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“To begin... To begin... How to start?
I’m hungry. I should get coffee. Coffee would help me think.

Maybe I should write something first, then reward myself with coffee.
Coffee and a muffin.

Okay, so I need to establish the themes.
Maybe a banana-nut. That’s a good muffin.”

—
Charlie Kaufman, in Adaptation. (2002)
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ABSTRACT

The difference among workstations is assumed to be negligible in traditional assembly lines.
Heterogeneous assembly lines consider the problem of industries in which the task times vary
according to some property to be selected for the task. In the Assembly Line Worker Assign-
ment and Balancing Problem (ALWABP), workers are assigned to workstations and according
to their abilities, they execute tasks in different amounts of time. In some cases they can even be
incapable of executing some tasks. In the Robotic Assembly Line Balancing Problem (RALBP)
there are different types of robots and each station must be executed by a robot. Multiple robots
of the same type may be used.

We propose exact and heuristic methods for minimizing the cycle time of these two prob-
lems, for a fixed number of stations. The problems have similar characteristics that are explored
to produce lower bounds, heuristic methods, mixed-integer programming models, and reduction
and dominance rules. For the branching strategy of the branch-and-bound method, however, the
differences among the problem force the use of two different algorithms. A task-oriented strat-
egy has the best results for the ALWABP-2 while a station-oriented strategy has the best results
for the RALBP-2. The lower bounds, heuristics, MIP models and branch-and-bound algorithms
for these two problems are shown to be competitive with the state-of-the-art methods in the lit-
erature.

Keywords: Assembly Line Balancing. ALWABP-2. RALBP-2. MMALBP-2. Branch-and-
Bound. Beam Search.



RESUMO

Métodos Exatos e Heurísticos para Problemas de Balanceamento de Linhas de
Montagem Heterogêneas do Tipo 2

A diferença entre estações de trabalho é considerada desprezível em linhas de montagem
tradicionais. Por outro lado, linhas de montagem heterogêneas consideram o problema de in-
dústrias nas quais os tempos das tarefas variam de acordo com alguma característica a ser se-
lecionada para a tarefa. No Problema de Balanceamento e Atribuição de Trabalhadores em
Linhas de Montagem (do inglês Assembly Line Worker Assignment and Balancing Problem,
ALWABP), os trabalhadores são responsáveis por estações de trabalho e de acordo com as suas
habilidades, eles executam as tarefas em diferentes quantidades de tempo. Em alguns casos,
os trabalhadores podem até ser incapazes de executar algumas tarefas. No Problema de Ba-
lanceamento de Linhas de Montagem Robóticas (do inglês Robotic Assembly Line Balancing
Problem, RALBP), há diferentes tipos de robôs e o conjunto de tarefas de cada estação deve
ser executada por um robô. Robôs do mesmo tipo podem ser usados múltiplas vezes. Nós
propomos métodos exatos e heurísticos para a minimização do tempo de ciclo destes dois pro-
blemas, para um número fixo de estações. Os problemas têm características similares que são
exploradas para produzir limitantes inferiores, métodos inferiores, models de programação in-
teira mista, e regras de redução e dominância. Para a estratégia de ramificação do método de
branch-and-bound, entretanto, as diferenças entre os problemas forçam o uso de dois algoritmos
diferentes. Uma estratégia orientada a tarefas tem os melhores resultados para o ALWABP-2,
enquanto uma estratégia orientada a estações tem os melhores resultados para o RALBP-2. Nós
mostramos que os limitantes inferiores, heurísticas, modelos de programação inteira mista e
algoritmos de branch-and-bound para estes dois problemas são competitivos com os métodos
do estado da arte da literatura.

Palavras-chave: Balanceamento de Linhas de Montagem, ALWABP-2, RALBP-2, Branch-
and-Bound, Beam Search, MIP.
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1 INTRODUCTION

In an assembly line, a set of workstations is defined, and the workers or machines at each
workstation are responsible for executing product assembling tasks, while the product passes
from one station to another. Assembly lines are widely applied, in automotive (CUNNING-
HAM, 1980), aerospace (HEIKE et al., 2001), electronics (BALAKRISHNAN; VANDER-
BECK, 1993), and home appliances (PARK; PARK; KIM, 1997) industries, for instance. In
this type of production of standardized products, it is easier to split the production into smaller
tasks and select some specialized workers or machines to repeat them. In order to increase the
production rate or decreasing the production cost, it is crucial to plan the configuration of the
factory adequately (CUNNINGHAM, 1980). The assembly line balancing problems, therefore,
consist in optimizing one or both of these two aspects while satisfying the constraints of an
assembly line.

The assembly line balancing (ALB) problems were first formalized by Salveson (1955),
who defined a simplified model for the ALB problems called the Simple Assembly Line Bal-
ancing Problem (SALBP) (BAYBARS, 1986). The simple assembly line is composed of a set
of tasks T and a set of workstations S placed successively. Each task must be executed at a
workstation. Also, the tasks are partially ordered. If a task t precedes another task t ′, then the
task t must be performed before the task t ′, i.e. it must be assigned to a station before the station
executing t ′ or to the same station. Each task needs a time pt to be performed. For each station
s, a station time (Ps) is also defined corresponding to the sum of the times of the tasks assigned
to s. The cycle time C of the line, the time difference between finishing two products, will be
greater than all station times for a sufficiently large number of units being produced, because
every task has to be performed. Therefore the cycle time C equals the maximum station time
over all stations.

Given these definitions, there are two main objectives in a SALBP: minimizing the number
of stations or minimizing the cycle time. The most common forms of the problem minimize
the number of stations for a fixed cycle time (SALBP-1) or minimize the cycle time for a
fixed number of stations (SALBP-2). But we can also minimize the product of both variables
(SALBP-E) or find a valid solution for a fixed number of stations and cycle time (SALBP-F).

Real assembly lines are more complex than the SALBP. Examples in the literature include,
for instance, U-shaped (MILTENBURG; WIJINGAARD, 1994) and parallel (GÖKÇEN; AĞ-
PAK; BENZER, 2006) assembly lines. In these problems the time to perform a task does not
depend on the conditions in which the task is performed and is always the same. In general
assembly lines, the same task can be performed by different workers, by different robots, or for
different models of the product. In these cases according to the conditions in which the task is
executed the time to perform it is different.

For the case with significantly distinct workers, Miralles et al. (2007) proposed the Assem-
bly Line Worker Assignment and Balancing Problem (ALWABP), which was focused on as-
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sembly lines in Sheltered Workcentres for Disabled (SWDs). SWDs are not-for-profit industries
focused on giving professional training and a work opportunity for disabled people (CHAVES,
2009). Currently, there are more than 785 million persons with some kind of disability, includ-
ing 110 million with severe disabilities, according to the World Health Organization (2011).
They still lack conditions to pursue rights like education and employment. While the employ-
ment rate of disabled people has improved (Organisation for Economic Co-Operation and De-
velopment, 2003), the quality of the jobs is still low. Work quality impacts the lives of disabled
persons, and is an important therapy for some of these workers (COSTA, 2001). The use of as-
sembly lines in SWDs has been shown to be an important tool to achieve this goal (MIRALLES
et al., 2007).

While the difference among workers is negligible in some conventional factories, this is not
true for SWDs. As in the SALBP, we are given a set of workstations S and a set of tasks T , but
there is also a set of workers W , with |W | = |S|. In the ALWABP each task t has an execution
time ptw according to the worker w executing it. Therefore, to solve the problem, it is necessary
to assign a worker to each station and, besides that, balance the tasks among the stations. Since
the main goal of SWDs is to maintain their workers active, and the increase in production rate
brings funds for the growth of the work centres, then the objective of the problem is to maximize
the production rate of the line, by minimizing its cycle time. Therefore we solve the type 2 of
the ALWABP.

Robotic assembly lines are also a type of heterogeneous assembly line. Different types of
robots take different times to execute the same task. But, on the contrary to the ALWABP, the
number of robots of the same type is not limited. For instance, it is possible to use the same
robot for all stations. A solution for the problem must correctly balance the line and assign
a type of robot to each station following the same constraints as in the SALBP. This problem
is called Robotic Assembly Line Balancing Problem (RALBP) (RUBINOVITZ; BUKCHIN;
LENZ, 1993). As in the SALBP and ALWABP, types 1, 2, E and F of the RALBP can be
studied. Here we work with the RALBP-2 version.

In this thesis we propose and evaluate novel methods, both exact and heuristic, for these two
problems: the ALWABP-2 and the RALBP-2.

1.1 Definition of the problems

In the ALWABP, each worker w ∈W takes a different time ptw to execute a task t ∈ T ,
according to his or her abilities. There is no relation between the times needed to execute a task
by two workers. For instance, for a task t1, a worker w1 could take 30 seconds and a worker
w2 could take 15 seconds, while for a task t2, w1 could take 10 seconds and w2 could take 20
seconds. In practice, a worker can even be unable to perform some tasks. In these cases, we set
ptw = ∞. Table 1.1 shows an example for six tasks and three workers.

Additionally, some tasks may depend on others to be executed. The order of the tasks is
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Table 1.1 – Example of execution times ptw for an ALWABP instance with 6 tasks and 3 workers.

ptw t1 t2 t3 t4 t5 t6
w1 4 4 3 1 1 6
w2 ∞ 5 6 5 2 4
w3 3 4 2 ∞ 3 ∞

t1 t2
t3

t4
t5 t6

Figure 1.1 – Example of a precedence graph on six tasks.

usually represented by a transitively reduced directed acyclic graph G(T,A) on the tasks, with
A ⊆ T ×T . For an arc (t, t ′) ∈ A, task t should be performed before task t ′. Figure 1.1 shows
an example of a precedence graph G(T,A), where |T |= 6. In the example, task t1 precedes all
the remaining tasks and should be executed first. After that, tasks t2 and t3 are free and may be
executed. One of them is performed, some more tasks may be freed and so on, until all tasks are
performed. All topological orders on G(T,A) are valid sequences of tasks and some examples
of orders for the graph in Figure 1.1 are presented in Figure 1.2.

Each workstation s ∈ S at the factory is placed along a conveyor belt and is assigned to
exactly one worker w ∈W , which is responsible for executing a subset of tasks Xw ⊆ T . After
executing its set of tasks the worker will pass the product to the next workstation. The products
of station s2 can not return to station s1. Therefore, if there is an arc (t, t ′) in graph G(T,A), the
station that performs task t cannot be placed after that of task t ′ on the conveyor belt. Figure 1.3
shows a valid assignment of tasks to workers and stations.

