
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

ISRAEL DA COSTA LOPES

Convolutional Neural Network Reliability
on an APSoC platform - a traffic-sign

recognition case study

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Microeletronics

Advisor: Prof. Dr. Altamiro Amadeu Susin

Porto Alegre
November 2017

CIP — CATALOGING-IN-PUBLICATION

Lopes, Israel da Costa

Convolutional Neural Network Reliability on an APSoC plat-
form - a traffic-sign recognition case study / Israel da Costa Lopes.
– Porto Alegre: PGMICRO da UFRGS, 2017.

94 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2017. Advisor: Altamiro Amadeu Susin.

1. Deep learning. 2. Traffic-sign recognition. 3. Soft errors.
4. System-on-Chip. I. Susin, Altamiro Amadeu. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PGMICRO: Prof. Fernanda Gusmão de Lima Kastensmidt
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If I have seen farther than others,

it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON

ACKNOWLEDGEMENTS

Agradeço a Deus e minha família que me deram todo o suporte emocional, fi-

nanceiro e proteção. Ao meu orientador Altamiro Susin que me incentivou e me deu

as diretrizes necessárias para a conclusão do meu mestrado. A Professora Fernanda que

me introduziu aos conceitos de tolerância a radiação, análise de confiabiliadade e que

me apoiou em trabalhos de campo para experimentos de radiação. Aos meus colegas

aos quais colaboraram muito para meu crescimento acadêmico e profissional. A CAPES

por prover a bolsa de mestrado permitindo que eu pudesse me dedicar exclusivamente

ao mestrado. E a todos os técnicos e funcionários da UFRGS que tornaram tudo isso

possível.

ABSTRACT

Deep learning has a plethora of applications in computer vision, speech recognition, nat-

ural language processing and other applications of commercial interest. Computer vision,

in turn, has many applications in distinct areas, ranging from entertainment applications to

relevant and critical applications. Face recognition and manipulation (Snapchat), and ob-

ject description in pictures (OneDrive) are examples of entertainment applications. Indus-

trial inspection, medical diagnostics, object recognition in images captured by satellites

(used in rescue and defense missions), autonomous cars and Advanced Driver-Assistance

System (ADAS) are examples of relevant and critical applications. Some of the most im-

portant integrated circuit companies around the world, such as Xilinx, Intel and Nvidia

are waging in dedicated platforms for accelerating the training and deployment of deep

learning and other computer vision algorithms for autonomous cars and ADAS due to

their high computational requirement. Thus, implementing a deep learning system that

achieves high performance with low area utilization and power consumption costs is a big

challenge. Besides, electronic equipment for automotive industry must be reliable even

under radiation effects, manufacturing defects and aging effects, inasmuch as if a system

failure occurs, a car accident can happen. Thus, a Convolutional Neural Network (CNN)

VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL)

automatic generator was developed to reduce the design time associated to the implemen-

tation of deep learning algorithms in hardware. As a case study, a CNN was trained by

the Convolutional Architecture for Fast Feature Embedding (Caffe) framework, in order

to classify 6 traffic-sign classes, achieving an average accuracy of about 89.8% on the

German Traffic-Sign Recognition Benchmark (GTSRB) dataset, which contains traffic-

signs images in complex scenarios. This CNN was implemented on a Zynq-7000 All-

Programmable System-on-Chip (APSoC), achieving about 313 Frames Per Second (FPS)

on 32x32-normalized images, with the APSoC consuming only 2.057 W, while an embed-

ded Graphics Processing Unit (GPU), in its minimum operation mode, consumes 10W.

The proposed CNN reliability was investigated by random piled-up fault injection by em-

ulation in the Programming Logic (PL) configuration bits of the APSoC, achieving 80.5%

of reliability under Single-Bit-Upset (SBU) where both critical Silent Data Corruptions

(SDCs) and time-outs were considered. Regarding the multiple faults, the proposed CNN

reliability exponentially decreases with the number of piled-up faults. Hence, the pro-

posed CNN reliability must be increased by using hardening techniques during the design

flow.

Keywords: Deep learning. Traffic-sign recognition. Soft errors. System-on-Chip.

Confiabilidade de uma Rede Neural Convolucional em uma plataforma APSoC -

um caso de estudo para reconhecimento de placas de trânsito

RESUMO

O aprendizado profundo tem inúmeras aplicações na visão computacional, reconheci-

mento de fala, processamento de linguagem natural e outras aplicações de interesse co-

mercial. A visão computacional, por sua vez, possui muitas aplicações em áreas distintas,

indo desde o entretenimento à aplicações relevantes e críticas. O reconhecimento e ma-

nipulação de faces (Snapchat), e a descrição de objetos em fotos (OneDrive) são exem-

plos de aplicações no entretenimento. Ao passo que, a inspeção industrial, o diagnóstico

médico, o reconhecimento de objetos em imagens capturadas por satélites (usadas em

missões de resgate e defesa), os carros autônomos e o Sistema Avançado de Auxílio ao

Motorista (SAAM) são exemplos de aplicações relevantes e críticas. Algumas das em-

presas de circuitos integrados mais importantes do mundo, como Xilinx, Intel e Nvidia

estão apostando em plataformas dedicadas para acelerar o treinamento e a implementa-

ção de algoritmos de aprendizado profundo e outras alternativas de visão computacional

para carros autônomos e SAAM devido às suas altas necessidades computacionais. As-

sim, implementar sistemas de aprendizado profundo que alcançam alto desempenho com

o custo de baixa utilização de área e dissipação de potência é um grande desafio. Além

do mais, os circuitos eletrônicos para a indústria automotiva devem ser confiáveis mesmo

sob efeitos da radiação, defeitos de fabricação e efeitos do envelhecimento. Assim, um

gerador automático de VHSIC (Very High Speed Integrated Circuit) Hardware Descrip-

tion Language (VHDL) para Redes Neurais Convolucionais (RNC) foi desenvolvido para

reduzir o tempo associado a implementação de algoritmos de aprendizado profundo em

hardware. Como estudo de caso, uma RNC foi treinada pela ferramenta Convolutional

Architecture for Fast Feature Embedding (Caffe), de modo a classificar 6 classes de placas

de trânsito, alcançando uma precisão de cerca de 89,8% no conjunto de dados German

Traffic-Sign Recognition Benchmark (GTSRB), que contém imagens de placas de trânsito

em cenários complexos. Essa RNC foi implementada num All-Programmable System-on-

Chip (APSoC) Zynq-7000, resultando em 313 Frames Por Segundo (FPS) em imagens

normalizadas para 32x32, com o APSoC dissipando uma potência de somente 2.057 W,

enquanto uma Graphics Processing Unit (GPU) embarcada, em seu modo de operação

mínimo, dissipa 10 W. A confiabilidade da RNC proposta foi investigada por injeções

de falhas acumuladas e aleatórias por emulação nos bits de configuração da Lógica Pro-

gramável (LP) do APSoC, alcançando uma confiabilidade de 80,5% sob Single-Bit-Upset

(SBU) onde foram considerados ambos os Dados Corrompidos Silenciosos (DCSs) crí-

ticos e os casos em que o sistema não respondeu no tempo esperado (time-outs). Em

relação às falhas múltiplas, a confiabilidade da RNC decresce exponencialmente com o

número de falhas acumuladas. Em vista disso, a confiabilidade da RNC proposta deve ser

aumentada através do uso de técnicas de proteção durante o fluxo de projeto.

Palavras-chave: Aprendizado profundo. Reconhecimento de placas de trânsito. Erros

Soft, Sistema-em-Chip..

LIST OF ABBREVIATIONS AND ACRONYMS

ADAS Advanced Driver-Assistance System

AI Artificial intelligence

AVF Architectural Vulnerability Factor

SDC Silent Data Corruption

ACE Architecturally Correct Execution

CNN Convolutional Neural Network

APSoC All-Programmable System-on-Chip

MPSoC Multiprocessor System-on-Chip

FinFET Fin-Field Effect Transistor

SoC System-on-Chip

PS Processing System

PL Programming Logic

DUT Design Under Test

AXI Advanced eXtensible Interface

ICAP Internal Configuration Access Port

GPIO General Purpose Input/Output

BRAM Block Random Access Memory

SRAM Static Random Access Memory

ROM Read Only Memory

DDR Double Data Rate

LUT Look Up Table

FF Flip-Flop

DSP Digital Signal Processing

MACC Multiply and Accumulate

GTSRB German Traffic-Sign Recognition Benchmark

SVM Support Vector Machine

HOG Histogram of Oriented Gradients

ReLU Rectified Linear Unit

FSM Finite State Machine

CLAHE Contrast Limited Adaptive Histogram Enhancement

FI Fault Injection

SEU Single-Event-Upset

SBU Single-Bit-Upset

MBU Multibit-Upset

FPGA Field Programmable Gate Array

RISC Reduced Instruction Set Computer

CLB Configurable Logic Block

CPU Central Processing Unit

GPU Graphics Processing Unit

TCAD Technology Computer Aided Design

I2C Inter-Integrated Circuit

CAN Controller Area Network

AMBA Advanced Microcontroller Bus Architecture

SMC Static Memory Controller

ASIC Application Specific Integrated Circuit

Caffe Convolutional Architecture for Fast Feature Embedding

VLSI Very-Large-Scale Integration

VHSIC Very High Speed Integrated Circuits

VHDL VHSIC Hardware Description Language

LMDB Lightning Memory-Mapped Database

BSD Berkeley Software Distribution

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

SPI Serial Peripheral Interface

LIST OF FIGURES

Figure 2.1 Faster R-CNN Region Proposal Network (RPN) ..21
Figure 2.2 YOLO Detection System...22
Figure 2.3 Block diagram of the SVM method...22
Figure 2.4 a) DNN architecture b) DNN trainig c) Multi-column deep DNN................23
Figure 2.5 a) Multi-block Normalization Local Binary Pattern (MN-LBP) features

with threshold b) Split-Flow Cascade structure..24
Figure 2.6 a) Classical Sparse Representation Classification (SRC) method b) Pro-

posed Extended Sparse Representation Classification method (ESRC) method24
Figure 2.7 Block diagram of the SHOG + SBRP/SBMP classification process.............25
Figure 2.8 The pipeline of the traffic-sign recognition system25
Figure 2.9 Lenet-based Convolutional Neural Network ...26
Figure 2.10 2-D image Convolutional...28
Figure 2.11 Max pooling illustration ..29
Figure 2.12 A sketch of a biological neuron ...30
Figure 2.13 Full-connected neuron ...30
Figure 2.14 ReLU activation function...31
Figure 2.15 Nvidia DRIVE PX 2 technical characteristics...32
Figure 2.16 ADAS SoC micrograph ...34
Figure 2.17 INT8 Deep Learning Power Efficiency Comparison: Xilinx vs. Intel35

Figure 3.1 The comparison of the effects of a SEU in ASIC and FPGA architecture....38
Figure 3.2 Upset in the LUT (logic change) ...39
Figure 3.3 Upset in the routing (undesirable connection)...40
Figure 3.4 Static cross-section for the configuration of the largest device of each

family ..40

Figure 4.1 One sample of each GTSRB class ...41
Figure 4.2 Variations of one class ...42
Figure 4.3 Sub-classes of each super class ...42
Figure 4.4 One sample of each sub-class of the super class "Others"43
Figure 4.5 6 classes of the Prohibitory subclass ...43
Figure 4.6 Pre-processing steps ..44
Figure 4.7 Steps for training a model with Caffe..46
Figure 4.8 Reduced LeNet-based CNN model ...47
Figure 4.9 Training accuracy and loss ..50
Figure 4.10 Convolution filters ...51
Figure 4.11 Feature images ...52

Figure 5.1 CNN automatic generation steps ...53
Figure 5.2 CNN VHDL code generation steps ...55
Figure 5.3 CNN implementation in the APSoC platform...56
Figure 5.4 Xilinx 7 Series DSP48E1 Slice ...57
Figure 5.5 CNN implementation top module..58
Figure 5.6 Convolution-1 control component state machine ..59
Figure 5.7 Convolution 1 sweeping process ...59
Figure 5.8 CNN sweeping process..60
Figure 5.9 Convolution 1 - Control and datapah...61
Figure 5.10 ZedBoard ...63

Figure 5.11 Total SoC Power consumption ..67
Figure 5.12 Zynq-7000 block diagram ...68

Figure 6.1 Piled-up fault injection flowchart ..70
Figure 6.2 Faulty hierarchy ...71
Figure 6.3 Failure model APSoC CNN...72
Figure 6.4 Fault injection setup...73
Figure 6.5 DUT interface component expansion ..74
Figure 6.6 ARM application algorithm...75
Figure 6.7 Implemented design floorplanning ..76

Figure 7.1 Relationship of Device Configuration Bits, Essential Bits, Prioritized
Essential Bits, and Critical Bits ..78

Figure 7.2 Classification of the injected faults in the Convolutional Neural Network ...79
Figure 7.3 Percentage of critical SDCs and time-outs out of Failures............................80
Figure 7.4 Number of critical SDCs and time-outs out of the Failures80
Figure 7.5 Number of wrong classifications ...82
Figure 7.6 Number of wrong classifications ...84
Figure 7.7 Failure reliability ...84

LIST OF TABLES

Table 2.1 CNN Models with Fixed-Point Precision. The numbers in brackets indi-
cate accuracy without fine-tuning ...34

Table 4.1 Parameters used in the model..47
Table 4.2 Parameters used in the solvers...48
Table 4.3 Training accuracy for different solvers..49
Table 4.4 False negatives and False positives ...51

Table 5.1 CNN signal bit widths ...55
Table 5.2 FPGA resource utilization...64
Table 5.3 Performance results ...65
Table 5.4 CNN feature abbreviations ..65

Table 7.1 Number of critical SDCs and time-outs out of the Failures81
Table 7.2 Number of wrong classifications (absolute values)...83

CONTENTS

1 INTRODUCTION...16
1.1 Motivation..18
1.2 Goals and Contribution..18
2 DEEP LEARNING ALGORITHMS FOR TRAFFIC-SIGN RECOGNITION...20
2.1 Convolutional Neural Networks ..26
2.1.1 Convolutional Layer...27
2.1.2 Pooling Layers ...29
2.1.3 Full-connected neurons..29
2.1.4 ReLU Activation function..30
2.1.5 Softmax function..31
2.2 Acceleration platforms for Deep Learning ...32
2.2.1 Embedded GP-GPUs ...32
2.2.2 ASIC SoC and APSoC...33
3 RADIATION EFFECTS IN INTEGRATED CIRCUITS36
3.1 Radiation effects in SRAM-based FPGAs ..38
4 CONVOLUTIONAL NEURAL NETWORK TRAINING.....................................41
4.1 Dataset..41
4.2 Framework for training..44
4.2.1 Training process using Caffe ...45
4.2.2 Training results ..49
5 DEVELOPMENT OF CNN TOPOLOGY...53
5.1 Automatic generator ...53
5.2 Timing Multiplexing Architecture ..55
5.3 APSoC Implementation results ...62
6 FAULT INJECTION BY EMULATION ..69
6.1 Failure Model ..71
6.2 Experimental Setup ..72
7 RELIABILITY RESULTS...77
8 CONCLUSIONS ...87
8.1 Future Work ..88
REFERENCES...89

16

1 INTRODUCTION

Humankind has trusted on technology to get better living standards since the very

early stages of the civilization. The construction of equipment and artifacts is always

limited by the available technology. Starting with a stick as defense accessory and a

lever to multiply its force, humankind learned to transform energy and to build complex

mechanisms during the industrial revolution (DERRY; WILLIAMS, 1960). But it was

the use of electricity as a support for signal processing and communication that enabled

more sophisticated apparatuses for the daily life and process automation. Even though

some digital operations were possible with pneumatic or electromagnetic relay circuits,

it was the advent of digital electronic computer that pushed further the possibility of

information processing and systems programmability (RABAEY; CHANDRAKASAN;

NIKOLIC, 2002). But it is the evolution of the micro and nanoelectronics technology that

is nowadays bringing to reality the dream of the electronic brain of the middle of the 19th

century (HAYKIN; NETWORK, 2004).

Artificial Intelligence (AI) is an object of research in several domains and even

commercial applications are running based on AI. Many tasks that are typically consid-

ered "human tasks" like language translation, face recognition, speech recognition and

natural language processing are being automated. The most common architecture used

in AI is the Neural Network (NN) that was traditionally built with a few levels, typically

three, and is now using more than ten levels and is called "deep learning" or Convolutional

NN (CNN) (GOODFELLOW; BENGIO; COURVILLE, 2016) (HAYKIN; NETWORK,

2004). The possibility of training such systems to control complex activities like to drive

in a city traffic allowed the development of Advanced Driver Assistance System (ADAS)

with the goal of decreasing the number of accidents. Also, this technology spurred the

development of autonomous cars (XILINX-AUTOMOTIVE, 2016)(HUANG, 2016).

In the context of autonomous cars and ADAS, deep learning is used to emulate

the vision of a driver (GOODFELLOW; BENGIO; COURVILLE, 2016). One of the

visual tasks that can be performed by means of deep learning algorithms is traffic-sign

recognition. In the International Joint Conference on Neural Networks (IJCNN) many

machine learning algorithms were evaluated on GTSRB dataset and the Convolutional

Neural Networks achieved excellent results even better than the individual human and

average human performance (STALLKAMP et al., 2011). Therefore, using Convolutional

Neural Networks is an excellent approach to classify traffic-signs.

