
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

EDUARDO GERMANO DA SILVA

A One-Class NIDS for SDN-based SCADA
Systems

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Alberto Egon
Schaeffer-Filho

Porto Alegre
January 2017

CIP – CATALOGING-IN-PUBLICATION

Silva, Eduardo Germano da

A One-Class NIDS for SDN-based SCADA Systems / Ed-
uardo Germano da Silva. – Porto Alegre: PPGC da UFRGS, 2017.

100 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2017. Advisor: Alberto Egon Schaeffer-Filho.

1. Supervisory control and data acquisition. 2. Software-
defined networking. 3. Smart grids. 4. Network-based intrusion
detection system. 5. One-class classification. I. Schaeffer-Filho,
Alberto Egon. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitor: Prof. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretor do Instituto de Informática: Prof. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

Well... There were so many good moments, so many important people, so much learning
to thank that it is hard to describe everything in only one page. I will start where everyone
usually starts, thanking the parents. I’d like to thank them, for the foundations, care giving, and
opportunities that they provided me.

During my time at UFRGS, I was sure that I left the teenage years and entered in the
adult life. I’m grateful to Alberto, my advisor, and every professor of the Computer Networks
Group... Really, they are awesome. Alberto and Lisandro, I’m grateful for every opportunity
that you offered me... I didn’t give up of the PhD course, I just need some time to help who
need me today.

I want to thank (really, I’m very grateful) to my lab friends (they were much more than
simple colleagues), many times I wanted to give up and they didn’t let me. They were my
family here in Porto Alegre. They were there to listen me, to help me, and to make me continue
in this master’s degree. I won’t mention names, they know how important they were for me. I
thank to the evaluation committee’s professors, CNPq, ProSeG, INF, the Computer Networks
Group, UFRGS, and for everything good that will happen in my life henceforth.

Finally, I would like to emphasize that... This work was supported by ProSeG - Information
Security, Protection and Resilience in Smart Grids, a research project funded by MCTI/CNPq/CT-
ENERG # 33/2013.

Without further ado ... Thanks for everything!

AGRADECIMENTOS

Poxa... Foram tantos momentos bons, tantas pessoas importantes, tantos ensinamentos pra
agradecer que fica até difícil descrever tudo em uma página. Irei começar por onde geralmente
todos começam, agradecendo aos pais. Gostaria de agradecer aos meus pais, pela criação e
carinho que me deram, além das oportunidades que me proporcionaram.

Em meu período na UFRGS, tive a certeza de que saí da adolescência e ingressei na "vida
adulta". Devo isso ao Alberto, meu orientador, e a cada professor do Grupo de Redes... Sério
eles são demais. Alberto e Lisandro, obrigado por todas as oportunidades que vocês me ofer-
eceram... Eu não desisti do doutorado, só preciso de um tempo pra poder ajudar quem mais
precisa de mim hoje.

Agradeço (e agradeço muito mesmo) aos meus amigos de laboratório (eles foram muito
mais do que colegas), muitas vezes pensei em desistir e eles não deixaram. Eles foram a minha
família aqui em Porto Alegre. Eles estavam lá pra me escutar, me ajudar, e me fazer continuar
nesse mestrado. Não citarei nomes, eles sabem o quanto foram importantes pra mim. Agradeço
aos professores da banca, ao CNPq, ao ProSeG, ao INF, ao Grupo de Redes, à UFRGS, e por
tudo de bom que irá acontecer na minha vida a partir de agora.

Pra deixar tudo bunitinho, nos conformes, gostaria de salientar que... Este trabalho foi
apoiado pelo ProSeG - Information Security, Protection and Resilience in Smart Grids, um
projeto de pesquisa financiado pelo MCTI/CNPq/CT-ENERG # 33/2013.

Sem mais delongas... Obrigado por tudo!

"O Filho da empregada também vai virar Doutor".
— EDUARDO GERMANO

ABSTRACT

Power grids have great influence on the development of the world economy. Given the impor-
tance of the electrical energy to our society, power grids are often target of network intrusion
motivated by several causes. To minimize or even to mitigate the aftereffects of network intru-
sions, more secure protocols and standardization norms to enhance the security of power grids
have been proposed. In addition, power grids are undergoing an intense process of modern-
ization, and becoming highly dependent on networked systems used to monitor and manage
power components. These so-called Smart Grids comprise energy generation, transmission,
and distribution subsystems, which are monitored and managed by Supervisory Control and
Data Acquisition (SCADA) systems. In this Masters dissertation, we investigate and discuss
the applicability and benefits of using Software-Defined Networking (SDN) to assist in the de-
ployment of next generation SCADA systems. We also propose an Intrusion Detection System
(IDS) that relies on specific techniques of traffic classification and takes advantage of the char-
acteristics of SCADA networks and of the adoption of SDN/OpenFlow. Our proposal relies on
SDN to periodically gather statistics from network devices, which are then processed by One-
Class Classification (OCC) algorithms. Given that attack traces in SCADA networks are scarce
and not publicly disclosed by utility companies, the main advantage of using OCC algorithms
is that they do not depend on known attack signatures to detect possible malicious traffic. As
a proof-of-concept, we developed a prototype of our proposal. Finally, in our experimental
evaluation, we observed the performance and accuracy of our prototype using two OCC-based
Machine Learning (ML) algorithms, and considering anomalous events in the SCADA network,
such as a Denial-of-Service (DoS), and the failure of several SCADA field devices.

Keywords: Supervisory control and data acquisition. software-defined networking. smart
grids. network-based intrusion detection system. one-class classification.

Um NIDS baseado em OCC para sistemas SCADA baseados em SDN

RESUMO

Sistemas elétricos possuem grande influência no desenvolvimento econômico mundial. Dada
a importância da energia elétrica para nossa sociedade, os sistemas elétricos frequentemente
são alvos de intrusões pela rede causadas pelas mais diversas motivações. Para minimizar ou
até mesmo mitigar os efeitos de intrusões pela rede, estão sendo propostos mecanismos que
aumentam o nível de segurança dos sistemas elétricos, como novos protocolos de comunicação
e normas de padronização. Além disso, os sistemas elétricos estão passando por um intenso
processo de modernização, tornando-os altamente dependentes de sistemas de rede responsá-
veis por monitorar e gerenciar componentes elétricos. Estes, então denominados Smart Grids,
compreendem subsistemas de geração, transmissão, e distribuição elétrica, que são monitora-
dos e gerenciados por sistemas de controle e aquisição de dados (SCADA). Nesta dissertação
de mestrado, investigamos e discutimos a aplicabilidade e os benefícios da adoção de Redes
Definidas por Software (SDN) para auxiliar o desenvolvimento da próxima geração de sistemas
SCADA. Propomos também um sistema de detecção de intrusões (IDS) que utiliza técnicas
específicas de classificação de tráfego e se beneficia de características das redes SCADA e do
paradigma SDN/OpenFlow. Nossa proposta utiliza SDN para coletar periodicamente estatís-
ticas de rede dos equipamentos SCADA, que são posteriormente processados por algoritmos
de classificação baseados em exemplares de uma única classe (OCC). Dado que informações
sobre ataques direcionados à sistemas SCADA são escassos e pouco divulgados publicamente
por seus mantenedores, a principal vantagem ao utilizar algoritmos OCC é de que estes não
dependem de assinaturas de ataques para detectar possíveis tráfegos maliciosos. Como prova
de conceito, desenvolvemos um protótipo de nossa proposta. Por fim, em nossa avaliação ex-
perimental, observamos a performance e a acurácia de nosso protótipo utilizando dois tipos de
algoritmos OCC, e considerando eventos anômalos na rede SCADA, como um ataque de nega-
ção de serviço (DoS), e a falha de diversos dispositivos de campo.
Palavras-chave: scada. sdn. smart grids. nids. occ.

LIST OF FIGURES

2.1 A traditional Multipoint SCADA system. 21
2.2 SDN architecture. 26
2.3 Example of a one-class classifier for traffic classification. 32

4.1 Architecture overview of the proposed NIDS for SDN-based SCADA sys-
tems. 45

4.2 Diagram of the MapReduce algorithm of the proposed NIDS. 48
4.3 The information life-cycle inside the Historian Server and the Feature Se-

lector. 51
4.4 Diagram of the Classifier module. 53
4.5 Sequence diagram of the anomaly response mechanism. 54

5.1 General overview of the power grid simulated in our experiments. 58
5.2 Configuration of the network topology used in our experiments. 60
5.3 Positioning of the disgruntled employee in Case Study 1. 61
5.4 Confusion matrices generated for Case Study 1. 63
5.5 Traffic classification of our One-Class NIDS for SDN-Based SCADA sys-

tems. 63
5.6 ML metrics obtained from the experiments of Case Study 1. 64
5.7 Area of impact in Case Study 2. 65
5.8 Confusion matrices generated for Case Study 2. 66
5.9 ML metrics obtained from the experiments of Case Study 2. 67
5.10 Processing Time to create the representation model in Case Study 2. 68
5.11 Memory used to create the representation model in Case Study 2. 68

LIST OF TABLES

4.1 NIDS requirements for SCADA systems. 39
4.2 Most popular Kernel Functions. 42

5.1 Overview of our evaluation scenario. 59
5.2 ML metrics analyzed in our experiments. 62
5.3 Overview of the results obtained in Case Study 1. 63
5.4 Overview of the results obtained in Case Study 2. 67

LIST OF ABBREVIATIONS AND ACRONYMS

DNP3 Distributed Network Protocol 3

DoS Denial-of-Service

DPI Deep Packet Inspection

EPA Enhanced Performance Architecture

FCAPS Fault, Configuration, Accounting, Performance, and Security

ForCES Forwarding and Control Element Separation

FSP File Service Protocol

GOOSE Generic Object Oriented Substation Event

HMI Human-Machine Interface

I2RS Interface to the Routing System

ICT Information and Communication Technology

ICS Industrial Control System

IDMEF Intrusion Detection Message Exchange Format

IDS Intrusion Detection System

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISP Internet Service Provider

IT Information Technology

KPCA Kernel Principal Component Analysis

KSDMS Korean Smart Distribution Management System

LAN Local Area Network

ML Machine Learning

MMS Manufacturing Message Specification

MR MapReduce

MTP Multipurpose Transaction Protocol

MTU Master Terminal Unit

NIDS Network-based Intrusion Detection System

NIST National Institute for Standards and Technology

NoSQL Non Structured Query Language

OCC One-Class Classification

OCRF One-Class Random Forests

OCSVM One-Class Support Vector Machine

OPC Object Linking and Embedding for Process Control

OPEX Operational Expenditure

OSI Open Systems Interconnection

PC Personal Computer

PCECP Path Computation Element Communication Protocol

PES Power Engineering Society

PMU Phasor Measurement Units

QoS Quality of Service

RBF Radial Base Function

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

SDN Software-Defined Networking

SMV Sampled Measured Values

SVDD Support Vector Data Description

SVM Support Vector Machine

TC57 Technical Committee 57

TCP Transmission Control Protocol

WAN Wide Area Network

CONTENTS

1 INTRODUCTION . 14

1.1 Problem and Motivation . 14

1.2 Aims and Main Contributions . 15

1.3 Document Outline . 17

2 BACKGROUND . 18

2.1 Supervisory Control and Data Acquisition (SCADA) 18

2.1.1 Main Components . 18

2.1.2 SCADA Topologies . 20

2.1.3 Types of SCADA . 21

2.1.4 Communication Protocols . 22

2.2 Software-Defined Networking (SDN) . 25

2.2.1 The SDN Paradigm . 25

2.2.2 SDN-based SCADA Systems . 27

2.3 Traffic Classification . 29

2.3.1 Traffic Classification and Machine Learning 29

2.3.2 One-Class Classification (OCC) . 30

3 RELATED WORK . 33

3.1 SDN in Smart Grids . 33

3.2 SCADA IDSes . 34

3.3 Related Work Discussion . 36

4 ONE-CLASS NIDS FOR SDN-BASED SCADA SYSTEMS 38

4.1 NIDS Requirements . 38

4.2 OCC Algorithms . 39

4.2.1 One-Class Support Vector Machine (OCSVM) 42

4.2.2 Support Vector Data Description (SVDD) . 43

4.3 Architecture Overview . 44

4.3.1 SDN Controller . 46

4.3.2 Historian Server . 47

4.3.3 Feature Selector . 48

4.3.4 One-Class Classifier . 50

4.3.5 NIDS Management Interface . 52

5 PROTOTYPE AND EXPERIMENTAL EVALUATION 56
5.1 Prototype . 56
5.1.1 Evaluation Scenario . 57
5.2 Experimental Evaluation . 59
5.2.1 Case Study 1 - DoS Attack . 60
5.2.2 Case Study 2 - Misconfiguration of Slave Devices 64

6 CONCLUDING REMARKS . 69
6.1 Summary of Contributions . 69
6.2 Discussion and Lessons Learned . 70
6.3 Final Remarks and Future Work . 71

REFERENCES . 72

APPENDIXA PUBLISHED PAPER – IM 2015 80

APPENDIXB PUBLISHED PAPER – COMPSAC 2016 90

14

1 INTRODUCTION

Power grids are undergoing an intense modernization process through the use of Information
and Communication Technology (ICT), evolving the traditional power system into the so-called
Smart Grids (FARHANGI, 2010). Smart Grids have the potential to improve the generation,
transmission, and distribution of electrical energy (YAN et al., 2013)(WANG; XU; KHANNA,
2011). Smart Grids allow a more resilient, secure, and reliable power supply for end-users, such
as industries, schools, hospitals, and residences. Typically, power grids are complex environ-
ments, comprising thousands of equipment (e.g., transformers, relays, fuses, or disconnectors)
and devices that assist in the monitoring and control of resources, which rely on automated pro-
cesses for the operation of the grid (CAHN et al., 2013). An important component of a power
grid is the Supervisory Control and Data Acquisition (SCADA) system. SCADA systems are
widely distributed systems responsible for monitoring, controlling, and managing automated
processes and components, e.g. power substation and field devices, in the power grid (STOUF-
FER; FALCO; SCARFONE, 2011). Just as power grids are becoming Smart Grids, SCADA
systems also require efforts and technologies that facilitate resource management and allow the
monitoring of the proper operation of their communication networks (CAHN et al., 2013).

1.1 Problem and Motivation

Power grids are cyber-physical systems that have great influence on the economy and devel-
opment of a country (FARHANGI, 2010). Thence, it is indispensable that power grids provide
uninterrupted services to their end-users. Due to the importance of a power grid in the modern
society, it is natural that its components may be targeted by cyber-attacks which aim to dam-
age its operation (LI et al., 2012). Unfortunately, companies that manage the power grid are
concerned only with maintaining their components in operation. In other words, devices are
not frequently updated, and the security level of the power grid is not commonly reassessed for
facing emerging intrusion techniques (CHIKUNI; DONDO, 2007). This fact can be confirmed
by analyzing the SCADA systems of power grid maintainers. Differently from traditional In-
formation Technology (IT) systems, in which their components have a lifetime on the order of
3-5 years, SCADA systems use devices that uninterruptedly operate from 15 to 20 years (ZHU;
JOSEPH; SASTRY, 2011).

Most of the existing SCADA systems used in power grids were designed many years ago,
without meeting basic requirements of information security, such as confidentiality, integrity,
and availability (ZHU; JOSEPH; SASTRY, 2011). In the past, these systems operated in com-
pletely isolated environments, without any kind of connection to the Internet (IGURE; LAUGH-
TER; WILLIAMS, 2006). Theoretically, this scenario ensured that no malicious individual or
organization could invade the power grid, since there were "air gaps" that separated SCADA
systems from the Internet (CHIKUNI; DONDO, 2007). However, with the technology mod-

15

ernization, also came the necessity to access and perform remote maintenance of SCADA com-
ponents. Thus, SCADA systems have started to become connected directly or indirectly to the
Internet (FARHANGI, 2010). Although this tendency brings benefits, it allows hackers to eas-
ily collect information, invade, or damage the power grid operation, through techniques such as
Denial-of-Service (DoS), eavesdropping, brute force, or even using malicious softwares (LI et
al., 2012).

Currently, there is a concern with the security and the management of cyber-physical sys-
tems, e.g. power grids and SCADA systems. According to Dell Security Annual Threat Report
(2015), the number of attacks against SCADA systems in general has doubled in 2014 if com-
pared with the previous year. In countries such as the United States, United Kingdom, and
Finland, where SCADA systems are more likely to be connected to the Internet, 202,322 at-
tacks were registered only in 2014 (DELL, 2015). Unfortunately this number of attacks can be
even higher because the companies usually do not disclose information about the suffered at-
tacks, such as attack traces, or the impact of an attack. In addition, the rise of new techniques of
networked invasion and complex viruses/malwares for SCADA systems is increasingly usual.
Even with the appearance of Smart Grids, there is still a lack of adequate research in this context,
because: (i) cyber-terrorists are turning their attention to attack these infrastructures, propagat-
ing malwares or executing cyber-attacks. If these threats are not properly detected and neutral-
ized, they can cause outages in power supply, destroy power grid equipment, or even put lives
in danger (ZHU; JOSEPH; SASTRY, 2011); and, (ii) it is necessary the development of solu-
tions that improve the management of power grids and their components to reduce operational
expenditures (OPEX) and to provide services with more quality to their final users.

Given the importance of power grid infrastructures, more secure communication proto-
cols (MOHAGHEGHI; STOUPIS; WANG, 2009) and even standardization norms to enhance
the security of SCADA systems were proposed (IGURE; LAUGHTER; WILLIAMS, 2006). In
addition, recently, some research efforts to merge Software-Defined Networking (SDN) with
SCADA systems have been carried out (CAHN et al., 2013; DONG et al., 2015; RINALDI et
al., 2015). SDN is a promising network paradigm that can support the evolution of SCADA
communication networks as well. SDN introduces an architecture that simplifies network oper-
ations by relying on a logically centralized element often referred to as controller (FEAMSTER;
REXFORD; ZEGURA, 2013). The SDN paradigm adds the flexibility required to quickly de-
ploy and configure new field devices and to develop more complex network services (e.g., to
detect cyber-attacks and misconfigurations) in the context of SCADA networks (RINALDI et
al., 2015).

1.2 Aims and Main Contributions

Given the importance of the electrical energy to our society, power grids are often target of
network intrusion motivated by several causes, such as to cause financial losses for the people

16

and organizations. In this context, Intrusion Detection Systems (IDSes) are essential to assist
in detecting and mitigating the threats that may damage equipment or cause outages in power
supply. For this reason, the main aim of this Master thesis is to propose an IDS that relies on
specific techniques of traffic classification and takes advantage of the characteristics of SCADA
networks and of the adoption of SDN/OpenFlow. To achieve the main aim, this document has
other three secondary aims, that are:

1. to investigate the applicability and benefits of using SDN in Smart Grids environments;

2. to investigate the basic requirements of IDSes for SCADA systems;

3. to investigate the existing techniques for traffic classification in order to identify an ap-
proach that can be used for detecting anomalous behaviors in SCADA networks without
relying on third-party SCADA attack traces;

The IDS proposed in this document is able to detect anomalous networking behavior of
SCADA systems used in power generation, transmission, and distribution. Our solution does
not rely on third-party SCADA attack traces and learns the network behavior of a SCADA sys-
tem to infer possible threats, such as malware propagation, failures in field devices, or intrusion
of malicious individuals in the power grid. We mainly rely on the OpenFlow protocol (FEAM-
STER; REXFORD; ZEGURA, 2013) to periodically gather information about the SCADA net-
work, and on the use of One-Class Classification (OCC) algorithms. The OCC technique can
detect anomalies in datasets using initially only a homogeneous training set (KHAN; MAD-
DEN, 2010), that in the case of SCADA systems can be the normal system functioning.

To the best of our knowledge, this is the first time that a solution that uses OCC algorithms
for detecting network anomalies is presented in the specific context of SDN-based SCADA
systems. Thus, the main contributions of this Masters thesis are:

1. a strategy based on SDN/OpenFlow to periodically collect information about a SCADA
network;

2. a flexible NIDS based on OCC techniques to detect anomalies in SCADA networks with-
out using third-party SCADA attack traces;

3. two case-studies that rely on simulated traditional power grids to prove the concept of the
proposed NIDS’s prototype.

In addition, to demonstrate the benefits of our proposed Network-based Intrusion Detection
System (NIDS), we present an analysis comparing OCC-based Machine Learning (ML) algo-
rithms. This comparison shows the efficiency of our approach to detect cyber-attacks targeted
at a large-scale SCADA system for power grids. In our experimental evaluation, we observed
the performance and accuracy of our prototype, considering anomalous events in the SCADA
network, such as a DoS, and the failure of several SCADA field devices.

17

1.3 Document Outline

The remaining of this document is presented as follows. In Chapter 2, we present back-
ground on SCADA systems, on the SDN paradigm and its benefits in Smart Grids environ-
ments, as well as fundamental concepts of OCC techniques. In Chapter 3, we present some
research efforts related to this Masters thesis, and a brief discussion about the advantages of
the proposed NIDS in relation to the State-of-the-Art. In Chapter 4, we present the require-
ments for the proper operation of our solution. In addition, we detail the OCC algorithms used
in our prototype, and we also present an overview of the architecture and its components. In
Chapter 5, we describe the technologies employed in our prototype, as well as case-studies pre-
senting the evaluation results and a performance analysis of our approach. Finally, in Chapter 6,
we conclude this thesis, listing our contributions to the State-of-the-Art and lessons learned in
the development of this work. In addition, we also present the final remarks and future work.

18

2 BACKGROUND

This chapter presents the necessary theoretical background for a better understanding of our
work. The characteristics of SCADA systems, as well as the main architectures, communication
protocols, and the main components are described in Section 2.1. Concepts about the SDN
paradigm and the benefits that the OpenFlow protocol can bring for Smart Grids are presented in
Section 2.2. Finally, Section 2.3 explains concepts about traffic classification, OCC techniques,
and their advantages in SCADA environments.

2.1 Supervisory Control and Data Acquisition (SCADA)

Supervisory Control and Data Acquisition (SCADA), also known as Industrial Control Sys-
tem (ICS), is a kind of cyber-physical system used for controlling automated processes, monitor-
ing resources and devices, and acquiring data on the environment in which it operates (STOUF-
FER; FALCO; SCARFONE, 2011). SCADA systems are largely used in industries and critical
infrastructures, such as oil refineries, gas pipelines, telecommunication systems, water treat-
ment and distribution stations, and power grids (IGURE; LAUGHTER; WILLIAMS, 2006).
This kind of system has a high-level of distributed components, and is ideal for controlling ge-
ographically dispersed assets that are scattered over thousands of square kilometers, where the
centralized data acquisition and control are critical to the system operation as a whole (STOUF-
FER; FALCO; SCARFONE, 2011).

SCADA systems are essential to improve the quality, to make flexible, and to enhance the
productivity of a factory (SCIACCA; BLOCK, 1995). The main benefit of SCADA systems
is the meaningful reduction of OPEX because they improve the reliability and performance
of supervised processes, since humans are no longer needed for collecting information about
the operational environment. Furthermore, SCADA systems permit the remote operation in
a process directly from a control center, generating alarms that indicate in real time possible
system faults. In addition, SCADA systems typically are able to generate reports and charts
about alarms and trends. These benefits are essential to enhance the factory availability because
the SCADA features permit the optimization of decision-making. Thus, SCADA systems are
a fundamental piece in an automated process, and for this, they are very important to their
maintainers (ZHU; JOSEPH; SASTRY, 2011).

2.1.1 Main Components

Generally, SCADA systems may comprise thousands of equipment to control processes and
acquire information (CAHN et al., 2013). However, SCADA systems are composed, basically,
of two main types of components (STOUFFER; FALCO; SCARFONE, 2011), the Master Sta-
tion and its substations, which are discussed in the following:

19

• Master Station: Also named Control Center, the Master Station comprises SCADA servers,
Human-Machine Interfaces (HMIs), and the Master Terminal Unit (MTU). Usually, the
data gathered from the operational environment is stored on SCADA servers (BOYER,
2009). In turn, HMIs are devices usually linked to SCADA servers to provide field data,
detailed schematics for a particular sensor or machine, trending, and management in-
formation to the system operators. SCADA operators can send directly instructions to
the automated processes through HMIs. Furthermore, HMIs are responsible for showing
charts and reports about the system operation (BAILEY; WRIGHT, 2003). Finally, the
MTU device is the main component of a Master Station. An MTU device receives peri-
odically field data and operational data from intermediate stations and substations, and it
permits the control of remote devices by human operators (STOUFFER; FALCO; SCAR-
FONE, 2011). On the one hand, in smaller SCADA systems, the Master Station may be
composed of a single Personal Computer (PC). On the other hand, in larger SCADA sys-
tems, the master station may include multiple servers, distributed software applications,
and disaster recovery sites to enhance system resilience;

• Substations: A substation is a standalone data acquisition and control unit which moni-
tors and controls equipment at some remote location from the Master Station (BAILEY;
WRIGHT, 2003). Normally, a SCADA system may contain several substations gathering
information simultaneously. Substations comprise specific equipment, e.g. field devices

and Remote Terminal Units (RTUs). Field devices are directly connected to the equip-
ment that are being monitored and controlled by the SCADA system. There are two types
of field devices, sensors (responsible for monitoring physical parameters, e.g. resources
and the operational environment) and actuators (that control system modules, applying
actions directly on the processes monitored by the SCADA system) (NIST, 2014). Field
devices convert the physical parameters (such as, speed, level, etc.) into electrical sig-
nals that will be accessed by the RTU. Such signals can be analog or digital, depending
on the equipment that are monitored (STOUFFER; FALCO; SCARFONE, 2011). Field
devices are connected to the RTUs, which in turn, retrieve information about compo-
nents and transfer this information to the MTU. An RTU is a control device, generally
micro-processed, that monitors and controls equipment located in substations. RTUs are
flexible, programmable, and precise devices, and they are the principal SCADA device of
a substation (CHIKUNI; DONDO, 2007).

It is important to note that depending on the topology adopted (the main SCADA topologies
are discussed on Section 2.1.2), in some cases, a SCADA system may use intermediate stations
(also named sub-MTUs) that are similar to master stations. A sub-MTU can autonomously
control the substations within its range and provide the storage of longer-term data related to
their subordinate devices. However, differently from master stations, sub-MTUs periodically
report their operational information and are under the control of an MTU (BAILEY; WRIGHT,

20

2003).

2.1.2 SCADA Topologies

SCADA systems are largely adopted by private companies and public-sector service providers.
SCADA works well in many different types of enterprises because they can range from simple
configurations to large and complex projects. Depending on the application and the environ-
ment, SCADA systems can exchange data and send commands to their processes and com-
ponents in real-time (IGURE; LAUGHTER; WILLIAMS, 2006). Hence, there are different
topologies used in current SCADA systems (STOUFFER; FALCO; SCARFONE, 2011). A
SCADA network topology must be defined based on aims and characteristics of the system that
will be controlled, the data that will be transmitted, as well as the connection speed require-
ments (KANG et al., 2009).

According to Kang et al. (2009), there are four basic SCADA topologies that are largely
used: Monopoint, Multipoint, Multipoint with sub-MTUs, and Multiple MTUs. These topolo-
gies are discussed below:

• Monopoint: This is the simplest SCADA topology (STOUFFER; FALCO; SCARFONE,
2011). In this kind of SCADA system, the data is exchanged between only two stations,
i.e., only one MTU can monitor an unique RTU. The stations in this topology can com-
municate in full duplex mode (transmitting and receiving on two separate frequencies),
or in simplex mode (with only one frequency) (BAILEY; WRIGHT, 2003);

• Multipoint: Similar to the previous topology, Multipoint SCADA is functionally sim-
ple; however, this topology is expensive because of the individual transmission channels
required for each connection (STOUFFER; FALCO; SCARFONE, 2011). In this config-
uration, there is one MTU to monitor multiple RTUs. If two RTUs need to exchange in-
formation between each other, they need the arbitration of an MTU (BAILEY; WRIGHT,
2003). The Multipoint topology is presented in Figure 2.1, and it is mainly used for
SCADA systems for utility services, especially in power grids (KANG et al., 2009);

• Multipoint with sub-MTUs: Large-scale SCADA systems, containing hundreds of RTUs,
often employ sub-MTUs to alleviate the burden on the MTU (STOUFFER; FALCO;
SCARFONE, 2011). Very similar to Multipoint SCADA, this topology relies on sub-
MTUs for directly controlling RTUs. In this topology, sub-MTUs also report their data
to an MTU. The Multipoint with sub-MTUs topology also is largely adopted in SCADA
systems for power grids (KANG et al., 2009);

• Multiple MTUs: This topology permits the adoption of sub-MTUs if necessary. The
Multiple MTUs topology is often used to enhance the resilience of the SCADA system.
Thus, it is possible to use a second MTU that provides redundancy in the event of a
primary MTU malfunction (STOUFFER; FALCO; SCARFONE, 2011). Furthermore,

21

Figure 2.1: A traditional Multipoint SCADA system.

M
as

te
r

St
at

io
n

MTUMTU

ActuatorActuator

Substation 1
ActuatorActuator

Substation 2
ActuatorActuator

Substation n

SensorSensor

RTURTU

SensorSensor

RTURTU

SensorSensor SensorSensor SensorSensor SensorSensor

RTURTU

Source: by author (2016).

this topology also is used, in specific cases, to enable the control of an RTU by more
than one MTU. In addition, the MTUs can act in a peer-to-peer communication manner.
This is a more complex arrangement requiring sophisticated protocols to handle packet
collisions between different stations wanting to transmit data at the same time (BAILEY;
WRIGHT, 2003).

2.1.3 Types of SCADA

Over the years, SCADA systems were also adapted to follow technological innovations (e.g.,
the appearance of new transmission techniques, and more sophisticated equipment), to increase
the security level of components, and to provide more accurate monitoring (SAYEGH et al.,
2014). According to McClanahan (2002), the development of SCADA systems are divided in
three generations that are described below:

• First Generation: This generation is also known as monolithic, and the concept of SCADA

22

systems were centered in mainframe systems. In this context, SCADA systems only used
proprietary communication protocols, and operated in completely isolated environments,
without any kind of connection to the Internet (IGURE; LAUGHTER; WILLIAMS,
2006). This environment ensured that malicious individuals did not invade the master
station and manipulate the system, since there were "air gaps" separating SCADA sys-
tems from the Internet (CHIKUNI; DONDO, 2007). Furthermore, the connectivity with
the master station was limited. Thus, RTUs only sent information to the MTU when
requested (BAILEY; WRIGHT, 2003);

• Second Generation: The second generation of SCADA systems was characterized by the
miniaturization of components and the distribution of processing across multiple systems.
Distributed SCADA systems contained multiple stations, each one with a specific func-
tion. These stations were connected to a Local Area Network (LAN) and shared informa-
tion with each other in real-time. As well as the first generation, distributed SCADA sys-
tems used proprietary components (such as, hardware, software, and peripherals) based
on closed platforms that were incompatible with other available solutions (MCCLANA-
HAN, 2002);

• Third Generation: The major improvement in the third generation was the utilization of
open standards and communication protocols. This characteristic enabled to use of super-
visory functions not only in LANs, but also in long-range networks, such as Wide Area
Networks (WANs) (STOUFFER; FALCO; SCARFONE, 2011). The adoption of open
standards eliminated several limitations inherited from previous generations. In addition,
there was a large adoption of IP-based protocols for communicating SCADA compo-
nents. The disaster survivability is another advantage enabled through the distribution
of SCADA systems in WANs. In other words, distributing the processing across distinct
locations allowed to develop SCADA systems that can continue in operation even if an
MTU or RTU is completely destroyed (MCCLANAHAN, 2003).

2.1.4 Communication Protocols

When the first SCADA systems were developed, their communication protocols possessed
the goal to only provide good performance, ensuring that the procedural requirements would
be met (IGURE; LAUGHTER; WILLIAMS, 2006). Thus, oil refineries, power grids, other
industries, and the manufacturers of control devices developed their own protocols and commu-
nication structures. Over the years, with different kinds of clients requesting for personalized
equipment, adequate industrial protocols had to be developed, generating an immense diver-
sity of available solutions (ALMALAWI, 2014). Nowadays, there are about over 200 protocols
being used in the various types of SCADA in the world (IGURE; LAUGHTER; WILLIAMS,
2006).

