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Mission-Driven Heterogeneous Sensor Networks 

ABSTRACT 
The emerging applications using sensor networks technologies 
constitute a new trend requiring several different devices to work 
together and this partly autonomously. However, the integration 
and coordination of heterogeneous sensors in these emerging 
systems is still a challenge, especially when the target application 
scenario is susceptible to constant changes. Such systems must 
adapt themselves in order to fulfill requirements that can also 
change during the system runtime. Due to the dynamicity of this 
context, system adaptations must take place very quickly, 
requiring system autonomous decisions to perform them without 
any human operator intervention, besides the first directions to 
the system. Thus a reflective behavior must be provided. This 
paper presents a reflective middleware that supports reflective 
behaviors to address adaptation needs of heterogeneous sensor 
networks deployed in dynamic scenarios. This middleware 
presents specific handling of users’ requirements by representing 
them as missions that the network must accomplish with. These 
missions are then translated to network parameters and 
distributed over the network by means of the reasoning about 
network nodes capabilities and environment conditions. A multi-
agent approach is proposed to perform this initial reasoning as 
well as the adaptations needed during the system runtime. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – 
Domain-specific architectures and Patterns.  

I.2.9 [Artificial Intelligence]: Robotics – Autonomous vehicles, 
Sensors. 

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Multiagent systems. 

General Terms 
Management, Performance, Design. 

Keywords 
Sensor Networks, Heterogeneous Sensors, Dynamic Scenarios, 
Self-adaptation, Reflective Middleware, Multi-agents Reasoning. 

1. INTRODUCTION 
Sensor network applications are becoming more complex due to 
the use of different kinds of mobile and sophisticated sensors, 
which provide advanced functionalities [1] and also are deployed 
in dynamic scenarios where context-awareness is needed [2]. To 
support those emerging applications, an adaptable underlying 
infrastructure is necessary. Current proposals suggest the use of a 
middleware, for example TinyDB [3]. However, this kind of state-
of-the-art middleware have important non-negligible drawbacks 
that make them useless in the context of such new emerging 
applications, because: (i) the assumption that the network is 
composed only by a homogeneous set of basic or very constrained 
low-end sensors; (ii) the lack of intelligence in such network 
compromises the adaptability required to deal with changing 
operation conditions, e.g. lack of QoS management and control. 

Adaptability is a major concern that must be addressed in sensor 
networks due to two main factors: (a) long usage life time; and (b) 
deployment in highly dynamic environments. The first reason 
increases the probability of changes in user requirements through 
systems life time, which requires flexibility in order to comply 
with the changing demands. The second reason implies that 
applications have to be flexible enough in order to cope with 
drastic changes in the operation scenarios. In such environments, 
services are required in different places at different times; 
resources must be reallocated in order to fulfill specific 
requirements and also assure compliance with different 
constraints; and nodes that satisfy specific constraints during a 
certain period of time can become unable to continue working 
properly after changes. In addition, there are real-time 
requirements that are especially hard to be met. Thus, QoS 
management must be flexible, allowing renegotiation of required/ 
provided QoS among nodes during the system runtime [4]. 

This paper presents a reflective middleware aimed to support 
sophisticated sensor network applications that need to adapt its 
behavior according to changes in the environment and in the 
application demands. The idea is that the users specify missions to 
be accomplished by the network using a high-level Mission 
Description Language (MDL) in which they describe the desired 
data and constraints related to the gathering of them, for example 
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space and time limits, representing mission goals. In order to 
promote the missions accomplishment, the concept of multi-
agents is used to provide the reasoning about the network and, 
among other things, to decide about service, resource allocation, 
time-related requirements and QoS control. The reasoning by the 
agents, i.e. the self-reflection of middleware agents, decides about 
what adaptations that must take place based on the mission goals. 
These adaptations are tuned through the use of aspects, which 
weave the desired behaviors into the middleware (e.g. jitter 
monitoring), and also through the movement of mobile-agents that 
change their location in the network in order to provide different 
services in different places as required in a context specific 
moment. In this paper, the focus is to present the mission-driven 
approach and the multi-agent reasoning based on this approach. 

The remaining text is organized as follows: Section 2 presents the 
ideas of nodes’ heterogeneity and dynamicity of operation 
conditions that motivate the present work. Section 3 provides an 
overview of the middleware structure, while Section 4 gives a 
summary description of the Mission Description Language. 
Section 5 presents the mission parameters representation. Section 
6 presents the planning-agent intern model, while the multi-agents 
reasoning is described in Section 7. In Section 8 some related 
work are shortly presented, and Section 9 concludes the paper 
with some final remarks and directions of future work. 