17

Deep learning vision systems deployed in autonomous cars must have a fast re-

sponse time. In addition, this system cannot consume high power to avoid high thermal

dissipation. Graphics Processing Units (GPUs) achieve excellent performance results

due to their thread-level parallelism but they have high power consumption (HUANG,

2016)(NVIDIA, 2016). Application Specific Integrated Circuits (ASICs) can achieve ex-

cellent performance with low power cost (LEE et al., 2017) but deep learning algorithms

are constantly evolving, thus a platform with more flexibility has to be chosen. All-

Programmable System-on-Chip (APSoC) alternatives are flexible, that is, it is possible

to update the implemented deep learning algorithm. In general, the implementations in

this platform obtain balanced power and performance results (XILINX-AUTOMOTIVE,

2016), for this reason, it is an excellent choice for autonomous cars and ADAS applica-

tions. However, the PL part of the APSoC platform has peculiar radiation effects, there-

fore these effects must be analyzed in order to characterize an implemented design under

soft-errors (KASTENSMIDT; CARRO; REIS, 2006).

CNN training is a very time-consuming task, so the use of a framework is neces-

sary (JIA et al., 2014). Therefore, the Caffe framework was used to train a case study CNN

to classify 12 sub-classes within the super class "Prohibitory" from the GTSRB dataset.

Initially, a CNN model was trained achieving an average accuracy of 90.0%. However,

the implementation of this CNN model on the APSoC platform exceeded the available

resources of the PL part. Then, the CNN model was reduced to one that classifies half

of the prohibitory sub-classes. The CNN was re-trained and the accuracy results were

preserved. A VHDL automatic generator for CNNs was developed in order to reduce the

required design time for implementing CNNs in APSoCs.

The proposed CNN reliability was analyzed by means of fault injection by emu-

lation. Three types of effects were considered in the reliability evaluation, errors, failures

and un-Application Correct Execution (un-ACE). Errors are discrepancies in the CNN

output which do not change the correct traffic-sign classification. Failures can be classi-

fied into critical SDCs and time-outs. Critical SDCs are discrepancies in the CNN output

which change the correct traffic-sign classification, while time-outs mean the CNN does

not send the response in the defined execution time. The un-ACE effect takes place when

none of these effects occur (MUKHERJEE et al., 2003).

18

1.1 Motivation

Statistics show that the majority of accidents is caused by reckless driving (NHTSA,

2013), thus some accidents can be avoided if an autonomous car is available (GERLA et

al., 2014). In addition, ADAS is also useful to reduce the chance of accidents happen-

ing (GERONIMO et al., 2010). Since driving is mainly performed using human visual

senses, computer vision algorithms must be used to emulate human vision. Deep learn-

ing is a branch of AI that has many successful applications in computer vision, speech

recognition, natural language processing and other areas of commercial interest (GOOD-

FELLOW; BENGIO; COURVILLE, 2016).

Autonomous car applications are safety-critical and hard-real-time embedded sys-

tems. So, they must have a deterministic and fast response time in order to avoid accidents

(BERGER, 2002) (LIU; NARAYANAN; BAI, 2000). If a deep learning vision system

is deployed in an autonomous car, it must have a good and predictable execution time.

Power consumption is also a concern in embedded system because it will lead to high

thermal dissipation.

Electronic systems are susceptible to many sources of fault that can compromise

safety of a computer vision application for an autonomous car. Therefore, the faults

that can cause a failure or a time mismatch in the system must be analyzed and mit-

igated. They can be caused by manufacturing defects (stuck-at-0, stuck-at-1 and etc)

(KAJIHARA et al., 1995), aging effects (WANG et al., 2007) or radiation effects (SEU,

SET and so on) (BAUMANN, 2005). The International Organization for Standardization

(ISO) established a standard for the automotive electronic production in 2011, the ISO

26262 (ISO-26262, 2011). This standard requires some fault modes to be analyzed dur-

ing the design flow, these faults include stuck-at-0, stuck-at-1, Single Event Upset (SEU)

and Single Event Transient (SET). On that account, a fault analysis methodology must be

incorporated in the design flow to validate the design in terms of dependability (otherwise

known as reliability) (SINHA, 2011).

1.2 Goals and Contribution

The main contribution of this work is the analysis of reliability in a traffic-sign

recognition CNN operating under soft error and implemented on an APSoC platform.

The related work analyzes the performance and average accuracy of their traffic-sign

19

recognition approaches, but does not analyze their reliability under soft-errors (LEE et

al., 2017)(HAN; ORUKLU, 2014)(CIREŞAN et al., 2012)(WANG et al., 2013)(LIU et

al., 2016)(YANG et al., 2016) (KASSANI; TEOH, 2017). The goals of this work are as

follows:

• To train a deep learning algorithm to recognize traffic-signs in order to obtain good

average accuracy results in a short time.

• To perform a hardware acceleration of the trained deep learning algorithm, mini-

mizing its power, area and design time.

• To analyze the reliability of the proposed deep learning approach under soft-errors

Chapter 2 will show a survey concerning the deep learning state-of-the art algo-

rithms and the characteristics of the embedded platforms to accelerate them, as well as the

Convolutional Neural Networks foundations. In Chapter 3, the terminology of the radia-

tion effects in integrated circuits will be introduced, then the ground-level effects of the

radiation and the specific radiation effects in Field Programmable Gate Arrays (FPGAs)

will be addressed. In Chapter 4, the methodologies and tools used for the Convolutional

Neural Network training as well as the training results will be discussed. Chapter 5 will

explain how the VHDL automatic generator works, then the implementation results will

be discussed. In Chapter 6, the reliability analysis alternatives will be compared, then

the Fault injection setup will be explained. In Chapter 7, the reliability results will be

discussed, as well as their possible causes. Lastly, in Chapter 8, the conclusions will be

given followed by prospective future projects.

20

2 DEEP LEARNING ALGORITHMS FOR TRAFFIC-SIGN RECOGNITION

Autonomous cars are systems whose function is prompt delivery of the passengers

to the destination with maximum safety and comfort and minimum impact on the environ-

ment (GERLA et al., 2014), whereas Advanced Driver Assistance System (ADAS) is an

intelligent on-board system that aims to anticipate accidents in order to avoid them or mit-

igate their severity (GERONIMO et al., 2010). Some examples of autonomous car and

ADAS tasks are lane detection, pedestrian detection, traffic-sign recognition and visual

simultaneous localization and mapping (ALVES, 2017)(SANTOS, 2017)(HOELSCHER,

2017) (FUENTES-P; RUIZ-A; RENDÓN-M, 2015).

As autonomous car and ADAS tasks are emulations of the vision of a driver, they

are implemented by computer vision algorithms. The computer vision algorithms, in

turn, can be developed with computer vision libraries (BRADSKI; KAEHLER, 2008)

or by deep learning frameworks (JIA et al., 2014). The difference between computer

vision algorithms and deep learning algorithms is that in computer vision algorithms the

programmer develops all the steps required for the computer vision solution, whereas

deep learning algorithms use artificial intelligence algorithms to solve computer vision

tasks. Artificial intelligence algorithms need a dataset to train the deep learning algorithm

in order to learn some task (HAYKIN; NETWORK, 2004). For example, if one wants to

recognize traffic-signs in an image, a dataset containing traffic-sign images samples must

be presented to the deep learning algorithm in order to train it to perform a traffic-sign

recognition.

Traffic-sign recognition activity is part of a more generic computer vision task

called object classification. In order to recognize one object in an image, two steps are

required: detection and classification. Detection is the process of scanning an image to

find some objects. While classification is the process of placing these detected objects in

classes (i.g. cars, pedestrians or traffic-signs), and then these objects are classified into

sub-classes within their super classes (i.g different traffic-signs, types of cars) (YANG et

al., 2016).

The state-of-the-art methods either use one machine learning algorithm to detect

and classify objects or use image processing algorithms to detect objects and machine

learning algorithms to classify these objects. The state-of-the-art machine learning algo-

rithms that detect and classify objects are the Faster Region-based Convolutional Neural

Network (Faster R-CNN) (REN et al., 2015) and the You Only Look Only-Once (YOLO)

21

Figure 2.1: Faster R-CNN Region Proposal Network (RPN)

Source: (REN et al., 2015)

(REDMON et al., 2016). The main contributions of the Faster R-CNN are described in

the list bellow and Figure 2.1 shows the Faster R-CNN Region Proposal Network (RPN).

• Higher detection quality than R-CNN and Spatial Pyramid Pooling Network (SPP-

net) (HE et al., 2014)(GIRSHICK et al., 2014)

• Training is single-stage, using a multi-task loss

• Training can update all network layers

• No disk storage is required for feature caching

The YOLO CNN behavior is described in the list below and Figure 2.2 illustrates

the object detection and classification.

• Divides the image into regions

• Predicts bounding boxes and probabilities for each region

• Bounding boxes are weighted by the predicted probabilities

• Threshold the detection by some value to only see high scoring detection

The scope of this chapter is only to evaluate the deep learning algorithms for

traffic-sign classification, and the Faster R-CNN and YOLO are models that classify many

types of classes. Therefore, the focus will be on deep learning algorithms that have distinct

detection and classification blocks. Each block uses its own dataset, i.e. German Traffic-

Sign Detection Benchmark (GTSDB) for detection and German Traffic-Sign Recognition

Benchmark (GTSRB) for classification. The GTSRB dataset has 43 classes and more than

50,000 (39,209 for training and 12,630 for testing) sub-images and the GTSDB has 900

images (600 for training and 300 for evaluation) (STALLKAMP et al., 2011) (HOUBEN

et al., 2013).

Wang (2013), employs a hierarchical methodology to detect and classify the Ger-

man traffic-signs. The block diagram of his proposed method is illustrated in Figure

22

Figure 2.2: YOLO Detection System

Source: (REDMON et al., 2016)

Figure 2.3: Block diagram of the SVM method

Source: (WANG et al., 2013)

2.3. Firstly, in the detection stage, important features from traffic-signs such as colors

and shapes are extracted using medium-level image processing algorithms. Then, these

features are used to classify the proposals into super classes (Prohibitory, Danger, Manda-

tory, Derestriction and Unique) using a Support Vector Machine (SVM). Each super class

has a different perspective adjustment. In the classification stage, the adjusted and de-

tected traffic-signs are classified within super classes using another SVM, explaining the

meaning of "hierarchical methodology". The key concept in (WANG et al., 2013) is the

super-class-oriented adjustment, which improves and simplifies the classification process,

reaching a state-of-the-art average accuracy of 99.52%.

Differently from the former work, the scope of the Multi-column Deep Neural

23

Figure 2.4: a) DNN architecture b) DNN trainig c) Multi-column deep DNN

Source: (CIREŞAN et al., 2012)

Network (MC-DNN) (CIREŞAN et al., 2012) is only to classify the German traffic-signs,

so only the GTSRB dataset is used. When using this approach neither super class nor sub-

class is used, rather all 43 classes are classified by one complex DNN topology. "Multi-

column deep" means there are 7 DNNs in parallel and the final output is the average of all

of the DNN outputs. This methodology permits unseen features by one DNN to be seen

by another one, which results in a high average accuracy of 99.46%. Figure 2.4 shows the

a) Deep Neural Network topology, training process (b) and Multi-column DNN (c).

High Contrast Region Extraction (HCRE) and the Extended Sparse Representa-

tion (ESR) perform both the detection and the classification tasks (LIU et al., 2016). In

the detection phase, the HCRE is performed based on the Viola-Jones-like detector and

the Split Flow Cascade (SFC) Tree. Regarding the classifying phase, the ESR approach

is based on an under-sampled face recognition algorithm which is considered to be an oc-

clusion robust method. To such degree, this work achieves competitive accuracy (98.5%)

and performance results for high resolution images. Figure 2.5 illustrates the detection

process and Figure 2.6 illustrates the classification process.

Soft Histogram Oriented Gradient (SHOG) (KASSANI; TEOH, 2017) is focused

on the classification block. It is a variant of Histogram Oriented Gradient (HOG) ap-

proach because it exploits the symmetry shape of traffic-signs. Through this medium,

SHOG is more discriminative than HOG. After the features are generated using the SHOG

24

Figure 2.5: a) Multi-block Normalization Local Binary Pattern (MN-LBP) features with
threshold b) Split-Flow Cascade structure

Source: (LIU et al., 2016)

Figure 2.6: a) Classical Sparse Representation Classification (SRC) method b) Proposed
Extended Sparse Representation Classification method (ESRC) method

Source: (LIU et al., 2016)

25

Figure 2.7: Block diagram of the SHOG + SBRP/SBMP classification process

Source: (KASSANI; TEOH, 2017)

Figure 2.8: The pipeline of the traffic-sign recognition system

Source: (YANG et al., 2016)

approach, two training methods were introduced, the Sparse Bayesian Multivariate Poly-

nomial (SBMP) and the Sparse Bayesian Reduced Polynomial (SBRP) model. These

training methods enabled implicit feature selection and lead to a competitive average ac-

curacy of 98.17%. Figure 2.7 shows the block diagrams involved in the classification

process.

In the work of (YANG et al., 2016), the German traffic-sign detection is performed

in four stages as seen in figure 2.8. Firstly, the images are processed by a Color Probabil-

ity Model (CPM) that produces the probability of a pixel color belonging to a traffic-sign

color (Figure 2.8 (b)). Then, the proposals are extracted using the Maximally Stable

Extremely Regions (MSER) (Figure 2.8 (c)). After which, the proposal features are ex-

tracted using the HOG, and then are classified into super classes (Prohibitory, Danger

and Mandatory) using a SVM (Figure 2.8 (d)). Thereafter, in the classification stage, one

CNN per super class classifies the detected proposals into sub-classes (Figure 2.8 (e)).

Figure 2.9 illustrates the CNN topology used in the classification phase. This is

based on a basic CNN, the LeNET (LECUN; BENGIO et al., 1995), which enables an

excellent inference computation time and a competitive average accuracy of 97.75%.

26

Figure 2.9: Lenet-based Convolutional Neural Network

Source: (YANG et al., 2016)

2.1 Convolutional Neural Networks

Convolutional Neural Networks differ from the other Neural Networks by pro-

cessing data that have grid-like topology, such as time-series that can be thought as 1-

dimension-grid taking samples at regular intervals and image data that can be thought

as 2-dimension-grid pixels. Convolutional Neural Networks (CNNs) were designed to

extract features and recognize shapes with a high degree of invariance to translation,

scaling, skewing and other forms of distortion. A Neural Network is said to be convo-

lutional when it is composed by at least one convolutional layer. Regarding the CNN

training, it is performed by supervised or unsupervised learning algorithms (HAYKIN,

1994) (GOODFELLOW; BENGIO; COURVILLE, 2016) (JAIN; MAO; MOHIUDDIN,

1996) (LECUN; BENGIO et al., 1995). The mathematical definition of convolution used

in the Convolutional Neural Networks differs from the definition used in engineering and

pure mathematics, indeed the correct term for the operation used in Convolutional Neural

Networks is cross-correlation. However, it was popularized as "convolution" in literature.

The mathematical representation of a 2-dimension-discrete convolution is given in

Equation 2.1, where i and j are the dimensional indexes, K is the convolutional kernel,

I is the input, ∗ is the convolution-operation symbol, and lastly m and n are the sum

indexes. The mathematical representation of a 2-dimension-discrete cross-correlation is

provided in Equation 2.2. As it can be noted, the only difference between the convolu-

tion and the cross-correlation is that in the cross-correlation neither kernel nor input is

flipped. Flipping operation is not done in cross-correlation operation because this prop-

erty is not useful for neural networks (GOODFELLOW; BENGIO; COURVILLE, 2016).

When cross-correlation is referred in this work, this will mean convolution, following the

27

literature.

S(i, j) = (K ∗ I)(i, j) = =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.1)

S(i, j) = (K ∗ I)(i, j) = =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.2)

2.1.1 Convolutional Layer

The Convolutional Layer is responsible for extracting features from input images.

The convolutional neuron receptive fields are sub-images from the previous layers whose

dimensions are defined by the kernel size, thus local features are extracted. Each resultant

image is stored in a feature map and all the convolutional neurons from a feature map

share the weight matrix that has the same dimensions of the kernel. The weight sharing

reduces the number of trainable free parameters, reducing the capacity of the learning

machine, which in turn improves its generalization ability (HAYKIN; NETWORK, 2004)

(LECUN; BENGIO et al., 1995). The mathematical definition of a convolution for a

single image is given in Equation 2.3 (GONZALEZ; WOODS, 2002).

g(x, y) = [
a∑

s=−a

c∑
t=−c

w(s, t)f(x+ s, y + t)] + b (2.3)

a = floor(kernel_size_x/2) (2.4)

c = floor(kernel_size_y/2) (2.5)

Where g is the resultant pixel from the convolution, x and y are the coordinates

of the image, a and c are normalized sum limits calculated from the kernel sizes defined

in Equations 2.4 and 2.5, w is the weight or kernel, f is the sub-image or window that

is sampling the input image, and lastly b is the convolutional bias. An illustration of

the convolutional computation is given in Figure 2.10. Note that when the kernel size

dimensions are even values they cannot be normalized, because there is no central pixel.

Equation 2.3 described the mathematical operation of a convolutional layer that

succeeds the input layer, i.e. there is only one input image. However, from the second

28

Figure 2.10: 2-D image Convolutional

Source: (GOODFELLOW; BENGIO; COURVILLE, 2016)

layer onwards, the convolutional inputs are many feature map images instead of only one

image, as such each convolutional neuron in the current layer computes the convolution

for each one of the feature maps in the previous layer. Therefore, each one of the feature

maps in the current layer has a weight matrix for each one of the feature maps in the

previous layer. The mathematical representation of the convolution taking into account

many input images are given in Equation 2.6 (GOODFELLOW; BENGIO; COURVILLE,

2016).

g(x, y) = [
∑
n

a∑
s=−a

b∑
t=−b

w(s, t, n)f(x+ s, y + t, n)] + b (2.6)

Where n is the feature map index of the previous layer which is used in the weight

tensor and input images.