The pioneers SCADA protocols were designed to operate over serial media. Most of these

23

protocols were proprietary standards developed by individual companies (IGURE; LAUGH-
TER; WILLIAMS, 2006), such as Modbus (HUITSING et al., 2008), Distributed Network
Protocol 3 (DNP3) (CLARKE; REYNDERS; WRIGHT, 2004), Fieldbus (THOMESSE, 2005),
and Profibus (BENDER, 1993). These protocols were simple and easy to implement, and they
met the requirements of legacy SCADA systems. However, due to the increasing number of in-
terconnected devices and the complexity level of these cyber-physical systems, the industry has
moved into accepting common open standard protocols (IGURE; LAUGHTER; WILLIAMS,
2006), e.g. the adoption of TCP/IP-based communication. Thus, many protocols have been
ported to operate over the TCP/IP stack, and new protocols have been proposed. Although there
are a wide range of SCADA protocols e.g. the emerging WirelessHART protocol, EtherCAT,
ControlNet, the BSAP protocol, nowadays, the most used communication protocols in SCADA
systems are Modbus, DNP3, and IEC-61850 (BARBOSA, 2014). These three last protocols are
discussed in more detail below:

• Modbus: Introduced in 1979 by Schneider Electric, Modbus is one of the oldest, but most
widely used industrial control protocols (HUITSING et al., 2008). The Modbus protocol
is an open communication standard, supported by a large number of products and ven-
dors on the market today. The open specification and the TCP extension of Modbus have
contributed to its popularity, especially in the oil and gas sector (EDMONDS; PAPA;
SHENOI, 2008). This protocol is the de facto standard for process control networks.
Modbus establishes the rules and the structure of messages used by SCADA equipment
to communicate amongst themselves (FOVINO et al., 2010). The Modbus application
layer defines the mechanisms by which devices exchange data for operating and control-
ling industrial processes (SWALES, 1999). As Modbus is a protocol which is independent
of the physical network layer, Modbus serial line can be integrated seamlessly into Mod-
bus TCP networks, using simple gateways (AL-DALKY et al., 2014). This is transparent
for the application. The Modbus protocol relies on a simple request/reply communication
mechanism between a master device and slave devices (FOVINO et al., 2010). For exam-
ple, an MTU (master) might send a "read" message to an RTU (slave) to obtain the value
of a process parameter (e.g., the temperature of a particular equipment). Alternatively,
the MTU might send a "write" message to an RTU to perform a control action (e.g., open
a specific valve). Furthermore, this protocol supports unicast and multicast messages and
it is relatively easy to implement (EDMONDS; PAPA; SHENOI, 2008).

• DNP3: Over the last decade, DNP3 has emerged as one of the most prevalent interna-
tional standard protocols in the SCADA market. DNP3 is an open protocol developed by
Harris Controls Division, Distributed Automation Products in the early 1990s and it was
released to the industry based DNP3 Users Group in November 1993 (CLARKE; REYN-
DERS; WRIGHT, 2004). The DNP3 protocol was developed to achieve interoperability
among systems in the electric utility, oil and gas, water/waste water and security indus-

24

tries, and it is the dominant protocol for SCADA system in North America, Australia, and
China (FOVINO et al., 2010). DNP3 is specifically developed for interdevice communi-
cation involving RTUs, and provides for both Field Device to RTU and MTU to Field De-
vice/RTU. DNP3 permits the multipoint communication between a master device and one
or more slave devices. Each device is identified by an unique address, that ranges from
0 to 65519 (LU et al., 2011). In addition, this protocol permits the emission of frames in
diffusion, i.e., when a master device sends a message, this message propagates to all other
nodes of the topology. The DNP3 protocol was designed based on Enhanced Performance
Architecture (EPA) (STRAYER; WEAVER, 1988). EPA is a simplified variation of the
Open Systems Interconnection (OSI) model which contains only three layers, physical,
data link, and application (STRAYER; WEAVER, 1988). However, this protocol con-
tains segmentation and rebuilding functions to enable the transmission of messages with
2 or more kbytes, creating a pseudo-layer of transport (LU et al., 2011). Different from
Modbus, the DNP3 data link layer manages the communication in an equilibrated mode,
which means that either device, master or slave, can initiate the transmission of messages.
To solve possible conflicts in the emission of messages, the DNP3 protocol contains a
mechanism of collision management (CLARKE; REYNDERS; WRIGHT, 2004).

• IEC-61850: IEC-61850 was released in 2004 and it is a part of the International Elec-
trotechnical Commission’s (IEC) Technical Committee 57 (TC57) reference architecture
for electric power systems (MACKIEWICZ, 2006). The scope of IEC-61850 was orig-
inally focused on substations, however, there are currently discussions to define IEC-
61850 for the RTU to MTU communication protocol (DORSCH et al., 2014). The
IEC-61850 norm is a standardized data model based on principles of object orienta-
tion (MACKIEWICZ, 2006). Different from the other protocols, IEC-61850 defines sev-
eral aspects of the substation communication network, such as the requirements, the sys-
tem and project management, communication requirements, basic communication struc-
tures, and so on (BRUNNER, 2008). Although this standard defines several aspects in
a substation, in this section we will only discuss the protocols used by IEC-61850. The
communication paradigm of IEC-61850 relies abstract data models that can be mapped to
a number of protocols. Hence, instead of determining a specific protocol for each layer,
IEC-61850 permits the mapping of objects and services to other protocols that attend the
required data and services (MACKIEWICZ, 2006). Currently, the abstract data models
defined in IEC-61850 are mapped into three three protocols, e.g. Manufacturing Message
Specification (MMS) (WANG et al., 1994), Generic Object Oriented Substation Event
(GOOSE) (MOHAGHEGHI; STOUPIS; WANG, 2009), and Sampled Measured Values
(SMV) (LEE et al., 2008). The MMS protocol relies on unicast messages to exchange
analog and digital data. Generally, the MMS messages indicate the state of a particu-
lar equipment. In turn, GOOSE messages are used for multicast communications. The
GOOSE protocol is responsible for information about the operation of any protection or

25

digital signal. Differently from MMS, GOOSE is based on UDP datagrams. Finally,
SMV is used for analog readings of equipment into the substation (SIDHU; YIN, 2007).

Unfortunately, legacy SCADA protocols were developed focused only on performance,
placing in background security aspects (CHIKUNI; DONDO, 2007). For example, the IP-
versions of Modbus and DNP3 offer weak packet confidentiality assurance. Thus, these proto-
cols allow, for example, the information exchange between SCADA devices to be transmitted
in clear text. Although SCADA systems were originally conceived to operate in completely
isolated environments, nowadays these systems are highly interconnected and often linked to
the Internet. This trend was strongly motivated by the necessity to perform maintenance and
to access remotely SCADA components but it also potentially enables malicious individuals
to access the system (MCCLANAHAN, 2003). Due to the importance of these cyber-physical
systems, an targeted cyber-attack can result in catastrophic consequences.

In addition to the IEC, there are also other efforts that focus on standardizing cyber-physical
system and several professional organizations have been developing standards to improve the
security of SCADA systems. For example, The Institute of Electrical and Electronics Engi-
neers Power Engineering Society (IEEE-PES) has a working group for addressing issues of
risk assessment of information security in SCADA networks. The Object Linking and Embed-
ding for Process Control (OPC) Foundation is also another organization working towards open
connectivity in industrial automation using open standards. OPC has developed standards for
implementing data access, alarms, event management, and even Web access to SCADA net-
work devices (IGURE; LAUGHTER; WILLIAMS, 2006). Furthermore, The National Institute
for Standards and Technology (NIST) released a complete guide to ICS security. NIST also fo-
cuses efforts on enhancing the security of master stations (STOUFFER; FALCO; SCARFONE,
2011).

2.2 Software-Defined Networking (SDN)

In Section 2.2.1 is presented fundamental concepts of the SDN paradigm, such as the ad-
vantages of this architecture, the main SDN implementations, and its main components. In
addition, the advantages of merging SDN in the context of SCADA systems and Smart Grids is
described in Section 2.2.2.

2.2.1 The SDN Paradigm

Software-Defined Networking (SDN) is an emerging architecture for controlling, managing,
and monitoring network traffic and switching devices. It is a dynamic, adaptable, controllable,
and flexible architecture that provides an extensible platform for delivery of network services,
capable of responding quickly to requirement changes (MONSANTO et al., 2013). Differently
from traditional networks, SDN decouples the network control and the forwarding planes. In

26

addition to this characteristic, SDN also provides other two planes, the application plane, and the
management plane. Thus, the control plane is responsible for decision making, updating flow
tables of switching devices, and for implementing routing protocols. In turn, the forwarding
are responsible for switching packets. The application plane executes SDN applications on the
network, such as network visualization, load balancers, and firewalls (KREUTZ et al., 2015).
Finally, the management plane is responsible for monitoring, configuring, and maintaining the
components of each plane in an SDN environment (WICKBOLDT et al., 2015). Figure 2.2
illustrates the SDN architecture and its components.

Figure 2.2: SDN architecture.

C
o

n
tr

o
l P

la
n

e

Switch 1Switch 1 Switch 2Switch 2 Switch 3Switch 3 Switch nSwitch n

Controller 1Controller 1

Fo
rw

ar
d

in
g

P
la

n
e

Controller 2Controller 2 Controller nController n

A
p

p
lic

at
io

n

P
la

n
e

Application 1 Application 2 Application n

M
an

ag
em

en
t

P
la

n
e

Manager 1

Manager 2

Manager 3

Source: by author (2016).

In traditional networks, the control plane is coupled and is executed in each network de-
vice. Thus, often it is not possible to manage situations that have not been anticipated (SEZER
et al., 2013), such as the network growing, or the addition of a new communication protocol.
However, SDN can simplify the network management because it offers to network program-
mers a comprehensive view of the network and the ability to control devices from a centralized
control plane, since the decision-making logic is not in network devices but in external con-
trollers (FEAMSTER; REXFORD; ZEGURA, 2013). Further, each traditional device has its
proprietary protocols. This makes the network devices complex to configure. The OpenFlow
protocol (MCKEOWN et al., 2008) solves this problem. OpenFlow is an SDN implementation
proposed to standardize the communication between the control plane and the forwarding plane.

27

From the traditional network management point-of-view, there are several benefits in adopting
SDN. It simplifies or even solves critical management tasks. For example, a traditional network
management task, network discovery, is naturally solved with SDN because its devices need
to be registered or discovered by the network controller in order to establish a communication
path between control and forwarding planes (WICKBOLDT et al., 2015).

Due to the benefits of SDN in relation to traditional networks, there are others initiatives
that implement this promising network paradigm, such as Forwarding and Control Element
Separation (ForCES) (SEZER et al., 2013), Path Computation Element Communication Proto-
col (PCECP) (PAOLUCCI et al., 2013), and Interface to the Routing System (I2RS) (HARES;
WHITE, 2013). However, OpenFlow stands out as the most widespread and important proto-
col for SDN implementation. OpenFlow was proposed for standardizing the communication
between control and forwarding planes. This protocol defines how applications running on the
control plane can program the behavior of each network switch. Usually, an OpenFlow-based
SDN network consists of the following components (MCKEOWN et al., 2008):

• OpenFlow Switches: Data forwarding devices that use a flow table to forward packets;

• Flow Table: A table that contains a list of flow entries and associated actions to be applied
to the respective flows;

• OpenFlow Controller: Software component that manipulates and controls the flow tables
of switches;

• Secure Channel: Communication channel that connects each switch to a controller and
allows the OpenFlow controller to install flow rules. This secure channel enables the
controller to manage and control all network switches, and to send and receive control
messages to and from the switches.

2.2.2 SDN-based SCADA Systems

The incorporation of SDN into SCADA systems for Smart Grids emerges as a promis-
ing research area, since SDN can help in the evolution of SCADA communication networks,
facilitating the development of network applications, and collaborating with the power grid
modernization. Thus, in this document we advocate the use of SDN to assist in the manage-
ment of SCADA systems. SDN can enable more flexible SCADA networks, since the addition
of new policies and services requires changing the control plane only. Arguably, the use of
SDN in SCADA will support more resilient systems, as solutions to detect and mitigate cyber-
attacks and other threats can be more easily implemented in the controller (SILVA et al., 2015b).
SCADA systems can benefit from the characteristics of SDN in several ways:

• Centralized Management: The centralized control plane offers a global view of the net-
work (WICKBOLDT et al., 2015). Thus, an SDN-based SCADA master station will be
able to manage not only SCADA devices, but also monitor and control the network that

28

interconnects these devices;

• Flexibility: SDN enables more flexible systems (FEAMSTER; REXFORD; ZEGURA,
2013), in which network applications and communication protocols can be modified via
a logically centralized controller. In SCADA systems, this will permit easily adding new
equipment (such as, HMIs, RTUs, and field devices) or upgrading existing network ap-
plications in SCADA networks;

• Programmability: It is possible to easily add new functionality to the network on de-
mand via the SDN controller. In SCADA, this will allow creating a range of customized
services, e.g. to control the reading frequency of field devices at a specific time of day,
to perform load balancing between communication links, to optimize the operation of
system components, or even to identify and mitigate traffic anomalies;

• Standard API: The OpenFlow protocol provides a standard API for controlling the behav-
ior of network switching devices. In SCADA networks, this standardization will permit a
better integration of geographically dispersed equipment from different vendors.

In addition, the characteristics of SDN can also enhance Fault, Configuration, Accounting,

Performance, and Security (FCAPS) management in Smart Grids (SILVA et al., 2015b). The
possible benefits of SDN-based SCADA systems for each FCAPS property are presented below:

• Fault: SDN enables the implementation of mechanisms for increasing the resilience of
SCADA systems. The centralized view of the SDN controller allows more efficient fault
detection techniques, isolation of compromised components, and remediation of abnor-
mal operation in Smart Grid networks caused by both misconfigured equipment or mali-
cious softwares;

• Configuration: The OpenFlow protocol provides a standard API for the correct configu-
ration of new devices added to the SCADA network and their communication protocols.
This can reduce the configuration overhead of these components, since an unique dis-
tribution substation is usually composed of thousands of field devices, such as sensors,
circuit breakers, actuators, relays, and transformers (CAHN et al., 2013);

• Accounting: The measurement capabilities of the OpenFlow controller provides the
ability to collect metrics and statistics about the network traffic through native coun-
ters (SILVA et al., 2015a). This information can be used in dimensioning the capacity of
the SCADA network, to plan the growth of the power grid, or to detect abuses in resource
usage and intruders in the power grid;

• Performance: An SDN-based SCADA system can facilitate the use of Quality of Service
(QoS) policies in Smart Grid environments, to perform load balancing between commu-
nication links and to optimize the operation of system components;

• Security: The controller also permits the network implementation of applications that can
add more security to Smart Grids, e.g. in terms of protecting the information exchanged in

29

SCADA networks, or mainly creating sophisticated mechanisms for traffic classification
that detect malicious activities on SCADA environments.

2.3 Traffic Classification

In Section 2.3.1 the definition of traffic classification and the techniques based on Machine
Learning is presented. Finally, fundamental concepts of One-Class Classification and its exam-
ples are described in Section 2.3.2.

2.3.1 Traffic Classification and Machine Learning

In computing, classification is the task of learning a target function that maps each new in-
stance into one of the predefined classes (KHAN; MADDEN, 2010). Thus, traffic classification
can be defined as the task of associating a particular network traffic according to the application
that generated it. Traffic classification techniques can be used for clustering IP traffic flows into
groups that have similar traffic patterns, or for classifying one or more applications of inter-
est (NGUYEN; ARMITAGE, 2008). Traffic classification techniques are capable of identifying
patterns in the sampled network traffic that, for example, may indicate malicious traffic, such as
DoS attacks, or malware propagation.

Many security-related tools, such as anti-virus and anti-malware applications rely on traffic
classification to detect the application behind a given IP flow (ESTE; GRINGOLI; SALGAR-
ELLI, 2009). In the context of Internet Service Providers (ISPs), traffic classification enables
the identification of traffic patterns, and what classes of applications are being used by a user
at any given point in time (NGUYEN; ARMITAGE, 2008). Hence, the ability of assigning
traffic flows to classes of service is seen as a priority by many ISPs. The algorithms for traffic
classification are essential for advanced network management and traffic engineering (ESTE;
GRINGOLI; SALGARELLI, 2009).

Traditional traffic classification techniques rely on the inspection of TCP packets or UDP
port numbers, or the reconstruction of protocol signatures in packet’s payload (ERMAN; AR-
LITT; MAHANTI, 2006). These approaches suffer several limitations, e.g. if an application
adopt an unknown port to avoid detection, or if the application’s packets are encrypted (DAIN-
OTTI; PESCAPE; CLAFFY, 2012). To address the aforementioned drawbacks, many re-
searches proposed the adoption of Machine Learning (ML) techniques for traffic classification,
creating an inter-disciplinary blend of IP networking and data mining techniques (NGUYEN;
ARMITAGE, 2008). Traffic classification techniques based on ML fall into two main cate-
gories:

• Supervised Learning: In supervised learning, classes are defined a priori, and samples
are given to the system already labeled with classes (CARUANA; NICULESCU-MIZIL,
2006). Supervised algorithms require an initial step named training step. In this step,

30

the classifier learns the profile of one or more predefined target classes. Thus, the clas-
sifier will be ready for classifying new samples. This technique has achieved results
comparable to Deep Packet Inspection (DPI) (DAINOTTI; PESCAPE; CLAFFY, 2012).
Support-Vector Machines (SVM) (CORTES; VAPNIK, 1995) and Naive Bayes (LEWIS,
1998) are examples of supervised algorithms;

• Unsupervised Learning: Differently from supervised learning, unsupervised algorithms
do not require a training step, and they identify distinct classes and assign samples to
the classes (clustering) (DAINOTTI; PESCAPE; CLAFFY, 2012). Unsupervised learn-
ing requires manual input to determine the classes of the clustered data. However, this
technique does not use historical information or a data model to produce the data clus-
tering, but only the similarities observed in the samples (ALMALAWI, 2014). Exam-
ples of unsupervised algorithms are K-Means (JAIN, 2010), DBSCAN (BORAH; BHAT-
TACHARYYA, 2004), and AutoClass (CHEESEMAN et al., 1993).

The number of classes also defines a classifier. Binary and multiclass classifiers are the
most known ML techniques for traffic classification. On the one hand, binary classifiers are
algorithms trained with positive and negative target classes. Thus, if a binary classifier has a
training set containing two classes (e.g., FTP and HTTP traffic), the classifier will be able to
classify a new sample into one of these two classes (ESTE; GRINGOLI; SALGARELLI, 2009).
On the other hand, a multiclass classifier can use a training set composed of several target
classes (such as, HTTP, FTP, BGP, and DNS) and, consequently, it will be able to predict a new
instance into one of the target classes (CARUANA; NICULESCU-MIZIL, 2006). However,
binary and multiclass classifiers require the set of instances that characterize the target classes in
the training step to operate. These approaches are not feasible if, in the classification step, a new
traffic profile (a novelty) in relation to the existing classes on the training set emerges (KHAN;
MADDEN, 2010). Thereby, a new protocol may be erroneously classified into an existing
category by a multiclass classifier specialized for traffic classification.

2.3.2 One-Class Classification (OCC)

ML offers a wide range of mechanisms that can be applied for traffic classification and for
detecting intrusions in different scenarios (CHANDOLA; BANERJEE; KUMAR, 2009). In
this context, OCC algorithms were designed to alleviate the restriction that traditional classi-
fiers (binaries and multiclasses) have regarding the training step and novelty detection. The
OCC technique creates a model featuring a single class and it can be used when only one class
of training samples is available (ESTE; GRINGOLI; SALGARELLI, 2009). In other words,
differently from binary and multiclass classifiers, the OCC approach is a special case of su-
pervised learning that only examples of the unique class are available in the training set. Thus,
instances of this class are named target instances. However, all other instances are per definition

31

outliers (TAX, 2001).
The OCC problem is to describe instances of the target class and to detect new objects that

resemble the training set (LENG et al., 2015). We chose to study OCC because they produce
very accurate classifiers and, there are several real-world applications based on OCC techniques
responsible for detecting: frauds in payrolls and in e-commerce operations, clinical anomalies,
and anomalies in communication networks (KHAN; MADDEN, 2010). Mainly in the context
of traffic classification, the OCC paradigm can be used to detect unexpected behaviors in a com-
munication, i.e. OCC can be used as an anomaly detection mechanism (JANSSENS, 2013). In
communication networks, unexpected behaviors may represent the occurrence of malicious ac-
tivities, creating a real necessity for sophisticated detection mechanisms to prevent the network
from service degradation (BARBOSA, 2014). Thus, IDSes that rely on OCC algorithms are
trained to recognize the normal network activities, being able to determine what is an attack or
misconfiguration on the data traffic.

In Figure 2.3 there is an example of a one-class classifier projected in a feature space. In this
example, TCP-based protocols (HTTP and FTP) are the target instances and are labeled y = +1.
In turn, the instances that represent UDP-based traffic are classified as outliers y = −1. In our
example, File Service Protocol (FSP) and Multipurpose Transaction Protocol (MTP) datagrams
are classified as outliers. The red line shows a possible one-class classifier which distinguishes
between TCP-based traffic and outliers. Note that this explanation serves as the basis to the OCC
approach. A more detailed explanation and the formalization of OCC algorithms is presented
in Section 4.2.

IDSes based on OCC algorithms can enhance the security level of SCADA environments.
In the context of SCADA systems, we intend to investigate the development and implemen-
tation of OCC-based anomaly detection mechanisms will bring the same benefits achieved by
existents techniques based on ML for general networks. OCC algorithms do not rely on ma-
licious traffic signatures, but instead they need only the expected traffic (benign behavior) for
building a classifier model, making the detection process faster and more accurate. Since an
OCC-based NIDS does not require attack signatures, it is well suited for intrusion detection
in SCADA systems (NADER; HONEINE; BEAUSEROY, 2013). Assuming SDN allows peri-
odically gathering precise statistics in SCADA networks, it is possible to use this information
for creating a model of the normal and expected behavior of a SCADA system. Thus, this
behavioral model in combination with OCC algorithms can be used for building a resilience
mechanism for detecting cyber-threats in SCADA networks.

32

Figure 2.3: Example of a one-class classifier for traffic classification.

Feature 1

Fe
at

u
re

 2

HTTP

MTP

FSP

FTP

Targets (yi = +1)

Outliers (yi = -1)

Source: by author (2016).

33

3 RELATED WORK

In this chapter, we present some efforts related to this Masters thesis. Firstly, in Section 3.1,
we discuss about investigations which present the benefits that can be achieved by adding SDN
in Smart Grid environments. In addition, Section 3.2 lists efforts that present solutions for
detecting cyber-intrusions in SCADA systems. Finally, Section 3.3 presents a brief discussion
about the advantages of our solution in relation to the state-of-the-art.

3.1 SDN in Smart Grids

In the past few years, the number of researches that exploit the benefits of merging SDN
in Smart Grid environments has grown considerably. This fact together with the power grid
importance for the modern society makes this research topic highly relevant, and any initiative
aimed to make this environment more reliable, more flexible, and safer, is highly important.
It is important to emphasize that there are researches presenting the benefits of SDN in Smart
Grids and their several components, such as Zhang et al. (2013), Dorsch et al. (2014), Dong et
al. (2015), and Rinaldi et al. (2015), including SCADA systems. However, although there are
many efforts generically discussing the impact and consequences of using SDN in Smart Grids,
to the best of our knowledge, these are still scarce initiatives that debate the applicability of
SDN in specific parts of the power grid.

Dong et al. (2015) investigate (i) how SDN can enhance the resilience of Smart Grids against
malicious attacks, (ii) additional risks that can be introduced adopting SDN and how to manage
them, and (iii) how to evaluate and validate solutions for SDN-based Smart Grids. In addition,
this paper also discusses concrete security issues and their possible countermeasures in the con-
text of Smart Grids. In turn, Dorsch et al. (2014) present and analyze an SDN-based approach
for dynamic network control, meeting the specific communication requirements of power grid
transmission and distribution subsystems. In this work it is also discussed challenges related
to the adoption of SDN in Smart Grid communication networks. Song et al. (2013) define and
classify smart control functions that can be implemented in Smart Grid environments through
the adoption of SDN. According to the authors, some of the operation strategies proposed in the
paper will be implemented into the Korean Smart Distribution Management System (KSDMS).
In addition, the effectiveness of these solutions are evaluated through case studies.

In a previous work, we discussed the potential benefits that SDN can bring to the power
grid and more specifically to the SCADA systems (SILVA et al., 2015b). The aforementioned
paper presents a multipath approach for SDN-based SCADA system in which communication
of SCADA devices is performed by more than one route, in order to prevent possible eaves-
droppers from fully capturing messages exchanged between SCADA devices of the distribution
power system. In this context, Cahn et al. (2013) also present a solution for power distribution
subsystems. The authors use SDN for allowing the network to be auto-configurable, secure and

34

reliable against possible system misconfiguration. A prototype was developed using the Ryu
OpenFlow controller and evaluated in a testbed with real SCADA devices. Focusing on the
transmission subsystem, Goodney et al. (2013) propose the use SDN to control the communi-
cation between devices responsible for measuring electrical waves in the grid, known as Phasor
Measurement Units (PMUs). The authors developed an SDN-based network application to fa-
cilitate the management of PMUs and provide support for multicast and multi-rate, essential
features for PMU networks.

To solve particular problems of power grids, Gyllstrom, Braga and Kurose (2014) present
algorithms to make fast recovery from link failures. The proposed algorithms permit the solu-
tion to detect and report where and when occurred link failure using OpenFlow. Furthermore,
the authors present algorithms for computing backup multicast trees, and fast backup tree in-
stallation. Pfeiffenberger et al. (2015) demonstrate an efficient solution that can be used to
solve the problem of robust multicast in power grid substations. The solution proposed in this
paper uses the fast-failover groups feature of OpenFlow to provide one-link fault tolerance. The
results showed that this solution provides little packet loss and routes that are less susceptible
to fail. Finally, Kim et al. (2014) present an SDN-based solution for creating virtual network
slices in a Smart Grid environment. The main idea of this proposal is to enable the network to
be self-configurable, defining virtual network slices. Each slice can support one application or
a group of similar applications. Thus, the authors argue that their solution will provide secure
and cost-efficient communications for Smart Grid applications.

3.2 SCADA IDSes

Unfortunately, several SCADA systems currently in operation have vulnerabilities in their
mechanisms of basic security, such as access control and user authentication. Although the
adoption of reliable mechanisms of authentication and access control in this context is feasible,
costs of development and deployment restrain the incorporation of those service to the SCADA
systems. In addition, even secure systems might have vulnerabilities occasioned by miscon-
figurations, errors, or by intruders. Hence, the number of researches that propose IDSes as a
complementary approach of security for protecting SCADA systems is increasing (BARBOSA,
2014).

Bigham, Gamez and Lu (2003) were pioneers in evaluating how the accuracy and security of
SCADA systems can be improved using anomaly detection to identify incidents caused by faults
and cyber-attacks. This paper compares the performance of invariant induction and n-gram
anomaly-detectors. In addition, the authors proposed the integration of the output from several
anomaly-detecting techniques using Bayesian Networks. Linda, Vollmer and Manic (2009) use
Neural Networks for detecting intrusion in a SCADA environment. The Neural Network learns
the normal contents of a window that is calculated over a sequence of N packets.

Several classical ML methods are tested by Duessel et al. (2010). This approach consists

35

of extracting traffic information using Bro1, then applying a different combination of feature
extraction methods, similarity measures and anomaly detection methods. Maglaras and Jiang
(2014) presented an intrusion detection module based on OCSVM capable of detecting mali-
cious network traffic in SCADA systems. The OCSVM module developed is trained by off-line
network traces and detect anomalies in real time. This module is part of an IDS developed under
CockpitCI project2 and communicates with other components by IDMEF (Intrusion Detection
Message Exchange Format) messages. These messages contain information about the source of
incident, time, and a classification of the alarm.

Cheung et al. (2007) proposed an IDS based on behavioral models for SCADA networks.
This IDS creates models that represent the expected network behavior of the devices that are
connected to a SCADA system. The authors point out that SCADA systems have topologies
that hardly change over time, and thus the behavior of the devices maintains a pattern. This
facilitates the detection of possible attacks that may cause changes to the expected network
behavior. Oman and Phillips (2008) proposed a hybrid between an IDS and a configuration
tool. The IDS internally uses models representing the allowed traffic patterns. The authors
propose the use of the Telnet protocol to configure and test the connectivity of field devices. The
configuration of these devices is periodically retrieved and stored, so it can later be restored in
case of misconfiguration or to recover from cyber-attacks. A proof-of-concept was implemented
and deployed in a testbed environment.

In the approach described by Valdes and Cheung (2009), flow-level metrics extracted from
the network traffic are compared to historical values. If the difference between current and
historical values is discrepant, the flow is marked as anomalous. In addition, alarms are also
defined as new flows (flows for which no historical data is known) and missing flows (flows
not observed after a certain time). This approach is implemented in a testbed environment.
D’Antonio, Oliviero and Setola (2006) presented a distributed architecture to secure the com-
munication network upon which the critical infrastructure relies. This architecture is composed
by an IDS that is built on the top of a customizable flow monitor. The authors also proposed
a method to extrapolate real-time information about user behavior from network traffic. This
method consists in monitoring traffic flows at different levels of granularity in order to discover
ongoing cyber-attacks.

Premaratne et al. (2010) proposed a signature-based approach focused on SCADA environ-
ments. By observing traffic generated by field devices, the authors manually derive rules char-
acterizing the cyber-attack behavior (for example, ICMP packets larger than 100 bytes indicate
a Ping DoS). In turn, Yang et al. (2013) presented a rule-based IDS that relies on DPI. This IDS
uses signature-based and model-based approaches tailored for SCADA systems. The proposed
signature-based rules can detect known suspicious or malicious attacks. In addition, model-
based detection is proposed as a complementary method for detecting unknown cyber-attacks.

1https://www.bro.org/
2http://www.cockpitci.eu/

36

Sayegh et al. (2014) proposed an IDS that uses temporal packet data to identify traffic anoma-
lies. In this work, different packet signatures are generated for a given protocol, and probability
functions are used to identify if a given packet is expected to arrive to the SCADA system. The
paper targets the BACnet protocol but mentions that new protocols can be supported without
changing the IDS core functions.

In a series of papers, Carcano et al. (2010), Fovino et al. (2010), Carcano et al. (2011) pro-
posed an IDS capable to analyze Modbus/DNP3 packets. This approach relies on two detection
strategies: (i) a single packet signature-based strategy, allowing to detect illicit packets sent to
PLCs and RTUs; and, (ii) a state-based intrusion detection technique, allowing to keep track
of the industrial system state, and to identify if a set of licit SCADA commands sent to field
devices is able to bring the system into a critical state. In addition, the authors presented a rule
language designed in order to describe network signatures and field device states.

Other techniques are also proposed for detecting intrusions in SCADA environments. A
process-aware approach to detect intrusion is proposed by Cardenas et al. (2011). An inter-
esting aspect of this paper is the evaluation of the impact of different realistic attack scenarios
and the discussion of responses to these attacks. Parthasarathy and Kundur (2012) exploit the
predictable and regular nature of SCADA communication patterns to detect intrusion in field
devices. The authors proposed a distributed and lightweight IDS suitable for implementation
across multiple resource constrained SCADA devices in the Smart Grid. This approach uses
the Bloom Filter data structure for memory efficiency and incorporates the physical state of the
power grid for greater robustness. Asif and Al-Harthi (2014) designed an IDS that relies on the
Honey Token based Encrypted Pointers to protect SCADA networks from cyber-attacks. These
honey tokens inside the frame serve as a trap for the cyber-attacker. This IDS is designed for
detecting intrusions and for recovering the system using reverse engineering approach.