A worker can only be assigned to one station and for a given worker w assigned to a station
s, the station time of s is given by Ps = ∑t∈Xw ptw. Therefore it is possible to calculate the cycle
time C of the line as the maximum station time maxs∈S Ps. At every C seconds, a new unit
will be produced at the assembly line. Thus the production rate of the line r is given by the
number of products finished at each time unit (r = 1/C). The goal of an ALWABP of type 1
(ALWABP-1) is to minimize |S| given a fixed C. For an ALWABP of type 2 (ALWABP-2), the

t1 t2 t3 t4 t5 t6

t1 t3 t2 t5 t6 t4

t1 t3 t4 t2 t5 t6

t1 t2 t3 t5 t4 t6

Figure 1.2 – Four examples of valid task orders for Figure 1.1.
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s1,w3

s2,w1
s3,w2

t1 t2
t3

t4
t5 t6

ptw t1 t2 t3 t4 t5 t6
w1 4 4 3 1 1 6
w2 ∞ 5 6 5 2 4
w3 3 4 2 ∞ 3 ∞

Figure 1.3 – Example of an ALWABP instance and an assignment of tasks to workers and stations (in
grey). Upper part: precedence constraints among the tasks. Lower part: task execution times.

s1,w3

s2,w1
s3,w2 s4,w2

t1 t2
t3

t4
t5 t6

ptw t1 t2 t3 t4 t5 t6
w1 4 4 3 1 1 6
w2 ∞ 5 6 5 2 4
w3 3 4 2 ∞ 3 ∞

Figure 1.4 – Example of a RALBP instance and an assignment of tasks to robots and stations (in grey).
Upper part: precedence constraints among the tasks. Lower part: task execution times.

objective is to minimize C while using a fixed number of stations and workers. An ALWABP
of type F (ALWABP-F) aims to find a solution with a fixed number of workers and a fixed cycle
time. Finally, an ALWABP of type E (ALWABP-E) minimizes the product C · |S|.

For the example of Figure 1.3, the station times of stations s1, s2 and s3 are 5, 5 and 6, respec-
tively. Therefore the cycle time of this solution is 6, which is also optimal for the ALWABP-2,
with three stations.

For the Robotic Assembly Line Balancing Problem, the concept of a worker is replaced
by types of robots. Since the same type of robot can be assigned to multiple stations, it is
unnecessary to bound the number of robots of the same type to one. Therefore, for the same
instance of Figure 1.1 and Table 1.1, if we consider four stations, an optimal solution would use
two robots of the same type w2 in stations s3 and s4, providing a cycle time of 5, as shown in
Figure 1.4.

1.2 Formal Definition

The notation needed for the definition of the ALWABP and the RALBP is presented in Table
5.1.
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Table 1.2 – Notation for ALWABP

S set of workstations;
W set of workers;
T set of tasks;
R set of robots;
M set of models;
G(T,E) precedence graph of tasks;
G∗(T,E∗) transitive closure of graph G(T,E);
ptw execution time of task t by worker w;
ptr execution time of task t by robot r;
Iw ⊆ T set of tasks unfeasible for worker w;
Uw ⊆ T set of tasks feasible for worker w;
At ⊆ T set of workers or stations feasible for task t;
Pt ⊆ T and Ft ⊆ T set of immediate predecessors and successors, respec-

tively, of task t in graph G(T,E);
P∗t ⊆ T and F∗t ⊆ T set of all the predecessors and successors, respectively,

of task t in graph G∗(T,E∗);
C a real variable, representing the cycle time of a solution;

An ALWABP-2 formulation was proposed by Miralles et al. (2008b). It uses the three sets:
stations S = {1,2, ...,n} (for n stations), workers W and tasks T . Using these sets we define
binary variables xswt and ysw. The variable xswt indicates if a task t ∈ T is assigned to the worker
w ∈W at the workstation s ∈ S, and the variable ysw indicates if a worker w ∈W is assigned to
station s ∈ S. Using this notation, the model MW1 can be defined.

(MW1) minimize C, (1.1)

subject to ∑
t∈Uw

ptw · xswt ≤C, ∀w ∈W,s ∈ S, (1.2)

∑
w∈At

∑
s∈S

xswt = 1, ∀t ∈ T, (1.3)

∑
s∈S

ysw ≤ 1, ∀w ∈W, (1.4)

∑
w∈W

ysw ≤ 1, ∀s ∈ S, (1.5)

∑
w∈Au

∑
s∈S

s · xswu ≤ ∑
w∈A j

∑
s∈S

s · xsw j, ∀ j ∈ T,u ∈ T,( j, t) ∈ E (1.6)

∑
t∈Uw

xswt ≤Mysw, ∀w ∈W,s ∈ S, (1.7)

xswt = 0, ∀w ∈W,s ∈ S, t ∈ Iw, (1.8)

xswt ∈ {0,1}, ∀s ∈ S,w ∈W, t ∈ T, (1.9)

ysw ∈ {0,1}, ∀s ∈ S,w ∈W, (1.10)
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C ∈ R. (1.11)

The objective in an ALWABP-2 problem is to minimize the cycle time, as defined by the
variable C in the objective function (5.1). The value of C is defined according to constraints
(1.2). Also, by the problem definition, a task and a worker must be assigned to exactly one
station, as given by constraints (1.3), (1.4) and (1.5). Constraint (1.7), in turn, defines that the
assignment of task t to worker w and station s is only valid if w is the responsible for station−s,
ensuring the compatibility of the variables x and y.

The task precedence constraints are ensured by constraint (1.6), which explicitly indicates
that the station assigned to a task i should be lesser or equal to the station assigned to j, if task i

precedes j in the graph G(T,A). Also, if a worker is incapable of doing a task, this task should
not be assigned to him, as ensured by constraint (1.8). Finally, the constraints (1.9) and (1.10)
define integrality of the variables xswt and ysw.

The variable C is scalar. The variables ysw are defined for each s∈ S and w∈W , and so have
size |S| |W |. Both sets of variables are overshadowed by xswt . This set of variables is defined for
s ∈ S, w ∈W and t ∈ T and so it has size |T | |W | |S|. Therefore, model MW1 has O(|T | |W | |S|)
variables.

Constraints (1.2) are defined for w ∈W and s ∈ S, and so, there are |S| |W | of such con-
straints. Also, there are |T | constraints (1.3), |W | constraints (1.4) and |S| constraints (1.5). As
for the constraints (1.6), they are defined for each arc in the precedence graph G(T,E), and so
there are |E| of such constraints. Finally, |W | |S| constraints (1.7) are defined. Therefore, the
number of constraints of model MW1 is O(|T |+ |E|+ |W | |S|).

The RALBP permits an unbounded usage of the same type of worker. Therefore, we obtain
a model for the RALBP-2 by removing constraints (1.4) from the model of the ALWABP-2. We
call this model for the RALBP-2 MR1.
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2 CONTRIBUTIONS OF THIS THESIS

The thesis advances the results on two problems, the Assembly Line Worker Assignment
and Balancing Problem (ALWABP-2), and the Robotic Assembly Line Balancing Problem
(RALBP). For the ALWABP-2, our contributions are a novel state-of-the-art MIP model with
two-index variables and transitivity constraints, a iterated probabilistic beam search heuristic,
the use of lower bounds for the unrelated parallel machine scheduling problem, and the task-
oriented branch-and-bound that, by using these methods, we prove optimality of every instance
in the literature.

For the RALBP-2, we introduce a lower bound that uses chain decomposition to relax a
few precedence constraints, a iterated beam search, and a station-oriented branch-bound-and-
remember method with cyclic best first search, that has the best results in the literature, and in
less time than the known heuristics in the literature.

2.1 Thesis Outline

Chapter 3, will present an analysis of state-of-the-art articles about Assembly Line Bal-
ancing Problems with heterogeneous workers. It will begin by presenting classifications of
assembly line problems and present some problems related to the heterogeneous assembly line
problems. After that, the chapter will present the existent work on lower bounds, heuristics and
exact methods for the two studied problems.

Chapter 4 presents our proposed methods for solving the ALWABP-2. Section 4.1 presents
and evaluates the proposed MIP models for the ALWABP, that are shown to improve the known
models for the problem in instances with up to 25 tasks. A beam search method is also presented
in Section 4.2. The method is also evaluated and analyzed in this section and is shown to be
competitive with the state-of-the-art heuristic methods for the problem. A branch-and-bound
method for ALWABP-2 and its computational evaluation are presented in Section 4.4. With the
new results found by our method, we are able to prove optimality of all the instances in the
literature.

The solutions proposed for the RALBP-2 are presented in Chapter 5. After presenting a
novel lower bound for the problem in Section 5.2, the exact solutions for the problem are pre-
sented: a modified MIP model that is executed using CPLEX in Section 5.1, and an iterated
branch-bound-and-remember method using cyclic best-first search in Section 5.3. We also
present an iterated beam search method using the cyclic best-first search approach. The iter-
ated branch,bound-and-remember (BBR) method is shown to produce better results in a smaller
amount of time than all the heuristic and exact solutions in the literature. And the Iterative
Probabilistic Beam Search (IPBS) is shown to have competitive results in a limited amount of
time.

Finally, general conclusions concerning the heterogeneous assembly line balancing prob-
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lems are discussed in Chapter 6.
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3 RELATED WORK

The RALBP was introduced early in the nineties (RUBINOVITZ; BUKCHIN; LENZ, 1993)
and the ALWABP-2 came years later in the 2000s (NICOSIA; PACCIARELLI; PACIFICI,
2002; MIRALLES et al., 2007). Although these two problems are more than 20 and 10 years
old, respectively, there are only a few publications on both of them. There is a lot of litera-
ture, though, on other assembly line problems, whose solutions can be used as basis for solving
heterogeneous problems. Also, scheduling (GRAHAM et al., 1979; MARTELLO; SOUMIS,
1997) and bin packing problems (Coffman Jr. et al., 2013) are strongly related to heterogeneous
assembly line balancing.

3.1 Classification of Assembly Line Balancing Problems

Assembly Line Balancing Problems were classified by Boysen, Fliedner and Scholl (2007)
using a triple [α|β |γ] based on the classification of scheduling problems by Graham et al.
(1979).

The α field corresponds to characteristics of the precedence graph. The β field specifies line
and station characteristics, as the layout of the line or differences among the stations. Finally,
the γ field represents the objective function of the problem.

The value of α is composed of six concatenated parts:

• Product specific features: Defines the models being produced. The assembly line could
be a single-model production line (◦), a mixed-model production line (mix) or a multi-
model production line (mult).

• Structure of the graph: Specifies if the graph has a specific structure (spec), like chains
or trees, or if the graph assumes any acyclic structure (◦).
• Processing times: Describes if the processing times are stochastic (tsto), dynamic (tdy)

or static and deterministic (◦).
• Sequence-dependent increments on the task processing times: Specify if the execu-

tion of a task affects subsequent tasks. A task can affect the time of its direct successor
only (δ tdir), of all its successors (δ tindir) or of none of them.

• Assignment restrictions: Specify permissions or prohibitions on the assignment of tasks
to stations. Some tasks can have conflicts with other tasks (inc) or can be forced to be put
together (link). There can be restrictions on cumulative assignment of tasks to stations
(cum). A task can have a fixed station to be placed ( f ix), can have prohibited stations
(excl) or can be assigned only to stations of a specific type (type). Finally a criterion of
minimum (min) or maximum (max) distance between tasks assigned to the same station
can be defined.