29

Figure 2.11: Max pooling illustration

Source: The Author

2.1.2 Pooling Layers

Each Convolutional layer is followed by a Pooling layer that performs the opera-

tion of subsampling, whereby the resolution of the feature map is reduced. The rate of the

resolution reduction depends on the pooling kernel size and stride, as illustrated in Figure

2.11. This subsampling operation reduces the noise sensibility and other types of distor-

tion. It is possible because pooling layers employ statistical ordering, which is also used

in low-level image processing spatial filters for noise reduction (GONZALEZ; WOODS,

2002). The pooling layer can be employed using different functions, such as max, av-

erage and etc (HAYKIN, 1994) (GOODFELLOW; BENGIO; COURVILLE, 2016). The

max pooling was used, therefore it is implemented in the hardware using max-comparator

units .

2.1.3 Full-connected neurons

Full-connected (FC) neurons are Multi-Layer Perceptron (MLP) feedforward neu-

ral networks (HAYKIN, 1994). This class of Artificial Neural Networks (ANNs) is

widely used in classification tasks and has many successful implementations in litera-

ture (HAYKIN; NETWORK, 2004) (GOODFELLOW; BENGIO; COURVILLE, 2016).

The specialty of this neural network is pattern recognition, but can also be used in data

analysis. The full-connected neurons are based on biological neurons, as illustrated in

Figure 2.12.

30

Figure 2.12: A sketch of a biological neuron

Source: (JAIN; MAO; MOHIUDDIN, 1996)

Figure 2.13: Full-connected neuron

Source: The Author

So they have the dendrites, synapses, cell-body and axon. As illustrated in Figure

2.13, the dendrites are implemented by multiplying the inputs by the weights (synapses).

The cell-body, otherwise known as "soma", accumulates the result of the multiplications

and adds it with the bias. The axon performs the activation function (ReLU, which is

described in the following) that is the output of the neuron and is connected to many

other neurons (JAIN; MAO; MOHIUDDIN, 1996) (HAYKIN, 1994). In Hardware, the

FC neuron computation can be performed either using MACC units or logic circuits.

2.1.4 ReLU Activation function

Rectified Linear Unit (ReLU) activation function employs the function g(z) =

max(0, z), as illustrated in Figure 2.14. It applies non-linearity either in Convolutional

or FC neuron outputs but preserves some linear properties, simplifying the optimization

process by learning algorithms (GOODFELLOW; BENGIO; COURVILLE, 2016). Due

31

Figure 2.14: ReLU activation function

Source: (GOODFELLOW; BENGIO; COURVILLE, 2016)

to its simplicity and efficiency, the ReLU is the default recommendation in modern neural

networks (NAIR; HINTON, 2010) (GOODFELLOW; BENGIO; COURVILLE, 2016). In

hardware, it has a considerable area-saving in comparison to sigmoid activation functions.

The ReLU hardware implementation requires just a greater than 0 comparator.

2.1.5 Softmax function

The Softmax function is a way of improving the classification results. It computes

the probability vector of the classes and increases the difference between the neuron out-

puts, as defined in Equation 2.7 (BRIDLE, 1990).

Oj =
exp Ij∑
k

exp Ik
(2.7)

Where O is the softmax output, I is the softmax input (FC neuron outputs), j is the index

of the neuron being computed and k is the index of the other neurons. Softmax computa-

tion requires a great amount of hardware resources due to the sums of exponential, so it

will be developed in software.

32

Figure 2.15: Nvidia DRIVE PX 2 technical characteristics

Source: (HUANG, 2016)

2.2 Acceleration platforms for Deep Learning

2.2.1 Embedded GP-GPUs

Nvidia corporation releases the first Graphics Processing Unit (GPU) for Personal

Computers (PCs) in 1999, revolutionizing the PC industry (NVIDIA, 2017). Initially, this

platform was intended to accelerate game applications, but due to its high computation

power, it is also used in general-purpose applications, such as deep learning, medicine and

etc, as such it is called General Purpose GPU (GP-GPU) (VISWANATHAN; HUSSEIN,

2017) (DING et al., 2011).

Deep-learning GP-GPU implementations achieve high performance results due to

their massive parallel computation (NVIDIA, 2016). Thus, GP-GPUs are widely used

in CNN training and CNN deployment (STRIGL; KOFLER; PODLIPNIG, 2010). GP-

GPU had a high power consumption until last year. As such, it was an inappropriate

approach to embedded system applications. Fortunately, in 2016, Nvidia releases the

Drive PX 2, an embedded GPU that has a power consumption ranging from 10W to 250W

(HUANG, 2016) (NVIDIA, 2016). The Power consumption depends on the operational

mode where different chips from the board can be disabled. In addition to the GPU, it has

12 Central Processing Unit (CPU) cores and was manufactured in the 16nm (Fin-Field

Effect Transistor) FinFET technology, as can be seen in Figure 2.15.

33

2.2.2 ASIC SoC and APSoC

When the Very-Large-Scale Integration (VLSI) design arises, the use of dedicated

silicon wafers for a design (full-custom) was required, so this design is only economic

viable for large quantity productions. One alternative to this style is the semi-custom

design that comprises wafers with prefabricated logic gates distributed in array way (gate-

array). The connections between the source and the sink of these gates are made by one

metallization stage which is defined by the designer and made in a foundry, aiming to

develop an Application Specific Integrated Circuit (ASIC) (SEDRA; SMITH, 1998).

Later, a new style of design emerged, the Field Programmable Gate Array (FPGA).

This style enables the user to design VLSI systems without worrying about the high

initial (non-recurrent) costs and the high design time. However, in general, it presents

lower performance outcomes and higher power and area costs than an ASIC (SEDRA;

SMITH, 1998). FPGAs use high density circuits in modern processes to design ICs that,

as the name suggests, are completely programmable even after the product is sent, or

programmable "in the field". There are two types of FPGA, the first is the one-time-

configurable FPGA that uses a special process, such as fuse and anti-fuse to permanently

program its interconnections and custom the circuit logic. The second type is the re-

configurable FPGA that uses Static Read-Only Memories (SRAMs) or Flash memories

to configure the routing and the logic functions, when SRAMs are used the configura-

tion is volatile whereas when Flash memories are used the configuration is non-volatile

(WESTE; HARRIS; BANERJEE, 2005).

To deal with the trade-off between performance and power consumption, a figure

of merit was created to evaluate implementations in hardware and select the best alterna-

tives. This is the Power efficiency, as defined in Equation 2.8.

Power_efficiency =
GOPS

Power_consumption
(2.8)

Where GOPS are Giga (Billions) Operations Per Second and Power Consumption is cal-

culated in watts.

Lee (2017) implemented an ADAS ASIC System-on-Chip (SoC) that, as expected

for an ASIC implementation, achieved state-of-the-art results of 560 GOPS with 30 FPS

throughput under 720p stereo inputs and low power consumption (0.984 mW). Figure

2.16 illustrates the ADAS SoC micrograph whereby it is possible to see the area utilization

of each block of the design.

34

Figure 2.16: ADAS SoC micrograph

Source: (LEE et al., 2017)

According to (DETTMERS, 2015)(GYSEL; MOTAMEDI; GHIASI, 2016), it is

possible to convert the 32-bit floating point outputs of the accumulators of a deep learn-

ing algorithm into a 8-bit fixed point representation in order to reduce the area, power

consumption but losing an insignificant average accuracy compared to the area and power

saving. As can be seen in Table 2.1.

Table 2.1: CNN Models with Fixed-Point Precision. The numbers in brackets indicate
accuracy without fine-tuning

L. Outputs CONV params FC params 32-Bit FLP FP Accuracy
LeNet (Exp1) 4-bit 4-bit 4-bit 99.1% 99.0% (98.7%)
LeNet (Exp2) 4-bit 2-bit 2-bit 99.1% 98.8% (98.0%)

Full CIFAR-10 8-bit 8-bit 8-bit 81.7% 81.1% (80.6%)
SqueezeNet top-1 8-bit 8-bit 8-bit 57.7% 57.1% (55.2%)

CaffeNet top-1 8-bit 8-bit 8-bit 56.9% 56.0% (55.8%)
GoogLeNet top-1 top-1 8-bit 8-bit 8-bit 68.9% 66.6% (66.1%)

Source: (GYSEL; MOTAMEDI; GHIASI, 2016)

Where "L. Outputs" are the Layer outputs, "CONV params" are the Convolutional

parameters (convolutional weights), "FC params" are the Full-connected neuron param-

eters (FC weights), "32-bit FL" is the 32-bit Floating-point baseline, and lastly "FP Ac-

curacy" is the Fixed-point average accuracy. For instance, in the first line of Table 2.1

the average accuracy of the LeNet (Exp1) using 32-bit floating-point representation was

99.1%, after the layer outputs, convolutional parameters and full-connected parameters

are reduced to 4-bit, the average accuracy slightly decreases to 98.7% without fine-tuning

(fine-tuning is the process of retraining the weights of a neural network to obtain a better

35

Figure 2.17: INT8 Deep Learning Power Efficiency Comparison: Xilinx vs. Intel

Source: (FU et al., 2017)

accuracy result). If fine-tuning is used, this value increases to 99.0% (GYSEL; MO-

TAMEDI; GHIASI, 2016).

When using this approach, it is possible to use 8-bit integer (INT8) optimization

for deep learning implementations in either APSoC or FPGA (FU et al., 2017). Figure

2.17 shows excellent power efficiency results, in terms of GOPS / W, of deep learning

architectures implemented on Ultra-scale Xilinx devices.

Han (2014) implemented both APSoC and FPGA trafic-sign recognition systems

carrying out both the detection and the classification phases. The performances results

of each implementation were compared where the Zynq-7000 APSoC implementation

achieves a lower total execution time (96.5 ms) than the Virtex-5 FPGA one (777 ms),

whereby 40x40 traffic-sign images were processed.

36

3 RADIATION EFFECTS IN INTEGRATED CIRCUITS

The development of high-density, functionality, and low-power circuits to meet the

increasing consumer’s demand for more powerful and capacity circuits, led a to dramatic

increase in the radiation effects sensitivity of integrated circuits. Radiation effects in

integrated circuits can occur in different ways, such as destructive effects, parametric

shifts, data disruptions, and etc. Hard effects cause a damage in an integrated circuit while

soft effects may cause an error or a failure in the device, but they do not cause a permanent

change in the integrated circuit. Example of hard effect is the Total Ionizing Dose (TID)

(OLDHAM; MCLEAN, 2003) which is predominant in space and military environments

and it can be seen as a degradation of the component, like aging. Single Event Effects

(SEEs), as the name suggests, are radiation effects induced by a single radiation event

and are a major concern in space and in some commercial terrestrial applications. SEE

can have hard and soft effects. SEE with soft effects, also known as Soft-errors, receives

this name because the circuit is not permanently damaged by the radiation. Soft SEEs can

be classified into Single Event Upset (SEU), Single Event Transient (SET) (BAUMANN,

2005) and Single Event Functional Interrupt (SEFI) (KOGA et al., 1997). SEE with hard

effects are Single Event Burnout (SEB) (HOHL; GALLOWAY, 1987) and Single Event

Latch-up (SEL) (STEPHEN et al., 1983), which are a major problem in space applications

and must be tolerated by processor or hardening by design techniques.

SEUs occur when a radiation event changes the data state in a memory cell, latch

or flip-flop. However, when a single radiation event has a very high energy, the deposited

charge can be shared between adjacent bits or memory cells, consequently a Multi-bit

Upset (MBU) can occur (MUSSEAU et al., 1996). SET is when a single radiation event

occurs in the combinational logic of a circuit. The SET can propagate through the circuit

and be latched in the sequential element (BAUMANN, 2005). However, SETs can be

logically or electrically masked or even latch window masked, and in this way, they are

not observed as errors in the sequential elements. SEFI is a single functional interrupt that

occurs in the component, many time related to power issues, clock or configuration of the

component (KOGA et al., 1997).

Regarding the physical circumstances, the magnitude of disturbance an ion cross-

ing the semiconductor can cause depends on the Linear Energy Transfer (LET) which in

turn depends on the particle energy, type of semiconductor and material mass. The col-

lected charge Qcoll deposited by the ion depends on its type, trajectory and its energy over

37

a path within or near the junction. The most charge-sensitivity parts of the circuit are the

reverse-biased junctions. The amount of collected charge able to change a data state is the

critical chargeQcrit. The critical charge is proportional to the node capacitance, operating

voltage and strength of feed-back, and depends on the magnitude and temporal character-

istics of the pulse generated by the collected charge. In DRAM memories the data value

is changed when the collected charge exceeds the critical charge (Qcoll > Qcrit), whereas

in SRAM memories beyond the collected charge condition (Qcoll > Qcrit) there is a factor

that depends on the reaction speed of the circuit to the fault, i.e. slower reactions lead to

an effective Qcrit increasing (BAUMANN, 2005).

There are three significant sources of ionizing particles in electronic devices in the

terrestrial environment. The first source of soft-errors are the alpha particles which are

emitted by the packaging materials. The Soft Error Rate (SER) from alpha particles can

be reduced by purifying the packaging materials (BAUMANN, 2005).

The second source of ionizing particles in electronic devices is related to high-

energy cosmic rays. Cosmic rays, collide on the atmosphere, producing secondary parti-

cles, such as protons, neutrons, muons and pions. However, less than 1% of the primary

flux reaches the sea level and this flux is isotropic. At ground level, high-energy cos-

mic ray neutrons are one of the highest components of the particle flux and they are the

most likely particle that can cause a device failure at ground level. Therefore, high-energy

cosmic ray neutrons do not provoke directly the soft errors, they collide with the semicon-

ductor material nucleus that in turn generates lighter particles which transfer energy to the

circuit substrate. The high-energy cosmic ray neutrons are more likely to produce MBUs

than alpha particles and low-energy cosmic ray neutrons. The device sensitivity to the ef-

fects of high-energy neutron collisions can be reduced by design or process modifications

(BAUMANN, 2005).

The third source of ionizing particles in electronic devices is related to the low en-

ergy cosmic ray and thermal neutrons. Indeed, the third source is the secondary radiation

induced from the interaction of low-energy cosmic ray and thermal neutrons, and boron

atom. The source of neutrons from cosmic rays was explained previously. As boron is

extensively used as a p-type dopant, low-energy cosmic ray neutrons has a significant

effect in the boron-doped phosphosilicate glass (BPSG) dielectric layers. Advanced tech-

nologies that operate at low voltages are also susceptible to the effects of high energy

cosmic ray neutrons interactions. The effects in BPSG dielectric layers can be reduced

by changing the dielectric material or enriching the BPSG process without changing their

38

Figure 3.1: The comparison of the effects of a SEU in ASIC and FPGA architecture

Source: (KASTENSMIDT; CARRO; REIS, 2006)

desirable properties (BAUMANN et al., 1995).

3.1 Radiation effects in SRAM-based FPGAs

There are peculiar radiation effects in SRAM-based FPGAs that do not occur in

ASICs. In an ASIC, the effect of an energetic particle collision on the combinational

circuit results in a transient fault. This transient fault is characterized as a transient logic

pulse that may or not be latched in a storage cell, depending on the circuit delay and the

topology. However, when a fault occurs in the sequential logic, the bit stored in this cell

is inverted. An inversion in a logic state is called "bit flip" (KASTENSMIDT; CARRO;

REIS, 2006).

In a SRAM-based FPGA, both the combinational and sequential logic are imple-

mented by the user using SRAM configuration cells (volatile), as illustrated in Figure 3.1.

Therefore, one fault in an ASIC combinational logic is equivalent to a bit flip in a FPGA

Look Up Table (LUT) that performs the logic (Upset type 1) or in the cells that control

internal routing by the multiplexers.

As the LUT performs the combinational logic (See Figure 3.2), one fault in a

SRAM configuration cell will modify the implemented logic. Therefore, it will have a

permanent effect unless a new configuration bitstream (File that contains the configura-

tions bits to customize the logic) is loaded. Thus, an erroneous value of the combinational

39

Figure 3.2: Upset in the LUT (logic change)

Source: (KASTENSMIDT; CARRO; REIS, 2006)

logic will be latched in the stored cell unless some fault detection technique is applied.

However, faults that occur in the FPGA sequential logic (Figure 3.1 Upset type 2) will

have a transient effect if the CLB flip-flop value is overridden by a new flip-flop load.

Other transient fault (SET) can occur in the multiplexer’s inputs and outputs that

control the CLB internal routing. SEU in the external routing (See 3.3) creates either

"short" or "open" in the wires and has a permanent effect (Figure 3.1 Upset type 3) un-

less a new configuration bitstream is loaded. The Embedded memories (Block Random

Access Memory - BRAM) are also susceptible to SEU and also have a permanent effect

(Figure 3.1 Upset type 4). As the BRAM cannot be corrected by the bitstream without

interrupting the normal operation of the application, it must be corrected by using fault tol-

erant techniques applied in the architectural or high-level description (KASTENSMIDT;

CARRO; REIS, 2006).