In his thesis, Almalawi (2014) proposed an unsupervised SCADA data-driven anomaly de-
tection approach intended to be used as a passive SCADA IDS. This IDS has two main steps:
(i) the identification of consistent and inconsistent states from unlabeled SCADA data traffic
generated by system sensors and actuators using the density factor for the k-nearest neighbors
of the observation; and, (ii) the extraction of proximity-based detection rules for normal and
anomalous behavior using statistically determined micro-clusters (ALMALAWI et al., 2014).
Barbosa, Sadre and Pras (2012) investigated the main traffic characteristics in SCADA networks
and presented a NIDS capable of detecting data injection and DoS attacks (BARBOSA, 2014).
This NIDS specifically explores the periodicity of traffic generated in SCADA systems.

3.3 Related Work Discussion

As showed in sections 3.1 and 3.2, there are several papers that propose NIDSes for SCADA
systems. Although this research topic has been growing, there are few researches that exploit
large-scale SCADA topologies in their experimental evaluations. It is also important to note that

37

is scarce the papers that present clearly results, highlighting the accuracy of their proposals. The
proposal presented by Maglaras and Jiang (2014) is a exception, presenting an aproximately
acurracy of 98% using OCSVM in a traditional SCADA system. However, Maglaras and Jiang
(2014) does not present detailed results, with specific ML evaluation metrics and performance
metrics.

We investigated IDSes currently available for SCADA systems and the network behavior
of SCADA devices to contribute to this research topic. Several detection mechanisms have
been proposed to mitigate anomaly behaviors in SCADA systems, however, many solutions
require to know a priori the system inconsistent state. To collect information about a system
inconsistent state can be expensive, or just impossible. Few proposals rely on ML to detect
intrusions in SCADA systems (e.g., Linda, Vollmer and Manic (2009) and Duessel et al. (2010)),
but these papers also require to learn an inconsistent state in the training step. In this context,
the utilization of OCC algorithms in IDSes for SCADA systems is still starting, Maglaras and
Jiang (2014) is an example. For this reason, we will propose on Section 4.3 a complete solution
to detect anomalies in SCADA networks that relies on OCC and SDN, with high accuracy,
differently from the NIDSes proposed until then.

We know that merging SDN in SCADA add new vulnerabilities to these cyber-physical sys-
tems, but SDN can be used to map the network behavior of SCADA devices. Unfortunately,
there are few IDSes that exploit the network behavior of SCADA, and the systems that use
these aspects do not employ the characteristics of SDN to collect more accurate information
of the network (e.g., Barbosa (2014) and Almalawi (2014)). Furthermore, the papers that pro-
pose SDN for SCADA systems do not present implementations that prove the benefits of SDN
applied in SCADA environments. For this reason, on the next sections we: (i) list the require-
ments of NIDSes for SDN-based SCADA systems (Section 4.1); (ii) propose a NIDS based
on OCC algorithms (Section 4.3) that periodically verifies the SCADA network, through SDN,
in order to find anomalous behaviors that differ from the expected SCADA behavior; and (iii)
we evaluate the prototype of our solution, emulating a large-scale SCADA network topology
(Section 5.2).

38

4 ONE-CLASS NIDS FOR SDN-BASED SCADA SYSTEMS

Initially, in Section 4.1, we list the requirements for the proper operation of our solution.
Next, in Section 4.2, we present a brief background on the OCC algorithms that we adopted in
the proposed NIDS for SDN-based SCADA systems. Finally, in Section 4.3, we introduce our
strategy to detect intrusions in SCADA communication networks, detailing the architecture and
the components of our NIDS.

4.1 NIDS Requirements

In the power sector, NIDSes are responsible for detecting anomalies in the communication
networks of SCADA systems (LI et al., 2012). Unfortunately, the number of cyber-threats that
exploit the vulnerabilities of cyber-physical systems is increasing, and frequently new types of
malware arise, which are more complex and more difficult to detect (such as, Stuxnet) (DELL,
2015). Moreover, the maintainers of SCADA systems do not usually disclose details about
detected cyber-attacks. As a result, SCADA attack traces are scarce and not publicly dis-
closed (IGURE; LAUGHTER; WILLIAMS, 2006). Hence, a NIDS should detect anomalous
behaviors known by operators, as well as anomalies that exploit previously unknown vulnera-
bilities, and consequently unpatched (Zero-Day exploit). Furthermore, an accurate NIDS gener-
ates fewer false-alarms during the SCADA network monitoring. A high accuracy avoids unnec-
essary efforts from the power grid operators and the maintenance staff (BARBOSA, 2014).
However, the design of a NIDS must consider the characteristics of a SCADA network to
achieve a considerable accuracy.

The sampling period of a SCADA system may vary depending on the environment that is
monitored (ALMALAWI, 2014). For example, a SCADA system applied on the context of
power distribution uses a sampling period that ranges from 2 to 4 seconds. On the other hand, a
SCADA for water distribution systems has a larger sampling period, requesting data every 10 to
15 minutes (HADLEY; HUSTON, 2007). In addition, the data stored in an RTU may be updated
independently from the MTU’s sampling period. Hence, a NIDS for SCADA systems must
respect the sampling period of the monitored system (STOUFFER; FALCO; SCARFONE,
2011). This means that, if a SCADA system has a sampling period of 1 second, the NIDS must
collect network statistics on the same frequency, or at least close to the SCADA’s sampling
period. A NIDS for SCADA systems that monitors the network considering the sampling period
can minimize or even avoid the incidence of faults in the system. In the context of power grids,
a NIDS that attends the time requirements imposed by the environment can avoid possible
outages in the power supply (BARBOSA, 2014).

In the power sector, SCADA systems can be used for monitoring small centers of power dis-
tribution, as well as large-scale power grids that supply energy for entire countries (CHIKUNI;
DONDO, 2007). Thus, there is a wide range of equipment available for sale and protocols

39

that can be used in SCADA systems. Although there are norms that standardize components
and protocols for SCADA systems (such as, IEC-61850), it is still common that manufactur-
ers develop equipment incompatible with some technologies or devices of another manufac-
turer (FERNANDEZ; LARRONDO-PETRIE, 2010). A NIDS used in this environment must be
scalable, and it also must adapt itself to the diversity of available technologies for SCADA
systems. Our solution must be generic to operate independently of the amount of equipment,
the protocol used, or the behavior of the network devices.

Usually, a power substation is composed by several transformers, relays, or fuses. In turn,
each of these substation equipment is monitored and controlled by tens of sensors and actu-
ators (CHIKUNI; DONDO, 2007). So, a single substation easily can comprise thousands of
fields devices directly or indirectly (via RTU) connected to the SCADA master station (CAHN
et al., 2013). Due to the large number of equipment connected to a SCADA network, each
data request can generate bursts of large data amounts (BARBOSA; SADRE; PRAS, 2012).
Consequently, these data bursts will generate network statistics for the entire system. Thus, a
NIDS for SCADA systems must constantly manipulate large datasets. A NIDS that adopts
techniques of parallel processing will present advantages in SCADA environments. The parallel
processing of information permits the manipulation of large amounts of information generated
by data bursts, minimizing possible bottlenecks in the processing of statistics periodically gath-
ered on a SCADA network. In addition, the selection of a traffic classification mechanism is
also important because NIDSes that rely on algorithms with fast classification process will ob-
tain advantages in SCADA environments (ALMALAWI, 2014). Table 4.1 lists the requirements
presented above in this section.

Table 4.1: NIDS requirements for SCADA systems.

Requirement Description
Respect the It can minimize or even avoid the

SCADA’s sampling period incidence of faults in the monitored system
Respect the It permits that the NIDS operates

SCADA’s scalability independently of the amount of equipment
Respect the It permits that the NIDS operates

diversity of techonlogies that independently of the protocol used,
may coexist in a SCADA system or the behavior of the netowrk devices

It minimizes possible bottlenecks in
Manipulate large datasets the processing of statistics periodically gathered

4.2 OCC Algorithms

Given a SCADA system that controls several power distribution substations, assume it is
composed of various equipment that are constantly operating to supply energy for final users.

40

The SCADA system can possibly comprise thousands of field devices for monitoring the sub-
stations of that power grid. Thus, the SCADA’s master station periodically receives information
about the equipment in operation, such the machinery temperature, or if the components are
generating unknown vibrations. In this case, it is relatively easy to gather training information
about the expected functioning of the system. But on the other side, collecting data about a sys-
tem fault or a malware spreading can be expensive, or just impossible. If a system fault could be
simulated, there is no guarantee that the faults that possibly will occur will respect the pattern
generated by the simulated case. To cope with this problem, OCC solutions are introduced.

We verified in the literature the classification algorithms utilized for detecting anomalies in
the network to analyze the advantages and disadvantages of each approach in accordance with
the listed requirements in Section 4.1. In our review, the SVM technique stood out in relation to
others techniques used for traffic classification. SVMs are among the most popular methods of
supervised learning. SVMs are a set of supervised learning methods that analyze datasets and
recognize patterns (CORTES; VAPNIK, 1995). They are widely used for text classification,
recognizing patterns in images, and network traffic classification. Although SVMs are compu-
tationally expensive, it is possible to build fast classifiers setting some parameters, respecting
the first requirement listed in Table 4.1. Furthermore, SVMs produce very accurate classifiers
that are robust to noise (CHERKASSKY; MA, 2004). SVMs also attend the last requirement
of NIDSes for SCADA systems, because their algorithms deal well with large datasets and
in most cases perform better in comparison to other supervised learning methods (CARUANA;
NICULESCU-MIZIL, 2006), even in problems that are not linearly separable.

There are SVM adaptations to deal with the OCC problem, such as OCSVM (SCHöLKOPF;
SMOLA, 2001) and SVDD (TAX; DUIN, 2004). These variations of SVM specialized in OCC
have an extensive documentation available and are widely applied in applications that need to
detect novelties. By the characteristics of these algorithms and the requirements of our applica-
tion, we adopted these SVM-based algorithms, OCSVM and SVDD, in our NIDS. However, to
comprehend the operation of SVM-based OCC algorithms it is necessary, firstly, to understand
the operation of the traditional binary SVM.

SVMs creates a non-linear decision boundary by projecting the data through a non-linear
function φ to a space with a higher dimension. In other words, the data not linearly separable
in an original space I is reprojected in a feature space F , where there can be a hyperplane that
separates the data according to its respective class. When the hyperplane is projected back in I ,
it assumes the shape of a non-linear curve. The hyperplane of the traditional SVM is represented
with the equation wTx+b = 0, wherew ∈ F and b ∈ R. The hyperplane determines the margin
between classes. Thus, the instances of class −1 will be in one side of the hyperplane, whilst
the instances of class +1 will be in the opposite side. Furthermore, the hyperplane maximizes
the margin between the classes. So, the distance from the nearest instance from each class to
the hyperplane is the same.

Slack variables ξi are introduced to enable the projection of some instances in the opposite

41

side to the their class, in order to prevent the SVM classifier from over-fitting with noise data.
Slack variables make the optimization restrictions imposed by support vectors more flexible. In
addition, the constant C > 0 determines the trade-off between maximizing the margin and the
amount of training data inside this margin (training errors). The objective function of the SVM
classifier is the minimization formulation in Equation 4.1.

min
w, b, ξi

‖ w ‖2
2

+ C
n∑
i=1

ξi

subject to : (4.1)

yi(w
Tφ(xi) + b) ≥ 1− ξi for all i = 1, ... , n

ξi ≥ 0 for all i = 1, ... , n

This minimization problem comprises quadratic programming (FRANK; WOLFE, 1956)
and is solved by introducing the Lagrangian Function (BREZZI, 1974). The Lagrangian Func-
tion involves the restrictions to the objective function associated to the parameters named La-
grange multipliers. Thus, Equation 4.2 presents how is formulated the classification rule for
each instance x.

f(x) = sgn(
n∑
i=1

αiyiK(x, xi) + b) (4.2)

In this case, αi are Lagrange multipliers. Lagrange multipliers are applied in optimization
problems, and they find extremes (maximum and minimum) of a function susceptible to one
or more restrictions (BREZZI, 1974). The Lagrangian function must be minimized, and this
implies in maximizing αi and minimizing w and b. Each αi > 0 is weighted in the decision
function that generates the classifier support vectors.

The function K(x, xi) = φ(x)Tφ(xi) is named as Kernel Function (BAUDAT; ANOUAR,
2001). The outcome of the decision function only relies on the dot-product of the vectors in F .
This is not necessary to perform an explicit projection of F . In this case, a kernel function can
be used to project F and to obtain the same results (kernel trick) because kernel functions permit
the representation of abstract spaces. The kernel trick technique allows the classification of data
that originally is non-linearly separable (CHERKASSKY; MA, 2004). The feature space F
may comprise an unlimited number of dimensions, making the hyperplane building process that
separates the data complex (SCHöLKOPF; SMOLA, 2001). The most used kernel functions are
linear, polynomial, sigmoidal, and the Radial Base Function (RBF). The formulation of these
kernel functions are presented in Table 4.2.

However, our application relies on the OCC paradigm to detect anomalies in SCADA net-
works. Thence, we are interested on OCC versions of SVMs. As said before, there are two
main approaches of SVM-based OCC algorithms, OCSVM and SVDD. These algorithms are

42

discussed below, in sections 4.2.1 and 4.2.2 respectively.

4.2.1 One-Class Support Vector Machine (OCSVM)

OCSVM is a supervised machine learning algorithm based on SVM presented by Schölkopf
et al. (SCHöLKOPF; SMOLA, 2001). OCSVM is the most popular technique for OCC and is
indicated for problems that involve anomaly detection. Basically, OCSVM infers the properties
of normal cases and from these properties can predict which examples differ from the normal
examples (SCHöLKOPF; SMOLA, 2001). This OCC algorithm resembles the traditional two-
class SVM, where the training set is composed of two groups, one positive and one negative.
However, OCSVM is an adaptation of the traditional SVM, where the training data contains
only members of the target class, and the origin in F is characterized as the only member of the
outlier class. OCSVM uses a homogeneous set of instances in its training phase, and separates
the training data from the origin (in the feature space F), maximizing the distance from the
hyperplane to the origin.

The OCSVM algorithm builds a binary function that captures regions in the original space
I where there are density of training data. This binary function recognizes an small region as
the target class (mapped through the training data coordinates) and the remaining of I as the
outlier class. Thus, when a validation instance z is classified, if f(z) < 0, then z is labeled as
an anomaly (outlier), otherwise it is labeled normal (target class). The OCSVM minimization
function, presented in Equation 4.3, has similarities in relation to the SVM traditional function:

min
w, ξi, ρ

1

2
‖ w ‖2 + 1

νn

n∑
i=1

ξi − ρ

subject to : (4.3)

(w · φ(xi)) ≥ ρ− ξi for all i = 1, ... , n

ξi ≥ 0 for all i = 1, ... , n

Table 4.2: Most popular Kernel Functions.

Kernel Function
Linear K(x, xi) = (x · xi)

Polynomial K(x, xi) = (δ(x · xi) + κ)2

Sigmoidal K(x, xi) = tanh(δ(x · xi) + κ)

RBF K(x, xi) = exp

(
− ‖ x− xi ‖

2

2σ2

)

43

However, instead of using the penalty parameterC to smooth the training errors, the OCSVM
uses the ν parameter to characterize the solution. The ν parameter is responsible for: (i) defin-
ing an upper bound of outliers in the training set; and, (ii) defining a lower bound on the number
of instances used as support vectors.

As the traditional SVM for binary classification, the OCSVM algorithm also uses kernel
functions to classify data that is non-linearly separable. OCSVM can use traditional kernel
functions, or customized kernels defined by the user. Thus, as showed in Equation 4.4, by using
kernel functions and Lagrange techniques, the OCSVM decision function becomes:

f(x) = sgn((w · φ(xi))− ρ) = sgn(
n∑
i=1

αiK(x, xi)− ρ) (4.4)

This function builds a hyperplane characterized by the variables w and p. This function
maximizes the distance from the origin in F and separates the instances from the origin. How-
ever, the user needs to experiment which kernel fits better to the data that will be classified in
order to achieve more accurate results.

4.2.2 Support Vector Data Description (SVDD)

Also known as Support Vector Domain Description, the SVDD algorithm was introduced by
Tax and Duin (TAX; DUIN, 1999) (TAX; DUIN, 2004) and is another type of SVM-based OCC
algorithm. SVDD is a useful method for novelty detection and has been applied to a variety
of applications that need to monitor the rise of novelties. SVDD adopts a different approach
to separate data in a feature space. Instead of building a hyperplane, this algorithm uses the
training set to define a hypersphere with minimum radius, which is used for binary classification
of instances of a validation set. In other words, the purpose of the SVDD technique is not to
find an optimal separating hyperplane, but a spherically shaped boundary around the dataset
with minimal volume containing all target data (BENKEDJOUH et al., 2012).

The SVDD hypersphere is characterized by a center a and a radius (R > 0) as distance
from the center to the boundary, of which the volume R2 will be minimized. The center a of
the hypersphere is a linear combination of the support vectors, that are the training instances for
which the Lagrange multiplier is not zero. As well as the formulation of the traditional two-class
SVM, it can be required that the hypersphere margins are softened. For this, slack variables ξi
and the penalty parameter C are also introduced in SVDD. The Equation 4.5 describes the
SVDD minimization problem.

min
R, a

R2 + C
n∑
i=1

ξi

subject to : (4.5)

44

‖ xi − a ‖2≤ R2 + ξi for all i = 1, ... , n

ξi ≥ 0 for all i = 1, ... , n

A new instance z can be validated as a member of the target class (or an outlier) after intro-
ducing Lagrange multipliers αi in this formulation. Thus, the SVDD hypersphere is modeled to
involve the majority of training samples. In the validation stage, new samples that are not inside
the hypersphere area are classified as novelties, whereas samples that are classified inside the
hypersphere are considered normal samples. That is, as depicted in Equation 4.6 a new sample
is considered member of the target class if the distance to the center is smaller than or equal to
the hypersphere radius, by using the RBF Kernel as a distance function between two data points
in F .

‖ z − x ‖2 =
n∑
i=1

αi exp

(
− ‖ z − xi ‖2

σ2

)
≥ −R2/2 + CR (4.6)

4.3 Architecture Overview

Differently from previous approaches that propose IDSes for traditional SCADA systems
(BARBOSA, 2014)(ALMALAWI, 2014), we present a NIDS designed and developed for SDN-
based SCADA systems. Our approach takes advantage from the characteristics of SCADA net-
works and the benefits that SDN will bring for these systems to accomplish novelty detection.
Considering the periodicity and the behavior of SCADA networks (BARBOSA, 2014), novel-
ties (i.e., unexpected behaviors) in the communication environment of SCADA systems may
indicate anomalous behaviors. We rely on the assumption that a NIDS needs to know the nor-
mal system behavior to predict anomalous and dangerous behaviors to the services provided by
the monitored system. So, as our classifier knows the expected behavior of a SCADA network,
any data that represents novelty in relation to the classifier model can be reported to the operator
as a network anomaly. These network anomalies may represent the beginning of cyber-attacks,
the propagation of malwares, or even the misconfiguration of field devices.

OpenFlow facilitates anomaly mitigation, enabling the redirection of malicious network
traffic, or even dropping the packets of intruders. To route packets, OpenFlow installs rules in
each network switch. Each rule may have unique information about a communication flow, such
as: (i) MAC and IP address of source and destination devices; (ii) packet and byte counters; (iii)
rule duration (in seconds and nanoseconds); and, (iv) the switch in which the rule is installed.
The proposal uses OpenFlow for periodically extracting statistics from the SCADA network.
Thus, our strategy can continuously gather statistics on the same frequency of the SCADA sam-
pling period. Our NIDS generates samples from statistics gathered on the SCADA network.
In turn, samples serve as basis to build the component that predicts the network behavior of
SCADA devices. By default, our proposed solution provides an ID for each generated sample,
however, the composition of IDs can be defined by the SCADA system operator. The Open-

45

Flow native counters also compose a sample and it is possible to use other features extracted
from the native ones. The selection of an optimal set of features can increase the classifier ac-
curacy (SILVA et al., 2015a), decreasing the rate of false-positive alarms generated during the
network monitoring.

Every component of the proposed solution has been designed to attend the requirements
listed on Section 4.1. We have planned our architecture to be scalable, permitting the detection
of anomalies in SCADA systems responsible for monitoring small regions, as well as large-
scale SCADA systems with thousands of equipment. In addition, the architecture contemplates
the adoption of mechanisms that enable the parallel and distributed processing of samples, such
as the MapReduce programming model (DEAN; GHEMAWAT, 2008). MapReduce enables
our NIDS to promptly process large amounts of data generated by SCADA equipment, per-
mitting, for example, the NIDS to operate according to the sampling period requirements of
SCADA for power distribution environments. Figure 4.1 presents an overview of the proposed
NIDS architecture. Our NIDS comprises five components that intercommunicate to monitor the
network and to report anomalous behaviors in SCADA systems. A more detailed description of
these components is presented below:

Figure 4.1: Architecture overview of the proposed NIDS for SDN-based SCADA systems.

Modbus

IEC 61850

DNP3Sn
ap

sh
o

o
te

r {
 rule.ID: stat.ID,
 counters:
 {
 pktCount: 12,
 byteCount: 721,
 duration: 32
 }
}

Stats Requester

P
ro

to
co

l F
ilt

er

A
R

P

Te
ln

et

LL
D

P

SN
M

P

H
TT

P

O
p

en
Fl

o
w

 C
o

n
tr

o
lle

r

1 – SDN Controller1 – SDN Controller

filter(stats)

SCADA Network

se
n

d
(s

ta
ts

)
st

at
s_

re
q

u
es

t(
)

SCADA Operators

R
eq

u
es

t
Fl

o
w

s
C

la
ss

if
ie

r

R
ep

ly
 F

lo
w

s
C

la
ss

if
ie

r

O
C

SV
M

SV
D

D

O
C

C
 A

lg
o

ri
th

m
s

ClassifierClassifier

Representation
Model Creator

Request Flows
Model

Reply Flows Model

Fit ClassifierFit Classifier

4 – One-Class Classifier4 – One-Class Classifier

Map Reduce

Snapshots

Rule ID Counters

... ...

... ...

... ...

Training
Samples

Validation
Samples

Packet Count

Byte Count

DurationO
p

en
Fl

o
w

 N
at

iv
e

Fe
at

u
re

s

Packet Arrival Rate

Packet Interarrival
Time

Average Packet Size

N
ew

 F
ea

tu
re

s

3 – Feature Selector

Anomaly Response
Policy Repository

2 – Historian Server2 – Historian Server

Flows

Snapshots

Switches

Control
Channel

Storage Training Set

St
at

is
ti

c
C

en
te

r

Anomaly Response

Alarm Trigger

5 – NIDS Management
Interface

5 – NIDS Management
Interface

ge
t_

sw
it

ch
_s

ta
ts

()

se
n

d
(s

n
ap

sh
o

ts
)

p
re

d
ic

t_
sa

m
p

le
s(

sa
m

p
le

s)
cr

ea
te

_m
o

d
el

(s
am

p
le

s)

sa
ve

(p
o

lic
y)

response(policy)

show_alarm(alarm)

create_policy(policy)

show_information()

raise_alarm(anomaly_data)

sa
ve

_s
am

p
le

s(
sa

m
p

le
s)

create_classifiers(model)

...

Source: by author (2016).

46

4.3.1 SDN Controller

This component acts directly on the SCADA network. SDN Controller is responsible for
monitoring and for applying routing strategies to the SCADA network switches. This compo-
nent was developed to directly attend the requirements 1 and 3 of Table 4.1 because it relies on
parameters that define the periodicity of statistics gathering, and which protocols will be mon-
itored by our NIDS. SDN controller is composed of Stats Requester, OpenFlow Controller,
Protocol Filter, and Snapshooter:

• Stats Requester: Stats Requester is responsible for: (i) creating request messages of flow
statistics; and, (ii) for controlling the periodicity that these messages are sent to the net-
work switches. SCADA systems can use specific protocols for each substation. For exam-
ple, a modern substation can use IEC-61850 to exchange messages within its area, whilst
a legacy substation of the same SCADA can use the traditional Modbus serial protocol. In
addition, each field device can report data in different frequencies. Thus, Stats Requester
receives as parameter, values that define the frequency at which statistics requests are sent
to the network. The SCADA operator must know the system characteristics that will be
monitored to define values that are compatible with the periodicity of specific parts of
the SCADA system. Our approach permits the SCADA operator to choose a monitor-
ing strategy that, for example, is more frequent on critical network points and sparser on
non-critical substations;

• OpenFlow Controller: As mentioned before, OpenFlow is currently the most important
protocol for SDN implementation (MCKEOWN et al., 2008). OpenFlow Controller ap-
plies routing strategies on the SCADA network. This module acts as intermediary for
other components, interfacing the NIDS with the SCADA network. The OpenFlow Con-
troller module receives the Stats Requester’s requisitions and forwards these messages to
the SCADA switches. However, in this module, the SCADA operator must define which
switches will be monitored on the network. Moreover, the SCADA operator needs to
define the sending frequency of statistics requests for each switch on the topology. So,
our NIDS can monitor the network in its totality in accordance with the different polling
times used by the SCADA system. In addition, OpenFlow Controller receives the statis-
tics of SCADA switches and forwards this data to the module responsible for handling
this information. Finally, OpenFlow Controller also is responsible for enforcing anomaly
response policies on the SCADA network, such as to limit the traffic to control network
protocols, or to block unexpected protocols to exchange messages in the SCADA envi-
ronment, avoiding the propagation of malware or the the occurrence of exploits in the
network;

• Protocol Filter: When actioned, Protocol Filter blocks statistics regarding non-specific
SCADA protocols. So, this module allows the monitoring of only previously defined

47

types of flows and generates statistics for the NIDS. Protocol Filter offers a list of pro-
tocols that can be observed on a SCADA network (such as, LLDP, ARP, and ICMP, and
specific SCADA protocols, such as Modbus, DNP3, and IEC-61850). As well as the
Stats Requester module, Protocol Filter enables the manual selection of which protocols
will be monitored on the SCADA network. Thus, the SCADA operator can decrease the
amount of information processed by our NIDS;

• Snapshooter: In turn, the Snapshooter module organizes the information received from
Protocol Filter into snapshots. The snapshots generated by this module are sent and stored
on Historian Server. In our approach, a snapshot is composed of an ID and the OpenFlow
native counters. Our NIDS offers a standard ID (ruleID) that is showed below:

ruleID = (srcip, dstip, srcport, dstport, protocol, switch)

However, our proposal permits the SCADA operator to define which information will be
used to compose a ruleID.

4.3.2 Historian Server

Historian Server is a component that is typically present in the master station of several
traditional SCADA systems (ZHU; JOSEPH; SASTRY, 2011). This server stores logs about
devices, events, and alarms which can be used to populate graphic trends in HMIs (STOUF-
FER; FALCO; SCARFONE, 2011). We extended the Historian Server component to store the
snapshots extracted from the network by SDN Controller. As large-scale SCADA systems can
interconnect thousands of devices that constantly generate large amounts of data, Historian
Server needs to be able to store and process larger datasets. For this reason, in order to respect
the fourth requirement listed in Table 4.1 and to allow large-scale data processing, the pro-
posed NIDS relies on techniques of distributed and parallel processing, such as the MapReduce
programming model (DEAN; GHEMAWAT, 2008), to reduce possible bottlenecks in SCADA
servers.

In this context, we designed a scalable version of Historian Server, using a processing queue
and MapReduce. The processing queue is periodically verified if there are snapshots that can
be processed via MapReduce. As presented in Figure 4.2, MapReduce permits the processing
of data by multiple processors, named workers. Initially, the data stored on the Snapshots da-
tabase is split (Data Splitting) into smaller parts that will be processed separately by workers
specialized in data mapping. Each worker contains the Mapper code, a function that analyzes
the snapshots and maps this information into tuples < RuleID,Counters > (Mapping pro-
cess). The pseudocode of the Mapper function used in the mapping process is presented in
Algorithm 1. The snapshots processed by the Map Workers are ordered and grouped (Ordena-
tion) according to their identifiers, and they are sent to the workers specialized in reduce this
information. In turn, the Reduce workers are responsible for reducing the mapped snapshots

48

Figure 4.2: Diagram of the MapReduce algorithm of the proposed NIDS.

1 ...Snap1

2 ...Snap2

1 ...Snap3

3 ...Snap4

3 ...Snap5

1 ...Snap6

2 ...Snap7

1 ...Snap8

Map
<Snapshot, Rule ID, Counters>

Ordenation
<Snapshot, Rule ID, Counters>

2 ...Snap2

2 ...Snap7

3 ...Snap4

3 ...Snap5

1 ...Snap1

1 ...Snap3

1 ...Snap6

1 ...Snap8

Output
<Sample, Rule ID, Counters>

1 ...Smp1

1 ...Smp2

1 ...Smp3

2 ...Smp4

3 ...Smp5

Reduce
<Sample, Rule ID, Counters>

3 ...Smp5

1 ...Smp1

1 ...Smp2

1 ...Smp3

2 ...Smp4

Data Splitting

Snapshot 1

Snapshot 2

Snapshot 3

Snapshot 4

Snapshot 5

Snapshot 6

Snapshot 7

Snapshot 8

Snapshot 1

Snapshot 2

Snapshot 3

Snapshot 4

Snapshot 5

Snapshot 6

Snapshot 7

Snapshot 8

Snapshots

Source: by author (2016).

into native samples (Reduction process). Native samples are generated from the subtraction of
snapshots with the same IDs but collected on distinct times, considering only the OpenFlow
native counters (Pkt = Packet Count, Byt = Byte Count, and Dur = Duration). An example
of the conversion process of two snapshots (St and St−1) in one native sample (nativeSamplex)
is demonstrated below:

nativeSamplex =


Pkt(St)− Pkt(St−1)

Byt(St)−Byt(St−1)

Dur(St)−Dur(St−1)

In addition, the Reduce Workers emit the output of the MapReduce process to the next com-
ponent, Feature Selector. The pseudocode of the reduction process is presented in Algorithm 2
and the Feature Selector component is detailed in Section 4.3.3. Furthermore, Historian Server
comprises the Anomaly Response Policy Repository, which is a component that stores strategies
for anomaly mitigation. Anomaly response policies will be discussed later on in this chapter,
when the Anomaly Response component is presented. Thus, our NIDS can proactively act on
the network without direct intervention of an operator, for example: (i) redirecting an anoma-
lous flow to a HoneyPot device; (ii) reducing the priority of a harmful flow to the system; or
(iii) dropping undesirable packets.

4.3.3 Feature Selector

The OpenFlow protocol only provides native flow features, namely packet count, byte count,
and flow duration. These features may not be sufficient or adequate to describe the nature
of a specific traffic profile, as the profile of the SCADA network (BARBOSA, 2014). Using

49

Algoritmo 1 Mapper PseudoCode
1: function MAPPER(snapshots)
2:
3: for each snapshot in snapshots do
4: ruleID← getID(snapshot)
5: counters← getCounters(snapshot)
6:
7: if (!isIDMapped(ruleID)) then
8: save(ruleID)
9: end if

10:
11: keyRuleID.add(counters)
12:
13: end for
14:
15: end function

Algoritmo 2 Reducer PseudoCode
1: function REDUCER(ruleIDs)
2:
3: for each ruleIDMapped in ruleIDs do
4: counters← getMappedCounters(ruleIDMapped)
5:
6: if (getCountersAmount(counters) < 2) then
7: continue
8: end if
9:

10: if (!isIDMapped(ruleIDMapped)) then
11: save(ruleIDMapped)
12: end if
13:
14: for i← 1 until getCountersAmount(counters) with step← 1 do
15: nativeFeatures← extractNativeFeatures(counters(i), counters(i - 1))
16: mappedKeyRuleID.add(nativeFeatures)
17: end for
18:
19: end for
20:
21: end function

appropriate features to describe traffic behavior may increase the accuracy of our NIDS. Thus,
the Feature Selector component (SILVA et al., 2015a) was proposed to offer an extensive set of
features with 33 entries extracted from the OpenFlow native counters, e.g. packet inter-arrival-
time, packets per second, mean packet length, and so forth. Besides, this component uses feature
selection techniques, such as Principal Component Analysis (PCA) (HOFFMANN, 2007) and
Genetic Algorithm (GA) (WHITLEY, 1994), to determine the optimal set of features for traffic

50

classification.

