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ABSTRACT. Biomarkers are characteristics that are objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes or pharmacological responses to a therapeutic interven-
tion. The combination of different biomarker modalities often allows an accurate diagnosis classification.
In Alzheimer’s disease (AD), biomarkers are indispensable to identify cognitively normal individuals des-
tined to develop dementia symptoms. However, using the combination of canonical AD biomarkers, studies
have repeatedly shown poor classification rates to differentiate between AD, mild cognitive impairment
and control individuals. Furthermore, the design of classifiers to access multiple biomarker combinations
includes issues such as imbalance classes and missing data. Due to the number of biomarkers combina-
tions wrappers are used to avoid multiple comparisons. Here, we compare the ability of three wrappers
feature selection methods to obtain biomarker combinations which maximize classification rates. Also, as
the criterion to the wrappers feature selection we use the k-nearest neighbor classifier with balance aids,
random undersampling and SMOTE oversampling. Overall, our analyses showed how biomarkers combi-
nations affect the classifier precision and how imbalance strategy improve it. We show that non-defining and
non-cognitive biomarkers have less precision than cognitive measures when classifying AD. Our approach
surpasses in average the support vector machine and the weighted k-nearest neighbor classifiers and reaches
94.34 ± 3.91% of precision reproducing class definitions.
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16 WRAPPERS FEATURE SELECTION IN ALZHEIMER’S BIOMARKERS USING KNN-SMOTE

1 INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia worldwide, posing enormous
economic and social costs for the society [1]. AD [2] is pathophysiologically characterized by

the gradual brain deposition of amyloid plaques, neurofibrillary tangles, and eventual neuronal
depletion [2]. The AD spectrum is composed by preclinical (CN), mild cognitive impairment
(MCI) and AD dementia phases [2]. Preclinical AD individuals are those cognitively normal

with amyloid plaques and tangles, individuals with MCI have cognitive symptoms without meet-
ing clinical criteria for dementia, and AD dementia individuals present severely compromised
cognitive faculties [3]. In recent years, a plethora of biomarkers has been developed in order

to track AD progression, such as biomarkers for beta peptide 1-42 (Aβ1−42) and tau proteins
that indicate the presence of the hallmark pathological features of AD, amyloid plaques, and
neurofibrillary tangles, respectively [1, 2].

It is a well-established fact that combined biomarkers provide higher classification rates than

single biomarkers [4]. In this regard, neuropsychological tests associated with different bio-
marker modalities have been used to classify AD [5]. These studies have combined positron
emission tomography (PET), magnetic resonance imaging (MRI), functional magnetic resonance

imaging (fMRI) as well as cerebrospinal fluid (CSF) and blood biomarkers to perform binary
classifications of AD [1], e.g. healthy versus unhealthy individuals. Despite AD’s classification
problem being an inherently multiclass binary classification multiclass driven by binary strategies
are the rule [1]. This happens since some classifiers are naturally binary and must be adapted to be

multiclass by means of one-versus-all and one-versus-one strategies, e.g. support vector machine
(SVM) [6]. Thus, to solve an n-class problem using binary classifiers, n(n−1)

2 rules are required
to build a multiclass classifier. As benefit, binary classifiers are well suited for the receiver oper-

ator characteristic (ROC) analysis [7] which has been largely applied in AD comparative studies,
biomarkers model selection and conversion diagnosis prediction.

Recently, various approaches used for AD’s identification have achieved successful results and
satisfactory classification rates. For instance, Khedher et al. [8] were able to accurately differen-

tiating the three clinical classes of the AD spectrum reaching the maximum sensitivity (85.11%),
specificity (91.27%), and accuracy (88.49%) values by implementing binary strategy and reduc-
tion of input space with SVM and principal component analysis (PCA) techniques [6]. Khazaee

et al. [9] were able to perfectly differentiate between cognitively healthy and AD classes in a
small dataset of 40 individuals, using graph theory applied to brain connectivity assessed with
fMRI they reach an accuracy of 100% for linear SVM and 87.5% for k-nearest neighbor (kNN).

Although the separation between extreme cases is straightforward, difficulties are expected when
considering the overlapped intermediary classes. Classifiers performance can be potentially af-
fected by data issues, such as class overlapping, feature space with high dimensionality, missing-

data, class imbalance, etc [10]. Particularly, imbalanced datasets [11] are considered one of the
10 most challenging problems in machine learning [10]. When imbalanced data issues are dis-
regarded, it could lead to a decreased classification rate for the minor represented class and

in globally averaged scores [12]. Solutions that address this problem are based on re-sampling
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methods when the distribution mechanisms are known. Alternatively, the methods are mainly

based on the creation of synthetic data for minor classes or/and pruning data for major
classes [11].

There is a need to identify biomarker combinations that maximize the classification and un-
derstand how much they contribute to differentiate between AD classes [13, 1]. However, this

goal faces multiple classifier’s comparisons when assessing biomarker combinations. In order
to avoid the excessive number of comparisons, feature selection techniques are able to find a
set of biomarkers that meet defined criteria [14]. For a given task (e.g. classification) exam-

ples of criteria are: to identify the most cost-effective biomarkers, with higher precision and low
false-positive, find a subspace of reduced dimensionality with the same or enhanced discriminant
properties; extract/build relevant features from raw data [15].

