
Multi-Agents Supporting Reflection in a Middleware for
Mission-Driven Heterogeneous Sensor Networks

ABSTRACT
The emerging applications using sensor networks technologies
constitute a new trend requiring several different devices to work
together and this partly autonomously. However, the integration
and coordination of heterogeneous sensors in these emerging
systems is still a challenge, especially when the target application
scenario is susceptible to constant changes. Such systems must
adapt themselves in order to fulfill requirements that can also
change during the system runtime. Due to the dynamicity of this
context, system adaptations must take place very quickly,
requiring system autonomous decisions to perform them without
any human operator intervention, besides the first directions to
the system. Thus a reflective behavior must be provided. This
paper presents a reflective middleware that supports reflective
behaviors to address adaptation needs of heterogeneous sensor
networks deployed in dynamic scenarios. This middleware
presents specific handling of users’ requirements by representing
them as missions that the network must accomplish with. These
missions are then translated to network parameters and
distributed over the network by means of the reasoning about
network nodes capabilities and environment conditions. A multi-
agent approach is proposed to perform this initial reasoning as
well as the adaptations needed during the system runtime.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Domain-specific architectures and Patterns.

I.2.9 [Artificial Intelligence]: Robotics – Autonomous vehicles,
Sensors.

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Multiagent systems.

General Terms
Management, Performance, Design.

Keywords
Sensor Networks, Heterogeneous Sensors, Dynamic Scenarios,
Self-adaptation, Reflective Middleware, Multi-agents Reasoning.

1. INTRODUCTION
Sensor network applications are becoming more complex due to
the use of different kinds of mobile and sophisticated sensors,
which provide advanced functionalities [1] and also are deployed
in dynamic scenarios where context-awareness is needed [2]. To
support those emerging applications, an adaptable underlying
infrastructure is necessary. Current proposals suggest the use of a
middleware, for example TinyDB [3]. However, this kind of state-
of-the-art middleware have important non-negligible drawbacks
that make them useless in the context of such new emerging
applications, because: (i) the assumption that the network is
composed only by a homogeneous set of basic or very constrained
low-end sensors; (ii) the lack of intelligence in such network
compromises the adaptability required to deal with changing
operation conditions, e.g. lack of QoS management and control.

Adaptability is a major concern that must be addressed in sensor
networks due to two main factors: (a) long usage life time; and (b)
deployment in highly dynamic environments. The first reason
increases the probability of changes in user requirements through
systems life time, which requires flexibility in order to comply
with the changing demands. The second reason implies that
applications have to be flexible enough in order to cope with
drastic changes in the operation scenarios. In such environments,
services are required in different places at different times;
resources must be reallocated in order to fulfill specific
requirements and also assure compliance with different
constraints; and nodes that satisfy specific constraints during a
certain period of time can become unable to continue working
properly after changes. In addition, there are real-time
requirements that are especially hard to be met. Thus, QoS
management must be flexible, allowing renegotiation of required/
provided QoS among nodes during the system runtime [4].

This paper presents a reflective middleware aimed to support
sophisticated sensor network applications that need to adapt its
behavior according to changes in the environment and in the
application demands. The idea is that the users specify missions to
be accomplished by the network using a high-level Mission
Description Language (MDL) in which they describe the desired
data and constraints related to the gathering of them, for example

Edison Pignaton de Freitas
IDE – Halmstad University –

Sweden - PPGC UFRGS - Brazil
PO Box 823. SE - 301 18

Halmstad - Sweden
+46 35 16 78 47

edison.pignaton@hh.se

Marco Aurélio Wehrmeister
PPGC UFRGS - Brazil

Caixa Postal 15.064 - 91.501-970 -
Porto Alegre/RS

Brazil
+ 55 51 3316 3561

mawehrmeister@inf.ufrgs.br

Carlos Eduardo Pereira
PPGC UFRGS - Brazil

Caixa Postal 15.064 – 91.501-970 -
Porto Alegre/ RS

Brazil
+ 55 51 3316 3561

cpereira@ece.ufrgs.br
Armando Morado Ferreira
Military Institute of Engineering

22290-270 – Rio de Janeiro/RJ – Brazil
+55 21 3873 2298

 armando@ime.eb.br

Tony Larsson
IDE – Halmstad University – Sweden

PO Box 823. SE - 301 18 Halmstad - Sweden
+46 35 16 71 68

 tony.larsson@hh.se

space and time limits, representing mission goals. In order to
promote the missions accomplishment, the concept of multi-
agents is used to provide the reasoning about the network and,
among other things, to decide about service, resource allocation,
time-related requirements and QoS control. The reasoning by the
agents, i.e. the self-reflection of middleware agents, decides about
what adaptations that must take place based on the mission goals.
These adaptations are tuned through the use of aspects, which
weave the desired behaviors into the middleware (e.g. jitter
monitoring), and also through the movement of mobile-agents that
change their location in the network in order to provide different
services in different places as required in a context specific
moment. In this paper, the focus is to present the mission-driven
approach and the multi-agent reasoning based on this approach.