Feature Selector was strategically placed inside the Historian Server component, more pre-
cisely at the end of the conversion process of snapshots into native samples, in order to avoid
unnecessary computational processing. Feature Selector directly receives each native sample
(formatted with its ID and counters) and transforms them into more detailed samples, as showed
in the example below:

〈(ruleID) : (pkt_count, byte_count, duration)〉
↓

〈(ruleID) : (pkt_count, byte_count, duration, arrival_rate, average_packet_size...)〉

Further, this component splits the more detailed samples into two types, Training Samples

and Validation Samples. Both types of samples are stored on the Historian Server. On the
one hand, Training Samples are used for fitting the NIDS. Training Samples are fundamental
to build the representation models responsible for classifying the SCADA network traffic in
real-time. On the other hand, Validation Samples are generated during the network monitoring.
Validation Samples are posteriorly analyzed by the One-Class Classifier component.

In addition to Feature Selector, we adopted another strategy to enhance the accuracy of our
NIDS. In the case of SCADA networks, the direction of a communication flow (from master
to slave device, or from slave to master device) directly influences on building a representation
model. For example, messages sent by the master device maintain a standard profile, whilst
packets sent by a slave (e.g., RTU or field devices) constantly vary because the reported data
from sensors changes among the measurements. Thus, in order to increase the NIDS classi-
fication accuracy, we also split samples into two classes: request and reply samples. Request
samples have the master device as source device, whilst reply samples have an RTU or a field
device as source. Note that, the activation of the Feature Selector component is optional be-
cause there are cases in which the SCADA operator needs a faster traffic classification (but with
less descriptive samples), near to the SCADA sampling time. Thus, the NIDS will use the na-
tive samples to describe the profile of the SCADA traffic. A summary about the life-cycle of
how the information is handled on the Historian Server and the Feature Selector is showed in
Figure 4.3.

4.3.4 One-Class Classifier

The One-Class Classifier component is the central element in the proposed architecture.
This component analyzes the samples stored in Historian Server to find anomalous behaviors in
the SCADA network. The functions of this component are: (i) to analyze the samples stored in
Historian Server to find anomalous behavior in the SCADA traffic; and, (ii) to emit alarms to
the next component about possible threats detected in the network. This component is divided

51

Figure 4.3: The information life-cycle inside the Historian Server and the Feature Selector.

Snapshots Native Samples
More Detailed

Samples

Training Samples

Validation Samples

Request Training Samples

Reply Training Samples

Request Validation Samples

Reply Validation Samples

MapReduce

Source: by author (2016).

into two modules, one for training the classifier (Fit Classifier), and other for classifying the
SCADA network traffic (Classifier). The description of these two modules is presented below:

• Fit Classifier: The Fit Classifier module is responsible for the training step of the pro-
posed NIDS. In other words, the training samples of request and reply stored in Historian
Server are loaded for building representation models to each communication flow di-
rection on the system. The Fit Classifier uses parameters that define how the training
stage will be accomplished. To the NIDS can actuate properly, the training stage must
occur before the traffic validation stage. However, our approach permits additional con-
figurations that assist in fitting the classifier. For example, it is possible to execute new
trainings during the monitoring of the SCADA network, and to define the periodicity in
which our NIDS will be trained again. This functionality enables the proposed NIDS to
learn new trends on the SCADA network, such as possible new commands (e.g., to define
the rotation of a turbine) and routing strategies inserted on the SCADA system (such as,
multicast diffusion of messages to the slave devices), or even an increase in the amount
of data reported from RTUs caused by the elevation in the energy demand. Fit Classifier
provides to the SCADA operator two options of training: (i) from the normal operation of
the SCADA system: where the system operator must define the time that will be used for
gathering statistics about the network normal functioning. In this case, the classification
of new traffic samples (validation stage) on the SCADA network is disabled during the
training stage; or, (ii) from trace files: this option permits the training of the NIDS from
stored training files. Thus, it is possible to save specific training files for sporadic events
on the network, such as cases where the resource demand is larger in a set of substations
at a certain time, or in cases in which the SCADA sampling time is modified to cover
periods of maintenance of equipment or substations;

• Classifier: This module loads the representation models previously generated on the Fit
Classifier module to build the traffic classifiers, Request Classifier and Reply Classifier,
used to detect disturbances on the network considering the direction of a network flow.
Classifier is a reconfigurable module that periodically loads the validation samples stored

52

in Historian Server. This module receives parameters through the NIDS Management
Interface component. The Classifier’s parameters permit the mechanism to operate in
accordance with the SCADA network behavior, considering the network periodicity or
the periodicity of specific parts of the network. In this context, it is important to note that a
more constant verification will generate smaller data bursts in smaller time-cycles, whilst
sparser verification, in turn, will generate larger data bursts with larger periodicity. By
default, the proposed NIDS offers two options of OCC algorithms, OCSVM and SVDD.
However, the solution was conceived to permit the SCADA operator to install new OCC
algorithms. In this case, drivers recognize the algorithms available on Classifier and
offer the required information (i.e., parameters) to the NIDS Management Interface. In
addition, Classifier enables the combination of OCC algorithms to enhance the accuracy
of the proposed NIDS. Thus, the network operator can choose the more accurate solution
to detect anomalies in their SCADA environment. Finally, Classifier will send an alarm
to the NIDS Management Interface if any sample indicates an inconsistent state in the
SCADA system, notifying when and where the network anomaly occurred. Figure 4.4
presents an operation diagram of the Classifier module, illustrating when a set of samples
is received until the raise of an alarm to the SCADA operators.

4.3.5 NIDS Management Interface

The NIDS Management Interface is the component responsible for providing information
about the NIDS to the SCADA operators. This management interface also permits that operators
send instructions to the NIDS. More precisely, the NIDS Management Interface enables the
SCADA operators:

• To be notified through alarms about possible disturbances on the network: The
anomalous behaviors detected by the One-Class Classifier are directly forwarded to the
NIDS Management Interface. Thus, the Alarm Trigger module, that is responsible for
generating alarms to the SCADA operators, retrieves the information contained in the
validation samples that were classified as anomaly, such as the DPID of the switch that
originated the information, the IP address of the devices that are involved in the message
exchange, the moment when the information was collected and classified by the NIDS,
and the direction in which the message was forwarded. With this set of information, the
NIDS can inform the SCADA operators where and when the network anomaly occurred
on the power grid, permitting the maintenance staff prepare a solution to solve this possi-
ble disturbance;

• To build anomaly responses: The NIDS Management Interface also offers a module to
build anomaly response policies against eventual disturbances detected by our solution,
the Anomaly Response module. This module permits the SCADA operators to create

53

Figure 4.4: Diagram of the Classifier module.

WaitGet Samples

Load Reply
Classifier

Load Request
Classifier

Predict Samples

Collect
Information

Raise Alarm

[Else]

[Else]

[Anomalous behaviour detected]

[There are samples to be analyzed]

[The flow is Request] [Else]

Classifier

Source: by author (2016).

OpenFlow rules that minimize or mitigate the detected anomalous behaviors. So, it is
possible to create an anomaly response that, for example, redirects a DDoS attack to a
HoneyPot device, forwards an unknown flow to middleboxes that will analyze the un-
known packets, and directly blocks anomalous traffic, avoiding the malicious instructions
(such as, restart or shutdown commands) to be sent to RTUs or field devices. The SCADA
operator can create an anomaly response immediately after the occurrence of a network
disturbance in accordance to the event characteristics. In addition, the proposed NIDS
also allows the anomaly responses to be stored on the Anomaly Response Policy Repos-
itory, that is situated in Historian Server. Thus, the SCADA operators can define if our
NIDS can reuse the stored mitigation strategies and proactively actuate in the system re-

54

covery into a consistent state. Figure 4.5 presents the sequence diagram of the anomaly
response mechanism of our NIDS;

Figure 4.5: Sequence diagram of the anomaly response mechanism.

NIDS Alarm Trigger Anomaly Response SCADA Operators
Anomaly Response
Policy Repository

1: raise_alarm(anomaly_data)

2: show_alarm(alarm)

3: send_alarm(alarm)

4: check_repository(alarm)

5: load_policy(alarm)

6: create_policy(policy)

7: save(policy)

8: response(policy)

[is_There_Policy(alarm)]

[else]

NIDS Management Interface

alt

Source: by author (2016).

• To configure components: The NIDS Management Interface permits the configuration
of essential functionalities of the NIDS components, such as: (i) the periodicity that the
SDN Controller will collect network statistics, and if the NIDS will use different sam-
pling times in specific point of the SCADA system; (ii) which communication protocols
will be monitored by our NIDS; (iii) how the IDs that identifies the snapshots will be
composed and samples stored in Historian Server; (iv) if the native samples will be used
in the network monitoring, or if the Feature Selector will create more detailed samples,
and which features will be used for characterizing the SCADA traffic; (v) as well as the
frequency that the NIDS will be trained, the periodicity that the One-Class Classifier will
classify the validation samples; and, (vi) which algorithms will be used and how they will
be configured for identifying anomalies;

• To analyze information about the NIDS operation: Finally, the NIDS Management
Interface comprises the Statistic Center module. Statistic Center presents information
about the operation of the SCADA network and the proposed NIDS. Thus, the operator

55

can visualize information, such as: (i) the traffic on the OpenFlow control channel; (ii)
the amount of active flows in each switch of the SCADA system and on the network as a
whole; (iii) the storage capacity of the Historian Server, as well as the amount of stored
snapshots and samples; (iv) the training set size, and the amount validation samples that
are waiting to be analyzed; and, (v) which features are used to describe the SCADA traffic.

56

5 PROTOTYPE AND EXPERIMENTAL EVALUATION

In this chapter, we describe a proof-of-concept prototype, the experimental setup used for
the evaluation of our implementation, as well as the test scenarios used to simulate a SCADA
environment. We also discuss the experimental results that validate our prototype and verify the
accuracy of the classification techniques.

5.1 Prototype

In the following we describe which were the technologies adopted to develop a proof-of-
concept prototype of our solution. To validate the proposed NIDS, we extended or implemented
the following components: SDN Controller, Historian Server, and One-Class Classifier. The
implementation choices are detailed below:

• SCADA Network Emulator: Given the importance, responsibility, and nature of SCADA
systems for power grids, it is not feasible to conduct security experiments in real cyber-
physical environments (FRIEDBERG; MCLAUGHLIN; SMITH, 2015). For this reason,
we used the Mininet Emulator1 version 2.2.1 to create our evaluation scenario. Mininet
is an open source project that was developed in order to offer to researchers a reliable
simulation environment for implementing SDN solutions. Mininet emulates a complete
network on a single machine, comprising hosts, links, and switches. Each Mininet host
has its own private network interface and can only see its own processes. In addition,
Mininet emulates OpenFlow switches by default. Mininet is a widely accepted and rec-
ognized tool. Furthermore, the Mininet emulator offered the ideal toolset to simulate our
SDN-based SCADA system;

• SDN Controller: As SDN controller, we chose POX2 version 0.20. POX is defined as an
open source networking software platform. POX permits developers to develop new POX
components that implement network functionalities. Thus, POX is very useful for writing
networking software in general. In addition, POX is a popular tool for teaching about
and researching SDN and network application programming. POX offers programming
interfaces in Python, and it started as an OpenFlow Controller, however now, POX also
functions as an OpenFlow switch. POX officially supports Windows, Mac OS, and Linux.
In our prototype we, used the l2_learning.py component to routing packets in the SCADA
system. In addition, we used POX timer events to monitor the SCADA communication
network, since the POX platform provides a framework for communicating with switches
that use the OpenFlow 1.0. We are aware that there are newer versions of the OpenFlow
protocol (such as version 1.5), however version 1.0 is currently the stable version of the

1http://mininet.org/
2http://www.noxrepo.org/pox

57

protocol3. Obviously, the use of newer versions can optimize issues such as processing,
but we found in version 1.0 all required support to our solution;

• Historian Server: We implemented the Historian Server component on the Apache Cas-
sandra4 database version 2.2 (The stable version). Apache Cassandra is an open source
distributed database management system designed to handle large amounts of structured
data across many nodes. Cassandra relies on the NoSQL (Non Structured Query Lan-
guage) paradigm. NoSQL databases do not use relational models and permit the imple-
mentation of scalable, resilient, and distributed high-performance solutions. In addition,
Cassandra is a column-oriented database and has a flexible data model. Thus, different
from a table in a traditional relational database, distinct rows in the same table do not
have to share the same set of columns. The flexible data model of Cassandra enables the
utilization of personalized RuleIDs by our solution. In addition, this database promotes
design scalability and allows distributing system tasks to multiple clusters, decreasing
possible processing bottlenecks. The Apache Cassandra database supports several lan-
guage drivers to develop solutions, such as Python, C#, Java, and other programming
languages. It is important to note that we did not use a MapReduce Framework in our
prototype. Our prototype relies on an off-line classification process. However, we in-
tend to improve the prototype, adding a MapReduce framework and turning on-line the
classification process;

• OCC algorithms implementation: In order to obtain a reliable implementation of the
OCC algorithms used in our NIDS, we adopted the LIBSVM5 library in its version 3.18.
LIBSVM is an open source ML library that offers a simple and efficient implementation
of several SVM-based algorithms for binary, multiclass, and OCC problems. LIBSVM
is written in C++ and offers interfaces to develop solutions in other languages, such as
Python, Java, Ruby, and so forth. The algorithms available in LIBSVM typically requires
two steps: (i) training a dataset to obtain a classification model; and (ii), using the classi-
fication model to predict information of a validation dataset. LIBSVM natively offers the
OCSVM algorithm, however the version 3.18, specially, offers a plug-in that enables the
utilization of the SVDD algorithm. It is important to note that both OCC algorithms used
in our experiments, OCSVM and SVDD, were configured with their default parameters,
using the RBF Kernel.

5.1.1 Evaluation Scenario

Our evaluation scenario (e.g., the number of components, protocols, topology, commands,
and the SCADA sampling time) was based on documents that detail characteristics of large-

3http://archive.openflow.org/wk/index.php/OpenFlow_Wiki
4http://cassandra.apache.org/
5https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

58

scale SCADA systems (BAILEY; WRIGHT, 2003; BOYER, 2009; STOUFFER; FALCO;
SCARFONE, 2011) and SCADA systems for power grids (THOMAS; MCDONALD, 2015;
STOUFFER; FALCO; SCARFONE, 2011). Thus, based on these documents, we defined an
environment that simulates a large-scale SDN-based SCADA system for power grids. In this
context, we assume that the SDN-based SCADA system is maintained by a particular power
grid company. This company controls a hydro-power plant, power transmission lines, and eight
distribution substations. The power grid simulated in our evaluation scenario is responsible for
supplying energy to eight different regions and is showed in Figure 5.1.

Figure 5.1: General overview of the power grid simulated in our experiments.

Substation 1

Substation 2 Substation 3

Substation 4 Substation 5

Substation 6

Substation 7 Substation 8

Bulk Generation

Source: by author (2016).

The simulated SDN-based SCADA system is composed by several equipment. More specif-
ically, our SCADA comprises: 25 OpenFlow switches that interconnect the SCADA devices; 1
MTU to send commands and control the SCADA components; 4 subMTUs to receive MTU’s
commands and forward them to the subordinated devices, such as RTUs and IEDs. In addi-
tion, subMTUs also report their stored data to the MTU; 8 RTUs that control field devices, and
centralize the data gathered in the distribution substation, forwarding this information to one
subMTU; 6,000 traditional field devices reporting data about the substation equipment. These
field devices were divided in the 8 distribution substations of the power company, totalizing
750 for each substation. Thus, the field devices of each substation are directly connected to one
RTU; and, 800 independent field devices, also known as Intelligent Electronic Devices (IEDs).
IEDs were placed in our SDN-based SCADA system for controlling the voltage in the transmis-
sion lines of the power grid. Different from the traditional field devices that are abstractions in
our evaluation scenario, each IED was simulated independently. In addition, as well as RTUs,
each IED directly exchanges information with one subMTU. In a nutshell, in our evaluation sce-
nario the MTU requests data from its sub-MTUs, which consequently request data from their
subordinated devices (RTUs or IEDs). Table 5.1 summarizes the set of SCADA devices used in
our evaluation scenario.

Due to the large number of equipment, we adopted a network topology for large-scale

59

Table 5.1: Overview of our evaluation scenario.

Device Quantity
MTU 1
subMTU 4
RTU 8
Field Device 6,000
IED 800
OpenFlow Switch 25
Total 6,838

SCADA systems presented by Stouffer, Falco and Scarfone (2011). Furthermore, we used Mod-
bus/TCP for device communication. We also used Mininet to emulate this SCADA network, and
Figure 5.2 depicts the topology that we adopted in our evaluation scenario. To respect the time
requirements of traditional SCADA systems for power grids, our evaluation scenario consisted
of the MTU and subMTUs periodically requesting information from the subordinated devices,
every 2 seconds. In this context, every 2 seconds, a master device sends a READ_COILS mes-
sage to its slave devices. In turn, the slave devices reply the original message with the stored
values into their registers. The traffic generation of our simulated SCADA system was based
on the characteristics (e.g., periodicity, behavior, and size of messages) presented by Barbosa
(2014). In addition, focusing on our NIDS, we set the periodicity of network statistics gathering
to 4 seconds. Furthermore, our implementation was configured to collect information from His-
torian Server every 4 seconds too. Thus, in our evaluation scenario, our NIDS was responsible
for analyzing the network information stored in Historian Server and for generating alerts to
system operators when a possible anomalous behavior in the SCADA communication network
is detected. It is important to note that in our experiments, we used the native samples for traffic
classification, keeping disabled the Feature Selector component.

5.2 Experimental Evaluation

In this section, we describe two case studies used to evaluate the accuracy of our proposed
NIDS. Firstly, in Section 5.2.1, we analyze operation of the component when a DoS attack
is occurring. Then, in Section 5.2.2, we show the results of our NIDS when used to detect
misconfigured devices in the SCADA network. The accuracy of our prototype in discussed in
both sections, comparing the ML metrics and analyzing the performance of our solution using
the selected OCC algorithms, OCSVM and SVDD.

60

Figure 5.2: Configuration of the network topology used in our experiments.

SubMTU 1

SubMTU 3

SubMTU 2

SubMTU 4

MTUMTU

RTU 1RTU 1

RTU 2RTU 2

RTU 3RTU 3

RTU 4RTU 4

RTU 5RTU 5

RTU 6RTU 6

RTU 7RTU 7

RTU 8RTU 8

001 – 100
IED

001 – 100
IED

101 – 200
IED

101 – 200
IED

201 – 300
IED

201 – 300
IED

301 – 400
IED

301 – 400
IED

401 – 500
IED

401 – 500
IED

501 – 600
IED

501 – 600
IED

601 – 700
IED

601 – 700
IED

701 – 800
IED

701 – 800
IED

Source: by author (2016).

5.2.1 Case Study 1 - DoS Attack

In this first case study, we simulate an attack that affects the availability of some SCADA
components. For this reason, we simulated the launch of a DoS attack targeted at one of the
substations. In our experiments, we assume that this DoS could be launched by a disgrun-
tled employee of the power distribution company who has remote access to one workstation
of subMTU #2. As illustrated in Figure 5.3, the disgruntled employee intends to disrupt the
communication between a particular distribution substation (RTU #2) and the rest of the power
system, forcing a hard-reset in the SCADA system and causing financial losses to the company.
The DoS attack is based on a particular Modbus vulnerability named Unauthorized Read Re-
quest6. This vulnerability allows an attacker with IP connectivity to a SCADA slave device to
send unlimited data requests and consequently cause a buffer-overflow in the targeted equip-
ment. Currently, according to Dell (2015), buffer-overflow is a major threat in modern and
legacy SCADA systems. It is important to note that in this case study, our aim is to detect the
DoS propagation. The experiment conducted in this case study is characterized by monitoring
the SCADA network during 20 minutes. This experiment contained two types of traffic, where:
10 minutes represented the expected system functioning; and 10 bursts of 1 minute indicated
the occurrence of the DoS attack on the SCADA network. This experiment was performed 30

6http://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=20674

61

times, in order to achieve a confidence level of 95% in the obtained results. The experiments
were performed on an Intel Core i7-4790 3.6GHz with 16 GB of RAM memory.

Figure 5.3: Positioning of the disgruntled employee in Case Study 1.

SubMTU 1

SubMTU 3

SubMTU 2

SubMTU 4

MTUMTU

RTU 1RTU 1

RTU 2
(Target)

RTU 2
(Target)

RTU 3RTU 3

RTU 4RTU 4

RTU 5RTU 5

RTU 6RTU 6

RTU 7RTU 7

RTU 8RTU 8

001 – 100
IED

001 – 100
IED

101 – 200
IED

101 – 200
IED

201 – 300
IED

201 – 300
IED

301 – 400
IED

301 – 400
IED

401 – 500
IED

401 – 500
IED

501 – 600
IED

501 – 600
IED

601 – 700
IED

601 – 700
IED

701 – 800
IED

701 – 800
IED

Attacker

Source: by author (2016).

We evaluated the accuracy of our implementation using the two available SVM-Based OCC
algorithms for traffic classification, OCSVM and SVDD. Firstly, we calculated a confusion
matrix from the results of our experiments. In this context, the confusion matrix generated four
metrics that are described below:

• True Positive (TP): In the context of our experiments, a sample predicted as TP indicates
benign traffic correctly classified;

• True Negative (TN): TN samples characterize the DoS attack that was correctly detected;

• False Positive (FP): Samples classified as FP indicate the DoS attack misclassified as
benign traffic;

• False Negative (FN): FN samples are benign samples misclassified as outliers.

Table 5.2 presents the specific metrics for evaluating supervised ML algorithms. In absolute
numbers, the experiments of Case Study 1 generated a total of 29,709 samples which were clas-
sified by the NIDS. Of the total of samples generated, 15,579 (52.439%) represented the normal
functioning of our SCADA network, whilst the 14,130 (47.561%) remaining samples evidenced
the DoS propagation in the power grid. Each repetition of our experiment generated on average
990.3 validation samples, which correspond to 519.3 positive samples and 471 negative samples

62

on average for each repetition.

Table 5.2: ML metrics analyzed in our experiments.

Metric Formulation Description

True Positive Rate (TPR)
TP

TP + FN
The proportion of instances classified as positive that are correctly identified

True Negative Rate (TNR)
TN

FP + TN
The proportion of instances classified as negative that are correctly identified

Positive Predictive Value (PPV)
TP

TP + FP
The proportion of instances classified as positive that are TP

Negative Predictive Value (NPV)
TN

TN + FN
The proportion of instances classified as negative that are TN

False Positive Rate (FPR)
FP

FP + TN
The proportion of instances classified as negative that incorrectly receive a positive test result

False Discovery Rate (FDR)
FP

FP + TP
The proportion of instances classified as positive that are FP

False Negative Rate (FNR)
FN

FN + TP
The proportion of positives which yield negative test outcomes with the test

Accuracy (ACC)
TP + TN

(TP + FN) + (FP + TN)
The proportion of true results among the total number of cases examined

The confusion matrices presented in Figure 5.4 describe the traffic classification produced
by the proposed NIDS. With both algorithms, OCSVM and SVDD, we can observe that our
NIDS obtained significant results if we consider the validation samples classified as FP and
TN. The confusion matrices show that, for all repetitions of the experiments, our NIDS de-
tected correctly and instantly the validation samples that indicated the propagation of the DoS
attack on the SCADA network. In other words, 100% of the validation samples that presented
the evidence of DoS attack (TN bars in Figure 5.4) were classified as anomalous behavior,
being reported immediately to the SCADA operators. However, if we only analyze the ex-
pected behavior, we can see that OCSVM obtained slightly better performance if compared
to the SVDD algorithm. OCSVM classified correctly, that is, classified as TP, approximately
98.435% of the validation samples, whilst using SVDD this classification was 95.718%. Fig-
ure 5.5 presents a time series of the traffic classification of both OCSVM (Figure 5.6(a)) and
SVDD (Figure 5.6(b)), respectively. As Figure 5.6(b) indicates, in the experiment using SVDD,
the last three validation samples were classified as FP. This indicates that the RBF Kernel used
by OCSVM fits better to the simulated traffic in our SCADA system in relation to the SVDD hy-
persphere. Note that figures 5.6(a) and 5.6(b), for better visualization of the traffic classification,
present only part of an experiment, which contains 40 validation samples where 24 samples are
the normal expected traffic, and 16 are the traffic samples evidencing the DoS attack.

As both algorithms obtained similar FP and TN rates, these results also have influence on
metrics for evaluating the accuracy of our NIDS. As can be seen in Figures 5.7(a) and 5.7(b),
both algorithms achieved 100% of TNR and PPV. Consequently, OCSVM and SVDD also
achieved 0% of FPR and FDR. These results show that the prototype accurately detected and
reported the DoS attack in this first case study. Analyzing the remaining metrics, we can see that
SVDD presented a higher FNR (4.281%) if compared to OCSVM (1.565%). OCSVM presented
slightly higher TPR (98.435% against 95.718%). Furthermore, OCSVM also presented higher
rate of NPV (98.31% against 95.501%). Ultimately, OCSVM obtained slightly better accuracy
(99.18%) than SVDD (97.755%). Table 5.3 presents an overview of the obtained results in the

63

Figure 5.4: Confusion matrices generated for Case Study 1.

98.435
95.718

0 0 1.565
4.281

100 100

0

25

50

75

100

TP.OCSVM TP.SVDD FP.OCSVM FP.SVDD FN.OCSVM FN.SVDD TN.OCSVM TN.SVDD

Metric

M
et

ri
c

va
lu

es
 (

%
)

Source: by author (2016).

Figure 5.5: Traffic classification of our One-Class NIDS for SDN-Based SCADA systems.

0

4000

8000

12000

130 140 150 160
Samples

P
ac
ke
ts

Anomalous Expected

(a) Traffic classification using OCSVM.

0

4000

8000

12000

130 140 150 160
Samples

P
ac
ke
ts

Anomalous Expected

(b) Traffic classification using SVDD.

Source: by author (2016).

experiments of Case Study 1.

Table 5.3: Overview of the results obtained in Case Study 1.

Metrics /
Algorithm OCSVM SVDD

TPR ≈ 98.435% ≈ 95.718%
TNR 100% 100%
PPV 100% 100%
NPV ≈ 98.31% ≈ 95.501%
FPR 0% 0%
FDR 0% 0%
FNR ≈ 1.565% ≈ 4.281%
ACC ≈ 99.18% ≈ 97.755%

64

Figure 5.6: ML metrics obtained from the experiments of Case Study 1.

98.435 100 100 98.31

0 0 1.565

99.18

0

25

50

75

100

TPR TNR PPV NPV FPR FDR FNR ACC

Metric

P
er

ce
nt

ag
e

(%
)

(a) Metrics using OCSVM.

95.718
100 100

95.501

0 0
4.281

97.755

0

25

50

75

100

TPR TNR PPV NPV FPR FDR FNR ACC

Metric

P
er

ce
nt

ag
e

(%
)

(b) Metrics using SVDD.

Source: by author (2016).

The accuracy obtained in this case study is near to the accuracy achieved by Maglaras and
Jiang (2014) using OCSVM in a traditional SCADA system (98.88%).Analyzing these results,
we can state that in this first case study, our approach was able to fully detect the DoS attack.
Although the prototype has classified validation samples as FP, it behaved well in relation to
the attack detection. This can be proved by analyzing the results obtained on metrics directly
based on TN samples or FP samples, such as TNR, PPV, FPR, and FDR. Our initial experiments
also showed that OCSVM presented slightly better accuracy than SVDD in this scenario. This
means that, given our assumption about the scarcity of public available attack traces in SCADA,
it is possible to detect attacks targeted at the power system by using a classifier model that only
represents the expected behavior of the SCADA network.

Finally, we also analyzed the time required for processing the validation samples for both
algorithms, OCSVM and SVDD. To collect the processing time for each algorithm, we stored
the traces generated in each repetition of this experiment, then we classified once the entire
information collected in the experiment. Despite the OCSVM algorithm has obtained better
accuracy, SVDD classifies validation samples a bit faster. In our experiments, SVDD classified
the validation samples in approximately 6 milliseconds, whilst OCSVM achieved the time of
6.4 milliseconds. Thus, through the results achieved in this case study, we can show that, for
example, SVDD may be more suitable for SCADA systems that generate large amounts of data
and have small time requirements.

5.2.2 Case Study 2 - Misconfiguration of Slave Devices

The majority of the proposed IDSes for SCADA systems are designed to detect only anoma-
lies caused by cyber-attackers, such as DoS or malware propagation. Throughout this Masters
Thesis, we stated that our solution is not only capable to detect anomalies caused by cyber-

65

attackers but it is also able to identify misconfigurations induced by both, human interference
and natural causes. The ability to notify network anomalies independently of their nature is
essential to guarantee the correct operation of SCADA systems, since several equipment (e.g.,
field devices and IEDs) are operating in open environments, gathering, for example, informa-
tion about external devices. Thus, SCADA field devices are often exposed to extreme climatic
conditions, such as low temperatures, high humidity, sun rays, storms, and so forth.

Differently from the first experiment that focuses on network intrusions, in this case study
we focused on simulating an anomaly situation that compromised the integrity of data reported
by SCADA IEDs. In other words, the focuses of this case study is to detect network anomalies
caused by, for example, misconfigurations or natural disasters. For this reason, we assumed that
a natural disaster has damaged some IEDs in the transmission line of our SDN-based SCADA
system. More precisely, as represented in Figure 5.7, the natural disaster was based on a tornado
that struck the transmission lines that supply substations 7 and 8. This incident misconfigured
some IEDs of the SubMTU 3 (IEDs 701-800). In our experiment, these damaged equipment
started to report information that does not represent the real state of the transmission lines.
For example, IEDs may start to send malformed packets, which are empty or greater than the
expected packet size.

The aim of this case study is to detect the aftereffect of an incident. The experiment con-
ducted in this case study is characterized by monitoring the SCADA network during 10 minutes.
This experiment contained two types of traffic, where: (i) 5 minutes represented the expected
system functioning; and (ii) the last 5 minutes indicated the occurrence of misconfigured equip-
ment on the SCADA network. As well as Case Study 1, this experiment was performed 30
times, in order to achieve a confidence level of 95% in the obtained results. The experiments
were performed on an Intel Core i7-4790 3.6GHz with 16 GB of RAM memory.

Figure 5.7: Area of impact in Case Study 2.

Substation 1

Substation 2 Substation 3

Substation 4 Substation 5

Substation 6

Substation 7 Substation 8

Bulk Generation

Source: by author (2016).

In this case study, we also evaluated the quality of our NIDS to identify the incident us-
ing OCSVM and SVDD. We calculated the confusion matrices resulted from our experiments.

66

Figure 5.8 presents the confusion matrices resulted from Case Study 2. With both algorithms,
OCSVM and SVDD, we can observe that our NIDS obtained again good results considering
samples classified as FP and TN. The confusion matrices show that, for all repetitions of the
experiments, our NIDS detected correctly and instantly the validation samples that evidenced
the equipment malfunction. 100% of the validation samples that represented misconfigurations
on IEDs (TN bars in Figure 5.8) were classified as anomalous behavior. However, if we only an-
alyze the expected behavior, we can see that OCSVM maintained a slightly better performance
if compared to the SVDD algorithm. OCSVM classified as TP, approximately 98.379% of the
validation samples, whilst the SVDD algorithm achieved 97.928% of TP.

Figure 5.8: Confusion matrices generated for Case Study 2.

98.379 97.928

0 0
1.791 2.289

100 100

0

25

50

75

100

TP.OCSVM TP.SVDD FP.SVDD FP.OCSVM FN.OCSVM FN.SVDD TN.OCSVM TN.SVDD

Metric

M
et

ri
c

va
lu

es
 (

%
)

Source: by author (2016).