Techniques of feature selection have been largely applied to AD-related problems, intending to

provide a better understanding of biomarkers relationship [13] and achieve defined criteria of
usefulness [14]. Interesting applications of feature selection techniques contributed to the under-
standing of AD, like the construction of potential biomarkers for enhanced classification. For

instance, Lopez-de-Ipiña et al. owing to determine preclinical biomarkers for AD apply fea-
ture selection techniques on spontaneous speech to extract discriminant features [16]. They also
were able to correctly classify AD subjects using kNN and multilayer perceptron (MLP) classi-

fiers obtaining accuracy of 87.30% and 90.90%, respectively to each classifier. Feature selection
AD-related also is found in the gene microarray analysis [15] and neuroimaging both with high-
dimensional feature spaces and its own big data challenges. These fields have been provoking
adaptation of feature selection techniques to deal with high dimensionality (tens of thousands

features) and small sample size in the case of microarray datasets [15]. In neuroimaging, the
feature selection methods in 3D matrices are able to mitigate performances issues and improve
the classification accuracy [17].

Here, we propose to find subsets of features among several feature combinations which maximize
classification rates between three AD classes. Specifically, we solve a multiclass classification
problem in which test patterns are assigned to one of following classes: control normal (CN),
mild cognitive impairment (MCI) or AD. To do that, we compare three feature selection tech-

niques that depend on the classifier’s outcome as a measure of usefulness [14]. This requirement
characterizes the feature selection techniques called wrappers which select features based on the
classifier’s performance. However, instead of widely applied binary strategies, here we will use

the all-versus-all strategy naturally achieved by the kNN classifier. The misclassification and the
comparison between the biomarker combinations will be done by scalar measures of confusion
matrices [18]. In order to observe the effect of training set size, we compare two validation pro-

cesses, 10-fold cross-validation (10-fold CV) and leave-one-out cross-validation (LOOCV) [6].
Our analysis shows how the imbalanced dataset affects classification rates and shows a com-
parison of the feature’s probability to reach higher precision. Two techniques to aid the class

balances are compared with the imbalanced dataset: an oversampling technique called synthetic

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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18 WRAPPERS FEATURE SELECTION IN ALZHEIMER’S BIOMARKERS USING KNN-SMOTE

minority oversampling technique (SMOTE) and the random undersampling. All algorithms and

plot codes are available on-line https://github.com/yurier/TEMA-R-CODES.

2 METHODS

2.1 Dataset

Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The goal of ADNI has been to test whether

serial MRI, PET, other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early AD. For up-to-date information,
see www.adni-info.org. Features in this work consist of two neuroimaging biomarkers

(labels 1,2), four neuropsychological tests (labels 3,4,5,6) and two proteomic biomarkers (la-
bels 7,8) [19], respectively: 2-[18F]fluoro-2-Deoxy-D-glucose (FDG) PET, florbetapir-fluorine-
18 (18F-AV-45) PET, clinical dementia rating sum of boxes (CDRSB), Alzheimer’s disease as-

sessment scale-cognitive with 11 items (ADAS11), mini mental state examination (MMSE), Ray
auditory verbal learning test percent forgetting (RAVLT), Aβ1−42 CSF, phosphorylated tau pro-
tein (p-tau181) CSF. Table 1 depicts dataset demographics.

Table 1: Dataset demographics described by mean and standard deviation.

Feature CN MCI AD Label

Male 73 227 59 –
Female 79 187 41 –
Age 73.31 ± 6.35 71.39 ± 7.44 74.88 ± 8.19 –

Education 16.53 ± 2.50 16.18 ± 2.65 15.72 ± 2.55 –

FDG ∗ 6.59 ± 0.51 6.33 ± 0.65 5.28 ± 0.76 1
18-F-AV-45 ∗∗ 1.10 ± 0.17 1.20 ± 0.22 1.39 ± 0.20 2

CDRSB 0 1.44 ± 0.86 4.70 ± 1.63 3
ADAS11 5.85 ± 3.13 9.25 ± 4.45 20.96 ± 7.13 4

MMSE 29.05 ± 1.18 28.07 ± 1.73 22.96 ± 1.98 5
RAVLT 35.22 ± 26.69 55.41 ± 31.37 89.17 ± 20.72 6

Aβ1−42 pg/mL 196.67 ± 49.96 174.79 ± 51.55 133.20 ± 35.84 7
p-tau181 pg/mL 33.52 ± 16.40 41.26 ± 24.30 58.06 ± 29.39 8

*Average of FDG-PET of angular, temporal, and posterior cingulated with pons

as reference region [20]. ** Average of standardized 18-F-AV45 uptake value

ratio (SUVR) of frontal, anterior cingulate, precuneus, and parietal cortex relative

to whole cerebellum as reference region [20].