The remaining text is organized as follows: Section 2 presents the
ideas of nodes’ heterogeneity and dynamicity of operation
conditions that motivate the present work. Section 3 provides an
overview of the middleware structure, while Section 4 gives a
summary description of the Mission Description Language.
Section 5 presents the mission parameters representation. Section
6 presents the planning-agent intern model, while the multi-agents
reasoning is described in Section 7. In Section 8 some related
work are shortly presented, and Section 9 concludes the paper
with some final remarks and directions of future work.

2. HETEROGENEOUS AND DYNAMIC
The intention of this work is to develop a flexible middleware that
can be used to support applications in heterogeneous sensor
networks deployed in dynamic environments. In the context of
this work, heterogeneity means that nodes in the network may
have different sensing capabilities, computation power, and
communication abilities, running on different hardware and
operating system platforms.

Low-end sensors are those with constrained capabilities, such as
piezoelectric resistive tilt sensors, with limited processing support
and communication resource capabilities. Rich sensors
comprehend powerful devices like radar, visible light cameras or
infrared sensors that are supported by moderate to high computing
and communication resources. Thus, in order to deal with these
very distinct capabilities, the proposed middleware must be
lightweight, while being scalable and customizable. The mobility
characteristic is also related to the heterogeneity addressed by the
middleware. Sensor nodes can be static placed on the ground or
can move themselves on the ground or fly at some height over the
target area in which observed phenomenon is occurring. Figure 1
illustrates the heterogeneity dimensions considered in this work.

The proposed middleware is aimed to support applications that
deal with dynamic and changing scenarios. Consequently, the set
of sensors chosen in the beginning of a mission may not be the
most adequate one during the whole mission. For example, an
area surveillance system receives the mission to survey an area
that may not allow traffic of certain kinds of vehicles. Ground
sensors are set to trigger and send an alarm in the presence of
unauthorized vehicles. Then Unmanned Aerial Vehicles (UAVs)
equipped with visible-light cameras are set to fly over the area
where the ground sensor has issued an alarm to verify the
occurrence. However, a sudden change in the weather, e.g. the
area becomes foggy or cloudy, turns visible-light cameras useless.
However the detection mission must still be accomplished. This
type of change in the operational conditions during a mission must

be handled by the middleware. It must be able to choose the best
alternative of employable sensors among the set of available
options. In the described situation it may choose, for instance, an
infrared camera instead of the visible-light one.

Figure 1. Heterogeneity Dimensions

According to the taxonomy presented in [5], the sensor network
described above can be classified as: a mix of static and dynamic
configurable sensors with full self-awareness; a heterogeneous
dynamic ad-hoc network with a large number of nodes; deployed
in a high dynamic environment partially observable; and which
achieve its goals by collectively coordinated actions with a non-
local environment dependency. A sensor network with this
classification requires a great flexibility in its behavior and at the
same time “in-network intelligence”, which is represented by the
spread of intelligent capabilities over its nodes. These two
features, flexibility and in-network intelligence, enables reflection
about network status and environment conditions in order to adapt
the network for the mission and to new demands from end-users.

3. MIDDLEWARE STRUCTURE
The main goal is that the proposed middleware fits both resource
constrained and rich sensors. In order to achieve this goal, aspect-
and component-oriented techniques are used in a way similar to
the approaches discussed in [6], and [7] and the mobile and multi-
agents approach presented in [8].

The proposed middleware is divided in three parts or layers, see
also Figure 2:

 Infrastructure Layer. It is responsible for the interaction with the
underlying operating system and for the management of the
sensor node resources, such as available communication and
sensing capabilities, remaining energy, etc. This layer also helps
to coordinate resource sharing according to application needs
passed through the upper layers. Additionally, services provided
by upper layers may also need some resource sharing support.

Common Services Layer. It provides services that are common to
different kinds of applications, such as QoS negotiation and
control, quality of data assurance, data compression, and the
handling of real-time requirements. Other concerns such as
deadline expiration alarms, timeouts for data transmissions,
number of retries and delivery failure announcements, resource
reservation negotiation among applications (based on priorities
established by missions and operation conditions), bindings,
synchronous and asynchronous concurrent requests are also
handled within this layer. Readers specially interested in those
concerns are referred to [9] for more details about the mechanism
used in the middleware to provide these features.

Figure 2. Overview of the Middleware Layers

Domain-Services Layer. It supports domain specific needs, such
as data fusion and specific data semantic support, in order to allow
the production of application-related information from raw data
processing. Fuzzy classifiers, special kinds of mathematical filters
(e.g. Kalman Filter) and functions that can be reused among
different applications in the same domain are found in this layer.

Multiple applications performing different missions can run
concurrently in the network. As stated before, the middleware
handles resource and data sharing among applications, which need
the same type of data, allowing a better energy management in
resource constrained nodes. In powerful nodes, with more energy
available, the middleware can provide more complex services
aiming at the handling of rich data, such as those related to image
processing, and pattern matching. This also means that such nodes
can take some of the burden from low-end nodes.