Accordingly to (OHLSSON et al., 1998), as the transistor technology is shrinking,

and consequently the logic density is increasing, the SRAM-based FPGA susceptibility

to neutron induced soft-errors is also increasing. In a more recent work (NAZAR, 2013),

this trend was confirmed in recent SRAM-based FPGA technologies. Tests were carried

out by reading back the configuration bits of the FPGAs and verifying how many bit-

40

Figure 3.3: Upset in the routing (undesirable connection)

Source: (KASTENSMIDT; CARRO; REIS, 2006)

flips occur for a given fluence, i.e. static cross-section. It can be seen in Figure 3.4

that the static cross-section increases as the technology size decreases and the number of

configuration bits available increases.

Considering these SRAM-based FPGA peculiar effects, a safety-critical system,

as an autonomous car, must be characterized under soft errors in order to evaluate its

reliability. Once the system is evaluated as vulnerable, some fault tolerant techniques

must be applied.

Figure 3.4: Static cross-section for the configuration of the largest device of each family

Source: (NAZAR, 2013)

41

4 CONVOLUTIONAL NEURAL NETWORK TRAINING

4.1 Dataset

The German Traffic-Sign Recognition Benchmark was used as a training and test

dataset. This is a multi-class, single-image classification challenge held at the Inter-

national Joint Conference on Neural Networks (IJCNN) in 2011 (STALLKAMP et al.,

2012). The goal of this dataset is to evaluate the performance of machine learning algo-

rithms for German traffic-sign classification. This dataset contains 43 classes and more

than 50,000 images in total, featuring an extensive and realistic dataset. In Figure 4.1 one

sample of each class is shown. The dataset has many samples for each class, varying this

position with respect to the observer, luminosity, background occlusion, and other types

of variation in images. Figure 4.2 shows some variations on an image of one class.

Aiming real-time applications, (YANG et al., 2016) concluded that it is more ef-

fective to develop one simple topology CNN for classifying the sub-classes within the

super-classes, instead of developing one complex CNN to classify all the 43 classes. Thus,

the 43 classes were divided into 4 super classes. Figure 4.3 show the (a) Prohibitory, (b)

Danger and (c) Mandatory super classes.

The 8 remaining sub-classes belong to a super class referred to as "Others" that is

separated from the other super classes, because they do not have common features. For

instance, the super classes in Figure 4.3 have either circular or triangular shapes. The

circular ones are either red or blue, and the triangular ones are only red. These super

classes are easy of being separated by their color or shape features. Alternatively, the sub-

classes within the super class "Others" have no common features, they have octagonal,

triangular, diamond or circular shapes. Additionally, they are filled with red or yellow

Figure 4.1: One sample of each GTSRB class

Source: (STALLKAMP et al., 2012)

42

Figure 4.2: Variations of one class

Source: (STALLKAMP et al., 2012)

Figure 4.3: Sub-classes of each super class

Source: (YANG et al., 2016)

43

Figure 4.4: One sample of each sub-class of the super class "Others"

Source: (STALLKAMP et al., 2012)

Figure 4.5: 6 classes of the Prohibitory subclass

Source: The Author

colors or have a stripe or there is no sign in their center. Due to the fact that these classes

do not have common features and cannot be clustered in super classes, they were grouped

into a super class which is the result of an unexpected classification. For example, if one

sub-image is not recognized as a "Prohibitory", "Danger" or "Mandatory" super class, it

is recognized as an "Others" super class. Some "Others" super class samples are shown

in Figure 4.4.

Due to resource limitations of our available SoC device, the CNN implementation

was limited to a 6-class classifier, as such 6 sub-classes of the prohibitory super class were

used. Thus, the dataset was reduced to 6 sub-classes, which comprises 9,930 images for

training and 3,273 for testing. The 6 prohibitory sub-classes are shown in Figure 4.5.

As shown in Figure 4.2, the images were captured in different lighting and weather

conditions, as such, images from the same sub-class present large differences and can

be classified into different sub-classes. To deal with this kind of influence some pre-

processing must be performed before the images are presented to the CNN classifier. The

method used was the same of the work of (YANG et al., 2016) that employed a Contrast

Limited Adaptive Histogram Equalization (CLAHE) (ZUIDERVELD, 1994) to adjust the

contrast of the images. To apply the CLAHE to the images, the method CLAHE of the

OpenCV library was used (BRADSKI; KAEHLER, 2008). As reported by (SERMANET;

LECUN, 2011) the color plays little role in the classification, thus, following the work of

(YANG et al., 2016), the original images were converted into grayscale to speed up the

44

Figure 4.6: Pre-processing steps

Source: The Author

CNN classifier. The same were converted into grayscale by using the OpenCV library

(BRADSKI; KAEHLER, 2008). The images in the GTSRB dataset have different dimen-

sions. Since the CNN input image dimensions are fixed, the images were resized. This

pre-processing was performed using the Caffe framework, which will be described in the

next section. All the steps that the pre-processing encompasses are illustrated in Figure

4.6. This pre-processing was performed during the design time, with an aim of improv-

ing the training accuracy. The real-time implementation of this algorithms is outside the

scope of this work.

4.2 Framework for training

The model definition and training were performed with the Convolutional Archi-

tecture for Fast Feature Embedding (Caffe) framework. Caffe is a deep learning frame-

work made with expression, speed, and modularity in mind. It is developed by Berkeley

AI Research (BAIR) and by community contributors (JIA et al., 2014). Yangqing Jia

created the project during his PhD at University of California (UC), Berkeley. Caffe is

released under the BSD 2-Clause license.

Some reasons for Caffe utilization are as follows:

• Expressive architecture - Models and optimization are defined by configuration

without hard-coding. Switch between CPU and GPU by setting a single flag to

train on a GPU machine then deploy to commodity clusters or mobile devices.

• Modularity - It has a catalogue within several state-of-the-art layers that can be

45

combined to develop your own model.

• Speed - Caffe can process over 60M images per day with a single Nvidia K40 GPU

with the ILSVRC2012-winning SuperVision model and prefetching IO.

A Caffe model anatomy is composed of three components: layers, nets and blobs.

Models are defined layer-by-layer where each layer performs a specific computation such

as convolutional layer, max pooling layer, softmax layer and etc. The "blobs" are the

memories of the layers where the framework stores, manipulates and communicates in-

formation such as forward signals and backward signals (derivatives). Lastly, the "net" is

a collection of connected layers that characterize a specific model such as LeNet, Yolo,

Faster R-CNN and so on. The "net" is defined from input data to "loss". Where "loss" is

the error of the classification given an input data and its correspondent label. The layer

inputs are defined as "bottom", whereas the layer outputs are defined as "top".

A Caffe model is trained using solvers which are parameterizable learning algo-

rithms. The solvers optimize the model in two computational phases. The "forward pass"

whereby the network outputs are computed and the backward pass where the gradients,

which are used to optimize the network, are computed. (JAIN; MAO; MOHIUDDIN,

1996) (HAYKIN, 1994). The way by which the blobs are stored is managed by the Caffe

framework. Therefore, the user will only need to define the model and solver parameters,

the dataset, and the platform (CPU/GPU) to be used in training or deployment phase.

The model and solver parameters are defined by a protocol buffer (.prototxt) and the

learned parameters (weights) are serialized as binary protocol buffer (binaryproto) .caf-

femodel files using Google Protocol Buffer language. Protocol buffers enable efficient

serialization, minimum-size binary strings (when serialized), interface implementation in

multiples languages (manly C++ and Python) and other benefits. The implementation,

communication and other issues are performed automatically by the framework.

4.2.1 Training process using Caffe

Before someone starts the training process with Caffe, the dataset must be prepared

in order to be suitable for the framework. There are several ways of reading the dataset

with Caffe, it can be read from the memory, operational system directory, data-base and so

on. The Lightning Memory-mapped Database (LMDB) and batch processing improve the

training performance being an excellent choice for big datasets. Caffe has an embedded

46

Figure 4.7: Steps for training a model with Caffe

Source: The Author

code that converts an image directory and a .txt file (describing the image paths and labels)

into a LMDB file. The GTSRB dataset contains a file describing the image directories and

their labels but it is defined by a .csv file and contains other information. Thus, a Python

script was created to adjust the .csv file to a .txt file suitable for the Caffe conversion code.

Once the dataset is prepared for the framework, the model and solver parameters have to

be defined in .prototxt files using the Google Protocol Buffer language. During the CNN

training phase, the weights and the solver state are periodically saved into binary protocol

buffer .caffemodel and .solverstate files, respectively, every 5000 iterations. These are the

snapshots of the training and can be used to go back to a specific state of the training and

use these snapshot trained weights for deploying and debugging. The use of the GPU is

simply set by a flag in the Python code. The training steps with Caffe are summarized in

Figure 4.7.

There is no specific method to determine which is the best Neural Network model

for a given task. There is only heuristics to improve the success probability, so it must

be discovered by the trial-and-error method (HAYKIN, 1994). However, well-known

models in the literature can be used to accelerate the training process. Thus, the LeNet-

based CNN model proposed by (YANG et al., 2016) was chosen due to its competitive

accuracy and good performance results. However, as explained in section 4.1, this model

is not suitable for the available APSoC platform, and then the CNN model had to be

reduced to the model illustrated in Figure 4.8.

The reduced model parameters are shown in Table 4.1. Where the layers are shown

line by line in a forward way and "in place" means the Full-connected neuron outputs

are re-used by the ReLU activation function when the value is greater than 0 enabling

memory saving. Data layers specifies how the images are read (back-end), some pre-

processing operations, such as cropping, re-sizing, scaling and others, and how many

47

Figure 4.8: Reduced LeNet-based CNN model

Source: The Author

images are processed at time (batch size). Softmax with Loss layer is only used in the

training phase while Accuracy layer is only used in the testing phase, both of them do

not have parameters. Different batch sizes in the Data layer are used in the training and

test phase. These model parameters were written in a prototxt file by using the Python

interface with Caffe, simplifying the coding process.

Table 4.1: Parameters used in the model
Layers Parameters
Data batch size: 64 back-end: LMBD

Convolution 1 kernel size: 5 - feature maps: 6
Pooling MAX 1 kernel size: 2 - stride: 2
Convolution 2 kernel size: 5 - feature maps: 12

Pooling MAX 2 kernel size: 2 - stride: 2
Fully-connected 1 neurons: 50

ReLU 1 in place: true
Fully-connected 2 neurons: 20

ReLU 1 in place: true
Fully-connected 3 neurons: 6
Softmax with Loss

Accuracy

Source: The author

Once the model is defined, the solver type and solver parameters must be de-

fined. Like the model definition, there is no specific method to define which are the solver

type and solver parameters to a specific application, requiring the trial-and-error method

(HAYKIN; NETWORK, 2004). Since the defined CNN model is based on the LeNET

model (LECUN; BENGIO et al., 1995), the solver parameters used in a LeNET Caffe ex-

ample (CAFFE, 2017) were also used. However, the solver type was defined by using the

trial-and-error method. As it will be shown in the results to be seen ahead, the Adaptive

gradient had the best accuracy result. This methodology reduces the training time because

the Caffe framework has six solver types while the solver parameters combinations have

48

numerous possibilities. The solver parameters are shown in Table 4.2.

Table 4.2: Parameters used in the solvers
Parameter Value

Learning rate 0.01
Momentum constant 0/0.9

Gamma 10E-5
Power 0.75

Test iterations 60
Test interval 500

Learning policy inverse
Weight decay 5E-4

Max iterations 3 80000
Type Adaptive Gradient

Source: The author

Where "Learning rate" is the rate by which the weights are updated, "Momentum

constant" is the factor by which the previous weights are multiplied (Some solver types

do not use momentum, thus its value is assigned to 0), "Test iterations" is the number of

iteration will be done to generate the accuracy (Each one of the test iterations is done in all

the images from the batch, whose quantity is defined by the batch size. So, for a 100 batch

size, 6000 images are tested), "Test interval" is the number of training iterations until the

point of a test execution, "Learning policy" is the way by which the "Learning rate" is

decreased along the training time and is described by the equation 4.1, the "Weight decay",

as the name suggests, is the factor by which the weights are decayed, "Max iterations" is

the maximum number of training iterations, and lastly "Type" is the solver type.

learning_rate = learning_rate(1 + gamma ∗ iteration)(−power) (4.1)

The Adaptive Gradient is described by the Equation 4.2.

(Wt+1) = (Wt)i − α
(∇L(Wt))i√
t∑

t′=1

(∇L(Wt′)
2
i)

(4.2)

WhereW is the weight, t is the training iteration, i is the weight index of the CNN model,

t
′ is the index that represents all the previous training iterations, α is the "Learning rate",

and lastly L is the "Local gradient descent" (DUCHI; HAZAN; SINGER, 2011).

The solver parameters are also written in a prototxt file by using the Python inter-

49

face with Caffe.

4.2.2 Training results

The GPU used for the training was the Nvidia GTX 680 with 1500 CUDA cores

and 2 Gigabyte Double Data Rate (DDR). Firstly, the solver accuracy results will be

shown, then the training results using the best solver will be discussed, and lastly the false

positives and false negatives. The training accuracy result for each tested solver is shown

in Table 4.3. Regarding the solver parameters described in last section, the momentum

constant was not used in some solvers, but the remaining solver parameters were used in

all the solvers.

Table 4.3: Training accuracy for different solvers
Solver Accuracy

Adaptive Gradient 90.1%
Adam 14%

Nesterov Accelerated Gradient 7%
RMSProp 24%
Ada Delta 20%

Source: The author

As can be seen in the table, the Adaptive Gradient was by far the best solver

for training 6 classes from the GTSRB dataset and using a LeNET-based CNN. This is

due to the fact that the Adaptive Gradient solver takes into account the previous local

gradients (DUCHI; HAZAN; SINGER, 2011) and the other solvers do not. Thus, if the

training accuracy is decreasing due to a local minimum, the effect of this local gradient

is decreased by the great previous gradients enabling that the weight space goes out from

the local minimum, as defined by the Equation 4.2.

The plot of loss and accuracy in terms of the training iterations was generated in

python by using the matplotlib library, as shown in Figure 4.9. Where the red line is the

test accuracy and the blue line is the train loss. The accuracy is so oscillatory along the

time. However, the accuracy tends to increase until a maximum value is reached. After

which, the accuracy continues to oscillate about this maximum value. The oscillation of

the accuracy can occur due to the dataset complexity and diversity. The CNN topology

reduction did not change the accuracy, which proves that the CNN model reduction suc-

cessfully fitted the classification capacity reduction. Although the final value is 87%, the

maximum value is about 90% due to the oscillations. The training achieves acceptable

50

Figure 4.9: Training accuracy and loss

Source: The Author

results given that the solver parameters were not defined by exhaustive attempts. The

initially proposed CNN model achieved an average accuracy of about 90.0%, where each

super-class CNN training took about 10 minutes on a single GTX 680 GPU card, so the

training of four super-class CNNs take 40 minutes. While the 43-class CNN training of

(CIREŞAN et al., 2012), which achieves an average accuracy of 99.46%, took 37 hours on

four GTX 580 GPUs cards. The 6-subclass CNN model training took only 2 minutes and

the GPU usage enabled a speed-up in the training process of 40x in comparison with the

CPU usage. Therefore, a more time-consuming approach could achieve state-of-the-art

results.

The false positives and false negatives of each class are defined in Table 4.4. The

most difficult sub-class of being recognized is the "sub-class 0" (20km/h speed limit).

However, this sub-class has few samples (60) in comparison to other sub-classes that

have four to seven hundred samples. Consequently, sub-class-0 accuracy does not reduce

too much the average precision (89.88%). The easiest sub-class of being recognized is the

"sub-class 2" (50km/h speed limit). However, it has many false-positives, which indicates

that this sub-class is so easy of being detected so that other sub-classes can be confused

with it. This is the trade-off between accuracy and false positives inherent in deep learning

algorithms. If one increases the threshold of the classifier, the number of false negatives

can be decreased, but the number of false positives can be increased. Alternatively, if one

decreases the threshold of the classifier, the number of false positives can be decreased

but there is a chance of the number of false negatives being increased. Nonetheless, it

51

Figure 4.10: Convolution filters

Source: The Author

also depends on the dataset. If "sub-class 0" had more samples like the other sub-classes,

it could have a better accuracy result. In order to facilitate comparison with related work,

the dataset test was not altered.

Table 4.4: False negatives and False positives
Sub-class Samples Accuracy FN FP

0 60 35.0% 38 20
1 720 91.25% 63 87
2 750 96.53% 26 97
3 450 87.77% 55 56
4 660 91.81% 54 43
5 630 80.63% 122 55

The Convolutional filters trained by the Caffe framework are shown in Figure 4.10

and the blobs of each layer for an input image from the sub-class 0 are shown in Figure

4.11.

The input image is filtered by the filters of Convolutional layer 1 (Figure 4.10)

producing 6 feature maps, after which Max Pooling is computed subsampling the images,

then all Pooling-1-feature-map images are filtered by the Convolutional-layer-2 filters

(Figure 4.10) producing 12 feature maps. Lastly, the Convolutional-layer-2 feature maps

are sub-sampled by the Pooling layer 2, producing the features of the input image that

will be used to classify this image by the Full-connected neurons.

52

Figure 4.11: Feature images

Source: The Author

53

5 DEVELOPMENT OF CNN TOPOLOGY

5.1 Automatic generator

Convolutional Neural Networks are massively parallel applications that comprise

several layers and many feature map images or neurons within each layer. So the hardware

description of a CNN is a difficult and repetitive task to be manually made. Therefore,

a tool that automatically generates the VHDL of CNNs was developed. This tool uses

Python interface with Caffe to access the internal signals and weights of a trained CNN

and generates its VHDL code.

