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The distinction between the plasma dynamics dominated by collisional transport versus collective

processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al.,
Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which

collective processes and collisional dynamics are systematically incorporated from first principles.

One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for

Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach.

However, the results are given only in formal mathematical expressions. The present brief commu-

nication numerically evaluates the rigorous collisional damping rates by considering the case of

plasma particles with Maxwellian velocity distribution function so as to assess the consequence of

the rigorous formalism in a quantitative manner. Comparison with the heuristic (“Spitzer”) formula

shows that the accurate damping rates are much lower in magnitude than the conventional expres-

sion, which implies that the traditional approach over-estimates the importance of attenuation of

plasma waves by collisional relaxation process. Such a finding may have a wide applicability rang-

ing from laboratory to space and astrophysical plasmas. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4953802]

In a recently published paper,1 the formalism of plasma

kinetic theory was revisited, and a set of coupled equations

were derived, which describe the dynamical evolution of the

velocity distribution functions of plasma particles and the

spectral wave energy densities associated with electrostatic

waves. Reference 1 follows the standard weak turbulence

perturbative ordering, except that unlike the textbook

approaches, which take into account only the collective

eigenmodes in the linear and nonlinear wave-particle inter-

actions, the new formalism includes the effects of non-

collective fluctuations emitted by thermal particles. It is

shown that the non-collective fluctuations, which had been

largely ignored in the literature hitherto, are responsible for

collisional effects in both the particle and wave equations.

Specifically, Ref. 1 demonstrates that the inclusion of non-

collective part of thermal fluctuations leads to the collision

integral, while the collective eigenmodes are responsible for

the usual quasi-linear diffusion (plus the velocity friction)

term(s) in the particle kinetic equation. As for the collec-

tively excited waves, which satisfy the dispersion relations,

and are thus eigenmodes, the influence of non-collective

thermal fluctuations rigorously lead to the collisional wave

damping of the collective waves, as well as the emission of

these waves by particle collisions (i.e., bremsstrahlung

emission of electrostatic eigenmodes). Such a derivation,

without any ad hoc additions, was done for the first time.

If one is interested only in the collisional relaxation for

collision-dominated plasmas, then transport processes can be

legitimately discussed solely on the basis of well-known col-

lisional kinetic equation.2,3 Collisional transport is important

for high density plasmas such as in the solar interior. In the

opposite limit, if one’s concern is only on relaxation proc-

esses that involve collective oscillations and waves, then

various nonlinear theories of plasma turbulence may be

employed.4–7 Collective processes dominate rarefied plas-

mas, which characterize most of the heliosphere, interstellar,

and intergalactic environments.

It is the dichotomy that separates the purely collisional

versus purely collective descriptions that had not been rigor-

ously bridged until the recent work.1 There are intermediate

situations where both collisional and collective processes

must be treated together, such as the solar x ray bremsstrah-

lung radiation sources,8–10 or in the Earth’s ionospheric

plasma where collisional conductivity becomes important.11

(Note that for the Earth’s ionosphere, the dominant colli-

sional process is the charged particle collisions with the neu-

trals, however.) For such situations, there was a general lack

of satisfactory theories, which one may bring to bear in order

to address the necessary physics, until recently. Instead, it

had been a common practice to introduce collisional damp-

ing in the wave evolution as an indirect effect of assuming

a collisional operator in the particle equation, and define

an effective collision frequency.8–10,12–16 However, such a

procedure is tantamount to inserting the collisional dissipa-

tion by hand, as it were, to the governing microscopic equa-

tion which describes fundamentally collision-free situation.
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Consequently, strictly speaking, the method is at best, heuris-

tic. Nevertheless, such an ad hoc prescription is widely prac-

ticed in the plasma physics literature.

Thus, in the literature, often a governing equation is

adopted

@

@t
þ v � r þ ea Eþ v

c
� B

� �
� @
@p

� �
fa ¼ Ca fað Þ; (1)

where CaðfaÞ represents the collision integral and a denotes

particle species (a¼ e for electrons, a¼ i for ions). If fa, E

and B in the above represent the averaged one-particle distri-

bution function and average fields, then Eq. (1) represents

the correct collisional kinetic equation.2,3 However, if these

represent the total (average plus fluctuation), then they

become microscopic one-particle distribution function and

microscopic fields. For such a case, the right-hand side of

Eq. (1) should be zero, since microscopic equations are re-

versible. As shown in Ref. 1, the irreversibility (signified by

collision operator on the right-hand side) enters the problem

only as a result of statistical averages and the loss of infor-

mation. Nonetheless, the standard procedure in the literature

is to interpret fa and field vectors as microscopic quantities,

and employ expansion for small-amplitude perturbations.