2. HETEROGENEOUS AND DYNAMIC  
The intention of this work is to develop a flexible middleware that 
can be used to support applications in heterogeneous sensor 
networks deployed in dynamic environments. In the context of 
this work, heterogeneity means that nodes in the network may 
have different sensing capabilities, computation power, and 
communication abilities, running on different hardware and 
operating system platforms.  

Low-end sensors are those with constrained capabilities, such as 
piezoelectric resistive tilt sensors, with limited processing support 
and communication resource capabilities. Rich sensors 
comprehend powerful devices like radar, visible light cameras or 
infrared sensors that are supported by moderate to high computing 
and communication resources. Thus, in order to deal with these 
very distinct capabilities, the proposed middleware must be 
lightweight, while being scalable and customizable. The mobility 
characteristic is also related to the heterogeneity addressed by the 
middleware. Sensor nodes can be static placed on the ground or 
can move themselves on the ground or fly at some height over the 
target area in which observed phenomenon is occurring. Figure 1 
illustrates the heterogeneity dimensions considered in this work.  

The proposed middleware is aimed to support applications that 
deal with dynamic and changing scenarios. Consequently, the set 
of sensors chosen in the beginning of a mission may not be the 
most adequate one during the whole mission. For example, an 
area surveillance system receives the mission to survey an area 
that may not allow traffic of certain kinds of vehicles. Ground 
sensors are set to trigger and send an alarm in the presence of 
unauthorized vehicles. Then Unmanned Aerial Vehicles (UAVs) 
equipped with visible-light cameras are set to fly over the area 
where the ground sensor has issued an alarm to verify the 
occurrence. However, a sudden change in the weather, e.g. the 
area becomes foggy or cloudy, turns visible-light cameras useless. 
However the detection mission must still be accomplished. This 
type of change in the operational conditions during a mission must 

be handled by the middleware. It must be able to choose the best 
alternative of employable sensors among the set of available 
options. In the described situation it may choose, for instance, an 
infrared camera instead of the visible-light one. 

 
Figure 1. Heterogeneity Dimensions 

According to the taxonomy presented in [5], the sensor network 
described above can be classified as: a mix of static and dynamic 
configurable sensors with full self-awareness; a heterogeneous 
dynamic ad-hoc network with a large number of nodes; deployed 
in a high dynamic environment partially observable; and which 
achieve its goals by collectively coordinated actions with a non-
local environment dependency. A sensor network with this 
classification requires a great flexibility in its behavior and at the 
same time “in-network intelligence”, which is represented by the 
spread of intelligent capabilities over its nodes. These two 
features, flexibility and in-network intelligence, enables reflection 
about network status and environment conditions in order to adapt 
the network for the mission and to new demands from end-users.    

3. MIDDLEWARE STRUCTURE 
The main goal is that the proposed middleware fits both resource 
constrained and rich sensors. In order to achieve this goal, aspect- 
and component-oriented techniques are used in a way similar to 
the approaches discussed in [6], and [7] and the mobile and multi-
agents approach presented in [8]. 

The proposed middleware is divided in three parts or layers, see 
also Figure 2: 

 Infrastructure Layer. It is responsible for the interaction with the 
underlying operating system and for the management of the 
sensor node resources, such as available communication and 
sensing capabilities, remaining energy, etc. This layer also helps 
to coordinate resource sharing according to application needs 
passed through the upper layers. Additionally, services provided 
by upper layers may also need some resource sharing support.  

Common Services Layer. It provides services that are common to 
different kinds of applications, such as QoS negotiation and 
control, quality of data assurance, data compression, and the 
handling of real-time requirements. Other concerns such as 
deadline expiration alarms, timeouts for data transmissions, 
number of retries and delivery failure announcements, resource 
reservation negotiation among applications (based on priorities 
established by missions and operation conditions), bindings, 
synchronous and asynchronous concurrent requests are also 
handled within this layer. Readers specially interested in those 
concerns are referred to [9] for more details about the mechanism 
used in the middleware to provide these features. 



 
Figure 2. Overview of the Middleware Layers 

Domain-Services Layer. It supports domain specific needs, such 
as data fusion and specific data semantic support, in order to allow 
the production of application-related information from raw data 
processing. Fuzzy classifiers, special kinds of mathematical filters 
(e.g. Kalman Filter) and functions that can be reused among 
different applications in the same domain are found in this layer.  

