture displays a Super-Contact. It can be clearly verified
that the contact does not go through the metal layers, providing that empty space to route
other nets. Note also that the face-to-face communication is identical to the one in the
Super-Vias.

Observe the following facts from figure 3.3:

• There are two wafers connected face-to-face.

• There is one face-to-back connection to an I/O Pad. This connection (on the right
upper side of the picture) stops at metal one, leaving routing space available on the
upper metal-layers.

36

Figure 3.4: A picture of two Stacked circuits from Tezzaron technology using Super-
Contacts to connect to I/O pins placed on the back-side of the wafer Bulks. Extracted
from (PATTI, 2006a).

Table 3.3: Summary of 3D ICs technologies for integration and communication of several
tiers. Extracted from (GUPTA, S. et al, 2005)

Gen I: Gen II: Face-to-face
Super-ViaTM Super-ContactTM (Projected)

Size 4.0 µm × 4.0 µm 1.2 µm × 1.2 µm 1.7 µm × 1.7 µm
(0.75 µm × 0.75µm)

Minimum Pitch 6.08 µm < 4 µm 2.4 µm
(1.46 µm)

Feed-Through 7 fF 2-3 fF < <
Capacitance

Series Resistance <0.25 Ω <0.35 Ω <

Figure A.2 provides a didactic drawing of the Tezzaron integration with Super-
Contacts and Copper Pads connected face-to-face. It was made based on the Tezzaron
files and on Patti’s paper (PATTI, 2006a).

Table 3.3 provides a summary of the integration capability and electrical characteris-
tics of current Tezzaron technologies for face-to-back connections (Super-Via and Super-
Contact) and face-to-face ones. It also demonstrates a projection to shrink the size of the
face-to-face Copper Pads. The table is extracted from Tezzaron documentation (GUPTA,
S. et al, 2005).

3.3.2 MITLL 3D technology

The MITLL 3D technology (SUNTHARALINGAM, V. et al, 2005) (DAS, S. et al,
2004) provides similar integration possibilities compared to Tezzaron, building a stack of
tiers where the first pair is face-to-face and all others are face-to-back. It is based on SOI
wafers that provides a very good pitch for the Through Vias (DAVIS, W. et al, 2005) as
summarized in the next section.

37

3rd wafer
Super-Contact

metal 1
metal 2

metal n

......

1st wafer

2nd wafer

metal 1
metal 2

metal n

......

The Super-Contact serves
as a face-to-back connection of

the 3rd to the 2nd wafer

The first two wafers are
connected face-to-face

metal 1

metal n
......

metal 2

Super-Contact

back-side metal

back-side metal

I/O Pad

Figure 3.5: Tezzaron Technology with Super-Contacts and face-to-face connection.

Davis (DAVIS, W. et al, 2005) provides a didactic picture of the MITLL technology
that was extracted to figure 3.6.

Suntharalingam et. al (SUNTHARALINGAM, V. et al, 2005) develops an image cap-
turing chip for the MITLL 3D technology. They stacked the photodiodes assembled in one
tier with the image processing modules on the second tier. The tiers are integrated face-to-
face, as demonstrated in the picture extracted from their paper to figure 3.7. It seems that
face-to-face connections are more expensive than Tezzaron’s because they need a straight
connection blocking all metal layers, while in Tezzaron face-to-face connection blocks
only the top layer.

Das et. al (DAS, S. et al, 2004) describes in detail the technology used to manufacture
3D chips as well as CAD tools. Since MITLL technology is based on SOI technology,
the backside silicon can be removed; this way the thickness of the active area is reduced
to the thickness of active silicon (0.1 µm) plus the buried insulator (0.4 µm).

38

Figure 3.6: A 3D Model of the MITLL process, showing two inter-tier vias and one
transistor in each tier. Extracted from (DAVIS, W. et al, 2005).

Figure 3.7: Cross-sectional picture of the 3D-Chip highlighting the 3D-Vias connecting
them face-to-face. Extracted from (SUNTHARALINGAM, V. et al, 2005).

3.3.3 Summary of Important Data From the Studied Technologies

In this section, some important data for the development of the thesis is summarized.
3D-Vias are classified according to the following characteristics:

39

Table 3.4: Summary of collected data for 3D-Vias.
3D-Via Integration Tier 3D-Via Occupy

Strategy Pitch Pitch Active
Area

Tezzaron (Copper Pads) face-to-face 16-20 µm 2.4 µm no
Tezzaron (Projected) face-to-face 16-20 µm 1.46 µm no

Microbump face-to-face 16-20 µm 10-100 µm no
Contactless (Capacitive) face-to-face 16-20 µm 50-200 µm no

MIT (Copper/Tantalum Pads) face-to-face 16-20 µm 5 µm no
TSV face-to-face face-to-face 16-20 µm 0.5 µm no

Tezzaron Super-ViaTM face-to-back 15-20 µm 6.08 µm yes
Tezzaron Super-ContactTM face-to-back 11-15 µm < 4 µm yes

Microbump 3D Package face-to-back 11-15 µm 25-50 µm no
Contactless Inductive face-to-back 11-15 µm 50-150 µm yes

MITLL Through Via (SOI) face-to-back 9-12 µm 5 µm yes
Through Via (regular Bulk) face-to-back 11-15 µm 50 µm yes

Back-to-back 3D-Via back-to-back 6-8 µm 15 µm yes

• The strategy used to integrate the tiers connected by the 3D-Via, that can be either
face-to-face, face-to-back or back-to-back;

• The distance between adjacent tiers integrated by the 3D-Via (tier pitch);

• The pitch of the 3D-Via;

• Whether the 3D-Via occupies active area or not;

Given the thickness of the active area on each tier thicknessactive and the thickness of
the metal layers thicknessmetals the distance between adjacent tiers ti and ti+1 (tier pitch)
will depend if they are integrated face-to-face, face-to-back or back-to-back , acording
to equation 3.1. Patti (PATTI, 2006a) shows that on the Tezzaron technology, the active
area on the edge tiers is thicker than on intermediate ones. This fact is ignored here for
simplicity, since it will affect only the connections to the I/Os.

distancef2f (ti, ti+1) = 2× thicknessmetals (3.1)
distancef2b(ti, ti+1) = thicknessmetals + thicknessactive

distanceb2b(ti, ti+1) = 2× thicknessactive

Thickness of a single metal layer is around 1 µm (PATTI, 2006b); the thicknessmetals
can be approximated to the number of metal layers. Since it is hard to obtain thickness
numbers from published works, the above equations are used to roughly obtain the tier
pitch. A list of 3D-Vias and its characteristics is presented in table A.1.

We can observe that there is a variety of pitches while some 3D-Vias occupy active
areas. Obviously that the best 3D-Via would be the one with the smallest pitch, with
smallest tier pitch and not occupying active area. However, this combination is usually
not available; let us analyze each variable individually:

40

• 3D-Via pitch is possibly the most important aspect to be considered, since a small
pitch allows us to communicate more, have less restrictions to place 3D-Vias and
possibly achieve a better design in terms of wire length and performance. From this
perspective, the face-to-face connections are very attractive. For face-to-back, the
Super-Contact from Tezzaron and MITLL SOI process are bellow 5 µm which is
also quite acceptable to high communication demands, since it is smaller than most
logic gates.

• Tiers pitch is used to compute the vertical wire length (in the Z axis).

• All microbump and face-to-face 3D-Vias do not consume active area, which is a
very important aspect. Among them, face-to-face are the best choice considering
their pitch requirements;

As a partial conclusion, it is quite understandable that face-to-face connection is the
best choice considering the analyzed data, but it is limited to two tiers connection. For
this reason, both MITLL and Tezzaron offer a face-to-face integration of the first two
tiers while the rest are kept face-to-back. It would be beneficial to have a back-to-back
integration because it would allow more face-to-face integrations in a stack.

It is reasonable to expect improvements on wire length (and delay/power as a conse-
quence) of a 3D stack, specially in face-to-face where the 3D-Vias do not consume active
area and have a better pitch. Obviously that 3D technology will impact design of chips;
new design issues must be considered and actually the existing design methodologies
must change to a new paradigm.

3.4 Potential advantages of 3D VLSI Circuits

By either analytical analysis (BANERJEE, K. et al, 2001) (DAS; CHAN-
DRAKASAN; REIF, 2004a) (RAHMAN; REIF, 2000) (RAHMAN; REIF, 2001) and
practical experimentation (DAVIS, W. et al, 2005) (DAS, S. et al, 2004) (KAYA, I. et
al, 2004) (ABABEI, C. et al, 2005), it is well known that 3D circuit technology has the
potential of providing many improvements to VLSI circuits, including:

• Largest wires reduction. It is very clear that wire length can reduce going to 3D.
First let us study the case of the largest circuit wire. The maximum possible wire in
a 3D chip equals to the half perimeter of the whole chip, which is width+ height.
On 3D, both width and height will go down since active area will be partitioned
into two or more tiers. Davis (DAVIS, W. et al, 2005) reports that the largest wires
are the ones with more shrinkage. Das also demonstrated this by experimental
results (DAS, S. et al, 2004).

• Average wire length reduction. It is a conclusion of practically every paper on 3D
circuit that the average wire length goes down. Das and Reif, for instance, report
improvements in the order of 15% to 30% with 2 tiers from 20% to 50% with 5
tiers. This study is also subject of this thesis; experimental results are provided in
section 4.10.

• Dynamic Power reduction. It is natural to consider that reducing overall wiring
capacitance, power will go down. In fact, (RAHMAN; REIF, 2001) studied the re-
sulting power dissipation in 3D circuits due to shorter connections and shorter clock

41

tree. It is well known that clock trees are responsible for a large chunk of the total
power dissipated in a circuit. Considering both reductions, Rahman and Reif con-
cluded that up to 22% power reduction can be achieved by migrating to 3D. Later,
Das, Chandrakasan and Reif studied the same issue under performance-driven de-
sign (DAS; CHANDRAKASAN; REIF, 2004b) achieved power improvements in
the order of 30% to 50%. Davis (DAVIS, W. et al, 2005) also discussed the issue
of power on interconnects and clock, highlighting that on 3D-circuits we might use
less repeaters (reduced short-circuit power); on his particular experiments a 23%
improvement in total power was achieved.

• Timing improvement. Benefits from timing are expected because of shorter connec-
tions. Some papers already demonstrated this potential experimentally (ABABEI;
MOGAL; BAZARGAN, 2005). Rahman and Reif (RAHMAN; REIF, 2000) stud-
ied this matter analytically with a critical path modeling; they reported that clock
frequency can go up very significantly (by 50% to 100%) with the migration from
1 to 2 tiers. However, due to limited routing resources and 3D-Via issues, they
reported that timing starts to deteriorate and possibly go back to the original value
with 4 tiers and up.

• Chip area. Rahman and Reif (RAHMAN; REIF, 2000) studied the chip area as a
function of wiring requirements. He demonstrated that chip area can dramatically
reduce with the addition of active tiers.

All the potential advantages must be explored with proper CAD tools that must be
able to define a new design paradigm solving new issues. The following section present a
study of existing works on design impact of 3D circuits.

3.5 Impacts on Design

With the vertical stacking of chips, wire length can be significantly affected. For this
reason, as studied in section A.2.2, there is a significant potential to be explored with 3D
fabrication. On the other hand, the 3D fabrication opens a new design and CAD paradigm,
specially on the physical design phase. The existing methodologies are not trivially ex-
pansible to 3D for two reasons: first, the circuit optimization rely on different tasks that
includes placing logically neighbor elements in different tiers; second, the new design
paradigm imposes new issues to be considered, such as thermal, 3D-Vias constraints and
Yield. Existing methodologies for physical synthesis must be reviewed.

First, on section 3.5.1, we study the thermal issue, that comes from the fact that 3D
provides more density and less temperature dissipation capability. Later, section 3.5.2
presents another limiting factor: yield. Finally, section 3.5.3 discusses the limitations
related to the communication between tiers, that are accomplished by 3D-Vias.

All issues lead to the development of new methodologies for physical design of 3D
chips. Section A.2.2.1 presents methodologies which differs from the granularity of their
integration whose impact on design is studied.

3.5.1 Thermal Issues

The vertically stacked multiple active layers cause a significant increase on power den-
sity and, as consequence, high temperature spots. At the same time, 3D ICs are composed

42

of insulating material between the active layers, complicating significantly the heat dissi-
pation. For instance, the thermal conductivity for the insulating material (epoxy) kepoxy is
0.05W/mK, while the ksilicon is 150W/mK and Kcopper is 285W/mK.

Besides reduced reliability, higher temperatures lead to performance decrease and
leakage current increase. Both Tezzaron and MITLL technology mentions that the limit-
ing factor for stacking chips is the heat focus. It is easy to understand that intermediate
tiers form islands of heat, since there is no good thermal conductor that can lead the con-
centrated heat to the outside of the chip. It is well known, though, that Through Vias can
improve the heat dissipation significantly, since they are composed of metal connections
that go though insulator layers. One of the most important techniques is the insertion of
Thermal Vias (GOPLEN; SAPATNEKAR, 2005) (HUA, H. et al, 2006) that consists of
carefully placed dummy vias (not connected to the circuit netlist) that serves only to the
purpose of heat dissipation.

Another important heat dissipator is the existence of the back-metal layer, which is
able to receive heat from the Through Vias connected to I/Os (or dummy vias) and dissi-
pated directly in the surface of the circuit packaging. Packaging technologies can also be
improved (RAHMAN; REIF, 2001)

It is widely discussed that the thermal issue is a very important drawback of the 3D cir-
cuits and research is needed to overcome this problem (ABABEI, C. et al, 2005) (DAVIS,
W. et al, 2005) (HUA, H. et al, 2006) (DAS; CHANDRAKASAN; REIF, 2004b). Today,
there exists good solutions that will be reviewed in the next sections. It is clear that there
is an integration limit and it might not be possible to integrate a long stack of tiers (more
than 5 tiers according to (HUA, H. et al, 2006)) due to heat dissipation, but for short
stacks (2 or 3 tiers for instance) the existing techniques are able to provide acceptable
dissipation.

3.5.2 Yield Issues

As already reviewed on section 3.1, while die-level 3D assembly stacks fully func-
tional dies into a 3D chip, it is not possible to perform test before wafer-level assembly.
Ignoring possible defects on the stacking process itself (which include to pierce the dies
and add 3D-Vias), die-level assembly offers 100% yield. Under the same assumption,
wafer-level stacking behaves exactly like the regular 2D chips (i.e. yield of one 2D chip
with area a is the same as 3D stack of n dies with area a/n each) (PATTI, 2006a).

Tezzaron published that their 3D stacking process should not change device yields
(except for the dies along the wafer’s edge). They argue that yield is known as a problem
for 3D circuits for a cultural issue that designers prefer to integrate larger modules on 3D
and this obviously leads to a worse overall yield (PATTI, 2006a).

However, the assumption that Through Vias do not affect yield might not be sustain-
able. Reliability of 3D circuits might be affected with the Through Vias. Face-to-face
connections (Copper Contacts, microbump, etc...) are better from the yield perspective
than Through Vias since they do not need holes in the silicon.

3.5.3 3D-Via Issues

3D-Vias are vertical connections requiring large pitches with alien electrical and rout-
ing characteristics. This issue certainly introduce new CAD/design problems that must be
solved in the future, such as the ones listed bellow and illustrated by figure 3.8. On place-
ment problem, 3D-Vias introduce many constraints that must be accounted for. Some
authors mention that the problem of handling 3D-Via contraints is actually too complex

43

(LIU, G. et al, 2005). On the other hand, 3D-Vias are important tools for improving the
wire length of the circuit (DAS, S. et al, 2004) and should be used cleverly.

• 3D-Via upper-bound: given an area that will be partitioned into 3D, there is an
upper bound driven by design and technology constraints to insert 3D-Via on that
area; (figure 3.8.(a)).

• 3D-Via placement and legalization: 3D-Vias are also placeable objects and they
should be placed legally (no overlaps with other 3D-Vias) in such a way that wire
length deterioration is minimal; (figure 3.8.(b))

• Cell placement with movable obstacles: Through Vias (face-to-back) consume ac-
tive area and cannot overlap with cells. Since they are movable objects, this problem
can be stated as cell placement with movable obstacles; (figure 3.8.(c))

• Modeling of their characteristics: existing processes for 2D circuits are well known
and well modeled. Designers already know how much resistance and capacitance a
wire has, how they could be optimized, how much does wiring estimates are close
to actual routing, etc. On 3D, connections must go to the top metal layer, pass
though 3D-Vias whose electrical characteristics are not mature (new materials and
methodologies are research topics). The modeling of those characteristics and its
impact on design is a new issue to be considered; (figure 3.8.(d)).

• Routing resources: 3D-Vias consume a lot of routing resources and produce routing
congestion (HUA, H. et al, 2006). This problem should be studied; (figure 3.8.(e)).

• 3D-Via trade-off: it was already shown that there is a trade-off between 3D-Vias
and wire length (DAS, S. et al, 2004). Das et. al. developed an heuristic able
to improve wire length with the addition of 3D-Via. Further investigation on this
issue would be helpful to the development of new algorithms able to explore the
trade-off; (figure 3.8.(f)).

• 3D partitioning for a stack of tiers: a set of cells connected by wires must be
partitioned into a stack of tiers. Hypergraph partitioning is a similar problem
(KARYPIS, G. et al, 1999), but it does not contain physical information, which
in this case is uni-dimensional. Some published works such as (HENTSCHKE;
JOHANN; REIS, 2006) and (ABABEI, C. et al, 2005) approached this problem by
performing assignment of the partitions into tiers in such a way that the overall 3D-
Vias count is minimized, as ilustrated in figure 3.8.(g). A 3D partitioner could be
developed under the stack of partitions model providing a better solution for this
problem.

• 3D-Via avoidance: 3D-Vias can harm circuit performance for certain connections
in the netlist such as wires with a high switching activity or critical for timing.
This issue should be studied further and algorithms that are able to impose those
constraints without harming the solution are an important research topic to be con-
sidered; (figure 3.8.(h)).

It is subject of this thesis to be aware of the 3D-Vias during placement, so this issue
will be further discussed on the next chapter.

44

(a) 3D-Via upper bound

120% of
area

100% of
area

60% of
area

20% of
area

(b) 3D-Via placement and legalization

(c) 3D-Via is a movable obstacle

wire length

3 fF
0.25 ohms

(d) Modeling (e) Routing Resources

length

length

(f) 3D-Via vs wire length trade-off

(g) Netlist Partitioning followed by
Tier assignment on the left.

This process could be improved by 3D
single row partitioning (on the right)(h) 3D-Via avoidance

Figure 3.8: A summary of some new issues introduced in CAD and design due to 3D-
Vias.

3.5.4 Design methodologies

This section explores three design methodologies that differ basically on their granu-
larity with respect to the 3D integration. The first methodology, called tier level integra-

45

tion integrates separated tiers of different nature into a 3D stack. It is the most coarse level
granularity and practically do not affect existing design methodologies, since each tier can
be designed separately with a simple glue logic to integrate them. Secondly, the so called
ip core level integration partitions big circuit blocks (ip cores) into different tiers, provid-
ing a tighter integration (more communication between tiers). Finally, random logic level
partitioning breaks a single random logic block into 3D. This last one is a very fine grain
methodology and at this level design and CAD will suffer from severe changes, specially
in the physical level.

3.5.4.1 Tier Level Integration

In the SoC area, 3D fabrication actually opens many new possibilities. 3D integration
makes it possible to arrange elements of the system in a chip and avoid common design
problems, such as noise for analog circuitry, memory to processor bandwidth, etc. Differ-
ent nature components (possibly manufactured from different processes), such as random
logic, mixed signal, DRAM, SRAM, high performance and low-power logic, analog, RF,
programable platforms (software, FPGAs, Flash) can be placed on different active layers,
as shown in figure 3.9.

Patti, from Tezzaron, (PATTI, 2006a) present some nice designs performed with Tez-
zaron technology stacking different nature tiers. First, a Mixed Signal ASIC whose analog
circuitry (including a heater resistor) is placed in one tier while a register file (digital) is
placed on a second tier. Patti reports that there were no noise issue on the fabricated
circuit; he also reports that the heater produced 8W on a 0.5mm2, which did not harm
the circuit at all, leading to his conclusion that heat problems are not such an issue on
3D ICs. The second design is a CMOS photo sensor, that integrates a photo diodes ar-
ray and additional circuitry such as amplifiers and A/D converters; Patti reports that the
3-D stacking allowed full array efficiency. Finally, Patti presents a processor and mem-
ory stack. Memory bandwidth is a known bottleneck on system’s performance (DENG;
MALY, 2005). Patti reports that the latency to access memory on this stack is 3 ns, which
includes all latencies (for instance, wire delay). He also reports a 4Gbytes/s bandwidth
on this connection, which is an order of magniture greater than his processor could reach,
but demonstrates the effectiveness of the memory/processor stacking.

Obviously that this level of integration allows some important benefits without im-
pacting design significantly, meaning that the existing tools and methodologies can be
preserved. The following sections present new design methodologies that will impact
significantly on design but there are more potential benefits to be explored.

3.5.4.2 IP Core Level Integration

This section discusses briefly the methodology of partitioning the design in the core
granularity. The ideia, ilustrated in figure 3.10, is to apply a reasonable 3D floorplanning
of the blocks and address wire length and timing improvement. Compared to the tier level
integration, IP core integration demands more design effort to understand the migration
to 3D and significantly affect the floorplanning phase on chip design. The downstream
phases (placement and routing for instance) within the IP cores are unaffected.

Floorplanning is known to be a very hard problem and made by hand by most major
companies in the industry, since automatic Floorplanning algorithms fail to be realistic
and it is not easy to consider all the design issues. In the IP Core level 3D integration, the
design expertise for the IP cores themselves doesn’t suffer from severe impact, while the
most important difference is on the 3D floorplanning step.

46

Optical I/O

RF

Analog

Memory

Logic Digital
Microprocessor

Figure 3.9: 3D circuit allows a mixed integration of different nature blocks with dimin-
ished noise effects

Decoder Coder

Floating
Point

Random
Logic

Figure 3.10: IP cores can be partitioned into 3D with improvements on circuit wiring

Some tasks and objectives of the 3D floorplanning method are listed below:

• Provide a good compaction of the blocks so that the higher density potential of 3D
circuits can be explored.

47

• Provide a good partitioning of the blocks into circuit tiers, such that this partition
aids the rest of the process to provide a good solution.

• Provide better wire length than existing 2D methods.

• Provide special attention to power and timing of some critical nets.

• Provide a reasonable solution to improve chip temperature.

Usually, the difference between floorplanners rely on the data structure used to store
the layout and on the method to optimize it. While (BANERJEE, K. et al, 2001) studies
the possible improvements analytically, the following works studied improvements into
their practical frameworks.

Cong and Zhang (CONG; WEI; ZHANG, 2004) present a 3D floorplanner based
on Simulated Annealing (KIRKPATRICK; GELATT; VECCHI, 1983). He introduced
a CBA-T data structure that is applicable for 3D optimization of wire length. The tem-
perature improvement is also one component of his optimization function, and it is based
on three different thermal models that trade-off accuracy for run time. All of them do
not consider the 3D-Vias as possible heat dissipator; the authors mention that this consid-
eration could be incorporated into the Simulated Annealing engine. Their methodology
partitions the blocks into tiers as the process advances, aiming at wire length and thermal
optimization. Cong concluded that his methodology is able to reduce wire length by 29%
and maximum on-chip temperature by 56%.

Li et al. (LI, Z. et al, 2006) studied the methodology for partitioning IP blocks into
3D in a two step approach, which they call hierarquical. The first step is to partition the
blocks and after that (second step) they are placed on a respective tier. First, they highlight
that the first step (block partitioning) reduces the problem size for the subsequent stage,
providing faster convergence. On the other hand, that process also limits the algorithm
capability to obtain good wire length solutions. They observed that min-cut partitioning
(which leads to better number of 3D-Vias) is not good for wire length while increasing the
cut would provide a more favorable search space to reduce wire length. This fact could
lead to the conclusion that a “max-cut" approach would be better, but Li also demonstrates
that this fact is not true into his framework. Actually, the best solution could not be
predictable using only net-cut based methods (observation that contradicts with (YAN, T.
et al, 2006)), but some additional wire length prediction scheme should be used. In their
paper, Li et. al use a statistical wire length estimator that leaded to good floorplanning
solution under 3D-Via upper bound and area balance constraints. They do not optimize
chip temperature.

Healy et. al (HEALY, M. et al, 2007) proposed an hybrid method for 3D floorplanning
optimization based on Linear Programming and Simulated Annealing. One very inter-
esting discussion in their paper is regarding the integration strategy used, which might
encourage or discourage the use of 3D-Vias. They discuss that Through Vias actually
should be avoided (due to large pitch and yield problems) while face-to-face vias can
be used plenty, since they will contribute to reduce wire length. Their approach provide
an accurate model to measure chip temperature. The optimization algorithm optimizes
multiple objectives, such as wire length and temperature reduction not inserting thermal
vias.

Cong and Zhang (CONG; ZHANG, 2005) published, one year after the previously
cited paper, a method to optimize heat using thermal vias. They conclude that their
method could be used within a placer or floorplanner.

48

Wong and Lim (WONG; LIM, 2006) discussed the issue of inserting thermal vias
in their 3D floorplanner. They proposed a fast thermal model based on random walks.
The paper develops different combinations of the thermal optimization methods thermal
aware floorplanning and thermal vias insertion. They concluded that thermal vias should
not be separed from the floorplanning optimization. Using it isolated after thermal aware
floorplanning, thermal vias can contribute to a heat increase under their model. They
developed a method for an integrated thermal optimization that led to the best results of
reducing temperature by 38% with 47% penalty on area and 22% on wire length penalty.
They also highlight that thermal vias alone are able to deliver 17% heat improvement with
almost no cost to wire length (4%).

In summary, thermal optimization within floorplanning is able to provide very consid-
erable thermal optimization, according to the studied works.

3.5.4.3 Random Logic Level Integration

Figures 3.11 and 3.12 summarize the random logic level integration. This section dis-
cusses the idea of a very tight integration method, in which a circuit at the cell level is
partitioned into several tiers leading to new design issues on random logic blocks. Some
examples of important changes: timing analysis and synthesis should consider that some
connections will go to the top metal layer and pass though a 3D-Via with different elec-
trical characteristics; cell placement should be aware of new obstacles (through vias);
routing algorithms must be aware of resources taken by 3D-Vias, etc. In fact, the whole
CAD flow from logic synthesis to layout must be revisited.

Random
Logic

Random
Logic

Random logic block broken
into 3D

Figure 3.11: Random logic blocks could be broken into 3D.

People are pessimistic on this field because they know that very tight integration of
tiers lead to more 3D-Vias and consequently those issues discussed on section 3.5.3 be-
come more critical. The tighter the integration, more 3D-Vias can potentially be used.
As already studied on previous sections, Through Vias actually lead to less reliability and
possibly worse yield. On the other hand, wire length can be improved and face-to-face
connections could be used as needed with no extra cost. Let us discuss this possible trade-
off between more complicated design issues with important circuit improvements on wire
length, timing and power.

Stating the motivation, it is common sense the connections are a bottleneck on cir-
cuit performance (which is related to wire length, timing, power and manufacturability).
Shrinking used to be one good methodology to improve chip performance in the technol-
ogy level, but in the recent years shrinking is actually contributing to the wire criticality

49

(a) (b)

Figure 3.12: Logic into 3 tiers.

became even more important (BANERJEE, K. et al, 2001). More importantly, shrink-
ing is approaching a feasible limit since feature sizes are in the atomic scale. Design
rules are getting extremely complex and there are a few companies that will be able to
design on 45nm; the design expertise for those devices will became prohibitively expen-
sive (DAVIS, W. et al, 2005). The existing scenario on the technology perspective is very
pessimistic for the future. A change of design paradigm is a realistic solution to achieve
timing and power improvements with existing technologies. It might be cheaper to de-
velop new methodologies on the 3D world rather than the complex world of design for
manufacturability on 65nm and beyond.

While IP-Core level 3D integration can manage the overall chip performance, a par-
ticular random logic block is kept on a single tier. Today, circuits can have tens of millions
of cells and for the future we can expect an even larger amount of cells. A block with so
many cells can definitely be improved by 3D integration.

The most affected CAD stage is cell placement. On the thermal issue, some of ex-
isting works optimize heat either by spreading the cells on hot spots (ABABEI, C. et al,
2005) or by shortening nets with higher switching activity (OBERMEIER; JOHANNES,
2004). However, thermal issues could be potentially solved on the floorplanning level
(see previous section) while 3D-Via issues are very critical on placement level. Place-
ment methodologies with control of the amount of 3D-Vias into feasible margins while
optimizing wire length and delay is the challenge to be discussed in the next section.

3.6 Impacts on cell placement

The integration level of random logic was selected as a subject of this thesis because
of the reasons stated in the previous section. For now on, let us assume this strategy and
focus on the impacts it has on design, specially on cell placement.

Cell placement is one key step on computer aided design of VLSI circuits. It is the
major responsible for the overall wire length of a particular block of random logic and
indirectly responsible for timing and power. Even being researched for more than three
decades, cell placement is still an open problem (no optimal or common sense best so-
lution), because problem sizes grows, new technology issues are introduced and more
flexibility is required (related to blockages, congestion, etc.). Some of the placement ad-

50

vances on 2D are directly applicable for 3D, even for slightly different problems. A list
of those features is presented bellow:

• Wire length optimization (2D)

• Low complexity (and fast) algorithms

• Blockage aware placement

• Mixed size placement

• Timing-driven placement

• Power-driven placement

• Thermal-aware placement

With the introduction of new issues stated in section 3.5, 3D placement actually de-
mands solutions for the problems stated bellow.

• 3D-Via placement and legalization

• 3D-Via aware placement

• True 3D Wire length optimization

• Thermal aware 3D placement

• Movable blockages placement

• Timing driven 3D placement

In the next subsections each of the advances is reviewed with published works. A
review of existing placement algorithms is presented. Also, the new issues of 3D circuits
are presented with some published works if applicable. Note that some of this new issues
are still ignored by most of the existing literature on 3D placement.

3.6.1 Review of existing placement algorithms

The placement problem is a np-hard problem. The problem named Optimal Linear
Arrangement (GAREY; JOHNSON, 1979) that can be mapped as cell placement is proven
to be np-hard.

Since placement is a np-hard problem and circuit sizes are very large and placement
should be optimized for various objectives, designing proper placement algorithms is a
hard task.

The placement algorithms can be classified in three big categories, as follows: Sim-
ulated Annealing approaches such as (SECHEN; VICENTELLI, 1985) (TAGHAVI;
YANG; CHOI, 2005), algorithms based on Recursive Partitioning (ROY, J. et al, 2005)
(AGNIHOTRI; ONO; MADDEN, 2005), and force directed methods (EISENMANN;
JOHANNES, 1998). An important subset of the force directed methods are the ana-
lytical methods, such as the quadratic placement techniques (OBERMEIER; RANKE;
JOHANNES, 2005) (HU; ZENG; MAREK-SADOWSKA, 2005) (KAHNG; REDA;
WANG, 2005) (VISWANATHAN; PAN; CHU, 2005).

51

Table 3.5: Summary of placement algorithms and related tools
Algorithm Simulated Annealing Partitioning Based Analytical

Iterative/Constructive Iterative Constructive Constructive
CPU requirement High Average Low

Versatility High Average Average
Capo X

Kraftwerk X
APlace X

Fastplace X
mFAR X
Proud X

Dragon X X

The algorithms based on Simulated Annealing are mostly CPU time consumers be-
cause they perform a large search to avoid local minima. On the other hand, SA placers,
such as Dragon (TAGHAVI; YANG; CHOI, 2005), are known to achieve high quality
placements. Actually, in the internal structure of the Dragon placer, a partitioning process
is used to aid the SA engine to save CPU time. This feature is absolutely necessary for
medium size designs and up (more than 5K cells).

The placement algorithms based on recursive bisection uses a partitioning algorithm
to place the cells introducing greedy decisions that serves the purpose of speeding up the
algorithm. Heuristic partitioning algorithms have a lower time complexity compared to
SA based methods.

The Force Directed method is an iterative method that applies forces to the gates, one
by one, repeating this process many times until the placement stabilizes at some final
solution. In the quadratic placement method (first proposed by Hall (HALL, 1970)), the
objective function is the squared wire length. By finding the derivative of the objective
function, a system of equations is derived and can be solved by analytical methods. The
idea can be understood as a spring system. Cells and pads that are connected with each
other have attraction forces modeled by a spring (Hooke’s Law). The spring system’s
equilibrium state is equivalent to the optimal placement with a quadratic wire length ob-
jective function. Quadratic placement methods reach the optimal placement for a squared
cost function disregarding cell overlaps. There are many techniques to remove the over-
laps while spreading the cells. The method is known to be very fast and achieve good
results. Many of the industrial placement tools are based on quadratic placement. How-
ever, the three techniques are used in both industry and academia and it is hard to define
which one is the best.

Placement algorithms are usually classified as iterative and constructive. Iterative al-
gorithms can be defined as algorithms that can optimize an already existing placement,
while constructive algorithms must start from scratch. In the absence of an initial place-
ment, an iterative algorithm will typically start from a randomly generated solution.

A summary of the reviewed algorithms is presented on table 3.5 as well as academic
placers.

52

3.6.2 Low complexity (and fast) algorithms

There are two important issues for cell placement: wire length estimation and effective
final placement. While performing logic synthesis, wire estimates are of great value to
optimize timing. A cell placer is able to provide very accurate wire estimation. For this
application, CPU time of the placer is critical (since it is called repeatedly) while quality
requirement is relaxed. For the final placement, quality must be highly optimized while
CPU time is not an important issue but still must be within feasible limits.

Over the years, problem sizes grew dramatically, so cell placement started to require
algorithms with special concern to CPU time. For 3D circuits it is reasonable to expect
that circuit sizes will grow as well. Among the studied algorithms, partitioning analyti-
cal methods outperformed others like Simulated Annealing specially for their reasonable
time complexity. However, Simulated Annealing optimization is still very attractive un-
der certain control over run time and problem size, since it is able to achieve good quality.
Nowadays, Simulated Annealing is employed on floorplanning problems (whose problem
sizes are small), constrained and windowed detailed placement (since placement is con-
strained to a windows, effective problem size is dramatically reduced) and other specific
side optimization tasks needed on most CAD tools.

Today there are many placers with very acceptable run times. In this particular review,
Fastplace was selected to be detailed since it is one of the fastest among existing placers.
More details of the algorithm are presented in section 4.5.1 of this text.

Fastplace (VISWANATHAN; PAN; CHU, 2005) is based on the Quadratic Placement
method. It is done in three distinct steps: coarse global placement, wire length improved
global placement and detailed placement.

The main objective of the first stage is to minimize wire length and spread cells evenly
on the placement area. A cell shifting algorithm provides repulsive forces to spread the
cells. In the Cell Shifting, the placement region is first divided in several bins; the uti-
lization of each bin is determined to shift cells from highly utilized bins to the ones with
empty spaces.

The second step also perform cell shifting, but adds a new greedy algorithm that pro-
vides linear wire length (half-perimeter) and utilization improvement.

The third and last stage of Fastplace is responsible for placement legalization, associ-
ating cells to pre-determined rows and removing all overlaps. A greedy method is used to
reduce wire length further.

3.6.3 Blockage Aware Placement

Blockage Aware placement is a very fundamental problem on cell placers. Suppose
that cells must be placed in an area that will actually be shared with macro blocks. There
are placeable areas and non-placeable areas for the cells. The non-placeable areas are
called blockages or obstacles in existing placement literature. Blockage aware placement
was one subject of evaluation in the 2005 ISPD Placement Contest (NAM, G. et al, 2005).

There are many techniques applicable to this particular problem. Some authors ignore
blockages initially and afterwards legalize the placement. One possible technique for
that are flow based legalization methods (BRENNER; VYGEN, 2004). Another possible
technique is landscape smoothing, used by APlace (the winner of ISPD 2005 Placement
contest) (KAHNG; REDA; WANG, 2005).

Another possibility is to consider cells as soft blocks and run a floorplanner (maintain-
ing all hard blocks fixed). This approach is explored by (VISWANATHAN; PAN; CHU,

53

2005). Many other methods are available in the literature. All placers that participated
on ISPD 2005 and 2006 contests provide ways to handle obstacles. More details can
be found into their papers (each placer had a published paper in the regular conference
proceedings).

Blockage Aware placement can definitely find applications on 3D placement. Besides
regular blockages, such as macros, 3D-Vias can also be considered as blockages because
they occupy active area that cannot be used by cells.

3.6.4 Mixed Size Placement

Many existing designs contain blocks of random logic mixed with movable macros. A
macro is usually higher than a row; for this reason, the algorithm to place macros must be
different than usual placement algorithms. The problem to place movable macros together
with cells is called Mixed Size placement. Mixed size placement problem is being largely
studied in the recent years (VISWANATHAN; PAN; CHU, 2006).

Capo (ROY, J. et al, 2005) was initially proposed by Caldwell in (CALDWELL;
KAHNG; MARKOV, 2000). It is basically a min-cut bi-partitionning based algorithm; it
was extended to handle mixed-size placement with the aid of an incorporated floorplan-
ner named Parquet. When a placement bin contains a larger module, it switches to local
floorplanning, using the bin boundries as the available area.

Usually, the most important difference from placement to floorplanning are the data
structures applied to represent a solution. Parquet works with two data structures:
sequence-pairs1 and B* Tree (YAO, B. et al, 2001). Sequence pairs produces better wire
length while B* Tree packs better. The floorplanner can switch from one data structure to
the other if needed for a better result.

Viswanathan et. al recently presented a new version of its Fastplace algorithm to
handle mixed size blocks (VISWANATHAN; PAN; CHU, 2006). They argue that force-
directed methods (such as quadratic placement) "can seemlessly handle the varied sizes
of placeable objects without employing additional techniques like partitioning and clus-
tering". In the paper, an extension of the cell shifting method is provided to handle mixed-
size blocks; the quadratic optimization method itself is not changed, but the cell shifting
method needs to consider the block dimensions in order to compute bins utilization and
add spreading forces. Two algorithms for mixed size placement legalization are intro-
duced: initially the macros are legalized using sequence pairs and Simulated Annealing
optimization of those blocks. After blocks are legalized, they are fixed as blockages and
cells are legalized within the placeable segments delimited by the macro blocks.