In this case study, both algorithms achieved again 100% of TNR and PPV, as is showed in
Figures 4.10(a) and 4.11(b). Consequently, OCSVM and SVDD also achieved 0% of FPR and
FDR. These results show that the One-Class NIDS accurately detected and reported the behavior
of misconfigured IEDs in Case Study 2. Analyzing the remaining metrics, we can see that
SVDD presented a higher FNR (2.072%) if compared to OCSVM (1.622%). OCSVM presented
slightly higher TPR (98.379% against 97.928%). Furthermore, OCSVM also presented higher
rate of NPV (98.261% against 97.768%). SVDD also was not was better than OCSVM that
obtained an accuracy level of 99.149%. Table 5.4 presents an overview of the obtained results
in the experiments of Case Study 2. Analyzing the results of this case study, we can state
that: OCC algorithms also can be used in the detection of misconfigured devices in SCADA
systems; and, our approach was able to fully detect the anomaly behavior that resulted from
malfunctioning devices.

In this last case study, we also seek to evaluate how our NIDS behaves in relation to the
training process of the representation model. In a first moment, we created 10 distinct training
sets containing 10, 100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, and 25,000 samples that rep-
resented the normal behavior of our evaluation scenario. These training sets were used to build
the representation model by the prototype using both algorithms, OCSVM and SVDD. Then,

67

Figure 5.9: ML metrics obtained from the experiments of Case Study 2.

98.378 100 100
98.261

0 0 1.622

99.149

0

25

50

75

100

TPR SPC PPV NPV FPR FDR FNR ACC

Metric

P
er

ce
nt

ag
e

(%
)

(a) Metrics using OCSVM.

97.928
100 100

97.768

0 0
2.072

98.913

0

25

50

75

100

TPR SPC PPV NPV FPR FDR FNR ACC

Metric

P
er

ce
nt

ag
e

(%
)

(b) Metrics using SVDD.

Source: by author (2016).

Table 5.4: Overview of the results obtained in Case Study 2.

Metrics /
Algorithm OCSVM SVDD

TPR ≈ 98.378% ≈ 97.928%
TNR 100% 100%
PPV 100% 100%
NPV ≈ 98.261% ≈ 97.768%
FPR 0% 0%
FDR 0% 0%
FNR ≈ 1.622% ≈ 2.072%
ACC ≈ 99.149% ≈ 98.913%

we analyzed the processing time required to create the representation model for each training
set. Figure 5.10 presents the achieved times in this experiment. The OCSVM algorithm requires
more computing resources than SVDD. Analyzing the time for each training set, we can see that
the OCSVM processing time increases exponentially, differently from the SVDD algorithm that
grows linearly. For example, to the larger training set with 25,000 samples, OCSVM demanded
approximately 10.287 seconds to create the representation model, whilst the SVDD algorithm
required only 0.223 seconds for accomplishing the same task. To proportionate a better result
comparison, Figure 4.11(a) presents the data in decimal scale, whilst Figure 4.11(b) uses log-
arithmic scale in base 10, permitting the visualization of processing times even for the smaller
training sets.

Lastly, we still used the same training sets to calculate the amount of memory required
for creating the representation model for each OCC algorithm. Although OCSVM is more
accurate than SVDD, Figure 5.11 shows that OCSVM requires more memory to describe the
representation model that classifies the SCADA traffic. This characteristic is due to the fact that

68

Figure 5.10: Processing Time to create the representation model in Case Study 2.

0.0

2.5

5.0

7.5

10.0

0 5000 10000 15000 20000 25000
Samples

P
ro

ce
ss

in
g

T
im

e
(s

)

OCSVM SVDD

(a) Using decimal scale.

1e-03

1e-01

1e+01

0 5000 10000 15000 20000 25000
Samples

P
ro

ce
ss

in
g

T
im

e
(l

og
10

(s
))

OCSVM SVDD

(b) Using log10 scale.

Source: by author (2016).

the RBF Kernel creates a decision boundary that fits better than a hypersphere to the training
data. In addition, SVDD automatically removes unnecessary similar samples that are included
in the training set, thus optimizing the size of the representation model. In other words, an
SVDD representation model may have a smaller size if compared to an OCSVM representation
model. In our experiments, as we can see in Figure 5.11 we obtained similar results for the
smaller training sets (e.g., with 10 and 100 samples). However, OCSVM requires much more
memory than SVDD to the larger training sets. For example, in our experiments, to the training
set with 25,000 samples, OCSVM created the representation model with sized approximately
250 kilobytes, whilst SVDD used only 2.3 kilobytes.

Figure 5.11: Memory used to create the representation model in Case Study 2.

93 107

327 321

17661498

6891

2280

12299

2315

52554

2355

101871

2314

151156

2318

199964

2317

249841

2298

1e+01

1e+03

1e+05

1 10 100 500 1000 5000 10000 15000 20000 25000
Samples

C
la

ss
if

ic
at

io
n

m
od

el
 s

iz
e

in
 lo

g1
0(

by
te

s)

OCSVM SVDD

Source: by author (2016).

69

6 CONCLUDING REMARKS

Power grids are responsible for the generation, transmission, and distribution of electricity to
end-users. However, over the recent years, power grids are becoming more sophisticated, with
the aim of increasing their safety, reliability, economical and energy efficiency, and reducing
their environmental impact. Usually, power grids are controlled and monitored by large-scale
SCADA systems. Because of their fundamental importance, any threat to the operation of
SCADA systems may result in heavy economical losses or even put lives in danger. Therefore,
in order to promote the modernization process of power grids, we investigate the development
of a new generation of SCADA systems, named SDN-based SCADA systems. In this context,
SDN-based SCADA systems can facilitate the design and development of Smart Grid network
applications, by making them more secure and resilient.

By relying on the global view of the SDN-based SCADA network and on their ability to
gather switch statistics, we presented a specific NIDS for this kind of environment. The NIDS
proposed in this Masters Thesis relies on OCC algorithms, a specific kind of ML techniques
that, with a unique inlier homogeneous training set, can detect anomalous behaviors in SCADA
networks caused by human or natural causes, such as unauthorized system or network activity.
We presented experimental results in a realistic large-scale SCADA environment that validate
our prototype and verified the accuracy of the classification techniques, applied to the detection
of network anomalies in two case-studies: (i) a DoS attack based on a real vulnerability of
the Modbus/TCP protocol; and, (ii) a natural disaster that was responsible for misconfiguring
several SCADA field devices. Our analysis was based on a comparison of two OCC algorithms,
OCSVM and SVDD, which deal well with large datasets and have a fast classification process
if compared to other ML techniques.

6.1 Summary of Contributions

In this document, we presented a list of contributions to the state-of-the-art, such as:

• The results of a comprehensive investigation of the applicability and benefits of applying
SDN in Smart Grid environments, mainly in the context of SCADA systems. During
our research, we detected that the characteristics of SDN, such as its flexibility, pro-
grammability, the centralized management, and its standard API can enhance the level of
resilience and robustness of SCADA systems. In addition, we listed possible benefits of
SDN-based SCADA systems for each FCAPS property;

• An investigation of the basic requirements of NIDSes for SCADA systems applied in
the context of power grids. Based on the literature, we cited that for a NIDS to properly
operate in the environment of a SCADA system, it must: (i) respect the SCADA sampling
period; (ii) be scalable; (iii) constantly manipulate large datasets; and, (iv) adapt itself to
the diversity of available technologies for SCADA systems;

70

• A review of the existing techniques utilized for traffic classification. Thus, we identified
the OCC approach, a class of ML algorithms that can be used for detecting anomalous
behaviors in SCADA networks without relying on third-party SCADA traces. In this
document, we detailed the operation of two SVM-based OCC algorithms, OCSVM and
SVDD. In our experiments, these algorithms were capable of detecting network anoma-
lous behavior caused by human interference, and natural disasters. Furthermore, both,
OCSVM and SVDD, achieved significant results, presenting an accuracy level of approx-
imately 99%;

• A NIDS specific for SDN-based SCADA systems that addresses the basic requirements
of traditional IDSes for power grids. Our proposal comprises a flexible traffic classifier
based on OCC techniques to detect anomalies in SCADA networks. In addition, our
strategy relies on SDN/OpenFlow to periodically collect information about the SCADA
network. To the best of our knowledge, this is the first time that a solution that merges
SDN, SCADA, and OCC is proposed to enhance the resilience of SCADA systems for
power grids.

6.2 Discussion and Lessons Learned

SCADA systems are commonly used to aid the operation of critical infrastructures, includ-
ing some that are considered to be essential for our society, e.g. power grids. In the past,
these systems were completely isolated and relied on specific hardware and software compo-
nents. However, SCADA systems are becoming increasingly interconnected to the Internet to
increase productivity and to reduce the OPEX, thus bringing new security threats. In order to
enhance the security level of SCADA systems, several traditional IT NIDSes have been adapted
to detect unexpected behaviors in SCADA environments. Nevertheless, the different nature and
characteristics of SCADA networks have motivated researchers to develop NIDSes specific for
SCADA systems. Consequently, a number of NIDSes have been specifically developed to meet
the requirements of SCADA systems.

With the appearance of the SDN paradigm, new researches efforts have aimed to insert
SDN in the context of power grids and SCADA systems. Some proposals appeared to improve
SCADA systems, and to provide better services to the power grid end-users. Thus, we investi-
gated how SDN can assist to enhance the resilience level of SCADA systems, and we proposed
the use of SDN to collect more accurate information from the SCADA network. Therefore, we
could learn how a SCADA network behaves and how a cyber attack targeted to this environment
will manifest. In addition, we proposed a NIDS that creates signatures of the expected network
operation, e.g. the proposal generates behavior models of the correct functioning of SCADA
devices.

Our proposal was designed to use OCC algorithms. This design definition allowed us to
built a theoretical background about the main available OCC approaches. In this universe of

71

possibilities, we chose two SVM-based OCC algorithms, OCSVM and SVDD. In our experi-
ments, we could state that these algorithms can be used to detect network anomalies in SCADA
environments, and thus, we also could learn the characteristics of these two algorithms. In our
experiments, we could observe that OCSVM adapted itself better than SVDD to the SCADA
network traces. However, the SVDD algorithm is faster and requires less computing resources
than OCSVM. For this reason, SVDD may be more indicated for SCADA systems with more
rigorous time restrictions, whilst OCSVM may be more appropriate for SCADA that needs
better accuracy.

6.3 Final Remarks and Future Work

As possible future work, we intend to expand the range of initially available OCC ap-
proaches in our proposal, inserting, for example, algorithms such as the Kernel Principal Com-
ponent Analysis (KPCA) (HOFFMANN, 2007) and the One-Class Random Forests (OCRF)
(DÉSIR et al., 2013). We plan to carry out a performance analysis of our NIDS using these new
OCC algorithms against real SCADA threats, such as the Stuxnet worm. Still with respect to
traffic classification, we also intend to provide solutions based on combined classifiers, imple-
menting for example, a mix between a unsupervised algorithm (e.g., K-Means) and an available
OCC algorithm, in order to improve the accuracy of our proposal. In addition, we intend to
incorporate the Feature Selector component in our solution to minimize possible false alerts. In
order to improve the components of our prototype, we intend, for example, to permit that our
NIDS classifies on-line the SCADA traffic. Furthermore, we intend to evaluate the utilization
of different MapReduce frameworks in our solution, in order to detect the implementation that
offers the best trade-off for our NIDS in terms of data processing and scalability. Finally, we
plan to implement a user-friendly interface, for defining alternatives to mitigate the anomalous
behaviors without compromising the functioning of SCADA devices.

72

REFERENCES

AL-DALKY, R. et al. A modbus traffic generator for evaluating the security of scada systems.
In: Communication Systems, Networks Digital Signal Processing (CSNDSP), 2014 9th
International Symposium on. [S.l.: s.n.], 2014. p. 809–814.

ALMALAWI, A. Designing unsupervised intrusion detection for SCADA systems. Thesis
(PhD) — RMIT University, Melbourne, Victoria, Australia., December 2014. Available from
Internet: <https://researchbank.rmit.edu.au/view/rmit:161104>.

ALMALAWI, A. et al. An Unsupervised Anomaly-Based Detection Approach for Integrity
Attacks on SCADA Systems. Computers & Security, v. 46, n. 0, p. 94 – 110, 2014. ISSN
0167-4048.

ASIF, M.; AL-HARTHI, Y. Intrusion detection system using honey token based encrypted
pointers to mitigate cyber threats for critical infrastructure networks. In: Systems, Man
and Cybernetics (SMC), 2014 IEEE International Conference on. [S.l.: s.n.], 2014. p.
1266–1270.

BAILEY, D.; WRIGHT, E. Background to {SCADA}. In: BAILEY, D.; WRIGHT,
E. (Ed.). Practical {SCADA} for Industry. Oxford: Newnes, 2003. p. 1 – 10. ISBN
978-0-7506-5805-8. Available from Internet: <http://www.sciencedirect.com/science/article/
pii/B9780750658058500015>.

BARBOSA, R.; SADRE, R.; PRAS, A. A first look into scada network traffic. In: Network
Operations and Management Symposium (NOMS), 2012 IEEE. [S.l.: s.n.], 2012. p.
518–521. ISSN 1542-1201.

BARBOSA, R. R. R. Anomaly detection in SCADA systems: a network based approach.
Thesis (PhD) — University of Twente, Enschede, April 2014. Available from Internet:
<http://doc.utwente.nl/90271/>.

BAUDAT, G.; ANOUAR, F. Kernel-based methods and function approximation. In: Neural
Networks, 2001. Proceedings. IJCNN ’01. International Joint Conference on. [S.l.: s.n.],
2001. v. 2, p. 1244–1249 vol.2. ISSN 1098-7576.

BENDER, K. (Ed.). Profibus: The Fieldbus for Industrial Automation. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1993. ISBN 0-13-012691-8.

BENKEDJOUH, T. et al. Fault prognostic of bearings by using support vector data description.
In: Prognostics and Health Management (PHM), 2012 IEEE Conference on. [S.l.: s.n.],
2012. p. 1–7.

BIGHAM, J.; GAMEZ, D.; LU, N. Safeguarding scada systems with anomaly detection.
In: GORODETSKY, V.; POPYACK, L.; SKORMIN, V. (Ed.). Computer Network
Security. Springer Berlin Heidelberg, 2003, (Lecture Notes in Computer Science,
v. 2776). p. 171–182. ISBN 978-3-540-40797-3. Available from Internet: <http:
//dx.doi.org/10.1007/978-3-540-45215-7_14>.

https://researchbank.rmit.edu.au/view/rmit:161104
http://www.sciencedirect.com/science/article/pii/B9780750658058500015
http://www.sciencedirect.com/science/article/pii/B9780750658058500015
http://doc.utwente.nl/90271/
http://dx.doi.org/10.1007/978-3-540-45215-7_14
http://dx.doi.org/10.1007/978-3-540-45215-7_14

73

BORAH, B.; BHATTACHARYYA, D. K. An improved sampling-based dbscan for large
spatial databases. In: Intelligent Sensing and Information Processing, 2004. Proceedings of
International Conference on. [S.l.: s.n.], 2004. p. 92–96.

BOYER, S. A. Scada: Supervisory Control And Data Acquisition. 4th. ed. USA:
International Society of Automation, 2009. ISBN 1936007096, 9781936007097.

BREZZI, F. On the existence, uniqueness and approximation of saddle-point problems arising
from lagrangian multipliers. Revue française d’automatique, informatique, recherche
opérationnelle. Analyse numérique, v. 8, n. 2, p. 129–151, 1974.

BRUNNER, C. Iec 61850 for power system communication. In: 2008 IEEE/PES
Transmission and Distribution Conference and Exposition. [S.l.: s.n.], 2008. p. 1–6. ISSN
2160-8555.

CAHN, A. et al. Software-defined energy communication networks: From substation
automation to future smart grids. In: Smart Grid Communications (SmartGridComm),
2013 IEEE International Conference on. [S.l.: s.n.], 2013. p. 558–563.

CARCANO, A. et al. A multidimensional critical state analysis for detecting intrusions in
scada systems. Industrial Informatics, IEEE Transactions on, v. 7, n. 2, p. 179–186, May
2011. ISSN 1551-3203.

CARCANO, A. et al. State-based network intrusion detection systems for scada protocols:
A proof of concept. In: Proceedings of the 4th International Conference on Critical
Information Infrastructures Security. Berlin, Heidelberg: Springer-Verlag, 2010.
(CRITIS’09), p. 138–150. ISBN 3-642-14378-4, 978-3-642-14378-6. Available from Internet:
<http://dl.acm.org/citation.cfm?id=1880551.1880563>.

CARDENAS, A. A. et al. Attacks against process control systems: Risk assessment,
detection, and response. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security. New York, NY, USA: ACM, 2011.
(ASIACCS ’11), p. 355–366. ISBN 978-1-4503-0564-8. Available from Internet:
<http://doi.acm.org/10.1145/1966913.1966959>.

CARUANA, R.; NICULESCU-MIZIL, A. An Empirical Comparison of Supervised Learning
Algorithms. In: Proceedings of the 23rd International Conference on Machine Learning.
New York, NY, USA: ACM, 2006. (ICML ’06), p. 161–168. ISBN 1-59593-383-2.

CHANDOLA, V.; BANERJEE, A.; KUMAR, V. Anomaly Detection: A survey. ACM
Comput. Surv., ACM, New York, NY, USA, v. 41, n. 3, p. 15:1–15:58, jul. 2009. ISSN
0360-0300.

CHEESEMAN, P. et al. Readings in knowledge acquisition and learning. In: BUCHANAN,
B. G.; WILKINS, D. C. (Ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1993. chp. AutoClass: A Bayesian Classification System, p. 431–441. ISBN 1-55860-163-5.
Available from Internet: <http://dl.acm.org/citation.cfm?id=170641.170679>.

CHERKASSKY, V.; MA, Y. Practical selection of {SVM} parameters and noise estimation
for {SVM} regression. Neural Networks, v. 17, n. 1, p. 113 – 126, 2004. ISSN
0893-6080. Available from Internet: <http://www.sciencedirect.com/science/article/pii/
S0893608003001692>.

http://dl.acm.org/citation.cfm?id=1880551.1880563
http://doi.acm.org/10.1145/1966913.1966959
http://dl.acm.org/citation.cfm?id=170641.170679
http://www.sciencedirect.com/science/article/pii/S0893608003001692
http://www.sciencedirect.com/science/article/pii/S0893608003001692

74

CHEUNG, S. et al. Using model-based intrusion detection for scada networks. In: Proceedings
of the SCADA Security Scientific Symposium. Miami Beach, Florida: [s.n.], 2007.

CHIKUNI, E.; DONDO, M. Investigating the security of electrical power systems scada. In:
AFRICON 2007. [S.l.: s.n.], 2007. p. 1–7.

CLARKE, G. R.; REYNDERS, D.; WRIGHT, E. Practical modern SCADA protocols:
DNP3, 60870.5 and related systems. [S.l.]: Newnes, 2004.

CORTES, C.; VAPNIK, V. Support-Vector Networks. Machine learning, Springer, v. 20, n. 3,
p. 273–297, 1995.

DAINOTTI, A.; PESCAPE, A.; CLAFFY, K. C. Issues and future directions in traffic
classification. IEEE Network, v. 26, n. 1, p. 35–40, January 2012. ISSN 0890-8044.

D’ANTONIO, S.; OLIVIERO, F.; SETOLA, R. High-speed intrusion detection in support of
critical infrastructure protection. In: Proceedings of the First International Conference on
Critical Information Infrastructures Security. Berlin, Heidelberg: Springer-Verlag, 2006.
(CRITIS’06), p. 222–234. ISBN 3-540-69083-2, 978-3-540-69083-2. Available from Internet:
<http://dx.doi.org/10.1007/11962977_18>.

DEAN, J.; GHEMAWAT, S. MapReduce: Simplified data processing on large clusters.
Commun. ACM, ACM, New York, NY, USA, v. 51, n. 1, p. 107–113, jan. 2008. ISSN
0001-0782.

DELL. Dell Security Annual Threat Report. [S.l.], 2015. Available from Internet:
<https://software.dell.com/whitepaper/dell-network-security-threat-report-2014874708>.

DÉSIR, C. et al. One Class Random Forests. Pattern Recognition, v. 46, n. 12, p. 3490 –
3506, 2013. ISSN 0031-3203.

DONG, X. et al. Software-defined networking for smart grid resilience: Opportunities and
challenges. In: Proceedings of the 1st ACM Workshop on Cyber-Physical System Security.
New York, NY, USA: ACM, 2015. (CPSS ’15), p. 61–68. ISBN 978-1-4503-3448-8. Available
from Internet: <http://doi.acm.org/10.1145/2732198.2732203>.

DORSCH, N. et al. Software-defined networking for smart grid communications: Applications,
challenges and advantages. In: Smart Grid Communications (SmartGridComm), 2014
IEEE International Conference on. [S.l.: s.n.], 2014. p. 422–427.

DUESSEL, P. et al. Cyber-critical infrastructure protection using real-time payload-based
anomaly detection. In: Proceedings of the 4th International Conference on Critical
Information Infrastructures Security. Berlin, Heidelberg: Springer-Verlag, 2010.
(CRITIS’09), p. 85–97. ISBN 3-642-14378-4, 978-3-642-14378-6. Available from Internet:
<http://dl.acm.org/citation.cfm?id=1880551.1880559>.

EDMONDS, J.; PAPA, M.; SHENOI, S. Critical infrastructure protection. In: .
Boston, MA: Springer US, 2008. chp. Security Analysis of Multilayer SCADA Protocols,
p. 205–221. ISBN 978-0-387-75462-8. Available from Internet: <http://dx.doi.org/10.1007/
978-0-387-75462-8_15>.

http://dx.doi.org/10.1007/11962977_18
https://software.dell.com/whitepaper/dell-network-security-threat-report-2014874708
http://doi.acm.org/10.1145/2732198.2732203
http://dl.acm.org/citation.cfm?id=1880551.1880559
http://dx.doi.org/10.1007/978-0-387-75462-8_15
http://dx.doi.org/10.1007/978-0-387-75462-8_15

75

ERMAN, J.; ARLITT, M.; MAHANTI, A. Traffic classification using clustering algorithms.
In: Proceedings of the 2006 SIGCOMM Workshop on Mining Network Data. New York,
NY, USA: ACM, 2006. (MineNet ’06), p. 281–286. ISBN 1-59593-569-X. Available from
Internet: <http://doi.acm.org/10.1145/1162678.1162679>.

ESTE, A.; GRINGOLI, F.; SALGARELLI, L. Support vector machines for tcp traffic
classification. Comput. Netw., Elsevier North-Holland, Inc., New York, NY, USA,
v. 53, n. 14, p. 2476–2490, sep. 2009. ISSN 1389-1286. Available from Internet:
<http://dx.doi.org/10.1016/j.comnet.2009.05.003>.

FARHANGI, H. The path of the smart grid. Power and Energy Magazine, IEEE, v. 8, n. 1,
p. 18–28, January 2010. ISSN 1540-7977.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The Road to SDN. Queue, ACM, New York,
NY, USA, v. 11, n. 12, p. 20:20–20:40, dec. 2013. ISSN 1542-7730.

FERNANDEZ, E. B.; LARRONDO-PETRIE, M. M. Designing secure scada systems
using security patterns. In: System Sciences (HICSS), 2010 43rd Hawaii International
Conference on. [S.l.: s.n.], 2010. p. 1–8. ISSN 1530-1605.

FOVINO, I. et al. Modbus/dnp3 state-based intrusion detection system. In: Advanced
Information Networking and Applications (AINA), 2010 24th IEEE International
Conference on. [S.l.: s.n.], 2010. p. 729–736. ISSN 1550-445X.

FRANK, M.; WOLFE, P. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, Wiley Subscription Services, Inc., A Wiley Company, v. 3, n. 1-2, p. 95–110, 1956.
ISSN 1931-9193. Available from Internet: <http://dx.doi.org/10.1002/nav.3800030109>.

FRIEDBERG, I.; MCLAUGHLIN, K.; SMITH, P. Towards a cyber-physical resilience
framework for smart grids. In: . Intelligent Mechanisms for Network Configuration
and Security: 9th IFIP WG 6.6 International Conference on Autonomous Infrastructure,
Management, and Security, AIMS 2015, Ghent, Belgium, June 22-25, 2015. Proceedings.
Cham: Springer International Publishing, 2015. p. 140–144. ISBN 978-3-319-20034-7.
Available from Internet: <http://dx.doi.org/10.1007/978-3-319-20034-7_15>.

GOODNEY, A. et al. Efficient pmu networking with software defined networks. In: Smart
Grid Communications (SmartGridComm), 2013 IEEE International Conference on. [S.l.:
s.n.], 2013. p. 378–383.

GYLLSTROM, D.; BRAGA, N.; KUROSE, J. Recovery from link failures in a smart
grid communication network using openflow. In: Smart Grid Communications
(SmartGridComm), 2014 IEEE International Conference on. [S.l.: s.n.], 2014. p. 254–259.

HADLEY, M.; HUSTON, K. Secure SCADA Communication Protocol Performance Test
Results. Pacific Northwest National Laboratory (August 2007), 2007.

HARES, S.; WHITE, R. Software-defined networks and the interface to the routing system
(i2rs). IEEE Internet Computing, IEEE Computer Society, Los Alamitos, CA, USA, v. 17,
n. 4, p. 84–88, 2013. ISSN 1089-7801.

HOFFMANN, H. Kernel PCA for Novelty Detection. Pattern Recognition, v. 40, n. 3, p. 863
– 874, 2007. ISSN 0031-3203.

http://doi.acm.org/10.1145/1162678.1162679
http://dx.doi.org/10.1016/j.comnet.2009.05.003
http://dx.doi.org/10.1002/nav.3800030109
http://dx.doi.org/10.1007/978-3-319-20034-7_15

76

HUITSING, P. et al. Attack Taxonomies for the Modbus Protocols. International Journal of
Critical Infrastructure Protection, v. 1, p. 37 – 44, 2008. ISSN 1874-5482.

IGURE, V. M.; LAUGHTER, S. A.; WILLIAMS, R. D. Security issues in scada networks.
Computers & Security, v. 25, n. 7, p. 498 – 506, 2006. ISSN 0167-4048. Available from
Internet: <http://www.sciencedirect.com/science/article/pii/S0167404806000514>.

JAIN, A. K. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
v. 31, n. 8, p. 651 – 666, 2010. ISSN 0167-8655. Award winning papers from the 19th
International Conference on Pattern Recognition (ICPR)19th International Conference in
Pattern Recognition (ICPR). Available from Internet: <http://www.sciencedirect.com/science/
article/pii/S0167865509002323>.

JANSSENS, J. Outlier selection and one-class classification. Thesis (PhD) — Tilburg
University, 2013.

KANG, D. J. et al. Analysis on cyber threats to scada systems. In: 2009 Transmission
Distribution Conference Exposition: Asia and Pacific. [S.l.: s.n.], 2009. p. 1–4. ISSN
2160-8636.

KHAN, S.; MADDEN, M. A Survey of Recent Trends in One Class Classification. In:
COYLE, L.; FREYNE, J. (Ed.). Artificial Intelligence and Cognitive Science. [S.l.]: Springer
Berlin Heidelberg, 2010, (Lecture Notes in Computer Science, v. 6206). p. 188–197. ISBN
978-3-642-17079-9.

KIM, Y. jin et al. Virtualized and self-configurable utility communications enabled by
software-defined networks. In: Smart Grid Communications (SmartGridComm), 2014
IEEE International Conference on. [S.l.: s.n.], 2014. p. 416–421.

KREUTZ, D. et al. Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, v. 103, n. 1, p. 14–76, Jan 2015. ISSN 0018-9219.

LEE, H. H. et al. Advanced intelligent computing theories and applications. with aspects
of theoretical and methodological issues: 4th international conference on intelligent
computing, icic 2008 shanghai, china, september 15-18, 2008 proceedings. In: .
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. chp. Real-Time Communications
on IEC 61850 Process Bus Based Distributed Sampled Measured Values Applications
in Merging Unit, p. 1250–1257. ISBN 978-3-540-87442-3. Available from Internet:
<http://dx.doi.org/10.1007/978-3-540-87442-3_154>.

LENG, Q. et al. One-class classification with extreme learning machine. Mathematical
Problems in Engineering, Hindawi Publishing Corporation, v. 2015, 2015.

LEWIS, D. D. Naive (bayes) at forty: The independence assumption in information retrieval.
In: . Machine Learning: ECML-98: 10th European Conference on Machine
Learning Chemnitz, Germany, April 21–23, 1998 Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998. p. 4–15. ISBN 978-3-540-69781-7. Available from Internet:
<http://dx.doi.org/10.1007/BFb0026666>.

LI, X. et al. Securing smart grid: cyber attacks, countermeasures, and challenges. IEEE
Communications Magazine, v. 50, n. 8, p. 38–45, August 2012. ISSN 0163-6804.

http://www.sciencedirect.com/science/article/pii/S0167404806000514
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://dx.doi.org/10.1007/978-3-540-87442-3_154
http://dx.doi.org/10.1007/BFb0026666

77

LINDA, O.; VOLLMER, T.; MANIC, M. Neural network based intrusion detection system
for critical infrastructures. In: Neural Networks, 2009. IJCNN 2009. International Joint
Conference on. [S.l.: s.n.], 2009. p. 1827–1834. ISSN 1098-7576.

LU, X. et al. On network performance evaluation toward the smart grid: A case study of dnp3
over tcp/ip. In: Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE.
[S.l.: s.n.], 2011. p. 1–6. ISSN 1930-529X.

MACKIEWICZ, R. E. Overview of iec 61850 and benefits. In: 2006 IEEE PES Power
Systems Conference and Exposition. [S.l.: s.n.], 2006. p. 623–630.

MAGLARAS, L.; JIANG, J. Intrusion detection in scada systems using machine learning
techniques. In: Science and Information Conference (SAI), 2014. [S.l.: s.n.], 2014. p.
626–631.

MCCLANAHAN. The benefits of networked scada systems utilizing ip-enabled networks. In:
Rural Electric Power Conference, 2002. 2002 IEEE. [S.l.: s.n.], 2002. p. C5–C7.

MCCLANAHAN. Scada and ip: is network convergence really here? Industry Applications
Magazine, IEEE, v. 9, n. 2, p. 29–36, Mar 2003. ISSN 1077-2618.

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., ACM, New York, NY, USA, v. 38, n. 2, p. 69–74, mar. 2008. ISSN
0146-4833. Available from Internet: <http://doi.acm.org/10.1145/1355734.1355746>.

MOHAGHEGHI, S.; STOUPIS, J.; WANG, Z. Communication protocols and networks
for power systems-current status and future trends. In: Power Systems Conference and
Exposition, 2009. PSCE ’09. IEEE/PES. [S.l.: s.n.], 2009. p. 1–9.

MONSANTO, C. et al. Composing software defined networks. In: Presented as part of the
10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13).
Lombard, IL: USENIX, 2013. p. 1–13. ISBN 978-1-931971-00-3. Available from Internet:
<https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto>.

NADER, P.; HONEINE, P.; BEAUSEROY, P. Intrusion Detection in SCADA Systems using
One-Class Classification. In: Signal Processing Conference (EUSIPCO), 2013 Proceedings
of the 21st European. [S.l.: s.n.], 2013. p. 1–5.

NGUYEN, T. T. T.; ARMITAGE, G. A survey of techniques for internet traffic classification
using machine learning. IEEE Communications Surveys Tutorials, v. 10, n. 4, p. 56–76,
Fourth 2008. ISSN 1553-877X.

NIST. Roadmap for smart grid interoperability standards. National Institute of Standards
and Technology, n. r31108r3, p. 239, September 2014. Available from Internet:
<http://www.nist.gov/smartgrid/upload/NIST-SP-1108r3.pdf>.

