

Evento	Salão UFRGS 2016: FEIRA DE INOVAÇÃO TECNOLÓGICA DA
	UFRGS - FINOVA
Ano	2016
Local	Campus do Vale - UFRGS
Título	Efeito do fundo azul no comportamento de estresse em
	Zebrafish (Danio rerio) causado pela manipulação
Autor	LETÍCIA NEVES FONSECA
Orientador	DANILO PEDRO STREIT JR

Efeito do fundo azul no comportamento de estresse em Zebrafish (*Danio rerio*) causado pela manipulação

Letícia Neves Fonseca*, Danilo Pedro Streit Jr.
*Estudante de graduação; Departamento de Zootecnia; Grupo de pesquisa AQUAM UFRGS

-leticia92fonseca@gmail.com

A espécie Danio rerio, conhecida popularmente como Zebrafish, tem sido amplamente utilizada como modelo animal para estudos de comportamento e de memória. Na década de 90, pesquisadores concluiram que os espectros de luz percebidos pelas células cones da retina dessa espécie eram sensíveis ao azul, ao verde, ao vermelho, ao amarelo e ao ultravioleta. Em 2015, um estudo comprovou que esses animais preferiam ambientes com espectros de luz do azul ao verde. Assim, o objetivo do presente estudo foi avaliar o efeito do fundo azul no comportamento de estresse do Zebrafish causado pela manipulação de captura. Dois aquários de 3 L (20x11x21cm) foram utilizados no experimento, um com adesivo de cor azul Royal nas duas arestas laterais e na aresta de fundo da porção externa (tratamento com enriquecimento ambiental), e o outro sem adesivo de fundo (tratamento controle, sem enriquecimento ambiental). Cinco peixes foram utilizados em cada tratamento e, antes de simular a manipulação de captura, eles foram mantidos individualmente em bégueres contendo 300 mL de água coletada do aquário de origem por 15 a 20 min com o intuito de habituar os animais ao novo ambiente. Após esse período, os peixes foram distribuídos aleatoriamente entre os dois tratamentos. Cada animal foi avaliado e filmado separadamente por 6 min (360 s) após atingirem o estado de "freezing". O estado de freezing foi obtido através da simulação de manipulação de captura com uma rede própria para a pesca, amplamente usada no manejo de biotério. Ao longo dos 6 min (360 s) de filmagem, dois parâmetros foram avaliados: o tempo de estado em "freezing" e o tempo de movimentos de natação livre no pós-freezing. Quatro repetições foram realizadas em cada tratamento, totalizando 40 observações. Os parâmetros para a manutenção de um ambiente ideal para os peixes foram periodicamente verificados, sendo os valores de amônia 0 ppm, pH entre 7,0 a 7,2, temperatura 27±1°C e oxigênio dissolvido acima de 4 mg/L. Para avaliação dos dados utilizou-se o teste de normalidade de Shapiro-Wilk seguido da análise de variância (ANOVA). Para comparação das médias, aplicou-se Tukey a 5% de significância. Os resultados não apresentaram diferença significativa entre as médias de tempo de "freezing" e de movimentos de natação livre entre o tratamento com enriquecimento ambiental (166,10±39 s; 193,90±39 s) e o tratamento controle sem enriquecimento ambiental (211,85±78 148,15±77 s). O aumento do tempo de "freezing" obtido no aquário com enriquecimento ambiental indica que o novo ambiente, apesar de apresentar o espectro de luz ambiental desejável à espécie, causou um maior estresse, uma vez que era um ambiente ainda não explorado pelos peixes. Concluo que, após participar de todas as etapas do projeto, os métodos empregados para a avaliação comportamental de estresse em Zebrafish devem ser melhorados, através do aumento do número de observações e desenvolvimento de novas metodologias de habituação dos peixes antes da avaliação do comportamento.