The proposed tool generates a timing-multiplexing architecture for LeNET based

CNNs, but can also be extended to other CNN models and architectures. Before starting

VHDL coding of an algorithm that uses floating-point representation, a precision analysis

must be performed to determine the required bit width for signals. Thus, it is possible

to reduce area and power, and improve performance by using fixed point representation.

The signals that must be analyzed in CNNs are the layer outputs, the Convolutional pa-

rameters (weights) and the Full-connected parameters (weights). The Max Pooling layers

and the ReLU activation function do not need to be analyzed because they do not perform

arithmetical computations. However, if other pooling layers or activation functions were

used, such as average and sigmoid respectively, a precision analysis would be required.

The steps to automatically generate CNN VHDL codes are illustrated in Figure 5.1.

In order to reduce area utilization, fixed point and two’s complement representa-

tion were used instead of floating-point representation. In a fixed-point representation the

bit vector is divided into 3 parts: sign-bit, integer part, the fractional part. In order to save

Figure 5.1: CNN automatic generation steps

Source: The Author

54

area, the bit width of the integer part must be determined by Equation 5.1.

n =

ceil(log2(max_value)), ifmax_value > abs(min_value)

ceil(log2(abs(min_value))), otherwise

 (5.1)

Where n is the number of the bit width required, max_value is the maximum

value of a signal array in interest calculated over all the dataset, min_value is the mini-

mum value of the same array and abs the absolute value. As the negative range in two’s

complement representation is 1-bit greater than the positive range, if the max_value is

exactly equal to 2n, the ceil function will not round the log result and it will lead to an

overflow in the hardware implementation. Although it has a little probability, it must be

taken into account. Equation 5.2 describes how this exception is treated.

n =

ceil(log2(max_value)) + 1, if log2(max_value)− ceil(log2(max_value)) = 0

ceil(log2(max_value)), otherwise


(5.2)

The bit width of the fractional part can be determined by decreasing the fractional

precision down to the average accuracy, calculated over all the dataset, be decreased. The

last precision that does not change the accuracy will be the minimum precision. However,

as mentioned in section 2.2, Xilinx FPGAs or APSoCs achieve good power efficiency

outcomes when performing arithmetical operations using 8-bit integer signals at the cost

of a slight accuracy loss (FU et al., 2017). All the trained weights by Caffe only have

the fractional part out of the fixed-point representation (all the weights are < 0), whereas

the layer outputs have all the parts. Therefore, following the Xilinx recommendation,

the fractional bit width of the Convolution and Full-connected weights were truncated

to 8 bits in order to achieve good power efficiency results. After performing the FC

and Convolutional-layer-output precision analysis, it was discovered that decreasing the

fractional part of the layer output signals do not have any effect in the average accuracy.

Therefore, only the integer part out of the fixed-point presentation was used, which is

defined by the Equations 5.1 and 5.2.

Even with the weight-precision reduction, the average accuracy only decreased

from 89.88 to 88.88, which proves the (FU et al., 2017)(GYSEL; MOTAMEDI; GHIASI,

2016) conclusion. After the signal bit widths are determined, the CNN VHDL code was

55

Table 5.1: CNN signal bit widths
Signals Bit Width

Convolution weights 9
Full-Connected weights 9
Convolution 1 outputs 10
Convolution 2 outputs 10

Full-connected 1 outputs 11
Full-connected 2 outputs 9
Full-connected 3 outputs 8

Source: The author

Figure 5.2: CNN VHDL code generation steps

Source: The Author

generated using the steps defined in Figure 5.2. First, the signal bit widths are used to

write the signal types, signal arrays and weight constants of the CNN to a VHDL package

file. Then, the top module, which contains all the component declarations, component

and MACRO instantiations, and signal assignments, is generated. The Convolutional and

Full-connected components were not coded because they are instantiated as DSP MACC

macros in the top module. After, the control components, which define the receptive field

of each layer, are generated. Lastly, the max comparators of the Max-pooling layers are

generated. The implementation details will be explained in the next section.

5.2 Timing Multiplexing Architecture

As described in sub-section 2.1.5, the softmax function is composed by sums of

exponential, and as such, if it is implemented on the Programming Logic (PL) part of the

APSoC it will expend a lot of FPGA resources. Therefore, it was developed in software

running at the Processing System (PS) part of the APSoC, the ARM Reduced Instruction

56

Figure 5.3: CNN implementation in the APSoC platform

Source: The Author

Set Computer (RISC) processor. The remaining functions of the CNN were implemented

on the PL part of the APSoC. The whole system is illustrated in Figure 5.3.

The ARM processor communicates with the FPGA through a True dual-port BRAM

by using an Advanced eXtensible Interface (AXI) BRAM controller. The dataset is stored

in the DDR. Thus, the ARM processor reads an image from the DDR, after which, the

same image is sent to the BRAM followed by a "start" signal. Then, the CNN performs

the computations and, after a certain number of cycles, it writes the results and the "done"

signal into the BRAM. After, the ARM processor reads the results, converts them into

floating-point (due to the math.h library requirement) and performs the softmax compu-

tation.

All the components and macros are instantiated in the CNN top module, as men-

tioned in the last section. Convolutional and Full-connected computation are basically

Multiply-And-Accumulate (MACC) operations. There are two ways of implementing

MACCs in FPGA. They can be implemented using CLB resources of the FPGA (LUTs

and CARRY logics) or by Digital Signal Processing (DSP) slices. According to (FU et

al., 2017), DSP is a good choice for implementing deep learning algorithms, because it

has dedicated routing and arithmetic resources by which good power efficiency outcomes

can be achieved. Moreover, LUTs are generic resources, so it is recommended to leave

these resources for the remaining logic of the CNN. The DSP slice is illustrated in Figure

5.4, as indicated, there are an embedded multiplier and an accumulator enabling MACC

operation. Although, it has many signals to be customized they can be automatic assigned

to constants using a MACRO MACRO in VHDL.

The max comparators used in the Pooling layers were implemented using high-

57

Figure 5.4: Xilinx 7 Series DSP48E1 Slice

Adapted Source: (XILINX, 2016)

level VHDL and were synthesized to multiplexers, greater-or-equal comparators and "AND"

gates. Once the fundamental components are created they are instantiated in the top mod-

ule as illustrated in Figure 5.5.

As illustrated, the CONV1_CTRL (Convolution-1 control component) is responsi-

ble for controlling the true dual-port BRAM and the DSPs within the Convolutional layer

1. It receives the fc3_done signal that indicates the conclusion of the Full-connected-

3 computation, then the results are stored into the BRAM. This is the most important

control component in the network. There is one control component for each layer, whose

function is to control the next layer receptive field (defined by the kernel sizes) and the cur-

rent inputs and weights used as DSP operands (only in Convolutional and Full-connected

layers). The CNN architecture is called "Timing multiplexing" because, in the DSP level,

inputs and weights are multiplexed during the time, but analyzing at the top level the CNN

architecture is defined as pipeline.

The simplified Finite State Machine (FSM) of the CONV1_CTRL component is

shown in Figure 5.6. It has the generic "Reset" and "Idle" states, a state to read the

"start" signal from the BRAM, a state to clear the offsets used to slide a window over

the image stored in the BRAM, the state where the MACC operation is performed in the

58

Figure 5.5: CNN implementation top module

Source: The Author

Convolutional layer 1, states for checking if an offset reached the kernel size of its layer,

a state for waiting for the fc3_done signal and lastly a state to write the CNN results and

"done" signal into the BRAM. For sliding a window over the input image stored in the

BRAM, CONV1_CTRL is the most complex control component in the CNN.

The process of sliding a window in two dimensions over the input image stored in

the BRAM (sweeping) was performed taking into account the next-layer receptive fields,

i.e. their kernel dimensions. The input image is stored on the BRAM using the row-

major memory layout (ISON1570, 2011), thus the memory address in terms of the image

coordinates is calculated using the Equation 5.3. In order to generate one pixel in an

image from the pooling layer 1, which has 2x2 kernel, four pixels of an image from the

Convolutional layer 1 must be generated. As the convolutional layer 1 sweeps the input

image with a 5x5 kernel, 100 pixels (2x2x5x5) from the input image must be processed

to generate one pixel in an image from the pooling layer 1. Instead of generating a whole

row of an image from the convolutional layer 1 at a time, a 2x2 kernel is generated at a

time, which enables that a pixel can be generated in an image from pooling layer 1, as

shown in 5.7. This approach considerably improves the system performance.

mem_address = x ∗ width+ y (5.3)

This sweeping process is controlled by the c1_offsets and is the same for all the

59

Figure 5.6: Convolution-1 control component state machine

Source: The Author

Figure 5.7: Convolution 1 sweeping process

Source: The Author

60

Figure 5.8: CNN sweeping process

Source: The Author

convolutional and pooling layers, as illustrated in Figure 5.8. The offset of a layer con-

trols the input image addressing in the BRAM. The offset calculation depends on all the

previous layer parameters. Consequently, as far a layer is from the input layer (input im-

age stored in BRAM) more complex is its offset calculation, which is controlled by the

CONV1_CTRL component. The offsets described in Figure 5.8 were simplified, actually

they are products from the convolution and pooling strides starting from the convolution

layer 1 to the layer being computed. The counter limits used by the offsets are also prod-

ucts of the convolutional and pooling kernels and strides.

The details of the control and operational part of the convolutional layer 1 is il-

lustrated in Figure 5.9. As it can be seen, one DSP MACC macro for each feature map

is instantiated (for simplicity, signals of only one DSP were shown) and each one has its

own weight LUTROM. The weight LUTROM output is connected to the "B" input of the

DSP that is one of the operands of the MACC MACRO. The weight LUTROM address is

controlled by the CONV1_CTRL component that performs the timing-multiplexing in the

DSP weight inputs. The bias does not need to be multiplexed, inasmuch as each feature

map or Full-connected neuron has only one bias. Therefore, each bias LUTROM output is

fixed to a specific DSP "LOAD DATA" input. The CONV1_CTRL component loads the

bias into the DSP through the "LOAD" signal and after it finishes a MACC computation,

it resets the DSP by the "DSP_RESET" signal". As the Convolutional and Full-connected

parameters fractional precision was set to 8 bits, the pixels have 8 bits (1 Byte), only 17

bits out of the 32-bit BRAM output were used as the "A" input of the DSP (1 sign-bit, 8

bits for integer-part and 8 bits for fractional-part).

The BRAM output and weight LUTROM outputs must be synchronously as-

signed to the DSP inputs by the CONV1_CTRL component so that the correct results

61

Figure 5.9: Convolution 1 - Control and datapah

Source: The Author

are produced. In order to prepare the receptive field of pooling layer 1 (2x2 kernel),

the CONV1_CTRL component receives an array that contains all the DSP outputs in the

layer, the "BC1_array" (Blob convolution 1 array). Thus, after 4 convolutional computa-

tions, the CONV1_CTRL component reduces the precision of the Convolution 1 output

signals, then these values are assigned to the P1_ARRAY (Pooling 1 array), after which

it writes a ’high’ value to the the p1_start signal. It is also possible to note that the

CONV1_CTRL component receives a "FC3_done" (Full-connected-3 done) signal and a

"BFC3_ARRAY_OUT" (Blob Full-connected-3 Array Out) signal array. A "high" value

in the "FC3_done" signal indicates that the Full-connected-3 layer finished its computa-

tion, whereas the "BFC3_ARRAY_OUT" signal array contains the Full-connected-3 layer

outputs. When the CONV1_CTRL component reads a "high" value in the FC3_done

signal, it changes the "wea" signal to write mode in order to write the values of the

"BFC3_ARRAY_OUT" array into the BRAM.

The layer implementations have similar architectures. They have an operational

part that can be composed by DSPs, weight LUTROM and bias LUTROM, which are

present in Convolutional and Full-connected layers. Alternatively, the operational part

can be composed only by Max comparators, which are present in Pooling layers. All the

62

layers have a control part that remains idle while its "start" input signal is "low". The

control part of the layers controls the receptive field of the next layer so that when the

computation of the current layer is finished, it writes a "high" value to the "start" signal

that is read by the next layer. However, only the CONV1_CTRL component has access to

the BRAM. The simplest controllers are the Full-connected control components. As they

have one-dimension receptive field, they do not need to control the receptive field of the

next layers.

5.3 APSoC Implementation results

The case study CNN was implemented on the Xilinx Zynq-7000 APSoC XC7Z020-

CLG484. Figure 5.10 shows the Zedboard that contains the Zynq-7000, whose features

are described in the list bellow:

• Xilinx Zynq-7000 AP SoC XC7Z020-CLG484

• Dual-core ARM CortexTM-A9

• 512 MB DDR3

• 256 MB Quad-SPI Flash

• 4 GB SD card

• On-board USB-JTAG Programming

• 10/100/1000 Ethernet

• USB OTG 2.0 and USB-UART

• Analog Devices ADAU1761 SigmaDSP R© Stereo, Low Power, 96 kHz, 24-Bit Au-

dio Codec

• Analog Devices ADV7511 High Performance 225 MHz HDMI Transmitter (1080p

HDMI, 8-bit VGA, 128x32 OLED)

• PS & PL I/O expansion (FMC, Pmod, XADC)

The CNN resource requirement that does not enable a bigger CNN implementa-

tion is the FC weight storage. The Full-connected MLP, as the name implies, has all of its

inputs connected, so it considerably increases the weight storage requirement. The num-

ber of FC weights is calculated by multiplying the number of neurons from a FC layer

times the number of inputs of each neuron from this layer, then summing the weights of

all FC layers. The initially proposed CNN model (YANG et al., 2016) has 800 neurons in

63

Figure 5.10: ZedBoard

Source: (REN et al., 2015)

the first FC layer. Each neuron has a receptive field of 36 feature maps, each of them pos-

sessing dimensions of 5x5. Therefore, the first FC layer requires (800x36x5x5) 720000

weights. The second layer has 256 neurons, each of them possessing 800 inputs (the

number of neurons from the previous FC layer), totaling (256*800) 204800 weights. The

third FC layer has 12 neurons, each of them having 256 inputs (12*256), totaling 3072

weights. Thus, the total number of FC weights is (720000 + 204800 + 3072) 927872.

The number of convolutional weights is calculated by multiplying the number of

pixels of the kernel (dimensions) times the number of feature maps from the previous layer

times the number of feature maps from the current layer, then summing the weights of all

convolutional layers. The convolutional layer 1 has 16 feature maps, each one having

5x5 kernel and a previous layer with 1 feature map (input layer), totaling (5x5x1x16)

400 weights. The convolutional layer 2 has 32 features maps each one possessing 5x5

kernel and with the previous layer having 16 feature maps (5x5x16x32), totaling 12800

weights. The total number of convolutional weights is (400 + 12800) 13200. So, the

weight sharing benefit of convolutional layers considerably reduces the weight storage

requirement. Adding the number of FC weights to the number of convolutional weights of

the CNN model of (YANG et al., 2016), the result is (927872 + 13200) 941072, whereas

the total number of weights of the proposed reduced CNN is 18190.

Hence, the reduction of the number of FC neurons is crucial to memory usage

reduction. As the FC neurons and convolutional neurons are distributed across the FPGA

area, the distributed memory was used (LUT as memory) for their weight storage. There-

fore, the initial proposed CNN implementation exceeded the available LUT resources.

Although the total number of weights was reduced by 98.03% (from 941072 to 18190),

64

the LUT utilization comprises 59.14% of the available APSoC LUTs, as will be shown in

the following results.

DSP slices were used because they are efficient for digital signal processing imple-

mentations, like deep learning, in virtue of their dedicated routing signals and arithmetic

blocks, reducing the use of LUTs and Carry Logic of the Configurable Logic Blocks

(CLBs), reserving these resources for other generic usage (FU et al., 2017). As shown in

Table 5.2, even with the DSP usage the LUT utilization comprises 59.14% of the available

LUTs. A great part out of these resources was used to the weight storage, as previously

explained. Given the fact that more complex CNNs are usually implemented on high-end

APSoC platforms, like the Xilinx Ultrascale family (FU et al., 2017), the case study CNN

is suitable for the available mid-range APSoC platform.

Table 5.2: FPGA resource utilization
Resource Utilization Available Utilization %

LUT 31463 53200 59.14%
LUTRAM 2132 17400 12.25%

FF 27234 106400 25.60%
BRAM 4.50 140 3.21%

DSP 94 220 42.73%
IO 12 200 6.00%

BUFG 2 32 6.25%

Source: The author

The complexity involved in sweeping the input image stored in the BRAM taking

into account the successive layers gave good performance results, which enabled a 313

FPS rate on 32x32 images, as shown in Table 5.3. In addition, the DSP usage also avoids

that timing constraints are not met due to their dedicated routing signals (Depending on

the routing through and between the CLBs, the timing constraints may not be met due to

the delay associated to long paths).

The Softmax and Max execution time in the ARM processor are in the range of mi-

croseconds, whereas the CNN execution time is the range of milliseconds. Even with the

sums of exponential being computed by serial instructions instead of dedicated hardware,

the Softmax computation achieved excellent timing results, having little contribution in

the total execution time. Thus, other computer vision tasks can be explored in the ARM

processor in order to take advantage of the benefits of each part of the APSoC platform

(PS and PL).