“Smile faces” in the Figure 2 represent agents that can provide
specific services in a certain node at a certain moment of system
runtime. A special region (called agents-space) links agents
throughout layers, allowing information exchange. The Domain-
Services Layer hosts a special agent (bigger smiling face), which
is responsible receiving the mission directions from the
application layer, and based on that, plan and reason about the
activities related to the sensing missions. This agent is called
planning-agent, and details about it will be presented later in the
following sections. The other agents (small smiling faces) are
used to provide specific services that support applications.

Non-functional concerns that affect elements in more than one
layer of the middleware, such as security, are represented as cross-
layer features, which are addressed, at least partly, with the
aspect-oriented approach presented in [6].

4. MISSION DESCRIPTION LANGUAGE
The Mission Description Language (MDL) provides means to
describe the information requested or to be monitored about
certain detectable phenomena in a given time-space domains
interesting to the end-users. For instance, the user may want to
know about the different kinds of vehicles that pass through a
given area during a certain time, or the environmental conditions
during the occurrence of a pre-defined event. By using the MDL
to setup a mission to the network the user “tests” the environment
in order to achieve the desired information about a phenomenon
or an event of interest. The idea of “test” the environment is based
on the C/ATLAS test language [10], in which high-level test
commands are specified in order to retrieve information about
devices in a system. In a similar way, the MDL provides high-
level commands to retrieve specific information about matters or
changes that occur in the environment. Based on this idea, the
MDL uses patterns and definitions to test the environment in order

to gather information that matches with those patterns and
definitions that describe the user’s need for information. However,
it is important to highlight that in this proposal the MDL uses just
this conceptual idea behind C/ATLAS, it does not use the
terminology presented by the test language, neither the same
taxonomy.

By using the MDL, the user defines high-level statements, which
define and describe the events of his/her interest, as well as the
constraints that are linked with that specific sensing mission. For
instance, the maximum tolerated delay to receive an alert or the
maximum amount of energy that can be used for that mission,
among others. Another important concept in the MDL is the
mission priority ordination, which allows several missions to run
at the same time in the network, but prioritizing those which are
more important, according to the user’s definitions. Linked with
the former idea and the constraints enforcement is the usage of
policies to govern the performance of missions. The user can
order the mission accomplishment according to their priorities,
selecting some constraints and also link a policy that will dictate
how persistent the nodes in the network will be in order to gather
the requested information. For instance, in an aggressive policy,
nodes can deplete their batteries in order to assure that the
requested data will be delivered to the end user (i.e., by
performing several retransmissions until the end-user receives the
information or the battery is depleted). On the other hand, in a less
aggressive policy, nodes may preserve their batteries in spite of
that they cannot assure the data delivery. The user can also use a
policy and “tune” it by means of specifying specific constraints
that override the general policy for those specific parameters.

The mission described as a set of MDL statements is then
translated to parameters that will configure the system as to
retrieve the information desired by the user. The definition of
these parameters is done by the interpretation of the MDL
statements, together with the analyses of the characteristics of the
deployed network and the chosen policy, if any, and the priority
level. A configuration console (Mission Specification Console)
enables the user to enter this information, which will be translated
in a tuple of parameters (the content of this tuple will be explained
in Section 5) representing the mission that will be injected into the
network. Figure 3 illustrates the configuration console and its
components.

Figure 3. Mission Specification Console

The MDL statements are the essential elements used to define the
overall mission (Global Mission) of the network. The Global
Mission will be divided into node-missions (sub-missions), which
will be executed by specific nodes or a group of nodes in the
network. The subdivision of a mission in node-missions is an

important part of the Global Mission translation in system
parameters. It is done by a component called Mission Interpreter,
which takes the MDL statements as input, consult a domain-
specific database (for information about a particular domain), and
translate these statements into node-missions, see Figure 4.

Figure 4. MDL Interpretation and Node-missions generation

The MDL is divided in two parts: (1) the kernel of the language,
which defines events of interest, space and time parameters, as
well as the priority of the sensing mission; and (2) the extensions,
which define advanced parameters, such as accuracy, precision
and constraints. It is composed by: imperative commands (i.e.
SCAN and DETECT); keywords (i.e. pattern and object), which
are the parameters of the commands; connectors to link
commands and keywords (i.e. IF and WITH); and pre-defined
patterns, which are in fact a kind of keyword that are stored in a
domain library (i.e. FOG and LINEAR_MOVEMENT). As an
example, the following represents a conditional MDL statement:

IF DETECT <DECREASE_OF <temperature>>
WITH GRANULARITY<3> MONITOR <FOG>
WITH ACQUISITION <period = yy>

This example statement means: if a 3ºC decrease in temperature is
detected, then provide monitoring of the pre-defined pattern
“FOG” with data acquisition by the sensors each “yy” time units.