OMAN, P.; PHILLIPS, M. Intrusion detection and event monitoring in scada networks. In:
GOETZ, E.; SHENOI, S. (Ed.). Critical Infrastructure Protection. Springer US, 2008, (IFIP
International Federation for Information Processing, v. 253). p. 161–173. ISBN 978-0-387-
75461-1. Available from Internet: <http://dx.doi.org/10.1007/978-0-387-75462-8_12>.

http://doi.acm.org/10.1145/1355734.1355746
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto
http://www.nist.gov/smartgrid/upload/NIST-SP-1108r3.pdf
http://dx.doi.org/10.1007/978-0-387-75462-8_12

78

PAOLUCCI, F. et al. A survey on the path computation element (pce) architecture.
Communications Surveys Tutorials, IEEE, v. 15, n. 4, p. 1819–1841, Fourth 2013. ISSN
1553-877X.

PARTHASARATHY, S.; KUNDUR, D. Bloom filter based intrusion detection for smart
grid scada. In: Electrical Computer Engineering (CCECE), 2012 25th IEEE Canadian
Conference on. [S.l.: s.n.], 2012. p. 1–6. ISSN 0840-7789.

PFEIFFENBERGER, T. et al. Reliable and flexible communications for power systems:
Fault-tolerant multicast with sdn/openflow. In: New Technologies, Mobility and Security
(NTMS), 2015 7th International Conference on. [S.l.: s.n.], 2015. p. 1–6.

PREMARATNE, U. et al. An intrusion detection system for iec61850 automated substations.
Power Delivery, IEEE Transactions on, v. 25, n. 4, p. 2376–2383, Oct 2010. ISSN
0885-8977.

RINALDI, S. et al. Software defined networking applied to the heterogeneous infrastructure of
smart grid. In: Factory Communication Systems (WFCS), 2015 IEEE World Conference
on. [S.l.: s.n.], 2015. p. 1–4.

SAYEGH, N. et al. Scada intrusion detection system based on temporal behavior of frequent
patterns. In: Mediterranean Electrotechnical Conference (MELECON), 2014 17th IEEE.
[S.l.: s.n.], 2014. p. 432–438.

SCHöLKOPF, B.; SMOLA, A. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001. ISBN
0262194759.

SCIACCA, S. C.; BLOCK, W. R. Advanced scada concepts. IEEE Computer Applications
in Power, v. 8, n. 1, p. 23–28, Jan 1995. ISSN 0895-0156.

SEZER, S. et al. Are we ready for sdn? implementation challenges for software-defined
networks. Communications Magazine, IEEE, v. 51, n. 7, p. 36–43, July 2013. ISSN
0163-6804.

SIDHU, T. S.; YIN, Y. Modelling and simulation for performance evaluation of iec61850-based
substation communication systems. IEEE Transactions on Power Delivery, v. 22, n. 3, p.
1482–1489, July 2007. ISSN 0885-8977.

SILVA, A. et al. Identification and Selection of Flow Features for Accurate Traffic Classification
in SDN. In: Network Computing and Applications (NCA), 2015 IEEE 14th International
Symposium on. [S.l.: s.n.], 2015. To appear.

SILVA, E. Germano da et al. Capitalizing on sdn-based scada systems: An anti-eavesdropping
case-study. In: Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on. [S.l.: s.n.], 2015. p. 165–173.

SONG, I.-K. et al. Operation schemes of smart distribution networks with distributed energy
resources for loss reduction and service restoration. Smart Grid, IEEE Transactions on, v. 4,
n. 1, p. 367–374, March 2013. ISSN 1949-3053.

STOUFFER, K.; FALCO, J.; SCARFONE, K. Guide to Industrial Control Systems (ICS)
Security. NIST special publication, Citeseer, p. 800–82, 2011.

79

STRAYER, W. T.; WEAVER, A. C. Performance measurement of data transfer services in
map. IEEE Network, v. 2, n. 3, p. 75–81, May 1988. ISSN 0890-8044.

SWALES, A. Open modbus/tcp specification. Schneider Electric, v. 29, 1999.

TAX, D.; DUIN, R. Support Vector Domain Description. Pattern Recognition Letters, v. 20,
n. 11–13, p. 1191 – 1199, 1999. ISSN 0167-8655.

TAX, D.; DUIN, R. Support Vector Data Description. Machine Learning, Kluwer Academic
Publishers-Plenum Publishers, v. 54, n. 1, p. 45–66, 2004. ISSN 0885-6125.

TAX, D. M. One-class classification. [S.l.]: TU Delft, Delft University of Technology, 2001.

THOMAS, M. S.; MCDONALD, J. D. Power system SCADA and smart grids. [S.l.]: CRC
Press, 2015.

THOMESSE, J.-P. Fieldbus technology in industrial automation. Proceedings of the IEEE,
v. 93, n. 6, p. 1073–1101, June 2005. ISSN 0018-9219.

VALDES, A.; CHEUNG, S. Communication pattern anomaly detection in process control
systems. In: Technologies for Homeland Security, 2009. HST ’09. IEEE Conference on.
[S.l.: s.n.], 2009. p. 22–29.

WANG, F. Y. et al. Protocol design and performance analysis for manufacturing message
specification: A petri net approach. IEEE Transactions on Industrial Electronics, v. 41, n. 6,
p. 641–653, Dec 1994. ISSN 0278-0046.

WANG, W.; XU, Y.; KHANNA, M. A Survey on the Communication Architectures in Smart
Grid. Computer Networks, Elsevier North-Holland, Inc., New York, NY, USA, v. 55, n. 15, p.
3604–3629, oct. 2011. ISSN 1389-1286.

WHITLEY, D. A genetic algorithm tutorial. Statistics and computing, Springer, v. 4, n. 2, p.
65–85, 1994.

WICKBOLDT, J. et al. Software-Defined Networking: Management requirements and
challenges. Communications Magazine, IEEE, v. 53, n. 1, p. 278–285, January 2015. ISSN
0163-6804.

YAN, Y. et al. A Survey on Smart Grid Communication Infrastructures: Motivations,
requirements and challenges. Communications Surveys Tutorials, IEEE, v. 15, n. 1, p. 5–20,
First 2013. ISSN 1553-877X.

YANG, Y. et al. Intrusion detection system for iec 60870-5-104 based scada networks. In:
Power and Energy Society General Meeting (PES), 2013 IEEE. [S.l.: s.n.], 2013. p. 1–5.
ISSN 1944-9925.

ZHANG, J. et al. Opportunities for software-defined networking in smart grid. In: Information,
Communications and Signal Processing (ICICS) 2013 9th International Conference on.
[S.l.: s.n.], 2013. p. 1–5.

ZHU, B.; JOSEPH, A.; SASTRY, S. A taxonomy of cyber attacks on scada systems.
In: Proceedings of the 2011 International Conference on Internet of Things and 4th
International Conference on Cyber, Physical and Social Computing. Washington,
DC, USA: IEEE Computer Society, 2011. (ITHINGSCPSCOM ’11), p. 380–388. ISBN
978-0-7695-4580-6.

80

AppendixA PUBLISHED PAPER – IM 2015

In this paper we present the benefits of adopting SDN on SCADA environments in rela-
tion to traditional supervisory systems of control and data acquisition. The work also presents a
SDN-based mechanism os multipath routing that improve the confidentiality level of exchanged
messages between power grid components. Our multipath routing avoids that an eavesdropper
fully capture a communication between the control center and the power distribution substa-
tions. The approach installs few rules on the SCADA switches, for this we relied on static
rules (that do not expire) and dynamic rules (that are frequently reinstalled and determinate
the communication flow behavior between devices). We carried out an experimental evaluation
comparing our approach (using different times of dynamic rules) and the POX standard be-
havior (single path routing). The experiments demonstrated that our approach, even installing
few flow rules and without overloading the SDN controller and switches, was able to change
the communication flows behavior of devices, improving the confidentiality level of messages
exchanged on the SCADA network.

• Title –
Capitalizing on SDN-Based SCADA Systems: An Anti-Eavesdropping Case-Study

• Conference –
The 14th IFIP/IEEE International Symposium on Integrated Network Management (IM-
2015)

• Type –
Main track (full-paper)

• Qualis –
B1

• URL –
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7140289>

• Date –
May 11-15, 2015

• Held at –
Ottawa, Canada

• Digital Object Identifier (DOI) –
<http://dx.doi.org/10.1109/INM.2015.7140289>

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7140289
http://dx.doi.org/10.1109/INM.2015.7140289

Capitalizing on SDN-Based SCADA Systems:
An Anti-Eavesdropping Case-Study

Eduardo Germano da Silva, Luis Augusto Dias Knob, Juliano Araujo Wickboldt,
Luciano Paschoal Gaspary, Lisandro Zambenedetti Granville, Alberto Schaeffer-Filho

Institute of Informatics
Federal University of Rio Grande do Sul

Porto Alegre, Brazil
Email: {eduardo.germano, luis.knob, jwickboldt, paschoal, granville, alberto}@inf.ufrgs.br

Abstract—Power grids are responsible for the transmission
and distribution of electricity to end-users. These systems are un-
dergoing a modernization process through the use of Information
and Communication Technology (ICT), transforming the electric
system into Smart Grids. In this context, Supervisory Control
and Data Acquisition (SCADA) systems are responsible for the
management and monitoring of substations and field devices. In
this paper, we investigate the use of SDN as an approach to assist
in the modernization of SCADA systems. We discuss its possible
benefits, such as simplified management of power system re-
sources. Moreover, SDN can facilitate the creation of new network
applications that previously, with traditional networks, were more
complex to be implemented. To illustrate the benefits of the use of
SDN in SCADA, we designed a mechanism that aims to prevent a
possible eavesdropper from fully capturing communication flows
between SCADA components. The mechanism was implemented
as an SDN-based application for SCADA systems that uses
multipath routing, which relies on SDN features to frequently
modify communication routes between SCADA devices. Further,
we performed an experimental evaluation to verify the impact
and performance of the mechanism in the SCADA network.

I. INTRODUCTION

Electric power grids are undergoing an intense modern-
ization process through the use of Information and Commu-
nication Technology (ICT), transforming the electric system
into Smart Grids [1]. Typically, power plants are complex
environments, comprising thousands of devices that assist
in the monitoring and control of resources, which rely on
automated processes for the operation of the grid. In this
context, Supervisory Control and Data Acquisition (SCADA)
systems are widely distributed systems used in the manage-
ment and monitoring of automated processes and components,
e.g., substations and field devices, in the electrical grid [2].

SCADA systems require technologies that facilitate re-
source management and allow the monitoring of the proper
operation of communication networks [3]. In particular,
Software-Defined Networking (SDN) is as a promising ap-
proach that can assist in the modernization of SCADA com-
munication networks [4]. Some preliminary research efforts
have advocated the use of SDN in SCADA [3], [5]. SDN
offers an architecture that can facilitate the management and
configuration of network devices. An SDN architecture can
simplify network operation and optimize its performance com-
pared to traditional management techniques, since network
programmers are provided with a comprehensive view and

direct control of the network, through a centralized controller
device [6].

The purpose of this paper is twofold: (1) to investigate
the advantages of using SDN in SCADA systems, and (2) to
demonstrate a concrete case-study of an SDN application that
can be used to increase privacy in SCADA. Initially, we discuss
the possible benefits that can be achieved through the adoption
of SDN into SCADA systems, such as simplified configuration
of devices and better management of power system resources.
Also, SDN characteristics can assist in the growth of the
power system network infrastructure, facilitating the creation
of new network applications that previously, with traditional
architectures, were more complex to be implemented.

Furthermore, to illustrate the benefits of the use of SDN
in SCADA, this paper also presents a case-study scenario
describing a mechanism to enhance the privacy of information
that is carried over SCADA networks. Our solution aims to
prevent a possible eavesdropper in the network from fully
capturing communication flows between SCADA components.
To do this, we present an SDN-based network application for
SCADA systems that uses multipath routing, which relies on
SDN features to frequently modify communication routes be-
tween SCADA devices. This allows packet exchange between
two end-devices in a SCADA network to be performed through
more than one communication route. Further, evaluation results
are presented, which measure the impact and performance of
the implemented mechanism.

This paper is organized as follows: Section II presents some
background about SCADA systems and SDN, and discusses
the benefits of using SDN in SCADA systems. Section III
describes a case-study scenario for the use of SDN in SCADA
and the multipath routing strategy. Section IV presents the
evaluation results and a performance analysis of our mecha-
nism. Section V describes the related work. Finally, Section VI
concludes the paper.

II. SDN-BASED SCADA SYSTEMS

Smart Grids are power distribution networks that depend on
an increased level of automated monitoring and control, often
exchanging data over IP-based communication protocols [1].
Compared to legacy power systems, Smart Grids rely on
bidirectional and high-speed communication technologies to
provide more flexible and accurate energy management [7].
Supervisory Control and Data Acquisition (SCADA) systems

978-3-901882-76-0 @2015 IFIP 165

81

are considered one of the main components of the power grid,
and allow the control, management and acquisition of remote
data from equipment and power substations. Due to their
increasing complexity, SCADA systems demand techniques
to simplify the management of system equipment, to ensure
performance requirements, to automate their operation and to
offer support for resilience functionality [3].

A. SCADA Systems

SCADA systems are used in critical infrastructures such as
power plants, water supplies, oil and gas facilities. In power
plants, in specific, SCADA systems are used to control and
monitor essential equipment for energy delivery. These systems
comprise distributed components, which are often dispersed
around thousands of kilometers and allow the continuous data
acquisition that is critical to the functioning of the power
grid [2]. These systems are organized in two main types of
components: the control center, which includes the MTU (Mas-
ter Terminal Unit), and substations geographically dispersed.
The core of the SCADA system is the MTU. This component
gathers information about the system operation and displays it
to SCADA operators. Further, the MTU is capable of sending
commands to substations to configure field devices in a remote
way. Substations comprise a RTU (Remote Terminal Unit),
which manages field devices such as sensors and actuators
that are responsible for telemetry of automated processes and
for the execution of commands sent by the MTU, and transmit
data to the MTU. Figure 1 shows a typical SCADA architecture
with the control center and its substations.

MTU

Substation N

...

C
o

n
tr

o
l

C
e

n
te

r

RTU

Sensor Actuator Sensor

SCADA
Gateway

Su
b

st
at

io
n

 N

RTU

Sensor Actuator Sensor

Su
b

st
at

io
n

 1

SCADA
Gateway

Fig. 1. Typical SCADA architecture.

Due to the increasing number of interconnected devices,
sensors and actuators, and also the larger volume of infor-
mation exchanged between components, SCADA systems are
becoming more complex. In their majority, components of
the SCADA system communicate through protocols originally
developed for process automation, which have been ported to
operate over the TCP/IP stack [8], e.g., MODBUS TCP/IP [9],
DNP3 over TCP/IP [10] and Ethernet/IP [11]. Further, mod-
ern SCADA systems are connected directly or indirectly to
the Internet. Consequently, SCADA systems are susceptible
to threats such as malwares and cyber-attacks. Therefore, a
SCADA system must take into consideration aspects of system
security, like timeliness, availability, integrity of data and
components, and confidentiality [2]. Such systems require the
ability to flexibly manage and configure a growing number of

components and to monitor data flows across their communi-
cation networks, in order to prevent cyber-attacks, intrusions
or malware from compromising the system operation, since
the malfunctioning of the grid can result in major disasters.
Thus, we aim to investigate the use of network management
techniques in general, and SDN in particular, to assist in the
management of SCADA communication networks.

B. SDN and OpenFlow

Software-Defined Networking (SDN) is an emerging ar-
chitecture for managing, monitoring and controlling switching
devices and network traffic [4], [6]. SDN decouples the net-
work control and the forwarding planes. This can simplify
network management, offering to network programmers a
comprehensive view of the network and the ability to control
network devices from a centralized controller [12]. The SDN
architecture consists of the following components: (i) switches:
data forwarding devices that use a flow table to forward
packets; (ii) flow table: a table that contains a list of flow
entries and associated actions to be applied to the respective
flows; (iii) controller: software component that manipulates
and controls the flow tables of switches; and (iv) secure
channel: communication channel that connects each switch
to a controller and allows the controller to install flow rules.
Figure 2 illustrates the SDN architecture and its components.

Rule

Rule

Rule

Rule

Switch 2

Rule

Rule

Rule

Rule

Switch 1

Rule

Rule

Rule

Rule

Switch N

Fo
rw

ar
d

in
g

P
la

n
e

C
o

n
tr

o
l

P
la

n
e

Controller

Fl
o

w
 T

ab
le

Fl
o

w
 T

ab
le

Fl
o

w
 T

ab
le

Secure Channel Communication Channel

Fig. 2. SDN architecture.

To standardize the communication between the controller
and the switches, the OpenFlow protocol has been pro-
posed [13]. OpenFlow defines how applications running on
the controller can program the flow table of each network
switch. The communication between the controller device and
the switches is performed over a secure channel, enabling the
controller to manage and control all network switches, and to
send and receive control messages to and from the switches.

C. Discussion: Investigating the Benefits of SDN in SCADA

In this paper we advocate the use of SDN to assist in the
management of SCADA systems. SDN can enable more flex-
ible SCADA networks, since the addition of new policies and
services requires changing the controller only [5]. Arguably,
the use of SDN in SCADA will support more resilient systems,
as solutions to mitigate attacks and other threats can be more
easily implemented in the controller.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015)166

82

TABLE I. BENEFITS OF SDN-BASED SCADA SYSTEMS FOR FCAPS MANAGEMENT.

Property Description
Fault SDN enables the implementation of mechanisms for increasing the resilience of SCADA systems. The centralized view of the controller allows more efficient

fault detection, isolation of affected components, and remediation of abnormal operation in the SCADA network.
Configuration The OpenFlow protocol provides a standard API for the correct configuration of new devices added to the SCADA network and their communication protocols.

This can reduce the configuration overhead of these components.
Accounting The measurement capabilities of the controller provides the ability to collect metrics and statistics about the network traffic. This information can be used in

dimensioning the capacity of the SCADA network, to plan the growth of the power grid, or to detect abuses in resource usage.
Performance SDN can facilitate the use of QoS policies in SCADA systems, to perform load balancing between communication links and to optimize the operation of

system components.
Security The controller also permits the implementation of applications that can add more security to the SCADA system, e.g., in terms of detecting malicious activity or

protecting the information exchanged in the SCADA network. To illustrate this, Section III presents an anti-eavesdropping SDN-based application for SCADA.

SCADA systems can benefit from the characteristics of
SDN in several ways, such as:

• Flexibility: SDN enables more flexible systems [14],
in which applications and protocols can be modified
via a centralized controller. In SCADA systems, this
will permit easily adding new field devices or upgrad-
ing existing applications in the SCADA network.

• Centralized management: the centralized control
plane offers a global view of the network. Thus, an
SDN-based SCADA control center will be able to
manage not only field devices, but also monitor and
control the network that interconnects system devices.

• Standard API: the OpenFlow protocol provides a
standard API for controlling network switching de-
vices. In SCADA networks, this standardization will
permit a better integration of geographically dispersed
equipment from different vendors.

• Programmability: via the controller it is possible
to easily add new functionality to the network on
demand. In SCADA, this will allow creating a range
of customized services, e.g., to control the reading
frequency of field devices at a specific time of day.

Further, the characteristics of SDN can also enhance
FCAPS (fault, configuration, accounting, performance and
security) management in SCADA systems. Table I indicates
some of the possible benefits of SDN-based SCADA systems
for each FCAPS properties.

III. ANTI-EAVESDROPPING IN SDN-BASED SCADA

This section presents our multipath routing strategy for
SDN-based SCADA systems, and how it can be used to
improve privacy in these systems. Firstly we present a case
study scenario as a motivation for developing network appli-
cations that improve privacy in SCADA. Then we describe our
multipath routing strategy to SCADA networks, using SDN.

A. Case-Study Scenario

Consider a SCADA system responsible for controlling
the electrical grid of a particular region, where a central
control station monitors and manages multiple substations.
The network topology of this SCADA system contains re-
dundant communication routes, which allow, in case of a
communication link breakdown, the exchange of messages
between system components through an alternative path. In this
paper we assume that the communication network connecting
the SCADA components can be implemented using an SDN

network. All components of the SCADA system, control center
and substations, communicate through a high-speed wired
SDN network, using a legacy communication protocol. The
protocol adopted was ported to run over the TCP/IP stack
and does not provide a secure communication between system
devices, i.e., communication is not encrypted, which allows
a person without permission to eavesdrop the messages that
travel in the SCADA network.

Eavesdropping is a network layer attack that consists in the
interception of packets that travel over the network, with the
intention of collecting confidential information. Unencrypted
and weakly encrypted information exchange allow an indi-
vidual attacker to intercept data transmitted over the network
if he or she has access to the communication medium. In
other words, an eavesdropper can obtain passwords, view the
content of message exchanges and confidential information if
the eavesdropper can access the local network.

Master
Station

......................................
.......................

......................................

Eavesdropper

Substation NSubstation 3Substation 2Substation 1

Switch 1

Fig. 3. Case study scenario.

SCADA systems, largely, use insecure and unencrypted
communication networks [15]. In this context, through the
placement of listening devices well positioned in the network,
an eavesdropper can easily, for example, capture instructions
forwarded from an MTU to sub-MTUs, RTUs, or even relevant
information from sensors and actuators in the system [16].
Moreover, an eavesdropper can also collect the end-devices IP
address and the access credentials of the SCADA system. If
the IP address of the SCADA server is known by an attacker,
it can be easily taken down or shutdown using a traditional

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015) 167

83

8 : sendPacketIn(pktIn) 9 : getRouteSelected
(pktIn)

7 : setStaticRules
(shortestRoutes)

6 : setRoutes
(shortestRoutes, pktIn)

5 : calcRoutes
(pktIn, dstHost)

Packet-In
Receiver

Host
Information

Store

Route
Generator

Static Rules
Handler

Dynamic Rule
Handler

Packet-Out
Sender

1: sendPacketIn(pkt)

2: setHostInfo(pktIn)

3 : sendPacketIn
(pktIn)

4 : getDstInfo(pktIn)

Route
Collector

10 : setDynamicRule
(routeSelected) 11 : createPacketOut

(pktIn)

12 : sendPacketOut(pktOut, switch)

 [!isHostKnown(pktIn)]

opt : To store host information

opt : To calculate shorter routes

 [!isRoutesCalculated
(pktIn)]

OpenFlow
Switch

SDN-Based Anti-Eavesdropper Application

Fig. 4. Sequence diagram of the multipath routing algorithm.

Denial of Service (DoS) attack [17]. Finally, with the access
credentials of a system, a person can control substations, and
steal corporate data and delete system files [17]. Figure 3 gives
an overview of the scenario presented in this case study.

B. SDN-Based Anti-Eavesdropping Approach

Most routing algorithms used nowadays allow commu-
nication between devices through a single path for a long
period of time [18]. In case a listening device is placed in
this path, a large number of messages may be intercepted.
This may facilitate message decryption if cryptography has
been used. Furthermore, some attacks perform traffic analysis
in communication patterns over encrypted connections, which
decrease the effectiveness of cryptography techniques [19].
A communication network can be more efficient and robust
if it has one or more extra paths for information flows,
thus increasing resilience, security, fault tolerance and load
balancing [20]. The technique of multipath routing was first
proposed in the 1970’s, and since then it has been used for
different purposes in different types of networks [21].

In this paper, we present an SDN-based mechanism that
can thwart eavesdropping attacks. Our mechanism uses the
facilities provided by SDN to aid SCADA networks in the de-
fense against unauthorized interception of flows by dispersing
traffic across multiple paths. Thus, each route transmits only a
portion of the packets exchanged during communication. The
SDN controller knows the switches a priori, but identifies the
end-hosts on demand. It also takes advantage of redundant
network connectivity, allowing a source device to use multiple
routes to communicate with a target device.

Considering the topology illustrated in Figure 3, and that
the master station starts a continuous communication flow
with a specific substation N, the proposed algorithm works
as follows (each step below is depicted in the diagram in
Figure 4). When the first data packet of a flow is received
by the first switch (switch 1, in Figure 3), the switch will
send a Packet-In message to the controller (step 1). If

the master station is not known to the OpenFlow controller,
information about this host (master station) will be stored,
including its IP address, MAC address and the port number of
the switch in which it is connected (step 2). Next, the algorithm
calculates the N shortest routes between the master station and
the specific substation, if these routes have not been calculated
yet (step 3). To calculate the N shortest routes, information
about the destination host is retrieved (step 4). Using the
information retrieved from the source and destination hosts,
Dijkstra’s algorithm [22] is used to calculate the N shortest
routes (step 5), in N stages. Considering N = 2, in the first
stage, Dijkstra’s algorithm identifies the shortest route between
the two network devices, and subsequently all link costs have
their weight increased by a tenfold factor. Immediately after, in
the second stage (and with the link costs increased), Dijkstra’s
algorithm is executed again to return the second shortest route.
Finally, also in the second stage, the link costs of the first route
are reestablished to the original values. As explained later, the
N shortest routes will be used to deliver a communication flow
using different paths and, for this reason, they are stored to be
used afterwards (step 6).

Our strategy also relies on the use of timers specified
by OpenFlow. Using the Hard TimeOut timer, which is
represented in seconds, we define two types of rules to realize
the multipath routing technique: dynamic rules and static rules.
On the one hand, dynamic rules are defined with a low value
for Hard TimeOut, allowing this kind of rule to expire
often. On the other hand, static rules do not expire over time,
thus they do not need to be reinstalled again on switches.
Therefore, after storing the N shortest routes between two
hosts, the algorithm will immediately install the static rules
on the switches that belong to the N paths (step 7), except
on the switches that splits the N shortest routes chosen for
communication (which were calculated above).

After installing the static rules, the algorithm retrieves
information about the N shortest routes (step 9). Route se-
lection is performed via an internal flag, which allows the

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015)168

84

alternation between routes. For example, considering only two
paths (N = 2), if a flow is transmitted on the first route,
when the dynamic rules expire and are reinstalled, the flow
will be transmitted on the second route, and vice versa. To
achieve this, the algorithm must install dynamic rules only on
the switch that splits the N routes (step 10 – and switch 1 in
Figure 3). Dynamic rules expire according to the value of the
Hard TimeOut timer. For example, if the timer is set to 5
seconds, dynamic rules will expire and will be reinstalled every
5 seconds. Finally, with the information from the Packet-In
message, the algorithm generates a Packet-Out message
(step 11) and sends it to the switch that initiated the interaction
with the controller (step 12).

If the controller receives again a Packet-In message
indicating that the master station wants to restart the commu-
nication with the same substation, the controller will install
only dynamic rules on the switch that splits the N routes. In
this case, according to the diagram in Figure 4, after receiving
a Packet-In message (step 1), the algorithm will only select
the desired route (step 9) to install the dynamic rules on
the corresponding switch (step 10), generate a Packet-Out
message (step 11) and send it to the switch that requested
the interaction (step 12). The pseudocode for the multipath
routing strategy described above is illustrated in Algorithm 1.
As discussed in the next section, this mechanism is able to
prevent an eavesdropper from capturing entire communication
flows between the master station and specific substations.

Algorithm 1 SDN-Based Anti-Eavesdropper PseudoCode
1: procedure MULTIPATH(pktIn, switch)
2:
3: if (!isHostKnown(pktIn)) then
4: setHostInfo(pktIn)
5:
6: if (!isRoutesCalculated(pktIn)) then
7: dstHost ← getDstInfo(pktIn)
8: shortestRoutes ← calcRoutes(pktIn, dstHost)
9: setRoutes(shortestRoutes, pktIn)

10: setStaticRules(shortestRoutes)
11:
12: routeSelected ← getRouteSelected(pktIn)
13: setDynamicRule(routeSelected)
14: pktOut ← createPacketOut(pktIn)
15: sendPacketOut(pktOut, switch)
16:
17: return None

IV. PROTOTYPE AND EXPERIMENTAL RESULTS

In this section we outline the prototype implementation and
present the experimental setup, including the topology as well
as the description of each scenario used in the experiments.
Then, we analyze the performance of the proposed solution.

A. Prototype Overview

A prototype for the SDN-based anti-eavesdropping applica-
tion was built using the POX OpenFlow controller. Figure 5 de-
picts the components that comprise this application. These in-
clude: Packet-In Receiver: component responsible for
capturing Packet-In messages received by the OpenFlow

controller; Host Information Store: upon receiving a
Packet-In message, in case there is no information about a
given element in the network, this component stores relevant
information for that device; Route Generator: component
responsible for calculating the N shortest routes between two
devices in the network; Route Collector: component that
stores the routes calculated, and that selects a specific path
for communication; Static Rules Handler: component
that creates the static rules that will be installed in all switches
along the N shortest routes between two devices, except in the
switch that splits these paths; Dynamic Rule Handler:
component that defines the dynamic rules that will be installed
in the switch that splits the communication routes between two
devices; Packet-Out Sender: after completing the pro-
cess of route definition, this component sends a Packet-Out
message to the switch that sent the request to the controller.

Packet-In Receiver

Host
Information

Store

The host is known?

Route Generator
Shortest

routes have been
calculated?

Route Collector

Static rules
have already been

installed?

Dynamic Rule
Handler

Static Rules HandlerPacket-Out Sender

POX/Python OpenFlow Controller

N

N

N

Y

Y

SDN-Based Anti-Eavesdropper Application

Fig. 5. Anti-eavesdropping application.

B. Experimental Setup

The scenarios used in the performance analysis of our
prototype consider a network topology based on studies of the
power grid in countries like USA [23] and Italy [24]. Our net-
work topology contains redundant communication paths, i.e.,
different paths that lead to the same destination. The network
topology consists of 10 switching devices and a number of
hosts, which are responsible for simulating the behavior of
SCADA system components. The topology was created using
Mininet [25]. Mininet is a network emulator that enables the
creation of virtual SDN/OpenFlow networks, including virtual
hosts, switches, controllers, and links. The switches in the
topology used in our experiments were numbered from 1 to
10. Furthermore, there is a master station directly connected
to switch 1 and one power substation directly connected to
each one of the nine remaining switch devices. Figure 6
illustrates the configuration of the network topology used in
our experiments.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015) 169

85

Master Station

Substation 10

Switch 1

Switch 8

Switch 3 Switch 5

Switch
10

Switch 6

Switch 7

Switch 2 Switch 4

Switch 9

Substation 6

Substation 9Substation 7

Substation 8

Substation 2 Substation 4

Substation 3 Substation 5

Communication Links with a Listening Device

Fig. 6. Configuration of the network topology used in the experiments.

Our experiments consisted of all nine substations sending
data simultaneously to the master station in the SCADA
network. Each scenario runs for 600 seconds. The communi-
cation protocol chosen for message exchange was MODBUS
TCP/IP [9]. The substations forward data packets (512 bytes)
every 15 seconds, containing information from their respec-
tive sensors. This has been carefully chosen to simulate the
behavior of a SCADA network, where the substations send
periodic information to the master station. The speed of the
communication links was set to 10 Gb/s. The initial value of
all link costs was defined as 1, which is the default value.
Finally, we introduced traffic listeners on 5 communication
links that connect switch 1 (which is directly connected to the
master station) to switches 2, 3, 6, 7 and 8. These listening
devices simulate the behavior of an eavesdropper, and cover
all possibilities of communication with the master station.

Further, we defined five scenarios (A, B, C, D and E) to
evaluate the performance of our application. The first scenario
(A) has an OpenFlow controller with POX default behavior,
using the Spanning Tree algorithm [26] for unicast routing with
only one communication path between devices. The remaining
scenarios (B, C, D and E) use our multipath application, but
flows are defined with different values of Hard TimeOut
timer. This is used to determine how long a flow will follow a
particular route before the dynamic rules expire. The value of
Hard TimeOut in scenarios B, C, D and E is respectively
5, 10, 15 and 20 seconds. In these experiments, the scenarios
that use multipath routing were configured to operate with two
communication routes (N = 2).

C. Evaluation Results

Firstly, we analyzed the routes chosen by the multipath
strategy when two specific SCADA components communicate,
namely the substation connected to switch 10 and the master
station. Figure 7 presents the two best routes selected by the
application during the experiments. In scenarios B, C, D and
E, the first route selected was the one with the lowest cost,
containing only 3 hops, which is presented as First Route.
Further, in all scenarios, after increasing the cost of the links
used in the first route, the second route chosen had 4 hops,
presented as Second Route in Figure 7.