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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Due to different probability in pathologies stages, clinical datasets are subject to imbalanced

classes. Also, the data imbalance is a critical issue that generates an unfair separation between
classes, when the imbalance is extreme [12] it will lead to decreased prediction rates for valida-
tion stages. The present study evaluates two strategies to adjust the class imbalance by assum-

ing any class posterior distribution. Since we are using the kNN that is a distance based algo-
rithm features were scaled by min-max normalization in all experiments [21] except for figures.
Importantly, since features CDRSB and MMSE are employed to define the diagnosis or are

similar to categorization protocol they will be used as contrast. The feature-wise comparison
will be performed only for non-defining and non-cognitive features since it is well known that
cognitive measures have more discriminative power [1]. Moreover, feature selection will be

applied for non-defining features which include cognitive measures.

2.2 k-nearest neighbors (kNN) algorithm

Classifiers can be defined by discriminant functions [18], which are a set of functions to predict
categorical dependent patterns. Here, we define a classifier C as a function that assigns a pattern

x ∈ Rn to a class into the class space ω ∈ � := {ω1, . . . , ωc},

C(x) : Rn → �.

The maximum a posteriori (MAP) classifier uses a set of discriminant functions to assign the

most probable class. Let { fωi (x)}c
i=1 be a set of discriminant functions, a classifier C is said to

be well-defined if, for all patterns, is possible to assign a class. Let ω̃ be the calculated class, the
MAP classifier is given by,

w̃ := arg max
ω∈�

fωi (x) = C(x). (2.1)

The discriminant functions set is monotonous, since for a given x associated to a class ω j

we have that fωi (x) ≥ fω j (x) ∀i �= j . An example of a set of discriminant functions is the
class conditional probability {p(x|ωi )}c

i=1 [18]. The classifiers taxonomy is based on how they

approximate its discriminant functions [6]. Generative models parametrically approximate the
posterior class probabilities, p(x|ωi ), through the class conditional probability p(ωi |x) and the
class prior probability, p(ωi ) (e.g. gaussian, gamma, etc). Alternatively, discriminative mod-

els directly approximate posterior class probabilities, p(ωi |x), without assuming a distribution
for it (e.g. kNN, MLP, etc). Aside from generative and discriminative models, there are the non-
probabilistic models in which the discriminant functions are not required to be a distribution (e.g.

SVM). Generally, the goal of discriminant functions is to divide the pattern space into decision
regions {R1 , . . . , Rc}. Class densities are depicted in Figure 1 and the classification mapping
example is depicted in Figure 2. Also, Figure 2 shows a binary classification problem for feature
combination labels 7 and 8 in which overlapped regions are subject to higher misclassification.

In order to observe how the distributions of CN and AD are overlapped, one can use the Bhat-
tacharyya distance [22] which is a metric to measure how two distributions differ and also pro-
vides a bound for the probability of classification error using the Bayes optimum classifier. By

Tend. Mat. Apl. Comput., 18, N. 1 (2017)



�

�

“main” — 2017/5/11 — 22:35 — page 20 — #6
�

�

�

�

�

�

20 WRAPPERS FEATURE SELECTION IN ALZHEIMER’S BIOMARKERS USING KNN-SMOTE

assuming Gaussian shapes the Bhattacharyya coefficient coincides with Mahalanobis measure.

The Bhattacharyya coefficient [22] derived from Bhattacharyya distance ranges between 0 (distri-
bution non-overlapped) and 1 (distribution overlapped). Assuming normal distributions between
CN and AD distribution the Bhattacharyya coefficient is 0.6398824. Further this measure will

be used to show how oversampling modifies the original distribution.
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Figure 1: On the left and middle, class distributions for CN and AD classes, respectively. On the
right, AD and CN classes distribution overlapped in some regions.
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Figure 2: Decision boundaries created by the 3NN classifier.

The kNN is a non-parametric classifier that estimates the class posterior probability assuming
that nearest patterns (here assumed to be vectors in a metric space) have similar properties
(classes) [23]. This assumption was proved for infinite sample case as shown in [23]. There

are preprocessing techniques, which depend on kNN, for instance: in data imbalance, complet-
ing missing values, dimensionality reduction, and metric learning. Here we focus specifically on
data imbalance challenge and a feasible solution; SMOTE algorithm.

The kNN classifier deals with multiclass problems straightforwardly by means of all-versus-all

strategy. To achieve this, it uses a neighborhood defined by k training instances nearest to a query
instance to be classified. Let T = {(xi , ωi )}m

i=1 be a training set, with tuples xi ∈ Rn and ωi ∈ �

as labeled patterns. Also, let x∗ be a test instance with an unknown label to be assigned into

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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a class ω∗ ∈ �. Using the MAP framework given in equation (2.1) the kNN classifier can be

written as,
ω̃∗ = arg max

ω∈�

∑
x j ∈N(x∗,k)

δ(ω j , ω), (2.2)

where N(x∗, k) is a neighborhood with k training instances around x∗ for a given metric and

δ(., .) is the Kronecker delta function. Rewriting equation (2.2) we have,

ω̃∗ = arg max

⎧⎨
⎩

∑
x j ∈N(x∗,k)

δ(ω j , ω1), . . . ,
∑

x j ∈N(x∗ ,k)