• Processing alternatives: Define if there are processing time alternatives for the tasks
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according to the balancing of the line (pa). If there are also changes to the precedence
graph along the balancing, the value of this part is paprec.

Both the RALBP and the ALWABP specify processing alternatives, according to the worker
selected for a station, thus, α ⊇ {pa} for them. For ALWABP there are other restrictions, since
a worker can not be reused. Thus, for ALWABP, α ⊇ {link,cum}.

The value of β , is also a concatenation of six parts:

• Movement of workpieces: Specifies if the line is paced or unpaced. If it is unpaced,
then the line can be synchronous (unpacsyn) or asynchronous (unpac). Otherwise, this
part specifies obedience to the cycle time of the line. Each station can be limited to an
upper bound (◦), can be exactly equal to an upper bound (each) or can overflow the cycle
time with a specific probability (prob). If there are local cycle times in the line for groups
of stations, the value of this field is modified to ◦div, eachdiv or probdiv.

• Line Layout: Specifies if the line is serial (◦) or U-shaped (u).

• Parallelization: Defines if there is only one line or parallel lines running together. The
line can be completely parallelized (pline), can have the stations parallelized (pstat),
can have parallel tasks (ptask), or can have parallel working places inside a workstation
(pwork). No parallelization is represented by ◦.
• Resource Assignment: Defines how the problem treats the equipment used at each

station. The problem can deal with the selection of the equipment to be used in each
station (equip), can deal with the design of the equipment for each station (res) or can
consider the equipment to be fixed for each station (◦).
• Station-dependent time increments: It specifies if unproductive idle time at each sta-

tion is considered (δ tunp) or not (◦). Unproductive idle time is the time wasted in op-
erations related to the station, e.g. changing the sides of the U-line or transportation of
pieces.

• Other aspects: In the other aspects groups, we have bufferization (buffer), feeding
of a line to another with both being balanced simultaneously (feeder), positioning and
dimensioning of boxes of material (box), definition of machines to change workpieces
positions (change).

The RALBP and the ALWABP have β = equip, since the main characteristic of heteroge-
neous workers is the selection of equipment to perform each of the stations, or in case of the
ALWABP, the worker to execute them.

Finally, the objective function is defined by γ . The types 1, 2 and E defined for SALBP and
ALWABP are represented by m, c and ◦ respectively. But other objectives are also possible, like
the line efficiency (E), the cost of the line (Co), the profit of the line (Pr) or a custom composite
score (score).

We minimize the cycle time for the two problems studied here. Therefore, we have γ = c for
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both problems. Thus, the ALWABP-2 is classified as [pa, link,cum|equip|c] and the RALBP-2
is classified as [pa|equip|c].

A second taxonomy was proposed by Battaïa and Dolgui (2013). They presented specifica-
tions for each characteristic of line balancing problems:

• The industrial environment: Defines if the problem balances a line for assembling,
disassembling or applying a series of machining operations.

• Number of products being produced: The line can produce a single product repeatedly,
multiple different products, or different models of a product.

• Line layout: Specifies if the workstations are placed along a basic straight line, a straight
line with multiple workplaces, an U-shaped line, a line with circular transfer or an asym-
metric line.

• Characteristics of multiple lines: When there are multiple lines performing tasks at
the same time, they can be independent, can have workstations performing tasks in more
than one assembly line or can be parallel lines with crossovers in which products can be
transferred from one line to another.

• Task attributes: Defines how the tasks relates to other components of the problems
and to themselves. The processing time of a task, for example, can be constant, dynamic
or uncertain. According to the tasks already assigned, to which station (according to its
equipment or worker) or to which line a task is assigned, the processing time can vary.

• Workstation attributes: Define the management of resources to workstations. Exam-
ples of resources of a workstation are the capacity of the buffer of the workstation, pieces
of the equipment, workers or machines used. If the resources are shared by all tasks as-
signed to a station, we can use a scalar-attribute RS(k) to define the resource allocation.
Otherwise, the use of resources is defined by a vector-attribute RV (k).

• Assignment constraints: Force or prohibit specific relations among decision variables.
It specifies if all tasks must be executed, the precedence relation between tasks, if a task
should be forced or prohibited to be assigned to the same station as another task, the
synchronization of tasks in different lines, the distance (in number of stations or starting
times) two tasks should be placed one from another or if a task should be forced or
prohibited to be placed at a specific workstation.

• Workstations constraints: Specify if there is a constraint between workstation and task
attributes or if there is a constraint relating different workstations, for example if using an
equipment at a workstation prohibits its use at other workstations.

• Performance constraints: Calculate performance measures for the attributes of work-
stations and tasks and define constraints according to it.

• Cycle time constraints: Define a constraint based on cycle time when needed (i.e.
problems of type 1). The processing time is defined both for sequentially executed tasks
and simultaneously executed tasks.
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• Objective function: Some possibilities are the minimization of the number of stations,
cycle time, cost and efficiency, as well as maximization of the profit and system utiliza-
tion.

According to this taxonomy, the ALWABP-2 and the RALBP-2 are defined as producing
a single product repeatedly along a basic straight line, with occurrence and precedence con-
straints. The task time attributes depends on the worker attribute of the workstation. In these
problems, all tasks assigned to the same workstation share the selected worker or robot, and
so, the workstations attributes are defined by a scalar attribute using each worker or robot as an
individual resource. All the problems are of type 2 and aim to minimize the cycle time.

3.2 Scheduling on Unrelated Parallel Machines

If we remove the precedence constraints of the ALWABP-2, we have a set of tasks with no
particular order that should be assigned to a set of parallel machines. The tasks have a different
execution time according to the machine performing it. The parallel machines are unrelated,
i.e. each machine can have different, arbitrary task times. Therefore, we have a scheduling of
unrelated parallel machines aiming to minimize the makespan (MARTELLO; SOUMIS, 1997).

Scheduling problems are classified according to a triple “ α | β | γ ” (GRAHAM et al.,
1979). The first item α presents the relation among machines. If the execution time of a task is
equal at all machines, then α = P. If the machines have different speeds, then α = Q. Finally,
if the machines are unrelated, then α = R. The second element of the triple indicates specific
characteristics of tasks, like preemption or particularities of the tasks. Finally, the last element
of the triple represents the objective of the problem. The total execution time of a machine i is
called Ci and, then, the makespan of the problem is given by Cmax = maxi {Ci}. Therefore, the
scheduling of unrelated parallel machines is called R||Cmax.

Since ALWABP-2 only adds additional restrictions to the unrelated parallel machine prob-
lem, ALWABP-2 has always a greater or equal optimal solution than the optimal solution for
that problem. Thus, any lower bound for the unrelated parallel machine problem can be used
for ALWABP-2, if we remove its precedence constraints.

3.2.1 Lower Bounds

Simple lower bounds for the unrelated parallel machine problem can be obtained by trans-
forming the problem to scheduling processes on identical parallel machines (P||Cmax). In this
problem each task has a task time, the number of parallel processors is fixed and the objective
is to minimize the cycle time. Given p−t = min{ptw | w ∈W}, the minimum execution time of
a task in a unrelated parallel machine scheduling problem, we can create an identical parallel
machine instance with the task times equal to p−t and the number of processors equal to the
number of processors in the unrelated parallel machine problem (SELS et al., 2015).
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The total processing time of this instance is given by ∑t∈T p−t . Considering the best case
scenario, the total processing time of the tasks will be equally divided among all the machines.
Thus, dividing the total time among processors produces the first lower bound for the prob-
lem (MARTELLO; SOUMIS, 1997):

LC′1 =
⌈

∑t∈T p−t
|S|

⌉
(3.1)

Using the same related parallel machine instance, since every task must be performed at
least once, each task time is a valid lower bound for the instance and, so, we can define lower
bound LC′′1 :

LC′′1 = max{p−t | t ∈ T} (3.2)

For the sake of simplicity, from now on, we use LC1 to define the best of these two bounds:

LC1 = max{LC′1,LC′′1} (3.3)

3.2.1.1 Linear Relaxation

The unrelated parallel machines problem can be modelled by MR||Cmax (MARTELLO; TOTH,
1990):

MR||Cmax = minimize C, (3.4)

subject to ∑
w∈W

xtw = 1, ∀t ∈ T, (3.5)

∑
t∈T

ptw · xtw ≤C, ∀w ∈W, (3.6)

xtw ∈ {0,1}, ∀t ∈ T,w ∈W, (3.7)

C ∈ R. (3.8)

The model uses binary variables xtw, with xtw = 1 if task t is assigned to machine w, and
xtw = 0 otherwise. Constraint (3.5) ensures that every task is executed exactly once. The value
of C is guaranteed to be the makespan of the machines by constraint (3.6). The remaining two
constraints define the domain of variables xtw and C.

For this model, a linear relaxation removes the integrality constraints (3.7) so that variables
xtw can assume values in the interval from zero to one. An optimal solution for this relaxed
problem (CLP) produces a lower bound for the unrelated parallel machine problem.

LCLP = dCLPe (3.9)
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3.2.1.2 Surrogate and Lagrangian Relaxations

Lower bounds can also be obtained by other forms of relaxation such as Lagrangian relax-
ation (GEOFFRION, 1972) and surrogate relaxation (GREENBERG; PIERSKALLA, 1970).
In problems like R||Cmax some hard constraints make the problem too slow to solve. These con-
straints, are thus, relaxed. In the case of the Lagrangian Relaxation, the constraints are directly
penalized in the objective function. In the case of the Surrogate Relaxation, the hard constraints
are joined together and each of them is penalized, producing another constraint, that is desired
to be easy to solve.

Martello and Soumis (1997) and Velde (1993) have proposed similar Lagrangian and surro-
gate relaxations, respectively, for the unrelated parallel machine problem, that relax constraints
(3.6). Here we show the process of the Lagrangian relaxation. Using the vector of Lagrangian
multipliers λ = (λ1, ...,λw)≥ 0, with λi > 0 for at least one value of i ∈W . The dualization of
the constraints (3.6) produces the model

L1(λ ) = minimize C+ ∑
w∈W

λw

(
∑
t∈T

ptwxtw−C
)
, (3.10)

subject to (3.5), (3.7), (3.8). (3.11)

and we can rewrite the objective function as:

minimize C
(

1− ∑
w∈W

λw

)
+ ∑

w∈W
∑
t∈T

λw ptwxtw (3.12)

Since we are interested in the multipliers that produce the maximum value for this problem,
any multipliers for which

∑
w∈W

λw 6= 1 (3.13)

must be discarded.

With this condition, we are interested in solving the remaining part of the problem:

L1(λ ) = minimize ∑
w∈W

∑
t∈T

λw ptwxtw, (3.14)

subject to (3.5), (3.7). (3.15)

For a predefined set of Lagrangian multipliers, this problem can be polynomially solved
by choosing the worker that minimizes λw ptw for each job t. This problem has the integrality
property (GEOFFRION, 1972). In other words, if we remove the integrality constraints of this
model we obtain the exact same result. For linear problems, if this property is satisfied, the
result of L1, for optimal Lagrangian multipliers, is equal to the result of the linear relaxation
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LCLP (GEOFFRION, 1972). Although finding the optimal Lagrangian multipliers may be too
costly computationally, the result can be approximated by an ascent direction method (VELDE,
1993) or by subgradient optimization (MARTELLO; SOUMIS, 1997).