Multiple applications performing different missions can run 
concurrently in the network. As stated before, the middleware 
handles resource and data sharing among applications, which need 
the same type of data, allowing a better energy management in 
resource constrained nodes. In powerful nodes, with more energy 
available, the middleware can provide more complex services 
aiming at the handling of rich data, such as those related to image 
processing, and pattern matching. This also means that such nodes 
can take some of the burden from low-end nodes. 

“Smile faces” in the Figure 2 represent agents that can provide 
specific services in a certain node at a certain moment of system 
runtime. A special region (called agents-space) links agents 
throughout layers, allowing information exchange. The Domain-
Services Layer hosts a special agent (bigger smiling face), which 
is responsible receiving the mission directions from the 
application layer, and based on that, plan and reason about the 
activities related to the sensing missions. This agent is called 
planning-agent, and details about it will be presented later in the 
following sections. The other agents (small smiling faces) are 
used to provide specific services that support applications. 

Non-functional concerns that affect elements in more than one 
layer of the middleware, such as security, are represented as cross-
layer features, which are addressed, at least partly, with the 
aspect-oriented approach presented in [6].  

4. MISSION DESCRIPTION LANGUAGE  
The Mission Description Language (MDL) provides means to 
describe the information requested or to be monitored about 
certain detectable phenomena in a given time-space domains 
interesting to the end-users. For instance, the user may want to 
know about the different kinds of vehicles that pass through a 
given area during a certain time, or the environmental conditions 
during the occurrence of a pre-defined event. By using the MDL 
to setup a mission to the network the user “tests” the environment 
in order to achieve the desired information about a phenomenon 
or an event of interest. The idea of “test” the environment is based 
on the C/ATLAS test language [10], in which high-level test 
commands are specified in order to retrieve information about 
devices in a system. In a similar way, the MDL provides high-
level commands to retrieve specific information about matters or 
changes that occur in the environment. Based on this idea, the 
MDL uses patterns and definitions to test the environment in order 

to gather information that matches with those patterns and 
definitions that describe the user’s need for information. However, 
it is important to highlight that in this proposal the MDL uses just 
this conceptual idea behind C/ATLAS, it does not use the 
terminology presented by the test language, neither the same 
taxonomy.  

By using the MDL, the user defines high-level statements, which 
define and describe the events of his/her interest, as well as the 
constraints that are linked with that specific sensing mission. For 
instance, the maximum tolerated delay to receive an alert or the 
maximum amount of energy that can be used for that mission, 
among others. Another important concept in the MDL is the 
mission priority ordination, which allows several missions to run 
at the same time in the network, but prioritizing those which are 
more important, according to the user’s definitions. Linked with 
the former idea and the constraints enforcement is the usage of 
policies to govern the performance of missions. The user can 
order the mission accomplishment according to their priorities, 
selecting some constraints and also link a policy that will dictate 
how persistent the nodes in the network will be in order to gather 
the requested information. For instance, in an aggressive policy, 
nodes can deplete their batteries in order to assure that the 
requested data will be delivered to the end user (i.e., by 
performing several retransmissions until the end-user receives the 
information or the battery is depleted). On the other hand, in a less 
aggressive policy, nodes may preserve their batteries in spite of 
that they cannot assure the data delivery. The user can also use a 
policy and “tune” it by means of specifying specific constraints 
that override the general policy for those specific parameters.  

The mission described as a set of MDL statements is then 
translated to parameters that will configure the system as to 
retrieve the information desired by the user. The definition of 
these parameters is done by the interpretation of the MDL 
statements, together with the analyses of the characteristics of the 
deployed network and the chosen policy, if any, and the priority 
level. A configuration console (Mission Specification Console) 
enables the user to enter this information, which will be translated 
in a tuple of parameters (the content of this tuple will be explained 
in Section 5) representing the mission that will be injected into the 
network. Figure 3 illustrates the configuration console and its 
components. 

 

 
Figure 3. Mission Specification Console 

The MDL statements are the essential elements used to define the 
overall mission (Global Mission) of the network. The Global 
Mission will be divided into node-missions (sub-missions), which 
will be executed by specific nodes or a group of nodes in the 
network. The subdivision of a mission in node-missions is an 



important part of the Global Mission translation in system 
parameters. It is done by a component called Mission Interpreter, 
which takes the MDL statements as input, consult a domain-
specific database (for information about a particular domain), and 
translate these statements into node-missions, see Figure 4. 