In order to observe the effects of choosing a given value

Master Station

Substation 10

Switch 1

Switch 8

Switch 3 Switch 5

Switch
10

Switch 6

Switch 7

Switch 2 Switch 4

Switch 9

First Route Dynamic Rule Static RuleSecond Route

Fig. 7. Anti-eavesdropping communication between components.

for Hard TimeOut timer, and conduct a performance com-
parison between our solution and the default behavior of POX,
we defined a set of metrics. Initially, we consider the (i) total
number of flow rules installed at a given moment. We also
measure the (ii) percentage of packet loss and the (iii) amount
of Packet-in messages received by the controller in each
scenario. Further we present the (iv) traffic rate in the secure
channel. Furthermore, we analyzed the (v) amount of exposed
communication among each substation and the master station
in each scenario. The experiments for each scenario were
performed 30 times with a confidence level of 95%.

We compared the number of rules installed in switches at a
given time both using POX default behavior (scenario A) and
a scenario using the proposed multipath strategy (scenario C)1.
Figure 8 presents the number of rules necessary to accomplish
the communication between substation 10 and the master
station in scenarios A and C. Note that POX default solution
installs multiple rules simultaneously, reaching a peak of 36
rules after 20s). However, the multipath strategy maintains a
stable number of rules, ranging between 7 and 8 rules. This
is due to the lifetime of dynamic rules, which expire often.
By analyzing the controller default behavior we noticed that
it installs a rule for each type of flow between two devices,
e.g., one rule for ARP flows and another for TCP. This has
impacted considerably the number of rules in scenario A.

We also analyzed the TCP packet loss in each scenario,
which is depicted in Figure 9. The results indicate that the
default solution presented lower packet loss, on average 0,5%,
thus requiring fewer retransmissions. However, scenarios B,
C, D and E presented slightly higher packet loss, respectively
3.1%, 2.7%, 1.3% and 1.1%. Despite that, the measured
rate of retransmissions due to packet loss is still consid-
ered acceptable. We noticed that most packet retransmissions
for scenarios using our multipath application occurred after
switching between communication paths.

Further, we measured the amount of Packet-In mes-
sages received by the controller in each scenario. Compared
to the default behavior, the multipath strategy obtained better
results, sending less Packet-ins to the controller. These
results are presented in Figure 10, where 134 Packet-ins
were received by the controller in scenario A, 95 in scenario
B, 97 in scenario C, 94 in scenario D, and 95 in scenario
E. This indicates that the multipath application caused less

1Although we performed a similar analysis with the other multipath
scenarios, these are not shown here due to space constraints.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015)170

86

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

P
ac

ke
ts

 P
ro

ce
ss

ed

Experiment Time (s)

Scenario A
Scenario C

Fig. 8. Number of rules installed during the experiments.

 0

 1

 2

 3

 4

 5

Scenario A Scenario B Scenario D Scenario E

P
ac

ke
t

lo
ss

 (
%

)

Scenario C

Controller Algorithm

Fig. 9. Packet loss in each scenario.

processing overhead, compared to the default behavior of POX.
However, no significant variation was observed if we consider
the lifetime of dynamic rules.

Figure 11 depicts the amount of generated traffic in the se-
cure channel in each scenario. With the POX default behavior,
the communication rate between controller and switches was
higher, generating up to 138 kbps in the secure communication
channel. The scenarios using the multipath strategy, in general,
generated less traffic between switches and the controller. In
particular, the traffic generated in the secure communication
channel was 115 kbps in scenario B, 122 kbps in scenario C,
119 kbps in scenario D, and 119 kbps in scenario E.

In order to evaluate the ability of preventing an eaves-
dropper from capturing communication flows, we instantiated
listening devices in all five direct communication links to
switch 1, which is directly connected to the master station.
These listening devices aim to simulate the behavior of an
eavesdropper, who positioned himself in privileged points of
the SCADA network. We analyzed the amount of packets
that were intercepted for each existing communication flow.
The end result was similar for all scenarios that use the
multipath application. However, using POX default solution,
which relies on a single path to accomplish communication,
all the information exchanged between the substation and the
master station has been exposed. For example, in scenario
A it was possible to capture all the information exchanged
between substation 7 and the master station, by intercepting
the data packets that arrived through switch 7. Instead, using
the multipath strategy, an attacker positioned in the same point
in the network could intercept only 25% of packets exchanged
between substation 2 and the master station, and 75% of
packets exchanged between substation 7 and the master station.

 0

 20

 40

 60

 80

 100

 120

 140

Scenario A Scenario B Scenario D Scenario E

P
ac

ke
ts

 p
ro

ce
ss

ed
 p

er
 s

ec
o

n
d

Scenario C

Controller Algorithm

Fig. 10. Number of packets processed by the controller.

 0

 20

 40

 60

 80

 100

 120

 140

Scenario A Scenario B Scenario D Scenario E

C
o

n
tr

o
l T

ra
ff

ic
 (

kb
p

s)

Scenario C

Controller Algorithm

Fig. 11. Traffic generated in the secure communication channel.

This is because more than one route is configured to send
TCP packets, however all TCP acks are received through one
path, i.e., the first shortest route. Table II details the amount
of exposed communication in each scenario.

TABLE II. AMOUNT OF COMMUNICATION EXPOSED AMONG
SUBSTATIONS AND THE MASTER STATION.

Communication POX default behavior
Link / Communication (Spanning Tree Multipath solution

Exposition Algorithm) and N = 2

Substation 2 = 75%
Switch 2 Substation 2 = 100% Substation 4 = 75%

to Substation 4 = 100% Substation 5 = 25%
Switch 1 Substation 6 = 25%

Substation 7 = 25%
Substation 9 = 25%
Substation 3 = 75%

Switch 3 Substation 3 = 100% Substation 4 = 25%
to Substation 5 = 100% Substation 5 = 75%

Switch 1 Substation 8 = 25%
Substation 10 = 25%

Switch 6 Substation 6 = 100% Substation 6 = 75%
to Substation 9 = 100% Substation 9 = 75%

Switch 1 Substation 10 = 100% Substation 10 = 75%
Switch 7 Substation 2 = 25%

to Substation 7 = 100% Substation 7 = 75%
Switch 1
Switch 8 Substation 3 = 25%

to Substation 8 = 100% Substation 8 = 75%
Switch 1

D. Discussion

With respect to performance, the proposed multipath ap-
plication generates a lower workload to the controller when
compared to the default behavior, which performs routing by
a single path. The packet loss of the multipath strategy can
be even lower by increasing the lifetime of dynamic rules.
However, increasing the lifetime of dynamic rules allows an
eavesdropper to intercept more communication.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015) 171

87

Further, as discussed in the previous section, even if the
eavesdropper is well positioned in a specific point of the
network, it cannot intercept an entire communication between
two devices. As shown in Table II, if the routing is done
via two paths (N = 2), in the worst case, the eavesdropper
will intercept no more than 75% of a communication flow.
The maximum level of exposure can be minimized if the
topology has more redundant paths. The exposure level of a
communication which uses our scheme can be calculated as:
Exposure = (50 + 50/N)/100, where N is the number of
paths. For example, if we choose 5 paths for routing (N = 5),
the maximum level of exposure will be 60%.

V. RELATED WORK

In this section we present research efforts that are related to
our work. In Section V-A we review some work that use SDN
in Smart Grids. Section V-B presents studies that aim to ensure
grid connectivity with multipath routing. Finally, Section V-C
presents research efforts based on network traffic analysis in
SCADA systems.

A. SDN in Smart Grids

Research efforts investigating the use of SDN in Smart
Grid communication networks are still scarce. Cahn et al. [3]
discuss how SDN can alleviate some of the current problems
in Smart Grid communication networks. The authors present
the design and development of a new architecture for com-
munication with grid substations, allowing the network to be
auto-configurable, secure and reliable against possible system
misconfigurations, through the use of SDN. The SDN-based
architecture was called Software-Defined Energy Communica-
tion Network (SDECN), and a prototype was developed using
the Ryu OpenFlow controller and evaluated in a testbed with
real IEDs (Intelligent Electronic Devices). Further, Goodney et
al. [5] propose the use of SDN to control the communication
between devices responsible for measuring electrical waves
in the grid, known as PMUs (Phasor Measurement Units).
The authors developed an SDN-based network application to
facilitate the management of PMUs and provide support for
essential features, such as multicast and multi-rate.

B. Multipath Routing in Smart Grids

Differently from our proposal, which alternates the infor-
mation flow between multiple paths, Hong et al. [27] inves-
tigate how to transmit duplicate information using multiple
communication routes in Smart Grids. In particular, the authors
present two multipath routing algorithms, specifically devel-
oped for Smart Grids. These algorithms aim to solve the min-
max non-disrupting k-path computation problem (M2NKPCP),
in which two routing paths share switches and a possible
failure of a specific equipment can disable an entire commu-
nication flow. The algorithms calculate totally disjoint routes,
and they differ by the trade-off between running time and
quality of the output. Also, Vaidya et. al [28] focus on other
part within the Smart Grid, by using multipath routing more
specific in the AMI (Advanced Metering Infrastructure). AMI
is responsible for the automatic measurement, management
and analysis of energy consumption and distribution to end-
users. The study aims to mitigate the problems of security
mechanisms in routing protocols in wireless ad hoc networks,

through the adoption of multipath routing in wireless mesh
AMI networks.

C. Traffic Analysis in SCADA Systems

Barbosa et al. [29] investigate the main characteristics
of network traffic in SCADA systems. The study looks into
the similarity between SCADA traffic and SNMP traffic. The
authors analyze nine different datasets, of which six are SNMP
traces and three are SCADA traces. From the results, the
study concludes that SCADA traffic and SNMP traffic are
similar in the sense that devices generate information flows in a
periodical fashion. Further, Cheung et al. [30] propose an IDS
(Intrusion Detection System) based on behavioral models for
SCADA networks. This IDS creates models that represent the
expected network behavior of the devices that are connected to
a SCADA system. The authors point out that SCADA systems
have topologies that hardly change over time, and thus the
behavior of the devices maintains a pattern. This facilitates
the detection of possible attacks that may cause changes to
the expected network behavior. Finally, Barbosa [31] presents
an IDS that can detect data injection and DoS attacks. This
IDS explores the traffic periodicity in SCADA systems.

VI. CONCLUSION AND FUTURE WORK

Power grids are responsible for the transmission and dis-
tribution of electricity to end-users. However, over the recent
years, power grids are becoming more sophisticated, with
the aim of increasing their safety, reliability, economical and
energy efficiency, and reducing their environmental impact. To
assist in the modernization process of electric power grids,
we are investigating the use of SDN in SCADA systems. In
this context, SDN-based SCADA systems can facilitate the
design and development of Smart Grid network applications,
by making them more robust and flexible. Also, we presented a
concrete case-study of an SDN-based application for multipath
routing to increase the privacy of the information that is
carried over SCADA networks, and make it more difficult
for an eavesdropper to capture communication flows between
SCADA devices. The multipath routing mechanism is based
on the use of dynamic and static flow rules. We acknowledge
that the work presented in this paper has applicability beyond
the prevention of eavesdropping. Although we chose to limit
the scope of the paper to a single case study, other uses could
include load balancing and resilient routing.

Further, we performed an experimental evaluation to verify
the impact and performance of the mechanism in the SCADA
network. We found that dynamic rules with a shorter lifetime
make it more difficult for an eavesdropper to intercept the
communication, but a longer lifetime may be advantageous
for large-scale SCADA systems, because this reduces the
management overhead in the controller. As future work, in
order to avoid the min-max non-disrupting k-path computation
problem (M2NKPCP) [27], we intend to refine the algorithm
and permit the selection of completely disjoint routes.

ACKNOWLEDGEMENT

This work is supported by ProSeG - Information Security,
Protection and Resilience in Smart Grids, a research project
funded by MCTI/CNPq/CT-ENERG # 33/2013.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015)172

88

REFERENCES

[1] H. Farhangi, “The path of the smart grid,” Power and Energy Magazine,
IEEE, vol. 8, no. 1, pp. 18–28, January 2010.

[2] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control
systems (ics) security,” NIST special publication, pp. 800–82, 2011.

[3] A. Cahn, J. Hoyos, M. Hulse, and E. Keller, “Software-defined energy
communication networks: From substation automation to future smart
grids,” in Smart Grid Communications (SmartGridComm), 2013 IEEE
International Conference on, Oct 2013, pp. 558–563.

[4] J. Wickboldt, W. De Jesus, P. Isolani, C. Bonato Both, J. Rochol,
and L. Zambenedetti Granville, “Software-defined networking: manage-
ment requirements and challenges,” Communications Magazine, IEEE,
vol. 53, no. 1, pp. 278–285, January 2015.

[5] A. Goodney, S. Kumar, A. Ravi, and Y. Cho, “Efficient pmu network-
ing with software defined networks,” in Smart Grid Communications
(SmartGridComm), 2013 IEEE International Conference on, Oct 2013,
pp. 378–383.

[6] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing software-defined networks,” in Proceedings of
the 10th USENIX Conference on Networked Systems Design
and Implementation, ser. nsdi’13. Berkeley, CA, USA:
USENIX Association, 2013, pp. 1–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482629

[7] W. Wang and Z. Lu, “Survey cyber security in the
smart grid: Survey and challenges,” Comput. Netw., vol. 57,
no. 5, pp. 1344–1371, Apr. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2012.12.017

[8] V. M. Igure, S. A. Laughter, and R. D. Williams,
“Security issues in scada networks,” Computers & Security,
vol. 25, no. 7, pp. 498 – 506, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404806000514

[9] A. Swales, “Open modbus/tcp specification,” Schneider Electric,
vol. 29, 1999.

[10] X. Lu, Z. Lu, W. Wang, and J. Ma, “On network performance evaluation
toward the smart grid: A case study of dnp3 over tcp/ip,” in Global
Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, Dec
2011, pp. 1–6.

[11] P. Brooks, “Ethernet/ip-industrial protocol,” in Emerging Technologies
and Factory Automation, 2001. Proceedings. 2001 8th IEEE Interna-
tional Conference on, vol. 2, Oct 2001, pp. 505–514 vol.2.

[12] S. Shah, J. Faiz, M. Farooq, A. Shafi, and S. Mehdi, “An architectural
evaluation of sdn controllers,” in Communications (ICC), 2013 IEEE
International Conference on, June 2013, pp. 3504–3508.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[14] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol. 11, no. 12, pp. 20:20–20:40, Dec. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2559899.2560327

[15] Y. Mo, T.-H. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and

B. Sinopoli, “Cyber-physical security of a smart grid infrastructure,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 195–209, Jan 2012.

[16] E. Chikuni and M. Dondo, “Investigating the security of electrical power
systems scada,” in AFRICON 2007, Sept 2007, pp. 1–7.

[17] J. Liu, Y. Xiao, S. Li, W. Liang, and C. L. P. Chen, “Cyber security
and privacy issues in smart grids,” Communications Surveys Tutorials,
IEEE, vol. 14, no. 4, pp. 981–997, Fourth 2012.

[18] W. Lou and Y. Fang, “A multipath routing approach for secure data
delivery,” in Military Communications Conference, 2001. MILCOM
2001. Communications for Network-Centric Operations: Creating the
Information Force. IEEE, vol. 2. IEEE, 2001, pp. 1467–1473.

[19] J.-F. Raymond, “Traffic analysis: Protocols, attacks, design issues,
and open problems,” in Designing Privacy Enhancing Technologies.
Springer, 2001, pp. 10–29.

[20] J. He and J. Rexford, “Toward internet-wide multipath routing,” Net-
work, IEEE, vol. 22, no. 2, pp. 16–21, 2008.

[21] N. F. Maxemchuk, “Dispersity routing,” in Proceedings of ICC, vol. 75.
Citeseer, 1975, pp. 41–10.

[22] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[23] T. Overbye and J. Weber, “Visualizing the electric grid,” Spectrum,
IEEE, vol. 38, no. 2, pp. 52–58, Feb 2001.

[24] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, “Spontaneous
synchrony in power-grid networks,” Nature Physics, vol. 9, no. 3, pp.
191–197, 2013.

[25] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
ser. Hotnets-IX. New York, NY, USA: ACM, 2010, pp. 19:1–19:6.
[Online]. Available: http://doi.acm.org/10.1145/1868447.1868466

[26] J. P. Russell, D. M. Goodman, C. D. Murton, C. T. W. Ramsden,
and J. Shields, “Spanning tree algorithm,” Apr. 16 2002, uS Patent
6,373,826.

[27] Y. Hong, D. Kim, D. Li, L. Guo, J. Son, and A. O. Tokuta, “Two new
multi-path routing algorithms for fault-tolerant communications in smart
grid,” Ad Hoc Networks, vol. 22, no. 0, pp. 3 – 12, 2014, special Issue on
Routing in Smart Grid Communication Networks. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870514001012

[28] B. Vaidya, D. Makrakis, and H. Mouftah, “Secure multipath routing for
ami network in smart grid,” in Performance Computing and Communi-
cations Conference (IPCCC), 2012 IEEE 31st International, Dec 2012,
pp. 408–415.

[29] R. Barbosa, R. Sadre, and A. Pras, “A first look into scada network
traffic,” in Network Operations and Management Symposium (NOMS),
2012 IEEE, April 2012, pp. 518–521.

[30] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and
A. Valdes, “Using model-based intrusion detection for scada networks,”
in Proceedings of the SCADA Security Scientific Symposium, vol. 46,
2007, pp. 1–12.

[31] R. R. R. Barbosa, “Anomaly detection in scada systems: a network
based approach,” Ph.D. dissertation, University of Twente, Enschede,
April 2014. [Online]. Available: http://doc.utwente.nl/90271/

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015) 173

89

90

AppendixB PUBLISHED PAPER – COMPSAC 2016

This paper presents a NIDS for SCADA systems based on machine learning algorithms.
Our solution relied on SDN for capturing information about communication flows of a SCADA
network. Moreover, our detection mechanism uses OCC algorithms. These algorithms only use
samples of the normal system behavior for detecting cyber-attacks against SCADA systems,
i.e., they do not need samples of specific attack classes. This characteristic of OCC algorithms
is ideal for developing specific SCADA NIDSes, because these environments are automated and
have a traffic profile without many variations, and with stable connection matrices. Furthermore,
are still scarce the attack traces publicly available. Our prototype used OCC algorithms based
on SVMs that can quickly classify large datasets. Finally, the NIDS obtained good results in
our experimental evaluation, achieving approximately 98% of accuracy, proving to be efficient
in the detection of attacks targeted to the power grid.

• Title –
A One-Class NIDS for SDN-Based SCADA Systems

• Conference –
The 40th IEEE Computer Society International Conference on Computers, Software &
Applications (COMPSAC-2016)

• Type –
Main track (full-paper)

• Qualis –
A2

• URL –
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7552026>

• Date –
June 10-14, 2016

• Held at –
Atlanta, USA

• Digital Object Identifier (DOI) –
<http://http://dx.doi.org/10.1109/COMPSAC.2016.32>

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7552026
http://http://dx.doi.org/10.1109/COMPSAC.2016.32

A One-Class NIDS for SDN-Based SCADA Systems

Eduardo Germano da Silva∗, Anderson Santos da Silva∗, Juliano Araujo Wickboldt∗,
Paul Smith†, Lisandro Zambenedetti Granville∗, Alberto Schaeffer-Filho∗

∗Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Email: {eduardo.germano, assilva, jwickboldt, granville, alberto}@inf.ufrgs.br

†Safety and Security Department, Austrian Institute of Technology, Vienna, Austria
Email: paul.smith@ait.ac.at

Abstract— Power systems are undergoing an intense pro-
cess of modernization, and becoming highly dependent on
networked systems used to monitor and manage system
components. These so-called Smart Grids comprise energy
generation, transmission, and distribution subsystems, which
are monitored and managed by Supervisory Control and Data
Acquisition (SCADA) systems. In this paper, we discuss the
benefits of using Software-Defined Networking (SDN) to assist
in the deployment of next generation SCADA systems. We also
present a specific Network-Based Intrusion Detection System
(NIDS) for SDN-based SCADA systems, which uses SDN to
capture network information and is responsible for moni-
toring the communication between power grid components.
Our approach relies on SDN to periodically gather statistics
from network devices, which are then processed by One-Class
Classification (OCC) algorithms. Given that attack traces in
SCADA networks are scarce and not publicly disclosed by
utility companies, the main advantage of using OCC algorithms
is that they do not depend on known attack signatures to
detect possible malicious traffic. Our results indicate that OCC
algorithms achieve an approximate accuracy of 98% and can be
effectively used to detect cyber-attacks targeted against SCADA
systems.

I. INTRODUCTION

Electric power grids are undergoing a modernization
process and evolving into the so-called Smart Grids [1][2],
improving the generation, transmission, and distribution of
electrical energy. Smart Grids allow a more resilient, secure,
and reliable power supply for end-users, such as industries,
schools, hospitals, and residences. A power grid is composed
of thousands of electronic devices, such as transformers,
relays, fuses, or disconnectors. An important component
of a power grid is the Supervisory Control and Data Ac-
quisition (SCADA) system [3], responsible for monitoring,
controlling, and managing automated processes of the power
grid, such as shutting down of an electrical substation, or
monitoring the passing electric tension on a transmission
line.

Just as power grids are becoming Smart Grids, SCADA
systems are also evolving, for example, by using more
secure communication protocols and field devices with more
processing capacity. Recently, efforts to merge Software-
Defined Networking (SDN) with SCADA systems have been

carried out [4][5]. SDN is a promising network paradigm
that can support the evolution of SCADA communication
networks as well [4]. SDN introduces an architecture that
simplifies network operations by relying on a logically
centralized element often referred as controller [6]. That
adds the flexibility required to quickly deploy and configure
new field devices and to develop more complex network
services in the context of SCADA networks [4].

Given the importance of power grid infrastructures, they
may become target of malware infections and cyber-attacks.
If these threats are not properly detected and handled they
can cause outages in power supply, or even destroy substa-
tion equipment [7]. An Intrusion Detection System (IDS) [8]
is then necessary to assist in detecting and mitigating such
threats. In this paper, we rely on OpenFlow, currently the
most important protocol for SDN implementation [9], to
present a Network-based IDS (NIDS) [10] designed specif-
ically for SDN-based SCADA systems. Our NIDS uses
One-Class Classification (OCC) algorithms [11] that enable
detecting abnormal traffic behavior from a homogeneous
training set containing only the signature of traffic generated
under normal network operation [11]. There are many as-
pects that make OCC algorithms ideal for anomaly detection
in SCADA networks, which includes: (i) they can detect
unknown types of attacks for which there are no signatures
available, (ii) they do not require specific SCADA attack
traces, which are scarce and often not publicly disclosed by
utility companies, and (iii) this class of algorithm is suitable
for the kind of traffic behavior and periodicity found in
SCADA systems.

To demonstrate the benefits and accuracy of our proposed
NIDS, we present an analysis comparing two machine
learning algorithms of OCC: OCSVM [12] and SVDD [13].
This comparison shows the efficiency of our approach to
detect cyber-attacks targeted at a power grid. In our exper-
iments, we simulated an SDN-based SCADA system using
a large-scale topology, with one main control center, four
intermediate control centers, eight distribution substations,
and hundreds of field devices. SDN enables the SCADA
system to control and monitor field devices and the network
that interconnects SCADA components. The SCADA system

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.32

303

91

uses Modbus/TCP protocol and, during the experiments, we
simulated an attacker that starts a DoS attack targeted at one
substation. The cyber-attack exploits a Modbus vulnerability
that allows flooding unauthorized read requests to SCADA
devices operating under this communication protocol [14].

The remainder of this paper is organized as follows. In
Section II, we present background on SDN-based SCADA
systems, as well as fundamental concepts related to One-
Class Classification algorithms. In Section III, we describe
the design of our proposed NIDS and details of the algo-
rithms implemented. In Section IV, we present the evalu-
ation results and a performance analysis of our approach.
In Section V, we describe the related work and finally, in
Section VI, we conclude this paper with final remarks and
future work.

II. BACKGROUND

In this section, we present the fundamental aspects about
SCADA systems and the communication protocols used in
this kind of cyber-physical system. In addition, we present
how SDN can assist in the modernization process of SCADA
systems and power grids. Furthermore, some concepts of
OCC are discussed as well as their advantages and benefits
in the detection of network anomalies in SCADA systems.

A. SDN-Based SCADA Systems

SCADA systems are used in critical infrastructures such
as power grids, water supplies, oil and gas facilities. In
power grids, in specific, SCADA systems are highly dis-
tributed, used by power utilities to collect data, monitor, and
control devices through power lines [3]. SCADA systems
present a well-defined architecture with two main types of
components: a single master unit, called Master Terminal
Unit (MTU); and slave units, or Remote Terminal Units
(RTUs) [7]. For large-scale SCADA systems that contain
several RTUs, subMTUs are also employed to alleviate the
workload on the primary MTU [3]. In the power distribution
system, RTUs monitor energy distribution substations and
the electrical voltage forwarded to final users [4]. These
substations are usually composed of thousands of field
devices, such as sensors, circuit breakers, actuators, relays,
and transformers [5]. Thus SCADA systems have a large
number of interconnected devices that transmit a consid-
erable amount of information about the system actuation
environment and the automated process.

To provide a more reliable data transmission mecha-
nism, most of the communication protocols used by current
SCADA systems were ported to execute over TCP/IP, e.g.,
Modbus/TCP and DNP3 over TCP/IP [15]. In these cases,
adaptations have been carried out without considering secu-
rity aspects (e.g., data encryption) allowing an attacker to
intercept the communication and read the information being
transmitted [4]. Another important issue is that, to allow
remote and more flexible maintenance of their components,

SCADA systems were typically connected to the corporate
network of the organization responsible for the system,
that consequently is directly or indirectly connected to the
Internet. This tendency makes SCADA systems susceptible
to common threats, such as malware and cyber-attacks [15].

There are many efforts to increase the security level of
SCADA systems, e.g., proposal of new communication pro-
tocols, improvement of existing protocols, new security and
management standards, or even IDSes [15][16]. However,
the incorporation of SDN into SCADA systems emerges
as an attractive research area, since SDN can help in the
evolution of SCADA communication networks, facilitating
the development of network applications [4]. The adoption
of SDN in SCADA will support more resilient systems, as
solutions to mitigate attacks and other threats can be more
easily implemented in the SDN controller. SCADA systems
can benefit form the characteristics of SDN in several ways:

• Flexibility: SDN permits easily adding new field de-
vices or upgrading existing network applications inside
the SCADA system [5].

• Centralized Management: The MTU can not only
manage field devices but also monitor and control the
network that interconnects system devices [4].

• Standard API: The OpenFlow protocol provides a
standard API that allows a better integration of geo-
graphically disperse network equipment from different
vendors [5][17].

• Programmability: SDN allows creating a range of
customized services, e.g., to perform load balancing be-
tween communication links, to optimize the operation
of system components, or even to identify and mitigate
traffic anomalies [4].

B. One-Class Classification

Anomaly detection techniques aim to detect unexpected
behaviors, also called anomalies or outliers, in a dataset [18].
In communication networks, unexpected behaviors may rep-
resent the occurrence of malicious activities, creating a real
necessity for sophisticated detection mechanisms to prevent
the network from service degradation. Frequently, machine
learning is suitable to this task because it offers a wide range
of mechanisms that can be applied for traffic classification
and for detecting intrusions in different contexts.

There are different classification techniques associated
with machine learning. Supervised machine learning algo-
rithms require a training step, i.e., an initial step in which
the classifier learns the profile of the target class. A classifier
trained with positive and negative classes is called a binary
classifier, while a classifier that is trained with several
samples representing many classes is named a multiclass
classifier. However, both of these types of classifiers require
the profile of the target attack to operate, which may be
difficult to be obtained when the profile required is a
novel, unknown attack. To alleviate this restriction, OCC

304

92

algorithms have been designed such that they only need
one data profile, which in the case of network can be
the normal expected traffic behavior, a frequently available
traffic information.

SCADA systems are environments that can take advantage
of OCC algorithms. It is noteworthy that the same benefits of
using machine learning in general networks can be achieved
in SCADA systems as well. In addition, SCADA traffic
flows are naturally periodic and their networks have stable
connection matrices [7]. This characteristic encourages the
use of OCC algorithms for detecting anomalous behaviors
in SCADA networks. These algorithms do not rely on ma-
licious signatures, but instead need only the expected traffic
behavior, making the detection process faster and more
accurate. Since an OCC-based NIDS does not require attack
signatures to build a classifier model, it is well suited for
intrusion detection in SCADA systems [19]. Further, SDN
allows the periodic gathering of precise statistics in SCADA
networks. These statistics can be used to create a model of
the SCADA system normal and expected behavior. Thus,
this behavioral model in combination with OCC algorithms,
is used to build a resilience mechanism for detecting cyber-
threats in SCADA networks.

III. ONE-CLASS NIDS FOR SDN-BASED SCADA
SYSTEMS

In this section, we present a brief background on the OCC
algorithms that we adopted in the proposed NIDS for SDN-
based SCADA systems. Furthermore, we also introduce
our strategy to detect intrusions in SCADA communication
networks and detail the architecture and the respective
components of our NIDS.

A. OCC Algorithms

The OpenFlow protocol allows the integration of network
devices from different vendors through its standard API [4].
This feature facilitates gathering network flow statistics via
a logically centralized controller. These statistics about the
SCADA network are essential for the proper functioning of
our NIDS. Algorithms are used to analyze these statistics,
finding anomalous behaviors in the SCADA network. Fur-
thermore, we also consider fundamental that our approach
must:

• Adapt to the scale and heterogeneity of existing
SCADA systems. In other words, the proposed NIDS
must be able to detect anomalous behaviors in SCADA
networks of small power distribution companies and
large-scale systems responsible for managing the power
grid of entire countries, independently of the protocol
used or the behavior of network devices;

• Manipulate constantly, promptly, and accurately large
datasets. This requirement is important because the
sampling period in SCADA systems in the power
distribution sector ranges from 2 to 4 seconds [20].

In addition, a single substation may contain thousands
of field devices [5] indirectly (via RTU) or directly
connected to the SCADA MTU. Furthermore, a NIDS
that has a fast anomaly detection process can avoid or
minimize the incidence of outages in the power supply;

• Enable the detection of harmful network anomalies in
SCADA systems. Our NIDS must detect anomalous
behaviors known by operators as well as anomalies that
exploit previously unknown vulnerabilities, and con-
sequently unpatched (Zero-Day exploit). Furthermore,
as SCADA attack traces are scarce and not publicly
disclosed, the proposed NIDS must be able to detect
such anomalies without using attack signatures.

To fulfill these requirements, we adopted OCC algorithms
based on Support Vector Machine (SVM), such as One-
Class Support Vector Machine (OCSVM) [12] and Support
Vector Data Description (SVDD) [13]. SVMs are a set
of supervised learning methods that analyze datasets and
recognize patterns [21]. SVMs are among the most popular
methods of supervised learning. SVM-based algorithms deal
well with large datasets and in most cases perform better
in comparison to other supervised learning methods [22]. A
brief description of OCSVM and SVDD is presented below:

1) One-Class Support Vector Machine (OCSVM): It
is a supervised machine learning algorithm presented by
Schölkopf et al. [12]. OCSVM resembles the traditional
two-class SVM, where the training set is composed of two
groups, one positive and one negative. However, OCSVM, in
its training phase, uses a homogeneous set of instances and
is indicated for problems that involve anomaly detection.
Thus, with data used to fit the algorithm, OCSVM learns
a decision function and classifies new data as similar or
distinct to the training set. As the traditional SVM for binary
classification, OCSVM uses kernel methods for classifying
validation samples. In particular, OCSVM can use traditional
kernel methods (linear, polynomial, radial basis function -
RBF, or sigmoid), or customized kernels defined by the user.