In order to predict the performance of greater CNNs, the performance scalabil-

ity of the APSoC implementation is given in terms of CNN model parameters. Firstly,

65

Table 5.3: Performance results
Description Value

PL Frequency 100 MHz
PL Clock Cycles 303,170

PL Execution time 3.03170 ms
PL Execution time 3.03170 ms

PS Frequency 666.66 MHz
PS Softmax Clock cycles 135480

PS Softmax Execution time 203.42 us
PS Max Clock cycles 22116

PS Max Execution times 33.21 us
PS Total Clock cycles 157596

PS Total execution time 236,63 us
Total execution time 3.26833 ms

Source: The author

visualize some important acronyms defined in Table 5.4.

Table 5.4: CNN feature abbreviations
Abbreviation description

cv1k Convolution 1 kernel size (squared)
c1fm Convolution 1 feature maps
p1k Pooling 1 kernel size (squared)
c2k Convolution 2 kernel size (squared)

c2fm Convolution 2 feature maps
p2k Pooling 2 kernel size (squared)
p2i Pooling 2 image dimension (squared)
fc1n Number of neurons of Full-connected layer 1
fc2n Number of neurons of Full-connected layer 2
fc3n Number of neurons of Full-connected layer 3

ctrl_overhead Performance overhead due to the control

Source: The author

The performance of a CNN implemented by the proposed tool is defined by Equa-

tion 5.6 that is the sum of the clock cycles taken by the effective computation (Equation

5.4) and the performance overheard associated to the timing-multiplexing control (Equa-

tion 5.5).

clock_cycles = (cv1k×p1k×c2k×p2k×p2i)+(c2k×c1fm)+(p2i×c2fm)+fc1n+fc2n

(5.4)

ctrl_overhead = ((((5)p1k + 1)c2k + 1)p2k + 1)× p2i+ 16 (5.5)

66

total_clock_cycles = clock_cycles+ ctrl_overhead (5.6)

Using Equation 5.6 to predict the performance of the initially proposed CNN

(YANG et al., 2016) that classifies 12 sub-classes, it is possible to know that it would

take only 304,897 clock cycles. Therefore, if an APSoC platform which satisfies the

weight storage (more LUTs are required) and the DSP resource requirement is used, the

performance change will be negligible in contrast with the reduced CNN that classifies

only 6 sub-classes (303,170 clock cycles). Consequently, the CNN execution time run-

ning at 100 MHz in the PL (3.04 ms) will be lower than or almost equal to the related work

which performs the classification in 173ms (KASSANI; TEOH, 2017), 40 ms (WANG et

al., 2013), 33ms (LIU et al., 2016), 11.4 ms (CIREŞAN et al., 2012), and 3ms (YANG et

al., 2016). Comparison with the work that implemented ADAS on an ASIC (LEE et al.,

2017) and on an APSoC (HAN; ORUKLU, 2014) platform were not done because this

work does not separate the execution time of the classification and detection phase.

However, the FPGA resource utilization of the proposed timing-multiplexing ar-

chitecture was restricted in order to reserve some resources for the Fault injection setup,

which will be described in the next chapter. So, if almost 100% of the FPGA resources

are used, the CNN architecture will be more parallelized and the performance will be even

better.

As shown in Figure 5.11, summing the dynamic (1.897 W) and static (0.160 W)

power consumption, the total power consumption of the proposed CNN implementation

on the target APSOC is about 2.05 W. The Drive PX-2 embedded GPU in its minimum

operation, with one passively cooled mobile processor, operates at 10 W. If the multi-chip

configuration is enabled, with four high-performance AI processors, the power consump-

tion reaches 250 W (HUANG, 2016)(NVIDIA, 2016). Therefore, the proposed CNN

implemented on the target APSoC consumes less power than an embedded GPU in its

minimum operation.

As shown in dark pink in Figure 5.11, most of the power consumption is due to

the PS. This is expected, because the ARM processor operates at a 666.6 MHz frequency

while FPGA operates at a 100 MHz frequency. Although the PS part of the APSoC

was only used to perform the softmax function, it is a good practice to use the PS to

make decisions and assessment for ADAS tasks. Beyond the ARM processor, the PL

contains Advanced Microcontroller Bus Architecture (AMBA) interconnections and sev-

eral buses such as Serial Peripheral Interface (SPI), Controller Area Network (CAN) and

67

Figure 5.11: Total SoC Power consumption

Source: The author (generated by Xilinx Vivado 2017.1)

Inter-Integrated Circuit (I2C), as shown in Figure 5.12 (XILINX-ZYNQ, 2017). ADAS or

autonomous car systems can receive information by a vision system implemented on the

PL by using the "AMBA interconnect" and then actuate the car using the CAN protocol.

This system level control can be developed in software using the software programmabil-

ity of the ARM-based processor. So the PS is the main part of a real ADAS or autonomous

car system (XILINX-AUTOMOTIVE, 2016).

The advantage of the PL over the PS is its parallelism. As deep learning algorithms

are implemented using mathematical operations that can be computed in parallel, it is a

common practice to implement objects recognition (as the traffic-sign recognition) on the

PL part for pixel-level analysis (XILINX-AUTOMOTIVE, 2016).

68

Figure 5.12: Zynq-7000 block diagram

Source: (XILINX-ZYNQ, 2017)

69

6 FAULT INJECTION BY EMULATION

As the CNN was implemented on a FPGA of an APSoC, its peculiar radiation

effects must be taken into account. The persistent effects of a fault in the configuration

bits is the main concern in a FPGA reliability analysis, given that the upsets in Flip-Flops

are usually transient effects (KASTENSMIDT; CARRO; REIS, 2006). There are three

ways of analyzing the reliability of a FPGA design or another integrated circuit, it can

be performed by simulation, emulation or radiation experiments. Radiation experiments

can be performed at ground level, high altitudes and space level. Radiation experiments

at ground level can be carried out by particle-beam (ZIEGLER et al., 1996) or laser test-

ing (POUGET et al., 2001) and present an acceleration of the real-world scenario, while

radiation experiments at high altitudes (O’GORMAN et al., 1996) or at space level (VE-

LAZCO et al., 1999) are the real-world scenario, however these experiments can take

from months to years. Therefore, radiation experiments are the most accurate tests. A

reliability analysis by emulation can artificially cause the same fault in the real circuit that

can take place by a radiation experiment and can be done using one (NAZAR; CARRO,

2012)(BERNARDI et al., 2004), two (ALDERIGHI et al., 2007) or three (WIRTHLIN et

al., 2003) FPGA boards. A simulation, in turn, tries to imitate both the real-world circuit

and radiation effect using either Technology Computer Aided Design (TCAD) (GAD-

LAGE et al., 2010) or processor simulator (LI et al., 2008). In addition to the ways of

analyzing the reliability, there are also many architecture levels such as device, compo-

nent, block and system. Both reliability analysis types and architecture levels have pros

and cons regarding their precision, cost, controllability, observability, performance and

other issues (NAZAR; CARRO, 2012).

Radiation experiments are the most accurate tests but they are very expensive.

They may have very low controllability and observability depending on the test setup.

The time required for radiation experiments can be months, on space and high altitude

expositions, or several minutes or hours using particle accelerators. Laser testing can

provide a better controlability during the fault injection. The simulation has the highest

controllability and observability and, in general, its performance is inversely proportional

to its accuracy. The simulation of faults can be performed by computing simulation or em-

ulation in hardware platforms. The cost depends on which platform it is performed which

in turn is also related to its performance (PCs, data-centers, clusters of GPUs, FPGAs,

supercomputers and so on). The emulation and computing simulation of faults normally

70

Figure 6.1: Piled-up fault injection flowchart

Source: The author

present a very high controlability and observability. It can have high accuracy depending

on how the fault is emulated, and in general for the same platform used in a simulation, its

performance is considerably lower than in a simulation, thus enabling implementations in

less expensive platforms than in simulation (NAZAR; CARRO, 2012).

The architecture level pros and cons depend on the goal of the test, because they

depend on the reliability test, platforms and other issues. However, in general, the higher

the abstraction level of the test, the easier it is to extrapolate the result to a system effect. A

reliability test and architecture level is strongly dependent on its goal (military, academic,

commercial and so on), thus for academic purposes Fault Injection (FI) by emulation is a

suitable approach (HSUEH; TSAI; IYER, 1997)(ZIADE et al., 2004).

There are many ways of injecting faults by emulation in FPGA configuration bits

and it depends on what is the fault injection purpose. If someone wants to know how

many critical bits out of the essential bits a design have, an exhaustive fault injection

that encompasses all the configuration bits used by a design is indicated. Alternatively, if

someone wants to estimate the statistical reliability of a FPGA design, that is, how reliable

a FPGA design under random distributed faults is, a piled-up random fault injection is

suitable. The random piled-up fault injection flowchart is illustrated in Figure 6.1.

First, the fault injection setup is initialized, then the FPGA is configured with the

71

Figure 6.2: Faulty hierarchy

Source: The Author

Design Under Test (DUT) and the Fault injection (FI) setup. After which, a fault is in-

jected in a random position of the design configuration bits. Then, the Design Under

Test (DUT) is executed, so the fault position and the DUT result, as well as the current

number of piled-up faults, are registered in a log file. If a failure (either critical Silent

Data Corruption (SDC) or time-out) does not occur, the fault injection process contin-

ues until the maximum number of injected faults is reached. If a failure occurs or the

maximum number of injected fault is reached, the FPGA is re-configured and the process

is restarted. However, errors and un-Architecturally Correct Execution (un-ACE) do not

stop the piled-up fault injection. The critical SDC, time-out and errors, as well as the FI

setup, will be explained in the next sections.

6.1 Failure Model

Before proceeding with the explanation of the fault classification, some soft-error

terminologies must be defined. Some bits out of a hardware design (PL) or a software (PS)

are responsible for the Architecturally Correct Execution (ACE) of the respective hard-

ware design or software. On the other hand, the bits that do not affect the system output

are called un-ACE bits (MUKHERJEE et al., 2003). Errors are often further classified as

detected and undetected. Detected errors are referred to as Detected Unrecoverable Errors

(DUEs), whereas the undetected errors are referred to as Silent Data Corruptions (SDCs)

(MUKHERJEE et al., 2003). Not always a SDC causes a function "failure" but when it

occurs the SDC is called as "critical SDC". When a SDC does not cause a function "fail-

ure" it is called as "error". If the system does not reply after its specified execution time,

a "time-out" occurs and since the system does not perform its function it is classified as a

"failure". The faulty hierarchy is illustrated in Figure 6.2.

Considering the CNN topology implemented on the FPGA, there are three effects

72

Figure 6.3: Failure model APSoC CNN

Source: The Author

(Error, failure, un-ACE) that can take place due to a fault in the configuration bits. One

fault across the CNN can be propagated to the output so that the result is different from

that expected, but after the softmax computation and max computation the maximum

value is still preserved. As explained before, this type of effect is classified as an "error".

Although the system output is corrupted (SDC), the system functionality is kept. Alterna-

tively, the system output can be corrupted so that after the softmax and max computation,

the maximum value differs from that expected. This "critical SDC" is classified as a "fail-

ure" because the system does not perform its main functionality. Due the fact that the

CNN was implemented in a multiplexed way instead of a full-parallel way, it requires

that after a certain number of clock cycles the CNN informs the ARM processor that the

computation is done and sends the results. Thus, if a fault in the configuration bits causes

an "open" in a wire that sends the done signal, or if an offset counter that defines whether

a state transition will occur or not, as well as if other faults occur, the ARM processor

never will receive a done signal. When a system does not perform its specified function

after its specified execution time, a "time-out" occurs, and this effect is classified as "fail-

ure". When none of these effects occur, the injected fault causes an un-ACE effect. An

illustration showing how a SEU (Thunder) can cause different type of effects is given in

Figure 6.3.

6.2 Experimental Setup

The experimental setup is composed by a Zedboard APSoC and a host PC, as il-

lustrated in Figure 6.4. The Host PC executes an application in python that randomizes

73

Figure 6.4: Fault injection setup

Source: The author

the configuration bit position of the design, and then sends a configuration frame to the

FPGA by a Universal Asynchronous Receiver/Transmitter (UART) port emulated with a

Universal Serial Bus (USB) connection. After the fault is injected, the DUT is executed,

and the result is received, the application writes the FI results in a log file, and then resets

and re-configures the FPGA when it is necessary. The APSoC contains the ARM proces-

sor (PS) and the FPGA (PL) which, in turn, contains the injector controller component,

the Internal Configuration Access Port (ICAP) and the DUT interface component. There

are also additional DDR and QUAD SPI FLASH external memories.

The injector controller receives the commands from the Python application, run-

ning at the host PC by an UART connection, then sends the frame and instruction to the

ICAP in order to inject the fault. The ICAP is the embedded component in the Xilinx FP-

GAs responsible for partial-reconfiguration of the configuration bits. After the ICAP to

perform the fault injection, the injector controller starts the DUT sending a "start" signal

to the DUT interface, then waits for a "done" signal from the same as well as the error

classification. The DUT interface is illustrated in Figure 6.5. The "start" and "out_data"

signals, coming from and going to the injector controller, communicate with the ARM

processor through AXI General Purpose Input/Output (GPIO) connections using the AXI

Static Memory Controller (SMC) bus. The ARM processor communicates with the exter-

nal FLASH memory in order to re-configure the FPGA when necessary.

These were the only modifications in the design described in section 5.2, the re-

maining configurations are the same described in Figure 5.3. Actually, the APSoC design

was implemented aiming at a fault injection experimental setup. The ARM application

74

Figure 6.5: DUT interface component expansion

Source: The author

simplified flowchart is illustrated in Figure 6.6. First, the application is initialized, then

the Processor Configuration Access Port (PCAP) is disabled in order to enable the ICAP

usage. After which, all the cache levels are disabled to avoid data corruption. Then, the

code stays in an empty loop while the start signal is 0, otherwise the CNN is executed

classifying 6 images (one per class). If the CNN does not write a "done" into the BRAM

after its execution time, a "time-out" is signalized. If a time-out does not happen, the FC

outputs are compared with the Gold ones. If the values are not identical, an "error" is

generated. After which, the FC signals are converted to float, and the Softmax function is

computed. If the index of the maximum value of the Softmax is not identical to the Gold

one, a critical SDC is generated. Then, a "done" signal, as well as the error classification,

are sent by an output GPIO port and the loop restarts. This application was executed in

Bare Metal at the ARM processor.

Lastly, the defined APSoC floorplanning is shown in Figure 6.7. Xilinx APSoC

floorplanning is divided into top and bottom regions that can comprise different numbers

of rows. The address of a row on the bottom region increments from center to bottom and

of a row on the top region increments from center to top. Different than expected, Xilinx

referred to a block of many rows as "row". Thus, the Zedboard Zynq-7000 floorplanning

is divided into 3 rows, one row (row 0) lies on the top region and the other two rows (row

0 and row 1) are situated on the bottom region. The vertical lines are the columns and

the black block on the left top corner is the ARM processor. The minimum addressable

portion of configuration bits is the "frame". The frames comprise 101 words of 32 bits by

which are addressable by their bit position. Through the frame address and the bit position

75

Figure 6.6: ARM application algorithm

Source: The author

it is possible to choose at which specific position of the implemented design the fault will

be injected. Thus, the frames are addressable by their bottom/top regions, their row, their

major (column) and minor (sub-columns). Unfortunately, the CLB/DSP horizontal lines

are not directly associated to the minors and Xilinx does not provide the information with

regards to how the CLB/DSP lines are coded as minors. Therefore, the DUT components

must be placed over an entire row on the bottom or top region and the columns must be

limited by a column range.

Due to the high area utilization of the CNN design, it had to be divided into two

physical blocks (pblocks), one on the left of the bottom row 0 and another in the entire

bottom row 1. The injector controller is isolated from the DUT regions and strategically

placed near the ICAP, the remaining components of the design that do not belong to the

DUT are isolated from the DUT regions in the top row 0 with a reliable level of distance

from the DUT region on the bottom row 0. This isolation is necessary in order to avoid

fault injection in injector routing signals that could cross the DUT region if the injector

was placed near the DUT region. The DUT region placed on the bottom row 0 contains

the CONV1_CTRL and the CONV2_CTRL components, whereas the DUT region placed

on the bottom row 1 contains the remaining components of the CNN design.

76

Figure 6.7: Implemented design floorplanning

Source: The author

77

7 RELIABILITY RESULTS

As explained in the previous chapter, the fault effects were classified into un-

ACE, errors and failures. The critical SDCs and time-outs are found in the set of failures.

When critical SDCs occur, the correct classification is changed and when time-outs occur

the CNN does not perform the computation in its specific execution time. Firstly, the

higher level hierarchy effects (un-ACE, errors and failures) will be discussed, later only

the failures will be analyzed, then the number of incorrect classifications and lastly the

reliability curve of the CNN.

Before performing the analysis in the effect of piled-up faults in the configura-

tions bits, some definitions concerning the PL configuration bits must be introduced. The

Zynq-7000 APSoC XC7Z020 has 25.6E6 configuration bits. However, a subset of these

configuration bits is used by the user design. This subset is called as "essential bits".

Xilinx has an algorithm to identify the essential bits out of the configuration bits. This

information is obtained by setting constraints in the XDC file, and can be found in a log

file after the bitstream is generated. Essential bits enable accurate evaluations of the reli-

ability of a design implemented on FPGA (LE, 2012). Xilinx also has a tool to filter the

essential bits more important in the design, these bits are called as "prioritized essential

bits". A specific block of the design can be defined as prioritized and only its used config-

uration bits will be defined as essential bits enabling hardening process in specific blocks,

and then reducing the area overhead associated with spatial redundancy techniques. The

bits out of the essentials that once flipped cause a function "failure" are called as "critical

bits". Therefore, the more critical bits the design possesses, the more sensitive is the de-

sign. (LE, 2012). The device configuration, essential, prioritized essential and critical bit

sets are illustrated in Figure 7.1.