 
Figure 4. MDL Interpretation and Node-missions generation  

The MDL is divided in two parts: (1) the kernel of the language, 
which defines events of interest, space and time parameters, as 
well as the priority of the sensing mission; and (2) the extensions, 
which define advanced parameters, such as accuracy, precision 
and constraints. It is composed by: imperative commands (i.e. 
SCAN and DETECT); keywords (i.e. pattern and object), which 
are the parameters of the commands; connectors to link 
commands and keywords (i.e. IF and WITH); and pre-defined 
patterns, which are in fact a kind of keyword that are stored in a 
domain library (i.e. FOG and LINEAR_MOVEMENT). As an 
example, the following represents a conditional MDL statement: 

IF DETECT <DECREASE_OF <temperature>> 
WITH GRANULARITY<3> MONITOR <FOG> 
WITH ACQUISITION <period = yy> 

This example statement means: if a 3ºC decrease in temperature is 
detected, then provide monitoring of the pre-defined pattern 
“FOG” with data acquisition by the sensors each “yy” time units. 

5. MISSION PARAMETERIZATION   
The input to the sensor network system, coordinated by the 
proposed middleware, is seen as a “mission” that the whole 
network must to accomplish in cooperation. By using a language 
such as MDL the user can specify necessary “data” for such a 
mission at a high level of abstraction. The user thus specifies the 
goals and priorities for the missions’ directions in an MDL file, 
which after translation will drive the mission implementation 
based on reflection about the network, in order to accomplish with 
the users’ requirements. The reflection consists of analysis and 
reasoning performed inside autonomous network nodes in order to 
allow the adaption required to face the changes in dynamic 
scenarios and users’ requirements. Node-mission responsible 
agents, called planning-agents, reason about the network 
adaptations based on the mission directions and the network 
actual state. The former gives the requirements for data from 
users’ point of view, while the latter is mainly characterized by 
nodes availability and environmental conditions. Their reasoning 
is made by a construction of believes about the network and its 
environment, which will help to achieve their goals and like this, 
comply with the network global mission. 

The representation of the mission is provided by a set of goals that 
each planning-agent desires to achieve, supported by a set of 
“known facts” that they have about the network and the 
environment. Based on these facts and their goals, the planning-
agents establish activity plans to achieve their goals, negotiating 
the best distribution of the work that must be done in order to 
accomplish with the global mission.  

The network global mission is divided in sub-missions, called 
node-missions, which are assigned to planning-agents present in 
each individual node. Each node has just one planning-agent 
(placed in the Domain Services Layer of the middleware), thus for 
comprehension of the remaining text, a node-mission is assigned 
to a node or to the planning-agent installed on it. The 
accomplishment of each node-mission will corroborate for the 
success of the global-mission. In order to complete their node-
missions, planning-agents break the node-mission into minor tasks 
that are related to the individual devices inside the node. A 
hierarchy among these concepts can be drawn: at the top is the 
global mission, followed by the node-missions, which is divided 
in several tasks in the node abstraction level. In the following, a 
formalization of these concepts is presented. 

A Global Mission is represented by a tuple composed by the sets 
called SM and SN, and also the functions MM and QF. SM is a 
sub-set of all possible node-missions that could be assigned to a 
node; SN is a sub-set of all the nodes in the network; the mapping 
function MM maps elements of SM into elements of SN; while 
the quality function QF evaluates the mapping provided by MM. 
It is represented by: 

QFMMSNSMGM ,,,=  

M is the set of all possible node-missions; 

SM is a set of node-missions (sub-set of M) that can be assigned 
to the nodes members of the set SN: 

{ }MmmSM ii ∈= | , { }Ii ,...,1∈ , 

where I is the total number of all possible missions, i.e. the 
number of elements of set M or SM⊂M; Each node-mission mi is 
represented by a tuple composed by a set of measurements that 
must be provided (SME), a set of conditions to the measurements 
(SMC), and a relation C that maps the set of conditions in the set 
of measurements: 

CSMCSMEmi ,,= , 

where SME is sub-set all possible measurements (ME); and SMC 
is the sub-set of all possible measurement conditions (MC),such 
as those related to periodicity, accuracy, time interval, range, 
among other. Such that SME ⊂ ME, and SMC ⊂ MC. C is the 
relation that maps conditions into measurements, where one 
measurement can be linked to none or several conditions. The 
opposite is also valid, i.e. one condition can be linked with none 
or several measurements: 

( ){ }SMEmeSMCmcmemcrC jkjk ∈∈== ,| , 

{ } { }JjKk ,...,1,,...,1 =∈ , 

where K is the total number of possible measurements conditions 
in the network (number of elements of the set MC); and J is the 
total number of measurements in the network (number of 
elements of the set ME). 

N is a set of all nodes that compose the network. 