5. MISSION PARAMETERIZATION
The input to the sensor network system, coordinated by the
proposed middleware, is seen as a “mission” that the whole
network must to accomplish in cooperation. By using a language
such as MDL the user can specify necessary “data” for such a
mission at a high level of abstraction. The user thus specifies the
goals and priorities for the missions’ directions in an MDL file,
which after translation will drive the mission implementation
based on reflection about the network, in order to accomplish with
the users’ requirements. The reflection consists of analysis and
reasoning performed inside autonomous network nodes in order to
allow the adaption required to face the changes in dynamic
scenarios and users’ requirements. Node-mission responsible
agents, called planning-agents, reason about the network
adaptations based on the mission directions and the network
actual state. The former gives the requirements for data from
users’ point of view, while the latter is mainly characterized by
nodes availability and environmental conditions. Their reasoning
is made by a construction of believes about the network and its
environment, which will help to achieve their goals and like this,
comply with the network global mission.

The representation of the mission is provided by a set of goals that
each planning-agent desires to achieve, supported by a set of
“known facts” that they have about the network and the
environment. Based on these facts and their goals, the planning-
agents establish activity plans to achieve their goals, negotiating
the best distribution of the work that must be done in order to
accomplish with the global mission.

The network global mission is divided in sub-missions, called
node-missions, which are assigned to planning-agents present in
each individual node. Each node has just one planning-agent
(placed in the Domain Services Layer of the middleware), thus for
comprehension of the remaining text, a node-mission is assigned
to a node or to the planning-agent installed on it. The
accomplishment of each node-mission will corroborate for the
success of the global-mission. In order to complete their node-
missions, planning-agents break the node-mission into minor tasks
that are related to the individual devices inside the node. A
hierarchy among these concepts can be drawn: at the top is the
global mission, followed by the node-missions, which is divided
in several tasks in the node abstraction level. In the following, a
formalization of these concepts is presented.

A Global Mission is represented by a tuple composed by the sets
called SM and SN, and also the functions MM and QF. SM is a
sub-set of all possible node-missions that could be assigned to a
node; SN is a sub-set of all the nodes in the network; the mapping
function MM maps elements of SM into elements of SN; while
the quality function QF evaluates the mapping provided by MM.
It is represented by:

QFMMSNSMGM ,,,=

M is the set of all possible node-missions;

SM is a set of node-missions (sub-set of M) that can be assigned
to the nodes members of the set SN:

{ }MmmSM ii ∈= | , { }Ii ,...,1∈ ,

where I is the total number of all possible missions, i.e. the
number of elements of set M or SM⊂M; Each node-mission mi is
represented by a tuple composed by a set of measurements that
must be provided (SME), a set of conditions to the measurements
(SMC), and a relation C that maps the set of conditions in the set
of measurements:

CSMCSMEmi ,,= ,

where SME is sub-set all possible measurements (ME); and SMC
is the sub-set of all possible measurement conditions (MC),such
as those related to periodicity, accuracy, time interval, range,
among other. Such that SME ⊂ ME, and SMC ⊂ MC. C is the
relation that maps conditions into measurements, where one
measurement can be linked to none or several conditions. The
opposite is also valid, i.e. one condition can be linked with none
or several measurements:

(){ }SMEmeSMCmcmemcrC jkjk ∈∈== ,| ,

{ } { }JjKk ,...,1,,...,1 =∈ ,

where K is the total number of possible measurements conditions
in the network (number of elements of the set MC); and J is the
total number of measurements in the network (number of
elements of the set ME).

N is a set of all nodes that compose the network.

SN is a sub-set of nodes in the network (a sub-set of N):

{ } { }VvNnnSN vv ,...,1,| ∈∈= ,

where V is the total number of nodes in the network (the number
of elements of the set N) or SN ⊂ N.

MM is the mission-mapping function that maps each node-
mission to a certain node. A node in SN can perform one or more
node-missions, but each node-mission is atomic (from the entire
network point of view), i.e. it can be assigned to only one node:

(){ }
{ } { }VvIi

SNnSMmnmfMM vivi

,...,1,,...,1

,,|

∈∈
∈∈==

.

QF is a function that evaluates the mapping provided by MM,
given a grade between 0 and 10 for each par (mi, ni):

∑= ixQF

where () []10,0,,|, ∈∈∈= iviivi xSNnSMmxnmg .

In order to achieve the goals of an assigned node-mission, a node
must perform several different smaller tasks, called node-tasks.
To read a value from the sensor device, or to turn a sensor device
on/off are examples of node-tasks. At the node abstraction level,
a specific node-mission is a sub-set of all node-tasks that a given
node can perform, represented formally by:

{ } { }WwTttnm ww ,...,1,| ∈∈=

where W is the total number of possible node-tasks that any node
can perform (the number of elements of the set T) or nm ⊂ T
where T is the set of all node-tasks that can be performed by any
node.

6. PLANNING-AGENT MODEL
The proposed approach uses different kinds of agents; both
cognitive and reactive ones, in order to perform different activities
in the middleware, from the provisioning of simple services to
complex reasoning about the network setup. To keep attention on
the focus of this paper, only the model of the planning-agent,
which is a cognitive agent, will be presented.