Upon replacing the collision operator by an effective colli-

sion frequency, CaðfaÞ � ��collfa, the effective particle colli-

sion frequency is absorbed into the wave-particle resonance

condition, and ends up as part of the imaginary part of the

wave frequency, corresponding to a damping effect on the

waves. As a consequence of the above-described recipe,

known as the “Spitzer approximation” in the literature, one

may obtain the collisional damping rate for Langmuir waves,

given by

ccoll ¼ �
pnee4 ln K

m2
ev

3
Te

; (2)

where vTe ¼ ð2Te=meÞ1=2
is the electron thermal speed and

K ¼ kDeTe=e2 ¼ 4pnek
3
De is a constant. Note that K repre-

sents the total number of electrons in a sphere whose radius is

equal to the Debye length, kDe ¼ ½Te=ð4pnee2Þ�1=2
. Here, me,

Te, and ne stand for electron mass, electron temperature (in the

unit of energy), and electron density, respectively. Note that

Eq. (2) implies that the collisional damping rate is constant

and does not depend on wave vector (or wave frequency).

Reference 1, in contrast, shows that the accurate colli-

sional damping rates for plasma waves, that is, Langmuir (L)

and ion-acoustic (S) waves, are much more complicated that

is indicated by the approximate formula (2) in that the cor-

rect formulae exhibit dependence on wave number (and thus,

frequency). However, the final results were given only in

terms of formal expressions so that it is difficult to assess the

consequence of the new formulation. The purpose of the

present brief communication is to carry out numerical analy-

sis so that one may understand the significance, or lack

thereof, of the new findings in a quantitative way.

We start with the formal and rigorous expression for the

collisional damping rates for L and S waves, as given by Eq.

(4.44) in Ref. 1

cL collð Þ
k ¼ xL

k

4nee4x2
pe

T2
e

ð
dk0

k � k0ð Þ2k4
De

k2k04j� k0;xL
k

� �
j2

� 1þ Te

Ti
þ k� k0ð Þ2k2

De

� ��2

�
ð

dv k0 � @Fe vð Þ
@v

d xL
k � k0 � v

� �
; (3)

cS collð Þ
k ¼ lkx

L
k

nee4x2
pe

T2
e

ð
dk0

1

k2k04j� k0;xS
k

� �
j2

� 1þ Te

Ti
þ k� k0ð Þ2k2

De

� ��2

� 1þ 2Te

Ti

k � k0
k2

� �ð
dv d xS

k � k0 � v
� �

� k0 � @
@v

Fe vð Þ þ me

mi
Fi vð Þ

� �
: (4)

In the above equations, xL
k ¼ xpe 1þ 3

2
k2k2

De

� 	
and xS

k

¼ xpekkDe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me

mi

1þ3Ti=Te

1þk2k2
De

q
designate Langmuir and ion-sound

mode dispersion relations, respectively, mi and Ti being

the ion (proton) mass and temperature, respectively, and

xpe ¼ ð4pnee2=meÞ1=2
is the plasma frequency. The

ensemble-averaged one-particle distribution function FaðvÞ
is normalized to unity,

Ð
dvFaðvÞ ¼ 1. The quantity lk is

defined by lk ¼ k3k3
De

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me

mi
1þ 3Ti

Te

� 	r
, and �ðk;xL

kÞ and

�ðk;xS
kÞ are the dielectric constants

� k;xð Þ ¼ 1þ
X

a

x2
pa

k2

ð
dv

k � @Fa=@v

x� k � vþ i0
:

Evidently, Eqs. (3) and (4) are far more sophisticated than

the simple expression (2). The question is what is the

actual implication of these results? Specifically, to what

extent does the approximation (2) conform with the rigor-

ous results (3) and (4), and if not, what is the extent of the

discrepancy?

In order to quantitatively analyze Eqs. (3) and (4), it is

advantageous to introduce suitable dimensionless quantities

u ¼ v

vTe
; z ¼ x

xpe
; q ¼ kvTe

xpe
¼ k

ffiffiffi
2
p

kDe (5)

and rewrite the collisional damping rates (3) and (4) in nor-

malized form

cL collð Þ
q � cL collð Þ

k

xpe
¼

2gzL
q

q2

ð
dq0

q � q0ð Þ2

q04j� q0; zL
q

� �
j2

� 1þ Te

Ti
þ q� q0ð Þ2

2

 !�2

�
ð

du q0 � @Ue uð Þ
@u

d zL
q � q0 � u

� 	
; (6)
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cS collð Þ
q �

cS collð Þ
q

xpe
¼

2gzL
q

q2

ð
dq0

q04j� q0; zS
q

� �
j2

� 1þ Te

Ti
þ q� q0ð Þ2

2

 !�2

� 1þ 2Te

Ti

q � q0
q2

� �ð
du d zS

q � q0 � u
� 	

� q0 � @
@u

Ue uð Þ þ me

mi
Ui uð Þ

� �
; (7)

where in dimensionless form, the dispersion relations are

given by zL
q ¼ 1þ 3q2

4
and zS

q ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me

mi

1þ3Ti=Te

2þq2

q
. In Eqs. (6) and

(7), the quantity g is defined by

g ¼ 1

23=2 4pð Þ2nek
3
De

¼ 1

23=2 4pKð Þ ; (8)

which is related to the parameter K discussed earlier. The

quantity g is an effective “plasma parameter” in that it is

related to the inverse of the number of particles in a “Debye

sphere.”