3.6.5 Timing-Driven Placement

Timing driven placement is classified in the literature as path-based methods and net-
based methods. One approach to net-based methods is to provide a maximum length
budget to certain critical nets, such as the work on (OGAWA; PEDRAM; KUH, 1990).
The most common approach is net weighting. Examples of net weighting methods are
(KAHNG; WANG, 2004) (XIU; RUTENBAR, 2005) (RIESS; ETTELT, 1995) (KONG,
2002) (YANG; CHOI; SARRAFZADEH, 2002) . Although the method is very sim-
ple, the problem rely on obtaining the appropriate weight. Kong (KONG, 2002) use a
path-counting method to obtain net weights. Other methods are based on slacks, such as

1Sequence pairs are a classical data structure used by floorplanning algorithms based on Simulated
Annealing

54

(KAHNG; WANG, 2004), (LUO; NEWMARK; PAN, 2006), (XIU; RUTENBAR, 2005).
Net weights can be dynamically updated during cell placement since wire related delay
can modify slacks. An example of such method is (RIESS; ETTELT, 1995). The path-
cased methods are known to be more precise than net-based, but more complex demand-
ing higher CPU times. One example is the method from Swartz and Sechen (SWARTZ;
SECHEN, 1995) that is similar to the Z-Place approach on detailed placement phase.
Their method computes dynamically a certain number of most critical paths during the
Simulated Annealing cell placement. Instead of weighting the nets, Swartz separate the
wire length computation in regular wire length and critical wire length while the weight-
ing relies only on the critical portion.

Some path-based methods use more tricky techniques that indirectly address timing
improvements. The work on (HWANG; PEDRAM, 2006) avoids zig-zags on placement
of critical paths by assigning a path to a signal direction and maximizes the monotonic
behavior of those nets. Chou et. al (CHOU; LIN, 2002) inserts artificial nets that connects
the starting and end point of the critical paths, reducing the overall wire length of the path.

On 3D circuit, there is no novel technique published yet. Ababei et. al (ABABEI, C.
et al, 2005) mention that net weighting was used within their FPGA 3D placement tool,
leading to 20% delay improvement.

3.6.6 Power-Driven Cell Placement

On power driven cell placement, besides doing the regular job of reducing wire length
(that leads to power improvement), two kinds of procedures can be performed:

• Power distribution

• Identification of critical wires for power

Power distribution usually serves the means of thermal improvement, that will be re-
vised in the next section. The second mentioned technique (OBERMEIER; JOHANNES,
2004) searches for wires with higher switching activity in the logic level and perform extra
optimization of those wires by overweighting them (similarly to the weighting technique
for timing critical nets).

On 3D circuits, power is one potential improvement that comes directly from the
reduced wire length and clock tree size; additional improvement can be provided with
identification of critical wires.

3.6.7 Thermal-Driven Cell Placement

Thermal-driven placement of 2D circuits is an issue studied by some papers on the
past. Tsai et. al (TSA; KANG, 2000) presents a placement algorithm that targets an even
distribution of the power consumption throughout the circuit. This optimization is part of
a multi-objective function that includes thermal improvement and wire length. Wires are
ignored on Tsai’s work; cells are weighted according to their switching activity.

Thermal-Driven placement gained considerable strength on 3D placement. Just like
floorplanning algorithms (reviewed in section 3.5.4.2), placement algorithms need a fast
thermal model in order to identify hot spots. Besides estimating, each different placer
must incorporate the thermal analysis into their algorithm core.

Goplen and Sapatnekar presented in (ABABEI, C. et al, 2005) and (GOPLEN; SAP-
ATNEKAR, 2003) a force directed cell placer with thermal forces that improves chip

55

temperature. The thermal forces move the cells away from high temperature spots. Ad-
ditionally, there are attractive forces to the other cells and I/O pins of the same net and
repulsive forces to unmake cell overlaps. Repulsive forces related to cell overlaps and heat
improvement are refreshed at each iteration. The authors reports average improvements
in the order of 17% to chip temperature. The work does not consider 3d-Via costs.

Balakrishnan et. al (BALAKRISHNAN, K. et al, 2005) propose a two step 3D cell
placer: first a partitioning based algorithm provides an initial placement solution focused
on wire congestion and dynamic power consumption reduction. Note that power con-
sumption impacts the thermal profile of the circuit. After that, a Simulated Annealing
based refinement stage improves chip temperature, wire length, congestion and number
of 3D-Vias with a multi-objective cost function. The authors observed that wire conges-
tion is correlated to temperature hot spots based on experimental results. Their method
provides an interesting trade-off between the variables in the objective function. The best
configuration for chip temperature resulted in 20% to 30% increase in the other objectives
while the worst temperature improvement resulted in 8% to 10% increase compared to the
baseline (no temperature improvement).

3.6.8 True 3D engines

A cell placer (2D circuits) is considered a 2D placer because it is able to move cells
in two dimensions and keep track of wire length measured in 2D as well. For a 3D placer
it is expected that both capabilities of movement and wire length measure to be expanded
to 3D in order to effectively cover the solution space. This change, though, besides being
a considerable step in terms of updating tools and algorithms, modifies considerably the
search space of placement algorithms. For both reasons, many existing placers still fail to
provide this capability.

The works from (ABABEI, C. et al, 2005), (DAVIS, W. et al, 2005), (DENG; MALY,
2001) for instance, apply min-cut partitioning (usually with hMetis tool (KARYPIS, G.
et al, 1999)) to assign cells into tiers, minimizing the 3D-Vias count. A subsequent step
performs 2D placement on each tier separately; the already placed tiers can serve as a
guide to subsequent tiers in order to minimize wire length. However, (LI, Z. et al, 2006)
(KAYA, I. et al, 2004) (LIU, G. et al, 2005) (DAS; CHANDRAKASAN; REIF, 2003)
already identified that this approach leads to worse results in terms of wire length.

Liu et. al (LIU, G. et al, 2005) builded a two step 3D placement flow similar to the
one mentioned above using hMetis for partitioning the cells into tiers. They argue that
building a true 3D flow is very hard and for this reason they concentrate on improving the
partitioning step. They observed that the insertion of 3D-Vias could potentially improve
wire length. For this reason, their cell partitioner does not perform min-cut partitioning,
but tries to maximize the 3D-Vias under an upper bound constraint. In fact, since face-
to-face integration allows 3D-Vias with no cost to yield or area, they could be inserted
freely in order to improve wire length. Some preliminary evaluation could be performed
to analyse a reasonable upper bound for those 3D-Vias. Liu’s algorithm cannot achieve
the exact via count provided, but tries to get a close approximation using an iterative
algorithm. After the tier assignment, the algorithm uses the Capo tool (CALDWELL;
KAHNG; MARKOV, 2000) to place the cells in each tier.

Das et. al (DAS; CHANDRAKASAN; REIF, 2003) (DAS, S. et al, 2004) builded
a true 3D partitioning based placement engine. It recursively cuts the placement cube
performing min-cut partitioning. A wire length and 3D-Via trade-off can be obtained by
controlling the instant at which the cut is performed into the Z axis (e.g. the iteration at

56

which the design is partitioned into tiers). The optimal solution for wire length is obtained
when the aspect ratio drives the cut direction (same observation provided by (YILDIZ;
MADDEN, 2001)). The solution with fewer 3D-Vias can be obtained in the case where
the first cut is made on the Z axis (method that would be equivalent to the ones based on
hMetis assignment mentioned above).

Goplen and Sapatnekar (GOPLEN; SAPATNEKAR, 2003) formulate the 3D place-
ment problem as a true 3D placement. They provide an analytical force directed algorithm
that minimizes the squared 3D wire length. Their method is iterative; at each iteration re-
pulsive forces related to thermal issues or cell overlaps are inserted in the system. This
process makes cells spread into the placeable volume. The authors do not detail how they
handle I/Os into the tiers; however, on quadratic placement methods the cells will not
move in the Z axis unless the I/Os are placed in different tiers. If the I/Os are fixed in
one tier, it can be understood that the repulsive forces are the only responsible for moving
cells into other tiers. After placement is completed, the cells are sorted in the Z axis and
finally assigned to a circuit tier. This method may fall into a false wire length optimization
since actually cells cannot be placed into continuous z coordinates; the rounding of their
coordinates could potentially increase circuit wire length.

Obenaus et. al, in (OBENAUS; SZYMANSKI, 1999), present an iterative force di-
rected method for 3D placement. Different from Goplen’s placer, it is not an analytical
method but it moves each cell to an optimal position by fixing all other cells. They de-
fine the 3D placement problem to minimize wire length only, which handles the problem
as true 3D method. 3D-Via costs and other constraints are not considered. No repul-
sive forces are added to the system; a bucket re-scaling method similar to cell shifting
(VISWANATHAN; PAN; CHU, 2005) spreads out the cells.

In general, the drawbacks of the above mentioned works on true 3D placement is the
lack of consideration to the integration strategy (since face-to-face integration encourage
3D-Vias while face-to-back discourage), the lack of a proper and legal place for the 3D-
Vias (except for Kaya’s placer), the balanced area distribution for the cells along the tiers
with no consideration of active area occupied by Through Vias (except for Kaya as well)
and finally no control over critical nets for timing. For the special case of Obenaus et. al
there is an aditional drawback on the lack of realism on their method since they consider
all cells as perfect squares.

3.6.9 3D-Vias placement

Between each pair of adjacent tiers there exists a set of 3D-Vias connecting them.
Those 3D-Vias must be assigned to a (x, y) position; considering their required pitch,
the assigned position cannot overlap with any other 3D-Via between the same tiers. This
problem can be solved in the routing phase (LIM, 2005) but this work handles 3D-Vias as
placeable objects in the placement level. A 3D-Via placement and legalization problem
can be defined for every via layer (this concept is further discussed in section 4.9). Any
3D-Via is connected to a net and it can be placed anywhere within the net boundary with
no harm to the circuit wire length. However, it might not be possible to provide this place;
in such cases, there is an overhead on wire length that must be considered on the final wire
length.

Yan et. al (YAN, H. et al, 2005) presents a very simple ILP formulation for this
problem. First, a grid of valid places is defined based on the pitch requirement of the
3D-Vias. They compute a cost matrix that establishes a cost function for every via in
every possible place in the layout. This cost could be wire length, power, thermal effect

57

or any other. Solving the ILP problem leads to a legal solution for 3D-Vias placement
with minimum cost. However, this method has a strong weakness with respect to the
problem size. Since it generates one variable for every pair of 3D-Via and valid grid
placement, the number of variables generated is huge and cannot be supported by most of
existing ILP solvers. For example, suppose a grid of 300x300 via placements and 1000
3D-Vias connecting a pair of tiers. In this case, the ILP formulation would have 900
million variables. The authors presented methods to reduce the problem size that slightly
affect the solution quality. More analysis on Yan’s method is provided in section 4.9.

3.6.10 Movable Obstacles in Placement

It was already mentioned that the Through Vias occupy active space and for this reason
should serve as a obstacle to cell placement. Since 3D-Vias are also placeable objects (as
reviewed in previous section 3.6.9), they are actually movable obstacles.

Kaya et. al in (KAYA, I. et al, 2004) present a force directed 3D placer that have
some nice properties to handle and place 3D-Vias. Basically, any Through Via occupies
active area and is placed within the circuit layout just like regular cells. This assumption
apparently mean that 3D-Vias are constrained to have the same height (or smaller height)
of cells, which is unrealistic; however, there is no evidence of that constrain in the pa-
pers. Mixed-size placement methods, for example, could be used (as the ones reviewed
in section 3.6.4).

We can assume that this method is also a 3D-Via placement method, but it is applicable
only to face-to-back (or back-to-back) Through Vias. Face-to-face Vias still need to be
placed by some other method.

3.6.11 Summary of reviewed works on 3D placement

As reviewed above, a number of important features are incorporated in some exist-
ing 3D placers. Some of those features are: (A) True 3D engine (ability to optimize
and measure wire length on 3D), (B) 3D-Via trade-off (ability to trade 3D-Vias for wire
length), (C) 3D-Via upper bound, (D) sensibility to the type of 3D-Via (face-to-face or
face-to-back), (E) active area balance considering area occupied by 3D-Vias, (F) 3D-Via
Placement, (G) 3D-Vias occupying legal active area, (H) consideration to critical paths.
Table 3.6 summarizes the reviewed algorithms and their features.

Table 3.6: Feature list of existing 3D placers: (A) true 3D, (B) 3D-Via trade-off, (C)
3D-Via Upper Bound, (D) Different kinds of 3D-Via considered, (E) Area balance con-
sidering 3D-Vias, (F) 3D-Via Placement, (G) 3D-Vias occupying cells space, (H) Concern
to critical paths

Features: (A) (B) (C) (D) (E) (F) (G) (H)
(DAS, S. et al, 2004)

√ √ √

(GOPLEN; SAPATNEKAR, 2003)
√

(DENG; MALY, 2001)
√

(OBENAUS; SZYMANSKI, 1999)
√

(LIU, G. et al, 2005)
√ √

(KAYA, I. et al, 2004)
√ √ √ √ √

Z-Place
√ √ √ √ √ √ √

58

3.7 Z-Place Overview

Considering the potential of cell level integration discussed in section 3.5.4.3, 3D
placement is an important research topic. There are limitations to be overcome by cell
placers, as highlighted in previous sections. We propose a tool called Z-Place that inte-
grates a full 3D placement flow, providing algorithms to the 3D placement community
that could potentially be used in any tools. The tool targets the following features:

• Quadratic Placement engine: Quadratic Placement is one of the most successful
algorithms for cell placement, as reviewed in section 3.6.1. It has good scalability
and run time so it is usable for larger designs. More importantly, most of the existing
placers in the industry and academia are using and researching improvements on
this algorithm,. Recently proposed methods, such as (SPINDLER; JOHANNES,
2006), could be used.

• Handling of I/O pins: Quadratic Placement requires fixed pins in the boundary in
order to compute a solution. Z-Place provides a good method to partition and place
the I/Os into all tiers in such a way that this method actually helps the rest of the
placement process to reduce 3D-Vias.

• True 3D engine: Z-Place incorporates a true 3D Quadratic Placement engine since
it is able to move cells in all directions at the same time and measure 3D wire length.

• Area balancing sensible to the integration strategy: Z-Place allows optimization
of mixed integration designs (i.e. face-to-face, face-to-back and back-to-back); it
balances the area dynamically according to the amount of 3D-Vias assigned.

• 3D-Vias upper bound: Z-Place is aware that random-logic level integration might
lead to an unacceptable 3D-Vias count. To solve this, Z-Place trades-off 3D wire
length and 3D-Vias under an upper bound, that is also sensible to the integration
strategy and 3D-Via pitch. For face-to-face integration, the constraint is relaxed to
be close to the available area, improving 3D wire length.

• Multi-technology support. As reviewed in section A.2.1, the overall scenario of 3D
fabrication technologies offer a wide range of 3D-Vias pitches and lengths, which
impacts 3D placement very importantly. In Z-Place, technology data is a parameter
of the tool, that will try to take the best benefit used of the technology. If its 3D-Vias
are costly, Z-Place will avoid them while if they are cheap, Z-Place will make good
use of them to improve wire length.

• 3D-Via placement: Z-Place is able to efficiently place the 3D-Vias with no overlap
with each other such that wire length is minimally affected.

• Critical path consideration: Z-Place is able to identify critical paths from timing (or
power) analysis and avoid the use of 3D-Vias for those paths.

A detailed description of Z-Place features and algorithms supported by experimental
results is provided on the next chapter.

59

4 Z-PLACE: ALGORITHMS FOR 3D PLACEMENT

4.1 Introduction

Z-Place is a 3D cell placement tool. As primary objective, Z-Place tries to obtain the
best possible wire length for a given netlist under certain user configurations and 3D-Vias
related constraints. The constraints are defined to obtain room to place 3D-Vias. In the
following sections the flow as well as all the algorithms used on Z-Place are presented in
detail.

4.2 Placement benchmarks

Experimental results provided in this text are based on the ISPD 2004 benchmark set
(ISPD04 - IBM STANDARD CELL BENCKMARKS WITH PADS., 2004) summarized
in table 4.1. In the IBM suite, some cells that were originally multi-row cells considered
as standard-cells (having their heights cropped to one row). Another set with timing in-
formation is generated with a tool to map a circuit from VHDL to a placement benchmark
in the bookshelf format. Table 4.2 provides information on the VHDL designs and their
netlist after high level and logic synthesis.

4.3 Proposed 3D Placement Flow

Z-Place picks a circuit netlist with I/O pads and places the entire circuit into 3D. The
following are inputs of the tool:

• List of cells (with individual information of width and height - note that all cells
must have a same height);

• List of I/O connections;

• List of nets (connections between cells and/or I/O pins);

• Description of physical area planned for a 2D circuit (width, height of the block
with I/O pins placed in the boundary) - this information is not needed if an appro-
priate area definition in 3D with I/Os in the boundary is already provided by the
user;

• Circuit information: number of tiers and integration strategy;

• Technology information: pitch and length of 3D-Vias

60

Table 4.1: Benchmark Information of IBM Suite.
Bench # Cells # Terminals # Nets Cell Area Circuit Area
ibm01 12,506 246 14,111 2,141,920 2,380,800
ibm02 19,342 259 19,584 2,757,540 3,064,208
ibm03 22,853 283 27,401 3,375,870 3,751,968
ibm04 27,220 287 31,970 4,303,300 4,782,848
ibm05 28,146 1,201 28,446 4,471,520 4,968,416
ibm06 32,332 166 34,826 3,695,860 4,106,592
ibm07 45,639 287 48,117 6,422,050 7,136,672
ibm08 51,023 286 50,513 6,663,260 7,403,840
ibm09 53,110 285 60,902 7,755,070 8,617,104
ibm10 68,685 744 75,196 12,664,400 14,073,696
ibm11 70,152 406 81,454 10,010,800 11,125,504
ibm12 70,439 637 77,240 13,603,400 15,116,288
ibm13 83,709 490 99,666 11,592,600 12,880,896
ibm14 147,088 517 152,772 21,534,200 23,931,520
ibm15 161,187 383 186,608 21,174,900 23,532,192
ibm16 182,980 504 190,048 27,836,100 30,930,192
ibm17 184,752 743 189,581 33,185,700 36,875,184
ibm18 210,341 272 201,920 30,189,400 33,547,008

As outputs, Z-Place produces the following:

• Width and Height of every tier (if original netlist was not mapped to 3D);

• I/O pins position (if original netlist was not mapped to 3D);

• (X, Y, Z) coordinate of every cell placed;

Z-Place starts with an appropriate tier area planning and I/O pins in the boundary, as
detailed in section 4.4. Since Quadratic Placement algorithm is used, this is necessary in
order to compute a placement solution in 3D. The second step is the global placement,
detailed in section 4.5, whose objective is to obtain approximate coordinates for all cells.
Overlaps are allowed at this point, but this step searches for a reasonable spread of the
clusters in the 3D space. The nets that will need 3D-Vias are decided at this point in a
dynamic process that checks for availability of the resource as it trades-off 3D-Vias for
wire length. A timing driven capability is proposed to avoid critical nets to use 3D-Vias.

The third step is called detailed placement (detailed in section 4.8); it legalizes the
placement and improves the solution by local changes. For this step an algorithm based
on the Threshold Accept heuristic (DUECK; SCHEUER, 1990) is used.

Finally, the last step is to place the 3D-Vias into legal places, that is detailed in section
4.9. The whole placement flow is illustrated in figure A.3.

4.4 I/O Pins Handling

It is assumed that the boundary of a random logic block, in 2D, is delimited by I/O
pins and that the I/Os can be moved to any tier. I/O pins play two important roles in
the placement of a block: first, I/Os limit the area boundary of the block; second, the

61

I/O Pins Handling

Global Placement

Detailed Placement

3D-Via Placement

Netlist

2D Netlist

3D Placed
Netlist

(a)

(b)

(c)

(d)

Figure 4.1: Proposed Placement flow for 3D Circuits

62

Table 4.2: Benchmark information obtained from real circuits VHDLs.

Bench # Cells # Terminals # Nets CircuitArea
b03 133 10 161 1,476
b07 396 11 428 3,477
b08 161 15 187 1,638
b09 163 4 185 1,677
b10 184 19 209 1,560
b11 604 15 641 5,256
b12 925 13 981 8,280
b13 275 22 325 2,703
b14 3,528 88 3,750 24,804
b15 7,639 108 8,058 62,001
b17 22,958 136 24,275 191,400
b18 59,552 61 62,277 476,100
b20 7,701 56 8,089 56,880
b21 7,721 56 8,112 56,643
b22 11,717 56 12,330 86,136

b14-1 3,641 88 3,829 25,758
b15-1 7,620 108 8,039 61,746
b17-1 22,921 136 24,238 190,965
b18-1 59,972 61 62,572 469,908
b20-1 7,929 56 8,320 58,800
b21-1 7,824 56 8,218 58,080
b22-1 12,164 56 12,775 90,000

pins are used as tips for many placement algorithms to reduce wire lengths. Consider
the Quadratic Placement algorithm (ALPERT, C. et al, 1997), that is used by the leading
industry and most of the existing academic cell placers. It requires I/Os at the boundary
in order to compute a solution.

This section studies the I/O pins partitioning and placement problem. As already
shown in figure A.3.(a), Z-Place distributes the I/O pins through all the boundary of the
block. Summarizing the motivation, the goal is to find a good partitioning method for the
I/Os that is able to maintain a good I/O pins balance leading to area balance between the
tiers. At the same time, we indirectly address the reduction of 3D-Vias.

To the author’s knowledge, the algorithm presented in the section is the first proposed
approach to partition and place the I/O pins of a block into 3D. Previous works based
on 3D Quadratic Placement probably needed a similar approach, but we did not find out
any published method in the literature. It is assumed that simplistic solutions are being
adopted.

This chapter evaluates the impact of different approaches for the I/O partitioning and
propose an algorithm that is based on the logic distance of the I/Os as partitioning cri-
terion. Summarizing the motivation, we want to find a good partitioning method for the
I/Os that is able to maintain a good I/O pins balancing leading to area balance between
the tiers. At the same time, we indirectly address the minimization of 3D-Vias and better
wirelength.

63

4.4.1 Problem Definition

Given a 2D placement netlist with pre-placed I/O pins at the boundary of the region
available for cell placement, the migration to a 3D netlist (ready for 3D placement) has
the following goals:

• Area allocation: the width and height of the tiers must be calculated according to
the number of tiers.

• I/O partitioning: the I/Os must be partitioned into different tiers.

• I/O placement: the I/Os must be placed at the boundary of the block, delimiting the
area for cell placement.

We understand that the I/O partitioning problem should not perform the cells parti-
tioning and that this is a task of the cell placement. Figure A.4 illustrates the I/O pins
migration. As formulated in the next section, the netlist migration preserves some proper-
ties of the 2D solution, such as whitespace, aspect ratio, I/O pins orientation and ordering.
Our objective is to provide a migration algorithm that facilitates the 3D-Via minimization.
From the perspective of the I/O pin partitioning our idea is to provide a good starting point
for the cell partitioning. The algorithm should provide good I/O pins balance and respect
the mentioned properties.

In order to study the effect of our partitioning to the 3D-Via count, we follow the
methodology presented in (ABABEI; MOGAL; BAZARGAN, 2005) that performs min-
cut partitioning for the cells and tier assignment with Simulated Annealing after the I/Os
are fixed in 3D. In our case, though, the min-cut have initially pre-placed fixed pins (I/Os).
In this thesis, we propose to study the impact of the 3D-Vias in the tier area.

Figure 4.2: Migration (from 2D to 3D) of a netlist with pre-placed I/O Pins

4.4.1.1 Formal Definition

Before placement, a 2D circuit netlist Nl is composed by a set of gates G =
{g1, g2, g3, , gn}, a set of I/O pins P = {p1, p2, p3, , pm} and a set of nets connecting
them N = {n1, n2, n3, , no}. A hypergraph Hg represents the netlist, where G

⋃
P is

64

the set of nodes and N is the set of hyperedges. The fixed position of each I/O pin pi is
given by X[i] and Y [i] (i ≤ m) and its orientation by Or(pi)ε{north, south, east, west}.
The area A (height H and width W having its bottom left corner at coordinate (xini ,yini)
position) inside the I/O pins is assigned for cell placement. The whitespace ratio S on
the placement area is achieved by subtracting the total gate area (Ga) from the area avail-
able inside the I/Os and dividing the result by Ga. The aspect ratio Ar is computed by W
divided by H.

Let Z be the set of tier numbers {1, 2, ..., z}. The problem to be solved is defined
as follows: given a 2D placement netlist Nl with fixed I/O pins, find a set of tiers T =
{t1, t2, , tz} (z is the number of tiers) and their correspondent Ai, Ari, Gai, Wi, Hi, Pi,
Si, Ori, Xi and Yi (i ≤ z) such that equations 4.1-4.8 hold.

P1 ∪ P2 ∪ ... ∪ Pz = P (4.1)

(∀a, bεZ)(a 6= b→ Pa
⋂

Pb = ∅) (4.2)

(∀iεZ)(Whi ≈ Wh) (4.3)
(∀iεZ)(Ari ≈ Ar) (4.4)

(∀iεZ)(∀jεZ)(Wi = Wj ∧Hi = Hj) (4.5)
(∀iεZ)(∀aεPi)(Ori(a) = Or(a)) (4.6)

(∀iεZ)(∀aεPi)(∀bεPi)(Or(a) = Or(b) ∧Xi[a] < Xi[b]→ X[a] < X[b]) (4.7)
(∀iεZ)(∀aεPi)(∀bεPi)(Or(a) = Or(b) ∧ Yi[a] < Yi[b]→ Y [a] < Y [b]) (4.8)

In other words, each tier will have its own set of I/O pins and no tier will share an I/O;
the whitespace and aspect ratio must be evenly allocated; the orientation and ordering of
the pins must be preserved.

4.4.2 Proposed algorithm

Let Ld(pi, pj) be the length of the shortest path in Hg from pi to pj (e.g. the logic
distance between pi and pj). The algorithm for I/O partitioning is described as follows.

Algorithm 1 I/O Pins Partitioning and Placement algorithm
1: Compute Ld(i, j)∀i, jεP
2: Create a complete graph Pg such that P is the set of nodes and Ld(i, j)(i, jεP) is the

cost of the edge connecting nodes i and j.
3: Perform the partitioning of Pg into P1, P2, , Pz configured to perform min-cut opti-

mization at a 1% maximum unbalance ratio.
4: Compute Gai (iεZ) by Ga divided by z
5: Compute Ai by adding Whi to Gai
6: Compute the dimensions of the tiers based on equation 4.9.
7: Place the I/O pins around the boundary of the block by simple stretching according

to equation 4.10.
8: Legalize I/O Positions

Wi =
√
Ai × Ari (4.9)

Hi =

√
Ai

Ari

65

(∀iεz)(∀pεPi)Xi[p] =
(X[p]− xini)×Wi

W
(4.10)

(∀iεz)(∀pεPi)Yi[p] =
(Y [p]− yini)×Hi

H

The first step of the algorithm is illustrated in A.5.(a). Considering that in a real
circuit net fanouts are limited, node degrees can be considered bounded or constant for
the sake of complexity analysis. Thus, a single BFS search has an O(n) complexity.
The algorithm can be performed by m2 BFS searches in Hg resulting in a O(m2n) time
complexity. Since the number of I/O pins do not exceed a few thousand, it is feasible to
use BFS. By using a single search to compute the distance from a pin pi to every pεP , the
complexity can go down to O(mn).

On step2, the values of Ld are used to create a Pg graph connecting all pairs of I/O
pins, as shown in figure A.5.(b).

For the third step, we used the hMetis tool (KARYPIS, G. et al, 1999). The tool
accepts edge weights in the input which modifies they way they are accounted in the cut
computing. Basically a edge with 2 as weight would be considered twice as much as a
net with 1 weight. We assigned the inverse of the edge costs as their weights in order to
penalize more the long movements and try to keep shorter paths toghether. A very tight
I/O balance is imposed in order to keep a similar amount of I/Os in each tier. In section
4.4.4.3 the effects of unbalancing the I/O pins are discussed.

E F G H

A

B

C

D

1

2

3

4

5

Ld(A,G) = 1
Ld(A,H) = 5

A
P

H

G

(23)

(1)
(34)

(3)

(4)

(5)

(a) (b)

Figure 4.3: An ilustration of the logic distance between I/O pins (a) and a part of the
correspondent complete graph (b)

The forth step can be accomplished by a simple division of the total gate area by the
number of tiers. So far, it is not possible to know whether such perfect cells partitioning
will be achievable, but it is a reasonable assumption. Nevertheless, Si could be changed
to compensate the Gai inaccuracy.

The steps 5 and 6 compute the area of the tiers such that aspect ratio and whitespace
are preserved from the original 2D circuit. At this point, new aspect ratio or whitespace
could be used.

66

Finally, the steps 7 and 8 compute the x and y coordinates of the I/Os to their target
tiers. The original orientation and ordering is preserved, since the I/O placement is a map-
ping from their original position into a smaller area. A legalization (step 9) is performed
at the end to assure that the I/Os do not overlap.

4.4.3 Experimental Setup

The goal is to study the impact of the I/O pin partitioning in the area, number of vias
and I/O pin balance. For that, we defined a simplistic 3D placement flow as follows:

1. Initially the I/O partitioning algorithm under study is performed.

2. A min-cut partitioning of Hg into z partitions is performed. The I/O pins, that have
already an assigned partition, are used as fixed nodes. The hMetis tool is applied for
this step. The tool is configured to keep the area as balanced as possible (maximum
1% unbalance).

3. A tier assignment (similar to the one from (ABABEI; MOGAL; BAZARGAN,
2005)) problem maps the sets P1, P2, ..., Pz into tiers t1, t2, ..., tn. A Simulated
Annealing engine is used (see figure 4.4).

4. Cells could be placed separately in each tier. We skip this step since our goal at this
point is to evaluate the number of 3D-Vias.

P1

P3

P2

P4

(453)

(520)

(159)

(492)

(639)

(172)

P1

P4

P2

P3

(453)

(172)

(159)

(492)

(639)

(520)

P1

P4

P2

P3

(1117)

(1423)

(851)

Simulated
Annealing

Partitions of cells
(a)

Tier Assignment
(b)

Effective 3D-Vias
(c)

P3

P2

P1

P4

P3

P2

P1

P4

Figure 4.4: A group of partitions (a) are assigned to tiers (b) using Simulated Annealing;
the effective number of 3D-Vias is shown in (c)

As there is no published previous work on I/O pins handling, the proposed I/O parti-
tioning algorithm is compared with two other simplistic algorithms that follow the same
formulation described in section 4.4.1.1. The first algorithm is called AlternatePins, on
figure 4.5.(a). This method is a pseudo-random partitioning that goes thought the bound-
ary line of the chip picking nodes for each partition alternatively. The AlternatePins
replaces steps 1,2 and 3 of the flow keeping steps 4,5,6,7 and 8 untouched in order to
maintain the same I/O placement policy.

67

The idea behind the AlternatePins method is to provide an optimal solution in terms
of balancing the I/Os. Balancing is important for the subsequent placement stage because
the I/Os play a very important role in the quadratic placement engine (ALPERT, C. et al,
1997). This algorithm computes an optimal solution for the cell placement based on at-
traction forces between connected cells. I/O pins, placed at the boundary, are responsible
for the spreading of the cells, since otherwise they would be placed at the center point.

The second method is called UnlockedPins, illustrated in figure 4.5.(c). In this
method, we allow hMetis to partition the I/Os as free nodes, replacing the steps 1,2 and 3
of our algorithm. The following steps of our algorithm are done for the UnlockedPins as
well.

The idea behind the UnlockedPins method is to provide a favorable solution in terms
of 3D-Via minimization. Since hMetis is a leading edge hyper-graph partitioner, it will
generate a netlist partitioning with close to optimal number of 3D-Vias. On the other
hand, I/O pins will not be spread evenly.

(a)
Alternate

Pins

(b)
Two tiers after Alternate Pins

(c)
Unlocked

Pins

(d)
Two tiers after Unlocked Pins

Figure 4.5: An illustration of the Alternate Pins algorithm (a) resulting in a two tier cir-
cuit (b) with perfectly balance I/O pins; the Unlocked Pins algorithm (b) uses hMetis to
partition the whole Netlist, which could result in unbalanced pins (d).

The method proposed here aims at a good solution in terms of both 3D-Vias and
balancing. Section (4.4.4) presents experimental results comparing the algorithm under
these metrics.

68

4.4.4 Experimental Results

4.4.4.1 Effect on 3D-Vias

Experiments measuring the amount of 3D-Vias and the balancing of the algorithm are
presented in this section. Tables 4.3, 4.4 and 4.5 report our experimental results. ISPD
2004 benchmarks (ISPD04 - IBM STANDARD CELL BENCKMARKS WITH PADS.,
2004) are used targeting circuits with two, three, four and five tiers.

First, table 4.3 reports the I/O balancing measured by the standard deviation of the
number of I/O pins averaged from the whole IBM benchmark suite. The average number
of I/O pins from the IBM benchmarks is 264. The method AlternatePins delivers the
optimal solution while UnlockedPins is very unbalanced. In some situations, the strong
unbalance practically invalidates the method. The proposed algorithm has close to optimal
pin balancing.

Table 4.3: Comparison of the I/O pins distribution in the tiers considering the three studied
algorithms averaged from ibm01 to 1bm18.

tiers Algorithm σ # I/Os
Our Algorithm 7

2 UnlockedPins 233
AlternatePins 0.4

Our Algorithm 6
3 UnlockedPins 252

AlternatePins 0.4
Our Algorithm 5

4 UnlockedPins 177
AlternatePins 0.4

Our Algorithm 6
5 UnlockedPins 189

AlternatePins 0.4

Tables 4.4 and 4.5 presents our experimental results for the total number of 3D-Vias
for the whole IBM benchmark suite. The AlternatePins method has the worst results
under this metric, which is expected since it is a pseudo-random partitioning. This fact
enforces the conclusion that a simplistic I/O partitioning leads to a worse cut size. On the
other hand, the method UnlockedPins, which was expected to have the best cut among
the three methods was outperformed by our algorithm. This fact can be explained by
our pre-processing stage that computes the logic distance between I/Os. It seems that the
logic distance is a way to summarize the information of the whole graph into a single
edge that connects I/O pins (step 2 of the algorithm). Since the graph into this step is
very small compared to the whole netlist hyper-graph, the partitioning algorithm (hMetis
in this case) could achieve a good partitioning for the pins and for the netlist as well. This
computation requires intensive CPU usage. To overcome this problem, the distances are
pre-computed and stored in a file so that the I/O partitioning runtimes are not harmed.

Tables 4.6 and 4.7 present experimental results for the maximum number of 3D-Vias
between pairs of tiers.

69

Table 4.4: Total number of 3D vias for the proposed algorithm.
Our Algorithm # 3D-Vias

tiers 2 3 4 5
ibm01 374 525 837 1162
ibm02 396 747 1156 1533
ibm03 1064 2174 2610 3974
ibm04 735 1511 2371 2852
ibm05 2258 4311 6489 9193
ibm06 1059 1642 2934 3477
ibm07 992 2050 3219 4400
ibm08 1298 2697 4018 5346
ibm09 699 1872 2495 3343
ibm10 1490 2661 4004 5216
ibm11 1190 2240 3685 4620
ibm12 2293 4094 6581 8191
ibm13 1042 1893 3099 3742
ibm14 2121 3886 5342 6667
ibm15 3002 4827 7022 9283
ibm16 2102 4316 5774 7172
ibm17 2769 5611 8526 10114
ibm18 1676 3591 4985 6581

Average 1476 2814 4175 5381

4.4.4.2 Studying the area effect of 3D-Vias

Table 4.8 presents an area impact study of the 3D-Vias considering the three algo-
rithms (the numbers are averaged for all benchmarks). The column “Max # 3D-Vias"
reports the maximum number of 3D-Vias connecting pairs of adjacent tiers; this data is
extracted from tables 4.6 and 4.7. This number will impact the area requirements for
3D-Vias. The area study supposes 3D-Vias measuring 5µm and 50µm, which represent
a good 3D-Via pitch and a huge 3D-Via pitch respectively.

The following facts can be observed on table 4.8:

• The big 3D-Vias, that could be bulk based face-to-back vias, suffer from a very
high penalty for the 3D-Vias. With 2 tiers, there is a penalty of around 53% of the
tier area (note that our algorithm results in less 3D-Vias and also less tier area than
the others). For the cases with 4 and 5 tiers, the 3D-Via area is larger than the tier
area. The important conclusion here is that when targeting a big via technology
it is mandatory to minimize the number of 3D-Vias in order to obtain a feasible
solution. As seen in previous tables (4.6 and 4.7) the proposed algorithm can save
up to 34% which translates to area savings in the order of an entire tier.

• Technologies with small vias suffers from around 2% of area penalty for the 3D-
Vias, leaving room for more 3D-Vias if they are helpful.

4.4.4.3 Unbalancing the I/O pins

In the previous section we could observe that there is a trade-off between the I/O pins
balance and the resulting number of 3D-Vias. The proposed algorithm for pin partitioning

70

Table 4.5: Comparison of the total number of 3D vias for the three studied algorithms for
I/O pin partitioning over the others.

UnlockedPins # 3D-Vias AlternatePins # 3D-Vias
tiers 2 3 4 5 2 3 4 5
ibm01 441 857 838 1439 428 881 977 1372
ibm02 547 882 1214 1600 503 829 1340 1691
ibm03 1146 2282 2693 4020 1099 2530 3602 4366
ibm04 628 1583 2516 3202 750 1619 2461 4275
ibm05 2417 5372 6653 9651 2576 5428 7037 12400
ibm06 1057 1827 3128 3566 1075 1729 3429 3507
ibm07 880 3242 3302 4605 1049 3423 3482 6523
ibm08 1324 2814 4184 5698 1307 3431 4183 6327
ibm09 806 2828 2763 3518 780 2186 3757 3556
ibm10 1771 3565 4675 7116 1821 4062 4358 8492
ibm11 1490 3477 3958 5697 1494 3629 4923 7437
ibm12 2594 5350 7259 9158 2556 5569 8996 12515
ibm13 1193 3037 3264 4557 1170 2912 4618 4874
ibm14 2171 4561 6584 8085 2310 5090 7564 10113
ibm15 2890 7863 9082 11707 3126 7970 11144 13857
ibm16 2237 5816 6235 9300 2280 6216 9525 10903
ibm17 2539 7695 8733 10845 2847 8402 11420 14080
ibm18 1835 4686 5229 9072 1704 3899 5268 8193

Average 1554 3763 4573 6269 1604 3879 5449 7466
Our

Improv. 5.29% 33.74% 9.53% 16.49% 8.72% 37.84% 30.52% 38.73%

aims at good balance. However, it is well known that a tight balance requirement over-
constraints the partitioning process (KARYPIS, G. et al, 1999). In the proposed algorithm,
the I/O balance can be controlled in step 3 that is performed by hMetis.