The model used in the present approach for the cognitive agents is
based on the model of mental attitudes, known as BDI model
(Believes-Desires-Intentions) presented in [11]. The BDI
approach appears to suite well to the problem addressed by the
current work, as some decisions that must be taken by the agents
in the proposed approach require cognitive skills to “wonder” if
certain actions are adequate to achieve a desired result, based on
knowledge about conditions that may interfere on the performance
of those actions. In the current problem formulation, what is
desired is to obtain information by means of sensing activities,
which are the goals of a sensing mission. Such knowledge is the
“believe” that the node has about the relevant conditions and the
intentions are translated into the actions need to retrieve the
desired information. It thus seams that this model fits well to the
goals of the proposed approach.

However, it is important to highlight that the approach used in this
work is slightly different from the traditional BDI frameworks,
such as [12] and [13], or more complex teamwork models, such as
those presented in [14]. The major difference is that the model
presented in this paper is focused on sensor networks activities, in
which the network nodes do not perform any action that changes
the world around them, what simplifies the model by eliminating
the assumptions about this aspect. Besides, the proposal herein is
simpler than those presented in the works mentioned above, as
one can see in the remaining text.

The planning-agent has a complex “mental” activity, being
responsible for different kinds of reasoning related to the mission
accomplishment. It communicates with all other kinds of agents in
the system. Besides, it negotiates with other planning-agents
installed in the other nodes about the distribution of the node-
missions. During these negotiations, it gathers information about
the other nodes in order to achieve necessary knowledge about the
network. It also has to maintain and update information about its
own state, in order to inform other planning-agents and be capable
to take right decisions. Environment conditions are also important
in some of the deliberations taken by this agent. So this kind of
information also constitutes its mental state, more precisely, as a
part of its beliefs. In the following, a description about the beliefs,
desires and intentions of the planning-agent, as well as a
description of its plan and actions is provided.

Beliefs: Basically consisting of four groups of information: 1)
background information, such as maps of the region; 2) the
planning-agent’s own conditions, translated in terms of the actions
that it can perform and the node status (energy level, devices
status, location, installed services, agents hosted in the node, etc);
3) other nodes status; 4) environment conditions.

Desires: The planning-agent has two types of desires: 1) General-
Desires: which correspond to “built-in” goals, such as: distribute
the node-missions in order to achieve the best overall result
efficiently, and cooperate with other nodes; and 2) Specific Goals:
which are related to the assumed node-missions and that come to
its desires’ set when it assumes the responsibility of a given node-
mission (mi). These goals are ranked according to the related
node-mission priority. It will be used to drive the construction of
the plans that governs the execution of the agent’s actions.

Intentions: Following the same idea of the desires, the planning-
agent has two types of intentions: 1) General Intentions: which are
directly related to the built-in goals, such as: to have an agreement
about which that node will take the responsibility of a given node-
mission after a negotiation with other nodes; to have provided the
required resources to a requesting node; to have provided the
correct information to other agents about data of interest; and 2)
Specific Intentions: which specify intentions related to actions
needed to accomplish a given node-mission, such as: to have sent
the samplings with the correct accuracy within the timing
constraints, which comes to the agent via the sets SME and SMC
to the corresponding mi that it assumes to accomplish.

Actions: Operating System or direct device drivers calls to
perform commands on the underlying software and hardware
platform; send and receive messages to and from other agents
(request, inform, reply, notify, subscribe, publish, propose, reject,
accept). Particularly in the negotiations occurring during the
reasoning, the types of messages used are: inform, propose, accept
or reject.

Plan: A plan is described in terms of a sequence of actions that an
agent perform in order to achieve a sub-goal, decided by its
deliberation and related to its intentions, and ultimately to achieve
a motivational goal related to its desires. In order to accomplish
with a given node-mission, the agent choose specific tasks (tw)
such as they form a set that fulfill that node-mission. A plan will
be a list of tasks that have to be done in order to accomplish with
the node-missions allocated for that node. If a new node-mission
is assumed and some of the tasks that are required to accomplish it
are already in the plan, there is no need to insert them again in the
plan, as their results are reused for this new node-mission. The

planning-agent needs to construct a new plan, which can be totally
new or at least a reviewed version of the current one, each time at
least one of the following events occurs: it assumes a new node-
mission; the conditions of the environment changes; a change in
the network or in the user requirements occurs. This reflects the
flexibility of the network to adapt itself according to the
dynamicity of the network operation.

6.1 Architectural Structure
After the presentation of the cognitive planning-agents’ internal
model, its architectural structure can be described, based on the
BDI architecture presented in [15], and is shown in Figure 5.

Figure 5. Planning-agent Internal Architectural Structure

In Figure 5 is shown that the agent takes the perceptual inputs
(changes in the network or in the environment, data from its
sensors, etc) and its current beliefs, and performs an update of
their beliefs by means of the Belief Renew Function. After
analysis of the updated beliefs and current intentions, the Option
Generator function selects a sub-set of the desires representing
the next possible goals to perform. Its beliefs, desires and
intentions are then used as inputs to a Filter function that
represents the deliberation of the agent and will provide the
update of its intentions. The planning-agent constructs its own
plans by reasoning about its current intentions and its beliefs.
Ultimately the generated plans will fulfill with goals defined in its
desire base, as the current intentions were decided based on the
analysis of the set of the possible goals, by the use of the Option
Generator. The result of the Planning is the selection of actions
that are needed to perform the current intentions. It considers the
current plan and beliefs, in order to select and order the execution
of the actions. The current plan is used to reuse some previous
decisions, and the current beliefs to evaluate which actions are
more adequate to take in relation to the current conditions.