The proposed CNN uses 5.73E6 essential bits out of the configuration bits of the

device (22.31%). However, the CNN was isolated in physical blocks that contain 8.18E6

configuration bits. Thus, only the configuration bits used by the DUT physical blocks

must be taken into account in order to perform an accurate reliability analysis. Therefore,

the CNN essential bits comprise about 57.33% out of the physical block configurations

bits. The critical bits percentage, which will be discussed later, must be calculated over

the essential bits.

As the function of the CNN design is to classify traffic-signs in a specific execution

time, one configuration bit is called critical when the index of the maximum value of the

78

Figure 7.1: Relationship of Device Configuration Bits, Essential Bits, Prioritized Essen-
tial Bits, and Critical Bits

Source: (LE, 2012)

softmax vector is different from the gold one or when the maximum value is not computed

in its required execution time. Even if an upset in a given configuration bit changes the

output of the Full-connected neurons, as long as it does not change the correct traffic-sign

classification (maximum value of the softmax vector), it will not be classified as a critical

bit.

The critical bits of a design can be found by exhaustive fault injection by emu-

lation. Unfortunately, each fault injection and result verification take about 200 ms due

to the CNN execution time for all the samples, the communication and verification ex-

ecution time. Thus, injecting faults in 8.18E6 configuration bits will take about 18.95

days. Moreover, when a bit-flip occurs in a bit that transforms a LUT configured as

memory into a shift-register, the process of hard resetting the device, reconfiguring the

FPGA using the QUADS-PI flash and loading the application code on ARM processor

takes about 4 seconds, increasing the total fault injection time. Therefore, the reliability

analysis was performed by random fault injection which provides approximate results,

on the other hand it is considerably less time-consuming than exhaustive fault injection

(NAZAR; CARRO, 2012).

The percentage of un-ACE, errors and failures versus the piled-up faults is plot-

ted in Figure 7.2. 1000 piled-up fault injection campaigns were performed, where the

maximum number of piled-up faults was set to 300. Nevertheless, it will be shown in the

results that the piled-up faults do not reach this value because when a failure occurs the

campaign is ended.

As it can be seen in Figure 7.2 when one fault is injected (SEU), the un-ACE

79

Figure 7.2: Classification of the injected faults in the Convolutional Neural Network

Source: The Author

effects comprise 47.3% out of the fault injections campaigns and this percentage is ex-

ponentially decreased with a high slope as the faults are piled-up. Un-ACE effects occur

up to 31 faults are piled-up. Indeed, un-ACE under many piled-up faults is pretty un-

likely (0.1%), provided that from 6 piled-up faults onwards the un-ACE probability of

happening is less than 1%.

Regarding the errors under one injected fault (SEU), their percentage comprises

33.2% out of the fault injection campaigns and it dominates the portion of ACE effects

(errors + failures). However, as the faults are piled-up, the portion of errors is decreased,

whereas the portion of failures is increased. This difference is exponentially increased so

that after 20 piled-up faults, approximately all the ACE effects are failures. The errors

occur up to 34 faults are piled-up but it has an extremely little probability of happening

(0.1%).

These results imply that the proposed CNN has a high number of critical bits

among the essential bits, consequently its susceptibility is rapidly increased with the piled-

up faults in the essential bits. Once the essential bits comprise about 57.33% out of the

physical block configuration bits and 52.7% (100 - 47.3) of the configuration bits injected

are ACE bits, approximately 91.92% (52.7/57.33) out of the essential bits are able to

cause a difference in the system output. Fortunately, instead of the portion of failures, the

portion of errors will not change the correct traffic-sign classification, because they do not

change the maximum value of the softmax vector.

Concerning failures, the percentage of critical SDCs and time-outs out of the fail-

ures versus the piled-up faults are shown in Figure 7.3. It is possible to note that regardless

of the number of piled-up faults, the critical SDCs and time-outs percentage practically

remain the same, the critical SDC percentage varies around 92% to 94% out of the fail-

ures. It happens due to an architecture feature of the design. The time-outs are caused

80

Figure 7.3: Percentage of critical SDCs and time-outs out of Failures

Source: The Author

Figure 7.4: Number of critical SDCs and time-outs out of the Failures

Source: The Author

by upsets in LUTs that implement the logic of the state machines, or routing signals used

by these state-machines, consequently the CNN does not complete the computation and

never sends the "done" signal. Given the fact that these resources comprise a little portion

of the total design resources, it is pretty unlikely that the faults are injected in the config-

uration bits associated to these resources. Rather, CNNs use a lot of LUTs to store the

Full-connected weights and many routing signals to connect layer outputs to layer inputs.

An upset in these resources does not affect the state of the system, but only corrupts the

system output. Hence, the critical SDCs are more likely to occur.

As shown in Table 7.1 and Figure 7.4, although the percentage of critical SDCs

and time-outs out of the failures almost remains the same, the number of SDCs and time-

outs is increased with the number of piled-up faults.

It is also important to know how many images from the dataset were incorrectly

classified in order to analyze the impact of the failures. The dataset contains one image

per class, so from one to six images can be wrongly classified. When a critical SDC

occurs, there can be different numbers of wrong classifications whereas when a time-out

occurs, all the images from the dataset (6 images) are wrongly classified. The percentage

81

Table 7.1: Number of critical SDCs and time-outs out of the Failures
Piled-up faults Critical SDC Time-out Failure

1 184 11 195
2 329 26 355
3 478 30 508
4 571 35 606
5 651 41 692
6 721 45 766
7 774 46 820
8 816 47 863
9 852 50 902

10 880 57 937
11 892 57 949
12 908 58 966
13 912 58 970
14 915 58 973
15 921 58 979
16 925 58 983
17 927 59 986
18 930 60 990
19 934 60 994
20 934 60 994
21 935 60 995
22 936 60 996
23 936 60 996
24 937 60 997
25 938 60 998
26 938 60 998
27 938 60 998
28 938 60 998
29 938 60 998
30 938 60 998
31 938 60 998
32 938 61 999
33 938 61 999
34 939 61 1000

82

Figure 7.5: Number of wrong classifications

Source: The Author

of failures by which from one to six images are wrongly classified versus the piled-up

faults is plotted in Figure 7.5.

Regardless the number of piled-up faults, the percentage of each number of wrong

classifications almost remains the same. Only one image was wrongly classified in about

40% out of the failures, 2 images were wrongly classified in about 20% and 3, 4, 5 and 6

images were wrongly classified in approximately 10%. As upsets in the PL configuration

bits are persistent effects, multiple wrong classifications are expected instead of a single

wrong classification. However, in 40% of the cases, only 1 image is wrongly classified

and the other five are correctly classified. This may occurs, because one image from the

dataset may be the most difficult image of being classified. Thus, it is pretty likely that this

image will be wrongly classified first. As discussed in sub-section 4.2.2, there is a great

probability of this image being from the "sub-class 0". The probability of 2 images being

wrongly classified is about 20%, so an image can be the second most difficult image of

being classified. As the "sub-class 5" has the second worst accuracy, the image from this

sub-class is the most probable of being the second most difficult image of being classified.

Lastly, the probabilities of 3 to 6 images being wrongly classified are equally about 10%,

and to this extent, four images may be equally difficult of being classified. The absolute

number of occurrences for each case is shown in Table 7.2 and Figure 7.6. It is evident

that although the percentage of each case nearly remains the same, the number of failure

occurrences are increased with the number of piled-up faults.

The probability that a visible system error will occur given a bit flip in a storage

cell is expressed by the Architectural Vulnerability Factor (AVF) (MUKHERJEE et al.,

2003). Thus, the reliability can be expressed by the complement of the AVF (100% -

AVF). The reliability curve when considering failures, is plotted in Figure 7.7.

As it can be seen in Figure 7.7, the reliability of the CNN considering failures

83

Table 7.2: Number of wrong classifications (absolute values)
Piled-up faults 1 image 2 images 3 images 4 images 5 images 6 images Total

1 68 46 24 18 23 16 195
2 135 84 40 29 32 35 355
3 197 118 52 46 52 43 508
4 236 139 62 56 60 59 612
5 271 156 74 62 65 64 692
6 301 169 78 72 76 70 766
7 325 178 84 78 81 74 820
8 345 186 88 83 85 76 863
9 360 192 94 87 88 81 902

10 372 196 95 90 94 90 937
11 380 200 95 90 94 90 949
12 386 202 97 90 96 95 966
13 388 202 98 91 96 95 970
14 390 203 98 91 96 95 973
15 394 203 98 91 97 96 979
16 396 204 99 91 97 96 983
17 397 205 99 91 97 97 986
18 399 205 100 91 97 98 990
19 401 205 100 91 98 99 994
20 401 205 100 91 98 99 994
21 402 205 100 91 98 99 995
22 403 205 100 91 98 99 996
23 403 205 100 91 98 99 996
24 404 205 100 91 98 99 997
25 404 205 100 91 99 99 998
26 404 205 100 91 99 99 998
27 404 205 100 91 99 99 998
28 404 205 100 91 99 99 998
29 404 205 100 91 99 99 998
30 404 205 100 91 99 99 998
31 404 205 100 91 99 99 998
32 404 205 100 91 99 100 999
33 404 205 100 91 99 100 999
34 405 205 100 91 99 100 1000

84

Figure 7.6: Number of wrong classifications

Source: The Author

Figure 7.7: Failure reliability

Source: The Author

85

(critical SDC + time-outs) is about 80.5% and exponentially decreases with the number

of piled-up faults. The maximum number of piled-up faults before a failure occurs is 34

but this case has a minimum chance of happening. As the essential bits comprise 57.33%

out of the entire physical block configuration bits and the AVF due to SEU is about 19.5%,

the critical bits of the proposed design are approximately 34.03% (19.5/57.33) out of the

essential bits.

Related work (LOPES; KASTENSMIDT; SUSIN, 2017)(CLEMENTE et al., 2016)

shows that Neural Networks can have different AVFs depending on the topology of the

Neural Network and its hardware architecture. In (LOPES; KASTENSMIDT; SUSIN,

2017) the Neural Network AVF is about 0.62% while the AVF of the proposed CNN is

about 19.5%. Nevertheless, the Neural Networks implemented by (LOPES; KASTENS-

MIDT; SUSIN, 2017) do not use timing-multiplexing for area-saving, rather a full-parallel

approach was implemented. In the proposed timing-multiplexing architecture, hardware

resources are reused in many computations, hence an upset in a resource will affect many

computations, increasing the probability of a fault being propagated to the output. In the

full-parallel approach each one of the neuron inputs has dedicated signals, consequently,

an upset in a resource will be associated to a specific signal and can be masked by the

combination of other signals decreasing the probability of a fault being propagated to the

output.

The AVF of the Hopfield Neural Network (HNN) implemented by (CLEMENTE

et al., 2016) is about 15.64% (Errors, time-out and convergence), that is near the AVF

of the proposed CNN, 19.5%. This Neural Network topology also reuses hardware re-

sources, inasmuch as it has feedback and after a specific number of cycles the output

converges to a value. An "error" occurs when the HNN converges to a wrong value, a

"time-out" occurs when after a large number of cycles the HNN does not return any re-

sult, and a "convergence" occurs when the HNN takes more cycles than that expected

to converge to the correct result. Provided that the "convergence" is the main portion of

the AVF (13.28%), many differences in the output can be corrected by the feedback, but

nonetheless it takes more cycles to converge. Rather, in the proposed CNN, the errors are

masked by the softmax and max function computed at the ARM processor. Therefore, it is

possible to note that Neural Networks that reuse hardware resources are more susceptible

than parallel pipe-lined Neural Networks.

Furthermore, there is the possibility of a fault being injected in a configuration

bit that transforms LUT used as memory into a shift-register. As mentioned previously,

86

in this case, a SBU in this specific configuration bit will cause multiple differences in

other configuration bits (NAZAR; CARRO, 2012). As mentioned in section 5.3, LUTs

as memory were extensively used to store the Full-connected weights, therefore there is a

great probability that these LUTs will be affected by the random fault injection.

87

8 CONCLUSIONS

A CNN was proposed in this work to classify traffic-sign images from the GTSRB

dataset. Due to the fact that one of the goals of this work was to obtain good average

accuracy results in a short time, the training results of the super-class CNNs show a good

average accuracy (90.0%) for a short time training (40 minutes) on a single GTX 680

GPU card. Another work (CIREŞAN et al., 2012) that achieves a state-of-the-art average

accuracy (99.46%) took 37 hours to be trained on four GTX 580 GPU cards. There-

fore, the proposed CNN training achieves an acceptable average accuracy result taken

into account its training time. In virtue of the fact that there is no specific method for

defining a neural network model and solver parameters, the trial-and-error method is used

for neural network training (HAYKIN; NETWORK, 2004). Even if the tests are automat-

ically performed, there are numerous possibilities. Thus, neural network training is a very

time-consuming task, inasmuch as several layers, architectures, solvers, and even other

machine learning approaches must be tested in order to achieve excellent results. Hence,

if a more time-consuming CNN training was carried out, it would reach state-of-the-art

accuracy results. Unfortunately, due to the available APSoC resources, the initially pro-

posed CNN had to be reduced to a 6-sub-class CNN but its average accuracy result was

maintained.

The second goal of this work was to accelerate the trained deep learning algorithm

in hardware, thus, given the APSoC implementation results, the timing-multiplexing ar-

chitecture obtained good performance results considering the available mid-range APSoC

device. Given the performance scalability of the CNN design, if an APSoC device with

more resources, like the Zynq Ultrascale family, is used, it is possible to implement the

initially proposed CNN that classifies all the prohibitory traffic-signs maintaining practi-

cally the same performance. As the performance of the proposed CNN is better than or

nearly equal to the related work (CIREŞAN et al., 2012)(WANG et al., 2013)(LIU et al.,

2016)(YANG et al., 2016)(KASSANI; TEOH, 2017), the performance results justify the

area utilized. Moreover, if a slower CNN is required, the CNN can be timing-multiplexed

at more levels, saving even more area. Regarding the power results, as expected for an

APSoC device, the cost of the power consumption is lower than GPUs, even on embed-

ded GPUs (HUANG, 2016)(NVIDIA, 2016), decreasing the thermal dissipation of the

system.

Lastly, the third goal of this work was to analyze the reliability of the proposed

88

hardware implementation. About the reliability of CNNs which were implemented on

FPGAs or PL part of APSoC, comparing the AVF of the proposed CNN (19.05%) and

the HNN (15.64%) implemented by (CLEMENTE et al., 2016) with another work that

analyzes neural network (0.62%) (LOPES; KASTENSMIDT; SUSIN, 2017), it was pos-

sible to note that the area-saving associated to the timing multiplexed-architecture of the

proposed CNN and the former cited HNN considerably increase the AVF, inasmuch as the

full-parallel architecture of the latter cited work presented an AVF much smaller. Hence,

full-parallel neural networks implemented on FPGAs/APSoC add redundancy to the de-

sign with the cost of high area-overhead. In order to make a radiation reliable traffic-sign

recognition system, the implementation must be verified by fault injection or a radiation

experiment. Then, a redundancy approach which can balance the area, power, perfor-

mance, and reliability has to be chosen, like Approximate Triple Modular Redundancy

(TMR) (GOMES; KASTENSMIDT, 2013).

8.1 Future Work

In order to infer which approach has high reliability and performance, and low

area and power costs, other machine learning algorithms like Random Forests and SVMs,

can be explored. Nevertheless, in order to reduce the design time required for accelerating

these algorithms in hardware, other VHDL automatic generator for these approaches must

be developed, and then making their tests less timing consuming. For more embracing

reliability results, the whole traffic-sign system encompassing the detection and classi-

fication phase must be implemented. Moreover, even other autonomous car tasks such

as pedestrian detection, automobile detection, road detection and lane detection can be

explored. In addition, other components of the APSoC device can be tested by radiation

experiments such as the ARM processor, the BRAM and DDR memories. Additionally,

other fault injection by emulation approaches can be tested such as fault injection in the

combinational logic (CLBs) or sequential logic (Flip-Flops).

89

REFERENCES

ALDERIGHI, M. et al. Evaluation of single event upset mitigation schemes for
sram based fpgas using the flipper fault injection platform. In: IEEE. Defect and
Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE International
Symposium on. [S.l.], 2007. p. 105–113.

ALVES, T. W. Sistema de detecção em tempo real de faixas de sinalização de trânsito
para veículos inteligentes utilizando processamento de imagem. 2017. Disponível
em: <http://hdl.handle.net/10183/157872>. Acesso em: 21 ago. 2017.

BAUMANN, R. et al. Boron compounds as a dominant source of alpha particles in
semiconductor devices. In: IEEE. Reliability Physics Symposium, 1995. 33rd Annual
Proceedings., IEEE International. [S.l.], 1995. p. 297–302.

BAUMANN, R. C. Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and materials reliability, IEEE, v. 5, n. 3,
p. 305–316, 2005.

BERGER, A. S. Embedded systems design: an introduction to processes, tools, and
techniques. [S.l.]: Focal Press, 2002.

BERNARDI, P. et al. On the evaluation of seu sensitiveness in sram-based fpgas. In:
IEEE. On-Line Testing Symposium, 2004. IOLTS 2004. Proceedings. 10th IEEE
International. [S.l.], 2004. p. 115–120.