Another Lagrangian relaxation was proposed by Martello and Soumis (1997). This relax-
ation dualizes constraints 3.5, using a vector π of multipliers. The resulting model is:

L2(π) = minimize C+ ∑
t∈T

πt

(
∑

w∈W
xtw−1

)
(3.16)

subject to (3.6),(3.7),(3.8). (3.17)

For a fixed value of C, this model can be rewritten as:

L2(π,C) = minimize C+ ∑
w∈W

∑
t∈T

πtxtw−

(
∑
t∈T

πt

)
, (3.18)

subject to ∑
t∈T

ptw− xtw ≤C, ∀w ∈W (3.19)

(3.7),(3.8). (3.20)

The objective function is composed of the terms C−∑t∈T πt and ∑w∈W ∑t∈T πtxtw. The first
term is constant. Therefore we are interested in solving the second term. Since for each worker
we have independent variables, we can solve the subproblem for each worker and, thus, sum all
the results to produce the final result. The |W | independent problems, for each machine w ∈W

are:

L2(π,C,w) = minimize ∑
t∈T

πtxtw, (3.21)

subject to ∑
t∈T

ptw · xtw ≤C, (3.22)

xtw ∈ {0,1}, ∀t ∈ T. (3.23)

If we transform this problem into a maximization problem, it is equivalent to a knapsack
problem. The knapsack capacity is C and for each item t, the size is ptw and the cost is −πt .
While the knapsack problem is NP-Hard, it can be efficiently solved (MARTELLO; PISINGER;
TOTH, 1999). Finally, after solving these knapsack problems, L2(π,C) can be calculated by

L2(π,C) =C−∑
t∈T

πt− ∑
w∈W

L2(π,C,w) (3.24)

For a given π , the cycle time C that produces the minimum LC2(π,C), is a lower bound on
the problem. It can be computed using binary search on the possible cycle times. As in LC1 the
optimal multipliers π can be approximated by subgradient optimization.
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3.2.1.3 Additive Improvement

Suppose we have a procedure that produces a lower bound δ and residual costs c for a
problem P that minimizes the product cx, for any value of x in the domain F . In this case, if

δ + cx≤ cx, ∀x ∈ F (3.25)

then, given any domain R ⊇ F , the result of δ + min{cx | x ∈ R} is a lower bound of
P (FISCHETTI; TOTH, 1989).

Considering the model MR||Cmax presented in Section 3.2.1.1, we have costs c0 = 1 for C,
ctw = 0 for the variables xtw and cw = 0 for the slack variables sw of constraints 3.6. A solution
for the linear relaxation (δ = LCLP) has residual costs: c0 = 0, ctw≥ 0 and ci≥ 0 (MARTELLO;
SOUMIS, 1997). This residual costs satisfy the property of Fischetti and Toth (1989). There-
fore, we can define a domain R that relaxes the domain of model MR||Cmax by removing con-
straints (3.5), and given the initial lower bound CL and any valid upper bound CU .

C = ∑
t∈T

ptwxtw + sw ∀w ∈W (3.26)

CL ≤C ≤CU (3.27)

xtw ≥ 0 ∀w ∈W, t ∈ T (3.28)

sw ≥ 0 ∀w ∈W (3.29)

sw ∈ Z ∀w ∈W (3.30)

xtw ∈ Z ∀w ∈W, t ∈ T (3.31)

We must minimize cx for the domain R defined. Given the reduced costs for MR||Cmax , we
have the problem:

δ = minimize ∑
w∈W

∑
t∈T

ctwxtw + ∑
w∈W

cwsw (3.32)

subject to (3.26),(3.27),(3.28),(3.29),(3.30),(3.31). (3.33)

For a fixed value of C, this problem can be decomposed in |W | independent knapsack prob-
lems with equality constraint. We can apply a binary search over the values of C and select the
cycle time that produces the smaller result. Afterwards the result of this problem can be added
to the result of the lagrangian, surrogate or linear relaxation of the problem: La

LP = dLCLP +δe.
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3.2.2 Branch-and-bound methods

Besides the surrogate relaxation for the problem, Velde (1993) also proposed a branch-and-
bound method for the unrelated parallel machine scheduling problem that branches by assigning
a selected task t to all the available machines. Then, each of these branches is subdivided by
assigning another task t ′ to all available machines. A solution is found when all tasks are
assigned. The order in which the tasks are selected is predefined. Given the cost γtm = λm ptm

for a task t and a machine j, with λm being the Lagrangian multiplier of the relaxation LCLP1 ,
the method of Velde (1993) selects the task t whose difference between the two smallest γtm

over all machines is maximum. Then, the method assigns the selected tasks to all machines
starting by the machine with the smallest cost γtm. The lower bound applied in each node of the
branch-and-bound tree is the LCLP1 .

Another branch-and-bound, proposed by Martello and Soumis (1997), also selects a task
t and creates branches for each available machine. However, instead of using a fixed order
of tasks, the method selects a task according to the current partial solution. We define nt the
number of machines to which the task t can be assigned without overloading the machine. The
method selects the task with greatest ωt , where ωt is the weighted sum of −nt and γtm′′ − γtm′ ,
with m′ and m′′ being the fastest and the second fastest machine, respectively, to execute the
task t.

3.2.3 Heuristics and Meta-heuristics

Multiple heuristics were explored to solve scheduling on unrelated parallel machines. Velde
(1993) has proposed using the solutions found during the execution of his ascent direction
method for the surrogate relaxation of the problem. At each step of the ascent direction method,
a valid assignment is tested and this assignment is a valid solution for the problem. Therefore
the ascent direction can be used as a heuristic for the R||Cmax.

Glass, Potts and Shade (1994) presented and compared three simple methods: a tabu search,
a genetic algorithm and a simulated annealing. The tabu search and the simulated annealing
method use two neighborhoods: a shift move that changes a task from one machine to another,
and a swap move that swaps two tasks from their machines. The genetic algorithm represents a
solution using a string with |T | elements with each element being the machine m to which the
task i is assigned, and a two-point crossover is used to produce the offspring.

Guo et al. (2007) propose using for the tabu search and the simulated annealing, a neigh-
borhood search. Instead of randomly selecting a valid solution, the methods with neighborhood
search select a pool of valid solutions and select the one with the best result for the next itera-
tion of the method. They also present a heuristic using the squeaky wheel meta-heuristic. This
method iterates over values of C′ and tries to find solutions for the given C′ for k iterations, if
no solution is found, the value of C′ is incremented and a the method restarts.
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Piersma and Dijk (1996) propose a simple local search with the same neighborhoods of the
method of Glass, Potts and Shade (1994). However, in the method of Piersma and Dijk (1996),
all the neighbors are analyzed and ordered from smallest to largest efficiency (minw′∈W {ptw′}
for a task t ∈ T and a worker w ∈W ). After that, they are tested in order until some of the
neighbors achieves a better result than the previous incumbent. This solution is, then selected,
and the procedure continues.

The local search of Glass, Potts and Shade (1994) is also applied by Sourd (2001) to improve
the results of two known heuristics: the ascent direction method proposed by Velde (1993) and
a truncated version of the branch-and bound also proposed by Velde (1993). This local search is
also used by Lin, Pfund and Fowler (2011) to improve a simple method of LP/roundup. Cutting
planes were used to approximate the result of the R||Cmax (MOKOTOFF; CHRÉTIENNE, 2002;
MOKOTOFF; JIMENO, 2002). The methods of Martello and Soumis (1997) were also used
in a heuristic. A recovering beam search method that uses their branching strategy and bounds
were presented and analyzed by Ghirardi and Potts (2005).

More recently, Fanjul-Peyro and Ruiz (2010) improve over the previous state of the art by
using an efficient iterated greedy local search method. Initially, a simple local search generates
a valid solution. Then the method removes d tasks from their machines and reassigns them
using a greedy method. Each task t of the removed tasks is assigned to the machine m =

argmini∈W Pi + pti. Then the solution is improved by the local search of Glass, Potts and Shade
(1994). This method was further improved by Fanjul-Peyro and Ruiz (2011) that have found
that in most of the cases the machine for which a task is assigned is one of the machines that
needs less time to perform the task. Therefore, the size of the instance and the number of valid
assignments can be highly reduced by only allowing a task to be assigned to the k machines that
perform it the fastest, with k = 2 and k = 3 in the article.

Finally, Sels et al. (2015) proposed a hybridize a tabu search and the truncated branch-and-
bound of Sourd (2001). Initially a order of the tasks is defined. A neighborhood in this method
consists of changing the order of a task. The truncated branch-and-bound is then used to verify
if there is a valid solution for the problem considering that the branches are assignments of tasks
to all the machines and the next task to be branched is selected according to the order defined
in the tabu search.

3.3 The Simple Assembly Line Balancing Problem

In the Simple Assembly Line Balancing Problem (SALBP) the difference among workers
is negligible and, so, the execution time of a task is always the same, regardless of the station
performing it (SCHOLL; BECKER, 2006). This problem is a simplification of the ALWABP,
since an equivalent ALWABP instance can be constructed from a SALBP instance by creat-
ing multiple workers that execute a task in the same amount of time. Similarly, the RALBP
generalizes the SALBP.
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According to the classification of Boysen, Fliedner and Scholl (2007), the SALBP-2 is
defined as [ | | c ]. According to Battaïa and Dolgui (2013) it is classified as single line, single-
model, basic straight assembly line, with occurrence and precedence constraints, minimizing
the cycle time.

3.3.1 Lower Bounds

Given a RALBP or ALWABP instance, we have the minimum time p−t = min{ptw|w ∈W}
needed to execute a task t. For such instance, we can construct a SALBP instance with the
same tasks and precedence graph and with the execution times pt for each task t equal to the
minimum time p−t of the task in the RALBP or ALWABP instance. This SALBP instance
will always have a smaller optimal solution than the RALBP or ALWABP version. Unlike
scheduling on unrelated parallel machines, in SALBP the linear relaxation generally produces
weak lower bounds. Instead, a series of simple and polynomial algorithms is used to obtain
lower bounds for the problem.

3.3.1.1 SALBP-1

The SALBP-2 solutions can be calculated by solving the SALBP-1 multiple times. The
smallest cycle time for which the SALBP-1 solution is smaller or equal to the number of stations
of the SALBP-2 instance is the solution for the SALBP-2. This is also true for lower bounds.
The smallest cycle time for which the lower bound for SALBP-1 is smaller or equal to the
number of stations of the SALBP-2 instance is a valid lower bound for the SALBP-2. Because
of this, we start by discussing lower bounds for the type 1.

The simplest lower bounds for the SALBP-1, like scheduling on unrelated parallel ma-
chines, generalize bin packing. The lower bound LM2 considers that a task can be split in
multiple parts. Thus, the sum of task times can be equally divided among workstations.