7. MULTI-AGENT REASONING
As stated above, the planning-agents construct believes that will
guide their decisions based on the mission needs (the goals in
their desires), which are characterized by node-missions. As the
network receives a global-mission, the nodes will try to find a best
fit to accomplish this mission, which characterizes the mission
setup reasoning. Their decisions will influence the mission
mapping function (MM), which may change in case of adaptation
during the system runtime, due the adaptation reasoning. The
mechanisms for the network setup and adaptation are described in
the following.

7.1 Mission Setup
When a mission is received, the reasoning required to perform the
network setup is divided in four steps, which are explained more
in detail in the following.

Step One: each node performs an analysis of the elements of the
set SM, as well as its capabilities and the surrounding
environment. If a node can provide the measurements of the set
SME for a certain node-mission mi, satisfying the respective
relation C, it “declares” itself as “candidate” to perform mi. At
this time, each node constructs a partial belief in relation to mi,
only based on its own knowledge about the network, which is
composed by the mission needs and its own capabilities.

Step Two: if a node considers itself as “candidate” to accomplish
mi, it informs its “candidacy” to the other nodes, using an “inform
message”. However if the node does not consider itself as
“candidate”, it will just listen for the “candidacy” of other nodes.

Step Three: after a pre-established time-out, if no one considers
itself as “candidate”, no message will be exchanged. Thus, all
nodes that can provide the data required by the measurements
described in the set SME, but that cannot satisfy the relation C,
communicate with the other nodes informing about the conditions
that it can satisfy. The node, which provides the assurance closest
to the desired one (specified by C), takes the node-mission. This
characterizes a best-effort way to solve the problem.

Step Four: nodes analyze their own conditions as well as
conditions of the others, deciding which one must take mi. Such
analysis uses the quality function QF and the node-tasks needed
to perform mi. By maximizing g(mi,nv), nodes know which one
(nv) will be in charge of the node-mission mi. If two nodes are
capable to accomplish the node-mission, the one that has best
conditions, e.g. remaining energy and/or other influencing
parameters, takes the responsibility for that node-mission. In other
words, the function g has a higher value for that node in
comparison with the others. With this information, the nodes
construct a common belief. If two nodes have the same value for
the function g for the same node-mission, one of them is then
randomly chosen.

Communication in wireless sensor networks can face problems
that compromise message delivery. In case, any message of the
coordination protocol is not received by any node in any of these
steps, the node acts according to its belief from the last received
message, if any. If it does not receive any message, it will act
according to its initial partial belief. When the communication is
reestablished, nodes will “listen” to the passing messages related
to the same node-mission (mi) measurements, and then they will
redo the above steps in order to achieve a new global-belief.

If compared with a centralized task distribution, the advantage in
performing this reasoning in a distributed way is to avoid
communication to and from the base station, which would
consume more energy if compared with the local computation of
the task allocation. As presented in [22], communication is the
main source of energy consumption in sensor nodes, so
communicating requires more energy than computation. In order
to achieve a centralized task distribution that has the same quality
as a distributed one can achieve; data about the current status of
the nodes have to be sent often to the base station, which would
increase the energy consumption. On the other hand, by the use of
the distributed approach as presented, the nodes decide locally
how to divide the new job, according to their status, without the
need to send information through the network to the base station.
This same argument holds to support the distributed way in which
the adaptation is done, which is presented in the next sub section.

7.2 Mission Adaptation
During the system runtime, mission requirements and/or
operational conditions can change. Nodes can perceive these
changes, which induces node believes to be updated. If a change
makes a node unable to proceed in the mission accomplishment,
the network must adapt itself to solve the problem. The reasoning
performed by the planning-agents will try to find another node
that can perform node-mission mi in the place of the previous
node. This reasoning is similar to the one presented above, but
there are two different circumstances that also must be taken into
account: (1) the node simply fails; (2) the node continues to work,
but is aware that it cannot continue performing the mission.

Considering the first case, faulty nodes are perceived by other
healthy nodes, which have participated with the faulty one in the
initial mission establishment reasoning. As nodes can perceive
that the node responsible by the node-mission mi is not
responding during an established time-out period, they redo the
reasoning to decide which one must perform mi. Information
about the failure is added to the belief of these healthy nodes.

In the second case, the node that becomes unable to accomplish
mi informs this situation to the nodes that participated in the
mission establishment reasoning. Further they decide which one
will take the node-mission previously assigned to that node.

Another situation that requires adaptation is when changes make
other nodes (more) capable to accomplish a certain node-mission
mi. An adaptation can be triggered if the node-mission was
previously assigned in a best effort way, as explained in the step
three in section 3.2. The need for a best service can also trigger
the adaptation, foreseeing a possible increase in the users’
requirements priority. The mechanism of these changes is
implemented by an exchange of “proposal” and “accept” or
“reject” messages.