BRADSKI, G.; KAEHLER, A. Learning OpenCV: Computer vision with the
OpenCV library. [S.l.]: " O’Reilly Media, Inc.", 2008.

BRIDLE, J. S. Probabilistic interpretation of feedforward classification network outputs,
with relationships to statistical pattern recognition. In: Neurocomputing. [S.l.]:
Springer, 1990. p. 227–236.

CAFFE. Caffe Solving in Python with LeNet. 2017. Available at: <http://nbviewer.
jupyter.org/github/BVLC/caffe/blob/master/examples/01-learning-lenet.ipynb>.
Accessed Aug. 25, 2017.

CIREŞAN, D. et al. Multi-column deep neural network for traffic sign classification.
Neural Networks, Elsevier, v. 32, p. 333–338, 2012.

CLEMENTE, J. A. et al. Hardware implementation of a fault-tolerant hopfield neural
network on fpgas. Neurocomputing, Elsevier, v. 171, p. 1606–1609, 2016.

DERRY, T. K.; WILLIAMS, T. I. A short history of technology from the earliest times
to AD 1900. [S.l.]: Courier Corporation, 1960. v. 231.

DETTMERS, T. 8-bit approximations for parallelism in deep learning. arXiv preprint
arXiv:1511.04561, 2015.

DING, C. et al. Matrix multiplication on gpus with on-line fault tolerance. In: IEEE.
Parallel and Distributed Processing with Applications (ISPA), 2011 IEEE 9th
International Symposium on. [S.l.], 2011. p. 311–317.

http://hdl.handle.net/10183/157872
http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/01-learning-lenet.ipynb
http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/01-learning-lenet.ipynb

90

DUCHI, J.; HAZAN, E.; SINGER, Y. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, v. 12, n. Jul, p.
2121–2159, 2011.

FU, Y. et al. Xilinx Deep Learning with INT8 Optimization on Xilinx Devices.
2017. Available at: <https://www.xilinx.com/support/documentation/white_papers/
wp486-deep-learning-int8.pdf>. Accessed Aug. 25, 2017.

FUENTES-P, J.; RUIZ-A, J.; RENDÓN-M, J. M. Visual simultaneous localization and
mapping: a survey. Artificial Intelligence Review, Springer, v. 43, n. 1, p. 55–81, 2015.

GADLAGE, M. J. et al. Scaling trends in set pulse widths in sub-100 nm bulk cmos
processes. IEEE Transactions on Nuclear Science, IEEE, v. 57, n. 6, p. 3336–3341,
2010.

GERLA, M. et al. Internet of vehicles: From intelligent grid to autonomous cars and
vehicular clouds. In: IEEE. Internet of Things (WF-IoT), 2014 IEEE World Forum
on. [S.l.], 2014. p. 241–246.

GERONIMO, D. et al. Survey of pedestrian detection for advanced driver assistance
systems. IEEE transactions on pattern analysis and machine intelligence, IEEE,
v. 32, n. 7, p. 1239–1258, 2010.

GIRSHICK, R. et al. Rich feature hierarchies for accurate object detection and semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. [S.l.: s.n.], 2014. p. 580–587.

GOMES, I. A.; KASTENSMIDT, F. G. Reducing tmr overhead by combining
approximate circuit, transistor topology and input permutation approaches. In: IEEE.
Integrated Circuits and Systems Design (SBCCI), 2013 26th Symposium on. [S.l.],
2013. p. 1–6.

GONZALEZ, R. C.; WOODS, R. E. Digital image processing prentice hall. Upper
Saddle River, NJ, 2002.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. <http://www.deeplearningbook.org>.

GYSEL, P.; MOTAMEDI, M.; GHIASI, S. Hardware-oriented approximation of
convolutional neural networks. arXiv preprint arXiv:1604.03168, 2016.

HAN, Y.; ORUKLU, E. Real-time traffic sign recognition based on zynq fpga and arm
socs. In: IEEE. Electro/Information Technology (EIT), 2014 IEEE International
Conference on. [S.l.], 2014. p. 373–376.

HAYKIN, S. Neural networks: a comprehensive foundation. [S.l.]: Prentice Hall
PTR, 1994.

HAYKIN, S.; NETWORK, N. A comprehensive foundation. Neural Networks, v. 2,
n. 2004, p. 41, 2004.

HE, K. et al. Spatial pyramid pooling in deep convolutional networks for visual
recognition. In: SPRINGER. European Conference on Computer Vision. [S.l.], 2014.
p. 346–361.

https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
http://www.deeplearningbook.org

91

HOELSCHER, I. G. Detecção e classificação de sinalização vertical de trânsito em
cenários complexos. 2017. Disponível em: <http://hdl.handle.net/10183/163777>.
Acesso em: 21 ago. 2017.

HOHL, J. H.; GALLOWAY, K. F. Analytical model for single event burnout of power
mosfets. IEEE Transactions on Nuclear Science, IEEE, v. 34, n. 6, p. 1275–1280,
1987.

HOUBEN, S. et al. Detection of traffic signs in real-world images: The German Traffic
Sign Detection Benchmark. In: International Joint Conference on Neural Networks.
[S.l.: s.n.], 2013.

HSUEH, M.-C.; TSAI, T. K.; IYER, R. K. Fault injection techniques and tools.
Computer, IEEE, v. 30, n. 4, p. 75–82, 1997.

HUANG, J.-H. NVidia ACCELERATING THE RACE TO SELF-DRIVING CARS.
2016. Available at: <http://nvidianews.nvidia.com/_ir/219/20160/JHH_CES2016_
FINAL_published.pdf>. Accessed Aug. 25, 2017.

ISO-26262. ISO 26262-1:2011 Preview Road vehicles – Functional safety – Part 1:
Vocabulary. 2011. Available at: <https://www.iso.org/standard/43464.html>. Accessed
Aug. 23, 2017.

ISON1570. ISO/IEC 9899:201x Committee Draft April 12, 2011 N1570. 2011.
Available at: <http://iso-9899.info/n1570.html>. Accessed Aug. 23, 2017.

JAIN, A. K.; MAO, J.; MOHIUDDIN, K. M. Artificial neural networks: A tutorial.
Computer, IEEE, v. 29, n. 3, p. 31–44, 1996.

JIA, Y. et al. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

KAJIHARA, S. et al. Cost-effective generation of minimal test sets for stuck-at faults
in combinational logic circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, IEEE, v. 14, n. 12, p. 1496–1504, 1995.

KASSANI, P. H.; TEOH, A. B. J. A new sparse model for traffic sign classification
using soft histogram of oriented gradients. Applied Soft Computing, Elsevier, v. 52, p.
231–246, 2017.

KASTENSMIDT, F. L.; CARRO, L.; REIS, R. A. da L. Fault-tolerance techniques for
SRAM-based FPGAs. [S.l.]: Springer, 2006. v. 32.

KOGA, R. et al. Single event functional interrupt (sefi) sensitivity in microcircuits. In:
IEEE. Radiation and Its Effects on Components and Systems, 1997. RADECS 97.
Fourth European Conference on. [S.l.], 1997. p. 311–318.

LE, R. Xilinx Soft Error Mitigation Using Prioritized Essential Bits. 2012.
Available at: <https://www.xilinx.com/support/documentation/application_notes/
xapp538-soft-error-mitigation-essential-bits.pdf>. Accessed Aug. 24, 2017.

LECUN, Y.; BENGIO, Y. et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, v. 3361, n. 10, p. 1995,
1995.

http://hdl.handle.net/10183/163777
http://nvidianews.nvidia.com/_ir/219/20160/JHH_CES2016_FINAL_published.pdf
http://nvidianews.nvidia.com/_ir/219/20160/JHH_CES2016_FINAL_published.pdf
https://www.iso.org/standard/43464.html
http://iso-9899.info/n1570.html
https://www.xilinx.com/support/documentation/application_notes/xapp538-soft-error-mitigation-essential-bits.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp538-soft-error-mitigation-essential-bits.pdf

92

LEE, K. J. et al. A 502-gops and 0.984-mw dual-mode intelligent adas soc with real-time
semiglobal matching and intention prediction for smart automotive black box system.
IEEE Journal of Solid-State Circuits, IEEE, v. 52, n. 1, p. 139–150, 2017.

LI, X. et al. Online estimation of architectural vulnerability factor for soft errors. In:
IEEE. Computer Architecture, 2008. ISCA’08. 35th International Symposium on.
[S.l.], 2008. p. 341–352.

LIU, C. et al. Fast traffic sign recognition via high-contrast region extraction and
extended sparse representation. IEEE transactions on Intelligent transportation
systems, IEEE, v. 17, n. 1, p. 79–92, 2016.

LIU, F.; NARAYANAN, A.; BAI, Q. Real-time systems. Citeseer, 2000.

LOPES, I. C.; KASTENSMIDT, F. L.; SUSIN, A. A. Seu susceptibility analysis of
a feedforward neural network implemented in a sram-based fpga. In: IEEE. Test
Symposium (LATS), 2017 18th IEEE Latin American. [S.l.], 2017. p. 1–6.

MUKHERJEE, S. S. et al. A systematic methodology to compute the architectural vul-
nerability factors for a high-performance microprocessor. In: IEEE. Microarchitecture,
2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium
on. [S.l.], 2003. p. 29–40.

MUSSEAU, O. et al. Analysis of multiple bit upsets (mbu) in cmos sram. IEEE
Transactions on Nuclear Science, IEEE, v. 43, n. 6, p. 2879–2888, 1996.

NAIR, V.; HINTON, G. E. Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th international conference on machine learning
(ICML-10). [S.l.: s.n.], 2010. p. 807–814.

NAZAR, G. L. Fine-grained error detection techniques for fast repair of fpgas. 2013.

NAZAR, G. L.; CARRO, L. Fast single-fpga fault injection platform. In: IEEE. Defect
and fault tolerance in VLSI and nanotechnology systems (DFT), 2012 IEEE
international symposium on. [S.l.], 2012. p. 152–157.

NHTSA. NHTSA TRAFFIC SAFETY FACTS. 2013. Available at: <https:
//crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811856>. Accessed Aug. 25,
2017.

NVIDIA. Nvidia The AI Car Computer for Autonomous Driving. 2016. Available at:
<http://www.nvidia.com/object/drive-px.html>. Accessed Aug. 25, 2017.

NVIDIA. Nvidia Graphics Processing Unit (GPU). 2017. Available at: <http:
//www.nvidia.com/object/gpu.html>. Accessed Aug. 25, 2017.

O’GORMAN, T. J. et al. Field testing for cosmic ray soft errors in semiconductor
memories. IBM Journal of Research and Development, IBM, v. 40, n. 1, p. 41–50,
1996.

OHLSSON, M. et al. Neutron single event upsets in sram-based fpgas. In: IEEE.
Radiation Effects Data Workshop, 1998. IEEE. [S.l.], 1998. p. 177–180.

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811856
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811856
http://www.nvidia.com/object/drive-px.html
http://www.nvidia.com/object/gpu.html
http://www.nvidia.com/object/gpu.html

93

OLDHAM, T. R.; MCLEAN, F. Total ionizing dose effects in mos oxides and devices.
IEEE Transactions on Nuclear Science, IEEE, v. 50, n. 3, p. 483–499, 2003.

POUGET, V. et al. Theoretical investigation of an equivalent laser let. Microelectronics
Reliability, Elsevier, v. 41, n. 9-10, p. 1513–1518, 2001.

RABAEY, J. M.; CHANDRAKASAN, A. P.; NIKOLIC, B. Digital integrated circuits.
[S.l.]: Prentice hall Englewood Cliffs, 2002. v. 2.

REDMON, J. et al. You only look once: Unified, real-time object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
[S.l.: s.n.], 2016. p. 779–788.

REN, S. et al. Faster r-cnn: Towards real-time object detection with region proposal
networks. In: Advances in neural information processing systems. [S.l.: s.n.], 2015. p.
91–99.

SANTOS, F. F. d. Reliability evaluation and error mitigation in pedestrian detection
algorithms for embedded GPUs. 2017. Available at: <http://hdl.handle.net/10183/
159210>. Accessed Aug. 21, 2017.

SEDRA, A. S.; SMITH, K. C. Microelectronic circuits. [S.l.]: New York: Oxford
University Press, 1998. v. 1.

SERMANET, P.; LECUN, Y. Traffic sign recognition with multi-scale convolutional
networks. In: IEEE. Neural Networks (IJCNN), The 2011 International Joint
Conference on. [S.l.], 2011. p. 2809–2813.

SINHA, P. Architectural design and reliability analysis of a fail-operational brake-by-
wire system from iso 26262 perspectives. Reliability Engineering & System Safety,
Elsevier, v. 96, n. 10, p. 1349–1359, 2011.

STALLKAMP, J. et al. The German Traffic Sign Recognition Benchmark: A multi-class
classification competition. In: IEEE International Joint Conference on Neural
Networks. [S.l.: s.n.], 2011. p. 1453–1460.

STALLKAMP, J. et al. Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition. Neural Networks, n. 0, p. –, 2012. ISSN
0893-6080. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0893608012000457>.

STEPHEN, J. et al. Cosmic ray simulation experiments for the study of single event
upsets and latch-up in cmos memories. IEEE Transactions on Nuclear Science, IEEE,
v. 30, n. 6, p. 4464–4469, 1983.

STRIGL, D.; KOFLER, K.; PODLIPNIG, S. Performance and scalability of gpu-based
convolutional neural networks. In: IEEE. Parallel, Distributed and Network-Based
Processing (PDP), 2010 18th Euromicro International Conference on. [S.l.], 2010. p.
317–324.

VELAZCO, R. et al. Evidences of seu tolerance for digital implementations of artificial
neural networks: one year mptb flight results. In: IEEE. Radiation and Its Effects on
Components and Systems, 1999. RADECS 99. 1999 Fifth European Conference on.
[S.l.], 1999. p. 565–568.

http://hdl.handle.net/10183/159210
http://hdl.handle.net/10183/159210
http://www.sciencedirect.com/science/article/pii/S0893608012000457
http://www.sciencedirect.com/science/article/pii/S0893608012000457

94

VISWANATHAN, V.; HUSSEIN, R. Applications of image processing and real-time
embedded systems in autonomous cars: A short review. International Journal of Image
Processing (IJIP), v. 11, n. 2, p. 35, 2017.

WANG, G. et al. A hierarchical method for traffic sign classification with support
vector machines. In: IEEE. Neural Networks (IJCNN), The 2013 International Joint
Conference on. [S.l.], 2013. p. 1–6.

WANG, W. et al. An efficient method to identify critical gates under circuit aging.
In: IEEE. Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International
Conference on. [S.l.], 2007. p. 735–740.

WESTE, N.; HARRIS, D.; BANERJEE, A. Cmos vlsi design. A circuits and systems
perspective, v. 11, p. 739, 2005.

WIRTHLIN, M. et al. The reliability of fpga circuit designs in the presence of radiation
induced configuration upsets. In: IEEE. Field-Programmable Custom Computing
Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium on. [S.l.], 2003. p.
133–142.

XILINX. Xilinx 7 Series DSP48E1 Slice. 2016. Available at: <https://www.xilinx.com/
support/documentation/user_guides/ug479_7Series_DSP48E1.pdf>. Accessed 23 Aug.
23, 2017.

XILINX-AUTOMOTIVE. Smarter Vision: Intelligence for Advanced Driver
Assistance Systems. 2016. Available at: <https://www.xilinx.com/applications/
automotive.html>. Accessed Aug. 21, 2017.

XILINX-ZYNQ. Zynq-7000 All Programmable SoC Product Advantages. 2017.
Available at: <https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html>.
Accessed Aug. 25, 2017.

YANG, Y. et al. Towards real-time traffic sign detection and classification. IEEE
Transactions on Intelligent Transportation Systems, IEEE, v. 17, n. 7, p. 2022–2031,
2016.

ZIADE, H. et al. A survey on fault injection techniques. Int. Arab J. Inf. Technol., v. 1,
n. 2, p. 171–186, 2004.

ZIEGLER, J. F. et al. Accelerated testing for cosmic soft-error rate. IBM Journal of
Research and Development, IBM, v. 40, n. 1, p. 51–72, 1996.

ZUIDERVELD, K. Contrast limited adaptive histogram equalization. In: ACADEMIC
PRESS PROFESSIONAL, INC. Graphics gems IV. [S.l.], 1994. p. 474–485.

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/applications/automotive.html
https://www.xilinx.com/applications/automotive.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goals and Contribution

	2 DEEP LEARNING ALGORITHMS FOR traffic-sign RECOGNITION
	2.1 Convolutional Neural Networks
	2.1.1 Convolutional Layer
	2.1.2 Pooling Layers
	2.1.3 Full-connected neurons
	2.1.4 ReLU Activation function
	2.1.5 Softmax function

	2.2 Acceleration platforms for Deep Learning
	2.2.1 Embedded GP-GPUs
	2.2.2 ASIC SoC and APSoC

	3 RADIATION EFFECTS IN INTEGRATED CIRCUITS
	3.1 Radiation effects in SRAM-based FPGAs

	4 CONVOLUTIONAL NEURAL NETWORK TRAINING
	4.1 Dataset
	4.2 Framework for training
	4.2.1 Training process using Caffe
	4.2.2 Training results

	5 DEVELOPMENT OF CNN TOPOLOGY
	5.1 Automatic generator
	5.2 Timing Multiplexing Architecture
	5.3 APSoC Implementation results

	6 FAULT INJECTION BY EMULATION
	6.1 Failure Model
	6.2 Experimental Setup

	7 Reliability results
	8 CONCLUSIONS
	8.1 Future Work

	References