SN is a sub-set of nodes in the network (a sub-set of N): 

{ } { }VvNnnSN vv ,...,1,| ∈∈= , 

where V is the total number of nodes in the network (the number 
of elements of the set N) or SN ⊂ N. 



MM is the mission-mapping function that maps each node-
mission to a certain node. A node in SN can perform one or more 
node-missions, but each node-mission is atomic (from the entire 
network point of view), i.e. it can be assigned to only one node: 

( ){ }
{ } { }VvIi

SNnSMmnmfMM vivi

,...,1,,...,1

,,|

∈∈
∈∈==

. 

QF is a function that evaluates the mapping provided by MM, 
given a grade between 0 and 10 for each par (mi, ni): 

∑= ixQF  

where ( ) [ ]10,0,,|, ∈∈∈= iviivi xSNnSMmxnmg . 

In order to achieve the goals of an assigned node-mission, a node 
must perform several different smaller tasks, called node-tasks. 
To read a value from the sensor device, or to turn a sensor device 
on/off are examples of node-tasks. At the node abstraction level, 
a specific node-mission is a sub-set of all node-tasks that a given 
node can perform, represented formally by: 

{ } { }WwTttnm ww ,...,1,| ∈∈=  

where W is the total number of possible node-tasks that any node 
can perform (the number of elements of the set T) or nm ⊂ T 
where T is the set of all node-tasks that can be performed by any 
node. 

6. PLANNING-AGENT MODEL  
The proposed approach uses different kinds of agents; both 
cognitive and reactive ones, in order to perform different activities 
in the middleware, from the provisioning of simple services to 
complex reasoning about the network setup. To keep attention on 
the focus of this paper, only the model of the planning-agent, 
which is a cognitive agent, will be presented. 

The model used in the present approach for the cognitive agents is 
based on the model of mental attitudes, known as BDI model 
(Believes-Desires-Intentions) presented in [11]. The BDI 
approach appears to suite well to the problem addressed by the 
current work, as some decisions that must be taken by the agents 
in the proposed approach require cognitive skills to “wonder” if 
certain actions are adequate to achieve a desired result, based on 
knowledge about conditions that may interfere on the performance 
of those actions. In the current problem formulation, what is 
desired is to obtain information by means of sensing activities, 
which are the goals of a sensing mission. Such knowledge is the 
“believe” that the node has about the relevant conditions and the 
intentions are translated into the actions need to retrieve the 
desired information. It thus seams that this model fits well to the 
goals of the proposed approach.  

However, it is important to highlight that the approach used in this 
work is slightly different from the traditional BDI frameworks, 
such as [12] and [13], or more complex teamwork models, such as 
those presented in [14]. The major difference is that the model 
presented in this paper is focused on sensor networks activities, in 
which the network nodes do not perform any action that changes 
the world around them, what simplifies the model by eliminating 
the assumptions about this aspect. Besides, the proposal herein is 
simpler than those presented in the works mentioned above, as 
one can see in the remaining text. 

The planning-agent has a complex “mental” activity, being 
responsible for different kinds of reasoning related to the mission 
accomplishment. It communicates with all other kinds of agents in 
the system. Besides, it negotiates with other planning-agents 
installed in the other nodes about the distribution of the node-
missions. During these negotiations, it gathers information about 
the other nodes in order to achieve necessary knowledge about the 
network. It also has to maintain and update information about its 
own state, in order to inform other planning-agents and be capable 
to take right decisions. Environment conditions are also important 
in some of the deliberations taken by this agent. So this kind of 
information also constitutes its mental state, more precisely, as a 
part of its beliefs. In the following, a description about the beliefs, 
desires and intentions of the planning-agent, as well as a 
description of its plan and actions is provided. 

Beliefs: Basically consisting of four groups of information: 1) 
background information, such as maps of the region; 2) the 
planning-agent’s own conditions, translated in terms of the actions 
that it can perform and the node status (energy level, devices 
status, location, installed services, agents hosted in the node, etc); 
3) other nodes status; 4) environment conditions. 

Desires: The planning-agent has two types of desires: 1) General-
Desires: which correspond to “built-in” goals, such as: distribute 
the node-missions in order to achieve the best overall result 
efficiently, and cooperate with other nodes; and 2) Specific Goals: 
which are related to the assumed node-missions and that come to 
its desires’ set when it assumes the responsibility of a given node-
mission (mi). These goals are ranked according to the related 
node-mission priority. It will be used to drive the construction of 
the plans that governs the execution of the agent’s actions. 