Adaptations decisions are also based on the quality function QF.
It is done during the establishment of the best mapping of node-
missions to nodes as explained in the section 3.2. The target is
always to maximize the value of QF, what can be achieved by
maximizing the function g(mi,nv) for each node-mission mi: i.e.
max(g(mi,nv)).

As result of the procedure explained above, all nodes know which
node nv has taken the responsibility for the node-mission mi,
(similarly to the establishment of the node-missions mapping).
Therefore, nodes’ beliefs are updated with this knowledge. In the
same way as explained before, if two nodes have an equal value
of function g for a given node-mission, one of them is chosen
randomly.

7.3 Considerations about Complexity
As the middleware is intended to run in a variety of nodes, from
resource constrained nodes to resource rich ones, the mechanisms
presented above have to be customized for each type of node.

Considering resource rich nodes, function g used to evaluate the
quality of a given mapping may be an elaborated and computing
intensive algorithm. However, when it comes to the low-end
nodes, simpler functions may take place in order to perform the
evaluation of the part of the mission related to them. The same
way that there is a tradeoff between energy consumption and
communication resource usage, there is also a tradeoff in the
amount of resources that should be used and the quality of a

solution provided by the used algorithm. It is possible that an
optimal solution is not achieved by a simpler algorithm, but
considering the resource constraints, a sub-optimal can be better
than an optimal one that depletes the available resources.

The same kind of variation is present in the internal components
of the planning-agent that inhabit different types of sensor nodes.
The above explained Option Generator Function, Filter Function
provides for that the Planning can be much richer, considering
much more parameters and having more complex algorithms in
the resource rich nodes, if compared with the same functions in
the low-end nodes. However, it is important to highlight that
every node of a given kind use the same set of functions, so the
coherence is maintained.

8. RELATED WORKS
Agilla [16] is one of the precursors in the use of mobile agents in
middleware for WSN. Its approach is to use agents that can move
from one node to another in the network. It also allows multiple
agents to run in the same node. These characteristics provide the
desired features of energy saving, as the agents can run near to the
data avoiding unnecessary communication. In comparison with
the proposed approach, the use of agents is not restricted to
moving and using services around the network but also to help in
the network reflection and decision for adaptability using multi-
agents.

In [17] a proposal to use a distributed mechanism to control
adaptive sampling to support energy-constrained network
operations is presented. In the proposal, each sensor is considered
an autonomous agent, enabling decentralized control of the
sampling rate of sensor nodes in the application domain of flood
monitoring. Besides the contribution in the increase the efficiency
of the energy consumption, the goal of this approach is also to
maximize the information value of the data collected to the base-
station. The major differences between our work and the one
mentioned above are respectively: the consideration of a
heterogeneous sensor network instead of a homogenous one; the
domain independent instead of a domain-specific approach; and
the direct cooperation among the agents instead of just the
decentralization of the problem.

AWARE [18] is a project that proposes a middleware whose goal
is to provide integration of the information gathered by different
type of sensors, including WSN and mobile robots. Our proposal
aims also at addressing heterogeneous sensors, but also concerns
like QoS, as presented in [9], and runtime reflection to address
changes in the environment and in the network. Moreover, our
approach provides the capability of autonomy to the network
nodes, by using an agent-orient approach. In the referred
middleware, the nodes do not have the same capability.

In [19] an approach that uses Artificial Intelligence to configure
an underlying middleware is presented. This approach uses the
concepts of missions and goals to plan the allocation of tasks in a
network of homogeneous nodes. The handling of heterogeneous
nodes is one of the differences between the referred work and the
one presented in this paper. Additionally, in that work, the
intelligence is outside the middleware by means of just sending
“commands” or adjusting its parameters. In our presented
approach, agents make part of the middleware, spreading
intelligence over the network.

In [20] an information processing paradigm for intelligent sensor
networks is presented. Nodes in sensor networks have different
levels of autonomy in terms of the signal processing, information
fusion and situation assessment in order to contribute with the
overall system decision making. This approach is based on the use
of a genetic algorithm to provide learning features to the sensor
nodes, and fuzzy cognitive maps to perform situation assessment.
The sensor networks aimed by this work are those composed only
by rich nodes, as the architecture and the techniques used are quite
heavy to fit in low-end nodes. On the other hand, the proposal of
the present paper is to address heterogeneous sensor networks that
are composed by both low-end and rich nodes, allowing them
cooperate in order to achieve the overall mission goals.

9. CONCLUSION AND FUTURE WORK
This paper presented the concepts of a middleware needed to
address mission-driven heterogeneous sensor networks deployed
in highly dynamic scenarios. These scenarios require middleware
reflection to support adaptations to face constant changing
conditions during runtime. Multi-agents reasoning is used in order
to setup, configure and reconfigure the network. Besides, a formal
definition of the mission statements and conditions (described in
MDL) was presented, as well as its mapping to elements of a BDI
approach that supports the proposed network wide reasoning.