δ(ω j , ωc)

⎫⎬
⎭ . (2.3)

The monotonicity of discriminant functions is applied to equation (2.3) and dividing it by k,

ω̃∗ = arg max

⎧⎨
⎩

∑
x j ∈N(x∗ ,k)

δ(ω j , ω1)

k
, . . . ,

∑
x j ∈N(x∗ ,k)

δ(ω j , ωc)

k

⎫⎬
⎭ . (2.4)

Thus, each term in equation (2.4) is the posterior class probability,

p(ωi |x∗, k, T ) =
∑

x j ∈N(x∗ ,k)

δ(w j , wi)

k
, from i = 1, . . . , c. (2.5)

From equation (2.5) we have that the most probable class for the training instance x∗ is given by,

ω̃∗ = arg max
ω∈�

p(ω|x∗, k, T ). (2.6)

The parameter k that adjusts the k-neighborhood N(x∗, k) is searched empirically since there are
no guidelines for its optimality. However, Bhattacharyya [24] proposes a bound to the optimal k,
that is k <

√
m. In binary classification, one can restrain the range of k by using only odd values

in order to avoid ties in equation (2.1). The class posterior distribution, p(ω j |x), is an alternative
to the optimum Bayesian classification approach, which requires the complete knowledge of
data generation underlying mechanisms. As showed by Cover & Hart [25], the error of the nearest

neighbor is limited between the optimal error and twice the optimal error for the infinite sample
case. This means that the more data available the closer the optimum error will be. This was
supported by Stone on the existence of a universally consistent classifier [23]. Let’s show how

the parameters affect the classifier properties. Figure 3 depicts the role of parameter k in the
decision regions as well as the probability of class assignment described by the equation (2.6).
Also, in Figure 3, note that there are only two probability values for k = 1 (1NN classifier).

This happens since there are no misclassification errors or ties for training set in 1NN. A perfect
score in training set would be an indicator of overfitting that generally leads to poor performance
issues, that is, the classifier is unable to generalize the training results. Contrasting to 1NN, when

parameter k is increased, more data is needed in order to evaluate the pattern assignment leading
to more stratified probability values.

Non-parametric methods as kNN do not rely on distribution assumptions [18] (e.g. Gaussian
shape). As an example see that the kNN classifier given in equation (2.1) depends only on the

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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Figure 3: Left to right, the influence of parameter k in the decision boundaries, for k = 1, k = 5

and k = 15, respectively.

training data T and k to approximate the class posterior distribution. That is to say, data modifica-
tion or removals imply in different classifiers since T is modified. By that, the biomarker combi-

nations are validated using 10-fold CV and LOOCV in order to observe the variation between dif-
ferent training data sizes. Although, variations using the same dataset also can occur due to ties in
kNN. For instance, with 5NN some query pattern class could be evaluated as “AD+AD+CN+

CN+MCI”. The random tie-breaking is adopted in this work because is computationally more
efficient than tie-breaking strategies described in [26]. Figure 4 shows the effect of random tie
breaking in the decision regions for the three class problem proposed.
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Figure 4: Decision region for a three class problem solved with 5NN using the same number of

samples for each class. From left to right, decision region of CN, MCI and AD, respectively.

One can observe in Figure 4, apart from noisy region created by the random tie breaking, the
decision regions are complementary. Furthermore, unlike the binary case that requires only one

class posterior probability to describe the classification mapping, the multiclass problem needs
all the posterior probabilities to describe the classification mapping. For instance, binary mapping
needs only to evaluate p(ω2|x) = 1 − p(ω1|x) and the decision border can be described with

p(ω1|x) = p(ω2|x) = 0.5. In turn, the multiclass problems need all posteriors {p(ωi |x)}c
i=1

to describe the classification mapping and the decision borders are drawn between the class tran-
sitions. In equation (2.2) we suppose that every nearest neighbor contributes equally to calculate
the class, independently from the distance to the query point. The wkNN is a kNN’s extension

to handle this issue. The wkNN attributes weights for each voting pattern reducing the high di-
mensionality effects. In high-dimensional feature spaces, the training patterns become sparse
requiring more data to fill out the decision region. The wkNN overcomes the kNN issues in

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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high-dimensional spaces using a weighted scheme W (., .) as an argument of a kernel function

K (.). This is to adjust relative distances between patterns avoiding the sparsity [27]. Further-
more, fractional metric modifications in kNN (or metric based classifiers) also can grant some
level of reliability in high-dimensional feature spaces [28]. The wkNN can be written as,

ω̃∗ = arg max
ω∈�

∑
x j ∈N(x∗,k)

δ(ω j , ω)K (W (x∗, x j )), (2.7)

where the weighted scheme [27] can be defined as follows,

W (x∗, x j ) =
{d(xk ,x∗)−d(x j ,x∗)

d(x1 ,x∗)−d(xk ,d∗) if d(xk, x∗) �= d(x1, x∗)
1 otherwise

2.3 SMOTE

Data imbalance shows to be an adverse setup to achieve high classification rates. This happens
due to the rare or less frequent instances of minor represented classes (e.g. bank fraud, cancer

malignancy grading) [12]. When the minority class has few training patterns it turns out to be
misrepresented leading to shrunken decision regions. For instance, in Figure 5 the minor class
was generated inside the circle with uniform distribution with 8 samples while the major class

follows the distributionN ([2, 2], 4I ) with 100 samples generated from it.

probability
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0.50
0.75
1.00

class

A
B

Figure 5: Decision region for an imbalanced dataset. The irregular solid line is the decision
border between class A and B.