Intentions: Following the same idea of the desires, the planning-
agent has two types of intentions: 1) General Intentions: which are 
directly related to the built-in goals, such as: to have an agreement 
about which that node will take the responsibility of a given node-
mission after a negotiation with other nodes; to have provided the 
required resources to a requesting node; to have provided the 
correct information to other agents about data of interest; and 2) 
Specific Intentions: which specify intentions related to actions 
needed to accomplish a given node-mission, such as: to have sent 
the samplings with the correct accuracy within the timing 
constraints, which comes to the agent via the sets SME and SMC 
to the corresponding mi that it assumes to accomplish. 

Actions: Operating System or direct device drivers calls to 
perform commands on the underlying software and hardware 
platform; send and receive messages to and from other agents 
(request, inform, reply, notify, subscribe, publish, propose, reject, 
accept). Particularly in the negotiations occurring during the 
reasoning, the types of messages used are: inform, propose, accept 
or reject.  

Plan: A plan is described in terms of a sequence of actions that an 
agent perform in order to achieve a sub-goal, decided by its 
deliberation and related to its intentions, and ultimately to achieve 
a motivational goal related to its desires. In order to accomplish 
with a given node-mission, the agent choose specific tasks (tw) 
such as they form a set that fulfill that node-mission. A plan will 
be a list of tasks that have to be done in order to accomplish with 
the node-missions allocated for that node. If a new node-mission 
is assumed and some of the tasks that are required to accomplish it 
are already in the plan, there is no need to insert them again in the 
plan, as their results are reused for this new node-mission. The 



planning-agent needs to construct a new plan, which can be totally 
new or at least a reviewed version of the current one, each time at 
least one of the following events occurs: it assumes a new node-
mission; the conditions of the environment changes; a change in 
the network or in the user requirements occurs. This reflects the 
flexibility of the network to adapt itself according to the 
dynamicity of the network operation.  

6.1 Architectural Structure 
After the presentation of the cognitive planning-agents’ internal 
model, its architectural structure can be described, based on the 
BDI architecture presented in [15], and is shown in Figure 5. 

 
Figure 5. Planning-agent Internal Architectural Structure  

In Figure 5 is shown that the agent takes the perceptual inputs 
(changes in the network or in the environment, data from its 
sensors, etc) and its current beliefs, and performs an update of 
their beliefs by means of the Belief Renew Function. After 
analysis of the updated beliefs and current intentions, the Option 
Generator function selects a sub-set of the desires representing 
the next possible goals to perform. Its beliefs, desires and 
intentions are then used as inputs to a Filter function that 
represents the deliberation of the agent and will provide the 
update of its intentions. The planning-agent constructs its own 
plans by reasoning about its current intentions and its beliefs. 
Ultimately the generated plans will fulfill with goals defined in its 
desire base, as the current intentions were decided based on the 
analysis of the set of the possible goals, by the use of the Option 
Generator. The result of the Planning is the selection of actions 
that are needed to perform the current intentions. It considers the 
current plan and beliefs, in order to select and order the execution 
of the actions. The current plan is used to reuse some previous 
decisions, and the current beliefs to evaluate which actions are 
more adequate to take in relation to the current conditions. 

7. MULTI-AGENT REASONING  
As stated above, the planning-agents construct believes that will 
guide their decisions based on the mission needs (the goals in 
their desires), which are characterized by node-missions. As the 
network receives a global-mission, the nodes will try to find a best 
fit to accomplish this mission, which characterizes the mission 
setup reasoning. Their decisions will influence the mission 
mapping function (MM), which may change in case of adaptation 
during the system runtime, due the adaptation reasoning. The 
mechanisms for the network setup and adaptation are described in 
the following. 

7.1 Mission Setup  
When a mission is received, the reasoning required to perform the 
network setup is divided in four steps, which are explained more 
in detail in the following. 

Step One: each node performs an analysis of the elements of the 
set SM, as well as its capabilities and the surrounding 
environment. If a node can provide the measurements of the set 
SME for a certain node-mission mi, satisfying the respective 
relation C, it “declares” itself as “candidate” to perform mi. At 
this time, each node constructs a partial belief in relation to mi, 
only based on its own knowledge about the network, which is 
composed by the mission needs and its own capabilities.  

Step Two: if a node considers itself as “candidate” to accomplish 
mi, it informs its “candidacy” to the other nodes, using an “inform 
message”. However if the node does not consider itself as 
“candidate”, it will just listen for the “candidacy” of other nodes. 

Step Three: after a pre-established time-out, if no one considers 
itself as “candidate”, no message will be exchanged. Thus, all 
nodes that can provide the data required by the measurements 
described in the set SME, but that cannot satisfy the relation C, 
communicate with the other nodes informing about the conditions 
that it can satisfy. The node, which provides the assurance closest 
to the desired one (specified by C), takes the node-mission. This 
characterizes a best-effort way to solve the problem. 