HMetis allows the user to configure the balance constraint for each bisection based on
equation 4.11 where u is the unbalance parameter and n is the number of vertices on the
hyper-graph.

[(50−u)×n
100 ; (50+u)×n

100]

(4.11)
For example, let u = 10, then the bisection balance will range from 40%-60% to 60%-

40%. Now suppose that we have four partitions, then an unbalancing factor 10 will result
in partitions that can contain between 0.402 × n = 0.15 × n and 0.602 × n = 0.35 × n
vertices.

Our experimental results (averaged from all benchmark circuits) are reported on ta-
ble 4.9 and figure 4.6. Table 4.9 presents the I/O pin unbalance measured by Standard
Deviation. Figure 4.6 presents the benefits of unbalancing the I/Os to the 3D-Via count.

71

Table 4.6: Maximum number of 3D-Vias for proposed algorithm.
tiers 2 3 4 5
ibm01 374 330 370 400
ibm02 396 413 403 594
ibm03 1064 1112 1088 1260
ibm04 735 887 992 887
ibm05 2258 2203 2469 2729
ibm06 1059 849 1135 948
ibm07 992 1332 1433 1524
ibm08 1298 1448 1397 1610
ibm09 699 1057 1008 1075
ibm10 1490 1450 1590 1750
ibm11 1190 1485 1605 1719
ibm12 2293 2278 2422 3173
ibm13 1042 1269 1548 1781
ibm14 2121 2272 2248 2459
ibm15 3002 2857 3199 3395
ibm16 2102 2164 2212 2625
ibm17 2769 3150 3601 3105
ibm18 1676 1871 1754 1782

Average 1476 1579 1693 1823

Figure 4.6: The percentage improvement on 3D-Via count of unbalancing the I/O pins.

4.4.5 Partial Conclusions

A method for the partitioning and placement of the I/O pins of a 2D block to a 3D
circuit was proposed. An interesting analysis is that our method lies in the fact that it
actually improved the hypergraph partitioning algorithm cut by performing only shortest

72

Table 4.7: Comparison of the maximum number of 3D vias for the three studied algo-
rithms for I/O pin partitioning over the others.

UnlockedPins Max # 3D-Vias AlternatePins Max # 3D-Vias
tiers 2 3 4 5 2 3 4 5
ibm01 441 467 377 573 428 483 406 480
ibm02 547 496 485 552 503 469 498 553
ibm03 1146 1143 1021 1334 1099 1320 1485 1210
ibm04 628 862 1067 1039 750 913 1033 1454
ibm05 2417 2765 2478 2712 2576 2814 2526 3974
ibm06 1057 924 1134 935 1075 915 1193 937
ibm07 880 1980 1510 1525 1049 2050 1590 2402
ibm08 1324 1436 1445 1788 1307 1919 1448 1833
ibm09 806 1598 1092 1249 780 1356 1684 1137
ibm10 1771 1883 1741 1986 1821 2247 1724 2898
ibm11 1490 1909 1810 2230 1494 1856 1802 2610
ibm12 2594 2820 2747 2962 2556 3160 3113 4205
ibm13 1193 1606 1500 1755 1170 1611 1905 1954
ibm14 2171 2375 2307 2881 2310 2619 3274 3283
ibm15 2890 4188 3377 4099 3126 4207 4385 4163
ibm16 2237 3185 2266 3355 2280 3704 3794 3443
ibm17 2539 4165 3526 2990 2847 4539 5245 5053
ibm18 1835 2652 1852 2810 1704 2127 1856 2552

Average 1554 2025 1763 2043 1604 2128 2165 2452
Our

Improv. 5.29% 28.24% 4.14% 12.06% 8.72% 34.76% 27.85% 34.51%

Table 4.8: Comparison of the 3D-Vias Area Impact Considering the Three Algorithms.
tiers Algorithm Area Tier Max Area 3D-Vias Area 3D-Vias

3D-Vias (big - 50µm) (small - 5µm)
2 6,934,347 1,476 3,690,000 53% 36,900 1%
3 OurAlgorithm 4,660,116 1,579 3,947,500 85% 39,475 1%
4 3,490,471 1693 4,232,500 121% 42,325 1%
5 2,821,087 1823 4,557,500 162% 45,575 2%
2 6,936,553 1,554 3,885,000 56% 38,850 1%
3 UnlockedPins 4,658,909 2,025 5,062,500 109% 50,625 1%
4 3,481,276 1,763 4,407,500 127% 44,075 1%
5 2,817,413 2,043 5,107,500 181% 51,075 2%
2 6,926,117 1,604 4,010,000 58% 40,100 1%
3 AlternatePins 4,640,572 2,128 5,320,000 115% 53,200 1%
4 3,489,458 2,165 5,412,500 155% 54,125 2%
5 2,816,187 2,452 6,130,00 218% 61,300 2%

path analysis. Note that the method works in two phases: first the I/O partitioning consid-
ering the logic distances as weights; second, fix the I/Os and perform partitioning of the
cells. In the first phase, the I/Os are arranged in a small graph (containing only the I/Os)
weighted by the logic distance on the original graph. The edge weights actually contain

73

Table 4.9: The Unbalance of the I/O pins measured by the Standard Deviation
2 tiers 3 tiers 4 tiers 5 tiers

u=1 7 6 5 6
u=10 64 54 41 48
u=25 158 141 100 103

information of the whole netlist, compressed in the small I/O graph. In the second phase,
the whole netlist is partitioned, however some nodes (the I/Os) are fixed, reducing the
problem complexity and more importantly providing tips to the partitioning algorithm.
We conclude that the reduced problem sizes with compressed information of the whole
netlist actually improved the partitioning algorithm at the expense of more CPU time.

Empirically, we showed that doing the partitioning of I/O together with the cells (Un-
lockedPins method) leads to strongly unbalanced number of pins, which invalidates the
method. We also demonstrated the pseudo-random I/O partitioning approaches (such as
AlternatePins) leads to a higher number of 3D-Vias. The proposed method demonstrated
good effectiveness both in terms of I/O balance and resultant number of 3D-Vias (5% to
33% improvement on 3D-Via count compared to hMetis), outperforming both algorithms
in both metrics.

After that, the area impact was studied under our simplified placement flow that min-
imizes the number of 3D-Vias. It was verified that the area overhead caused by 3D-Vias
is prohibitively high for big (50µm pitch) 3D-Vias (in the order of 50% of the active area
and up), requiring more research on via minimization methods. On the other hand, for
small (5µm pitch) 3D-Vias, the impact was small (around 2% of the active area), leav-
ing room for additional 3D-Vias if it can improve circuit performance. Any intermediary
case would be able to trade 3D-Vias for performance limited by the area occupied by the
3D-Vias.

Finally, we investigated ways to further minimize the cut by working with the I/O pin
balancing. We relaxed the I/O pin balance constraint keeping the area evenly distributed
since the second partitioning process is still highly constrained. Adding up the advan-
tage reported in previous works with the improvements achieved on this thesis, we can
outperform hMetis partitioning from 5.5% to 34% in average.

4.5 Global Placement

The global placement takes place after the I/Os are distributed along the tiers and
properly placed at the boundary of the cells area. The task of the global placement is to
propose a placement of all cells within one of the available tiers. We understand as valid
a z coordinate that fits exactly one of the tiers. It is also a task of the global placement to
deliver a valid solution with respect to constraints for addressing 3D-Via related issues.

Fastplace, proposed in (VISWANATHAN; PAN; CHU, 2005), is a fast analytical
placer based upon quadratic placement approach. Z-Place incorporates some algorithms
of Fastplace and extend them to 3D. For this reason, the Fastplace method is reviewed in
section 4.5.1.

The remaining of the global placement section is organized as follows: Sections 4.5.5
and 4.5.6 present the basic formulations of the 3D placement problem in Z-Place. Section
4.5.7 presents the flow of the proposed global placement method. The new features of
our 3D placer as well as the algorithms are presented in sections 4.6.1 and 4.6.2. Those

74

features enable the wire length optimization on 3D and provide means to spread the cells
while migrating them to a circuit tier at the same time. A dynamic area allocation for the
3D-Vias is performed while keeping 3D-Via count bellow an upper bound that is sensible
to the integration strategy and 3D-Via area.

4.5.1 Fastplace Review

Fastplace (VISWANATHAN; PAN; CHU, 2005) solves a linear system of equations,
which models the cells connectivity. After the system is solved, the Cell Shifting tech-
nique is applied followed by an Add Spreading Force step. These three steps are iterated
until a roughly even placement is achieved. Finally, Fastplace applies an Iterative Refine-
ment step that improves linear wire length and cell spreading at the same time.

4.5.2 Cell Shifting

The solution of the system concentrates the cells in the middle of circuit area and
therefore has a high amount of overlap. To spread cells out and remove overlap, Fastplace
utilizes the Cell Shifting technique, which acts as follows. Initially the circuit area is
divided in regular (equal sized) bins. The size of bin is such that it accommodates in
average 4 cells. The utilization of a bin is computed by accumulating the overlap area
between the cells and their bin. Based on regular bin structure, an irregular bin structure is
constructed (figure 4.7) in such a way that bins with high utilization will have an increased
size while lower utilized ones will have decreased size.

Obx
-1

Obx
0

Obx
1

Obx
2

Obx
m-1

Obx
m

Oby
-1

Oby
0

Oby
1

Oby
n-1

Oby
n

U0,0

U1,0

U0,1

Un,0 Un,1 Un,2 Un,m

U0,m

Nbx
n,-1 Nbx

n,0
Nbx

n,1
Nbx

n,2
Nbx

n,m-1
Nbx

n,m

Figure 4.7: The regular bin structure used in the cell shifting method.

The new boundaries, Nbx, of a bin i is calculated by equation 4.12 where:

75

• Obx is the boundary coordinate corresponding to the regular bin structure;

• U is the bin utilization;

• i is the index of the current bin;

• i+ 1 is the index of the next (right) bin and i− 1 is the index of the previous (left)
bin;

• the δ is used to avoid cross-over between bin boundaries where utilization is zero.

• In y dimensions, analogous computation is performed.

Nbxi =
Obxi−1(Ui+1+δ)+Obxi+1(Ui+zdelta)

Ui+Ui+1+2δ

(4.12)
After the irregular bin structure was built, the cells are linearly mapped from equal

sized bins to the correspondent irregular bin. The equation 4.13 maps a cell from its
original position, xold, to its target position, xnew, after shifting.

xnew =
Nbxr,i×(xold−Obxi−1)+Nbxr,i−1×(Obxi−xold)

Obxi−Obx(i−1)

(4.13)
Instead of moving the cell directly to its assigned target position, (VISWANATHAN;

PAN; CHU, 2005) suggests a movement to an intermediate position. Since the computa-
tion of the target position is based only on utilization, a long movement could be harmful
to wire length. For this reason, a movement control parameters αx and αy are used for
each axis defined as a real number between 0 and 1. For instance, if α is set to one, then
the whole movement is performed and if α is 0.5, then the cell is moved half way. The
equation 4.14 and 4.15 presents how αx and αy are computed respectively.

αx = 0.02 + 0.5
maxU

× averageCellWidth
cellHeight

(4.14)

αy = 0.02 + 0.5
maxU

(4.15)
The value of α is inversely proportional to the current maximum utilization of the

circuit (maxU). This way, cells are shifted over very small distances during the initial
placement iteration when the maximum utilization is higher. During the later iterations,
α reaches high values.

4.5.3 Add Spreading Forces

After the cells have been shifted, new forces (one for each cell) are added to the
system in order to avoid cells collapse back to their old positions in the next system
resolution. This is achieved by connecting by a spring each cell to a pseudo-pin placed at
the boundary of the placement region, as illustrated by figure 4.8.

76

i

c

h

P

(Xc,Yc,Zc)

new
position

d

g

Figure 4.8: A cell movement and the force created represented by a spring.

The force vector F = (Fx, Fy) applied under cell c is added in the springs system with
the addition of an artificial pin Pc and an artificial net Nc that connects c to Pc. The pin
Pc is placed at the boundary of the placement space (as suggested by (VISWANATHAN;
PAN; CHU, 2005)). The force F is obtained based on the distance of the cell c’s new
position (newxc, newyc) to all cells and I/O pins connected to it, except the distance d
to the just added artificial pin. The equation 4.16 describes the computation of the x
component of vector F , where Connectedc is a set that contains the elements i (cells
or I/O pins) connected to c in the netlist and wc,i is the weight of the connection from c
to i that can be extracted from matrix Q. The other component for F (Fy) is calculated
analogously.

Fx =
∑

i∈Connectedc(wc,i × (newxc −Xi)) + (newxc −Xc)
(4.16)

Finally, the weight of the connection from c to Pc, weightNc, is obtained according
to equation 4.17.

weightNc = ‖F‖
d

=

√
F 2
x+F 2

y+F 2
z

d

(4.17)

4.5.4 Iterative Local Refinement

Since quadratic wirelength is just an indirect measure of half-perimeter, Fastplace
uses a greedy technique to tries to minimize the half-perimeter while trying to reduce the
maximum bin utilization. The Iterative Local Refinement step divides the circuit in bins
in the same way as Cell Shifting but the bin size is 5x larger.

For each bin, all cells are tested to move to the four neighbor bins. Each movement
is scored with respect to the wirelength and bin utilization. The best movement is taken
unless none of the movements is able to improve the score. This process is repeated
until there is no significant improvement in wirelength. At each iteration, the bin size is
decreased until the cell shifting size is reached.

77

4.5.5 3D Integration Strategies Under Z-Place

A 3D Circuit is composed by the stacking of 2D VLSI circuits. The circuits, called
tiers, are composed by an active area, metal layers and insulator layers. Depending on how
the circuits are arranged, the integration between a pair of adjacent tiers can be classified
as face-to-face, face-to-back or back-to-back. Davis et. al. (DAVIS, W. et al, 2005)
describe the Microbump face-to-face technology in contrast with the Through Vias that
are used in the face-to-back strategy. They also describe the technology from MIT labs
(MITLL) that mixes the strategies for 3 tiers circuits (first tier is face-to-face to the second
one, that is face-to-back to the third tier). Figure A.7 illustrates the integration strategies
supported by Z-Place. It could support back-to-back as well with few adjustments. Note
that the face-to-back Through Vias must dig a hole in the Bulk and for that they require
active space that cannot be used by the circuit logic. On the other hand, a face-to-face 3D-
Via has to go through all the metal layers of both tiers consuming more routing resources
than face-to-back.

Bulk

Metal Layers

Bulk

Metal Layers

(a) face-to-face

Bulk

Metal Layers

Bulk

Metal Layers

(b) face-to-back

Bulk

Metal Layers

Bulk

Metal Layers

(c) back-to-back

Figure 4.9: 3D Integration Strategies: (a) face-to-face, (b) face-to-back and (c) back-to-
back.

From the cell placement problem perspective, we impose two constrains that are de-
fined according to the strategy used:

• Active area balance. It is a task of the 3D placer to provide a balance of the cells
area for each tier. Due to the space required by face-to-back 3D-Vias, our placer is
constrained to leave more room in the tiers where 3D-Vias occupy active area.

• 3D-Vias Count. It is reasonable to define an upper bound for 3D-Vias count. The
upper bound is adapted to the 3D-Via technology. A certain 3D-Via area is allocated
for each type of integration. The upper bound is obtained by dividing the allowed
area to the area of a single 3D-Via under that type of integration.

4.5.6 Problem Formulation

Given a set of cells C = {c1, c2, c3, ..., cn} and an Area function CellArea(c) ∈
C × N, the placement problem must compute a triple (xc, yc, zc), for every cell c, that
represents a valid placement within the placement cube minimizing 3D wire length that
is informally defined as an extension of traditional 2D half perimeter adding the offset on
the Z coordinate as well.

Let m be the number of tiers in a circuit. We define the placement space as a sliced
cube, as illustrated in figure A.6 with m slices. Under this model, the cells can be tem-
porarily placed in any z coordinate, but in the end of the process the cells must be in a

78

valid coordinate that is defined to exactly match a tier. In other words, invalid coordinates
are defined as any intermediate coordinate between adjacent tiers.

Invalid position on Z
Valid position on Z

Z

X

Y

(a) (b)

Figure 4.10: Sliced cube model with invalid coordinates and I/O in all tiers.

Every two adjacent tiers in the cube have an integration strategy that can be either
face-to-face (f2f), face-to-back (f2b) or back-to-back (b2b). Let Istrategy be the set
{f2f, f2b, b2b} of possible strategies. Let I be an array of w = m − 1 positions in-
dexed by i (0 ≤ i < w) that describes the integration between tier ti and ti+1 as f2f ,
f2b or b2b. Any two adjacent positions in I such as i and o (i − o ∈ {−1, 1}) cannot
have the combination I[i] = f2f and I[o] = f2f . In order to have two f2f positions,
a b2b one must be between than. The following formal grammar (FORMAL GRAM-
MAR DEFINITION, 2007) formalizes all possible compositions of integration strate-
gies, where the set of non-terminal symbols N = {�,♦} the set of terminal symbols
Σ = {< f2f >,< f2b >,< b2b >}, ε is the empty word and � is the start symbol.

1. �→< f2f > ♦ |< f2b > � | � < b2b > � | ε

2. ♦→< f2b > ♦ | ε

Under the sliced cube model, the space between two tiers is occupied by a 3D-Via
layer. Let V be the array of 3D-Via layers withw positions. In a 3D-Via layer, the 3D-Vias
must be placed legally (YAN, H. et al, 2005) and for that enough space must be provided
by the cell placer. A 3D-Via have pitch requirements depending on the technology and
integration strategy. We define a function 3D−V iapitch(strategy) | stragegy ∈ Istrategy
that returns the pitch requirement of a given integration strategy. A similar function 3D−
V iaheight(strategy) defines the distance (in the Z axis) between a pair of adjacent tiers
integrated according to the variable strategy. In the Z axis, the size of the cube (depth)
is given as by depth =

∑
0≤v<w(3D − V iaheight(I(v))). The position of a slice s (0 ≤

s ≤ w) on the cube can be located by
∑

0≤v<s(3D − V iaheight(I(v))).
Let J be the array of 3D-Vias counters indexed by j (0 ≤ j < w). We constraint

our algorithm to limit the number of 3D-Vias in a given pair of adjacent tiers according
to a max 3D-Via count function Ubound ∈ Istrategy × N. Given the tier area (tierarea), a
certain percentage of the area for each strategy (Parea(strategy)), theUBound(strategy)
is defined by Parea(strategy)×tierarea×3D−V iapitch(strategy). The constraint added
to the algorithm is given by equation 4.18.

79

∀0<j<w(J [i] < Ubound(I[j]))
(4.18)

Additionally we impose a constraint with respect to the area distribution. In
(ABABEI, C. et al, 2005) the authors mention that leaving more whitespace in the up-
per tier would improve heat dissipation depending on the packaging technology. Under
our model we understand that a good distribution allocates similar whitespace through the
tiers. However, in the presence of face-to-back integration, some tiers must allocate extra
space for the 3D-Vias. In such cases, we want that cell’s area be redistributed maintaining
the whitespace distribution even.

For the set C of cells, let the total cell’s area in the circuit be Ca. Ca can be obtained
by summing the area of each individual cell (

∑
c∈C CellArea(c)). Let:

• Cat be the cells area allocated for tier t;

• V a be the total 3D-Vias area in the circuit;

• V at be the 3D-Via area needed in tier t due to the integration of tier t with tier t− 1
if I(t− 1) = f2b and 1 ≤ t < z.

We define an ideal area for the cells in a tier t as shown in equation 4.19. In our global
placement we try to maintain the proposed area distribution by penalizing movements that
produces a tier utilization that is larger the the ideal one.

IdealCat = V a+Ca
z
− V at

(4.19)

4.5.7 Z-Place Global Placement Flow

In Z-Place, the 3D placement process that optimize purelly 3D wire length at the first
iteration while it slowly starts to consider the constraints of the problem. By iterating
a system of equation solving that optimizes wire length with a process that introduces
weak forces that favors cells to move to a balanced position we do not affect much the
wire length optimization by satisfing the constrains. The global placement flow is sum-
marized in figure 4.11. Our algorithm is similar to the one in (VISWANATHAN; PAN;
CHU, 2005) that was proposed for 2D circuits. For this reason, the method is reviewed in
section 4.5.1. The main placement engine is analytic targeting at Quadratic wire length
minimization. We apply 3D Cell Shifting (section 4.6.1) in order to spread the cells that
are initially placed in invalid and overlapped coordinates concentrated in the center of the
cube. It is a task of this stage to migrate the cells to a tier in order to obtain a valid z coor-
dinate and also respect the global placement constraints. Finally, the iterative refinement
stage, detailed in section 4.6.2, provides a greedy heuristic that optimizes linear 3D wire
length while controlling the 3D-Vias to be within the upper bound.

4.6 3D Quadratic Placement

In Z-Place, we start applying a hybrid net modeling and weighting the connections as
suggested by (VISWANATHAN; PAN; CHU, 2005). Nets of size 2 or 3 are modeled as a
complete graph, while every net larger than three pins is mapped into a star. After trans-
forming the netlist, we apply the quadratic wirelength function as described by equation

80

Linear System
Solving

3D Cell Shifiting 3D Iterative
Refinement

Figure 4.11: The global placement flow.

4.20. It can be observed that the three coordinates x, y and z can be optimized indepen-
dently since φ(x, y, z) = φ(x) +φ(y) +φ(z) as demonstrated in equation 4.20. Hereafter
we describe just the computation performed for φ(x); the computation in y and z dimen-
sions is analogous. By setting derivative of φ(x) to zero, we find the spring system’s
equilibrium state which minimize the total quadratic wire lengh. The minimum point can
be found by solving a system of linear equations by rewriting the equation ∇φ(x) = 0
as Q × x = dx. Q is a symmetric matrix which describes the weight of the connec-
tion between all pairs of cells. The vector dx contains the weights related to connections
between cells and I/O pins. The vector of unknowns, x, represents the x coordinates of
cells. The details of how a linear system that models cell placement for the quadratic wire
length optimization is obtained and solved can be found in the review provided by Alpert
et al. (ALPERT, C. et al, 1997)

φ(x, y, z) (4.20)

=
1

2
×

n∑
i,j=1

cij × [
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2]2

=
1

2
×

n∑
i,j=1

cij × (xi − xj)2

︸ ︷︷ ︸ +
1

2
×

n∑
i,j=1

cij × (yi − yj)2

︸ ︷︷ ︸
+

1

2
×

n∑
i,j=1

cij × (zi − zj)2

︸ ︷︷ ︸
The system of equations is solved using a pre-conditioned Conjugate Gradient method

with incomplete Cholesky factorization of matrix Q as the pre-conditioner. After solving
the system of equations, all the cells are placed within the sliced cube, but probably the
cells will be concentrated in the middle of the cube and most of them are placed at invalid
z coordinates. The next section describes our methodology for spreading the cells and
fixing their z coordinate.

4.6.1 3D Cell Shifting

Solving the spring system yields the optimal quadratic wire length but cell overlaps
are not taken into account. Moreover the optimal solution tends to concentrate the cells in
the center of the placeable region. To remove overlaps and spread cells over the placeable
region, we extend the Cell Shifting technique (VISWANATHAN; PAN; CHU, 2005) in
order to perform 3D Cell Shifting. We call Z-Cell Shifting (HENTSCHKE, R. et al, 2006)

81

the methodology to spread the cells on the Z axis. The Z-Cell Shifting methodology al-
locates a tier to each cell based on an even distribution of the cell area. At each iteration
of 3D Cell Shifting, the cell is moved in the direction of its tiers. Note that every inter-
mediate solution is unrealistic (cells cannot be placed in metal layers or insulator area -
invalid z coordinate). More accuracy on the wirelength optimization is obtained as the
cell approaches a tier.

We compute an array of threshold points threshold[] of t + 1 positions where
threshold[0] = 0 and threshold[t] = depth. The remaining threshold points are defined
in such a way that the cell and 3D-Via area are evenly distributed among tiers. Formally,
the threshold points must be defined according to the equation 4.21, where a and b are
consecutive indexes for the vector threshold.

∑
(c|threshold[a]≤zc<threshold[b])

(CellsArea(c)) ≈ IdealCaa (4.21)

According to the formulation presented in section 4.5.6, the face-to-back integration
of two adjacent tiers will influence the cells area on a tier. Figure A.7 ilustrates that tiers
integrated in a face-to-back strategy will support less cells because of the 3D-Vias space.

cells
cells

vias

(a) face-to-face (b) face-to-back

cells
vias

(c) back-to-back

Figure 4.12: 3D integration strategies and how they impact the area distribution: (a) face-
to-face and (b) face-to-back.

Note that the 3D-Via count at a tier t (J [t]) changes with each Cell Shifting iteration,
so the proposed method will dynamically adapt itself to the imposed constraint for cell’s
area distribution.

After computing the threshold points the algorithm assigns each cell c to a tier tc such
that threshold[tc] < zc < threshold[tc + 1]. A target z coordinate, znewc, is computed
to match the z coordinate of the corresponding slice on the sliced cube model.

The 3D Cell Shifting moves the cells into the three dimensions at the same time.
The algorithm maps a cell c from the original position (xc, yc, zc) to a target position
(xnewc, ynewc, znewc) and provides a force F to be added to the system of equations
described in section 4.6 that will realize the suggested movement on the next liner sys-
tem solving. In order to obtain newxc and newyc we apply a similar algorithm to
(VISWANATHAN; PAN; CHU, 2005). It starts by partitioning the slices into bins and
assigning the cells to the bins they are in. The size of the bins is defined such that each bin
holds approximately 4 cells. In our case the cells may not match any tier in intermediate
steps, so we use the tier assignment provided by Z-Cell Shifting.

82

Figure A.8 illustrates the 3D Cell shifting process. In (a) the Z-Cell Shifting method
is exemplified for 2 tiers, pointing out the threshold point computed according to the cells
area. In (b) the 3D Shifting is illustrated. Two cells are moved in all axes at the same
time.

Z

X

Y

(b)

Artificial pin

tier n

tier n-1

5

4

5

2

3

3

2

2

threshold

2

(a)

Figure 4.13: The Z-Cell Shifting methodology (a) and the 3D Cell Shifting algorithm (b).

The idea of using an α variable to limit the applied force providing a smooth move-
ment to the destination position is also applied on Z-Place for all axes (including Z).
Equation 4.22 shows the calculation of αz, where maxU is the current maximum uti-
lization all over the circuit and ChipHP represents the half perimeter of the chip
(width+ height+ depth). The other axes, αx and αy are computed analogously.

αz = 0.5×depth
maxU×ChipHP

(4.22)
Viswanathan (VISWANATHAN; PAN; CHU, 2005) suggests that the artificial pin

should be placed exactly in the boundary of the area, guaranteeing that all cells will be
placed within the allowed area. One drawback of this method is that cells moving to a
boundary position implies in extremely large forces or even infinity if the position matches
exactly the boundary. In Z-Place, we want cells to be moved exactly to the upper most
or lower most tier in the circuit, which overlaps with the boundary of the chip. In these
cases, we place the artificial pin a little bit away from the boundary. As a drawback, a cell
could be placed outside the chip. However, these cases will be corrected either by cell
shifting or by rounding the cell z coordinates in the end of 3D cell shifting.

The 3D cell shifting iterates with a linear system solving until an acceptable spreading
of the cells is obtained. After a few iterations the cells will be reasonably placed, as
illustrated in figure 4.14.

In figure 4.14 we can observe graphically the 3D Cell Shifting process. Initially,
observe that the linear system solving places the cells highly concentrated in the middle
of the cube. Clls assigned to different tiers are painted in different colors. Observe that
the cells are far away from their assigned tiers. In the second frame (that corresponds to
an intermediate step), the cells start migrating to the assigned tier while at the same time
spreading in the other axes (X and Y). It is possible that a cell might change its assigned

83

Figure 4.14: The visual effect of the 3D Cell Shifting methodology in a circuit with 3
tiers.

tier according to the movement of the other cells. Finally, the last frame shows the final
arrangement of the cells after cell shifting. During these steps, the linear system is solved
many times optimizing the quadratic wire length. However, it is not accurate in the initial
stages since cells are overlapped and placed in invalid z coordinates. As the cells start
approaching a valid z position, the quadratic wirelength optimization gets more accurate.

4.6.2 3D Iterative Refinement

After 3D Cell Shifting, the cells are placed on valid z coordinates and reasonably
distributed in the X and Y axis. The tasks of the 3D iterative refinement stage are the
following:

• Improve linear 3D wire length. The previous stages optimize quadratic wire length
that does not correlate with linear wire length because longer connections are over-
penalized.

• Iterate over the 3D-Vias count (array J) according to the upper bound constraint
defined by equation 4.18. For a given 3D-Via layer v, if the 3D-Via count provided
by 3D cell shifting (that ignores the constraint) is bellow the upper bound (J [v] ≤
Ubound[I[v]]), then use the freedom to improve wire length; if it is above, work on
reducing the number of 3D-Vias.

• Keep the balance of cells and 3D-Via areas according to the IdealCat (equation
4.19).

The area of every tier is partitioned into bins of size b. Initially, b is set to a large
number ((VISWANATHAN; PAN; CHU, 2005) suggests 5 times the value used for cell
shifting) and gradually decreases until it reaches the size used on 3D Cell Shifting. For
each value of b, all cells in the netlist are tested on all 4 neighbors in a plane and also the 5
closest bins in the upper adjacent and lower adjacent bins. The score of every movement
is a real number evaluated according to the function shown in equations 4.23 and 4.24,
where ∆Wlnorm, ∆Unorm and ∆Anorm represent the normalized variation for wire length,
utilization and tier area occupation respectively; m is the number of tiers; β, γ and λ real
numbers between 0 and 1 such that β + γ + λ = 1. The number ∆Anorm is used to keep
area utilization even. The best movement is taken. If no movement provides a positive
evaluation, the cell is simply kept in its current position.

Overall, each parcel of the cost represent a number usually between −1 and 1. WL
should be affected at the most by b, since the cell movement is no larger than b. The
utilization U is at most b2, which represents a full utilization of the bin. Finally, the last
parcel A should be at most one tiers area although it is not guaranteed.

84

score = β ×∆Wlnorm + γ ×∆Unorm + λ×∆Anorm
(4.23)

Wlnorm = WL
b

;Unorm = U
b2

;Anorm = Cat+V at
Ca×1/m

(4.24)
Any tier migration movement may produce a delta on the 3D-Via count. Let us assume

that we touched the 3D-Via layer v, changing J [v] to Jnew[v]. Note that only one 3D-Via
layer can be touched by a single movement, since we test only neighbor tiers. There are
two possible scenarios: Jnew[v] > UBound[I[v]] (a) and Jnew[v] ≤ Ubound[I[v]] (b).
The movement produces a variation in the 3D-Via count ∆3Dviasv = J [v]−Jnew[v] that
is used to change the scores. Note that a negative count means that the movement reduced
the 3D-Via count.

First, let us consider situation (a), where we are above the allowed upper bound. The
score is modified by encouraging the reduction and penalizing the addition of 3D-Vias (as
shown in equation 4.25).

Situation (b) in which the 3D-Via count is bellow the upper bound have a degree of
freedom to be explored by the algorithm in order to reduce wire length. It is possible,
though, that the firstly taken cells occupy the remaining 3D-Vias resources and do not
leave room for future cells that could take more benefit of the resource, which falls into
a greedy algorithm. This problem is similar to the one on global routing where the first
nets routed take all routing resources of a given bin edge, demanding future connections
to turn around because the edge is fully congested. For this problem, an early overflow
method, which starts penalizing routes before the full capacity is taken, is usually adopted.
Similarly, for the 3D-Vias problem we define a soft upper bound UboundS function,
UboundS ∈ Istrategy × N and ∀i∈Istrategy0 ≤ UboundS(i) ≤ UBound(i). If Jnew[v] >
UboundS[I[v]] then we modify the score similarly to situation (a) but with a multiplying
factor that will reduce the impact of the ∆3Dviasv on the score. Since the score is a
real number usually between−1 and 1, the ∆3Dviasv variable actually nullifies the other
components of the score if it is not reduced by a factor. We use 0.3 as reducing factor, as
show in equation 4.25.

score = score+

0 if Jnew[v] < UboundS[I[v]]
0.3×∆3Dviasv if UboundS[I[v]] ≤ Jnew[v] < UBound[I[v]]
∆3Dviasv if UBound[I[v]] ≤ Jnew[v]

(4.25)
To illustrate the possible trade-off between 3D-Vias and wire length achieved by the

3D Iterative Refinement method, an simple experiment was performed as follows. The
benchmark ibm04 was picked and placed it in four different manners: no 3D-Vias con-
straint; an intermediate 3D-Via constraint; the tightest possible 3D-Via constraint; an
hMetis partitioned solution (with approximately the optimal number of 3D-Vias) limiting
our placer to 2D movements only. This different configurations produced results with
variable wire length and Via count, as plotted in figure 4.15.

85

Figure 4.15: The Via count and 3D wire length (in cm) trade-off.

4.7 Experimental Results

In order to evaluate the merit of our placement tool we performed several experi-
ments on public benchmark circuits IBM-PLACE. Z-Place was configured to constraint
the number of 3D-Vias by a percentage of the tier area, according to the integration strat-
egy. In all experiments on this section, the percentages used were: 80% for face-to-face,
20% for face-to-back, 10% for back-to-back.

Table 4.10 presents experimental results for 2 tiers integrated in face-to-face and table
4.11 for face-to-back. Note that on table 4.10 the 3D-Via size is having no effect on wire
length because in all cases the 3D-Via count is bellow the allowed upper bound. This
situation is expected to happen since on face-to-face the upper bound is large (80% of the
area). Note that the 3D-Vias were not placed yet on this results, what would imply in an
advantage of the smaller pitches.

Comparing the face-to-face and face-to-back strategies, the presented data shows, in
summary, that face-to-face delivers better wire length optimization on the largest circuits,
even comparing to the same via size used for face-to-back (since the face-to-back vias
occupy valuable active space). There are two elements to be analyzed: first, note that the
3D-Via count for face-to-back is larger. When the algorithm is trading 3D-Vias for wire
length, there is a tendency to insert more 3D-Vias in face-to-back because they are shorter
than face-to-face. Second, note that on the smaller circuits there is a reduced wire length
for face-to-back. Since the largest cases contain more 3D-Vias, they are more sensible to
the drawbacks introduced by face-to-back 3D-Vias.

Table 4.12 presents the results for back-to-back integration on 2 tiers. Although back-
to-back 3D-Vias occupy active area in both tiers, it is shorter than face-to-back and also
allows a balanced area distribution of the cells. The results on table 4.12 demonstrates a
advantage on wire length of the back-to-back approach.

Now let us analyze the effect of our area balancing and 3D-Via planning considering
the integration strategy for 3 tiers. On table 4.13 we present the cells area and 3D-Vias
area for each tier as well as 3D-Via count for each via layer. The data shows clearly the

86

Table 4.10: Experimental results for 2 tiers face-to-face
f2f 1µm f2f 5µm f2f 10µm

WL # 3D-Vias WL # 3D-Vias WL # 3D-Vias
ibm01 1.67E+06 5375 1.67E+06 5375 1.67E+06 5375
ibm02 3.60E+06 8045 3.60E+06 8045 3.60E+06 8045
ibm03 4.14E+06 10055 4.14E+06 10055 4.14E+06 10055
ibm04 5.00E+06 11721 5.00E+06 11721 5.00E+06 11721
ibm05 7.68E+06 10544 7.68E+06 10544 7.68E+06 10544
ibm06 4.99E+06 13088 4.99E+06 13088 5.03E+06 13210
ibm07 7.76E+06 19099 7.76E+06 19099 7.76E+06 19099
ibm08 8.92E+06 16659 8.92E+06 16659 8.92E+06 16659
ibm09 9.70E+06 24598 9.70E+06 24598 9.70E+06 24598
ibm10 1.65E+07 32573 1.65E+07 32573 1.65E+07 32573
ibm11 1.41E+07 30987 1.41E+07 30987 1.41E+07 30987
ibm12 2.03E+07 35192 2.03E+07 35192 2.03E+07 35192
ibm13 1.66E+07 35175 1.66E+07 35175 1.66E+07 35175
ibm14 3.12E+07 58438 3.12E+07 58438 3.12E+07 58438
ibm15 3.71E+07 68856 3.71E+07 68856 3.67E+07 69162
ibm16 4.56E+07 78418 4.56E+07 78418 4.56E+07 78418
ibm17 5.84E+07 89914 5.84E+07 89914 5.84E+07 89914
ibm18 3.99E+07 71996 3.99E+07 71996 3.99E+07 71996

avg 1.85E+07 34485 1.85E+07 34485 1.85E+07 34509

Table 4.11: Experimental results for 2 tiers face-to-back
f2b 5µm f2b 25µm

ibm01 1.63E+06 6819 1.86E+06 562
ibm02 3.57E+06 9506 5.11E+06 519
ibm03 4.19E+06 12419 4.91E+06 1132
ibm04 5.32E+06 14482 6.34E+06 1630
ibm05 7.82E+06 13559 1.08E+07 3066
ibm06 5.43E+06 15980 6.00E+06 1737
ibm07 8.27E+06 23303 8.97E+06 2072
ibm08 9.38E+06 21158 1.06E+07 1788
ibm09 1.01E+07 29753 1.14E+07 1418
ibm10 1.72E+07 38019 1.91E+07 2503
ibm11 1.59E+07 38525 1.47E+07 1781
ibm12 2.13E+07 40429 2.40E+07 3296
ibm13 1.79E+07 45130 1.92E+07 2113
ibm14 3.44E+07 72026 3.74E+07 3881
ibm15 4.39E+07 88611 4.48E+07 3782
ibm16 5.13E+07 95307 4.68E+07 5050
ibm17 6.33E+07 104043 6.92E+07 7077
ibm18 4.35E+07 92636 4.88E+07 5409
Avg 2.02E+07 42317 2.17E+07 2712

effect of face-to-face integration (more vias could be reached) in contrast with face-to-
back (active area occupancy by 3D-Vias). Compared to the experiments with 2 tiers, it

87

Table 4.12: Experimental results for 2 tiers back-to-back
b2b 15µm b2b 25µm

ibm01 1.71E+06 609 1.72E+06 600
ibm02 3.71E+06 760 3.71E+06 747
ibm03 4.32E+06 1433 4.35E+06 1465
ibm04 5.27E+06 2240 5.27E+06 2244
ibm05 8.12E+06 3443 8.13E+06 3446
ibm06 4.99E+06 1605 5.04E+06 1594
ibm07 8.16E+06 1671 8.15E+06 1674
ibm08 9.21E+06 1647 9.21E+06 1618
ibm09 9.84E+06 1916 9.90E+06 1035
ibm10 1.80E+07 3142 1.80E+07 2473
ibm11 1.54E+07 2462 1.54E+07 1571
ibm12 2.11E+07 3398 2.09E+07 3187
ibm13 1.78E+07 2898 1.78E+07 1512
ibm14 3.32E+07 5371 3.34E+07 4354
ibm15 3.91E+07 6434 3.92E+07 6386
ibm16 4.63E+07 7002 4.63E+07 3524
ibm17 6.13E+07 8284 6.14E+07 5579
ibm18 4.45E+07 8023 4.45E+07 8066

avg 1.96E+07 3463 1.96E+07 2838

has an advantage on average of 1.56 to 1.85 on wire length. Table 4.14 presents results of
the same algorithm with very big 3D-Vias for face-to-back (25µm pitch). The results as
well as the area balancing deteriorates significantly. The average wire length go up from
1.56 to 3.25.