In order to avoid problems in classification mapping, one can randomly remove instances from
the major classes until achieving the same prior probability (proportion). This technique is named
the random undersampling. Instead to prune data one can rise the low priors of minor classes us-

ing an oversampling technique, in this case SMOTE, which creates synthetic patterns based on
the existing ones [29]. Balance aid techniques developed for high-dimensional applications are
also useful in situations with moderate imbalance as well [12]. In supervised learning, strategies

to prevent imbalance are mainly focused in class reorganization or resampling owing to achieve
the same number of training instances [11]. Methods to aid the imbalanced problems are orga-
nized into the following categories [12]: data-level, algorithm-level or hybrid. We compare the

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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effect of undersampling and oversampling techniques that are data-level methods since data is

balanced disregarding the subsequent classifier.

SMOTE is similar to kNN and can be implemented as follows [29]: first, a pattern in the mi-
nor class is randomly selected, then, a synthetic pattern is included between a randomly chosen
pattern in its k-neighborhood, repeated the procedure until achieving desired prior. SMOTE in-

creases the parameter space that must be searched to obtain the model with highest prediction
rate. In this work, we set SMOTE’s k-neighborhood parameter as k = 5. Figure 6 depicts how
the amount of oversampling changes the distribution for 50% and 100% of synthetic data added

in AD class relative to MCI class, using k = 5. The Bhattacharyya coefficient for 50% and 100%
oversampling relative to the original distribution are 0.994579 and 0.9975564 respectively. Fig-
ure 7 depicts the effect of parameter k in SMOTE algorithm. For k = 7, k = 15 and k = 30

the Bhattacharyya coefficient (assuming Gaussian distributions), from original sample is respec-
tively, 0.9924127, 0.9972362 and 0.9935776, give that the value 1 means a complete distribution
overlap.
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Figure 6: From left to right, the original data, synthetic oversampled 50% with original data,

synthetic oversampled 100% with original data, respectively and their distributions.
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Figure 7: Original data with SMOTE oversampled 100% for values of parameter k, from left to
right, k = 7, k = 15 and k = 30.

2.4 Wrapper feature selection

The goal of feature selection methods is to select a subset of features that is useful to enhance a

given classifier’s measure, e.g. precision. Since classifiers are induced by data with unknown
underlying distributions the feature selection methods allow sub-optimal answers. There are
comprehensive definitions of usefulness that would be criteria to select relevant features, e.g.
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correlation and information theoretical criterion [14]. As shown in [30] the optimal choice of

features does not imply the choice of relevant features. Conversely, optimality does not imply in
relevancy. For instance, features that are presumably redundant may enhance the precision when
combined with useful features [14].

Despite the lack of guarantees presented, feature selection methods were invaluable to deal with

high-dimensional real-world problems. Feature selection methods were initially designed to deal
with classification problems with no more than 40 features [30], now they are able to deal with
thousands of features. For instance, in classification problems related with genetics feature space

dimensionality ranges from 6000 to 60000 [14] one can expect a strong effect of the curse of
dimensionality. Such extreme problems have received attention uncovering the molecular mech-
anisms related to AD [31] and have motivated initiatives like AlzGene focused on providing data

resources for AD genetic research. Despite that, in this work, the feature selection techniques
will be applied to at least 9 features in order to observe the group-wise probability of a feature
being more relevant than other. Examples of feature selection techniques are feature extraction,

feature construction, feature selection techniques for non-supervised learning, etc.

Feature selection methods are divided into three categories due to the relation with the classifier:
filter, wrapper and embedded methods. Filters select a subset of features independently of the
chosen classifier and the procedure mainly focus on ranking the features given defined criteria.

Conversely, wrappers use classifiers’ measures as criteria to select subsets. Lately, embedded
methods use a structured model to get the set of relevant features subject to a classifier [14]. For
a complete discussion on the feature selection strategies and benefits see [14].

Here we compare three wrapper methods using the kNN classifier combined with SMOTE to

select the most useful subset of features. The three wrapper methods compared are defined on
the following search strategies: backward elimination, forward selection and hill-climbing se-
lection [14]. The subset obtained using the three methods will be compared to all combinations

of features in order to observe if they are able to reach the optimum subset drawn from the
rank with all feature combinations. Additionally, a noise feature will be included in the fea-
ture selection procedure in order to compare the features to a non-significant case. In Figure 8
we depict an example of search graph with all possibilities for three combinations. Regarding

Figure 8 we have that in the far left stage, no features chosen and the far right all features chosen.
Backward elimination moves right to left; forward selection left to right; hill climbing moves to
any direction.