2) Support Vector Data Description (SVDD): Also
known as Support Vector Domain Description, it was in-
troduced by Tax and Duin [13][23] and is another type
of SVM-based OCC algorithm. SVDD is a useful method
for novelty detection and has been applied to a variety of
applications that need to monitor the rise of novelties. This
algorithm uses the training set to define a hypersphere with
minimum radius, which is used for binary classify samples
of a validation set. The hypersphere of SVDD is modeled
to involve the majority of training samples. In the validation
stage, new samples that are not inside the hypersphere area
are classified as novelties, whereas samples that are inside
the hypersphere are considered normal samples.

B. Architecture Overview

In this paper, differently from previous approaches
that present IDSes for traditional SCADA

305

93

Figure 1. Architecture overview of the proposed NIDS for SDN-Based SCADA Systems.

systems [7][19][24][25], we present a NIDS designed and
developed for SDN-based SCADA systems. Our approach
takes advantage of the characteristics of SCADA networks
to accomplish novelty detection in this environment.
Considering that SCADA systems have predictable and
periodic network traffic and that their networks present a
stable connection matrix [7], any novelty can be considered
a malicious behavior, such as the beginning of a cyber-
attack, or even the misconfiguration of a particular field
device. So, as our classifier knows the expected behavior
of the SCADA network, any data that indicates novelty in
relation to this model can be reported to the operator as
a network anomaly. When the entry point of an anomaly
in the SCADA network is determined, SDN allows routing
rules to be updated in real time. This facilitates anomaly
mitigation, enabling the redirection of malicious network
traffic, or even dropping the intruder’s packets.

The OpenFlow protocol installs rules in each network
switch to route data packets. Each rule may have unique
information about a communication flow, such as, MAC and
IP address of source and destination devices, packet and byte
counters, rule duration, and the switch in which the rule is
installed. Although there are other approaches for collecting
network information, we keep our solution based only on
SDN. This allows the proposed NIDS to be extended to
create more sophisticated solutions for resilience in SCADA
networks. The proposed NIDS uses the OpenFlow protocol
for periodically extracting statistics of the SCADA network.

This strategy permits continuously gathering statistics on the
same frequency of the SCADA sampling period. Our NIDS
generates samples from these network statistics. Samples
serve as basis to build the model that predicts the network
behavior. Each sample has features that are defined by the
SCADA operators a priori. In addition to the native features
provided by OpenFlow (packet count, byte count, and rule
duration), our approach also enables the use of other features
extracted from native ones. The selection of an optimal set
of features can increase classifier accuracy [26], decreasing
the rate of false-positive alarms generated during network
monitoring.

Our NIDS is composed of five components that inter-
communicate to monitor the network and to report possible
anomalous behaviors in SCADA systems. Our architecture
has been designed to be scalable, i.e., it must allow the
detection of anomalies in SCADA systems responsible for
monitoring small regions, as well as large-scale systems.
Thus, the proposed NIDS must be also capable of promptly
processing large amounts of data. For this reason, the archi-
tecture contemplates the adoption of mechanisms that enable
the parallel and distributed processing of data. Figure 1
presents an overview of the proposed NIDS architecture. A
brief description of its components is presented below:

1) SDN Controller: This component is responsible for
monitoring and for applying routing strategies to SCADA
network switches. It is composed of Stats Requester, Open-
Flow Controller, Protocol Filter, and Snapshooter. Stats

306

94

Requester is a module responsible for creating request mes-
sages of flows statistics and for controlling the periodicity
in which these messages are sent to network switches.
It generates requests in accordance with the periodicity
previously defined by the SCADA operator. As said before,
OpenFlow is currently the most important protocol for SDN
implementation. The OpenFlow Controller executes routing
strategies, applies anomaly response policies on the network,
and manages statistic requests forwarded to the switches
and their respective replies. At this stage, Protocol Filter
blocks statistics regarding non-specific SCADA protocols,
allowing only previously defined types of packets (such as
LLDP, ARP, and ICMP, and specific SCADA protocols, such
as Modbus, DNP3, and IEC-61850) to be forwarded on
the network and generate statistics for the NIDS. Finally,
Snapshooter is responsible for structuring these statistics
of SCADA protocols in snapshots and for forwarding this
information to the Historian Server.

2) Historian Server: This is a component that is typically
present in the Control Center of several traditional SCADA
systems [14]. This server stores logs about SCADA devices.
We extended this component to store network snapshots
collected by the SDN Controller. It needs to be able to
store and process datasets generated by large-scale SCADA
systems, and Distributed and parallel processing can help
in reducing possible bottlenecks. Thus, in order to allow
large-scale data processing, the proposed NIDS relies on
the distributed nature of the MapReduce (MR) programming
model [27] to implement a scalable version of the Historian
Server. MR is used for: (i) finding flow rules stored in the
Historian Server through the rules header (mapping process);
and (ii) reducing these headers in keys (reduction process).
These keys are fundamental for finding counters of a rule
stored in the server. In other words, MR is used to find
active rules in the network and catalog their counters. The
stored snapshots are converted into Training Samples (used
to fit the classifier model), and Validation Samples (analyzed
by the NIDS to monitor the SCADA network). To increase
its classification accuracy, we split samples in two classes:
request and reply samples. Request samples have the MTU
as source device, whilst reply samples have an RTU as
source device. Further, the Historian Server also has the
Anomaly Response Policy Repository, which is a component
that contains strategies for anomaly mitigation predefined
by SCADA operators. Thus, our NIDS can act proactively
on the network without direct intervention of an operator,
for example: redirecting an anomalous flow to a HoneyPot
device; reducing the priority of a harmful flow to the system;
or dropping malicious network packets.

3) Feature Selector: OpenFlow only provides native flow
features, namely packet count, byte count, and rule duration.
These features may not be adequate to describe the nature
of a specific traffic profile. Using appropriate features to
describe traffic behavior may increase the accuracy of our

NIDS. Thus, the Feature Selector component [26] analyses
the stored samples and offers an extensive set of features
extracted from OpenFlow native counters, such as packet
inter-arrival-time, packets per second, mean packet length,
and so forth. Besides, this component uses feature selection
techniques, such as Principal Component Analysis (PCA)
and Genetic Algorithm (GA), to determine the optimal set of
features for traffic classification. We strategically placed this
component inside the Historian Server in order for it to have
easy access to the stored traffic samples. Note that, however,
we do not incorporate this component in our prototype and
preliminary experiments, and this task is proposed as future
work.

4) One-Class Classifier: This is the central component
in the proposed architecture as it analyzes samples to find
anomalous behaviors in the SCADA network. At first, Fit
Classifier is responsible for the training step of the proposed
NIDS. This training step is defined by the SCADA operator
and occurs before the validation stage. The SCADA operator
also can define if the training stage will occur from trace
files, or from the normal functioning of the network. In
addition, it is possible to define the periodicity in which
our NIDS will be trained again. This component receives
training samples for generating classification models: one
specific for request flows, and another specialized in reply
flows. These classification models are forwarded to the
Classifier component, which in turn generates two classi-
fiers: Request Classifier and Reply Classifier. Our approach
allows SCADA operators to choose and combine OCC
algorithms available for traffic classification. In addition, if
any validation sample indicates an inconsistent state in the
SCADA system, the Classifier will send information about
the unexpected behavior to the NIDS Management Interface.

5) NIDS Management Interface: This component pro-
vides a management interface for SCADA operators to inter-
face with our NIDS. NIDS Management Interface receives
the details of anomalies detected by the One-Class Classifier
and generates alarms to the operators. Alarms generated
by the Alarm Trigger component contain information about
where and when the network anomaly occurred in the power
system. The Anomaly Response component allows the oper-
ator to define response policies to the anomalous behavior
detected. These policies are stored in the Historian Server,
in Anomaly Response Policy Repository, to be reused after.
In addition, these policies are directly forwarded to the
SDN Controller that applies these actions over the SCADA
network. Management policies provided by SCADA opera-
tors can be used to redirect a DDoS attack to a HoneyPot
device, and block or limit the anomalous traffic through an
OpenFlow rule. Finally, Statistic Center presents information
about the SCADA network and the Historian Server, such as
the traffic on the OpenFlow control channel, communication
flows disposed in the network, amount of snapshots stored
in the database, and even the size of the training set.

307

95

IV. PROTOTYPE AND EXPERIMENTAL RESULTS

In this section, we describe the proof-of-concept prototype
that we implemented, the experimental setup used for the
evaluation of the OCC algorithms, as well as the test scenar-
ios used to simulate a realistic SCADA environment. We also
discuss the experimental results that validate our prototype
and verify the accuracy of the classification techniques.

A. Prototype and Experimental Setup

We chose the POX SDN/OpenFlow Controller1, which
uses OpenFlow version 1.0 to manage and monitor the
SCADA communication network. We implemented the His-
torian Server on a NoSQL database, more specifically the
Apache Cassandra Server2. This database promotes design
scalability and allows distributing system tasks to multiple
clusters, decreasing possible processing bottlenecks. Finally,
we used the LIBSVM3 library that offers a simple and
efficient implementation of the necessary machine learning
algorithms, OCSVM and SVDD, for our prototype. It is
important to note that both algorithms were used with their
default parameters. Moreover, we used the RBF Kernel for
the OCSVM algorithm.

We defined an evaluation scenario that simulates the SDN-
based SCADA system of a particular power grid company.
This company controls a hydro-power plant, transmission
lines, and eight distribution substations. This power grid
is responsible for supplying a particular region. To control
and monitor this power grid, the company has a SCADA
system based on a large-scale topology, with one MTU,
four subMTUs, eight RTUs (each RTU contains 750 field
devices directly connected), and eight hundred independent
field devices. The independent field devices were simulated
to control the voltage in transmission lines and each one was
simulated independently. In addition, each independent field
device and each RTU were subordinated to one subMTU.
The MTU requests data from its subMTUs, that conse-
quently request data from their subordinated devices (RTUs
or field devices). We used the TCP version of the most
common SCADA protocol, Modbus [28], for communicating
devices of our SCADA system. To do that, we used the
PyModbus library4 and its Modbus READ COILS function.
This function allows a MTU to read values of RTUs reg-
isters. Figure 2 depicts the topology that we used in our
evaluation scenario. To simulate this environment, we used
Mininet5. The topology, number of substations, number of
field devices and protocols used are based on documents
reporting actual SCADA systems deployed in the US [3].

Our experiments consisted of the MTU and subMTUs
periodically requesting information from the subordinated

1http://www.noxrepo.org/pox
2http://cassandra.apache.org/
3https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
4https://code.google.com/p/pymodbus/
5http://www.mininet.org/

Figure 2. Configuration of the network topology used in our experiments.

devices, every 2 seconds. To respect the time requirements
of traditional SCADA systems for power grids, we set the
periodicity of network statistics gathering to 4 seconds. Fur-
thermore, our NIDS was configured to collect information
from the Historian Server every 4 seconds too. Further, the
NIDS was responsible for analyzing the network information
stored in the Historian Server and for generating alerts to
system operators when a possible anomalous behavior in
the SCADA communication network was detected.

During the experiments, we simulated the launch of a
DoS attack targeted at one of the substations. We assume
that this DoS could be launched by a disgruntled employee
of the power distribution company who has remote access
to one workstation of subMTU #1. The attacker intends to
disrupt the communication between a particular substation
(RTU #2) and the rest of the power system to force a hard-
reset in the SCADA system and to cause financial losses
to the company. The DoS attack is based on a vulnerability
of Modbus/TCP named Unauthorized Read Request6. This
vulnerability allows an attacker with IP connectivity to the
RTU to send unlimited data requests and consequently cause
a buffer-overflow in the SCADA slave device [29]. Currently,
buffer-overflow is a major threat in modern and legacy
SCADA systems [30]. We collected 24 hours of training

6http://www.symantec.com/security response/attacksignatures

308

96

samples to build a classifier model with the daily behavior
of the evaluation scenario. Each experiment was conducted
during 20 minutes and they contained two types of traffic:
10 minutes represented the expected system functioning; and
10 bursts of 1 minute indicated the occurrence of the DoS
attack on the SCADA network.

B. Evaluation Results

We evaluated the quality of the proposed NIDS for
SDN-based SCADA systems using the two available SVM-
based OCC algorithms for traffic classification, OCSVM and
SVDD. With the assistance of a confusion matrix, calculated
from the results of our experiments, we analyzed specific
metrics for supervised machine learning algorithms, such as
true positive rate (TPR), true negative rate (TNR), positive
predictive value (PPV), negative predictive value (NPV),
false positive rate (FPR), false discovery rate (FDR), false
negative rate (FNR), and accuracy (ACC) [31]. In absolute
numbers, our experiments generated a total of 29,709 sam-
ples which were classified by the proposed NIDS. Of the
total of samples generated, 15,579 (52.439%) represented
the normal functioning of our SCADA network, whilst
the 14,130 (47.561%) remaining samples evidenced the
DoS propagation in the power grid. Each repetition of our
experiment generated on average 990.3 validation samples,
which results in 519.3 positive samples and 471 negative
samples on average for each repetition. It is important to
note that the experiments were performed 30 times, in order
to achieve a confidence level of 95%.

The confusion matrices presented in Figure 3 describe
the traffic classification produced by the proposed NIDS.
With both algorithms, OCSVM and SVDD, we can observe
that our NIDS obtained significant results if we consider
the validation samples classified as false-positive (FP) and
true-negative (TN). The confusion matrices show that, for all
repetitions of the experiments, our NIDS detected correctly
and instantly the validation samples that indicated the prop-
agation of the DoS attack on the SCADA network. In other
words, 100% of the validation samples that presented the
evidence of DoS attack (TN bars in Figure 3) were classified
as anomalous behavior, being reported immediately to the
SCADA operators. However, if we only analyze the expected
behavior, we can see that OCSVM obtained slightly better
performance if compared to the SVDD algorithm. OCSVM
classified correctly, that is, classified as true-positive (TP),
approximately 98.435% of the validation samples, whilst
using SVDD this classification was 95.718%. Figure 4
presents a time series of the traffic classification of both
OCSVM (Figure 4(a)) and SVDD (Figure 4(b)), respectively.
As Figure 4(b) indicates, in the experiment using SVDD,
the last three validation samples were classified as FP. This
indicates that the RBF Kernel used by OCSVM fits better
to the simulated traffic in our SCADA system in relation to
the SVDD hypersphere. Note that figures 4(a) and 4(b), for

better visualization of the traffic classification, present only
part of an experiment, which contains 40 validation samples
where 24 samples are the normal expected traffic, and 16
are the traffic samples evidencing the DoS attack.

������
����	�

	����

����	

	

 	

��

�

��

	

�������
������ �������� ������� �������� �������
�������
������

������

�
��
��
��
�
��

�!
�"
#
$

Figure 3. Confusion matrices generated through of the experiments.

As both algorithms obtained similar FP and TN rates,
these results also have influence on metrics for evaluating
the accuracy of our NIDS. As can be seen in Figures 5(a)
and 5(b), both algorithms achieved 100% of TNR and PPV.
Consequently, OCSVM and SVDD also achieved 0% of FPR
and FDR. These results show that the One-Class NIDS accu-
rately detected and reported the DoS attack in our evaluation
scenario. Analyzing the remaining metrics, we can see that
SVDD presented a higher FNR (4.281%) if compared to
OCSVM (1.565%). OCSVM presented slightly higher TPR
(98.435% against 95.718%). Furthermore, OCSVM also pre-
sented higher rate of NPV (98.31% against 95.501%). Ulti-
mately, OCSVM obtained slightly better accuracy (99.18%)
than SVDD (97.755%). Table I presents an overview of the
obtained results in our experiments.

Table I
OVERVIEW OF RESULTS.

Metrics /
Algorithm OCSVM SVDD

TPR ≈ 98.435% ≈ 95.718%
TNR 100% 100%
PPV 100% 100%
NPV ≈ 98.31% ≈ 95.501%
FPR 0% 0%
FDR 0% 0%
FNR ≈ 1.565% ≈ 4.281%
ACC ≈ 99.18% ≈ 97.755%

Finally, analyzing the final results, we can state that:
novelty detection can be used in the detection of network
anomalies in SCADA systems; and in our evaluation sce-
nario, our approach was able to fully detect the DoS attack.
Although the proposed NIDS has classified validation sam-
ples as FP, it behaved well in relation to the attack detection.
This can be proved by analyzing the results obtained on
metrics directly based on TN samples or FP samples, such
as TNR, PPV, FPR, and FDR. Our experiments also showed

309

97

�

����

����

�����

��� ��� ��� �	�

��
���

�
��
�
��
�

��������� ��
�����

(a) Traffic classification using OCSVM.

�

����

����

�����

��� ��� ��� �	�

��
���

�
��
�
��
�

��������� ��
�����

(b) Traffic classification using SVDD.

Figure 4. Traffic classification of our One-Class NIDS for SDN-Based SCADA systems.

������
��� ���

�����

� �
�����

�����

�

��

��

��

���

��
�� ��	 ��	
��
��
�� �

������

�
��
��
�
��
�
��
��
�

(a) Metrics using OCSVM.

������

��� ���

������

� �

�����

������

�

��

��

��

���

	
� 	��

 �

 �
� ��� ��� ���

������

��
��
�
��
�
��
��
�

(b) Metrics using SVDD.

Figure 5. Machine learning metrics obtained from our experiments.

that OCSVM presented slightly better accuracy than SVDD.
This means that, given our assumption about the scarcity
of public available attack traces in SCADA, it is possible
to detect attacks targeted at the power system by using a
classifier model that only represents the expected behavior
of the SCADA network.

V. RELATED WORK

In this section, we review research efforts that are related
to our work. In Section V-A, we describe research efforts
that employ SDN in Smart Grids and SCADA systems. In
Section V-B, we present studies that aim to detect possible
intrusions in SCADA systems. Finally, in Section V-C, we
discuss our contribution to this research topic.

A. SDN in Smart Grids and SCADA systems

Research efforts investigating the use of SDN in SCADA
systems are still scarce. In a previous work, we discussed the
potential benefits that SDN can bring to the electrical grid
and SCADA systems [4]. The aforementioned paper presents
a multipath approach for SDN-based SCADA systems in
which communication of SCADA devices is performed by
more than one route in order to prevent possible eaves-
droppers from fully capturing messages exchanged between
SCADA devices. Cahn et al. [5] discussed how SDN

can alleviate some of the current problems in Smart Grid
communication networks. The authors presented the design
and development of a new architecture for communication
with grid substations, allowing the network to be auto-
configurable, secure, and reliable against possible system
misconfigurations. Kim et al. [32] introduced an SDN-based
architecture that simplifies the development of network
applications for Smart Grids, enabling self-configuration,
security, and scalability. Dorsch et al. [33] presented and
analyzed advantages and challenges of applying SDN in
distribution and transmission networks of Smart Grids.
Moreover, that work also introduced algorithms for fast
recovery and load management, tested in IEC-61850 traffic.
Gyllstrom et al. [34] also developed and evaluated algo-
rithms for SDN-based Smart Grid networks. That paper
analyzed the performance of algorithms for fast recovery
facing link failures. Finally, Goodney et al. [17] proposed
the use of SDN to control the communication between
devices responsible for measuring electrical waves in the
grid, known as Phasor Measurement Units (PMUs).

B. IDS for SCADA Systems

In the literature, there are several research efforts that
proposed IDSes for SCADA systems. Almalawi et al. [25]

310

98

proposed an unsupervised SCADA data-driven anomaly
detection approach intended to be used as a passive SCADA
IDS. This IDS has two main steps: (i) the identification of
consistent and inconsistent states from unlabeled SCADA
data traffic generated by system sensors and actuators using
the density factor for the k-nearest neighbors of the obser-
vation; and (ii) the extraction of proximity-based detection
rules for normal and anomalous behavior using statistically
determined micro-clusters. Barbosa [7] investigated the main
traffic characteristics in SCADA networks and presented a
NIDS capable of detecting data injection and DoS attacks.
This NIDS specifically explores the periodicity of traffic
generated in SCADA systems. Finally, Cheung et al. [24]
used the network behavior of SCADA components to create
behavioral models for traffic analysis and anomaly detection.

C. Discussion

In this paper, we advocate that the use of SDN will en-
hance the scalability and improve the flexibility of SCADA
systems, and will also facilitate the creation of SCADA
resilience mechanisms. We investigated IDSes currently
available for SCADA systems and the network behavior
of SCADA devices to contribute to this research topic.
Unfortunately, there are few IDSes that exploit the network
behavior of SCADA, and the systems that use these aspects
do not employ the characteristics of SDN to collect more
accurate information of the network. We proposed a NIDS
that creates signatures of the expected network functioning,
e.g., it generates behavior models of the correct functioning
of SCADA devices. Our approach periodically verifies the
SCADA network, through SDN, in order to find anomalous
behaviors that differ from the expected SCADA behavior.
This verification is made by OCC-based machine learning
algorithms. This choice was based on the characteristics
of OCC algorithms, on the requirements of periodicity and
connection matrix stability of SCADA systems, and on the
paucity of SCADA attack signatures publicly available to
research.

VI. CONCLUSION AND FUTURE WORK

Modern power systems comprise energy generation, trans-
mission, and distribution subsystems that are monitored and
managed by large-scale SCADA systems. Because of its
importance, any threat to SCADA system operation may
result in heavy economical losses or even put lives in
danger. Therefore, in order to promote the modernization
process of power grids, we investigate the development of
a new generation of SCADA systems, named SDN-based
SCADA systems. By relying on the global view of SDN-
based SCADA systems and on their ability to gather switch
statistics, we presented a specific NIDS for this kind of
environment. Our NIDS uses OCC machine learning algo-
rithms that, with a unique inlier homogeneous training set,
can detect anomalous behaviors in SCADA networks, such

as unauthorized system or network activity. We presented
experimental results in a realistic SCADA environment
that validate our prototype and verify the accuracy of the
classification techniques, applied to the detection of a DoS
attack based on a real vulnerability of the Modbus/TCP
protocol. Our analysis was based on a comparison of two
OCC algorithms, OCSVM and SVDD, which deal well
with large datasets and have a fast classification process if
compared to other machine learning techniques.

As future work, we intend to carry out a performance
analysis of our NIDS using other OCC algorithms, such
as, Kernel Principal Component Analysis (KPCA) [35] and
One-Class Random Forests (OCRF) [36]. We also intend to
combine classifiers to improve the accuracy of our proposal.
In addition, we intend to incorporate the Feature Selector
component in our solution to minimize possible false alerts.
Finally, we plan to implement a user-friendly interface, for
defining alternatives to mitigate the anomalous behaviors
without compromising the functioning of SCADA devices.

ACKNOWLEDGEMENT

This work is supported by ProSeG - Information Security,
Protection and Resilience in Smart Grids, a research project
funded by MCTI/CNPq/CT-ENERG # 33/2013.

REFERENCES

[1] W. Wang, Y. Xu, and M. Khanna, “A Survey on the Commu-
nication Architectures in Smart Grid,” Computer Networks,
vol. 55, no. 15, pp. 3604–3629, Oct. 2011.

[2] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A Survey on Smart
Grid Communication Infrastructures: Motivations, require-
ments and challenges,” Communications Surveys Tutorials,
IEEE, vol. 15, no. 1, pp. 5–20, First 2013.

[3] K. Stouffer, J. Falco, and K. Scarfone, “Guide to Industrial
Control Systems (ICS) Security,” NIST special publication,
pp. 800–82, 2011.

[4] E. Silva, L. Knob, J. Wickboldt, L. Gaspary, L. Granville,
and A. Schaeffer-Filho, “Capitalizing on SDN-Based SCADA
Systems: An anti-eavesdropping case-study,” in Integrated
Network Management (IM), 2015 IFIP/IEEE International
Symposium on, May 2015, pp. 165–173.

[5] A. Cahn, J. Hoyos, M. Hulse, and E. Keller, “Software-
Defined Energy Communication Networks: From substation
automation to future smart grids,” in Smart Grid Communi-
cations (SmartGridComm), 2013 IEEE International Confer-
ence on, Oct 2013, pp. 558–563.

[6] J. Wickboldt, W. Jesus, P. Isolani, C. Both, J. Rochol, and
L. Granville, “Software-Defined Networking: Management
requirements and challenges,” Communications Magazine,
IEEE, vol. 53, no. 1, pp. 278–285, January 2015.

[7] R. Barbosa, “Anomaly Detection in SCADA Systems: A
network based approach,” Ph.D. dissertation, University
of Twente, Enschede, April 2014. [Online]. Available:
http://doc.utwente.nl/90271/

311

99

[8] H. Liao, C. Lin, Y. Lin, and K. Tung, “Intrusion Detection
System: A comprehensive review,” Journal of Network and
Computer Applications, vol. 36, no. 1, pp. 16 – 24, 2013.

[9] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN,”
Queue, vol. 11, no. 12, pp. 20:20–20:40, Dec. 2013.

[10] J. Davis and A. Clark, “Data Preprocessing for Anomaly
based Network Intrusion Detection: A review,” Computers &
Security, vol. 30, no. 67, pp. 353 – 375, 2011.

[11] S. Khan and M. Madden, “A Survey of Recent Trends in One
Class Classification,” in Artificial Intelligence and Cognitive
Science, ser. Lecture Notes in Computer Science, L. Coyle
and J. Freyne, Eds. Springer Berlin Heidelberg, 2010, vol.
6206, pp. 188–197.

[12] B. Schölkopf and A. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond.
Cambridge, MA, USA: MIT Press, 2001.

[13] D. Tax and R. Duin, “Support Vector Data Description,”
Machine Learning, vol. 54, no. 1, pp. 45–66, 2004.

[14] B. Zhu, A. Joseph, and S. Sastry, “A Taxonomy of Cy-
ber Attacks on SCADA Systems,” in Proceedings of the
2011 International Conference on Internet of Things and
4th International Conference on Cyber, Physical and Social
Computing, ser. ITHINGSCPSCOM ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 380–388.

[15] V. Igure, S. Laughter, and R. Williams, “Security Issues in
SCADA Networks,” Computers & Security, vol. 25, no. 7,
pp. 498 – 506, 2006.

[16] L. Jing, Y. Xiao, S. Li, W. Liang, and C. Chen, “Cyber
Security and Privacy Issues in Smart Grids,” Communications
Surveys Tutorials, IEEE, vol. 14, no. 4, pp. 981–997, Fourth
2012.

[17] A. Goodney, S. Kumar, A. Ravi, and Y. Cho, “Efficient
PMU Networking with Software Defined Networks,” in Smart
Grid Communications (SmartGridComm), 2013 IEEE Inter-
national Conference on, Oct 2013, pp. 378–383.

[18] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detec-
tion: A survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–
15:58, Jul. 2009.

[19] P. Nader, P. Honeine, and P. Beauseroy, “Intrusion Detection
in SCADA Systems using One-Class Classification,” in Signal
Processing Conference (EUSIPCO), 2013 Proceedings of the
21st European, Sept 2013, pp. 1–5.

[20] M. Hadley and K. Huston, “Secure SCADA Communication
Protocol Performance Test Results,” Pacific Northwest Na-
tional Laboratory (August 2007), 2007.

[21] C. Cortes and V. Vapnik, “Support-Vector Networks,” Ma-
chine learning, vol. 20, no. 3, pp. 273–297, 1995.

[22] R. Caruana and A. Niculescu-Mizil, “An Empirical Compar-
ison of Supervised Learning Algorithms,” in Proceedings of
the 23rd International Conference on Machine Learning, ser.
ICML ’06. New York, NY, USA: ACM, 2006, pp. 161–168.

[23] D. Tax and R. Duin, “Support Vector Domain Description,”
Pattern Recognition Letters, vol. 20, no. 1113, pp. 1191 –
1199, 1999.

[24] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner,
and A. Valdes, “Using Model-Based Intrusion Detection for
SCADA Networks,” in Proceedings of the SCADA Security
Scientific Symposium, vol. 46, 2007, pp. 1–12.

[25] A. Almalawi, X. Yu, Z. Tari, A. Fahad, and I. Khalil, “An Un-
supervised Anomaly-Based Detection Approach for Integrity
Attacks on SCADA Systems,” Computers & Security, vol. 46,
no. 0, pp. 94 – 110, 2014.

[26] A. Silva, C. Machado, R. Bisol, L. Granville, and
A. Schaeffer-Filho, “Identification and Selection of Flow
Features for Accurate Traffic Classification in SDN,” in
Network Computing and Applications (NCA), 2015 IEEE 14th
International Symposium on, Sept 2015, pp. 134–141.

[27] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, Jan. 2008.

[28] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack
Taxonomies for the Modbus Protocols,” International Journal
of Critical Infrastructure Protection, vol. 1, pp. 37 – 44, 2008.

[29] A. Wermann, M. Bortolozzo, E. Silva, A. Schaeffer-Filho,
L. Gaspary, and A. Barcellos, “ASTORIA: A framework
for attack simulation and evaluation in smart grids.” in
Network Operations and Management Symposium (NOMS),
2016 IFIP/IEEE, April 2016, to appear.

[30] D. Incorporated, “Dell Security Annual Threat
Report,” Dell Incorporated, Tech. Rep., 2015. [Online].
Available: https://software.dell.com/whitepaper/dell-network-
security-threat-report-2014874708

[31] D. M. Powers, “Evaluation: From precision, recall and f-
measure to roc, informedness, markedness and correlation,”
2011.

[32] Y. Kim, K. He, M. Thottan, and J. Deshpande, “Virtualized
and Self-Configurable Utility Communications Enabled by
Software-Defined Networks,” in Smart Grid Communications
(SmartGridComm), 2014 IEEE International Conference on,
Nov 2014, pp. 416–421.

[33] N. Dorsch, F. Kurtz, H. Georg, C. Hagerling, and C. Wietfeld,
“Software-Defined Networking for Smart Grid Communi-
cations: Applications, challenges and advantages,” in Smart
Grid Communications (SmartGridComm), 2014 IEEE Inter-
national Conference on, Nov 2014, pp. 422–427.

[34] D. Gyllstrom, N. Braga, and J. Kurose, “Recovery from
Link Failures in a Smart Grid Communication Network
using OpenFlow,” in Smart Grid Communications (Smart-
GridComm), 2014 IEEE International Conference on, Nov
2014, pp. 254–259.

[35] H. Hoffmann, “Kernel PCA for Novelty Detection,” Pattern
Recognition, vol. 40, no. 3, pp. 863 – 874, 2007.

[36] C. Désir, S. Bernard, C. Petitjean, and L. Heutte, “One Class
Random Forests,” Pattern Recognition, vol. 46, no. 12, pp.
3490 – 3506, 2013.

312

100

	Acknowledgments
	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem and Motivation
	1.2 Aims and Main Contributions
	1.3 Document Outline

	2 Background
	2.1 Supervisory Control and Data Acquisition (SCADA)
	2.1.1 Main Components
	2.1.2 SCADA Topologies
	2.1.3 Types of SCADA
	2.1.4 Communication Protocols

	2.2 Software-Defined Networking (SDN)
	2.2.1 The SDN Paradigm
	2.2.2 SDN-based SCADA Systems

	2.3 Traffic Classification
	2.3.1 Traffic Classification and Machine Learning
	2.3.2 One-Class Classification (OCC)

	3 Related Work
	3.1 SDN in Smart Grids
	3.2 SCADA IDSes
	3.3 Related Work Discussion

	4 One-Class NIDS for SDN-Based SCADA Systems
	4.1 NIDS Requirements
	4.2 OCC Algorithms
	4.2.1 One-Class Support Vector Machine (OCSVM)
	4.2.2 Support Vector Data Description (SVDD)

	4.3 Architecture Overview
	4.3.1 SDN Controller
	4.3.2 Historian Server
	4.3.3 Feature Selector
	4.3.4 One-Class Classifier
	4.3.5 NIDS Management Interface

	5 Prototype and Experimental Evaluation
	5.1 Prototype
	5.1.1 Evaluation Scenario

	5.2 Experimental Evaluation
	5.2.1 Case Study 1 - DoS Attack
	5.2.2 Case Study 2 - Misconfiguration of Slave Devices

	6 Concluding Remarks
	6.1 Summary of Contributions
	6.2 Discussion and Lessons Learned
	6.3 Final Remarks and Future Work

	References
	AppendixA Published Paper – IM 2015
	AppendixB Published Paper – COMPSAC 2016