The direction of the ongoing and future work includes enrichment
of the Mission Description Language specification, adding
abstractions that can help the user specify missions. Another
ongoing work is the implementation of the simulation to provide
results that validate the presented ideas. In order to do that, the
adaptation of a simulator for wireless networks called Shox [21] is
being done. This adaptation consists of the inclusion of the agents
concepts in the simulator framework, and an interface with the
Mission Specification Console.

10. ACKNOWLEDGMENTS
E. P. Freitas thanks the Brazilian Army for the given grant

to follow the PhD program in Embedded Real-time Systems in
Halmstad University in cooperation with UFRGS in Brazil.

11. REFERENCES
[1] Culler, D., Estrin, D. and Srivastava, M. Overview of sensor

networks. IEEE Computer, vol. 37, no. 8, pp. 41–49, 2004.
[2] Henricksen K. and Indulska, J. A software engineering

framework for context-aware pervasive computing. In
Proceedings of PerCom, pages 77–86. IEEE Computer
Society, March 2004.

[3] Madden, S., Franklin, M. J., Hellerstein, J. M. and Hong, W.
TinyDB: An acquisitional query processing system for
sensor networks. ACM Transactions on Database Systems,
30(1):122–173, 2005.

[4] Liberatore, V. Implementation challenges in real-time
middleware for distributed autonomous systems. In
Proceedings of Second IEEE SMC-IT, 2006.

[5] Vinyals, M., Rodríguez-Aguilar, J.A. and Cerquides, J. A
Survey on Sensor Networks from a Multi-Agent perspective.
In Proceedings of 2nd International Workshop on Agent
Technology for Sensor Networks (ATSN-08), 2008.

[6] Freitas, E. P., Wehrmeister, M. A., Pereira, C. E., Wagner, F.
R., Silva Jr., E. T., Carvalho, F. C. DERAF: A High-Level
Aspects Framework for Distributed Embedded Real-Time
Systems Design. In Proceedings of 10th International
Workshop on Early Aspects, Springer, 2007, pp. 55-74.

[7] Tesanovic, A. et al, Aspects and Components in Real-Time
System Development: Towards Reconfigurable and Reusable
Software. Journal of Embedded Computing, IOS Press, v.1,
n.1, 2005.

[8] Freitas, E. P., Wehrmeister, M. A., Pereira, C. E. and
Larsson, T. Reflective middleware for heterogeneous sensor
networks. In Proceedings of 7th Workshop on Adaptive and
Reflective Middleware (ARM'08), ACM. 2008. pp. 49-50.

[9] Freitas, E. P., Wehrmeister, M. A., Pereira, C. E. and
Larsson, T. Real-time support in adaptable middleware for
heterogeneous sensor networks. In Proceedings of
International Workshop on Real Time Software (RTS'08),
IEEE. 2008. pp. 593-600.

[10] IEEE Std 716-1995, 1995. IEEE standard test language for
all systems-Common/Abbreviated Test Language for All
Systems (C/ATLAS), IEEE, Inc.

[11] Bratman, M. E. Intention, Plans, and Practical Reason.
Cambridge, MA, 1987.

[12] Cohen, P. R. and Levesque, H. J. Teamwork. Nous,
25(4):487–512, 1991.

[13] Grosz, B. and Kraus, S. Collaborative plans for complex
group actions. AIJ, 86:269–358, 1996.

[14] Pynadath, D. V. and Tambe, M. Multiagent teamwork:
analyzing the optimality and complexity of key theories and
models. Proceedings of 1st International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-
02). ACM. 2002. pp. 873-880.

[15] Weiss, G. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. The MIT Press, 1999.

[16] Fok, C.-L., Roman, G.-C. and Lu, C. Rapid development and
flexible deployment of adaptive wireless sensor network
applications. Proceedings of the 24th ICDCS’05, 2005.

[17] Kho, J., Rogers, A. and Jennings, N. R. Decentralised
Adaptive Sampling of Wireless Sensor Networks.
Proceedings of 1st International Workshop on Agent
Technology for Sensor Networks (ATSN-07), 2007.

[18] Gil P. et al. Data centric middleware for the integration of
wireless sensor networks and mobile robots. In Proceedings
of 7th ROBOTICA’07. 2007.

[19] Schmidt D. C. et al. A Decision-Theoretic Planner with
Dynamic Component Reconfiguration for Distributed Real-
Time Applications. Proceedings of 8th ISADS'07. 2007.
pp.461-472.

[20] Leung, H., Chandana, S. and Wei, S. Distributed sensing
based on intelligent sensor networks. IEEE Circuits and
Systems Magazine, 8(2). pp. 38-52, 2008.

[21] Lessmann, J., Heimfarth T. and Janacik, P. ShoX: An Easy to
Use Simulation Platform for Wireless Networks. In
Proceedings of Tenth International Conference on Computer
Modeling and Simulation, 2008. pp. 410-415.

[22] Akyildiz, I. F., Weilian S., Sankarasubramaniam, Y.,
Cayirci, E. A survey on sensor networks. IEEE
Communications Magazine, 40(8). pp. 102-114, 2002.