The wrappers feature selection will search in a 9 (8 + noise) features graph scheme for the more

useful subset. Forward selection initializes with any feature and steps up towards completing the
feature subset. Iteratively it adds features to the chosen subset using the usefulness criteria that
is to rise kNN classification rate. The usefulness criteria for kNN is obtained with the LOOCV,

that means to classify one pattern using all remaining patterns as a training set. The backward
elimination goes in the opposite direction in the searching graph. It initializes with all features
and iteratively prunes features according to with the highest usefulness defined by the kNN clas-

sification rate criteria. The hill-climbing selection can go in any direction in the searching graph

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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Figure 8: Scheme showing how to choose a subset of 3 features, using forward selection, back-
ward elimination, and hill-climbing.

combining two previous approaches. Here we set up hill-climbing starting from the empty set

feature. All wrappers in this work are greedy algorithms and are subject to be trapped in a local
maximum [30] (relative to the classification rate). A greedy algorithm can only optimize in a
short distance and do not prevent that a good choice for a given iteration can lead to losing better

options. There are search strategies designed to avoid this greedy drawback, for instance, the
simulated annealing and the genetic algorithms [14].

2.5 Validation

Overfitting happens when the classifier’s prediction to the training phase are far better than the
test phase [6]. The validation is appropriate to observe if the classifier is overfitted. An overfitted
classifier cannot generalize results achieved in training phase for unseen patterns. Confusion
matrix P is a tool to assess the classifier outcomes and to interpret classification precision. The

confusion matrix shows the class wise probability of classifying x∗ in the class ω j given that it
was generated by class ωi , for short Pi, j = p(x∗ ∈ ωi |x∗ ∈ ω j ) = p(ωi |ω j ). Furthermore, P is
a stochastic matrix,

∀i
c∑

j=1

p(wi |w j ) = 1 with p(wi |w j ) ≥ 0 for i, j = 1, . . . , c,

the P trace average is the probability of correct classifications for all classes or precision [18].
This measure defines a scalar magnitude that enables us to compare the many classifiers in the

feature selection process. Furthermore, the 10-fold CV [6] is applied to the confusion matrices to
obtain deviations of the feature’s subsets. The scalar for classifier’s comparisons can be written
as,

val(P) := R
c×c → R val(P) =

c∑
i=1

P(wi |wi)

c
.
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3 RESULTS AND DISCUSSION

Features for specific and general cohort studies owing to identify AD spectrum come from vari-
ous sources: cognitive, genetic, neuroimaging, proteomic and others [16]. These features intend

to provide insights on biological factors AD which is critical to understanding the disease pro-
gression and to early prevention strategies [1]. Feature combinations provide higher classification
rates than features by itself, also there are combinations more precise than others. For instance, a

feature may confer a poor classification rate when many classes are included, even being highly
valuable to understand AD biological processes, as depicted in Figure 4. This is, the combina-
tion Aβ1−42 and p-tau181, which sustain the main hypothesis for neurodegeneration [1] achieves

a precision of 42.29 ± 1.32% and 43.40 ± 4.61%, respectively for LOOCV and 10-fold CV
for kNN with k optimized and imbalanced data. Thus, it is necessary to find additional features
or combinations to better identify AD. However, for n features the number of combinations is

given by
∑n

i=1
n!

i!(n−i)! , thus requiring strategies to avoid computational effort to uncover such
combinations. Wrapper feature selection techniques are suitable to avoid the comparison of all
features combinations while maximizing a chosen classifier’s precision. In case, the kNN that
allows the all-versus-all strategy to observe how the classes affect each other all at once. Also,

the all-versus-all strategy contrasts to the binary adapted strategies that are widely used in AD
research along with ROC analysis [1]. We compare the three techniques of wrappers feature
selection to the global rank of features for each sampling strategies using confusion matrices.

Moreover, Gaussian noise (mean = 0, sd = 1) was added to feature space in order to compare an
irrelevant feature to the features displayed in Table 1, with label N (noise). The Table 2 shows
the test performance of sorted combinations by higher classification rate among the non-defining

features and by the number of features.

Excluding the defining features (3,5) most of the wrappers in this work were able to identify
sub-optimal combinations given the precision of combinations available. For imbalanced dataset
the combinations found are: 4,6 for hill climbing (position 2); 4,1,8 for backward elimination

(position 28); 4,6,7,8 for forward selection (position 41). With random undersampling the com-
binations found are: 4,6 for hill climbing (position 8); 1,4,6,8 for backward elimination (posi-
tion 2); 4,1 for forward selection (position 5). With oversampling (SMOTE) the combinations

found are: 4,6,7,8,N for hill climbing (position 38); 1,2,4,6,7,8,N for backward elimination
(position 9); 4,7,6,8 for forward selection (position 21). All strategies of sampling and wrapper
feature selection found sub-optimal combinations relative to the rank position. For the complete

ranking list see on-line contents. One can notice that even with hill-climbing which combines
the forward and backward strategies it can be trapped in local maximum and be affect by the
cross-validation components. For instance, using oversampling with backward elimination was
found the position 9 and combined with hill-climbing the position 38 in the full ranking list.