Step Four: nodes analyze their own conditions as well as 
conditions of the others, deciding which one must take mi. Such 
analysis uses the quality function QF and the node-tasks needed 
to perform mi. By maximizing g(mi,nv), nodes know which one 
(nv) will be in charge of the node-mission mi. If two nodes are 
capable to accomplish the node-mission, the one that has best 
conditions, e.g. remaining energy and/or other influencing 
parameters, takes the responsibility for that node-mission. In other 
words, the function g has a higher value for that node in 
comparison with the others. With this information, the nodes 
construct a common belief. If two nodes have the same value for 
the function g for the same node-mission, one of them is then 
randomly chosen. 

Communication in wireless sensor networks can face problems 
that compromise message delivery. In case, any message of the 
coordination protocol is not received by any node in any of these 
steps, the node acts according to its belief from the last received 
message, if any. If it does not receive any message, it will act 
according to its initial partial belief. When the communication is 
reestablished, nodes will “listen” to the passing messages related 
to the same node-mission (mi) measurements, and then they will 
redo the above steps in order to achieve a new global-belief. 

If compared with a centralized task distribution, the advantage in 
performing this reasoning in a distributed way is to avoid 
communication to and from the base station, which would 
consume more energy if compared with the local computation of 
the task allocation. As presented in [22], communication is the 
main source of energy consumption in sensor nodes, so 
communicating requires more energy than computation. In order 
to achieve a centralized task distribution that has the same quality 
as a distributed one can achieve; data about the current status of 
the nodes have to be sent often to the base station, which would 
increase the energy consumption. On the other hand, by the use of 
the distributed approach as presented, the nodes decide locally 
how to divide the new job, according to their status, without the 
need to send information through the network to the base station. 
This same argument holds to support the distributed way in which 
the adaptation is done, which is presented in the next sub section. 



7.2 Mission Adaptation  
During the system runtime, mission requirements and/or 
operational conditions can change. Nodes can perceive these 
changes, which induces node believes to be updated. If a change 
makes a node unable to proceed in the mission accomplishment, 
the network must adapt itself to solve the problem. The reasoning 
performed by the planning-agents will try to find another node 
that can perform node-mission mi in the place of the previous 
node. This reasoning is similar to the one presented above, but 
there are two different circumstances that also must be taken into 
account: (1) the node simply fails; (2) the node continues to work, 
but is aware that it cannot continue performing the mission. 

Considering the first case, faulty nodes are perceived by other 
healthy nodes, which have participated with the faulty one in the 
initial mission establishment reasoning. As nodes can perceive 
that the node responsible by the node-mission mi is not 
responding during an established time-out period, they redo the 
reasoning to decide which one must perform mi. Information 
about the failure is added to the belief of these healthy nodes. 

In the second case, the node that becomes unable to accomplish 
mi informs this situation to the nodes that participated in the 
mission establishment reasoning. Further they decide which one 
will take the node-mission previously assigned to that node. 

Another situation that requires adaptation is when changes make 
other nodes (more) capable to accomplish a certain node-mission 
mi. An adaptation can be triggered if the node-mission was 
previously assigned in a best effort way, as explained in the step 
three in section 3.2. The need for a best service can also trigger 
the adaptation, foreseeing a possible increase in the users’ 
requirements priority. The mechanism of these changes is 
implemented by an exchange of “proposal” and “accept” or 
“reject” messages.  

Adaptations decisions are also based on the quality function QF. 
It is done during the establishment of the best mapping of node-
missions to nodes as explained in the section 3.2. The target is 
always to maximize the value of QF, what can be achieved by 
maximizing the function g(mi,nv) for each node-mission mi: i.e. 
max(g(mi,nv)). 

As result of the procedure explained above, all nodes know which 
node nv has taken the responsibility for the node-mission mi, 
(similarly to the establishment of the node-missions mapping). 
Therefore, nodes’ beliefs are updated with this knowledge. In the 
same way as explained before, if two nodes have an equal value 
of function g for a given node-mission, one of them is chosen 
randomly. 

7.3 Considerations about Complexity  
As the middleware is intended to run in a variety of nodes, from 
resource constrained nodes to resource rich ones, the mechanisms 
presented above have to be customized for each type of node.  