LM2 =

⌈
∑t∈T pt

C

⌉
(3.34)

Besides that, since two tasks with execution time greater than half the cycle time can not
share the same station, counting such tasks gives us a lower bound LM′3. Also, in the best case
scenario, all the tasks with execution time equal to half the cycle time will share a station and
the lower bound LM′3 can be increased by half the number of station with pt =C/2. This lower
bound is called LM3 (JOHNSON, 1988).

Generalizing LM3, tasks with execution times greater than 2/3 of the cycle time receive a
weight of 1. Tasks with execution time in the interval (1/3,2/3), receive weight 1/2. And
tasks with execution time 1/3 and 2/3 receive weight 1/3 and 2/3, respectively. The remain-
ing tasks are not weighted. The sum of the weights of all tasks gives us a new lower bound
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LM4 (SCHOLL; BECKER, 2006).

A broader concept for bin packing was proposed by Fekete and Schepers (1998). They
propose the use of dual feasible functions (DFF). A dual feasible function is a function f :
[0,1]→ [0,1] in which for any subset of tasks T ′ ⊆ T , if

∑
t∈T ′

pt ≤ 1 (3.35)

then

∑
t∈T ′

f (pt)≤ 1 (3.36)

If we modify an instance I of the SALBP-1 to have cycle time 1, we will divide each task
by the cycle time C and obtain task times p′t in the interval [0,1]. The result of this modified
instance I′ is the same as the instance I. This new instance can be modified again by applying
the DFF to each task and producing a new instance I′′. Since any subset of tasks that fits into a
station in the instance I′ will also fit into a station in the instance I′′, the result of SALBP-1 for
the instance I′′ is a lower bound for the instance I′ and, therefore, to I.

Fekete and Schepers (1998) also propose the use of the functions uk, for k ∈ N, and Uε, for
ε ∈ [0,0.5], as DFFs for the bin packing problem.

uk(x) =

x if x(k+1) ∈ Z⌊
(k+1)x

k

⌋
otherwise

(3.37)

and

Uε(x) =


1 if x > 1− ε

x if ε≤ x≤ 1− ε

0 if x < ε

(3.38)

Also, since the composition of two DFFs is also a DFF, we can construct the DFF function
DFFk,ε(x) = uk(Uε(x)). We can apply lower bound LM2 for each instance I′ produced by
applying DFF to all task times of an original instance of SALBP-1 to obtain a lower bound for
the original instance. Notice that the lower bounds LM1, LM2 and LM3 are special cases of the
lower bound produced by DFFk,ε using ε = 0 and k equal to ∞, 1 and 0, respectively. Fekete
and Schepers (1998) propose using values of k in the range from 1 to 100 as well as ∞ and
Pereira (2014) propose using every ε for which pt = ε or pt = 1− ε, for any task t. This lower
bound found by all these combinations of k and ε is called LBDFF .

Morrison, Sewell and Jacobson (2014), Pereira (2014) propose solving the Bin Packing
Problem to optimality to produce lower bounds for the SALBP and methods based on linear
programming for SALBP were also evaluated in the literature. Dantzig-Wolfe decomposition
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approaches have been shown to produce good lower bounds for the problem (PEETERS; DE-
GRAEVE, 2006; BAUTISTA; PEREIRA, 2011; PEREIRA, 2014). However, both solving the
BPP optimally and approaches to the Dantzig-Wolfe decomposition are too time-consuming to
apply during the execution of an enumeration process for the SALBP.

Heads and Tails

The tail of a task t is a lower bound on the number of stations that are needed to execute the
tasks following t (F∗t ) in the precedence graph. Similarly, the head of t is a lower bound on the
number of stations needed to execute tasks preceding t (P∗t ). A valid tail for a task t divides the
execution times of all tasks succeeding t by the cycle time. The same method can be used to
define the head of the task, using the preceding tasks. The sum of the head ht and the tail tt for
any task t is a lower bound for SALBP-1 (JOHNSON, 1988).

Another example of tail calculation uses the tails of succeeding tasks recursively. The
method iteratively calculates the tails of each task in reverse topological order. For a task t,
the tail corresponds to the greatest lower bound applied to the instance with only the tasks in
F∗t rounded up if it is impossible to add task t without adding another station. Similarly, for
calculating the heads of tasks we can apply the same method in direct topological order. The
lower bound produced using these tails and heads is called LM5 (JOHNSON, 1988).

Destructive Improvement

If there is a condition that makes it impossible to produce a feasible solution for a given
lower bound, we say that the lower bound was destructed. Therefore, the lower bound can be
incremented and tested for the same condition. The algorithm proceeds until the condition does
not hold (KLEIN; SCHOLL, 1999). This type of method is called destructive improvement.

If we define the earliest Et(m′) and latest Lt(m′) stations a task t can be placed, given a
bound on the number of stations m′, it is possible to conclude that if Et(m′) > Lt(m′), for any
t ∈ T , then a feasible solution for m′ is impossible, and m′ can be incremented. A valid bound
for Et(m′) is given by the heads calculated for LM5: Et(m′) = dht + pte. Similarly, a valid bound
for Lt(m′) is given by the tail: Lt(m′) = m′+ 1−dpt + tte. The lower bound produced by this
destructive improvement, with these bounds, will be called LM6.

For a given interval of stations [m1,m2] for 0≤ m1 ≤ m2 ≤ m′, we can define a set of tasks
that could only be assigned to the stations of the interval. This can be defined based on the
earliest and latest stations defined for the lower bound LM5. Given that, we have a restricted set
of tasks and if it is impossible to assign these tasks to M′ = m2−m1 +1 stations, e.g. the sum
of the task times is greater than CM′, then it is impossible to find a feasible solution with m′

stations. The resulting lower bound of this destructive improvement will be called LM7.
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3.3.1.2 SALBP-2

SALBP-2 can also be relaxed by removing the tasks precedence graph. In this case we
obtain the problem P||Cmax of scheduling a set of tasks on identical machines minimizing the
makespan. Optimal solutions for this problem, which is also NP-hard, are lower bounds for
SALBP-2. Therefore, the lower bound LC1 presented in Section 3.2.1 is a also a lower bound
for the SALBP-2.

Another lower bound, LC2, uses the pigeonhole principle. According to this principle, if
we have n pigeons and m holes to place them, with n > m, then, at least two elements will be
assigned to the same hole. We can also conclude that if n > 2m, at least three elements will
be placed in some of the holes, and, in general, if n > km then there must be one hole with
at least k+ 1 elements. Therefore, if we select any set of |W |+ 1 tasks of our original set T ,
the sum of the times of the two smallest tasks will be a lower bound for the related parallel
machine problem. Similarly, if we take any 2|W |+1 tasks, the sum of the smallest three tasks
will produce a lower bound. This method can be generalized and we can say that, for given
constant V , if we select a set of V |W |+1 tasks, the sum of the times of the smallest V +1 task
times is a lower bound for P||Cmax. This is valid for any constant for which |T |>V |W |.

Therefore, to produce the best possible lower bound, we need to carefully select the set of
V |W |+1 tasks. So, the vector of tasks is sorted from the greatest task time to the smallest task
time. For each value of V , we select the first V |W |+1 elements of the vector and the smallest
V + 1 elements of this set produce the lower bound. Then, we iterate over all the valid values
for V (from 1 to |T |/|W |−1) and, for each value, apply this method. The greatest lower bound
found for all values of V is then selected. This lower bound is called LC2 (KLEIN; SCHOLL,
1996).

Destructive Improvement

Similarly to SALBP-1 it is possible to define a condition based on the earliest station Et(C′)

and the latest station Lt(C′) that decides if there is a feasible solution for a given cycle time C′.
Et(C′) and Lt(C′) are calculated exactly as for the lower bound LM5. If Et(C′)> Lt(C′) for any
task t, then C′ is destructed. This lower bound produced by destructive improvement is called
LC3.

We can also split the stations in two subsets [1, i] and [i+ 1, |S|] for any i ∈ [1, |S|]. Two
bins a and b of sizes C0i and C0(|S| − i), respectively, are created for each of these sets. So,
we can divide the tasks in three sets: the tasks whose latest station Lt(C0) is at most i, the tasks
whose earliest station is greater than i, and the remaining tasks. The first group of tasks will be
assigned to bin a and the second group, to bin b. Therefore, a new residual problem emerges:
assigning the tasks of the third set to the remaining space in bins a and b. If this is not possible,
the cycle time C0 should be incremented, following the logic of destructive improvement.
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The problem of assigning items to two bins with fixed sizes is called 2Bin-F. This problem
is NP-complete. Despite this, it can be solved in a reasonable time (MARTELLO; TOTH,
1990), because the number of remaining tasks is usually small. This new bound by destructive
improvement is called LC4.

The LC4 was extended by Vilà and Pereira (2013). They define a bipartite graph between
the tasks T and the stations S. Each task t ∈ T has an arc with infinity capacity to a station s ∈ S

if Et(C0)≤ s≤ Lt(C0). The method also creates a source (b) and a sink ( f ) node for the graph.
For each task t there is an arc (b, t) with capacity pt and for each station s, there is an arc (s, f )

with capacity C0. If the maximum flow of this graph is smaller than the sum of all the task
times, we know that it is impossible to assign the tasks to the stations and obtain a cycle time
C0. Therefore, the lower bound C0 is destructed and is incremented. The lower bound produced
after this destructive improvement will be called LC5.

3.3.2 Dominance Rules

If a partial solution s′ can not lead to a better solution than another partial solution s, we say
that s dominates s′. A dominance rule defines if a partial solution s being evaluated is dominated
by some other partial solution. This is useful for branch-and-bound methods (MORRISON et
al., 2016), since we can prune partial solutions that are dominated by others. The most effective
dominance rules for SALBP are listed below:

• Maximum Load Rule (JACKSON, 1956) A station is said to be maximally loaded,
if no other task can be added without exceeding the cycle time. When the station is not
maximally loaded, another task can be assigned to the current station and the new solution
will dominate the non-maximally loaded solution.

• Jackson Dominance Rule (JACKSON, 1956) A task t ′ is said to potentially dominate
another task t, if t and t ′ are unrelated in the precedence graph (Ft ⊆ F∗t ′ ) and pt ≤ pt ′ .
Given a station load s0 with a task t, if this task t is potentially dominated by an unassigned
task t ′, then a new load s1 with task t replaced by t ′ dominates s0 if this replacement fits
in the station. If pt = pt ′ and Ft = Ft ′ then there is a symmetry that would cause both
solutions to be pruned in a branch-and-bound. Thus, in this case, we say that the task
with smaller index dominates the other.

• Feasible Set Dominance Rule (SCHRAGE; BAKER, 1978) Consider two assignments
of tasks T ′ ⊆ T and T ′′ ⊆ T to the same set of stations S′ ⊆ S. If the set of tasks T ′′

contains all tasks of set T ′, then T ′′ dominates T .