Tables 4.15, 4.16 and 4.17 present results for 4 tier circuits using different technolo-
gies. The first two tables (4.15 and 4.16) are generated from a face-to-face, back-to-back
and face-to-face configuration, differing only on the back-to-back 3D-Via pitch that is
10µm for table 4.15 and 15µm for table 4.16. Note that the larger 3D-Via pitch led to a
worse wire length in average. Finally, table 4.17 present results for a face-to-face, face-
to-back and face-to-back configuration. Note that this configuration was the best for wire
length and the one with more balanced 3D-Vias.

In general, the 4 tier tables present results better than 3 tiers ones by around 10%.
The three strategies tried to obtain similar results in average, but individual results were
significantly different suggesting that the integration strategy is somehow related to the
design.

4.7.1 Summary of Partial Conclusions

The global placement step of Z-Place goal is to provide a reasonable cell placement
with balanced area and feasible 3D-Via planning at the same time as optimizing wire
length into 3D.

The algorithm is based on the quadratic placement algorithm extended for 3D circuits
with a number of new features and algorithms that deliver a true 3D optimization while
considering 3D-Via related constraints. Z-Place considers the integration strategy and
provides room for face-to-back and back-to-back 3D-Vias that demand active area. It
also allocates the number of 3D-Vias according to the strategy and to their required area.

88

Table 4.13: Experimental results with 3 tiers disposed in face-to-face (1 micra) and face-
to-back (5 micra) respectively. C denotes the cells area on the tier, while V denotes the
area ocupied by 3D-Vias on the same tier.

Area Tier1 f2f Area Tier2 b2f Area Tier3 WL
bench C V # V C V # V C V
ibm01 31% 0% 3249 31% 5% 4731 32% 0% 1.51E+06
ibm02 32% 0% 5616 31% 6% 6897 32% 0% 2.83E+06
ibm03 32% 0% 5693 31% 6% 8086 32% 0% 3.82E+06
ibm04 31% 0% 7211 31% 6% 10022 32% 0% 4.80E+06
ibm05 32% 0% 7169 31% 5% 9918 32% 0% 6.60E+06
ibm06 31% 0% 8150 30% 7% 10874 32% 0% 4.47E+06
ibm07 31% 0% 12012 31% 6% 16538 32% 0% 7.35E+06
ibm08 32% 0% 11799 31% 6% 15857 32% 0% 7.23E+06
ibm09 31% 0% 15379 31% 6% 20254 32% 0% 8.58E+06
ibm10 32% 0% 19441 31% 5% 25458 32% 0% 1.50E+07
ibm11 31% 0% 18793 31% 6% 25143 32% 0% 1.27E+07
ibm12 32% 0% 22349 31% 5% 29087 32% 0% 1.73E+07
ibm13 31% 0% 22772 30% 7% 32271 32% 0% 1.55E+07
ibm14 32% 0% 35472 31% 5% 49826 32% 0% 2.84E+07
ibm15 31% 0% 44799 30% 7% 62272 32% 0% 3.34E+07
ibm16 31% 0% 48724 31% 6% 66898 32% 0% 4.22E+07
ibm17 31% 0% 57994 31% 5% 76099 32% 0% 5.40E+07
Avg.: 31% 0% 20390 31% 6% 27661 32% 0% 1.56E+07

These facts provide more realism and more conclusive wire length numbers compared to
known solutions in 2D.

The 3D-Cell shifting method is based on a threshold algorithm that obtains the ex-
act cells balance while at the same time iterating with a wire length optimization. The
following step, iterative refinement, provides heuristics to improve wire length and cells
balance into 3D. The algorithm is constrained by an upper bound of 3D-Vias that is trig-
gered by their required area. Within the upper bound, Z-Place is free to insert 3D-Vias.
Experimental results demonstrated that by manipulating this upper bound one could play
with a trade-off between number of 3D-Vias and 3D wire length. This fact lead to the
conclusion that the best strategy depends on the technology used. Since Z-Place algo-
rithm is triggered by the 3D-Via area, it will automatically adapt to the technology data,
improving the wire length only if there is available space for that.

4.8 Detailed Placement

After global placement, the task of detailed placement is to legalize and improve wire
length. Since global placement stage implements techniques for even distribution of the
cells area and bounded planning of 3D-Vias, it is reasonable that future stages keep this
distribution and do not perform any tier migration movements.

The detailed placement flow is illustrated in figure 4.16. It is composed of a Cell
Sweeping stage for layout compaction, a cell legalization algorithm as described in
(KHATKHATE, A. et al, 2004) and improvements algorithms that can be performed by
either Simulated Annealing (KIRKPATRICK; GELATT; VECCHI, 1983) or Threshold

89

Table 4.14: Experimental results with 3 tiers disposed in face-to-face (1 µm) and face-to-
back (25 µm) respectively. C denotes the cells area on the tier, while V denotes the area
ocupied by 3D-Vias on the same tier.

Area Tier1 f2f Area Tier2 b2f Area Tier3 WL
bench C V # V C V # V C V
ibm01 40% 0% 2441 11% 14% 556 35% 0% 2.44E+06
ibm02 37% 0% 3080 8% 19% 1020 37% 0% 4.97E+06
ibm03 34% 0% 3789 7% 23% 1586 36% 0% 5.90E+06
ibm04 34% 0% 5384 10% 22% 1989 34% 0% 7.26E+06
ibm05 31% 0% 6264 9% 30% 3125 30% 0% 9.79E+06
ibm06 36% 0% 4941 8% 19% 1430 37% 0% 6.66E+06
ibm07 37% 0% 6982 9% 17% 2117 37% 0% 1.17E+07
ibm08 39% 0% 8291 11% 15% 1903 35% 0% 1.25E+07
ibm09 43% 0% 10043 9% 13% 1863 35% 0% 1.64E+07
ibm10 40% 0% 14009 14% 11% 2579 35% 0% 2.65E+07
ibm11 44% 0% 13633 13% 7% 1269 35% 0% 2.53E+07
ibm12 41% 0% 16800 14% 11% 2603 35% 0% 3.57E+07
ibm13 44% 0% 15016 9% 11% 2342 36% 0% 3.07E+07
ibm14 41% 0% 24452 11% 12% 4594 36% 0% 6.62E+07
ibm15 40% 0% 27440 9% 15% 5762 36% 0% 7.84E+07
ibm16 45% 0% 35858 14% 7% 3354 35% 0% 9.85E+07
ibm17 39% 0% 40260 12% 13% 7759 36% 0% 1.14E+08
Avg.: 39% 0% 14040 10% 15% 2697 35% 0% 3.25E+07

Table 4.15: Experimental results with 4 tiers disposed in face-to-face, back-to-back and
face-to-face respectively with 3D-Via pitches 1µm (f2f) and 10µm (b2b).

f2f b2b f2f
V # V # V WL

ibm01 2693 608 2345 1.37E+06
ibm02 3761 770 3841 2.86E+06
ibm03 4561 1506 4403 3.80E+06
ibm04 5947 1189 5206 4.69E+06
ibm05 5819 2383 5758 6.44E+06
ibm06 6487 1571 6384 4.46E+06
AVG 4878 1338 4656 3.94E+06

Accept (DUECK; SCHEUER, 1990) heuristics.
One of the important issues to be solved in a detailed placement algorithm is to define

a proper data structure for the cell placement. In global placement, since cells could over-
lap with each other, the coordinate of the cell could be stored with the cell’s data structure
itself. In detailed placement the relative horizontal and vertical order of the cells is a very
valuable information. For example, legalization algorithms need to assign a row for every
cell and to sort the cells horizontally by their x position. Detailed improvement algo-
rithms, discussed in section 4.8.2, might need to iterate with cells in the neighborhood,
demanding a data structure that fastly access nearby cells. For those reasons, Z-Place uses
a data structure as illustrated in figure 4.17. The placement is represented by an array of

90

Table 4.16: Experimental results with 4 tiers disposed in face-to-face, back-to-back and
face-to-face respectively with 3D-Via pitches 1µm (f2f) and 15µm (b2b).

f2f b2b f2f
V # V # V WL

ibm01 2563 372 2479 1.43E+06
ibm02 3757 785 3732 3.03E+06
ibm03 4771 1504 4803 4.07E+06
ibm04 5634 1149 5477 4.83E+06
ibm05 5829 2402 5921 6.86E+06
ibm06 6065 1522 6284 4.69E+06

4770 1289 4783 4.15E+06

Table 4.17: Experimental results with 4 tiers disposed in face-to-face, face-to-back and
face-to-back respectively with 3D-Via pitches 1µm (f2f) and 5µm (f2b).

f2f f2b f2b
V # V # V WL

ibm01 2102 2778 2914 1.65E+06
ibm02 4284 5676 5348 2.88E+06
ibm03 4266 5815 5972 4.00E+06
ibm04 6035 7045 7017 4.80E+06
ibm05 6174 7558 7756 6.49E+06
ibm06 6931 7215 7788 5.02E+06
avg: 4965 6015 6133 4.14E+06

Cell Sweeping

Tetris Legalization Thresold Accept
Simulated Annealing

Tetris Legalization
Restricted

Thresold Accept
Simulated Annealing

Figure 4.16: Detailed Placement flow on Z-Place

rows. Each row contains an array of cells represented by their id number.

In order to obtain more information about the cell, the id is used to index an array of
cells information. It is trivial to obtain any cell neighborhood and to sort the rows. For
now on, consider that every cell c has an associated row rc and index ic on it.

91

Array of cells
Array of rows

2 8 1

cell index (id)

1

2

0

cells
relative position

Actual Placement

x= 3
y = 2

...

8 1

x = 3

y = 22

Figure 4.17: Data Structure used to store cell positions for detailed placement

4.8.1 Cell Sweeping

This stage is used to compress the cells on the left edge of the layout, eliminating
most of the whitespace allocated on previous stages. For that, the cell sweeping algorithm
slices the area in a very large number of vertical lines obtaining s slices. The netlist is
then sorted by its x coordinate; cells are mapped to one vertical slice by linear mapping
(weighted by their area). Figure 4.18 illustrates the effect of cell sweeping into the flow.

(a)
with cell sweeping

(b)
without cell sweeping

Figure 4.18: The effect of cell sweeping over the benchmark ibm01.

92

4.8.2 Threshold Accept Improvement

Simulated Annealing (SA) (KIRKPATRICK; GELATT; VECCHI, 1983) is a general
purpose stochastic algorithm that is applied to several optimization problems of Com-
puter Science, Engineering, Physics and Chemistry. In computer science, Simulated
Annealing solves efficiently many combinatorial optimization NP-Hard problems. The
simulated process is analogous to the natural annealing. First, an imperfect material is
heated up such that the molecules move freely. While the temperature is slowly decreased,
molecules lose mobility, joining together. The structure slowly starts to crystallize remov-
ing initial material imperfections.

Threshold Accept heuristic (DUECK; SCHEUER, 1990) was proposed as an evolu-
tion of the well known Simulated Annealing algorithm. Dueck and Scheuer argued that
Threshold Accept is simpler and “apparently superior" than Simulated Annealing.

The algorithm starts from some initial solution and searches the neighborhood ran-
domly. Compared to a greedy algorithm that accept only down-hill moves 1, Threshold
Accept (TA) accepts some up-hill moves if they are under a certain threshold. Simulated
Annealing (SA) works similarly, but the threshold distribution is more complex and prob-
abilistic while in Threshold Accept it is purely deterministic. Both Simulated Annealing
and Threshold Accept algorithms uses up-hill moves in order to scape from local minima.

Simulated Annealing is very successfully applied to the cell placement problem
(SECHEN; VICENTELLI, 1985) (HENTSCHKE; REIS, 2003a) (TAGHAVI; YANG;
CHOI, 2005). It is major and well known drawback is excessive CPU usage, since it
must search a vast space in order to converge to good solutions. On the other hand, if ap-
propriate techniques are used to prune the search space, the algorithm can converge very
fast to high quality solutions.

In this thesis, the algorithm Threshold Accept is applied for cell placement. It has
very similar features compared to SA, but it was preferred due to its simplicity. While
Simulated Annealing literature is vast there seems to be no work on TA for cell placement.
Under our experiment, both algorithms had similar quality (in terms of CPU time usage
and placement quality).

For the placement problem, TA is used as an iterative algorithm. Usually it starts from
a randomly generated initial placement, but other alternatives are also explored in the
literature (HENTSCHKE; JOHANN; REIS, 2003) (HENTSCHKE; REIS, 2003b). The
algorithm modifies the initial solution in small steps, called perturbations. The perturba-
tions might be accepted or rejected, depending on their result and on the system threshold.
The quality of the current solution must be measured by a cost function. The threshold is
defined as an external parameter that will control the greedy behavior of the algorithm. It
starts very relaxed, in a high threshold. As TA algorithm advances, the threshold is slowly
decreased. When the threshold reaches the ZERO value, TA will be fully greedy.

The Threshold Accept algorithm is written below in pseudo-code. The basic structure
is composed by two loops: an outer loop and an inner loop. The outer loop controls
the threshold with the schedule function. The inner loop actually modifies the current
placement with the perturbation and cost functions. The perturbation and cost functions
are discussed on sections 4.8.2.1 and 4.8.2.2 respectively while threshold scheduling is
discussed in section 4.8.2.3.

The Threshold Accept algorithm is generic, but each new implementation requires

1Down-hill moves are defined as perturbations to the current state of the solution that actually improves
it under a cost function. Up-hill moves are the ones that leads to deterioration of the solution.

93

Algorithm 2 Pseudo-Code of Simulated Annealing algorithm
1: temp = InitialT emperature;
2: place = InitialP lacement;
3: //Outer Loop
4: while (Not Ending Outer Loop Condition)
5: //Inner Loop
6: while (Not Ending Inner Loop Condition)
7: newplace = Pertubation(place);
8: delta = Cost(newplace)− Cost(place);
9: if (Accept(delta, temp)) then

10: place = newplace;
11: end if
12: end while
13: temp = Schedule(temp)
14: end while
15: return place

proper tuning of the perturbation, cost and temperature schedule functions. Each of them
will be analyzed carefully in the following sections.

4.8.2.1 Cell Perturbations

Z-Place has three types of cell perturbations:

• Windowed swap of cells in the same tier. A cell a is chosen randomly from the
netlist. It will be swapped with a second cell b that is placed within a window. The
window radius is 5 times the height of a row. Given a row rb and an x coordinate
xb (the placement area starts at xini and goes to xini + width) within the window,
the ib is calculated by equation 6. It is allowed a size unbalance of the cells of up to
twice the size. That movement can generate cell overlaps.

• Greedy swap of cells in the same tier. As done in (HENTSCHKE; REIS, 2003a), a
few greedy moves are applied to increase convergence of the optimization.

• Cell sliding. A cell is taken randomly and slided to the left and right if there is
available space. This perturbation keeps the placement legalization (e.g. it does not
introduce any cell overlap).

ib = 1
width

× nrb × (xb − xini)
(4.26)

The perturbation probabilities are tuned as follows: 72% to the Windowed Swap,
18% is to the Greedy Swap and 10% for the Cell Slide. Equation 4.26 assumes that the
cells are well distributed in the row otherwise the suggested mapping may be out of the
window. We observe, though, the window is not a strict constraint and can be broken for
CPU time benefit. Both algorithms obey the basic properties: simplicity (since they work
with only a few gates - one or two), randomization and consistency. However, in order
to prune the search space of the algorithm, it is usual to use a windowed perturbation.
The windowed perturbation obviously limit the capability of TA to move a cell for long

94

distances, being limited to local improvements. For this reason, windowed perturbation
suits detailed placement very well, since all global decisions were taken by the previous
stage.

4.8.2.2 Cost Function

The cost function is the quality measure of the current placement in the Threshold
Accept algorithm. Z-Place computes the total 3D half perimeter. The process of comput-
ing 3D half perimeter for one net consists of obtaining the minimum bounding box that
contains all pins of a net; the sum of the bounding box width, height and depth is used.

If Z-Place is considering critical connections, a separate module computes the critical
wire length that is defined by the sum of the length of all driver to critical sink connections.

It is possible to design multi objective cost functions, such as the one proposed for iter-
ative refinement at section 4.6.2. This matter is addressed in (SAIT; YOUSSEF; MALEH,
2001).

4.8.2.3 Threshold Schedule

This section describes how to control the threshold of the algorithm properly. A
threshold scheduling (as temperature schedule for SA) is composed of three stages:

1. Finding the initial threshold.

2. How should be the variation of the threshold until it reaches Zero

3. What is the ending criteria of the inner and outer loop of TA.

At each outer loop iteration, one important definition for understanding the tempera-
ture is the TA acceptance ratio. It is calculated by the number of accepted perturbations
divided by the number of inner loop iterations. A very high threshold will imply in 100%
acceptance ratio. As the threshold is decreased, the acceptance ratio becomes closer to
zero.

The next sections will present each of these stages in more detail.

4.8.2.4 Finding the initial threshold

The traditional literature on Simulated Annealing and Threshold Accept claim that the
initial temperature/threshold should be set to a very high number, so that the algorithm
will be able to scape from local minima independently of the given initial solution. This
problem itself is complex because the sufficiently high number would depend on the na-
ture of the problem. For example, suppose one is optimizing a graph coloring problem
with an initial solution costing 10 colors. Now suppose that the same SA or TA engine
will be applied for cell problem, with an initial solution costing 10M units (wire length
for instance). Observe that the acceptance function on the Threshold accept heuristic is
simply to check whether a delta caused by perturbation is bellow the threshold. Clearly,
the value of initial threshold on the graph coloring must be orders of magnitude differ-
ent from the initial threshold of cell problem. The same analysis is valid for Simulated
Annealing.

Now suppose that we have a solution costing 7M units for our cell problem. If one use
the same threshold as proposed in the last paragraph, the 7M solution will go up to higher
costs (probably above 10M solution presented above) since every random perturbation
will be accepted for the sake of escaping local minima (HENTSCHKE; JOHANN; REIS,

95

2003) (HENTSCHKE, 2002). This section discusses the idea (already existent in the
literature such as (CHANG; CONG, 2003)) of starting from a initial solution without
deteriorating but trying to reach the exact threshold that keeps the cost untouched (or
minimally touched). That is exactly the job of detailed placement on Z-Place flow, since it
is undesired to ignore the global solution provided by the former step. The idea of starting
on lower thresholds can be understood as a search pruning method as well, speeding up
the algorithm.

Coming back to the example, a good initial threshold for the solution costing 7M
would be sufficiently low such that oscillations in the cost would still be acceptable to
scape local minima but long up-hill oscillations would be prohibited. More precisely, the
cost of the current solution could potentially go up, but in average it should remain 7M.

Under the model above, the algorithm that obtains the initial threshold can be simply
binary searching for a threshold such that the inner loop average delta is zero (or close to
zero). The algorithm 3 details this idea.

Algorithm 3 Pseudo-Code of the initial temperature calculation
1: tempup =∞
2: templow = 0
3: placecurrent = placeinitial
4: repeat
5: temperature = ((tempup − templow)/2) + templow
6: deltacont = 0
7: deltaavg = 0
8: for (iterations = 0 to InnerLoopiterations)
9: placenew = Pertubation(placecurrent)

10: delta = Cost(placenew)− Const(placecurrent)
11: if (Accept(delta, temperature)) then
12: deltaavg = deltaavg + delta
13: deltacont + +
14: end if
15: end for
16: deltaavg = deltaavg/deltacont
17: until deltaavgiscloretoZero
18: return temperature

4.8.2.5 Threshold variation

The threshold update function is an important part of the scheduling. Let us first
discuss the existing solutions for Simulated Annealing and after that adopt one solution
for Threshold Accept. The literature classifies schedules as static and adaptive ones.

Static schedules are pre-determined before the simulation process starts. One possi-
bility is a straight line schedule, as shown in figure 4.19(a). In such approach, the time
is evenly allocated for all temperature slots. Another classical schedule is to multiply the
current temperature by 0.9 for example (values between 0.85 to 0.99 are used). In such
case, the curve looks like figure 4.19(b). It might look more attractive, since less time is
spent on highest temperatures, while more time is spend at the lower temperatures. On
the other hand, such approaches can be too greedy, depending on the nature of the design.

It is known that one static schedule will work better in one kind of design, while

96

Initial Temperature

Number of Iterations

Initial Temperature

Number of Iterations

(a) (b)

Figure 4.19: Example of static Annealing Schedules

another schedule will be better for others. For this reason, dynamic (adaptive) approaches
were proposed (LAM; DELOSME, 1988). The basic idea of adaptive schedules is to keep
track of the acceptance ratio. If the acceptance ratio is too high, the annealing process is
oscillating between random states, suggesting a large decrease on the temperature. A
low acceptance ratio can be an indicative of unfinished work of the current temperature,
suggesting small changes on the temperature. A very rudimentary adaptive schedule, as
suggested in (CHANG; CONG, 2003), is described as shown in figure 4.8.2.5.

Algorithm 4 Pseudo-Code of a simple adaptive annealing schedule
1: temperature = temperaturecurrent
2: ratioacceptance = ratioaccept
3: if (ratioacceptance > 0.99) then
4: temperature = temperature/2
5: else if ratioacceptance > 0.95) then
6: temperature = temperature× 0.8
7: else if ratioacceptance > 0.9) then
8: temperature = temperature× 0.9
9: else if (ratioacceptance > 0.8) then

10: temperature = temperature× 0.95
11: else
12: temperature = temperature× 0.98
13: end if

One state-of-the-art and sophisticated dynamic schedule is found in the work of
Jimmy Lam (LAM; DELOSME, 1988). Let invtemp be the inverse of current temperature
(1/temp), σ be the standard deviation of the cost function on the current temperature and
φ be the accept ratio. Use λ as a quality factor - higher values decreases the quality for
running time. The formulae to calculate the next temperature ntemp is given in equation
4.28.

ntemp = 1

invtemp+λ(1
σ

)×(1
invtemp2σ2)×(

4φ(1−φ)2

(2−φ(dp))2
)

(4.27)

97

The formula above can be trivially rewritten for Threshold Accept as follows, where
invthresold is 1/threshold and nthreshold is the computed new threshold:

nthreshold = 1

invthreshold+λ(1
σ

)×(1
invthreshold2σ2)×(

4φ(1−φ)2

(2−φ(dp))2
)

(4.28)
In Z-Place, this function is tuned with λ = 50000. Before applying the formulae, Z-

Place checks if acceptance ratio (φ) is larger than 0.98. In this case, the current threshold
is dropped by nthreshold = 0.4 × threshold. Z-Place also checks if either σ, φ or
threshold is zero which leads to nthreshold = 0.

4.9 3D-Via Placement

This section address 3D-Via placement and legalization. After the placement tool
performs the whole flow, we introduce the 3D-Via placement, that is illustrated by fig-
ure 4.20. Between the tiers we create 3D-Via layers. For every 3D-Via layer (that is
interleaved with cell layers) we must obtain a fully legalized placement of the 3D-Via
objects. Instead of treating the 3D-Vias as placeable objects during the cell placement,
we prefer to simplify the problem and leave the cell placement untouched. In the end
of the whole flow, we fix the cell’s positions and try to place the 3D-Vias in such a way
that wire length is minimally affected. We suppose that each net uses exactly one 3D-Via
since that resource is expensive. Every 3D-Via belongs to a net whose bounding box is
delimited by all cells connected to it. The applied method tries to place the 3D-Vias inside
its bounding box. If this placement is possible we place the 3D-Vias with no overhead
to the wire length. For the nets in which the proposed method is not accomplished by
our heuristic, the algorithm’s objective function switches to a function that minimizes the
distance of the 3D-Via to the nearest edge of the net bounding box. Additionally, face-
to-back and back-to-back integration requires an additional legalization step to move the
cells away from the 3D-Via places. This step is skipped by our algorithm, but is largely
studied in the literature, as reviewed in section 3.6.3. It is important to highlight that the
algorithm presented here for 3D-Via legalization suits better to face-to-face integration;
for face-to-back and back-to-back it might be better to approach the problem during cell
placement.

The problem is formulated (section 4.9.1) targeting at wire length overhead minimiza-
tion. The goal is to study the wire length overhead caused by different 3D-Via technolo-
gies while providing means of a more realistic evaluation of the 3D placement. Section
4.9.1 presents the problem formulation and section 4.9.2 presents an algorithm based on
cell legalization algorithms. We incorporated a new cost function that will attend the
formulation presented in section 4.9.1.

An example of 3D-Via placement is presented in figure 4.21.

4.9.1 Problem Formulation

Let V = {v1, v2, ..., vk} be the set of 3D-Vias, z be the number of tiers, T =
{t1, t2, ..., tz−1} be the set of 3D-Via layers and t(v) be a V × T function that maps
a 3D-Via to a layer. Every 3D-Via measures w for width and h for height. The 3D-
Via placement problem can be defined as a function place ∈ V × (<,<) that assigns
a (x, y) coordinate to every 3D-Via such that no overlap is allowed between any pair
(v, w) | v, w ∈ V , if t(v) = t(w). The overlap between v and w is verified by comparing

98

(a) (b) (c)

(d)

Figure 4.20: The placement of 3D-Vias; (a) placement of cells; (b) placement of face-to-
face vias; (c) placement of face-to-back vias; (d) mixed integration.

the rectangles of dimensions w and h centered at place(v) and place(w) respectively.
Let N = {n1, n2, ..., nm} be the set of nets in the circuit and net(v) be a V × N

function that maps a 3D-Via to its net. Every net n ∈ N has a minimum bounding box
Bn = (x1, y1)⇒ (x2, y2) that contains all cells connected to n. We want to constraint the
problem in order to place the center coordinate of the rectangle defined by the 3D-Vias
v ∈ V inside Bnet(v). It might not be possible, so we relax this constraint to minimize the
wire length overhead. Additionally, a preferred position P = (xp, yp) for the 3D-Via is
defined and supported by the placement algorithm; P must be within the bounding box
and could be obtained from a Steiner tree. In this work this position is naively set to the
center of the bounding box. The objective function will be a combination of wire length
overhead and displacement from P .

The problem is illustrated in figure 4.22.

4.9.2 3D Via Placement and Legalization

To solve the problem we perform a two-step method as follows. First we place all the
3D-Vias v exactly in the middle of their bounding boxes Bnet(v) as shown in figure 4.23.
The second step is to perform the 3D-Vias legalization. The main difference from the
standard legalization lies in the fact that any position inside the bounding box is optimal,
having no cost.

99

Figure 4.21: An example of legally placed 3D-Vias

overlap
(not allowed)

Figure 4.22: 3D-Vias ant their respective bounding boxes.

Figure 4.23: Initial Placement of the 3D-Vias in the centroid of the net bounding box.

100

To approach the proposed legalization problem we present a heuristic similar to the
one described in (KHATKHATE, A. et al, 2004) called Tetris algorithm. It is described in
detail in algorithm 5 and ilustrated by figure A.10.

Algorithm 5 Tetris algorithm to legalize Vias.
Input: A 3D-Via layer p, a set of 3D-Vias W such that W contains all 3D-Vias w |

t(w) = p, a set of initial coordinates (∀w ∈ W)(xwini, ywini), a set of bounding
boxes Bw containing Bnet(w).

Output: A set of final positions (xw, yw) to replace the function place.
1: create a list L of all w ∈ W sorted by xwini;
2: slice the area in R rows such that the row height is h and R = CircuitHeight/h;
3: initialize a vector StartingCoordinate(R) with 0 in all positions. The vector refers

to the starting left coordinate of every row. In the beginning, the left limit is 0 so
every coordinate is allowed;

4: for every 3D-Via w ∈ W
5: for every row r ∈ R
6: compute target x coordinate xr = max(StartingCoordinate[r], xwini);
7: calculate cost of the movement costr(w) as detailed in algorithm 2;
8: end for
9: select the row BestRow ∈ R such that (∀r∈R)(costBestRow ≤ costr);

10: set xv to xBestRow and yv as h×BestRow
11: end for

A single movement from the original position to a legal position in a row receives
a cost function that is related to the displacement from the original position and also to
the wire length overhead imposed by the move. Every move to a position within the
bounding box (as shown in figure A.10.c) do not impose any wire length penalty and
will be preferred. The algorithm penalizes movements to positions outside the bounding
boxes by computing the wlovh variable and by multiplying the cost by a constant C. In
our experiments we set this constant to 3. The procedure for calculating the cost is given
by algorithm 6, where the function distance returns the distance of a point to the closest
edge of a box.

Algorithm 6 Compute the cost of a 3D-Via movement.
Input: A via w with an associated Bw; a source coordinate (xwini, ywini) and a target

coordinate TargetPos = (xr, yr).
Output: The cost of the movement costr(w).

1: displacement = abs(xwini − xr) + abs(ywini − yr);
2: if ((xr, yr) is inside Bw) then
3: costr = displacement;
4: else
5: wlovh = distance(TargetPos,Bw);
6: costr = C × (displacement+ wlovh);
7: end if

4.9.3 Experimental Results

Our experimental results are divided into easy and harder instance experiments. For
the easy set, we performed a min-cut partitioning (KARYPIS, G. et al, 1999) of the netlist

101

(a) (b)

(c) (d)

Figure 4.24: A Tetris algorithm for legalizing the 3D-Vias. (a) Represents an initial so-
lution; (b) shows step 2 that slices the area into rows; (c) ilustrates the steps 4-10 which
drops the cells into the circuit; (d) shows the final solution.

into two tiers and placed them constrained to maintain the z coordinate. This method
will provide close to optimal 3D-Via count, producing an easy legalization instance. The
second set of experiments leaves the placer free to insert 3D-Vias within an upper bound
set to an acceptable value for total 3D-Via area. The placer will use this freedom to reduce
wire length further. Tables 4.9.3, 4.9.3, 4.9.3 and 4.9.3 show the experimental results of
the proposed algorithm on the easy (first two tables) and hard instances (last two tables).

The following observations are extracted from the data in the tables:

• Our placer is sensible to the 3D-Via pitch in order to use the 3D-Via resources. As
the pitch increases, less 3D-Vias are used by the placer.

• Our algorithm couldn’t legalize all 3D-Vias inside their bounding box for all in-
stances. However, the wire length overhead is very low in general. For the easy
instances it is less than 0.01% in most of the cases. In the hard instances it was
under 0.1% in all cases with 3D-Via pitch of 5µm and 10µm, while with very large
3D-Vias (25µm) the overhead is larger but still less than 5% in most cases.

• The solutions with minimum 3D-Via count have less wire length overhead, but final
wire length is worse in the cases of 5µm 3D-Via pitch.

The wl overhead averaged for all benchmarks in the hard mode was 0.05%, 0.23%
and 4.34% for 5µm, 10µm and 25µm respectively. On run time, the proposed algorithm
used 4.65s, 2.56s and 0.34s respectively. We also compared our algorithm with the one
from (LIM, 2005). It obtained wl overhead of 0.05%, 0.16% and 2.78% while run time
was 5391s, 1540s and 83.7s respectively. The excessive run time is caused mainly by the
initial phase that tests all 3D-Vias in all available positions to decide which one is the best
for it.

102

Table 4.18: Experimental results for our 3D-Via placement algorithm on easy instances
for 5µm and 10µm pitch. Run times are measured in seconds.

3D-Via 5 µm 10 µm
Pitch
bench # V disp # out time WL OVH # V disp # out time WL OVH
ibm01 374 549 77 0.02 0.00% 374 1436 85 0.03 0.01%
ibm02 396 508 23 0.02 0.00% 396 1183 22 0.04 0.00%
ibm03 1064 1448 107 0.05 0.00% 1064 3716 117 0.12 0.00%
ibm04 735 1033 118 0.04 0.00% 735 2493 129 0.09 0.00%
ibm05 2258 3563 327 0.14 0.00% 2258 10067 366 0.28 0.01%
ibm06 1059 1468 56 0.06 0.00% 1059 3974 70 0.12 0.00%
ibm07 992 1380 89 0.06 0.00% 992 3310 91 0.15 0.00%
ibm08 1298 8467 213 0.09 0.02% 1298 23136 313 0.2 0.11%
ibm09 699 967 46 0.06 0.00% 699 2178 51 0.12 0.00%
ibm10 1490 2002 151 0.15 0.00% 1490 4839 172 0.32 0.00%
ibm11 1190 1650 93 0.11 0.00% 1190 3735 82 0.22 0.00%
ibm12 2293 3179 173 0.24 0.00% 2293 7386 176 0.51 0.00%
ibm13 1042 1511 150 0.1 0.00% 1042 3581 164 0.21 0.00%
ibm14 2121 2912 119 0.28 0.00% 2121 6626 126 0.59 0.00%
ibm15 3002 4045 162 0.38 0.00% 3002 10318 181 0.83 0.00%
ibm16 2102 2784 129 0.31 0.00% 2102 6100 131 0.67 0.00%
ibm17 2769 4090 242 0.45 0.00% 2769 9601 253 0.94 0.00%
ibm18 1676 2563 114 1.11 0.00% 1676 5669 120 0.55 0.00%
AVG: 0.20 0.00% 0.33 0.01%

We also compared the proposed algorithm with the work on (YAN, H. et al, 2005).
Note that Yan et. al proposes a number of algorithms for the task. Initially they formulate
the problem as an ILP (Integer Linear Programming). However, the problem size grows
dramatically with addition of 3D-Vias which translates to infeasible number of variables
on the IL problem. The authors present alternatives to reduce problem size. The more
interesting approach is to perform first an exhaustive search of every 3D-Via into its op-
timal position; every 3D-Via placement with no conflict is performed. To solve conflicts,
a small ILP problem is generated for the conflicting 3D-Vias and a reduced number of
positions. This method was implemented on Z-Place in order to establish a comparison
between it and the proposed 3D-Via legalization approach. Experimental results for the
ILP solution for the hard instances are presented in table 4.22.

In average, the proposed algorithm achieve similar quality compared to the ILP algo-
rithm with 2 orders of magnitude advantage on run time. Figures 4.25 and 4.26 present
3D-Via placements produced by the proposed algorithm and the ILP approach respec-
tively. A zoom on figure 4.25, presented in figure 4.27 demonstrates that the proposed
method is not constrained to a grid which facilitates the wire length improvement.

4.9.4 Removing and avoiding overlaps between cells and 3D-Vias

Under Z-Place flow, the global phase provides a reasonable distribution of cells and
3D-Vias such that they fit into their assigned tier. However, the current version of the
tool do not remove the overlaps between cells and 3D-Vias that occupy active area. It
is possible to handle this problem without much novelty using existing techniques. The

103

Table 4.19: Experimental results for our 3D-Via placement algorithm on easy instances
for 25µm

3D-Via pitch: 25 µm
bench # V disp # out time WL OVH
ibm01 374 4967 93 0.01 0.02%
ibm02 396 6005 44 0.01 0.01%
ibm03 1064 35128 182 0.04 0.04%
ibm04 735 12628 168 0.04 0.02%
ibm05 2258 125801 564 0.12 0.13%
ibm06 1059 47131 121 0.05 0.03%
ibm07 992 21368 149 0.06 0.01%
ibm08 1298 76442 339 0.08 0.42%
ibm09 699 14969 81 0.05 0.00%
ibm10 1490 23324 213 0.12 0.00%
ibm11 1190 25258 125 0.09 0.00%
ibm12 2293 50069 254 0.21 0.01%
ibm13 1042 14839 201 0.08 0.00%
ibm14 2121 27557 193 0.25 0.00%
ibm15 3002 92530 232 0.34 0.00%
ibm16 2102 26730 162 0.27 0.00%
ibm17 2769 35213 269 0.38 0.00%
ibm18 1676 16937 135 0.22 0.00%
AVG: 0.12 0.05%

suggested solutions for this problem are enumerated bellow:

1. Place cells together with 3D-Vias in the detailed placement phase. A similar proce-
dure is done by (KAYA, I. et al, 2004) assuming that 3D-Vias height is less or equal
the Standard Cell row height.

2. Place cells together with 3D-Vias with mixed size placement techniques. This
would be the best solution, since it would be able to handle big 3D-Vias (higher
than a row) and small ones fitting them together in a same row, if possible.

3. Legalize the solution after the whole process. This method is the easier one but
should lead to bad results specially in the case of small 3D-Vias, since the 3D-Via
count would be high.

The algorithm 7 computes the 3D-Via layer that contains the 3D-Vias occupying ac-
tive area for a given tier. Please refer to section 4.5.6 for the details on the formulation.
Note that I denotes the integration strategy of a 3D-Via layer. The algorithm computes
all tiers i orientation To[i] ∈ {DOWN,UP} and via layers, returning the via layer cor-
respondent to the input tier. It also uses a function flip(i) that returns the opposite orien-
tation (e.g. DOWN if To[i] = UP a and UP if To[i] = DOWN).

4.9.5 Conclusions

We presented an algorithm for the placement and legalization of 3D-Vias on a 3D-
Circuit. We observed that the ideal placement of such objects is inside the bounding box

104

Table 4.20: Experimental results for our 3D-Via placement algorithm on hard instances
for 5µm and 10µm pitch.