Let us assume that ions and electrons have isotropic

Maxwellian velocity distributions

Ua uð Þ ¼ v3
eFa vð Þ ¼ 1

p3=2

ma

me

Te

Ta

� �3=2

exp �ma

me

Te

Ta
u2

� �
:

(9)

Then the dielectric constants appearing in the denominators

of Eqs. (3) and (4) are given by the following:

� q0; zL
q

� 	
¼ 1þ 2

q02
1þ

zL
q

q0
Z

zL
q

q0

 !" #
; (10)

� q0; zS
q

� 	
¼ 1þ 2

q02
1þ

zS
q

q0
Z

zS
q

q0

 !" #

þTe

Ti

2

q02
1þ mi

me

Te

Ti

� �1=2 zS
q

q0
Z

mi

me

Te

Ti

� �1=2 zS
q

q0

" #( )
:

(11)

For Maxwellian velocity distribution (9), the velocity in-

tegral
Ð

du in Eqs. (6) and (7) can be carried out analytically

upon making use of the resonance delta function conditions.

One may also perform the angular integration associated

with the q0 vector integral, which reduces Eqs. (6) and (7) in

the form that involves a single q0 integration

cL collð Þ
q ¼ � 16p1=2g

� � zL
q

� 	2

q2

ð1
0

dq0

j� q0; zL
q

� �
j2

� 2B2 � A2

B2 � A2
� B

A
ln

Bþ A

B� A

� �
1

q03
exp �

zL
q

� 	2

q02

0
@

1
A
;

(12)

cS collð Þ
q ¼ � 16p1=2g

� �lqzL
qzS

q

q2

ð1
0

dq0

j� q0; zS
q

� �
j2

� 4

B2 � A2
� Te

Ti

q0

q

1

q2q02
2AB

B2 � A2
� ln

Bþ A

B� A

� �" #

�
X
a¼e;i

Te

Ta

ma

me

Te

Ta

� �1=2
1

q03
exp �ma

me

Te

Ta

zS
q

� 	2

q02

0
@

1
A
;

(13)

where we have defined

A ¼ �2qq0;

B ¼ 2 1þ Te

Ti

� �
þ q2 þ q02:

(14)

For reference, the customary heuristic collisional damping

rate (2), derived under the “Spitzer approximation,” which

is applicable for Langmuir wave, is given in normalized

form by

�ccoll �
ccoll

xpe
¼ �pnee4 ln K

m2
ev

3
Texpe

¼ �pgln
1

23=2 4pgð Þ

 !
: (15)

For comparison, we also discuss the collisionless damp-

ing, also known as Landau damping, which is well-known.

From Eq. (3.24) of Ref. 1, we have the Landau damping rates

for L and S waves

cL
k ¼

pxL
kx

2
pe

2k2

ð
dv k � @Fe vð Þ

@v
d xL

k � k � v
� �

;

cS
k ¼

plkx
L
kx

2
pe

2k2

ð
dv k � @

@v
Fe vð Þ þme

mi
Fi vð Þ

� �
d xS

k � k � v
� �

;

(16)

which are textbook results. Making use of dimensionless var-

iables, the above expressions are rewritten as

cL
q ¼ �

p1=2 zL
q

� 	2

q3
exp �

zL
q

� 	2

q2

0
@

1
A
;

cS
q ¼ �

p1=2lqzL
qzS

q

q3

X
a¼e;i

Te

Ta

ma

me

Te

Ta

� �1=2

exp �ma

me

Te

Ta

zS
q

� 	2

q2

0
@

1
A
:

(17)

In Fig. 1, we plot the normalized collisional L mode

damping rate divided by g, cLðcollÞ
q =g, as a function of dimen-

sionless wave number q, for three values of the temperature

ratio Te=Ti ¼ 10 (red), 7 (black), and 4 (blue). It is shown

that for the range of temperature ratios considered, the damp-

ing rate is maximum for q between 5 and 9, approximately,

and that the growth rate increases with decreasing tempera-

ture ratio Te=Ti, for the entire range of wavelengths. In con-

trast, the approximate collisional damping rate divided by g,

�ccoll=g ¼ p ln½23=2ð4pgÞ�, is independent of the normalized

wave number q, but the result depends on g. In general, the
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plasma parameter g must be small by definition, so we con-

sider several different choices, g ¼ 10�10; 10�8; 10�6, and

10�4. For these choices, we find that �ccoll=g � �61:12,

�46.6524, �32.1849, and �17.7173, which are all far higher

in absolute value than those depicted in Fig. 1. This shows

that the use of incorrect collisional damping rate may greatly

over-estimate the actual damping rate.