Considering resource rich nodes, function g used to evaluate the 
quality of a given mapping may be an elaborated and computing 
intensive algorithm. However, when it comes to the low-end 
nodes, simpler functions may take place in order to perform the 
evaluation of the part of the mission related to them. The same 
way that there is a tradeoff between energy consumption and 
communication resource usage, there is also a tradeoff in the 
amount of resources that should be used and the quality of a 

solution provided by the used algorithm. It is possible that an 
optimal solution is not achieved by a simpler algorithm, but 
considering the resource constraints, a sub-optimal can be better 
than an optimal one that depletes the available resources. 

The same kind of variation is present in the internal components 
of the planning-agent that inhabit different types of sensor nodes. 
The above explained Option Generator Function, Filter Function 
provides for that the Planning can be much richer, considering 
much more parameters and having more complex algorithms in 
the resource rich nodes, if compared with the same functions in 
the low-end nodes. However, it is important to highlight that 
every node of a given kind use the same set of functions, so the 
coherence is maintained.    

8. RELATED WORKS 
Agilla [16] is one of the precursors in the use of mobile agents in 
middleware for WSN. Its approach is to use agents that can move 
from one node to another in the network. It also allows multiple 
agents to run in the same node. These characteristics provide the 
desired features of energy saving, as the agents can run near to the 
data avoiding unnecessary communication. In comparison with 
the proposed approach, the use of agents is not restricted to 
moving and using services around the network but also to help in 
the network reflection and decision for adaptability using multi-
agents.  

In [17] a proposal to use a distributed mechanism to control 
adaptive sampling to support energy-constrained network 
operations is presented. In the proposal, each sensor is considered 
an autonomous agent, enabling decentralized control of the 
sampling rate of sensor nodes in the application domain of flood 
monitoring. Besides the contribution in the increase the efficiency 
of the energy consumption, the goal of this approach is also to 
maximize the information value of the data collected to the base-
station. The major differences between our work and the one 
mentioned above are respectively: the consideration of a 
heterogeneous sensor network instead of a homogenous one; the 
domain independent instead of a domain-specific approach; and 
the direct cooperation among the agents instead of just the 
decentralization of the problem. 

AWARE [18] is a project that proposes a middleware whose goal 
is to provide integration of the information gathered by different 
type of sensors, including WSN and mobile robots. Our proposal 
aims also at addressing heterogeneous sensors, but also concerns 
like QoS, as presented in [9], and runtime reflection to address 
changes in the environment and in the network. Moreover, our 
approach provides the capability of autonomy to the network 
nodes, by using an agent-orient approach. In the referred 
middleware, the nodes do not have the same capability.  

In [19] an approach that uses Artificial Intelligence to configure 
an underlying middleware is presented. This approach uses the 
concepts of missions and goals to plan the allocation of tasks in a 
network of homogeneous nodes. The handling of heterogeneous 
nodes is one of the differences between the referred work and the 
one presented in this paper. Additionally, in that work, the 
intelligence is outside the middleware by means of just sending 
“commands” or adjusting its parameters. In our presented 
approach, agents make part of the middleware, spreading 
intelligence over the network.  



In [20] an information processing paradigm for intelligent sensor 
networks is presented. Nodes in sensor networks have different 
levels of autonomy in terms of the signal processing, information 
fusion and situation assessment in order to contribute with the 
overall system decision making. This approach is based on the use 
of a genetic algorithm to provide learning features to the sensor 
nodes, and fuzzy cognitive maps to perform situation assessment. 
The sensor networks aimed by this work are those composed only 
by rich nodes, as the architecture and the techniques used are quite 
heavy to fit in low-end nodes. On the other hand, the proposal of 
the present paper is to address heterogeneous sensor networks that 
are composed by both low-end and rich nodes, allowing them 
cooperate in order to achieve the overall mission goals.    

9. CONCLUSION AND FUTURE WORK 
This paper presented the concepts of a middleware needed to 
address mission-driven heterogeneous sensor networks deployed 
in highly dynamic scenarios. These scenarios require middleware 
reflection to support adaptations to face constant changing 
conditions during runtime. Multi-agents reasoning is used in order 
to setup, configure and reconfigure the network. Besides, a formal 
definition of the mission statements and conditions (described in 
MDL) was presented, as well as its mapping to elements of a BDI 
approach that supports the proposed network wide reasoning.  

The direction of the ongoing and future work includes enrichment 
of the Mission Description Language specification, adding 
abstractions that can help the user specify missions. Another 
ongoing work is the implementation of the simulation to provide 
results that validate the presented ideas. In order to do that, the 
adaptation of a simulator for wireless networks called Shox [21] is 
being done. This adaptation consists of the inclusion of the agents 
concepts in the simulator framework, and an interface with the 
Mission Specification Console.    
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