The combination label 3 and 5 for the definition is depicted in Figure 9. From the selected fea-
tures in training phase, the combination that provides the higher classification rate in validation
phase is the (3,5). For more 2D plots see: https://github.com/yurier/TEMA-R-CODES/

tree/master/PLOTS2D. The wrappers can be affected by the random nature of the cross-
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Table 2: Rank of combinations for the three imbalanced strategies. Note
the highest classification rate was bolded for each validation method.

position LOOCV (%) k 10-fold CV (%) k combination

imbalanced

2 60.37 ± 0.05 13 59.33 ± 0.35 6 4,6
1 58.35 1 58.37 ± 2.58 4 2,4,8
3 58.11 ± 0.13 2 56.81 ± 2.56 6 1,2,4,8

7 58.01 5 56.29 ± 4.29 3 2,4,6,8,N
10 58.80 3 58.02 ± 1.09 3 1,4,6,7,8,N
38 56.94 ± 0.05 5 56.74 ± 2.25 12 1 2 4 6 7 8 N

undersampled

5 70.15 24 66.78 ± 3.36 18 1,4

3 69.05 20 68.59 ± 3.40 10 4,6,8
2 69.40 12 69.15 ± 4.46 13 1,4,6,8
1 67.14 10 67.47 ± 4.37 23 1,4,6,8,N

7 67.08 24 66.57 ± 2.41 25 1,2,4,6,7,8
43 66.39 22 66.13 ± 2.98 24 1,4,2,6,7,8,N

oversampled

80 66.98 ± 0.47 23 69.20 ± 4.21 24 4,6
41 63.97 ± 0.11 23 65.08 ± 5.83 21 4,7,N
12 66.35 ± 0.05 19 67.15 ± 2.81 25 1,4,6,8

1 62.16 ± 0.05 25 63.80 ± 4.63 24 1,2,4,7,N
3 64.34 ± 0.53 25 65.69 ±6.02 20 1,2,4,6,8,N
9 62.91 ± 0.11 17 64.16± 7.89 24 1,2,4,6,7,8,N

validation process and results may vary when the random generator number is unfixed. This
variation ranges between the very first combinations to the middle-rank combinations. The list of
502 combinations for each technique to aid imbalance is available on-line, also the 120 combi-

nations rank for non-defining features and the 26 combinations rank for non-cognitive features.

Comparing the three techniques of sampling (imbalanced, undersampled and oversampled) we
are able to say that there is a significant improvement using the imbalance aid techniques. The

subtle dominance of kNN with SMOTE for the LOOCV happens due to the randomness effect
of cross-validation and tie breaking. Furthermore, oversampled data is not pruned leaving more
available data for training. In order to avoid overfitting, the synthetic data was used only to
generate the classifier and to validate results. In Figure 10 is depicted the confusion matrices

averaged in 10-fold cross-validation for the combinations ranked between all 502 combinations
(on-line contents), respectively for each method and from 8th to 1st combinations. For instance,
the first matrix in the first row at left in Figure 10 shows the probability of the MCI pattern be
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Figure 9: Decision region for balanced (undersampled) three class problem solved with 5NN.

From left to right, decision regions of CN, MCI and AD, respectively. Note that even for the
defining features there is some errors.

classified as CN is 35.6%. Also, in Figure 10 the confusion matrices for balanced problems (2nd

and 3rd rows) show that the major class (MCI) have more classification errors than the minor
classes (CN, AD). Conversely, in the imbalanced problem, the confusion matrices (1st row) for
the major class are more precise and the minor class has more misclassification errors. This

result is expected and can be used to control the compromise between class resampling in order
to achieve a balance that minimizes the classification error.
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Figure 10: By row is depicted the confusion matrices for imbalanced, undersampled and over-
sampled combinations, respectively. Each column depicts from 8th to 1st ranked combinations
in the 502 rank (on-line contents).

With the rank of all training results for all combinations of eight features plus noise producing

502 different combinations, one can ask the probability that a feature belonging to a given com-
bination have higher classification rate than other. This is done by measuring how many times
combinations that have feature A and not B are more precise than combinations that have B and

not A divided by the number of comparisons between A and B. Figure 11 depicts this evaluation
for each balance method (imbalanced, undersampling, oversampling) using only one significant
digit by resolution reasons and just for the non-cognitive features (26 features). For instance, one
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can be interested in the probability of combinations that contain the feature 2 and not 8 to provide

higher precision than combinations containing 8 and not 2, the left matrix in Figure 11 shows
that is 38.7%. However, the matrices are not symmetrical due to some combinations have the
same classification rate and due to round-off error. As argued by [1] the neuropsychological tests

are more precise and standardized measures to detect AD. Figure 11 shows only non-cognitive
features (1,2,7,8). Despite neuropsychological tests being cost-effective biomarkers and its com-
binations provide a high precision, they do not provide information on the biological mechanism

of AD. The suggestion of how they provide a higher precision is due to the limited possibilities
of outcomes that define the neuropsychological scores, leading to overlaying patterns, as repre-
sented in Figure 9. This is, biomarkers that have fractional values are less subject to becoming

an integer value grid in comparison to neuropsychological tests. In the right matrix of Figure 11
the noise has a higher probability in average to increase the classification rate than proteomic
biomarker 7 however it does not mean irrelevancy [14]. As argued by [14], a feature that is
supposed to be irrelevant could contribute to enhancing the classifier performance.
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Figure 11: From right to left, probability matrix of a feature to provide higher classification rate

than others for the imbalance, undersampled and oversampled, ranks respectively. Label “A”
stands for column-wise and row-wise average.