We also superpose in Fig. 1, the collisionless (Landau)

damping rate for Langmuir wave [i.e., the first equation in

(17)] vs q (green). We multiplied the damping rate by factor

2 for visual reason. Note that the Landau damping rate is not
divided by the plasma parameter g, so that the actual magni-

tude of the “collisionless” damping rate will greatly exceed

that of the “collisional” damping rate by factor 1=g	 1.

This shows that over the range of wave numbers over which

the most important linear and nonlinear wave-particle inter-

actions are expected to take place, the collisional damping of

the Langmuir wave will be practically ignorable. However,

it is interesting to note that for small wave number domain

(q
 1) for which the Landau damping rate becomes negli-

gible, the collisional damping rate remains finite. In the colli-

sionless plasmas, the undamped Langmuir waves in the long

wavelength regime are supposed to lead to the so-called con-

densation phenomenon, where the wave energy accumulates

without undergoing Landau damping. Over a long time pe-

riod, the Zakharov strong turbulence effect is supposed to

come into play in order to dissipate the accumulated wave

energy.17 However, the present finding suggests that the col-

lisional damping may contribute to the dissipation of the

Langmuir wave energy in such a wavelength regime. We

also note that for large q, the collisionless (Landau) damping

rate eventually becomes exponentially weak. In contrast, the

collisional damping rate may overcome the Landau damping

rate, which makes sense, since for extremely short wave-

length the binary collisions may lead to the damping of

plasma waves.

Before we close and for the sake of completeness, we

plot in Fig. 2 the normalized collisional damping for S waves

divided by g, cSðcollÞ
q =g, as a function of wave number q, for

the same three values of the temperature ratio considered in

Fig. 1, that is, Te=Ti ¼ 4, 7, and 10. The same color scheme

is used to indicate the three cases. Unlike the case of L
mode, the collisional damping rate for S mode does not

asymptotically approach a finite value for q! 0. We also

superpose the collisionless (Landau) damping rates for S
waves vs q, but since cS

q depends on Te=Ti, we use the same

color scheme to indicate the three difference choices of

Te=Ti, except that we plot the collisionless damping rate with

dashes. Again, we note that cS
q is not divided by g, so that the

actual damping rate is much higher in magnitude than the

collisional damping rate cSðcollÞ
q . In the case of S mode, it

becomes evident that the collisional damping plays no signif-

icant role whatsoever when compared against the collision-

less damping, and thus the dynamical role of collisions on

the dissipation of ion-sound mode damping becomes totally

negligible.

In the present brief communication, we have investi-

gated the formal collisional damping rates derived in Ref. 1,

by numerical means. It is found that the collisional damping

rates for Langmuir and ion-acoustic waves are much smaller

than the conventional expressions, which means that the col-

lisional damping has been over-estimated in the literature.

While the collisional damping for ion-sound wave is totally

negligible, the same for Langmuir wave becomes finite,

albeit small, in the region of infinite wave length regime

where collisionless Landau damping rate vanishes. Such a

property may potentially provide the necessary dissipation

mechanism in order to prevent the unchecked accumulation

of wave energy for the long wavelength regime, known as

the Langmuir condensation problem.

The importance of the present work is quite obvious.

There are many physical situations where collisional and col-

lective effects are both important, both in laboratory and space

applications. The present analysis is based upon the recent

work,1 which makes a simplifying assumption of electrostatic

interaction in field-free plasmas. For more realistic applica-

tions, electromagnetic interaction in magnetized plasmas must

be considered within the framework of the collisional weak

turbulence theory. Reference 1 and the present work may rep-

resent the beginning of a new research paradigm.

FIG. 2. Normalized collisional damping for S waves, cSðcollÞ
q =g, vs normal-

ized wavenumber q, for three values of the ratio Te=Ti.

FIG. 1. Normalized collisional damping for L waves, cLðcollÞ
q =g, vs normal-

ized wavenumber q, for three values of the ratio Te=Ti. The dimensionless

Landau damping rate cL
q is also plotted in green. Note that the Landau damp-

ing rate is not divided by the factor g. The factor 2, which multiplies cL
q is

for the sake of visual presentation.
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