36

3.3.3 Reduction Rules

In addition to the dominance rules, a series of reduction rules can be applied to the SALBP.
Reduction rules modify the instances such that bounds are improved or a dominance rule could
be applied. The most effective reduction rules defined for SALBP are presented below:

• Task Time Incrementing Rule (JOHNSON, 1988; SCHOLL; KLEIN, 1999) If a task
t cannot share a station with any other task, the time pt can be incremented to C, in
SALBP-1 problems.

• Prefixing (SCHOLL; KLEIN, 1999) - If the earliest and the latest possible station for a
task t are equal, then t must be fixed to that station.

• Additional precedence relations (FLESZAR; HINDI, 2003) In the SALBP-1, if a task
t ′ cannot precede a task t, i.e. dht ′+ pt ′+ pt + tte is greater or equal to the current upper
bound, then we can add an arc (t, t ′) to the precedence graph.

• Task conjoining rule (FLESZAR; HINDI, 2003) If all possible maximal loads that
contain a task t also contain a task t ′, these two tasks can be merged in a single task.

3.3.4 Branch-and-Bound Algorithms

Branch-and-bound methods for the SALBP-1 are usually divided in task-oriented and station-
oriented methods. In task-oriented methods, at each node a task is selected and for all stations
that could execute the task, a branch is created with the task assigned to the station. The prece-
dence and load constraints are used to determine valid assignments. Station-oriented methods,
in contrast, fill each of the stations in order. The methods start by the first station and generate
all possible maximum station loads. For the current station, each maximum station load gen-
erates a new branch. In the new branch, the methods repeat the procedure for the next station,
until all tasks are assigned to some station.

FABLE was described by Johnson (1988) and is a task-oriented branch-and-bound method
for the SALBP-1 that uses depth-first search. With an efficient tree structure to store already ex-
plored partial solutions, Nourie and Venta (1991) got better results than FABLE. Their method
was called OptPack. The Eureka method (HOFFMANN, 1992) proposed a station-oriented
method applied for fixed number of stations iteratively, until the optimal solution is found. Hoff-
mann (1992) proposed exploring the solutions in a forward and a backward manner. SALOME-
1 (SCHOLL; KLEIN, 1997) joined all the features of FABLE, OptPack and Eureka, like bounds,
reduction and dominance rules, to provide a faster solution. A different task-oriented method
adapted from a resource-constrained project scheduling problem with better results was pro-
posed by Sprecher (2003).

Finally, a branch-and-bound-and-remember method was proposed by Sewell and Jacobson
(2012). It is a station-oriented method with memoization of already visited partial solutions.
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By storing the partial solutions, we avoid visiting new partial solutions that are dominated by
already visited partial solutions, following the Feasible Set Dominance Rule. They also pro-
posed applying cyclic best first search (CBFS) for the SALBP-1. The CBFS for the SALBP-1
has a priority queue for each station. A priority queue for a station k stores valid assignments
of subsets of tasks T ′ ⊆ T to the first k stations. The highest priority in the queues is given to
the partial solutions with the smallest lower bound.

At each iteration of the CBFS the method starts by selecting the first element of the first
priority queue and generating all maximal station loads for the current station. These loads are
inserted in the priority queue of the next station. The method then continues to the next priority
queue and repeats the process until the last station. The method follows to the next iteration,
removes the first element of each priority queue and adds new corresponding branches. When
all queues are empty, or the upper bound is equal to the lower bound, the method stops. This
process helps finding complete solutions early in the search, and helps exploring promising
solutions first.

Task-oriented branch-and-bound methods for SALBP-2 are uncommon and they usually
do not obtain good results. The only method of this type was proposed by Scholl (1993).
For station-oriented methods, initially the problem was solved by iterative executions of the
SALBP-1 with different cycle times. However this method revisits partial solutions of pre-
vious iterations multiple times. This methods were outperformed by SALOME-2 (KLEIN;
SCHOLL, 1996). SALOME-2 is a station-oriented branch-and-bound method that uses local
lower bounds. In this method a local lower bound on the cycle time evolves during the search.
Initially, the first workstation is filled using a cycle time C0 equal to the initial lower bound. A
branch is created and explored for each maximum station load according to this cycle time C0.
If no solution equal to C0 is found, the cycle time is incremented and new branches are created
excluding maximum loads already explored. This cycle time is part of the information of a par-
tial solution and is passed for all the branches created. In the new branches, the method starts
exploring maximal station loads considering the cycle time from the branch and increments it
if no solution is found for the given cycle time. When a solution is found, the incumbent is
updated and the method proceeds until all the branches have been explored.

3.3.5 Heuristics and Meta-Heuristics

For the SALBP-1, Hoffmann (1963) proposed a station-oriented constructive heuristic. The
method adds tasks to station by station, as a station-oriented branch-and-bound, but instead of
generating a branch for each of the valid maximal station loads, it chooses only one of them:
the station load that has the smallest lower bound LM1. This method was improved by Fleszar
and Hindi (2003) by guiding the search using the other lower bounds and by repeating the
method of Hoffmann (1963) multiple times and selecting the best solution found. A bounded
dynamic programming (BDP) using the Hoffmann Heuristic was proposed by Bautista and
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Pereira (2009).

Many meta-heuristics were also applied to SALBP-1 like Tabu Search (CHIANG, 1998;
LAPIERRE; RUIZ; SORIANO, 2006), Simulated Annealing (SURESH; SAHU, 1994), Ge-
netic Search (GONÇALVES; ALMEIDA, 2004; SABUNCUOGLU; EREL; TANYER, 2000)
and Ant Colony Optimization (BAUTISTA; PEREIRA, 2002), as well as a hybridization of a
beam search and an Ant Colony Optimization by Blum (2008). The methods that achieve the
best results, though, are partial enumerations. Any branch-and-bound method executed for a
limited time, or a limited number of iterations, is a potential heuristic for the problem.

For the SALBP-2, as for the lower bounds, if for a given cycle time a SALBP-1 heuristic
returns a solution with the number of stations specified for SALBP-2, then it is a valid solution
for SALBP-2. Thus, a repeated application of a SALBP-1 heuristic will provide a heuristic
solution for SALBP-2. Besides that, Uğurdağ, Rachamadugu and Papachristou (1997) propose
a modification of the simplex method to produce valid solutions for the SALBP-2. Liu, Ong and
Huang (2003) propose applying the method of Hoffmann (1963) for the SALBP-1 iteratively
for increasing values of cycle time, and after finding valid solutions they apply a local search
using task swap and shift moves to improve the results of the heuristic. Meta-heuristics like
tabu search (SCHOLL; VOSS, 1997), ant colony optimization (BOYSEN; FLIEDNER, 2008),
genetic (KIM; SONG; KIM, 2007) and other evolutionary algorithms (NEARCHOU, 2007), as
well as an algorithm using Petri nets were also applied to SALBP-2.

3.4 The Assembly Line Worker Assignment and Balancing Problem

The literature on ALWABP-2 is very recent. The problem was proposed only in 2007. How-
ever, a few solutions for the problem have been proposed recently. Most of the articles propose
heuristic and meta-heuristic solutions for the problem, but there are also branch-and-bound
algorithms that adapt SALBP solutions for the ALWABP. As for the lower bounds, the only
known methods in the literature were relaxations to P||Cmax and the use of LC1 (MIRALLES et
al., 2008a).

3.4.1 Branch-and-Bound Algorithms

The branching strategies proposed for the SALBP-2 and the unrelated parallel machine can
be adapted to the ALWABP-2. The method proposed by Miralles et al. (2008b) adapts the
iterative branch-and-bound proposed for the SALBP-2 (see Section 3.3.4) in its simplest form.
The method iterates over the cycle time and applies a branch-and-bound for ALWABP-F until
the ALWABP-F returns a feasible solution. For each iteration, the method applies a station-
oriented branch-and-bound algorithm. In the first station, the method branches for each valid
worker and all station loads that this worker can execute. Then, in each branch, the method
proceeds to the second station and repeats the procedure. The method stops when all tasks have
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been assigned, or it is clear that a feasible solution cannot be found for the current cycle time
being tested.

Vilà and Pereira (2014) proposed using a variation of the iterated branch-bound-and-remember
algorithm, with cyclic best first search proposed by Sewell and Jacobson (2012) (See Section
3.3.4). The method iterates over the cycle times. It begins with a cycle time C set to an upper
bound of the problem. It then tests if there is a valid solution with value equal to C−1. If a so-
lution is found, the cycle time is decremented, otherwise the smallest cycle time for the problem
is C. Like in the method of Miralles et al. (2008b), for each cycle time, Vilà and Pereira (2014)
apply a station-oriented branch-and-bound method for the ALWABP-F. Each partial solution
is represented by the tasks and workers already assigned. As in the CBFS for the SALBP, the
method uses a priority queue with partial solutions for each station and cyclically evaluates a
branch of each queue. A branch is explored by generating all maximal stations loads for all
unassigned workers and adding them to the priority queue of the next station. The method also
memorizes partial solutions. If the current partial solution has the same set of tasks assigned
to the same set of workers than another partial solution stored, the method prunes the current
branch.

3.4.2 Upper Bounds

Based on the work of Scholl and Voß (1997), Moreira et al. (2012) proposed rule-based
constructive heuristics for the ALWABP-2. The method uses iterative applications of a heuristic
for ALWABP-1 with fixed cycle times C.

The method fills the stations sequentially. Starting from the first station the method tries
all workers that are unassigned. For each of the workers w ∈W , a subset of tasks T ′w ⊆ T is
selected by a greedy algorithm. The tasks whose dependencies are already satisfied in previous
stations are sorted by one of the 16 task priority rules proposed and are assigned to T ′w. If the
task added exceeds the cycle time, the task is removed from T ′w and the method proceeds to the
next task, until there are no tasks available. After the method defines a T ′w for each worker, it
uses one of three proposed worker priority rules to select the worker w∗ that will be responsible
for the current station. Thus the worker w∗ and the tasks T ′w∗ are assigned to the station and the
method repeats the procedure for the next station, until all tasks are assigned. Based on tests,
(MOREIRA et al., 2012) have shown that the best task and worker selection rules are MaxPW−

and MinRLB, respectively. MaxPW− attributes for each task a minimum positional weight

pw−t = p−t + ∑
t ′∈F∗t

p−t ′ (3.39)

and prioritizes the task with maximum pw−t . MinRLB calculates, for each worker, the lower
bound LC1 given the remaining tasks and workers, and selects the worker with the smallest
bound.



40

3.4.2.1 Meta-heuristics

Chaves, Miralles and Lorena (2007) and Chaves, Lorena and Miralles (2009) propose two
algorithms using Clustering Search (OLIVEIRA; LORENA, 2004), a method based on Hybrid
Evolutionary Algorithms. These algorithms identify promising search space regions, given
solutions found by some simpler heuristic. After that, the algorithms apply a local search only
in these regions.

Moreira and Costa (2009) propose a minimalist tabu search with three simple neighbor-
hoods: moving a task from a station to the other, swap two tasks from different stations and
swap two workers from different stations. Their method allows solutions that do not satisfy the
precedence constraints and solutions that assign tasks to invalid workers. These penalties are
dynamically increased if the number of iterations with invalid solutions increases. With this
simple procedure they have decreased the time needed to solve the problem and increased the
accuracy of it, as compared to the method of Chaves, Lorena and Miralles (2009).