3D-Via 5 µm 10 µm
Pitch
bench # V disp # out time WL OVH # V disp # out time WL OVH
ibm01 5375 8809 849 0.25 0.08% 5375 36069 1236 0.15 0.28%
ibm02 7880 12825 984 0.41 0.04% 7880 78254 1254 0.23 0.23%
ibm03 10282 17354 1880 0.6 0.07% 10282 91116 2899 0.34 0.37%
ibm04 11721 18750 1744 0.74 0.05% 11721 87716 2579 0.43 0.21%
ibm05 10544 17296 1585 0.69 0.03% 10544 93069 2065 0.37 0.11%
ibm06 13088 21980 2304 0.79 0.07% 13210 134913 3557 0.45 0.39%
ibm07 19099 31022 2833 1.51 0.06% 19099 161804 3854 0.85 0.25%
ibm08 16659 26590 2675 1.34 0.05% 16659 119381 3733 0.74 0.18%
ibm09 24598 41715 3668 2.15 0.06% 24598 265514 6070 1.22 0.38%
ibm10 32573 52750 4232 3.65 0.04% 32573 237096 5999 1.99 0.15%
ibm11 30987 51465 4405 3.08 0.05% 30987 302353 6190 1.73 0.25%
ibm12 35192 57523 3696 4.06 0.03% 35192 301419 4780 2.18 0.14%
ibm13 35175 59633 4888 3.8 0.05% 35175 371957 8073 2.14 0.28%
ibm14 58438 93185 8131 8.57 0.04% 58438 461453 9976 4.69 0.16%
ibm15 69229 116074 9694 10.09 0.04% 69075 790675 15782 5.72 0.26%
ibm16 78242 128163 9576 13.07 0.03% 78242 665982 12689 7.14 0.15%
ibm17 90680 148705 10027 16.49 0.03% 90680 798764 14540 8.92 0.11%
ibm18 72456 114284 10401 12.46 0.04% 72456 549949 14863 6.77 0.15%
AVG: 4.65 0.05% 2.56 0.23%

of the net that it is connected to, since the wire length overhead is null. Our heuristic
was not able to place all 3D-Vias inside their bounding boxes, which is expected since
the net bounding boxes are short (after cell placement). On the other hand, the algorithm
could accommodate the 3D-Vias in such a way that wire length overhead is very low,
validating the 3D-Via legalization methodology and leaving space for more research on
3D placement. Compared to an existing approach, it obtains similar results with orders of
magnitude advantage on run time.

4.10 Whole Z-Place Experimental Results

This section presents experimental results that include all global, detailed and 3D-Via
placement algorithms, establishing comparisons with other 3D and 2D solutions. First, a
run time contribution for each step of Z-Place flow was also evaluated. The results, illus-
trated in figure 4.28, report run time for the reading of the netlist (netlist), global place-
ment (global), legalization of global placement (legalize1), threshold accept improvement
(TA), legalization of detailed placement (legalize2), greedy improvement (greedy), 3D-
Via placement (3D-Via), other intermediate steps.

Table 4.23 presents experimental results targeting a 2 tier face-to-face technology with
1µm 3D-Via pitch and 20µm 3D-Via length. This technology was chosen to be the one
with no Through Via and less cost compared to solutions with more tiers; it also demon-
strated very good potential on the global placement analysis (section A.3.1.3). The table

105

Table 4.21: Experimental results for our 3D-Via placement algorithm on hard instances
for 25µm

3D-Via pitch: 25 µm
bench # V disp # out time WL OVH
ibm01 1550 186374 1097 0.02 5.68%
ibm02 1945 275265 921 0.03 2.48%
ibm03 2391 282265 1149 0.03 2.70%
ibm04 3045 368423 1637 0.06 3.27%
ibm05 3442 655449 2067 0.06 5.21%
ibm06 2612 333387 1374 0.04 2.18%
ibm07 4627 898320 2786 0.1 6.02%
ibm08 4735 714555 2594 0.1 3.55%
ibm09 5512 637455 2720 0.13 3.01%
ibm10 9044 1191727 4700 0.27 2.83%
ibm11 7088 1048209 4203 0.2 3.16%
ibm12 9766 1147941 4251 0.27 1.93%
ibm13 8341 1391079 5040 0.24 3.65%
ibm14 15468 2400982 8561 0.6 3.06%
ibm15 15070 5481844 10434 0.6 8.80%
ibm16 20155 2829965 9746 0.87 2.47%
ibm17 23856 4263605 11261 1.12 3.25%
ibm18 21445 9065612 13464 0.96 14.92%
AVG: 0.32 4.34%

presents the 2D Area used, the final wire length on 3D, a flattened wire length (ignores
the length of vertical wires) and run time.

Table 4.24 establishes a comparison of Z-Place to other methods. First, the algorithm
from (LIU, G. et al, 2005) with Z-Place; since Liu uses flattened wire length, we compared
with Z-Place flattened wire length. Secondly, we perform comparisons with 2D solutions
such as Fastplace, Fastplace using a additional improvement tool called Domino and Z-
Place targeting 1 tier. The comparisons with 2D tools consider the Z-Place 3D wire length.

Table 4.25 presents results targeting a 3 tiers face-to-face and face-to-back technology
with 1µm face-to-face 3D-Via pitch and 5µm face-to-back 3D-Via pitch. 3D-Via lengths
are 20µm and 15µm for face-to-face and face-to-back respectively. Table 4.25 estabilishes
comparisons with 2D solutions.

The following can be observed and concluded from the tables:

• In average there is a wire length improvement in the order of 10% to add one tier.

• On 2D, Fastplace and Z-Place have similar WL results.

• The aid of an specialized detailed placer such as Domino can improve significantly
the quality of the results.

• Compared to existing algorithms, we have a small average advantage (2%); on the
other hand, the compared algorithm supports only 2 tiers face-to-face.

The 2 tier technology have the best configuration considering cost and reliability; it is
able to provide at least 10% WL improvement. We observe that more improvement could

106

Table 4.22: Experimental results obtained by running the ILP algorithm for 3D-Via place-
ment.

3D-Via 5 µm 10 µm 25 µm
Pitch
bench # V CPU WL OVH # V CPU WL OVH # V CPU WL OVH
ibm01 5630 32 0.10% 5630 13 0.29% 1550 2 7.06%
ibm02 8045 55 0.05% 8045 23 0.15% 1945 3 2.70%
ibm03 10023 85 0.07% 10023 35 0.22% 2391 4 1.30%
ibm04 11680 123 0.06% 11680 48 0.17% 3045 6 1.45%
ibm05 9819 96 0.03% 9819 41 0.08% 3442 6 2.45%
ibm06 13053 129 0.08% 13131 47 0.24% 2612 7 2.11%
ibm07 19218 329 0.06% 19218 126 0.18% 4627 12 5.63%
ibm08 16552 274 0.05% 16552 115 0.13% 4735 16 3.09%
ibm09 24760 525 0.06% 24760 190 0.21% 5512 16 2.15%
ibm10 32714 1013 0.04% 32714 381 0.11% 9044 30 2.08%
ibm11 31096 811 0.05% 31096 277 0.18% 7088 21 1.73%
ibm12 35285 1229 0.03% 35285 427 0.11% 9766 35 1.27%
ibm13 35478 1106 0.05% 35478 386 0.18% 8341 31 2.15%
ibm14 58514 3085 0.04% 58514 1083 0.12% 15468 81 2.14%
ibm15 69030 3794 0.05% 69206 1237 0.15% 15070 84 5.83%
ibm16 77904 5687 0.04% 77904 1907 0.11% 20155 142 1.56%
ibm17 90378 7643 0.03% 90378 2552 0.08% 23856 161 2.02%
ibm18 72562 4963 0.05% 72562 1844 0.12% 21445 149 5.72%

1721 0.05% 596 0.16% 45 2.91%

be approached with the implementation of published techniques (such as (SPINDLER;
JOHANNES, 2006)) to the placer; the research on placement area is very vast and the
combination of existing methods to the Z-Place have a substantial improvement potential.

In general, the experimental results demonstrate a trade-off between WL and actual
dolar cost of the circuit, since the addition of more tiers improve WL but introduce reli-
ability problems and increase the cost. If one is able to pay the price to improve perfor-
mance, a 3D solution is a simple and effective choice.

4.11 Critical Paths Handling

In the circuit netlist, each net has a set of weights that determines the criticality of
each sink, defined by a pair (driver,sinki) for all sinks i in the net. The criteria of
criticality could be either defined by timing analysis, power analysis or any combination
of these methods. Both detailed and global placement algorithms described in this text
can handle point-to-point weights naturally. On Quadratic Placement the multi-pin net
is broken into point-to-point connections that have their own separate weight. Those
weights can be incorporated into the star model simply by setting both the weights from
the driver to the star node and the star to the critical sink; in the clique model, the weight
can be directly incorporated into the direct connection from the driver to the critical sink.
On the detailed placement with Threshold Accept, the weight can be incorporated by
computing a separate wire length for the critical wires as done in (SWARTZ; SECHEN,

107

Figure 4.25: An example of a 3D-Via Placement with the proposed Tetris algorithm for
ibm01 with 5375 3D-Vias

1995), assuming that this connection will be actually routed separately. The extra weight
is multiplied only on the critical connection. The fact that a critical connection is modeled
in the placement level similarly to its actual routing topology improves the capability of
the whole flow to converge to a better solution (SANTOS, 2006).

Since net and point-to-point weighting on the placement level are very mature tech-
nique to improve the length of critical wires, it is not a subject of this thesis. In this work,
we exploit the problem of keeping critical paths with no 3D-Via connections. There are
several issues on 3D-Vias that would make them not attractive to critical wires:

• A connection from a transistor to a 3D-Via require extra wires and vias going
though all the metal layers. This scenario impose significant capacitance and re-
sistance for the wire;

• The electrical characteristics of the 3D-Via itself could be harmful.

• Existing timing-closure methodologies assume that the timing critical connections
can be modeled by 2D Steiner Trees.

In order to address the proposed problem, we define the 3D-Via avoidance problem
formally in section 4.11.1 and we propose an algorithm that will work under Z-Place and
other tools based on force directed placement on section 4.11.2. Experimental results are
presented on section 4.11.3 and partial conclusions on section 4.11.4.

108

Figure 4.26: An example of a 3D-Via Placement with ILP algorithm for ibm01 with 5375
3D-Vias

Figure 4.27: A detail on the 3D-Via placement obtained by the Tetris algorithm

4.11.1 Problem Definition

Initially, let us define the required information and how it can be obtained. The ap-
proach starts by identifying the k most critical paths of the circuit and defining a function

109

Algorithm 7 Algorithm to compute the via layer of a given tier t.
Input: A tier index t.
Output: The correspondent via layer index l.

1: if I[0] = b2b then
2: To[0] = DOWN ;
3: else
4: To[0] = UP ;
5: end if
6: for i = 1 to numTiers− 1
7: if I[i− 1] = f2b then
8: To[i] = To[i− 1]
9: else

10: To[i] = flip(To[i− 1])
11: end if
12: end for
13: Initialize a tier2V iaLayer vector with numTiers− 1 positions.
14: Initialize all positions of tier2V iaLayer with −1
15: numV iaLayers = numTiers− 1
16: for l = 0 to numV iaLayers− 1
17: orTop = To[l]
18: orBottom = To[l − 1]
19: if orBottom = DOWN then
20: tier2V iaLayer[l] = l;
21: end if
22: if orTop = TOP then
23: tier2V iaLayer[l + 1] = l;
24: end if
25: end for
26: return tier2V iaLayer[t];

cp ∈ C ×K that maps every cell to a critical path, where C is the set of cells to be placed
and K is the set of numbers {1, 2, ...k}. The cell placement problem takes the set C and
place each cell c ∈ C into a (cx,cy,cz) coordinate inside a sliced placement cube model
with t tiers such that cz ∈ {1, 2.., t}.

The 3D-Via avoidance problem is defined as a constraint to the cell placement process
defined by equation 4.29.

∀i,j∈C(cp(i) = cp(j)→ iz = jz)
(4.29)

4.11.2 Proposed Algorithm

The algorithm for 3D-Via avoidance is applied into the global placement phase, more
specifically on the Quadratic Placement engine. The other steps performed after Quadratic
Placement (Iterative Refinement (section 4.6.2), Legalization and Threshold Accept im-
provement (section 4.8.2) do not move critical cells into the Z axis).

In order to keep the cells of a same critical path together, the netlist is updated by in-
serting an artificial node called criticalstar (csi | i ∈ K) for each critical path. Every cell

110

Figure 4.28: Run time contribution of Z-Place steps averaged from ibm01 to ibm12.

c ∈ C such that cp(c) = i is connected to csi with a special kind of artificial connection
called Z-Grouping.

A Z-Grouping connection has a distinct weight for the Z axis in contrast with the
weight on X or Y . In fact, the weight on Z axis is set to a very high number, such as 500
times a regular wire, while on theX and Y it could be set to 0 or some small number (such
as 0.5 times a regular wire) in order to address the critical wire length reduction problem
as well. Note that that for the 3D-Via avoidance problem the weight on X and Y can be
set to any value, but it might affect wire length and the number of 3D-Vias. In order to
keep the wire length and number of 3D-Vias as close as possible to the number without
the critical 3D-Via avoidance, the weight on X and Y axes are set to smaller values.

Figure A.9 illustrated the method and the desired effect.

4.11.3 Experimental Results

In order to verify the effectiveness of the proposed algorithm, the following experi-
mental setup was proposed. First, a benchmark set with timing information was generated
with the aid of commercial tools to synthesize the source VHDL description and map it to
a logic level netlist. A timing analyzer for the same commercial tool set was used to iden-
tify the 100 most critical paths at the logic level. The details of the generated benchmarks
can be observed in table 4.2.

Initially, a baseline execution of Z-Place did not include any Z-Grouping net. After
that, 100 Z-Grouping nets were introduced with 0.5 weight on X and Y axes and 500 on

111

Table 4.23: Experimental results for 2 tiers face-to-face. Run times are measure in sec-
onds.

2D area WL WL Flattened run time (s)
ibm01 1209856 1.61E+06 1.50E+06 183
ibm02 1517568 3.25E+06 3.10E+06 425
ibm03 1865920 4.20E+06 4.00E+06 375
ibm04 2377280 5.05E+06 4.81E+06 495
ibm05 2483712 7.64E+06 7.44E+06 740
ibm06 2038784 4.98E+06 4.73E+06 601
ibm07 3612960 7.72E+06 7.33E+06 1071
ibm08 3697920 8.88E+06 8.54E+06 1409
ibm09 4307568 9.62E+06 9.13E+06 1463
ibm10 7064640 1.63E+07 1.57E+07 2115
ibm11 5536320 1.42E+07 1.36E+07 1928
ibm12 7627968 2.02E+07 1.95E+07 2150
ibm13 6515184 1.66E+07 1.58E+07 2452
ibm14 12082176 3.16E+07 3.04E+07 5985
ibm15 11771712 3.68E+07 3.54E+07 7650
ibm16 15744768 4.56E+07 4.40E+07 10292
ibm17 18636320 5.86E+07 5.68E+07 10644
ibm18 16751808 3.99E+07 3.84E+07 11971

Table 4.24: Comparison of Lim (2 tiers), Fastplace (1 tier), Fastplace + Domino (1 tier),
Z-Place (1 tier) with Z-Place in 2 tiers face-to-face.

Liu Imp. Fastplace Imp. Fastplace Imp. Z-Place Imp
(flattened) + Domino (1 tier)

ibm01 1.57E+06 5% 1.89E+06 17% 1.70E+06 5% 1.86E+06 15%
ibm02 3.36E+06 9% 3.93E+06 21% 3.69E+06 13% 3.90E+06 20%
ibm03 4.22E+06 5% 5.27E+06 25% 4.95E+06 18% 5.32E+06 27%
ibm04 5.31E+06 10% 6.15E+06 22% 5.79E+06 15% 6.34E+06 26%
ibm05 8.24E+06 11% 1.06E+07 39% 1.03E+07 35% 1.03E+07 35%
ibm06 4.68E+06 -1% 5.41E+06 9% 5.04E+06 1% 5.41E+06 9%
ibm07 8.11E+06 11% 9.10E+06 18% 8.64E+06 12% 9.32E+06 21%
ibm08 8.38E+06 -2% 9.80E+06 10% 9.34E+06 5% 9.88E+06 11%
ibm09 8.72E+06 -5% 1.08E+07 12% 1.02E+07 6% 1.11E+07 15%
ibm10 1.60E+07 2% 1.90E+07 16% 1.81E+07 11% 2.00E+07 23%
ibm11 1.27E+07 -7% 1.55E+07 9% 1.46E+07 2% 1.61E+07 13%
ibm12 2.12E+07 9% 2.46E+07 22% 2.35E+07 16% 2.49E+07 23%
ibm13 1.54E+07 -3% 1.89E+07 14% 1.77E+07 7% 1.98E+07 19%
ibm14 2.91E+07 -4% 3.57E+07 13% 3.39E+07 7% 3.67E+07 16%
ibm15 3.45E+07 -3% 4.44E+07 21% 4.22E+07 15% 4.55E+07 24%
ibm16 4.05E+07 -8% 4.69E+07 3% 4.43E+07 -3% 5.02E+07 10%
ibm17 — — 6.74E+07 15% 6.44E+07 10% 7.17E+07 22%
ibm18 — — 6.74E+07 69% 4.36E+07 9% 4.91E+07 23%
AVG: 2% 20% 10% 20%

112

Table 4.25: Experimental results for 3 tiers face-to-face. Run times are measure in sec-
onds.

2D area WL Vias WL Flattened run time
ibm01 817152 1.60E+06 1.48E+06 188
ibm02 1040256 2.79E+06 2.57E+06 533
ibm03 1272320 3.87E+06 3.63E+06 419
ibm04 1596192 4.78E+06 4.48E+06 631
ibm05 1665280 6.61E+06 6.33E+06 863
ibm06 1368576 4.52E+06 4.19E+06 730
ibm07 2420736 7.37E+06 6.87E+06 1171
ibm08 2479008 7.39E+06 6.91E+06 1460
ibm09 2960048 8.72E+06 8.11E+06 1352
ibm10 4791552 1.51E+07 1.44E+07 2073
ibm11 3798432 1.29E+07 1.21E+07 2328
ibm12 5175264 1.76E+07 1.67E+07 2412
ibm13 4359680 1.57E+07 1.48E+07 3070
ibm14 8050944 2.90E+07 2.75E+07 6908
ibm15 7963648 3.61E+07 3.42E+07 8539
ibm16 10426272 4.35E+07 4.15E+07 11986
ibm17 12383136 5.53E+07 5.30E+07 13365
ibm18 11312752 3.90E+07 3.70E+07 15271

Table 4.26: Comparison of Fastplace (1 tier), Fastplace + Domino (1 tier), Z-Place (1 tier)
with Z-Place in 3 tiers face-to-face / face-to-back. Run times are measure in seconds.

Fastplace Imp Fastplace Imp Z-Place 1 Imp
+ Domino (1 tier)

ibm01 1.89E+06 18% 1.70E+06 6% 1.86E+06 16%
ibm02 3.93E+06 41% 3.69E+06 32% 3.90E+06 40%
ibm03 5.27E+06 36% 4.95E+06 28% 5.32E+06 37%
ibm04 6.15E+06 29% 5.79E+06 21% 6.34E+06 33%
ibm05 1.06E+07 60% 1.03E+07 56% 1.03E+07 56%
ibm06 5.41E+06 20% 5.04E+06 12% 5.41E+06 20%
ibm07 9.10E+06 24% 8.64E+06 17% 9.32E+06 27%
ibm08 9.80E+06 33% 9.34E+06 26% 9.88E+06 34%
ibm09 1.08E+07 24% 1.02E+07 17% 1.11E+07 27%
ibm10 1.90E+07 25% 1.81E+07 20% 2.00E+07 33%
ibm11 1.55E+07 21% 1.46E+07 13% 1.61E+07 26%
ibm12 2.46E+07 40% 2.35E+07 34% 2.49E+07 42%
ibm13 1.89E+07 20% 1.77E+07 13% 1.98E+07 26%
ibm14 3.57E+07 23% 3.39E+07 17% 3.67E+07 27%
ibm15 4.44E+07 23% 4.22E+07 17% 4.55E+07 26%
ibm16 4.69E+07 8% 4.43E+07 2% 5.02E+07 15%
ibm17 6.74E+07 22% 6.44E+07 16% 7.17E+07 30%
ibm18 6.74E+07 73% 4.36E+07 12% 4.91E+07 26%
AVG: 30% 20% 30%

113

critical paths

(a) Identify Critical Paths

(d) Add Critical Stars

(e) Configure the
Critical Stars
to have a very
strong weight

on the Z Axis and a
very weak

weight in X and Y.

w = 1000 on Z
w = 1 on X,Y

(f) Place the circuit with no 3D-Via
with a critical connection

(b) Undesired Placement:

Critical
3D-Via

Proposed Solution:

Problem:

Figure 4.29: An illustration of the proposed method for avoiding 3D-Vias with critical
connections.

the Z. Table 4.11.3 contains the experimental results.
Analyzing the data presented on table 4.11.3 the following data can be observed:

• The proposed method is very effective to avoid critical 3D-Vias; all experimental
results (except for the circuit b13) resulted in none critical 3D-Via (see column
#CV).

• The circuit b13 is a small benchmark (275 cells). Note that smaller benchmarks are
more constrained than larger benchmarks. On our experiments, 100 critical paths
might be too much for this circuit, making the problem unfeasible.

• Wire length is not affected (0.03% affect in average).

114

Table 4.27: Baseline experimental results on benchmarks with timing information; # t
denotes number of tiers, # V denotes 3D-Vias count, # CV denotes critical 3D-Vias count,
C WL denotes critical wire length

Baseline With Z-Grouping Nets
t # V # CV C WL WL # V # CV C WL WL

b11 2 206 544 4727 49843 225 0 4520 48540
b11 3 413 1269 3640 42967 407 0 4207 42373
b11 4 385 716 3286 41113 405 0 4312 40395
b12 2 461 299 2698 78557 460 0 3290 77013
b12 3 501 175 3438 80853 474 0 4456 83664
b12 4 395 255 3674 76486 364 0 3015 73409
b13 2 88 29 2673 17758 68 0 3636 18635
b13 3 149 84 2662 17559 143 34 2529 17255
b13 4 110 91 2415 16344 125 17 2637 17300
b14 2 1384 1065 8299 379860 1451 0 9734 372845
b14 3 2020 2307 6096 328408 2186 0 6753 321635
b14 4 1472 1167 7425 348034 1913 0 7276 337371
b15 2 3110 687 5807 1.04E+06 3143 0 6059 993602
b15 3 4142 881 6035 946681 4291 0 7067 917239
b15 4 3314 981 6967 901196 3959 0 4679 819516
b17 2 9061 989 16941 3.71E+06 8894 0 16769 3.64E+06
b17 3 12586 1550 13329 3.34E+06 12260 0 12824 3.23E+06
b17 4 10457 1172 10640 3.19E+06 10996 0 12825 2.93E+06
b20 2 3221 1925 11725 912468 3275 0 13264 948918
b20 3 4605 2272 9300 816211 4234 0 11921 913147
b20 4 3980 1930 8993 825921 4215 0 12705 958814
b21 2 2582 809 19036 1.13E+06 2667 0 18979 1.17E+06
b21 3 4692 1851 12451 839501 4543 0 13577 906789
b21 4 3178 1181 15783 867797 4185 0 17262 832459
b22 2 4473 1316 14948 1.60E+06 4380 0 14769 1.58E+06
b22 3 6895 1830 15512 1.32E+06 6224 0 15026 1.37E+06
b22 4 5373 1408 16086 1.30E+06 5240 0 13823 1.31E+06

b14-1 2 1575 848 8277 362468 1567 0 8857 364230
b14-1 3 2078 1142 8670 353513 2356 0 6892 305643
b14-1 4 1443 1049 7118 324952 1815 0 7061 332907
b15-1 2 2489 1365 7788 1.24E+06 2411 0 5492 1.12E+06
b15-1 3 4452 1011 4309 868396 4611 0 5804 842928
b15-1 4 3859 1469 3151 820633 3858 0 4372 832314
b17-1 2 9408 1180 16738 3.38E+06 9125 0 17356 3.29E+06
b17-1 3 13351 1229 17150 3.27E+06 13250 0 15913 2.97E+06
b17-1 4 10682 1135 16843 3.09E+06 11979 0 19531 2.83E+06
b20-1 2 3081 1383 13346 1.03E+06 3104 0 14039 1.04E+06
b20-1 3 4703 1677 10699 863206 3938 0 14689 1.02E+06
b20-1 4 3510 1333 12727 887554 3480 0 13654 879506
b21-1 2 3153 1274 11780 995118 3199 0 11096 956224
b21-1 3 4307 1844 10191 895383 4033 0 11220 954954
b21-1 4 3314 912 11499 862450 3486 0 11711 871389
b22-1 2 4571 1449 16277 1.50E+06 4952 0 17434 1.54E+06
b22-1 3 7394 2182 12864 1.33E+06 7210 0 12990 1.36E+06
b22-1 4 5546 1560 15233 1.32E+06 5413 0 16693 1.46E+06

115

• Number of 3D-Vias is only 2.36% affected in average.

• Critical wire length is improved by 4.6%, possibly due to the weight on X and Y
axes.

4.11.4 Partial Conclusions

This section proposes a method to avoid the critical 3D-Vias simply by adding arti-
ficial nets in the circuit and making them with a strong weight only for the Z axis. The
method could reduce the number of 3D-Via to zero in all tested cases (except for one
small circuit) with no effect to circuit wire length and number of 3D-Vias. We conclude
that the method explores a degree of freedom existing in the placement problem, where
many solutions are equivalently good in terms of wire length and other classical metrics.
Our algorithm actually introduced a new metric by the number of critical 3D-Vias and
demonstrated that this objective does not conflict with 3D wire length optimization.

116

117

5 FAST AND EFFICIENT MAZE ROUTING STEINER
TREES

5.1 Introduction

The task of the routing stage is to provide routes that connect circuit elements. In the
previous chapter, placement algorithms were proposed for the reduction of the distance
of the elements to be connected. In the routing stage, the objects are fixed and the routing
task it to provide the shortest possible route that connects the circuit elements. In the
presence of delay critical objects, the wire topology can be improved to trade wire length
for delay.

Traditionally, the routing stage is performed at the end of the synthesis flow, just after
placement is complete. Since the wires represent a significant amount of delay and power
in a design, the wire lengths must be estimated during the whole synthesis flow in order
to target a feasible implementation under pre-stabilished design constraints. In the upper
design levels, such as system level, wires are estimated using inaccurate techniques since
the circuit information is very preliminary. As the hardware synthesis advances, new
information is provided for estimation. Convergence of the optimization process will be
affected by the quality of the wiring estimates as well as placement algorithms, routing
algorithms and their ability to optimize delay to the critical elements of the circuit while
keeping the overall design routable. Convergence will also be affected based upon how
well estimates made in the early stages match values obtained finally in the lower levels.

Although wire estimation seeks similarity with actual wires, higher level routing esti-
mation and actual routing stages are performed with different algorithms.

Steiner Trees can be used for early estimation because, as they account for the indi-
vidual positions of each pin and represent actual connected sets of paths, they are better
than simple half-perimeter measures. Steiner Tree algorithms are also commonly used
in Global Routing to actually define global routing solutions for each net. In particular,
minimum length rectilinear Steiner trees (MRSTs) represent optimal routes in terms of
wire length. However, wiring topologies strongly affect delay to the critical sinks and
improperly designed MSRTs could lead to very high delays (CONG; LEUNG; ZHOU,
1993). Even small changes in topology may significantly affect delay to sensitive sinks.
Additionally, most Steiner tree algorithms are not flexible enough to handle blockages,
congestion and actual routing constraints.

The routing algorithms are flexible and robust enough to handle constraints such a
blockages, congestion or other real design issues. The most commonly used algorithms
for routing are based on maze routing (LEE, 1961). They are well known and are char-
acterized by the following: (a) high flexibility since it provides a cost function that can

118

model any constraint, (b) producing optimal point-to-point paths and (c) good tree topolo-
gies. Those properties are obtained at the expense of high CPU and memory usage. By
judicious implementation techniques and proper exploitation of the methods outlined in
this thesis (including existing and new techniques), it is possible to improve the CPU
times of these routers considerably without compromising their quality.

Instead of the usual distinction of Steiner trees and global routing algorithms, we un-
derstand that a unique flexible algorithm could do a better job delivering more accuracy
to the estimates. All these stages have their own requirements for accuracy, route con-
straints, cost/penalty functions and run time. The algorithm must be flexible to attend
the requirements of every stage, achieve good wire length and have capability to improve
timing for selected elements. Run time should also be a concern; the run time requirement
of early design stages is tighter than the requirement of the later stages such as detailed
routing.

The Maze Router algorithm, discussed above, works over a routing space modeled as
a graph with costs and constraints. In the scope of this thesis, we propose techniques to be
incorporated into a Maze Router that will deliver good Steiner tree topologies according
to the needs of each net. In order to extend this algorithm to a full circuit, the nets need
to be routed one-by-one on a certain ordering; nets that were previously routed are fixed
and considered as obstacles. In the literature there are many techniques that are able to
handle ordering issues and rip-up and re-route of nets (FLACH; HENTSCHKE; REIS,
2004). Those techniques are not subject of this thesis.

Note also that the flexibility provided by Maze Routers to operate in any graph makes
it suitable to work on 2D or 3D circuit with only a few changes to correctly model the
3D-Vias.

This chapter describes the AMAZE algorithm that serves the purpose of Steiner tree
routing. Initially, we formulate the problem we are addressing, which considers only one
net with critical and non-critical sinks on section 5.2. In order to understand the problem,
we review the basics of Steiner tree with respect to delay and wire length optimization
in section 5.3. A review of existing algorithms for Steiner tree construction is presented
in section 5.4. Those algorithms include a basic study of path search methods that are
used by Maze Routers building a theoretical basis to understand the AMAZE algorithm.
AMAZE algorithm is described in section 5.5. It is composed by the combination of tech-
niques the serves the purpose of wire length, delay and run time improvements for Maze
Routers. The section 5.5.1 explains how the traditional A∗ algorithm is extended to han-
dle Steiner tree routing. Section 5.5.2 details our biasing method to improve wire length.
Sections 5.5.3 and 5.5.4 presents our techniques for delay improvement, while section 5.6
describes our contributions for run time improvement. Section 5.7 presents experimental
results and discussions on them. Finally, section 5.9 discusses the applicability of the
algorithm to 3D circuits.

5.2 Problem Definition

A net is a set V of points v located at positions (xv, yv) on a grid. These points need
to be electrically connected in the circuit. Point s also called the driver, transmits a signal
to all other sinks. Let subset K be the set of critical sinks in the net. For each critical
sink k ∈ K it is required that the delay of transmitting the signal from the driver s to
k be minimized. Critical sinks can be identified by incremental timing analysis, that is
available at the logic and placement levels of most CAD tools. For the rest of the sinks

119

t ∈ V −K delay is not considered and wire length should be minimized at most.

5.3 Tree Topologies

This section presents kinds of Steiner tree topologies and how they impact wire length
and delay. Since wires are restricted to the Manhattan geometry for most of the VLSI
technologies, we are particularly interested in the rectilinear Steiner trees. In order to un-
derstand a Steiner tree, we start by defining a Spanning Tree and the process of obtaining
a Steiner Tree and finally a rectilinear Steiner tree. Figure 5.1 exemplifies graphically the
three mentioned kinds of tree.

A Spanning Tree is an acyclic graph (tree) that connects all the n nodes. From a
Spanning Tree, it is possible to reduce the size of the edges by creating new nodes (called
Steiner points). A tree with Steiner points is called Steiner Tree. A Rectilinear Steiner
Tree is made by reorganizing the edges to be vertical or horizontal only. Doglegs are
allowed.

(a) spanning tree (b) steiner tree (c) rectilinear steiner tree

Steiner

point

Figure 5.1: Example of spanning tree (a), Steiner tree (b) and rectilinear Steiner tree (c)

5.3.1 Delay Analysis

Elmore delay (ELMORE, 1948) is one of the most accepted models to compute delay
of tree shaped wires due to its simplicity, fidelity (BOESE; KAHNG; MCCOY, 1995)
and reasonable accuracy. Equation 5.1 describes the method, where Dk is the delay from
the driver to a particular sink k, is R is the resistance of a piece of wire and Cdownstream
is the downstream capacitance starting at this particular piece of wire. The downstream
capacitance is a function of the tree topology; it determines the number of paths that share
a same piece of wire, increasing downstream capacitance. The length of the piece of wire
(w) influences the accuracy of the model and CPU time to compute it: the larger wire the
worse accuracy and better run time. The sum should account for all wires on the path
from the driver to the sink k. Supposing that the length of the path from the driver to k
is l, then l/w pieces are accounted for. Refer to figure 5.2 for a didactic explanation of
the model. It demonstrates a tree being sliced into pieces of wires and how the topology
affects the downstream capacitance. Note that on the topology of tree 1 (figure 5.2.a) the
paths for both sinks are shared by a single wire, while the tree on the topology 2 (figure
5.2.b) the paths are completelly separeted.

120

Dk =
∑

(R× Cdownstream)
(5.1)

Topology

Tree 2

piece of wire

piece of wire

Tree 1

Resistance
Network

Downstream
Capacitance

Pieces of
Wire

(a) (b)

Figure 5.2: A didactic view of Elmore delay and the downstream capacitance.

Starting from equation 5.1, it can be broken into equation 5.2 by separating the driver
resistance from the wire resistance where Ctotal is the total wire capacitance and Rdriver

is the output resistance of the driver cell. The first parcel is called gate delay while the
second is wire delay.

Dk = Rdriver × Ctotal +
∑

(R× Cdownstream)
(5.2)

By analyzing equation 5.2 the following facts can be understood:

• The driver resistance is an element of the delay calculation for any sink.

• The overall capacitance influences the delay according to the driver resistance; the
higher the driver resistance the more important is the overall capacitance participa-
tion on the delay.

121

• The relation between the wire resistance and driver resistance will determine
whether the overall capacitance or downstream capacitance are responsible to a
larger chunk of the delay.

On the recent technologies, the cells’ resistance is going down while wire resistance
per unit is increasing (since wire width decreases). Additionally, drivers of delay critical
nets are resized having their resistances even smaller. This scenario imposes a very signif-
icant wire resistance compared to the driver resistance, enforcing the growing importance
of wire delay (right hand side of the equation 5.2). The following features on the topology
of a tree can be addressed to improve delay for a particular sink k.

• The path length l of the connection from the net driver to k along the tree.

• The amount of capacitance plugged into the wire on the path to k

• How close to the driver is a branch of the tree with a high amount of load. Note
that the closer is the branch to the wire the sooner it is not accounted into the
downstream capacitance.

In order to address these features, previous works proposed tree topologies categories
and algorithms. These topologies are reviewed in section 5.3.2. Usually, high perfor-
mance connection topologies tend to distribute sinks on different branches of the trees in
order to avoid excessive load for a wire on the path to a critical sink.

5.3.2 Topologies for Delay and Wire Length Trade-off

Delay and wire length are strongly related to Steiner tree topologies. Various kinds of
rectilinear Steiner tree topologies are shown for a net in Figure A.14. Figure A.14.b shows
a minimum length Steiner tree (MRST), which minimizes wire length but may present
high delay to nodes that accidentally get connected far from the driver. Figure A.14.c
shows a minimal Steiner arborescence (MSA) (RAO, S. et al, 1992)(CONG; LEUNG;
ZHOU, 1993) or shortest path tree (SPT) which is a tree with shortest paths from the
source to any sink. Such a tree minimizes source to sink distances at the expense of
total wire length but do not necessarily minimize overall delay, affected by its increased
wire length and capacitance sharing along the paths. Figure A.14.d shows a bounded
radius Steiner tree (BRST) (CONG, J. et al, 1992) (ALPERT, C. et al, 1995) (CONG;
KOH; MADDEN, 2001) in which the maximum distance from the source to any sink is
bounded, exhibiting a compromise between MRSTs and SPTs. The Star tree topology
shown in Figure A.14.e has separate wires for each sink, resulting in optimal path length
and minimum sharing, but possibly huge total wire length and therefore non optimal delay,
depending technology parameters and on the positions and number of pins.

It is clear that these topologies trade-off wirelength for delay. In real designs, there
are two main strategies to control algorithms such that timing closure is achieved: slack
satisfaction and critical path optimization. Although slack management is very precise,
it is more complex, and many CAD tools rely on the optimization of critical paths, that
are easily identified by incremental timing analysis. Optimization of critical paths surely
reduce the worst logic delay and is an effective method of improving circuit speed. This
way, we can relax the requirement of reducing the delay for all the sinks and concen-
trate on a few critical sinks that participate in critical paths. In this scenario, (KHANG;
ROBINS, 1995) (BORAH; OWENS; IRWIN, 1997) (BOESE; KAHNG; MCCOY, 1995)

122

proposed the Identified Critical Sink Routing Trees in which a Star tree like topology is
used for one identified critical sink while the rest of the sinks are connected by a mini-
mum wire length Steiner tree (resulting in smaller Elmore delay to the critical sink). An
example of such tree is given by Figure A.14.f.

(a) (b) (c)

(d) (e) (f)

source node sink node critical sink node

Figure 5.3: Steiner Topologies for delay optimization; (a) net; (b) Minimum Steiner Tree
(MST); (c) Minimum Arborescence (MSA); (d) Intermediate topology between (b) and
(c) - Bounded Radius Steiner Tree (BRST); (e) Star topology; (f) Critical Sink Approach
(CSA)

5.4 Review of existing algorithms

5.4.1 Algorithms for Steiner Tree Construction

The the minimum length Steiner tree (MRST) problem is np-complete (GAREY;
JOHNSON, 1977). There are several approaches to find exact Steiner trees in exponential
time. Among them, the GeoSteiners (ZACHARIASEN, 1999) is the fastest. Heuristic
methods are able to deliver close to minimum length Steiner trees in polynomial time,
such as (MANDOIU; VAZIRANI; GANLEY, 1999) (GRIFFITH, J. et al, 1994).

Performance-driven Steiner tree algorithms have been well studied and a variety of
methods have been proposed. The first category of algorithms is based upon the Min-
imum Spanning Tree and shortest path algorithms. Hou et. al. (HOU; HU; SAPAT-
NEKAR, 1999) have shown techniques to find the shortest length Steiner tree under pin
delay constraints. Alpert et. al. (ALPERT, C. et al, 1995), Boese et. al. (BOESE;
KAHNG; MCCOY, 1995) and Cong et al. (CONG, J. et al, 1992), have described several
such algorithms. The Spanning Tree could be generated based upon different criteria.
Boese et. al. (BOESE; KAHNG; MCCOY, 1995) proposed the use of an Elmore routing
tree for the same purpose. The AHHK algorithm described by Alpert et. al. (ALPERT,
C. et al, 1995), just like (CONG, J. et al, 1992), builds a Steiner tree that trades off be-
tween shortest path and Minimum Spanning Tree (fig A.14.d). These methods only see
the graph containing net pins to build Spanning Trees, and usually employ a separate
Edge-Overlapping procedure for conversion to Rectilinear Steiner Trees (RST). Lillis et.
al. (LILLIS, J. et al, 1996) generate many topologies to minimize the Elmore delay for
attending a required delay budget at each sink. The variety of topologies provides a wide

123

range trade-off between wirelength and delay. Constructive algorithms have been pro-
posed by Cong et. al. (CONG; LEUNG; ZHOU, 1993), Hong. et. al. (HONG, X. et al,
1993), and Xu et. al. (XU, J. et al, 2002). The Minimum Steiner Arborescence (MSA - fig
A.14.c) generated by Cong et. al. (CONG; LEUNG; ZHOU, 1993) tends to have a high
total wire length. Boese et. al. (BOESE; KAHNG; MCCOY, 1995) proposed the SERT-C
algorithm for individual critical sink routing, in which the wire to the critical sink is not
shared and the rest of the tree is build as short as possible disregarding the delay of the
sinks other than the critical one (fig A.14.f).