The SVM classifier that uses binary adapted strategy when applied to the same multiclass clas-
sification problem achieves 92.39 ± 4.96% in 10 fold cross-validation for features 3,5, while
kNN with SMOTE achieves 94.34±3.91%. Since SVM is not a distance based classifier as kNN

there is no need for feature normalization. Using all features plus noise SVM achieves a higher
precision of 89.56 ± 6.01% when compared to kNN with SMOTE that achieves 80.84 ± 6.96%.
This precision difference between kNN and SVM for the larger feature combination is due to

the metric behavior when the dimensionality is increased [28]. The wKNN in equation (2.7)
was idealized to prevent the dimensionality effect by means of assuming that not all k near-
est neighbors would contribute equally to define a class assignment. The wkNN with triangular

kernel function, optimized k and L1 distance metric produces a precision of 81.03 ± 2.12%
for 10-fold cross-validation using all features combination plus noise and imbalanced classes.
Using same validation process the precision for the combination 3,5 reaches 92.20 ± 1.72% for
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wkNN. Despite the curse of dimensionality that affects kNN more than SVM and wkNN, the

kNN with SMOTE achieves higher precision in average compared to these methods without bal-
ance aids. For the canonical biomarkers combination, Aβ1−42 and p-tau181, the SVM reaches
33.34 ± 0.68% and the wkNN reaches 37.36 ± 3.02%.

4 CONCLUSION

Wrappers techniques for feature selection have shown to be efficient to find the suboptimal
combinations given by the rank for all imbalance aid strategies for the proposed problem. How-

ever, adding more features to test limits of greedy search could be less successful. Including
features is challenging because it increases the number of patients who did not undergo to all
examinations. This can be seen in the complete dataset available in ADNI. Fortunately, kNN
inspired data missing techniques are available and would be useful to identify more precise com-

binations that include interpretation benefits for AD mechanisms. However, to deal with im-
provements to kNN which imply in non-convex optimizations will require more studies. There
are options to increase kNN performance such as metric learning [28] and normalization strate-

gies [21]. However, this will increase the parameter space to optimize and improvements in the
computation performance. Even with the curse of dimensionality, the kNN with SMOTE over-
come in average SVM and wKNN in reproducing the definition. However, the benefits of data

balance would increment any classifier precision. The performed all-versus-all strategy requires
less classifiers to be built than binary strategies. The class defining features (labels 3,5) increase
artificially the class combinations for rank with 502 possibilities, however, it was useful to obtain

a comparative. Comparisons using non-cognitive features reveal that FDG contributes more to
increase the classification rate. However, more non-cognitive features are needed to observe if
dominance for FDG holds, this is a challenge given mentioned data issues for missing values and

data imbalance.
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RESUMO. Biomarcadores são medidas biológicas que ajudam a rastrear e compreender a

progressão fisiopatológica de várias doenças. A combinação de diferentes modalidades de

biomarcadores muitas vezes permite uma classificação de diagnóstico preciso. Na doença

de Alzheimer (DA), os biomarcadores são indispensáveis para identificar indivı́duos cog-

nitivamente normais destinados a desenvolver sintomas de demência. No entanto, usando

combinações de biomarcadores canônicas DA estudos têm mostrado repetidamente que as

taxas de classificação são baixas quando diferenciando entre indivı́duos controle, comprome-

timento cognitivo leve e DA. Além disso, na avaliação de múltiplas combinações de biomar-

cadores os classificadores enfrentam dificuldade tais como falta de dados e dados desba-
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lanceados. Uma vez que o número de combinações biomarcadores é fatorial então usamos

wrappers para evitar as múltiplas comparações. Neste trabalho comparamos a capacidade de

três técnicas wrapper de selecção de caracteristicas na obtenção de combinações de biomar-

cadores ao maximizar taxas de classificação. Além disso, como critério para os wrappers

usamos o classificador k-vizinhos mais próximos com preprosessamento de balanço de da-

dos, sobreamostragem aleatória e sobamostragem (SMOTE). Em geral nossa análise mostra

como as combinações de biomarcadores são afetadas pela estratégia de equilı́brio de dados.

Mostramos que os biomarcadores não-definidores de classe e não-cognitivos têm menos

precisão do que as medidas cognitivas para classificar AD. A nossa abordagem supera em

média os classificadores máquina de vetores de suporte e k-vizinhos mais próximos ponde-

rado com 94, 34 ± 3, 91% de precisão para biomarcadores que definem a classe.

Palavras-chave: k-vizinhos mais próximos, SMOTE, seleção de caracterı́sticas, biomar-

cadores de Alzheimer, problema de classificação.
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