Besides proposing the constructive heuristic explained in Section 3.4.2, Moreira et al. (2012)
also introduced a Biased Random Key Genetic Algorithm. In this type of method, given a
random key value, it must be decoded to a valid solution for the problem. The genetic algorithm,
then, tests different solutions by generating different keys. For each generated solution, the
method also applies a local search with the same three movements applied in the Tabu Search
of Moreira and Costa (2009). The algorithm presented competitive results to the previously
known methods.

More recently, Mutlu, Polat and Supciller (2013) proposed an iterative genetic algorithm.
The method is split in three levels. The most external level iterates over the cycle times using
a binary search. This cycle time is then tested by the two other levels. The second level uses a
genetic algorithm to produce task orders. Each gene is a valid topological sorting of the tasks
according to the precedence graph. Given two of these genes a and b, the crossover operation
selects a point n≤ |T | and initializes two new genes a′ and b′ with the first n elements of a and
b, respectively. The remaining part of the vector a′ and b′ is filled using the remaining tasks
in the order they appear in b and a, respectively. An example of this method, introduced for
SALBP by Davis (1985), is presented in Figure 3.1. This process can also be extended for two
selected points in the vector of tasks (LEU; MATHESON; REES, 1994). The third level of the
method is a local search to select an order of workers, and according to that and the order of
tasks of the current gene, the tasks are also assigned to stations. Two neighborhoods are used
in this level: a swap of two workers and an operation that reverses the order of the workers
between two points.
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t1 t2 t3 t4 t5 t6

t1 t3 t2 t5 t6 t4

t1 t3 t2 t4 t5 t6

t1 t2 t3 t5 t6 t4
×

Figure 3.1 – Example of a one-point crossover as proposed by Mutlu, Polat and Supciller (2013). The
example uses the second task as the point of crossover and is valid for the ALWABP-2 instance in Figure
1.1.

3.5 The Robotic Assembly Line Balancing Problem

As in the SALBP and in the ALWABP, problems of types 1 (RUBINOVITZ; BUKCHIN;
of Manufacturing Engineers, 1991) and 2 (LEVITIN; RUBINOVITZ; SHNITS, 2006) of the
RALBP have been studied, for, respectively, minimizing the number of stations and minimizing
the cycle time, and like in the SALBP and the ALWABP, the type 2 can be solved by iteratively
solving the type 1.

Despite the clear differences, exact methods for the SALBP (SALVESON, 1955; SCHOLL;
BECKER, 2006; KLEIN; SCHOLL, 1996; MORRISON; SEWELL; JACOBSON, 2014; VILÀ;
PEREIRA, 2013) and the ALWABP (MIRALLES et al., 2007; MIRALLES et al., 2008a; VILA;
PEREIRA, 2014; BORBA; RITT, 2014) can be applied to the RALBP. Notably, the SALBP
lower bounds (SCHOLL; BECKER, 2006), some dominance rules (e.g. the maximum load
rule (JACKSON, 1956)), and the search strategies (SCHOLL; BECKER, 2006; MORRISON;
SEWELL; JACOBSON, 2014; VILÀ; PEREIRA, 2013; VILA; PEREIRA, 2014; BORBA;
RITT, 2014). However, many of the methods for the SALBP and ALWABP largely rely on
properties of these problems and cannot be adapted to the RALBP. For instance, Jackson’s dom-
inance rule (JACKSON, 1956), proposed for SALBP, highly depends on station-independent
task times to define potential domination between the tasks. Similarly, the problem cannot be
relaxed to the unbounded parallel machines scheduling problem (BORBA; RITT, 2014), like
the ALWABP.

For the RALBP-1, the lower bound LM1 of the SALBP-1, was used by Rubinovitz, Bukchin
and Lenz (1993). The lower bound LM1, as LC1 also relaxes the indivisibility of tasks constraint.
Therefore:

LM1 =

⌈
∑t∈T p−t

C

⌉
Since in the best case scenario the tasks are also executed by the fastest robot to perform it,

the lower bound is also valid for the RALBP.

Rubinovitz, Bukchin and Lenz (1993) also proposed a station-oriented branch-and-bound
algorithm. The method initializes the first station and creates a branch for each pair of a root
task in the precedence graph and each of the robots. Thus it expands each of the branches. The
expansion of a branch is made by assigning each of the available unassigned tasks to the current
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station. If none of the tasks fits the station, a new station is generated and a branch for each pair
of available unassigned task and available robot is created. The method continues expanding
the branches. A solution is found when a branch has all tasks assigned. The method uses a
best-first search, using LC1 as lower bound to prioritize the partial solutions. In case of ties, the
method selects the branch in the deepest level.

A heuristic for the RALBP-1 can also be obtained by truncating the branch-and-bound al-
gorithm, as also proposed by Rubinovitz, Bukchin and Lenz (1993). The number of nodes
evaluated at each step of the algorithm is truncated by limiting the number of levels for which
the nodes are stored to k. When a new level l is reached the solutions of level l−k are removed
from the list of branches to be explored. No further reduction or dominance rules are applied.

For the RALBP-2, Levitin, Rubinovitz and Shnits (2006) proposed a genetic algorithm.
In their method, they use the same genotype codification of tasks and crossover operations
as the method of (MUTLU; POLAT; SUPCILLER, 2013) for the ALWABP-2 (See Section
3.4.2.1). Each genotype task vector v is decoded to a RALBP-2 solution by assigning the
tasks to stations according to the order they appear in v and assigning robots to each station.
Therefore, the vector v must be divided in |W | parts, and each part of the vector will be assigned
to a station. Levitin, Rubinovitz and Shnits (2006) also proposed applying local optimization
by hill climbing to the solutions found by the genetic algorithm.

Particle Swarm Optimization (PSO) was also used to solve RALBP-2 and achieved com-
petitive results (NILAKANTAN; PONNAMBALAM, 2012). In this method, each particle is
a valid order of tasks for the problem, and the velocity of a particle approximates the current
particle to the global best and the local best by exchanging tasks of the particle. To define the
fitness value of a particle, a valid solution is defined considering the task order of the particle.
The method to calculate the fitness function starts with a cycle time equal to the lower bound.
Then the tasks are assigned in order to the stations until the current station is full, i.e. the next
task can not be assigned to the current station. in that case the next station is started with the
next task. The method proceeds until all the tasks are assigned or until there are no more stations
available. In this case, the solution is impossible and the cycle time is incremented. The fitness
value is the result of the cycle time for which a valid solution is found for that particle. After the
particle swarm optimization method is concluded, the method improves the best solution found
by swapping tasks. They also use a variation of the Cuckoo’s Search (CS-PSO) (KENNEDY;
EBERHART, 1995) in which the cuckoos are represented by a order of tasks, like in the PSO.
New cuckoos are generated every iteration from abandoned cuckoos by using a crossover op-
erator equal to the operator of (MUTLU; POLAT; SUPCILLER, 2013) (See Section 3.4.2.1).
These cuckoos, then, move according to the velocity defined for the particle swarm optimiza-
tion, and afterwards, a fraction of them is abandoned and substituted by new cuckoos. The PSO
and the CS-PSO have the best results in the literature for the RALBP-2.
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4 SOLUTIONS FOR THE ASSEMBLY LINE WORKER ASSIGNMENT AND BAL-

ANCING PROBLEM

In this chapter we present and evaluate solutions, both exact and heuristic, for the Assembly
Line Worker Assignment and Balancing Problem of Type 2. First, a Mixed-Integer Program-
ming model is presented. It decreases the number of variables in the model and adds continuity
constraints that limit the solution space of the model. Then the lower bounds for the problem
are studied. We propose using the unrelated parallel machine scheduling problem lower bounds,
since it is a relaxation of the ALWABP. After that, a station-oriented beam search heuristic for
the problem that produces initial solutions for our branch-and-bound algorithm. Our branch-
and-bound differs from other exact solutions for the ALWABP because we use a task-oriented
branching strategy instead of a station-oriented strategy. All these methods are evaluated and
shown to be competitive with the literature.

4.1 Mixed-Integer Programming Formulations for the ALWABP-2

The only model in the literature for the ALWABP-2 was proposed by Miralles et al. (2008b).
This model was presented in Section 1.2. Here we propose a novel model with two-index
variables and this modification makes it possible to add continuity constraints that are presented
in further subsections.

4.1.1 Formulation with Two-Index Variables

The assignment of tasks to workers induces relationships among workers according to the
relationships among tasks. Let us assume that task t ′ succeeds task t, t is assigned to worker
w and t ′ is assigned to w′. In this case, the worker w should precede worker w′ in the line.
Therefore, any topological order of this worker precedence graph yields a valid assignment of
worker to a linear sequence of stations. If the graph has a cycle, and therefore no topological
order, the current partial solution is invalid. An example is shown in Figure 4.1. First, tasks
t2 and t3 are assigned to worker w2 and task t4 is assigned to worker w3. So, according to the
relationships of the tasks, worker w2 should precede worker w3. After that, task t1 can not
be assigned to the worker w3, otherwise a cycle would be created in the induced graph. In
our example, t1 is assigned to worker w1. Because of this, a relation between workers w1 and
w2 is created. Although no relation induced by precedence graph exists among w1 and w3, a
precedence between them follows by transitivity.

Using the fact that we only need to assign tasks to workers ensuring that there is no cycle in
the induced graph, we can define a model MW2. Model MW2 uses variables xwt such that xwt = 1
if task t ∈ T has been assigned to worker w ∈W , and dvw such that dvw = 1 if worker v ∈W
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Figure 4.1 – Worker dependencies after assignment of task 1 to worker 1.

must precede worker w ∈W . In this way, we obtain a model MW2 as follows:

minimize C, (4.1)

subject to ∑
t∈Aw

ptw xwt ≤C, ∀w ∈W, (4.2)

∑
w∈At

xwt = 1, ∀t ∈ T, (4.3)

dvw ≥ xvt + xwt ′−1, ∀(t, t ′) ∈ E,v ∈ At ,w ∈ At ′ \{v}, (4.4)

duw ≥ duv +dvw−1, ∀{u,v,w} ⊆W, |{u,v,w}|= 3, (4.5)

dvw +dwv ≤ 1, ∀v ∈W,w ∈W \{v}, (4.6)

xwt ∈ {0,1}, ∀w ∈W, t ∈ Aw, (4.7)

dvw ∈ {0,1}, ∀v ∈W,w ∈W \{v}, (4.8)

C ∈ R. (4.9)

In this model, constraints (4.2) define the cycle time C of the problem. Each task should be
executed by exactly one worker, as assured by constraints (4.3). The graph of worker prece-
dence is induced by the task precedence graph, as specified in constraints (4.4). If two related
tasks t and t ′ are assigned to the workers v and w respectively, then if v precedes w, dvw is set
to 1. The constraints (4.5) ensure transitivity of dvw. Finally, constraints (4.6) enforce anti-
symmetry guaranteeing that the worker precedence graph remains acyclic. As a consequence
of these constraints, the order of the workers along the stations can be found in linear time
by topological sorting. This model has O(|W |2 + |W | |T |) variables. Similarly, the number of
constraints is O(|E| |W |2 + |W |3 + |T |).
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Figure 4.2 – Continuity constraints after tasks t1 and t5 have been assigned to the same worker w. Tasks
t2 and t3 must also be assigned to w.