In general all the methods described so far do not account for blockages, congestion
etc. With the exception of (BOESE; KAHNG; MCCOY, 1995) and (BORAH; OWENS;
IRWIN, 1997), they also generally minimize the source to sink distance for all sinks in
the net without discriminating between critical and non-critical sinks.

Algorithms based on path search on the other hand use intelligent methods that incor-
porate the desired properties into the search process to generate the tree. Commonly used
path search algorithms include basic Dijkstra and the A∗ algorithm. Dutt et. al (DUTT;
ARSLAN, 2006) present an algorithm to perform incremental routing using Dijkstra al-
gorithm to connect nodes to an existing tree in a restricted interval that satisfies the timing
constraint. Hur et. al. (S-W.; JAGANNATHAN; LILLIS, 2000) present a method based
on a multi-graph model for performance driven routing of two pin nets with wire sizing.
Prasitjutrakal and Kubitz (PRASITJUTRAKUL; KUBITZ, 1990) have also proposed a
basic timing-aware router. While this method uses Elmore delay to drive the A∗ search,
their choice of the next target to be added to the tree is restrictive and in some situations
can compromise the quality of the results in the presence of blockages.

5.4.2 Review of Path Search Algorithms

The shortest-path search in a graph is a well known problem in computer science. It is
also very useful in real-live applications, such as telephone lines routing, gaming, circuit
routing, network routing, etc.

Given a graph G = (V,E), a source node sεV , a target node tεV and a cost function C
E → < the goal is to find the sequence of edges such that the sum of costs associated to
this edges is minimal.

This problem is not np-complete. Dijkstra (SHERWANI, 1998) proposed a O(n2)
shortest-path algorithm, where n is the number of nodes in the graph. However, the worst
case is very unlikely to happen. In routing, the graph is a regular grid and costs range in
similar values. Dijkstra algorithm will typically search a circular area around the source
node, until the circle reaches the target, as shown in figure 5.4 (a).

Dijkstra’s algorithm is based on two operations over nodes: open and expand. Open
operation is performed every time a node is reached by the search. It consists of calcu-
lating the distance from the source to the opening node n called g(n) and inserting it in a
list called openlist. The openlist must be kept sorted by g(v). For this reason, the open
operation is performed in O(log(n)) time, since the openlist is usually implemented with a
priority queue (or binary heap). A node is expanded if the search selects it as a candidate
to be on the shortest path. The expand operation consists of marking the node as expanded
(so that it won’t be expanded twice) and opening all its reachable neighbors. The search
algorithm is given described in algorithm 8.

In order to speedup the search, A∗ (HART; NILSSON; RAPHAEL, 1968) proposed
the usage of a heuristic estimation of the whole path length passing though n called f(n). It
is computed by adding g(n) to a heuristic estimation from n to the target, called k(n, t) (or

124

Algorithm 8 Dijkstra algorithm for shortest path
1: Open(s)
2: found = false
3: while (OpenList is not empty)
4: Node = TopOfTheList
5: Pop TopOfTheList from OpenList
6: if (Node = t) then
7: found = true;
8: break; //the shortest path was found
9: end if

10: Expand(Node)
11: end while
12: if (found) then
13: Retrace the path from t
14: end if

simply h(n)). By keeping the openlist sorted by f instead of g, the less promissing nodes
to be part of the shortest path (the ones with higher h) would be delayed for expansion.
If h is underestimated (is less or equal to the actual distance), the estimation is said to
be admissible and the path found will be the shortest possible. This property of A∗

is called admissibility. If h(v)=0 for every node then A∗ behaves like the Dijkstra’s
algorithm, expanding nodes closest to the source first. The heuristic estimator should also
be consistent. Consistency is defined as follows: k(v1 ,t) = k(v1 ,v2) + k(v2 ,t) for nodes v1

and v2 . If h is not consistent the algorithm must be modified to allow multiple expansion
of nodes.

The higher is the heuristic estimator (e.g. the closer is the heuristic estimator to the
actual distance), the less nodes are expanded by A∗. Figure 5.4 shows graphically the
searched area by Dijkstra and A∗ with different estimators. Dijkstra algorithm will always
search a large area, even if the shortest path can be easily recognized. A∗ algorithm will
depend on the quality of the estimator. If the estimator is zero than A∗ searches the same
area as Dijkstra. If the estimator is good than A∗ will search a smaller area than Dijkstra.
As the estimator quality, A∗ approximates to a DFS search direct to the target.

In routing applications, Manhattan Distance (ManhD) is commonly used as heuristic
estimator. It is consistent and admissible. Let C∗ be the optimum cost of reaching the
target t from s. Algorithm A* expands each and every vertex v with f(v) < C∗ and
no node with f(v) > C∗ (HART; NILSSON; RAPHAEL, 1968). We say that a tie
happens whenever two nodes have the same value of f(n) in the open list. A critical
tie is a tie with the additional constraint that f = C∗. Simple ties are not a concern,
given that all nodes with f(v) < C∗ must be expanded to ensure admissibility. Yet
critical ties are very significant, specially for routing. The use of Manhattan Distance as
estimator and no additional costs for congestion or obstacles in initially empty areas make
all estimates perfect, so all nodes inside the box bounded by the source and the target have
f(n) = C∗. To get the most efficiency from A* a mechanism is needed to avoid expanding
all nodes with critical ties. In (HART; NILSSON; RAPHAEL, 1968) the authors point out
that critical ties can be arbitrarily broken but always in favor of the target. Additionally,
vertices that are closer to the target can be chosen to break intermediate critical ties for
efficiency purposes. So, if two nodes have the same value of f(n), theoretically the one
with higher g(n) should be expanded first. In routing this causes the effect of Depth First

125

Searches (DFS) from s to t in empty areas. Now, in a regular and uniform grid, each
expanded node that is not aligned to the target in x or y will open two neighbors with
the same value of f = C∗ and the same value of g, what we will refer to as a depth tie.
While depth priority can be used to get efficiency, depth ties represent a true degree of
freedom for selecting between alternate paths every time this choice happens. A separate
mechanism must be implemented to do that, and this will be addressed in section 5.5.2.

There is a final concern regarding ties. The routing grid cannot be assumed to be
regular or to have the same step size in x and y. In a Hannan grid, two neighbors of
a node may exhibit different values of g, and in this case we would lose the ability to
recognize at this point that these are alternate paths that we must choose from. To cope
with this, instead of using g (depth) as the critical tie breaking criterion, the number of
expansion steps can be employed. For each vertex v a value cs(v) is stored that indicates
how many expansions were needed to reach v is from the source. We pick that vertex v
with the highest cs(v), and the definition of a depth tie is adapted accordingly.

In summary, a maze router using the A* algorithm can be made very efficient for
routing. When running in empty and not congested areas whose costs are uniform and
known, with the perfect Manhattan distance estimator and critical tie breaking based on
cs(v) the algorithm expands only the nodes that lie in the optimal path, most like in a
DFS. A Hannan grid provides reduced number of nodes and still preserves the degree of
freedom regarding the choice of nodes that exhibit stepped depth ties. Additional speed-
up methods are addressed on section 5.6. For global routing with congestion information,
variable costs will slow down the search and change the occurrence of all types of ties. In
extreme situations, bidirectional search and dynamic estimation methods such as LCS*
(JOHANN; REIS, 2000) can be applied.

5.5 Amaze Algorithm to generate Steiner Trees

5.5.1 A∗ for Steiner routing

Given a set of pins of the same net, a maze router will start from a particular pin and
grow the tree inserting one pin at a time with the path search method. We initialize the tree
to be the source and then each sink is added one by one to the existing tree, as shown in
figure 5.5. Since we must have the capability to connect sinks to any point on an existing
tree the path search mechanism must be extended to accommodate multiple sources. This
way all vertices on the existing tree are potential starting points for the new connection.

One more feature is to select which target is going to be connected to the tree at a time.
Prim’s algorithm for Minimum Spanning-Tree connects the closest pin to the existing tree
at each step. We follow the same heuristic. In order to ensure that the A* algorithm will
select the closest sink to the tree even in the presence of blockages whose impact on the
path length cannot be estimated, we explore the concept of multiple targeted search. The
accurate selection of the closest target leads to smaller wire length, as shown in the figure
5.6. In situation (b) we considered a static estimation of the closest target. In situation (c)
the target was selected dynamically during the search. In situation (c) the wirelength is
shorter because the paths were shared.

Adding the capability of dealing with multiple sources and targets to the classical A∗

is straightforward. The algorithm 9 presents the steps of the algorithm in detail. All
the sources are open initially (see steps 2 - 8) and the priority-queue of the open nodes
will automatically select the most promising node to start with. Multiple targets can be
handled simply by stopping the algorithm whenever any target is reached (see steps 16-

126

source target

source target

source target

(a) Dijkstra Algoritm / A* without estimation

(b) A* Algorithm with a good estimator

(c) A* Algorithm with an exact estimator

Figure 5.4: Comparison between the searched area of Dijkstra’s algorithm and A∗ with
different estimators

18). The heuristic function h(v) will point to the target t that is the closest to v. The
concept of chosen target ct(v) is introduced and stored in the references r that are stored
on the open list. Every open node has an associated chosen target that is the closest target
to it measured by Manhattan distance.

Note that the algorithm 9 makes use of temporary and global variables. The open list,
the graph G and the sets S and T are the global variables. All other variables, such as
g(s) are temporary variables; a value g will be definitive only when the node is actually
expanded (after step 13). For each expanded node, the algorithm stores the previous node
(parent) in order to retrace back the path. Only at expand time the final parent can be
defined; note that a temporary parent is obtained at open time on step 26. However,
at expand time, on step 14, the parent of node v is finally stored in the global variable
G.pred(v).

127

Existing Tree

Nodes to be routed

(a) (b)

Added node

Figure 5.5: A step of the AMAZE algorithm; (a) provides the current configuration of
the routing tree and the remaining nodes to be routed; (b) provides the next configuration,
after one adding a node to the tree.

An important property if that f monotonically increases during the search (monotonic-
ity property). This property was already demonstrated (HART; NILSSON; RAPHAEL,
1968) if h consistency holds.

Theorem 1 demonstrates the consistency of the multiple target heuristic estimator.

Theorem 1. For two nodes n1, n2, each with a different assigned target ct(n1) and ct(n2)
respectively, k(n1, ct(n1)) ≤ k(n1, n2) + k(n2, ct(n2))

Proof. At node n1, we know that the closest target is ct(n1), so k(n1, ct(n1)) ≤
k(n1, ct(n2)). By the consistency property for the same target, k(n1, ct(n2)) ≤
k(n1, n2) + k(n2, ct(n2)). Joining the equations, we conclude the proof.

Another important property if that f monotonically increases during the search
(monotonicity property). This property was already demonstrated (HART; NILSSON;
RAPHAEL, 1968) if h consistency holds.

In the presence of delay critical sinks, we first route critical sinks in order of criticality
and than we route the non-critical ones. When routing a critical node, regular nodes are
not considered targets, but they are used for biasing calculation (section 5.5.2). The algo-
rithm for generating a steiner tree with priority to the critical nodes is given in algorithm
10.

5.5.2 Biasing technique for wire length optimization

As already stated, often there are situations when two or more vertices (for instance
v and n) have the same value of f as well as cs (f(v) = f(n) and cs(v) = cs(n)).
Uniformity of the grid will lead to such situations. The choice of the appropriate v will

128

source

closest target by
Manhattan
distance

closest target by
actual routing

distance

Routing steps
adding the

closest node
measured by
Manhattan

distance at each
step

Routing steps
using A* with

multiple
targets to
connect to
the actual

closest node

(a)

(b)

(c)

Figure 5.6: The reason for using multiple targets in A* instead of getting the closest node;
(b) shows the steps taken by a routing algorithm that gets the next node using Manhattan
Distance; (c) shows the steps by getting the actual closest node instead. The final tree in
(c) is smaller than in (b).

determine whether the upper-left L shaped wire or the lower-right L shaped wire will
be selected, as illustrated by figure A.11. These cases are degrees of freedom provided

129

Algorithm 9 A* Mult
Input: A graph G = (V,E), a set S of sources and a set T of targets.
Output: A shortest-path with cost C∗ from some s ∈ S to some t ∈ T such that (∀s1 ∈

S∀t1 ∈ T the cost C of the shortest-path from s1 to t1 ≤ C∗). New sources are
created in S and t is removed from T .

1: Create an open list L and insert a reference R(s) into it.
2: for every s ∈ S
3: g(s) = 0 (s ∈ S)
4: ct(s) = ct such that ∀t ∈ T (ManhD(s, ct) ≤ManhD(s, t))
5: h(s) = ManhD(s, ct(s))
6: Mark the predecessor pointer p(s) as invalid
7: Create a reference R(s) with g(s), h(s), ct(s), p(s)
8: Insert reference R(S) into L
9: end for

10: while (L is not empty)
11: Remove the first reference r from L
12: Get the vertex v from r
13: If v is closed than continue to the next iteration.
14: Set G.pred(v) = r.p(v)
15: Mark v as closed
16: if (v ∈ T) then
17: Set t = v as the reached target
18: break
19: end if
20: for each vertex u that is adjacent to v in G and is not closed
21: g(u) = g(v) + c(v, u)
22: Set ct(u) as in step 4
23: h(u) = ManhD(u, ct(u))
24: p(u)=v
25: Create R(u) with g(u),h(u), ct(u), p(u)
26: Insert R(u) into L
27: end for
28: end while
29: if a target is found then
30: Retrace back the path from the reached target t until some s ∈ S is reached. Use

G.pred(i) (i are intermediate nodes in the path); Insert all i in S. Move t from T
to S.

31: else
32: Report that no t ∈ T is reachable from S
33: end if

by the A* search. Either choice is valid and will lead to an admissible (shortest) path.
Instead of letting the coding style implicitly decide on the choice we introduce a biasing
technique to direct the search according to the needs of future connections to unrouted
sinks. Clearly, the choice (a) in figure A.11 is best for wire length. The biasing technique
will attempt to select the wire accordingly.

Biasing uses a reference point called biasing point that is used to choose the vertex for
expansion. The biasing point is calculated by first determining a set of affected targets.

130

Algorithm 10 A* Steiner with critical nodes
Input: Graph G, the net driver s and a set T of sinks with an associated criticality.
Output: A Steiner tree connecting s to all targets in T.

1: S = s
2: while (T is not empty)
3: Call A* (S, Tc) such that Tc contains only the nodes from T with highest criticality
4: T = T − t where t is the A* chosen target
5: S = S

⋃
Vst where Vst is the set of all vertices in the path P returned by A*,

including t
6: return S
7: end while

a

c

b

(a) (b)

a

c

b

Figure 5.7: Illustration of a routing situation favorable to wirelength minimization (a) and
a favorable situation for the isolation of the paths (b).

Let Tp be the set of vertices in the quadrant with origin p (p is the predecessor of the
candidate node v) that is diagonally opposite to t and Tt be the set of vertices in the
quadrant with origin t that is diagonally opposite to p. The biasing point will not be
affected by vertices in Tp ∪ Tt, since p or t will be closer to these vertices than any other
vertex in the routing box bounded by p and t, as illustrated by Figure A.12, situation (a).

Likewise, any vertex in the set of vertices (denoted by Tu) that are closer to the tree
than the routing box bounded by v and t will not affect the biasing point either, as shown
in figure A.12 situation (b). Situation (c) represents one node that will affect the biasing
calculation since it is neither behind the source/target nor closer to the tree than the routing
box.

Therefore, Taffected = T − (Tp ∪ Tt ∪ Tu). If (xt, yt) is the coordinate of a target
t ∈ Taffected whose distance from the vertex v is dt the bias point is computed as a
weighted centroid of the affected nodes according to equation 5.3. It is reasonable to
assume that nodes closer to the vertex v have a higher probability of using the route being
performed in future connections.

(xc, yc) = (

P
tεTaffected

xt
dtP

tεTaffected

1
dt

,

P
tεTaffected

yt
dtP

tεTaffected

1
dt

)

(5.3)
The algorithm that calculates the biasing value b(v) is shown bellow (algorithm 11).
The bias value b(v) is calculated by the distance from v to the biasing point. Vertices

131

S p

t

Routing
Bounding Box

Node behind the target

Closer to target than to
routing bounding boxExisting

Tree

t Closer to tree than to
routing bounding box

(b)

(a)
Affected Node

(c)

n

v

nv and are the candidate nodes for expansion

Tp

Tt

Tu

ct(p)

Figure 5.8: An illustration of the biasing technique and the affected target. (a) shows one
target that is excluded because it is behind the target. (b) shows one target that is closer to
the existing tree than to the routing bounding box. (c) is an example of a target that will
affect the biasing point. In this situation, the path will go into the direction of node v.

Algorithm 11 Biasing Value
Input: The node to be expanded v, the parent n, the closest target t, the complete set of

targets T , graph G.
Output: The value b(v).

1: Compute the unaffected region Rp that is the opposite quadrant of p from t.
2: Compute the unaffected region Rp that is the opposite quadrant of t from n.
3: Let Tp and Tt be the set of targets in Rp and Rt.
4: Determine the set of vertices Tu that are close to the tree than to the rectangle defined

by s and t.
5: Compute the centroid (Xc, Yc) as explained before.
6: return b(v) = |xpxc| + |ypyc|

with the same f(v) and cs(v) in the open list are sorted by increasing values of b(v)
(the node with smaller b(v) is selected). Figure A.13 illustrates the effect of the biasing
technique on a 7-pins net. In this case, the pin placement favored the sharing of some
wires and the biasing technique provided a 15% improvement in wire length.

Though biasing helps to reduce the total wire length, it could potentially result in shar-
ing a path P from source to critical target with paths to other targets thereby increasing
the capacitive load on P , which, combined with a significant value of wire resistance, can
slow it down. To isolate critical paths and make them less likely to be shared we suggest
the use of repulsive biasing for critical targets. Repulsive biasing sorts the open list in
decreasing order of b(v) and tends to route wires that connect the source to critical targets
in such a way that ample space is available for routing non-critical wires.

On the run time analysis, it is important to notice that biasing does not increase the
complexity of the algorithms. A detailed analysis of how it can be efficiently implemented
is provided on section 5.6.4. Also, in favor of the biasing technique, reducing wire length

132

(a) (b)

Figure 5.9: Visualization of trees (a) without biasing and (b) with biasing.

Table 5.1: Impact of the biasing technique in average for WL (measure in µm and run
time (s). Imp rows represent the improvement achieved by using the biasing technique.

Random Placed Circuit
3 pins 15 pins

wl t (s) wl t (s) wl t (s)
Considering the costs of Vias

Off 314 1.38 915 7.24 3937 45.6
On 304 1.38 915 7.24 3937 45.6
Imp 3.0% 0% 0.7% -2.8% 0.9% 0.3%

Ignoring the vias
Off 311 1.34 905 6.38 3899 42.0
On 301 1.23 881 6.58 3827 43.3
Imp 3.3% -9.8% 2.6% -3.1% 1.8% -3.0%

reduces the overall number of expanded nodes, since wire length is shorter, resulting in
possible run time savings.

We observe that the biasing technique is able to improve the wirelength by breaking
ties in the open list. The number of ties on a search is highly dependent on the modeling
of the routing space. Cost functions that model congestion, for example, will reduce the
amount of ties occurred in a search. Also, modeling of the vias will minimize the number
of bends but also reduce the degrees of freedom for the biasing technique, since Z shaped
connections cost more than L shaped ones.

In order to evaluate the impact of the biasing technique in wire length and run time we
performed experiments in two sets of benchmarks: random and placed circuits. For the
random set we generated one thousand trees varying the number of pins from 3 to 15 in
a space of 300µm x 300µm. The placed circuit set was extracted from the ibm02 circuit
from ISPD 2004 placement benchmarks suite after full placement. This circuit has 19584
nets; 54% are 2-pin nets (those are being ignored) followed by 9%, 9%, 9%, 2%, 1.5%,
1.5%, 2%, 2%, 2.5% for 3, 4, 5, 6, 7, 8, 9, 10 and 11 pins; 7.5% of the nets are between 12
and 134 pins. The average results are presented in Table 5.1. For both options, we study
the impact of modeling the vias or not. Analyzing the table, we report average gains
in the order of 1-3% considering the vias and 2.5-3% ignoring the vias, reinforcing the
conclusion that the modeling of the vias will reduce the degree of freedom for the biasing
technique and consequently increase wire length.

We observed that the average numbers are very small considering the visual impact

133

Figure 5.10: Histogram showing the impact of biasing on nets taken from a placed circuit.
The big majority of nets is not affected by biasing, but almost none is affected negatively
while improvements can be in the order of 20%.

(exemplified by figure A.13) of the biasing technique. We then plotted a histogram of the
biasing improvement for the placed circuit nets with 3 or more pins. The histogram, on
Figure 5.10, shows that in the big majority of cases the impact is 0%. Analyzing each
case, we could observe that in fact the case where wire sharing does not help is the most
common. However, for the ones that are affected by wire sharing, biasing can improve the
wire length of a net by up to 20%. We also observed in the histogram the same reduction
on the improvement of the biasing technique with the modeling of the vias.

5.5.3 Sharing Factor on Maze Search

From the theory established in the earlier sections it is clear that delay performance can
be effectively managed by controlling the amount of sharing. We introduce the capability
of wire length to delay trade-off using a parameter called the sharing factor (sf). The
sharing factor has a value between 0 and 1 and is used to designate some parts of the tree
as prohibited for connection, avoiding sharing of these wires. Critical wires connect the
driver to critical sinks. From the formulation presented in the previous section, sharing a
small amount in the beginning of this wire may be less harmful than sharing the whole
critical wire.

In step 1 of A* Mult algorithm we ascertain, for every node sk on the tree whether
or not it is part of a critical path. For every node n that is part of the tree, we store the
distance dn of the node from the source along the path of the tree. This distance can be
obtained by the g from previous searches. If k is a critical sink, then all wires that are
closer to s0 than sf × dk are available for sharing. Clearly, if sf=1 then all wires in the
path from s0 to sk are available for sharing and if sf=0 then no wire in the path is available
for sharing. Figure A.15 shows the effect of different values of sf on the types of routes
generated.

5.5.4 Path Length Factor on Maze Search

Path length is the term used for the distance of a critical sink k to the net driver s along
the tree. If the path length is optimal for k then optimal wire resistance (disregarding

134

s

k

(a) To be routed

s

k

(b) sf = 1

s

k

(c) sf = 0.75

s

k

(d) sf = 0.5

s

k

(e) sf = 0.25

s

k

(f) sf = 0

Figure 5.11: Effect of sharing factor on maze search.

possible wire sizing) is obtained for it. For example, consider figure A.16, where k1 and
k2 are connected to the driver with optimal path length. Observe that node k3 can be
connected into the path to k1 with optimal path length as well, but connected to k2 it
would have a small detour.

The previous sections assumed that minimum path length to the critical sinks could be
achieved easily by performing their connections first. It is always true for a single critical
sink but may not be for multiple critical sinks if sharing is available. In such cases, we
propose the use of a path length factor (plf) in order to guarantee that the minimum path
length for the critical sinks is achieved. The idea was based on (CALDWELL, 1997) and
extended to attend critical sinks only. For a node n ∈ S, the path length factor uses dn

(distance from the source along the tree). At each shared node, a number between 0 and
1 is multiplied by dn . The product of this multiplication is set as initial g of the node
(affecting step 3 of algorithm 9). The effect of initializing g with a constant value like 0 is
that the obtained routes will not correspond to shorter wires from the source; the proposed
algorithm will optimize overall path length instead. A trade-off of the two goals can be
obtained with the plf . If the path length factor is set to 0, then a MST-like tree will be
generated. All intermediate values trade-off wire length for path length.

5.6 Run Time Improvement Techniques

5.6.1 Application specific grid

In general, the use of a coarser grid improves the speed of the algorithm at the ex-
pense of quality. During early estimation speed is of essence since estimates need to be
generated in the inner loops of the synthesis algorithms. In this case we use a Hanan grid
(HANNAN, 1992) to model the space thereby reducing the grid to the smallest size that

135

path length factor = 1

path length factor = 0

To be routed (all sinks are critical and sharing is fully available)

k1

k2

k3

k1

k2

k3

Figure 5.12: Effect of path length factor on maze search.

accommodates all the sinks. This leads to better memory usage as well as shorter runtime.
During actual routing we use a finer grid thereby increasing the routability and improving
wire length at the expense of CPU time.

Costs are also supported by a maze router and can be used at the expense of run
time as well. Congestion cost can be modeled by a cost function. It is important to
notice that those costs must remain static during the A* expansion in order to guarantee
admissibility. Applications such detailed routing could take benefit of increasing costs
dynamically during the expansion to cope with design rules.

Another feature of the maze routers is the ease to model multi-layer routing. This
is merely an extension of the maze router to a three dimensional scenario with via costs
assigned appropriately. As discussed in many sections of the routing chapter, the situation
where f is unchanged during the whole search is the best for performance of the algorithm.
To achieve that, in the case where the space is modeled in 3D, via costs must be included
in the h function. If the Z coordinate of the node n being open is the same as its target
(ct) and in any of the situations described below, the value of twice the via cost can be
included in the h function without harming the algorithm admissibility:

• n.X 6= ct.X and n.Y 6= n.Y 6= ct.Y

• n.X = ct.X and n.Z is horizontal layer

• n.Y = ct.Y and n.Z is vertical layer

This improvement was tested on Steiner trees extracted from ibm02 placement bench-
mark and we got 17% reduction in the number of expanded nodes.

5.6.2 Simplified heuristic function (h) calculation

Every time a node is open (steps 21-26), it has an associated closest target that is used
to calculate its h value (as demonstrated in steps 22 and 23). Consider the scenario where
a node p, with associated closest target ct, is being expanded and is opening its neighbors
n. We propose that, instead of looking at all of the targets, only ct be checked. The value
f ′n denotes the f function of node n forcing it to point at ct without measuring if ct is
actually the closest target from n. Consider two possibilities: f ′n = fp and f ′n 6= fp.
Theorem 2 explores the first possibility.

Theorem 2. If f’n = fp , then fn = fp with the same ct.

Proof. 1. f ′n = fp

2. f ′p ≤ fp (monotone property)

136

3. f ′n ≤ fn (combination of 1 and 2)

4. f ′n ≥ fn (this step is a requirement of A* - it must choose the target that leads to
smaller f).

5. fn = fp (combination of 3 and 4)

6. The target for f ′n can be used.

Considering that f ′n 6= fp, the associated target ct for ni must be recalculated because
it might have changed. Since the fn will never be smaller than fp this calculation could be
postponed until the situation that there are no more nodes in the open list with the current
value of f . This mechanism is implemented as follows. An auxiliary list of open nodes
is created, where no f value is computed. The A* search does not look at this structure
unless the current f value changes. In this case, the auxiliary open list is flushed and an
open list is built afresh.

5.6.3 Specialized Open List

The open list data structure must be a priority queue sorted by f (v), cs(v) and b(v)
respectively. The insertion and removal operations in a standard STL priority queue im-
plemented as a binary heap take O(logn) time. While this is not a strong performance
limitation by itself, it demands any open node v to have calculated f (v), cs(v) and b(v)
values. In our algorithm, we want to postpone the calculation of b(v) to expansion time
(see section 5.6.4), for it is more expensive. Therefore, the binary heap turns out not to be
the best data structure. We propose a specialized open list supported by theorems 3 and
4, which can be classified as a bounded height priority queue, a structure similar to what
is used in bucket sorting.

Theorem 3. During an A* search (with a single source node) search, the difference of the
smallest f to the largest f in the open list at all times is restricted to twice the maximum
cost in the graph.

Proof. Consider the initial situation where the only open node is the source node s with
fs. After it is expanded, neighbors n are open and inserted in the open list. The one
with largest f will cost fs + ∆g + ∆h where ∆g is the highest cost edge connected to s
that points in the opposite direction of the target ct. In the worst case, ∆h = ∆g by the
admissibility property and ∆g is the highest cost in the graph (HighestCost). In this case,
the f range in the open list is given by fs+2×HighestCost−fs = 2×HighestCost. As
the search advances, the situation will be repeated for the expanded nodes p that follow.
While p has fp = fs the worst case f will be given by the same equation fp + 2 ×
HighestCost. When a node k with a higher value for fk is expanded, the largest f will
be given by fk + 2×HighestCost, but the range is still given by 2×HighestCost since
the smallest f in the open list is now fk.

Theorem 4. Given multiple sources, the f range is given by the maximum between the f
range of the initially open nodes and 2×HighestCost.

According to the monotone property, the minimum f value f min is given by the first
node expanded in the search. Based on the maximum range for the f function (fr) from
theorems 3 and 4, we implement a circular array of fr positions, indexed by (f - f min) mod

137

(fr+1). At each node, there is another array indexed by cs and finally, at each node of
this two dimensional array there is a linked list of references to nodes. This infrastructure
provides constant time insertion. On access or removal the array must be traversed until a
non-empty list is found. The time complexity of such operations will be O(fr × csr) in
the worst case and O(1) on average.

At the expand procedure, a linked list is located for the current value of f and cs. If
this list contains only one node it is returned to A*Mult. When the list contains two or
more nodes, the biasing technique is applied to decide which should be expanded first.
The advantages of such a structure is that the biasing point and b(v) values are computed
only if necessary, e.g. if A* reached both nodes and must decide which one to expand.

5.6.4 Biasing Implementation

In order to efficiently implement biasing, we need a mechanism to calculate both
target excluding criteria efficiently. The first criterion is to exclude nodes that are behind
the source or the target. For t candidate targets, it can be performed in O(t) time. The
second criterion is to exclude nodes that are closer to the existing tree than to the routing
bounding box. Considering that the tree has n nodes, this test would cost O(nt) time.
However, the distance to the tree can be pre-computed by the A* Mult algorithm. In the
step 3 of the algorithm we calculate the distance from every node in the tree to every
target. This computation can be stored to be used by the biasing technique dropping the
complexity to O(t).

5.7 Experimental Results

The experimental results are divided into the following sections:

• wire length experiments: to compare trees that AMAZE generates when optimizing
WL alone to the optimal topologies, to heuristics for Steiner trees construction and
to maze routers.

• delay experiments: to compare the trees generated by the AMAZE critical sink
approach and AMAZE critical arborescence approach (path length factor is set to
1) to heuristics like AHHK (ALPERT, C. et al, 1995) and P-Trees (LILLIS, J. et al,
1996).

• wire length versus delay trade-off analysis.

• analysis of the impact of blockages on the generated topologies.

On all subsections we applied randomly generated trees since we understand it, sta-
tistically, covers all possible patters. Placed circuits may exhibit an uneven distribution
of the patters that is sometimes consequence of that particular circuit or placement algo-
rithm.

5.7.1 Steiner Wire Length Experiments

Initially we verified the wire length of our trees disregarding delay optimization. We
compared AMAZE to three other algorithms: 1) the GeoSteiner software (ZACHARI-
ASEN, 1999) that finds the optimal Steiner tree in an acceptable time; 2) the Labyrinth

138

Table 5.2: Wire length comparison of AMAZE with optimal trees (GeoSteiners) and other
heuristics

Alg. #nodes: 8 14 20 26 49 100
GeoSteiners Wirelength 81.68 197.61 337.13 496.52 1289.23 3751.65

CPU (s) 0.01 0.02 0.05 0.29 0.16 0.92
AMAZE WL Wirelength 101.60% 101.80% 102.10% 102.20% 102.70% 102.40%

CPU (s) 0 0 0.02 0.01 0.06 0.4
Labyrinth Wirelength 111.10% 111.10% 111.70% 112.40% 112.60% ——

CPU (s) 0.01 0.04 0.08 0.16 0.55 ——-
AHHK (c=0) Wirelength 101.30% 102.60% 102.40% 102.20% 102.60% 102.60%

CPU (s) 0.01 0.01 0.01 0.02 0.07 0.53

maze router (KASTNER; SARRAFZADEH, 2005); 3) the AHHK algorithm (ALPERT,
C. et al, 1995) configured for best wire length.

Table 5.2 presents the average results for 30 randomly generated trees ranging from
8 nodes to 100 nodes. All values are normalized to the GeoSteiner solutions (optimal
trees). In summary, we can observe that AMAZE generates near optimal trees (within
2% in average) while run time is even better than the AHHK heuristic. We can also
observe that Labyrinth could not find good trees and requires significant more run time.
The case with 100 nodes in a tree could not finish because of memory requirements. Such
a result enforces the importance of the techniques described in this thesis to the routing
community.

5.7.2 Steiner Delay Experiments

We have conducted experiments with randomly generated nets, varying the numbers
of total sinks (nt) and critical sinks (nk). For each (nt , nk) pair we averaged the results
of 100 randomly generated nets. We compared three configurations of our algorithm to
the P-Trees (LILLIS, J. et al, 1996) and to a special version of AHHK (ALPERT, C.
et al, 1997). The first configuration (AMAZE WL) is set to minimize WL only. As
demonstrated in the previous section, our trees are close to optimal in terms of WL. The
second and the third configuration (AMAZE) are set to demonstrate the effectiveness of
the sharing factor while fixing the path length factor to 0 and 1 respectivelly.

In these tests we used our own implementation of the AHHK algorithm, configured to
use 0, 0.25, 0.5, 0.75 and 1 as the control factor, as suggested in (ALPERT, C. et al, 1997).
When implementing the edge overlapping procedure, however, we selected a method that
results in less shared wires, as it produced tress with smaller delays. Therefore, this
implementation, called DAHHK from now on, has better delay results and yields to higher
wire lengths when compared to the results obtained from (ALPERT, C. et al, 2006).

The P-Trees are configured to have required arrival times of 0 ps in the critical sinks,
while the remaining sinks have no timing requirements, and are generated from the
executable provided by the authors.

All these algorithms enable the user to choose the best tree considering the wire
length and delay trade-off. In all cases, we pick the best delay configuration, disregarding
wire length. We claim that the most critical nets of the circuit must have minimum
possible delay, and congestion will not be strongly affected since these nets represent a
small portion of the wires.

139

Table 5.3: Delay Comparison of AMAZE to DAHHK and P-Trees in a (300 µm × 300
µm) area

Alg #nodes 3 5 7 9 11
#critical 1 all 1 all 1 3 5 1 3 5 1 3 5

AMAZE WL (mm) 98 98 447 447 565 565 565 666 666 666 741 741 741
WL Delay (ps) 45 54 85 109 120 161 173 165 222 235 194 260 274

AMAZE WL (mm) 391 392 589 788 735 1078 1218 841 1280 1407 919 1320 1465
plf = 0 Delay (ps) 30 40 32 49 34 50 59 33 52 66 32 51 69
AMAZE WL (mm) 391 391 589 786 735 1059 1200 841 1287 1400 919 1305 1454
plf = 1 Delay (ps) 30 40 32 48 34 49 57 33 51 64 32 51 67
DAHHK WL (mm) 297 297 538 540 784 801 802 971 1019 1025 1202 1232 1234

Delay (ps) 45 53 53 76 56 78 87 55 81 89 55 76 87
P-Trees WL (mm) 391 391 642 730 863 1011 1051 1104 1262 1281 1314 1459 1504

Delay (ps) 30 40 37 48 41 53 56 45 57 60 46 57 60
AMAZE WL -32% -32% -9% -49% 6% -32% -50% 13% -26% -37% 24% -6% -18%

vs DAHHK Delay 32% 26% 38% 39% 40% 37% 34% 40% 36% 28% 42% 32% 22%
AMAZE WL 0% 0% 8% -8% 15% -5% -14% 24% -2% -9% 30% 11% 3%

vs P-Trees Delay 0% 0% 14% 1% 19% 8% -2% 27% 11% -7% 30% 11% -12%

In our experiments we have used wire resistance and capacitance values from an
actual fabrication line and source resistance and sink capacitance values from libraries
currently used in industrial designs. For the source resistance we chose a strong cell,
since it will be driving a critical net. This is, in fact, a favorable scenario for the AMAZE
algorithm. By increasing the driver resistance by 30× the AMAZE improvement over
DAHHK went down by approximately 1-8% (proportional to the size of the tree) while
the improvement over P-Trees went down by approximately 0-4%. With this increased
driver resistance, the gate delay (driver resistance times total capacitance) was roughly
around 10-25% of the whole delay. In order to compute the Elmore delay, we used a 3Π
RC circuit to model the wires. The validity of the data obtained from the delay model
was confirmed by a set of electrical simulations performed on sample trees.

Tables 5.3 and 5.4 report the experimental results. On table 5.3 the trees where ran-
domly generated in a window of 300 µ m× 300 µ m. On table 5.4 the window is reduced
for 100 µ m× 100 µ m while we excluded 5 critical pins configurations. Additionally, on
table 5.4 only AMAZE with path length factor set to 1 is used.

The following facts can be observed from Table 5.3:

• The AMAZE best setting for delay is AMAZE with path length factor (plf) 1.

• AMAZE scales very well with the addition of a non-critical sink. Note that the
delay of configurations with one critical sink is always close to 30ps.

• AMAZE improvement is better (in delay) for cases with 1 critical sink. It does not
scale well with the addition of other critical sinks. It delivers good results compared
to P-Trees and DAHHK with up to 3 critical sinks.

• AMAZE delay is consistently better than DAHHK (ranging from 26% to 42% in
average).

• AMAZE delay for 1 or 3 critical sinks is consistently better than P-Trees (ranging
from 1% to 30% in average).

• Overall AMAZE does better on large trees.

On table 5.4 we can observe similar advantages of AMAZE to P-Trees and DAHHK
algorithms.

140

Table 5.4: Delay Comparison of AMAZE to DAHHK and P-Trees in a (100 µm × 100
µm) area

Alg # nodes 3 5 7 9 11
critical 1 3 1 3 1 3 1 3 1 3

AMAZE WL (mm) 98 98 152 152 188 188 221 222 244 244
WL Delay (ps) 14 16 26 34 39 50 48 68 67 91

AMAZE WL (mm) 126 125 200 275 243 344 276 395 313 441
plf = 1 Delay (ps) 10 12 10 15 11 15 10 16 11 18

DAHHK WL (mm) 98 98 184 186 255 260 330 345 414 432
Delay (ps) 14 16 17 24 18 25 16 25 19 27

P-Trees WL (mm) 125 125 223 247 311 344 382 435 490 540
Delay (ps) 10 12 12 15 13 16 13 17 14 18

AMAZE WL (mm) -28% -28% -9% -48% 5% -32% 16% -14% 24% -2%
vs DAHHK Delay (ps) 30% 26% 37% 37% 40% 37% 40% 37% 42% 33%

AMAZE WL (mm) -1% 0% 10% -11% 22% 0% 28% 9% 36% 18%
vs P-Trees Delay (ps) 0% 0% 11% 3% 18% 5% 26% 8% 20% -2%

598 um
24 ps

Net
Driver

Critical
Sinks

(a)

532 um
46 ps

Net
Driver

(b)

760 um
30 ps

Net
Driver

(c)

Overlaping
WiresAMAZE AHHK P-Trees

Figure 5.13: The best tree for delay of (a) AMAZE, (b) DAHHK and (c) P-Trees.

141

Figure 5.13 compares nets produced by the 3 algorithms. We observe that, in the
AMAZE algorithm, the path to the critical sinks has minimum length and minimum
sharing, while the rest of the tree is optimized for wire length. The best effort of the
DAHHK algorithm found the minimum path length to all sinks (arborescence), however
it did not help much for the delay of the critical sinks, since the path is fully shared by
both sinks. For the P-Trees algorithm, among 35 different topologies evaluated, the one
that was best for minimizing delay to critical sinks have separated wires to the critical
sinks. The P-Trees’s drawback that impacted the delay is the fact that the overall wire
length is too large (affecting the product of driver resistance per total capacitance).
Another drawback is the generation of overlapped wires, that need to be somehow
resolved in actual routing.

5.7.3 Steiner Trade-off analysis

We provide a comparison of the wire length and delay trade-off produced by the three
studied algorithms (ours, DAHHK and P-Trees) in Figure 5.14. The delay and wire length
ranges are average numbers for 7 pin nets with one critical sink. The best delay generally
leads to the worst wire length (wl). The algorithms will trade-off wl for delay in this
range.

30

190

110

delay
(ps)

AMAZE P-Trees AHHK

7 nodes
1 critical

7 nodes
3 critical

560

1040

800

WL
(um)

7 nodes
1 critical

7 nodes
3 critical

Figure 5.14: Delay and wire length range of the studied algorithms. Within this range you
can trade WL for delay. The worst case wire length leads to best delay vice-versa.

The following facts can be observed from Figure 5.14.

• In the case of one critical sink, AMAZE worst case wire length is better than the
other studied algorithms, while delay obtained is the best.

• AMAZE and P-Trees have a wider range to trade-off wire length and delay, since
they can control the amount of sharing more effectively.

• The addition of a critical sink increases significantly the trade-off range, since extra
wire is inserted to isolate the wire.

142

5.7.4 Blockage analysis

Since AMAZE is a maze router it naturally handles blockages. As a potential problem,
we observe that our critical wire isolation approach (sharing factor) will be less effective
if a blockage is in the middle of the way. In such case, AMAZE will select the possibility
with minimum length and this might lead to a worse topology of the overall tree since the
wires will not be shared. We enforce that AMAZE should be executed with varied sharing
factors (path length factor can be set to 1) to avoid extremely long wires.

wl: 374
delay: 20.5 ps

(a)

wl: 478
delay: 25.4 ps

(b)

wl: 370
delay: 20.5 ps

(c)

wl: 496
delay: 20.6 ps

(d)

overlapping wire

Figure 5.15: Example of blockage handling with both AMAZE and P-Trees; (a) and (b)
refer to P-Trees solution without and with a blockage respectivelly; (c) and (d) refer to
the AMAZE.

We compared our algorithm to the P-Trees. Since DAHHK trees cannot handle block-
age directly we left it out of the comparison. Our experimental setup was as follows: We
generated trees ranging from 5 to 9 pins, where 1 to 3 of the sinks were critical. For
each configuration we generate 100 trees randomly with one blockage. Given the Hannan
grid of the tree, sliced horizontally and vertically in the Hannan points, the blockage is
constrained to interrupt at least one of the slices. After that, we run the AMAZE (with
plf = 1) and P-Trees algorithms for each of the trees picking the best tree for delay to
the critical sinks. We then compare the obtained trees with and without the blockage. If
the solution of both algorithms are identical to the non-blockage version, we discard the

143

Table 5.5: Steiner delay comparison with blockages between AMAZE and P-Trees

Alg # nodes 5 7 9
critical 1 2 1 2 1 2

AMAZE pfl = 1 WL (µm) 595 709 752 935 851 1024
no block Delay (ps) 33 39 35 43 41 53

AMAZE pfl = 1 WL (µm) 646 751 774 962 870 1047
with block Delay (ps) 36 43 36 44 43 53

P-Trees WL (µm) 672 692 904 1036 1163 1261
no block Delay (ps) 36 43 43 53 45 54
P-Trees WL (µm) 735 733 958 1046 1175 1274

with block Delay (ps) 38 46 45 53 48 55
AMAZE WL (µm) -8.5% -5.7% -3.0% -2.7% -2.1% -2.2%

Degradation Delay (ps) 8.5% 10.2% -3.1% -3.6% -0.5% -4.0%
P-Trees WL (µm) -9.3% -5.95% -6.0% -1.0% -1.0% -0.9%

Degradation Delay (ps) -5.2% -6.8% -6.5% -1.06% -5.49% -3.13%
Impr. over WL (µm) 12.1% -2.37% 19.1% 8.0% 25.96% 17.82%

P-Trees Delay (ps) 6.0% 5.8% 20.4% 16.6% 31.4% 21.91%

tree from the experiment set. We observed that half of the generated trees fall into this
criteria.

Table 5.5 presents all the experimental results where the following facts can be ob-
served: (1) AMAZE is consistently better than P-Trees in average for all tested configu-
rations, from 5% to 32% in delay. (2) Besides the better delay of critical sinks, AMAZE
could deliver better wirelength up to 26%. (3) Both algorithms suffer from a degradation
for the blockage insertion. AMAZE degrades less in the cases with one critical sink and
more than 5 pins.

Finally we present an example comparing the same trees with AMAZE and P-Trees in
figure 5.15. In this example, the non-blocked trees are practically the same (figure 5.15.a
and 5.15.c) except for a small piece of wire that is not enough to increase the delay to
the critical sink. In the presence of the blockage, AMAZE simply made a minimal detour
while the P-Trees ended up adding more capacitance to the critical path (note that a part
of the path from the driver is composed of overlapping wires, but not all of it).

To conclude with, we can observe that AMAZE has some important features that help
in the blockage handling: (1) The critical sinks are routed first. This fact prevents that
blockage detours made by wires to non-critical sinks eventually change the topology of
the critical connection. This feature is not present in the P-Trees, as show in the graphical
example of figure 5.15.a and 5.15.b. (2) Each sink is routed separately, isolating the detour
to the blocked branch only; (3) Even in an extreme case (a very long detour is needed),
AMAZE will not change the strategy of isolating the critical wire. It might happen thought
that wirelength increases too much. In these cases, the solution is to relax the isolation of
critical wires by playing with the sharing factor.

5.8 Application to Timing Driven Routing

The techniques presented in this thesis called sharing factor, path length factor and
biasing provide means of controlling, respectively, the amount of sharing of critical wires,

144

path length of critical wires and overall wire length. By understanding the impact of those
parameters to the delay of critical elements in a circuit and playing with them it is possible
to obtain a variety of tree topologies. For instance, an arborecence can be built simply by
setting all sinks to critical and the path length factor to 1. A star tree can be built using
the sharing factor 0. All intermediate values provide topologies that trade-off sharing of
critical wires, path length and wire length in such a way that an appropriate topology is
found.

In our experiments, we target at obtaining a path with minimum delay. For that, our
best setting is to fix the path length factor to one (minimum path length) and vary the
sharing factor from 0 to 1 in steps of 0.25. This way, 5 different topologies are generated
and we simply pick the best for delay.

The algorithm is also flexible to handle other applications. Arborecences can be gen-
erated by setting all sinks as critical and the path length factor to 1. By playing with
intermediate values of this factor and providing multiple levels of criticality (as more de-
tailed in algorithm 10), delays to less critical sinks can be improved. This methodology
can be applied to obtain the best tree that satisfies a certain slack.

As regarding speed, our algorithm also provides means of obtaining very fast routing
combining existing techniques such as heuristic search and Hannan grid with some new
ones such as an improved h function that predicts vias, an improved data structure for the
open nodes with constant time insertion and log time access, an auxiliary openlist to delay
computation of f function for some expensive cases, and a method for fast expansion of
nodes in the critical path. To evaluate run time, we performed 415 AMAZE runs on
5, 7, 9 and 15 pin nets and achieved respectively 0.61s, 0.94s, 1.24s and 2.45s. We
also performed the same experiment inserting one random blockage as described in the
previous section obtaining, respectively, 0.69s, 1.01s, 1.35s and 2.7s. There is a small
degradation with the blockage since the heuristic based on manhattan distance will not
be exact in some cases, demanding some more nodes to be expanded in order to assure
the minimal path. The hardware platform used was a Mac Dual G5 with 1GB of RAM.
Due to the speed of our results, we conclude that AMAZE can be used for higher level
estimation such as placement and for routing as well.

5.9 AMAZE for 3D circuits

AMAZE, as a flexible routing algorithm, can be applicable to the routing of 3D cir-
cuits. We leave the experiments as well as the research for the advantages and contribu-
tions it could bring to the 3D routing community as future work. Figure 5.16 illustrates an
hypothetical application of the algorithm in a situation where all critical connections re-
main on the same tier. Note that on this situation AMAZE will provide easily the isolation
of the critical connections. Additionally, the cost of wires on the Z axis can be modeled
accordingly; note that the addition of extra costs will not harm AMAZE run time since
they can be incorporated in the h function.

145

3D-Via

Figure 5.16: AMAZE algorithm applied to 3D Routing.

146

147

6 CONCLUDING REMARKS

It is well known that the connections of a circuit is a limiting factor for timing, power
and area of the circuit. This work presented methods that are applicable for wire length
reduction of existing and future designs.

6.1 3D Placement

A 3D Placement algorithm is presented. It is well known that 3D Placement is a
way to reduce wire lengths, but since this area is brand new it lacks research. There is
a considerable amount of issues to be solved by 3D Placement and some of them are
completely ignored by a large amount of the existing literature. This thesis addressed
some of 3D-Via related issues in a complete placement flow called Z-Place.

By analyzing the available technologies for 3D integration we observed that there
is a variety of 3D-Via pitches and lengths, which impacts cell placement significantly.
On the large pitch technologies, the appropriate methodology is to minimize the 3D-
Vias, while on small pitches there is room to trade 3D-Vias for wire length. For these
reasons, we concluded that the cell placer must be adaptable to the scenario provided by
the technology in order to take full advantage of it.

Consider the case of large pitch 3D-Vias first. Z-Place has a novel technique for ma-
nipulating the I/O pins and placing them into 3D that favors the 3D-Via minimization. By
obtaining its logic distance with BFS searches, Z-Place can improve a min-cut partition
of the netlist and consequently obtain less 3D-Vias. This improvement comes with the
cost of CPU time.

Considering the case of small pitch 3D-Vias, Z-Place uses the I/O pins distribution
as a starting point to its Quadratic Placement engine that is a very scalable and largely
used algorithm. The global placement engine optimizes 3D wire length, which considers
vertical costs as well. While wire length optimization can introduce a large number of
3D-Vias, our algorithm keeps track of 3D-Via count as well, considering that some kinds
of 3D-Vias consume resources differently.

More algorithms are also proposed for the Z-Place flow. A 3D-Via placement algo-
rithm places 3D-Vias such that they do not overlap with each other. The new algorithm has
very good speed and low wire length overhead. Compared to an existing ILP approach, it
achieves a similar quality with 2 orders of magnitude advantage on run time.

We also proposed a technique to address timing. The idea is to keep cells of a same
critical path on a same tier. In order to do that, an artificial pin connecting all cells in a
critical path is inserted in the netlist. The connection has a high weight for the Z axis in
contrast with a low (or zero) weight for X or Y . Experimental results on a benchmark set
of 14 circuits placed into 2,3 and 4 tiers demonstrated the effectiveness of the approach by

148

reducing the number of critical 3D-Vias from several hundreds to zero in all benchmarks.
The total wire length and number of 3D-Vias were only slightly affected.

Overall, the 3D Placement led to the following conclusions:

• In average there is a improvement in the order of 10% when adding one tier.

• On 2D, Fastplace and Z-Place have similar WL results.

• Compared to an existing algorithm, we have a small average advantage (2%); on
the other hand, the compared algorithm supports only 2 tiers face-to-face.

• The 2 tier technology have the best configuration considering cost and reliability; it
is able to provide at least 10% WL improvement.

In general, the experimental results demonstrate a trade-off between WL and cost of
the circuit, since the addition of more tiers improve WL but introduce reliability problems
and increase the cost. If one is able to pay the price to improve performance, a 3D solution
is a simple and effective choice.

6.2 Routing

We addressed the application of several techniques in a path search based algorithm
called AMAZE so that it becomes able to compete with state-of-the-art methods for build-
ing Steiner Trees. For delay, we have presented important properties of such trees under
the Elmore delay model. AMAZE has also the ability to trade-off wire length for delay,
minimizing the delay for critical sinks while reducing the overall wire length for the rest
of the tree. Our biasing technique is the key to achieve wl reduction by maximizing wire
sharing. On the other hand, repulsive biasing, path length and sharing factors were intro-
duced to isolate critical paths so that delay to the identified critical sinks is minimized.

We outperformed algorithms used in the industry and in the state-of-the-art academic
research, such as our implementation of AHHK (by 25%-40% in average) and P-Trees (by
1%-30% in average) (for P-Trees we downloaded the official binary). We also observed
that a wide range of topologies are available for the AMAZE algorithm, which is able to
find the appropriate tree according to the needs of the net being routed. On the blockage
analysis, we observed that AMAZE maintained a good behavior and outperformed P-
Trees from 5% to 32%. Congestion could also be incorporated in AMAZE algorithm
by providing costs to the routing graph. Cost functions should be carefully used since
they will eliminate critical ties that eventually happen during the A* search, affecting the
benefits obtained in this thesis by exploring those ties.

Novel properties of path search that can be used to obtain better run time were demon-
strated. Those properties include an open list with a bounded number of positions that can
be read in constant time. By cleverly combining those properties with heuristic search,
the routing algorithm can take great advantage of the heuristic estimator (behaving like a
direct DFS search) and have run times compatible with heuristic steiner tree algorithms
that are considered fast.

We believe that due to their speed and quality, our algorithms will find applications
both in obtaining wiring estimates that are required during early design like placement, as
well as during the actual routing. For example, applications such as global routing could
potentially benefit from the added flexibility and trade-off provided by our algorithm.
Designs dominated by a small number of highly critical paths could benefit greatly by
optimizing these paths for delay at the expense of WL in the rest of the design.

149

REFERENCES

3D ICs Industry Summary. Available at: <http://www.tezzaron.com>. Visited on: June
2007.

ABABEI, C. et al. Placement and Routing in 3D Integrated Circuits. Design and Test of
Computers, [S.l.], p.520–531, Nov.-Dec 2005.

ABABEI, C.; MOGAL, H.; BAZARGAN, K. Three-Dimensional Place and Route for
FPGAs. In: CONFERENCE ON ASIA SOUTH PACIFIC DESIGN AUTOMATION,
ASP-DAC, 2005. Proceedings. . . [S.l.]: IEEE Press, 2005.

AGNIHOTRI, A. R.; ONO, S.; MADDEN, P. H. Recursive bisection placement: feng
shui 5.0 implementation details. In: INTERNATIONAL SYMPOSIUM ON PHYSICAL
DESIGN, ISPD, 2005, San Francisco, CA, USA. Proceedings. . . New York: ACM Press,
2005. p.230–232.

ALPERT, C. et al. Prim-Dijkstra Tradeoffs for Improved Performance-Driven Routing
Tree Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, New York, v.14, p.890–896, 1995.

ALPERT, C. et al. Quadratic placement revisited. In: DESIGN AUTOMATION CON-
FERENCE, DAC, 1997. Proceedings. . . New York: ACM Press, 1997. p.752–757.

ALPERT, C. et al. Timing-driven Steiner trees are (practically) free. In: DESIGN AU-
TOMATION CONFERENCE, DAC, 2006, San Francisco, CA, USA. Proceedings. . .
New York: ACM Press, 2006. p.389–392.

BALAKRISHNAN, K. et al. Wire congestion and thermal aware 3D global placement. In:
ASIA SOUTH PACIFIC DESIGN AUTOMATION, ASP-DAC, 2005, Shanghai, China.
Proceedings. . . New York: ACM Press, 2005. p.1131–1134.

BANERJEE, K. et al. 3D-ICs: a novel chip design for improving deep submicrometer
interconnect performance and systems on-chip integration. Proceedings of IEEE, New
York, v.89, p.602–633, 2001.

BOESE, K. D.; KAHNG, A. B.; MCCOY, B. A. Near Optimal Critical Sink Routing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
New York, v.14, p.1417–1436, 1995.

BORAH, M.; OWENS, R. M.; IRWIN, M. J. A fast algorithm for minimizing the Elmore
delay to identified critical sinks. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, [S.l.], v.16, p.753–759, 1997.

150

BRENNER, U.; VYGEN, J. Legalizing a placement with minimum total movement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
New York, v.23, 2004.

CALDWELL, A. Personal conversation about using the information of previous searches
to improve delay of subsequent searches. 1997.

CALDWELL, A. E.; KAHNG, A. B.; MARKOV, I. L. Can recursive bisection alone pro-
duce routable placements? In: DESIGN AUTOMATION CONFERENCE, DAC, 2000,
Los Angeles, CA, USA. Proceedings. . . New York: ACM Press, 2000. p.477–482.

CHANG, C.; CONG, J. Multilevel Global Placement With Congestion Control. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, New
York, v.22, April 2003.

CHOU, Y.-C.; LIN, Y.-L. Effective Enforcement of Path-Delay Constraints in
Performance-Driven Placement. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, New York, v.21, p.15–21, 2002.

CONG, J. et al. Provably Good Performance Driven Routing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, New York, v.11, p.739–
752, 1992.

CONG, J.; KOH, C.-K.; MADDEN, P. Interconnect layout optimization under higher
order RLC model for MCM designs. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, New York, v.20, p.1455–1463, 2001.

CONG, J.; LEUNG, K.-S.; ZHOU, D. Performance-driven interconnect design based on
distributed RC delay model. In: DESIGN AUTOMATION CONFERENCE, DAC, 1993,
Dallas, Texas, USA. Proceedings. . . New York: ACM Press, 1993. p.606–611.

CONG, J.; WEI, J.; ZHANG, Y. A Thermal-Driven Floorplanning Algorithm for 3D ICs.
In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD,
2004, San Jose, CA, USA. Proceedings. . . [S.l.: s.n.], 2004.

CONG, J.; ZHANG, Y. Thermal via planning for 3-D ICs. In: INTERNATIONAL CON-
FERENCE ON COMPUTER-AIDED DESIGN, ICCAD, 2005, San Jose, CA. Proceed-
ings. . . Washington: IEEE Computer Society, 2005. p.745–752.

DAS, S.; CHANDRAKASAN, A.; REIF, R. Design tools for 3-D integrated circuits. In:
ASIA SOUTH PACIFIC DESIGN AUTOMATION, ASP-DAC, 2003, Kitakyushu, Japan.
Proceedings. . . New York: ACM Press, 2003. p.53–56.

DAS, S.; CHANDRAKASAN, A.; REIF, R. Calibration of Rent’s rule models for three-
dimensional integrated circuits. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, New York, v.12, p.359–366, 2004.

DAS, S.; CHANDRAKASAN, A.; REIF, R. Timing, energy, and thermal performance
of three-dimensional integrated circuits. In: GREAT LAKES SYMPOSIUM ON VLSI,
GLSVLSI, 2004, Boston, MA, USA. Proceedings. . . New York: ACM Press, 2004.
p.338–343.

151

DAS, S. et al. Technology, performance, and computer-aided design of three-dimensional
integrated circuits. In: INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN,
ISPD, 2004, Phoenix, Arizona, USA. Proceedings. . . New York: ACM Press, 2004.
p.108–115.

DAVIS, W. et al. Demystifying 3D ICs: the pros and cons of going vertical. Design and
Test of Computers, [S.l.], p.498–510, Nov.-Dec. 2005.

DENG, Y.; MALY, W. 2.5-Dimensional VLSI System Integration. IEEE Transactions
on Very Large Integration (VLSI) Systems, New York, v.13, p.668–677, June 2005.

DENG, Y.; MALY, W. P. Interconnect characteristics of 2.5-D system integration scheme.
In: INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD, 2001, Sonoma,
CA, USA. Proceedings. . . New York: ACM Press, 2001. p.171–175.

DUECK, G.; SCHEUER, T. Threshold Accepting: a general purpose optimization algo-
rithm appear superior to simulated annealing. Journal of Computational Physics, [S.l.],
p.161–175, 1990.

DUTT, S.; ARSLAN, H. Efficient timing-driven incremental routing for VLSI circuits
using DFS and localized slack-satisfaction computations. In: DESIGN, AUTOMATION
AND TEST IN EUROPE, DATE, 2006. Proceedings. . . [S.l.]: IEEE, 2006. p.768–773.

EISENMANN, H.; JOHANNES, F. M. Generic global placement and floorplanning. In:
DESIGN AUTOMATION CONFERENCE, DAC, 1998, San Francisco, CA, USA. Pro-
ceedings. . . New York: ACM Press, 1998. p.269–274.

ELMORE, W. C. The Transient Response of Damped Linear Network with Particular
Regard to Wideband Amplifiers. Journal of Applied Physics, [S.l.], v.19, p.55–63, 1948.

FLACH, G.; HENTSCHKE, R.; REIS, R. Algorithms for improvement of RotDL router.
In: SOUTH SYMPOSIUM ON MICROELECTRONICS, SIM, 2004. Proceedings. . .
Ijui: UNIJUI, 2004. p.65–70.

FORMAL Grammar Definition. Available at: <http://http://en.wikipedia.org/wiki/Formal_grammar/>.
Visited on: Jan. 2007.

GAREY, M. R.; JOHNSON, D. S. The Rectilinear Steiner Tree is NP-Complete. SIAM
Jour. on App. Math, [S.l.], v.23, p.826–834, 1977.

GAREY, M. R.; JOHNSON, D. S. Computers and Intractability. [S.l.]: W. H. Freeman,
1979.

GOPLEN, B.; SAPATNEKAR, S. Efficient Thermal Placement of Standard Cells in
3D ICs using a Force Directed Approach. In: INTERNATIONAL CONFERENCE
ON COMPUTER-AIDED DESIGN, ICCAD, 2003. Proceedings. . . Washington: IEEE
Computer Society, 2003. p.86.

GOPLEN, B.; SAPATNEKAR, S. Thermal via placement in 3D ICs. In: INTERNA-
TIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD, 2005, San Francisco, CA,
USA. Proceedings. . . New York: ACM Press, 2005. p.167–174.

152

GRIFFITH, J. et al. Closing the gap: near-optimal steiner trees in polynomial time. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, New
York, v.13, p.1351–1365, 1994.

GUPTA, S. et al. Techniques for Producing 3D ICs with High-Density Interconnect.
Available at: <http://www.tezzaron.com/>. Visited on: Aug. 2005.

HALL, K. M. An r-dimensional quadratic placement algorithm. Management Science,
[S.l.], v.17, p.219–229, 1970.

HANNAN, M. On Steiner Problem with Rectilinear Distance. SIAM Jour. on App.
Math, New York, v.30, p.255–265, 1992.

HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A Formal Basis for the Heuristic Determi-
nation of Minimum Cost paths. IEEE Transactions on System Science and Cybernet-
ics, [S.l.], v.SSC-4, p.100–107, 1968.

HEALY, M. et al. Multiobjective Microarchitectural Floorplanning for 2-D and 3-D ICs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
[S.l.], v.26, p.38–52, 2007.

HENTSCHKE, R. Algoritmos para o Posicionamento de Células em Circuitos VLSI.
2002. Dissertação (Mestrado em Ciência da Computação) — Instituto de Informática,
Universidade Federal do Rio Grande do Sul, Porto Alegre.

HENTSCHKE, R. et al. Quadratic placement for 3d circuits using z-cell shifting, 3d itera-
tive refinement and simulated annealing. In: INTEGRATED CIRCUITS AND SYSTEMS
DESIGN, SBCCI, 2006, Ouro Preto, MG, Brazil. Proceedings. . . New York: ACM Press,
2006. p.220–225.

HENTSCHKE, R. et al. 3D-Vias Aware Quadratic Placement for 3D VLSI Circuits. In:
IEEE COMPUTER SOCIETY ANUAL SYMPOSIUM ON VLSI, ISVLSI, 2007, Porto
Alegre, RS, Brazil. Proceedings. . . Los Alamitos: IEEE Computer Society, 2007. p.67–
72.

HENTSCHKE, R. et al. Maze routing steiner trees with effective critical sink optimiza-
tion. In: INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD, 2007,
Austin, Texas, USA. Proceedings. . . New York: ACM Press, 2007. p.135–142.

HENTSCHKE, R. F.; JOHANN, M.; REIS, R. A Study on the Performance of
Fast Initial Placement Algorithms. In: INTERNATIONAL CONFERENCE ON VERY
LARGE SCALE INTEGRATION, VLSI-SOC, 2003, Darmstadt, Germany. Proceed-
ings. . . Darmstadt: Technische Universitat Darmstadt, 2003. p.204–209.

HENTSCHKE, R. F.; REIS, R. Improving Simulated Annealing Placement by Applying
Random and Greedy Mixed Perturbations. In: SYMPOSIUM ON INTEGRATED CIR-
CUITS AND SYSTEMS DESIGN, SBCCI, 2003. Proceedings. . . Los Alamitos: IEEE
Computer Society, 2003. p.267–272.

HENTSCHKE, R. F.; REIS, R. Plic-Plac: a novel constructive algorithm for placement.
In: INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2003.
Proceedings. . . [S.l.]: IEEE, 2003. p.461–464.

153

HENTSCHKE, R.; JOHANN, M.; REIS, R. An Algorithm for I/O Partitioning Target-
ing 3D Circuits and Its Impact on 3D-Vias. In: INTERNATIONAL CONFERENCE
ON VERY LARGE SCALE INTEGRATION, VLSI-SOC, 2006, Nice, France. Proceed-
ings. . . [S.l.: s.n.], 2006.

HENTSCHKE, R.; REIS, R. A 3D-Via Legalization Algorithm for 3D VLSI Circuits and
its Impact on Wire Length. In: INTERNATIONAL SYMPOSIUM ON CIRCUITS AND
SYSTEMS, ISCAS, 2007. Proceedings. . . Los Alamitos: IEEE Computer Society, 2007.
p.2036–2039.

HONG, X. et al. Performance-driven Steiner tree algorithm for global routing. In: DE-
SIGN AUTOMATION CONFERENCE, DAC, 1993, Dallas, Texas, USA. Proceed-
ings. . . New York: ACM Press, 1993. p.177–181.

HOU, H.; HU, J.; SAPATNEKAR, S. Non-Hanan Routing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, New York, v.18, p.436–
444, 1999.

HU, B.; ZENG, Y.; MAREK-SADOWSKA, M. mFAR: fixed-points-addition-based vlsi
placement algorithm. In: INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN,
ISPD, 2005, San Francisco, CA, USA. Proceedings. . . New York: ACM Press, 2005.
p.239–241.

HUA, H. et al. Exploring compromises among timing, power and temperature in three-
dimensional integrated circuits. In: DESIGN AUTOMATION CONFERENCE, DAC,
2006, San Francisco, CA, USA. Proceedings. . . New York: ACM Press, 2006. p.997–
1002.

HWANG, C.; PEDRAM, M. Timing-driven placement based on monotone cell ordering
constraints. In: ASIA SOUTH PACIFIC DESIGN AUTOMATION, ASP-DAC, 2006,
Yokohama, Japan. Proceedings. . . New York: ACM Press, 2006. p.201–206.

ISPD04 - IBM Standard Cell Benckmarks with Pads. Available at:
<http://www.public.iastate.edu/∼nataraj/ISPD04_Bench.html>. Visited on: Jan. 2008.

JOHANN, M.; REIS, R. Net by net routing with a new path search algorithm. In: SYM-
POSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 2000,
Manaus. Proceedings. . . Los Alamitos: IEEE Computer Society, 2000. p.144–149.

KAHNG, A. B.; REDA, S.; WANG, Q. APlace: a general analytic placement framework.
In: INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD, 2005, San Fran-
cisco, CA, USA. Proceedings. . . New York: ACM Press, 2005. p.233–235.

KAHNG, A. B.; WANG, Q. An analytic placer for mixed-size placement and timing-
driven placement. In: INTERNATIONAL CONFERENCE ON COMPUTER AIDED
DESIGN, ICCAD, 2004. Proceedings. . . [S.l.: s.n.], 2004. p.565–572.

KARYPIS, G. et al. Multilevel Hypergraph Partitioning: applications in vlsi domain.
IEEE Transactions on Very Large Integration (VLSI) Systems, New York, v.7, p.69–
79, March 1999.

KASTNER, R.; SARRAFZADEH, M. Labyrinth. Available at
<http://www.ece.ucsb.edu/∼kastner/labyrinth>. Visited on: Jan. 2005.

154

KAYA, I. et al. Wirelength Reduction Using 3-D Physical Design. In: INTERNATIONAL
WORKSHOP ON INTEGRATED CIRCUIT AND SYSTEM DESIGN - POWER AND
TIMING MODELING, OPTIMIZATION AND SIMULATION, PATMOS, 2004, San-
torini, Greece. Proceedings. . . [S.l.: s.n.], 2004.

KHANG, A.; ROBINS, G. On Optimal Interconnects for VLSI. Boston, MA: Kluwer
Academic, 1995.

KHATKHATE, A. et al. Recursive bisection based mixed block placement. In: INTER-
NATIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD, 2004, Phoenix, Arizona,
USA. Proceedings. . . New York: ACM Press, 2004. p.84–89.

KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization by Simulated An-
nealing. Science, [S.l.], v.220, n.4598, p.671–680, 1983.

KONG, T. T. A novel net weighting algorithm for timing-driven placement. In: INTER-
NATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, ICCAD, 2002. Pro-
ceedings. . . Los Alamitos: IEEE Computer Society, 2002. p.172–176.

LAM, J.; DELOSME, J.-M. Performance of a new annealing schedule. In: DESIGN AU-
TOMATION CONFERENCE, DAC, 1988, Atlantic City, New Jersey, USA. Proceed-
ings. . . Los Alamitos: IEEE Computer Society Press, 1988. p.306–311.

LEE, C. An algorithm for path connections and its applications. IRE Transactions on
Electronics Computers, [S.l.], p.346–365, September 1961.

LI, Z. et al. Efficient thermal-oriented 3D floorplanning and thermal via planning for
two-stacked-die integration. ACM Trans. Des. Autom. Electron. Syst., [S.l.], v.11, n.2,
p.325–345, 2006.

LILLIS, J. et al. New performance driven routing techniques with explicit area/delay
tradeoff and simultaneous wire sizing. In: DESIGN AUTOMATION CONFERENCE,
DAC, 1996, Las Vegas, NV, USA. Proceedings. . . New York: ACM Press, 1996. p.395–
400.

LIM, S. K. Physical design for 3D system on package. Design and Test of Computers,
[S.l.], p.498–510, Nov.-Dec. 2005.

LIU, G. et al. 3D placement algorithm considering vertical channels and guided by 2D
placement solution. In: INTERNATIONAL CONFERENCE ON ASIC, ASICON, 2005.
Proceedings. . . [S.l.: s.n.], 2005. p.24–27.

LUO, T.; NEWMARK, D.; PAN, D. Z. A new LP based incremental timing driven place-
ment for high performance designs. In: DESIGN AUTOMATION CONFERENCE, DAC,
2006, San Francisco, CA, USA. Proceedings. . . New York: ACM Press, 2006. p.1115–
1120.

MANDOIU, I. I.; VAZIRANI, V. V.; GANLEY, J. L. A new heuristic for rectilinear
Steiner trees. In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DE-
SIGN, ICCAD, 1999, San Jose, CA, USA. Proceedings. . . Piscataway: IEEE Press,
1999. p.157–162.

155

MOORES Law: made real by intel innovation. Available at:
<http://www.intel.com/technology/silicon/mooreslaw/>. Visited on: Aug. 2005.

NAM, G. et al. The ISPD2005 placement contest and benchmark suite. In: INTERNA-
TIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD, 2005, San Francisco, CA,
USA. Proceedings. . . New York: ACM Press, 2005. p.216–220.

OBENAUS, S.; SZYMANSKI, T. Gravity: fast placement for 3-d vlsi. ACM Transa-
cions on Design Automation of Electronic Systems, New York, v.8, p.69–79,
March 1999.

OBERMEIER, B.; JOHANNES, F. M. Temperature-aware global placement. In: ASIA
SOUTH PACIFIC DESIGN AUTOMATION, ASP-DAC, 2004, Yokohama, Japan. Pro-
ceedings. . . Piscataway: IEEE Press, 2004. p.143–148.

OBERMEIER, B.; RANKE, H.; JOHANNES, F. M. Kraftwerk: a versatile placement
approach. In: INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD, 2005,
San Francisco, CA, USA. Proceedings. . . New York: ACM Press, 2005. p.242–244.

OGAWA, Y.; PEDRAM, M.; KUH, E. S. Timing-driven placement for general cell layout.
In: INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 1990.
Proceedings. . . [S.l.: s.n.], 1990. p.872–876.

PATTI, R. Three-dimensional integrated circuits and the future of system-on-chip designs.
Proceedings of IEEE, [S.l.], v.94, p.1214–1224, 2006.

PATTI, R. Personal Conversation Regarding Tezzaron Technology. 2006.

PRASITJUTRAKUL, S.; KUBITZ, W. J. A Timing-Driven Global Router for Custom
Chip Design. In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DE-
SIGN, ICCAD, 1990. Proceedings. . . [S.l.: s.n.], 1990. p.48–51.

RAHMAN, A.; REIF, R. System-level performance evaluation of three-dimensional inte-
grated circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
[S.l.], v.8, December 2000.

RAHMAN, A.; REIF, R. Thermal analysis of three-dimensional (3-D) integrated circuits
(ICs). In: INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE,
2001. Proceedings. . . [S.l.: s.n.], 2001. p.157–159.

RAO, S. et al. The rectilinear steiner arborescence problem. Algorithmica, [S.l.], v.7,
December 1992.

RIESS, B. M.; ETTELT, G. G. SPEED: fast and efficient timing driven placement. In:
INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 1995. Pro-
ceedings. . . [S.l.: s.n.], 1995. p.377–380.

ROY, J. et al. Capo: robust and scalable open-source min-cut floorplacer. In: INTER-
NATIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD, 2005, San Francisco, CA,
USA. Proceedings. . . New York: ACM Press, 2005. p.224–226.

S-W., H.; JAGANNATHAN, A.; LILLIS, J. Timing-driven maze routing. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, New York,
v.19, p.234–241, 2000.

156

SAIT, S.; YOUSSEF, H.; MALEH, A. Fuzzy Simulated Evolution for Power and Per-
formance Optimization Of VLSI Placement. In: INTERNATIONAL JOINT INNS-IEEE
CONFERENCE ON NEURAL NETWORKS, IJCNN, 2001. Proceedings. . . [S.l.: s.n.],
2001.

SANTOS, G. B. V. dos. Personal conversations regarding timing driven steiner tree
topologies. 2006.

SECHEN, C.; VICENTELLI, A. S. The Timberwolf Placement and routing package.
IEEE Journal of Solid State Circuits, [S.l.], v.SSC-20, April 1985.

SHERWANI, N. A. Algorithms for VLSI Physical Design Automation. Norwell, MA,
USA: Kluwer Academic Publishers, 1998.

SPINDLER, P.; JOHANNES, F. Fast and Robust Quadratic Placement Combined with
an Exact Linear Net Model. In: INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, ICCAD, 2006. Proceedings. . . [S.l.: s.n.], 2006.

SUNTHARALINGAM, V. et al. Megapixel CMOS image sensor fabricated in three-
dimensional integrated circuit technology. In: SOLID-STATE CIRCUITS CONFER-
ENCE, ISSCC, 2005. Proceedings. . . [S.l.]: IEEE, 2005. v.1, p.356–357.

SWARTZ, W.; SECHEN, C. Timing driven placement for large standard cell circuits.
In: DESIGN AUTOMATION CONFERENCE, DAC, 1995, San Francisco, CA, USA.
Proceedings. . . New York: ACM Press, 1995. p.211–215.

TAGHAVI, T.; YANG, X.; CHOI, B.-K. Dragon2005: large-scale mixed-size placement
tool. In: INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, ISPD, 2005, San
Francisco, CA, USA. Proceedings. . . New York: ACM Press, 2005. p.245–247.

TEZZARON Homepage. Available at: <http://www.tezzaron.com>. Visited on: Aug.
2005.

TSA, C.-H.; KANG, S.-M. Cell-level placement for improving substrate thermal distri-
bution. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, New York, v.19, February 2000.

VISWANATHAN, N.; PAN, M.; CHU, C. FastPlace 2.0: an efficient analytical placer for
mixed-mode designs. In: ASIA SOUTH PACIFIC DESIGN AUTOMATION, ASP-DAC,
2006, Yokohama, Japan. Proceedings. . . New York: ACM Press, 2006. p.195–200.

VISWANATHAN, N.; PAN, M.; CHU, C. C.-N. FastPlace: an analytical placer for
mixed-mode designs. In: INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN,
ISPD, 2005, San Francisco, CA, USA. Proceedings. . . New York: ACM Press, 2005.
p.221–223.

WONG, E.; LIM, S. K. 3D floorplanning with thermal vias. In: DESIGN, AUTOMA-
TION AND TEST IN EUROPE, DATE, 2006, Munich, Germany. Proceedings. . . Leu-
ven: European Design and Automation Association, 2006. p.878–883.

XIU, Z.; RUTENBAR, R. A. Timing-driven placement by grid-warping. In: DESIGN
AUTOMATION CONFERENCE, DAC, 2005, San Diego, CA, USA. Proceedings. . .
New York: ACM Press, 2005. p.585–591.

157

XU, J. et al. An Efficient Hierarchical Timing-Driven Steiner Tree Algorithm for Global
Routing. In: ASIA SOUTH PACIFIC DESIGN AUTOMATION, ASP-DAC, 2002. Pro-
ceedings. . . Washington: IEEE Computer Society, 2002. p.473.

YAN, H. et al. Via assignment algorithm for hierarchical 3D placement. In: INTER-
NATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS,
2005. Proceedings. . . [S.l.: s.n.], 2005. p.27–30.

YAN, T. et al. How does partitioning matter for 3D floorplanning? In: GREAT LAKES
SYMPOSIUM ON VLSI, GLSVLSI, 2006, Philadelphia, PA, USA. Proceedings. . . New
York: ACM Press, 2006. p.73–78.

YANG, X.; CHOI, B.-K.; SARRAFZADEH, M. Timing-driven placement using de-
sign hierarchy guided constraint generation. In: INTERNATIONAL CONFERENCE
ON COMPUTER-AIDED DESIGN, ICCAD, 2002, San Jose, CA. Proceedings. . . New
York: ACM Press, 2002. p.177–180.

YAO, B. et al. Revisiting floorplan representations. In: INTERNATIONAL SYMPO-
SIUM ON PHYSICAL DESIGN, ISPD, 2001, Sonoma, CA, USA. Proceedings. . . New
York: ACM Press, 2001. p.138–143.

YILDIZ, M. C.; MADDEN, P. H. Improved cut sequences for partitioning based place-
ment. In: DESIGN AUTOMATION CONFERENCE, DAC, 2001, Las Vegas, NV, USA.
Proceedings. . . New York: ACM Press, 2001. p.776–779.

ZACHARIASEN, M. Rectilinear Full Steiner Tree Generation. Networks, [S.l.], v.33,
p.125–133, 1999.

158

159

APPENDIX A ALGORITMOS PARA A REDUÇÃO DO
COMPRIMENTO DOS FIOS DE CIRCUITOS VLSI CON-
SIDERANDO CAMINHOS CRÍTICOS

A.1 Introdução

Um dos problemas mais importantes impostos pelas tecnologias recentes está rela-
cionado com os fios do circuito. Primeiro, considere o aumento do tamanho dos projetos
enquanto que o tamanho dos componentes do circuito está se tornando drásticamente
menor. Este cenário impõe redes de fios cada vez mais largas, densas e complexas. Se-
gundo, considere que o atraso dos componentes ativos reduziu mais rapidamente que o
atraso dos fios. Hoje em dia, a resistência dos fios é extremamente relevante, enquanto
que isto era ignorado no passado. Por estas razões, o atraso das conexões é responsável
por mais da metade do atraso do circuito como um todo. Terceiro, considere o processo
de fabricação e efeitos elétricos parasitas das tecnologias mais modernas, que basica-
mente introduzem inúmeras regras de projeto que devem ser respeitadas para manter o
circuito em funcionamento. Regularidade de conexões é cada vez mais difícil de obter
devido a topologia aleatória das redes em um circuito. Finalmente, considere o consumo
de potência, que é fortemente afetado pela capacitância dos nodos de um circuito. Os fios
largos criam grandes capacitâncias que são carregadas e descarregadas a cada transição
do sinal. Em conclusão, a qualidade de um circuito está fortemente ligada a complexidade
de conexões do mesmo.

Para reduzir os problemas relacionados à fiação do circuito, há um esforço de pesquisa
muito significativo para reduzir o comprimento dos fios. Fios mais curtos são mais rápi-
dos, dissipam menos potência e melhoram a roteabilidade e manufaturalidade. Entre as
técnicas propostas, o uso de algoritmos específicos é uma das maneiras mais efetivas.

Os vários estágios de um fluxo de CAD podem ser agrupados em quatro passos con-
secutivos: síntese de sistema, síntese de alto nível, síntese lógica e finalmente síntese
física. A síntese física, que é reponsável pela transição de uma descrição do circuito em
nível lógico para o leiaute é uma tarefa bastante complexa e sensível a complexidade da
fiação. Ela é composta de sub-tarefas como posicionamento das células e roteamento das
conexões. O leitor pode se referir a (SHERWANI, 1998) para obter mais informações
básicas sobre estas etapas.

A etapa de síntese física é diretamente responsável por lidar com problemas relaciona-
dos a conexões. Por esta razão, os algoritmos que a incorporam devem necessariamente
objetivar redução do tamanho das conexões. Apesar da existência de ótimas técnicas para
redução de fios neste nível, a constante evolução tecnológica exige que estes algoritmos
sejam atualizados regularmente. Particularmente, atraso e potência são problemas impor-

160

tantes nos projetos atuais que impactam significativamente as estapas de posicionamento
e roteamento. Análise de atraso e potência podem identificar componentes mais críticos
do circuito que deveriam receber atenção especial por algoritmos de síntese física e conse-
qüentemente tamanho de conexão mais curtos que a média. As metodologias conhecidas
como timing-driven e power-driven são exemplos encontrados encontradas na literatura
para posicionamento e roteamento dirigidos à atraso e potência.

A redução do tamanho dos componentes, que costumava ser uma importante ferra-
menta para melhorar o atraso e a dissipação de potência de circuitos, é hoje uma fonte
de novos problemas relacionados aos fios dos circuitos. Note que hoje em dia os compo-
nentes têm dimensões próximas a atômicas, o que sugere que novas alternativas devem
ser buscadas para melhorar o desempenho dos circuitos.

Recentemente, a tecnologia de circuitos 3D foi proposta. Esta tecnologia aparece
como uma possível solução para a estrutura de fios de um circuito. É esperado que arran-
jando os elementos de um circuito em 3D possa levar à fios mais curtos. De fato, trabal-
hos de pesquisa recentes como (DAS, S. et al, 2004), (ABABEI; MOGAL; BAZARGAN,
2005), (DAVIS, W. et al, 2005), (BANERJEE, K. et al, 2001) e muitos outros demon-
stram que circuitos 3D podem de fato levar a redução do tamanho dos fios. Também é
demonstrado que a melhora na fiação é proporcional ao tamanho do circuito (OBENAUS;
SZYMANSKI, 1999). Os trabalhos de (3D ICS INDUSTRY SUMMARY, 2005) e (TEZ-
ZARON HOMEPAGE, 2005) especificam o existente interesse da indústria e da academia
nesta tecnologia.

O fato de que projetos de microeletrônica possam ser realizados em 3D abre um
imenso espaço de pesquisa na área de ferramentas de CAD, principalmente no nível de
síntese física. Novos algoritmos devem ser providos para lidar com o arranjo 3D dos el-
ementos e tirar o máximo de benefício desta tecnologia enquanto consideram limitações
e restrições da mesma. Hoje em dia, a pesquisa neste campo ainda está no seu início.
Considere o problema de posicionamento 3D por exemplo. A riquesa e variedade de téc-
nicas que levaram a uma melhora expressiva dos algoritmos de posicionamento através
das décadas devem propiciar uma maturidade similar para a área de posicionamento 3D.

Esta tese objetiva o desenvolvimento de algoritmos para redução do tamanho dos fios
considerando elementos críticos. Ela considera o problema em duas perspectivas difer-
entes: posicionamento e roteamento. Em posicionamento a tese explora métodos para
realizar posicionamento de células em circuitos 3D considerando problemas relacionados
às conexões verticais (conhecidas como 3D-Vias) enquanto procura obter um tamanho
reduzido de conexões aproveitando o arranjo 3D dos elementos. Um volume significa-
tivo de novos métodos e contribuições são apresentados neste texto, sendo que foram
totalmente validados numa ferramenta de posicionamento chamada Z-Place. Para rotea-
mento, um algoritmo chamado AMAZE combina trabalhos já existentes e publicados
com novos métodos que são efetivos para produzir fios curtos e com baixo atraso para
elementos críticos. Enquanto o algoritmo AMAZE apresenta melhoras significativas em
um algoritmo largamente utilizado pela indústria de semi-condutores (Maze Routers), ele
produz árvores de roteamento com flexibilidade suficiente para serem usadas em outras
etapas da síntese, como estimativa de tamanho dos fios (Steiner tree), inserção de buffers
e roteamento global. Devido ao fato de se aplicar em qualquer domínio modelado por
um grafo, AMAZE pode ser usado em roteamento 3D necessitando apenas que haja uma
modelagem adequada da 3D-Via.

O texto está organizado como segue. O capítulo A.2 resume as tecnologias de circuitos
3D explicitando como aproveitar a tecnologia para gerar circuitos com fios mais curtos,

161

considerando técnicas já existentes na literatura. O capítulo A.3 apresenta a ferramenta
Z-Place bem como os algoritmos que a compoem, o que representa as contribuições deste
tes na área de posicionamento 3D. O capítulo A.4 apresenta as contribuições desta tese na
area de roteamento. Finalmente, as conclusões apresentam um resumo das contribuições
desta tese para a comunidade de CAD.

A.2 Circuitos 3D Como Um Novo Paradigma de Projeto

Um circuito 3D pode ser definido como um chip VLSI com camadas ativas empil-
hadas chamadas de tiers. A figura A.1 demonstra uma visão didática de um circuito 3D
composto por camadas ativas e níveis de metal. A comunicação entre duas camadas ad-
jacentes é dada por uma via especial chamada de 3D-Via.

Active Area (transistors)

Metal Layers

Active Area (transistors)

Active Area (transistors)

Metal Layers

Metal Layers

Figure A.1: Uma visão didática de um circuito 3D composto por camadas ativas e ca-
madas de metal

A.2.1 Dados de tecnologia de circuitos 3D

Esta sessão resume algums dados tecnológicos obtidos após uma pesquisa em artigos
publicados na literatura, especialmente em (DAVIS, W. et al, 2005), (PATTI, 2006a),
(SUNTHARALINGAM, V. et al, 2005), (DAS, S. et al, 2004) e (GUPTA, S. et al, 2005).
As 3D-Vias são caracterizadas de acordo com as seguintes características:

• A estratégia usada para integrar os tiers conectados por uma dada 3D-Via que pode
ser face-to-face, face-to-back ou back-to-back.

• A distância entre dois tiers adjacentes (chamada também de espaçamento entre
tiers).

• O espaçamento mínimo requirido para 3D-Vias.

• O fato de alguns tipos de 3D-Vias ocuparem área ativa e outros tipos não.

A figura A.2 exemplifica a tecnologia da empresa Tezzaron para circuitos 3D, que
apresenta 3D-Vias face-to-face e face-to-back.

Uma lista de 3D-Vias e suas características é dada na tabela A.1.
Em conclusão, podemos observar que existe uma variedade de requisitos de espaça-

mento, enquanto que algumas 3D-Vias ocupam area ativa.

162

3rd wafer
Super-Contact

metal 1
metal 2

metal n

......

1st wafer

2nd wafer

metal 1
metal 2

metal n

......

The Super-Contact serves
as a face-to-back connection of

the 3rd to the 2nd wafer

The first two wafers are
connected face-to-face

metal 1

metal n
......

metal 2

Super-Contact

back-side metal

back-side metal

I/O Pad

Figure A.2: Tecnologia da Tezzaron com Super-Contacts e conexão face-to-face.

A.2.2 Potenciais vantagens de circuitos 3D

Seja por análise analítica (BANERJEE, K. et al, 2001) (DAS; CHANDRAKASAN;
REIF, 2004a) (RAHMAN; REIF, 2000) (RAHMAN; REIF, 2001) ou experimentos práti-
cos (DAVIS, W. et al, 2005) (DAS, S. et al, 2004) (KAYA, I. et al, 2004) (ABABEI, C.
et al, 2005) (ABABEI; MOGAL; BAZARGAN, 2005), é sabido que circuitos 3D po-
dem apresentar vários benefícios, entre eles redução do tamanho dos fios mais longos,
redução do tamanho médio do fio, redução da potência dinâmica (principalmente dev-
ido a redução da rede de relógio - clock), redução do atraso e tamanho do chip, entre
outras. Todas estas vantagens potenciais devem ser exploradas por ferramentas de CAD
apropriadas, que devem considerar limitações existentes nos circuitos 3D. Entre as princi-
pais limitações destacam-se as seguintes. Inicialmente, questões térmicas devido à difícil
dissipação de calor dos tiers internos referenciaas em trabalhos como (GOPLEN; SAP-
ATNEKAR, 2005) (HUA, H. et al, 2006) (RAHMAN; REIF, 2001) (ABABEI, C. et al,
2005) (DAVIS, W. et al, 2005) (DAS; CHANDRAKASAN; REIF, 2004b) que apresen-
tam soluções e pesquisas neste tema. Secundariamente, problemas relacionados a yield.
Alguns autores, como (DAVIS, W. et al, 2005) classificam o yield como um dos principais

163

Table A.1: Resumo dos dados tecnologicos coletados para 3D-Vias.

3D-Via Estratégia Espaçamento Espaçamento Ocupa
Integração Tier 3D-Via Area Ativa

Tezzaron (Copper Pads) face-to-face 16-20 µm 2.4 µm no
Tezzaron (Projected) face-to-face 16-20 µm 1.46 µm no

Microbump face-to-face 16-20 µm 10-100 µm no
Contactless (Capacitive) face-to-face 16-20 µm 50-200 µm no

MIT (Copper/Tantalum Pads) face-to-face 16-20 µm 5 µm no
TSV face-to-face face-to-face 16-20 µm 0.5 µm no

Tezzaron Super-ViaTM face-to-back 15-20 µm 6.08 µm yes
Tezzaron Super-ContactTM face-to-back 11-15 µm < 4 µm yes

Microbump 3D Package face-to-back 11-15 µm 25-50 µm no
Contactless Inductive face-to-back 11-15 µm 50-150 µm yes

MITLL Through Via (SOI) face-to-back 9-12 µm 5 µm yes
Through Via (regular Bulk) face-to-back 11-15 µm 50 µm yes

Back-to-back 3D-Via back-to-back 6-8 µm 15 µm yes

problemas relacionados a circuitos 3D, enquanto que outros como (PATTI, 2006a) argu-
mentam que este problema não é tão grave e pode ser contornado de diversas maneiras.
Finalmente, mas não menos importante, os problemas relacionados às 3D-Vias. Muitos
autores, como (DAS; CHANDRAKASAN; REIF, 2004b) e (ABABEI, C. et al, 2005)
ignoram boa parte destes problemas. Curiosamente, o trabalho em (LIU, G. et al, 2005)
cita inclusive que é muito complexo fazer tratamento de Vias-3D no nível de posiciona-
mento. Por outro lado, desconsiderar que 3D-Vias podem ocupar área ativa e que também
são recursos escassos e caros de roteamento, pode significar que o circuito posicionado
não possa ser implementado. Então trata-se de um problema de importância significativa.
Desta forma, os seguintes problemas são destacados:

• Limitação na quantidade de 3D-Vias.

• Posicionamento e legalização de 3D-Vias.

• Posicionamento de células e 3D-Vias simultaneamente.

• Modelagem das características elétricas e topológicas das 3D-Vias.

• Melhoria de comprimento das conexões com introdução de 3D-Vias.

• Particionamento das células em tiers considerando 3D-Vias.

• Evitando 3D-Vias em determinadas conexões

A.2.2.1 Metodologias de projeto

Esta tese estuda basicamente três metodologias de projeto para circuitos 3D com re-
lação à granularidade da integração. Inicialmente considere a metodologia que apresenta
maior granularidade, chamada de tier level integration. Ela integra tiers de natureza dis-
tinta, projetados separadamente. Após, visando obter melhora no tamanho dos fios, o

164

circuito pode ser integrado mais fortemente, com o uso de blocos espalhados nos diver-
sos tiers (ip core level integration). Finalmente, pode-se considerar uma granularidade
pequena, chamada random logic level. Esta última apresenta maior potencialidade para
melhora de tamanho dos fios, porém é mais sucetível ao aumento de 3D-Vias, o que pode
gerar os problemas ja citados na sessão anterior. Em função de ter a maior potencialidade
de melhora, esta tese se baseia em integração no nível de lógica aleatória.

A.3 Z-Place: Algoritmos para posicionamento 3D

A.3.1 Introdução

Z-Place é uma ferramenta para posicionamento de circuitos 3D. Como primeiro ob-
jetivo, Z-Place procura obter o melhor comprimento de conexões sob certas restrições
relacionadas às 3D-Vias. Nas próximas sessões são apresentados algoritmos e o fluxo da
ferramenta.

A.3.1.1 Fluxo da ferramenta Z-Place

Z-Place executa as seguintes tarefas: tratamento dos pinos de entrada e saída (sessão
A.3.1.2), posicionamento global (section A.3.1.3), posicionamento detalhado e posiciona-
mento das 3D-Vias (sessão A.3.1.5). O posicionamento detalhado é basicamente um
processo de otimização baseado no algoritmo Threshold Accept (DUECK; SCHEUER,
1990) com aplicação de diversas técnicas para melhora de tempo de CPU, como janela-
mento por exemplo. O planejamento da quantidade de 3D-Vias entre dois tiers adjacentes
é executada no nível de posicionamento global. O tratamento de conexões críticas tam-
bém é feito no nível de posicionamento global, evitando o uso de 3D-Vias com elementos
críticos do circuito. Este método é descrito com mais detalhes na sessão A.3.1.4. A figura
A.3 apresenta uma ilustração do fluxo de posicionamento.

A.3.1.2 Tratamento dos pinos de E/S

O problema de particionamento e posicionamento de pinos de entrada e saída é
ilustrado na figura A.4. Para que o posicionamento global possa ter efeito é necessário
que haja pinos fixos ao redor da área de posicionamento. Com isto, o tratamento de pinos
de E/S deve prover pinos em todos os tiers de forma balanceada, como mostra a figura
A.4.

Um algoritmo para particionamento e posicionamento dos pinos de E/S é apresentado
em (HENTSCHKE; JOHANN; REIS, 2006). O método parte de um posicionamento
2D dos pinos ao redor da área de posicionamento e retorna uma representação 3D do
circuito composta de um conjunto de tiers e pinos posicionados ao redor. Como objetivo
secundário, o método procura servir como um bom ponto de partida para algoritmos de
posicionamento gerarem soluções com um reduzido número de 3D-Vias.

O algoritmo inicia fazendo um particionamento dos pinos. Este processo é realizado
em duas etapas. Primeiro são encontradas as distâncias lógicas entre cada par de pinos ao
longo das redes do circuito (figura A.5.(a)). Depois, o tamanho dos pinos é utilizado de
peso para a montagem de um grafo completo que contém somente os pinos de entrada e
saída (figura A.5.(b)).

Após obter um grafo completo de pinos, um algoritmo de particionamento divide o
grafo em 2 ou mais grupos, que são assinalados para um tier. Finalmente, os pinos de
entrada e saída são posicionados usando um mapeamento linear de sua posição original

165

I/O Pins Handling

Global Placement

Detailed Placement

3D-Via Placement

Netlist

2D Netlist

3D Placed
Netlist

(a)

(b)

(c)

(d)

Figure A.3: Fluxo de posicionamento proposto para circuitos 3D

166

Figure A.4: Migração (de 2D para 3D) de um circuito com pinos de E/S pré-posicionados

E F G H

A

B

C

D

1

2

3

4

5

Ld(A,G) = 1
Ld(A,H) = 5

A
P

H

G

(23)

(1)
(34)

(3)

(4)

(5)

(a) (b)

Figure A.5: Distância lógica entre pinos de entrada e saída (a) e uma parte do grafo
completo de pinos correspondente (b)

para uma área reduzida, mantendo assim a ordem original dos pinos.
Foram realizados experimentos que demonstraram a efetividade do método para obter

bom equilíbrio de pinos ao longo do circuito e, ao mesmo tempo, um reduzido número de
3D-Vias após realizar o particionamento das células. Observou-se que a informação da
distância lógica resume a informação global do circuito de forma bastante comprimida e
completa; por esta razão, o algoritmo de particionamento do grafo de pinos trata eficien-
temente o particionamento do netlist principalmente por se tratar de um grafo pequeno
em relação ao hiper-grafo do circuito.

A.3.1.3 Global Placement

O espaço de roteamento global é modelado em um cubo fatiado, conforme mostra a
figura A.6. Cada fatia representa um tier para posicionar células, enquanto que a área
entre eles, destinada para níveis de metal, pode ser utilizada temporariamente por células,

167

que devem migrar para uma posição válida em algum tier.

Invalid position on Z
Valid position on Z

Z

X

Y

(a) (b)

Figure A.6: Modelo de cubo fatiado com coordinadas inválidas e pinos de E/S em todos
os tiers.

A estratégia de integração entre tiers adjacentes influencia o processo de posiciona-
mento global das células. Uma das tarefas do posicionamento global é de distribuir as
células ao longo do espaço de posicionamento, o que inclui o particionamento de células
nos diversos tiers. Porém, alguns tipos de via (face-to-back e back-to-back) ocupam área
ativa e por isto a distribuição das células em tiers deve levar em conta este fato. A figura
A.7 ilustra o efeito da estratégia de integração no particionamento das células.

cells
cells

vias

(a) face-to-face (b) face-to-back

cells
vias

(c) back-to-back

Figure A.7: Estratégias de integração 3D e como elas impactam a distribuição da área:
(a) face-to-face and (b) face-to-back.

Outro fator de influência na distribuição vertical das células é o tamanho das 3D-
Vias. Note que, quanto maior a 3D-Via, maior será a ocupação de área ativa por 3D-Vias.
Porém, além disto, o algorítmo de posicionamento global do Z-Place controla as 3D-Vias
de acordo com uma quantidade máxima de 3D-Vias pré-estipulada. Esta quantidade é
calculada por uma relação entre a área disponível para Vias-3D e o tamanho de cada uma
das 3D-Vias.

O algoritmo de posicionamento global proposto é baseado em otimização quadrática
de comprimento dos fios. Esta algoritmo é largamente utilizado na literatura. Particu-
larmente, o núcleo do algoritmo do Z-Place possui características similares ao trabalho
(VISWANATHAN; PAN; CHU, 2005) utilizado em circuitos 2D. Em Z-Place, o algo-
ritmo Cell Shifting é extendido para 3D Cell Shifting, que possui uma função espe-
cial para calcular a coordenada z das células. Esta função chama-se Z-Cell Shifting

168

(HENTSCHKE, R. et al, 2006) e é ilustrada na figura A.8.(a). A metodologia Z-Cell
Shifting ordena as células pela sua coordenada z e obtém pontos de corte que consid-
eram tanto área de células quanto área ativa ocupada por 3D-Vias.

O algoritmo 3D Cell Shifting, ilustrado na figura A.8.(b), espalha as células nas
três dimensões ao mesmo tempo. Por esta razão, a otimização do comprimento dos fios é
uniforme. Quando as células estiverem razoavelmente espalhadas no espaço, o algoritmo
de refinamento iterativo é aplicado. Além de otimizar o comprimento dos fios e o espal-
hamento das células, como feito em (VISWANATHAN; PAN; CHU, 2005), o algoritmo
na ferramenta Z-Place controla a quantidade de 3D-Vias inserida para que repeite o limite
pré-estabelecido. Enquanto o limite é obedecido, o algoritmo permite a inserção de 3D-
Vias. Porém, quando o limite é desobedecido, o algoritmo é encorajado a retirar 3D-Vias
sempre que possível.

Z

X

Y

(b)

Artificial pin

tier n

tier n-1

5

4

5

2

3

3

2

2

threshold

2

(a)

Figure A.8: A metodologia Z-Cell Shifting (a) e o algoritmo 3D Cell Shifting (b).

Os resultados experimentais demonstraram que a manipulação do limite de 3D-Vias
influencia o comprimento dos fios. Note que este limite é calculado em função da área,
o que torna Z-Place adaptável a diversas tecnologias, melhorando o comprimento dos
fios até o limite imposto pelas mesmas. Foi estudado o efeito de adicionar mais tiers ao
circuito 3D contra soluções providas pela ferramenta FastPlace (VISWANATHAN; PAN;
CHU, 2005) e foi verificado que nossas melhores configurações produzem melhoras de
15% para 2 tiers, 20% para 3 tiers e finalmente 27% para 4 tiers em média.

A.3.1.4 Tratamento de caminhos críticos

3D-Vias podem ser vistas como elementos prejudiciais ao atraso e potência de uma
rede por dois aspectos. Primeiro, note que uma conexão inter-tier demanda que haja
um roteamento passando por todos os níveis de metal para que possa atingir a 3D-Via.
Segundo, as características elétricas (capacitância e resistência) destas 3D-Vias variam
bastante e podem ser bastante prejudiciais dependendo da tecnologia empregada. Por esta
razão, deseja-se encontrar um mecanismo que evite o uso de 3D-Via em determinadas
conexões escolhidas como críticas.

O mecanismo adotado é explicado na figura A.9. Para cada conjunto de células que
deve se manter no mesmo tier é inserido um pino artificial. No caso do cálculo de atraso,

169

faz sentido manter próximas as células pertencentes ao mesmo caminho crítico, pois não
haverá nenhuma 3D-Via ao longo do caminho. Cada pino artificial é conectado a todas as
células pertencentes ao seu grupo. Esta conexão é chamada de critical star. O peso em-
pregado nestas conexões é dado de forma que ela tenha um efeito pequeno na distribuição
horizontal das células, mas tenha um forte efeito para manter elas na mesma coordenada
z. Por isto, diferentemente de qualquer outra conexão do circuito, ela tem um peso forte
no eixo Z e um peso bastante baixo nos outros eixos.

critical paths

(a) Identify Critical Paths

(d) Add Critical Stars

(e) Configure the
Critical Stars
to have a very
strong weight

on the Z Axis and a
very weak

weight in X and Y.

w = 1000 on Z
w = 1 on X,Y

(f) Place the circuit with no 3D-Via
with a critical connection

(b) Undesired Placement:

Critical
3D-Via

Proposed Solution:

Problem:

Figure A.9: Uma ilustração do método proposto para evitar 3D-Vias em conexões críticas.

Foram realizados experimentos com um conjunto de benchmarks sintetizado pela fer-
ramenta Leonardo, destacando um grupo de 100 caminhos críticos. O conjunto forma um
total de 12 circuitos, mapeados para 2, 3 e 4 tiers, formando 36 combinações. Foi medido
a quantidade de 3D-Vias nos caminhos criticos, o comprimento total das conexões e o

170

número total de 3D-Vias. Após aplicar a técnica descrita acima, todas as combinações
(com a exceção de 2) cairam de várias centenas (entre 88 e 13351) para 0. O efeito
no comprimento total das conexões foi mínimo; em média apenas 0.03%. Este experi-
mento levou a conclusão de que o algoritmo aproveitou um grau de liberdade, existente
no posicionamento, de que várias soluções com mesmo tamanho de conexões possuem
diferentes configurações de Vias-3D. O efeito na quantidade total de 3D-Vias também foi
muito baixo: apenas 2% em média.

A.3.1.5 Posicionamento de 3D-Vias

Entre cada tier do circuito existe uma camada de 3D-Vias. A área ocupado por cada
3D-Via depende do tipo e da tecnologia para este nível específico de 3D-Vias. A etapa de
posicionamento global já garante que as 3D-Vias podem ser posicionadas no seu nível sem
que hajam sobreposições. Resta então encontrar estas posições de forma que o tamanho
das conexões seja minimamente afetado. Observe que uma 3D-Via pertence a uma rede de
células já posicionadas; qualquer posição dada para esta 3D-Via dentro da área delimitada
por células da rede não acrescenta nenhuma penalidade ao comprimento desta conexão.
Assim, o problema de posicionamento de 3D-Vias é definido para tentar manter todas as
3D-Vias dentro de regiões retangulares definidas pela rede que as pertence; caso não seja
possível, que a distância entre as 3D-Vias e a região destinada seja minimizada.

O algoritmo proposto, detalhado em (HENTSCHKE; REIS, 2007), baseia-se em um
algoritmo de legalização de células conhecido como Tetris (KHATKHATE, A. et al,
2004). O algoritmo é descrito graficamente na figura A.10. O primeiro passo é assi-
nalar uma banda para cada 3D-Via; depois, as células são movidas uma a uma (ordenada
pela sua posição x inicial) para o fim de uma banda; a banda é escolhida de forma que o
custo da solução seja minimizado. No caso deste algoritmo, o custo é calculado baseado
na posição de destino estar ou não estar dentro da região destinada para a 3D-Via.

Os resultados experimentais demonstram que o método consegue acomodar todas as
3D-Vias com uma degradação muito pequena no tamanho das conexões (sempre menos de
5% mas na maior parte dos casos difíceis a degradação foi menos de 0.1%). Comparado
com um método publicado (YAN, H. et al, 2005), o método proposto obtem resultados
ligeiramente melhores com uma vantagem de ordens de magnitude em tempo de CPU.

A.4 Roteamento de Steiner com o algoritmo AMAZE

O problema de roteamento pode ser definido informalmente como a tarefa de conectar
pinos fixos através de fios de metal. Como já foi revisado anteriormente, estes fios hoje
em dia têm impacto decisivo na performance e custo de um circuito. Assumindo que
as etapas anteriores tenham feito um bom trabalho para manter os elementos do circuito
próximos o suficiente, o roteamento é responsável pela conexão propriamente dita.

Para que etapas anteriores possam efetivamente produzir soluções boas para o rotea-
mento, elas precisam estimar o tamanho das conexões, mesmo não possuindo ainda as
informações necessárias para realizar o roteamento propriamente dito. Para fazer isto,
os pinos recebem posicionamentos temporários e é realizada uma árvore no formato de
Steiner, que se caracteriza por possuir junções de fios em qualquer parte da árvore. O
ponto exato onde ocorre a junção é chamado de Steiner point. Existem diversos algo-
ritmos que geram arvores de Steiner em tempo rápido de forma que possa ser utilizado
durante o processo de síntese do circuito.

Esta tese propõe um novo algoritmo de roteamento com característica de algoritmos

171

(a) (b)

(c) (d)

Figure A.10: Um algoritmo estilo Tetris para legalizar as 3D-Vias; (a) representa uma
solução inicial; (b) demonstra o passo 2 do algoritmo que fatia a área em bandas horizon-
tais; (c) ilustra os passos 4-10 do algoritmo que assinalam uma banda para as células; (d)
demonstra a solução final.

de geração de árvores de Steiner chamado AMAZE. Entre as motivações deste trabalho
está o fato de promover melhoras em um algoritmo de roteamento padrão da indústria
chamado Maze Router. Uma segunda motivação seria promover um algoritmo de rotea-
mento cujo tempo de CPU seja compatível aos algoritmos de árvores de Steiner, de forma
que o mesmo algoritmo possa ser usado tanto na estimativa da conexão quanto no rotea-
mento propriamente dito. Os Maze Routers são algoritmos extremamente flexíveis, o que
favorece a adaptação dos mesmos para diferentes aplicações, como por exemplo rotea-
mento de circuitos 3D.

O algoritmo AMAZE promove métodos para endereçar o comprimento total das ár-
vores geradas, o atraso para elementos críticos e finalmente o tempo de CPU consumido
pelo mesmo.

A.4.1 Melhorando o tamanho das árvores com a técnica de biasing

A técnica de biasing pode ser entendida como uma técnica de desempate de conexões
de mesmo tamanho com um critério que tenta favorecer conexões futuras. Considere o
exemplo da figura A.11; a conexão do nodo à esquerda para o nodo b pode tomar duas
rotas, conforme visto nas opções da figura A.11.(a) e A.11.(b). A opção na figura A.11.(a)
favorece o comprimento total da árvore, já que o nodo c pode ser unido a árvore com um
fio menor.

A situação da figura de exemplo é bastante simples de capturar, mas situações mais
complexas, onde há diversos nodos para conexão e não se sabe quais poderão tirar
proveito da conexão são bastante comuns. Por esta razão desenvolveu-se um critério
para definir quais nodos vizinhos podem participar na decisão da rota e quais nodos não
devem participar por estarem numa posição desfavorável. Este critério é explicado na

172

a

c

b

(a) (b)

a

c

b

Figure A.11: Uma situação de roteamento favorável para a redução da fiação através do
compartilhamento (a) e uma situação favorável para o isolamento dos caminhos

figura A.12. Após computados os nodos afetados, o caminho a ser escolhido é tomado
baseado na posição média de todos os nodos afetados.

S p

t

Routing
Bounding Box

Node behind the target

Closer to target than to
routing bounding boxExisting

Tree

t Closer to tree than to
routing bounding box

(b)

(a)
Affected Node

(c)

n

v

nv and are the candidate nodes for expansion

Tp

Tt

Tu

ct(p)

Figure A.12: Uma ilustração da técnica de biasing e os nodos afetados. (a) mostra um
nodo que não é afetado porque está atrás do nodo de destino. (b) mostra um nodo que está
mais próximo da árvore existente do que a caixa até o destino. (c) mostra um exemplo
de um nodo afetado. Nesta situação descrita, o caminho dará preferência a tomar a rota
passando pelo nodo v em função do nodo afetado.

Resultados experimentais mostram que a técnica de biasing propicia uma melhora
média de 2% no comprimento das conexões, sendo que uma grande maioria delas não é
influenciada pela técnica. Porém, nas redes em que a decisão de qual rota tomar influencia
o comprimento da conexão, este impacto é bem maior, na ordem de 15%, como visto na
figura A.13.

Por fim, o algoritmo de roteamento com a técnica de biasing foi comparado com um
algoritmo que obtem a topologia com o menor comprimento de fio possível; verificou-se
que o algoritmo AMAZE produz árvores com degradação de apenas 3% em relação à

173

(a) (b)

Figure A.13: Árvores sem biasing (a) e com biasing (b).

solução ótima.

A.4.2 Melhorando o atraso para conexões críticas

A topologia de uma árvore têm uma influência importante no atraso da mesma. Vários
tipos de topologias são demonstrados na figura A.14. Na figura A.14.(a) apresenta-se o
problema de conectar vários pinos pertencentes à mesma rede a um elemento chamado
driver, que alimenta a rede com um sinal que deve se propagar até todos os outros nós.
A figura A.14.(b) mostra uma topologia de comprimento mínimo, na qual elementos dis-
tantes do driver podem ter um atraso muito grande. A figura A.14.(c) apresenta uma
topologia chamada de arborecência, que conecta todos os nós com distância mínima até
o driver. Note que o comprimento da conexão nesta topologia é bastante grande. A figura
A.14.(d) demonstra uma topologia intermediária entre (b) e (c). A topologia em (e) é
chamda de estrela, e possui uma característica interessante de não compartilhar fios, car-
acterística que melhora o atraso, além de que todos os nodos são conectados a árvore
com um fio de comprimento mínimo. Finalmente a topologia em (f) indentifica o ele-
mento crítico da árvore e o conecta em estrela até o driver; os demais componentes são
conectados com a topologia de comprimento mínimo.

(a) (b) (c)

(d) (e) (f)

source node sink node critical sink node

Figure A.14: Topologias para melhora do atraso; (a) rede; (b) árvore mínima; (c) ar-
borecência mínima; (d) topologia intermediária entre (b) e (c); (e) estrela; (f) conexão
direta do nodo crítico.

174

O algoritmo AMAZE procura obter topologias semelhantes a topologia (f). Para isto é
proposto um fator de compartilhamento, que permite controle sobre o compartilhamento
do fio que conecta o driver até a conexão crítica. Verificou-se experimentalmente que
deve-se preferencialmente manter este fator em 0, ou seja, não perimitir nenhum compar-
tilhamento. Porém, a opção de usar outros valores pode ajudar em algumas topologias. A
figura A.15 ilustra o fator de compartilhamento.

s

k

(a) To be routed

s

k

(b) sf = 1

s

k

(c) sf = 0.75

s

k

(d) sf = 0.5

s

k

(e) sf = 0.25

s

k

(f) sf = 0

Figure A.15: Efeito do fator de compartilhamento.

Além do controle do compartilhamento, AMAZE também possui um fator para o
controle sobre o tamanho da caminho do driver até o pino crítico. No caso de existir
somente um pino crítico, o caminho mínimo é obtido simplesmente dando prioridade
para fazer o roteamento deste pino antes dos demais. Porém, na presença de dois ou mais
pinos críticos, pode haver compartilhamento e neste caso uma conexão crítica pode ter
seu comprimento aumentado. A figura A.16 explica o uso do fator com um exemplo.
Mais detalhes sobre ambos os fatores podem ser encontrados em (HENTSCHKE, R. et
al, 2007b).

Resultados experimentais mostram que AMAZE é mais efetivo para melhorar o atraso
para elementos críticos que heurísticas do estado da arte para árvores de Stiener, como as
P-Trees (de 1% a 30%).

A.4.3 Melhorando o tempo de CPU

Finalmente o algoritmo AMAZE apresenta métodos para melhorar o tempo de CPU
de um Maze Router. Inicialmente, faz-se uso de pesquisa heurística com o algoritmo
A* (HART; NILSSON; RAPHAEL, 1968). O algoritmo AMAZE propõe uma maneira
de calcular a função heurística do A* de maneira eficiente, pois evita que se compute
a distância para todos os nodos de destino. Esta otimização também esta ligada com a
proposta de uma estrutura de dados eficiente para o armazenamento dos nodos abertos.

175

path length factor = 1

path length factor = 0

To be routed (all sinks are critical and sharing is fully available)

k1

k2

k3

k1

k2

k3

Figure A.16: Efeito do fator de tamanho do caminho.

Esta estrutura está divida em duas partes: uma lista de nodos abertos e uma lista de
espera. A lista de nodos abertos em si é aprimorada em relação a estrutura clássica de fila
de prioridades por possuir tempo de inserção constante. Somando todas as otimizações,
o algoritmo pode atingir um desempenho bastante interessante, comparável a geração
heurística de árvores de Steiner. AMAZE é capaz de gerar 415 árvores de 7 pinos em
menos de 1 segundo.

A.5 Conclusões

É bastante sabido que conexões são um fator limitante para o desempenho de um
circuito. Este trabalho propôs diversos algoritmos que endereçam o problema de obter
conexões mais curtas em um circuito.

Na parte de posicionamento foi proposto um fluxo completo de ferramentas com
diversos algoritmos. Foram apresentados algoritmos para particionamento e posiciona-
mento de pinos de entrada e saída, posicionamento de células em 3D, posicionamento
de 3D-Vias e otimização de caminho crítico. Os algoritmos propostos consideram as
3D-Vias como recursos limitados e com restrições de espaço. Os algoritmos propostos
também se adaptam à tecnologia empregada. Em geral verificou-se que é possível reduzir
o tamanho dos fios em 10% para cada tier adicionado.

Na parte de roteamento, foi proposto um algoritmo de roteamento que combina di-
versos métodos para empregar boas topologias de árvore em um tempo de CPU bastante
rápido. Verificou-se, por exemplo, que controlando a quantidade de compartilhamento de
um fio pode-se encontrar várias otimizações no atraso de uma árvore. Comparado com
algoritmos da literatura, o algoritmo AMAZE produz árvores até 30% melhores. É inter-
essante destacar o fato de AMAZE ser um conjunto de melhorias em um algoritmo padrão
da indústria.