4.1.2 Continuity constraints

For SALBP-1, Peeters and Degraeve (2006) have shown that while loading a station k, if a
task t is preceded and succeeded by tasks already assigned to that station, then the task t must
also be assigned to station k. Generalizing this definition, we could observe that: if two tasks i

and k are assigned to the same worker w, then all tasks j that are successors of i and predecessors
of k must also be assigned to w. It is called a continuity constraint and it is exemplified in figure
4.2. In the Figure, the tasks t1 and t5 are assigned to the same worker w and, since tasks t2
and t3 are in between the former two, they must also be assigned to w. Otherwise the workers
precedence graph would have a cycle and the solution would be invalid.

xw j ≥ xwi + xwk−1, ∀i ∈ T, j ∈ F∗i ,k ∈ F∗j ,w ∈ Ai∩A j∩Ak. (4.10)

Similarly, given that a task t is assigned to a worker w, and a succeeding task t ′ is unfeasible
for w, all tasks succeeding t ′ should also be unfeasible for w, since if one of them is assigned to
w a cycle would be formed in the workers precedence graph. An example of this constraint is
shown in Figure 4.3. Task t1 is assigned to worker w and the task t2 is unfeasible for w, so all
tasks succeeding t2 (namely t4, t5 and t6) should also be set as unfeasible for w. This constraint
is expressed by

xwk + xwi ≤ 1, ∀i ∈ T, j ∈ F∗i ,k ∈ F∗j ,w ∈ Ai∩ (T \A j)∩Ak. (4.11)

Let model MW3 be model MW2 with additional constraints (4.10) and (4.11). Model M3 has
the same number of variables as M2: O(|W |(|T |+ |W |)). Also, it has O(|E∗||T ||W |+ |W |3 +
|E||W |2) constraints, given the constraints (4.10) and (4.11). Therefore this model has less
variables but more constraints than MW1.

4.1.3 Computational Experiments

In this section we will compare the performance of the MIP models MW2 and MW3 with that
of model MW1, that was presented in equations (1.2) to (1.11). All models were solved using
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Figure 4.3 – Continuity constraints with t1 assigned to worker w and t2 unfeasible for worker w. Tasks
t4, t5 and t6 are, therefore, unfeasible for worker w.

Table 4.1 – Instance characteristics. The 320 instances are grouped by five two-level experimental
factors into 32 groups of 10 instances.

Factor Low Level High Level
Number of tasks |T | 25−28 70−75
Order strength (OS) 22% - 23% 59%−72%
Number of workers |W | |T |/7 |T |/4
Task time variability (Var) [1, ti] [1,2ti]
Number of infeasibilities (Inf) 10% 20%

the commercial solver CPLEX 12.3 compiled with the GNU C compiler 4.6.3 with maximum
optimization. The experiments were done on a PC with a 2.8 GHz Core i7 930 processor and
12 GB of main memory, running a 64-bit Ubuntu Linux. All tests used only one core.

4.1.4 Instances

First of all, let us introduce the 320 instances for the ALWABP-2 proposed by (CHAVES;
MIRALLES; LORENA, 2007). These instances are the standard benchmark suite for the prob-
lem. They consist of the four groups Roszieg, Heskia, Tonge and Wee-Mag. These four groups
differ by the number of tasks and the order strength1 (OS) of the precedence graph. Each of the
instance types is divided in eight groups of ten instances, based on three parameters: the number
of workers, the variability (Var) of the task execution times and the percentage of infeasibilities
(Inf). For each of these parameters, a low level and a high level are defined, as shown in Table
4.1.

Roszieg and Heskia are the sets of instances with a low number of tasks (25 and 28, respec-
tively), and order strength equal to 71,67% and 22,49% respectively. Tonge and Wee-Mag have
a high number of tasks (70 and 75 respectively) with a high order strength (59,42%) in the case
of Tonge and a low order strength (22,67%) in the case of Wee-Mag.

1The order strength is number of precedence relations of the instance in percent of all possible relations
(|T |

2

)
.
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Table 4.2 – Comparison of MIP models MW1, MW2, and MW3 on instances Roszieg and Heskia.

Model
MW1 MW2 MW3

Instance |W | Var Inf Nodes t(s) Nodes t(s) Nodes t(s)

Roszieg

4
L

10% 56.9 0.6 2340.4 1.1 37.8 0.7
20% 1.1 0.6 936.0 0.4 11.7 0.4

H
10% 156.6 0.8 2849.5 1.3 58.6 1.5
20% 82.9 0.8 3268.4 1.6 53.8 0.8

6
L

10% 2715.0 12.1 47176.3 52.4 249.9 4.6
20% 2601.3 11.3 36555.7 29.0 168.7 2.3

H
10% 3467.0 13.4 83900.5 66.2 389.0 6.3
20% 2785.0 11.8 50294.3 44.2 281.5 4.5

Heskia

4
L

10% 0.0 0.6 105.2 0.2 29.8 0.3
20% 25.0 0.6 198.6 0.3 37.5 0.2

H
10% 65.0 0.7 136.2 0.2 49.0 0.3
20% 24.3 0.7 130.5 0.3 45.5 0.2

7
L

10% 1535.9 13.4 1552.2 4.6 86.8 1.0
20% 1174.1 11.1 940.8 2.2 102.4 1.0

H
10% 1677.8 12.9 735.9 2.5 115.4 1.1
20% 1344.1 13.4 663.3 2.8 151.7 1.3

Averages 1107.0 6.6 14486.5 13.1 122.1 1.7

4.1.4.1 Results

Table 4.2 shows the average number of nodes and the average computation time needed to
solve the instances to optimality using the three models for the 16 groups of instances with a
low number of tasks, namely Roszieg and Heskia (as defined in Section 4.1.4). The instance
groups Tonge and Wee-Mag with a high number of tasks are not shown, since none of them
could be solved to optimality within an hour.

Overall model MW2 needs significantly more nodes than MW1, and is a factor of about two
slower. It executes more nodes per second, and has a better lower bound, but CPLEX is able to
apply more cuts for model MW1 at the root, such that in average model MW2 has no advantage
on the tested instances.

On the other hand, model MW3, with the continuity constraints applied, needs significantly
less nodes and time compared to model MW1 (confirmed by a Wilcoxon signed rank test with
p < 0.01). The results show that the continuity constraints are very effective, in particular for a
high order strength and for high numbers of workers.
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4.2 Lower Bounds

In the next subsections we will present valid relaxations of the ALWABP-2, as well as
adaptations of the relaxations of the SALBP-2 and R ||Cmax, that can be applied to ALWABP-2
in a straightforward manner.

4.2.1 Relaxations to SALBP-2

All valid lower bounds for SALBP-2 apply to the relaxation of ALWABP-2 (see Section
3.3.1). In particular, we use the lower bounds

LC1 = max

{
max{p−t | t ∈ T},

⌈
∑
t∈T

(p−t )/|S|
⌉}

and

LC2 = max

{
∑

0≤i≤k
p−k|S|+1−i

∣∣∣ 1≤ k ≤
⌊
|T |−1
|W |

⌋}
.

(The bound LC2 supposes that the tasks are ordered such that p−1 ≥ ·· · ≥ p−|T |.)

We further use the SALBP-2 bounds on the earliest and latest possible station of task t for a
given cycle time C

Et(C) =

⌈(
∑

j∈P∗i

p−j + p−t

)
/C

⌉
and (4.12)

Lt(C) = |S|+1−

⌈(
∑

j∈F∗i

p−j + p−t

)
/C

⌉
(4.13)

to obtain the lower bound LC3, defined as the smallest cycle time C such that Et(C)≤ Lt(C) for
all t ∈ T .

4.2.2 Relaxation to R ||Cmax

Effective lower bounds for R || Cmax have been proposed by Martello and Soumis (1997)
(see Section 3.2.1). Their lower bounds L1 and L2 are obtained by Lagrangian relaxation of
the cycle time constraints (4.2) and the assignment constraints (4.3), respectively. Martello and
Soumis (1997) further propose an additive improvement that can be applied to L1 to obtain a
bound La

1 ≥ L1, as well as an improvement by cuts on disjunctions, that may be applied to La
1

and L2 to obtain lower bounds La
1 ≥ La

1 and L2 ≥ L2.
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4.2.3 Linear relaxation of ALWABP-2 models

Bounds obtained from linear relaxations of integer models for the SALBP-2 are usually
weaker than the SALBP-2 bounds of Section 4.2.1. However, the relaxation to minimum task
execution times weakens the ALWABP-2 bounds considerably. Therefore, the linear relaxations
of model MW3 provides a useful lower bound for the ALWABP-2 (MOREIRA et al., 2012).

4.2.4 Comparison of lower bounds

The present section will analyze the lower bounds proposed above by comparing their
strength. To compute the lower bound L1 we use the ascent direction method of Velde (1993).
This bound was improved to La

1, as proposed by Martello and Soumis (1997). Their method
applies a binary search for the best improved bound, which is obtained by solving |S| knapsack
problems of capacity C for each trial cycle time C. Different from Martello and Soumis (1997)
we solve the all-capacities knapsack problem by dynamic programming only once and use the
resulting table during the binary search. The knapsack problems that arise when computing L2

and L2 by subgradient optimization are solved similarly.

Every lower bound proposed was executed for the 320 instances defined in literature for the
problem. The average computational time for each bound and the average deviation from the
optimal result are calculated for each method and plotted in Figure 4.4. The linear relaxation
of models MW2 and MW3 present the best results over all bounds, but using the greatest average
computation time. In particular, the continuity constraints, added by model MW3, improve the
average relative deviation by 10%, using more running time. Both models have a significantly
better average relative deviation than the version with three-index variables MW3.

The results for the relaxation of R ||Cmax are slightly worse than MW2, and MW3, but calcu-
lated two orders of magnitude faster. The strong relation of the two problems makes it possible
to use the subgradient relaxations of the R || Cmax, that is calculated one order of magnitude
faster. Finally, the lower bounds from the relaxation to SALBP are weaker than most of the
other lower bounds, except LC1, but another order of magnitude faster. The SALBP-2 based
lower bounds LC2 and LC3 are weaker than the other bounds, but are the fastest lower bounds.
LC1 differently is one of the fastest methods while producing good relative deviations for the
instances studied.

To estimate a possible value for the final result, the linear relaxation of MW3 has shown the
best average result and must be used in these cases. However, when calculating the lower bound
many times along the execution of a program, we usually use faster lower bounds that achieve
satisfactory results. Namely, we use the lower bounds from the relaxation to SALBP (LC1, LC2

and LC3) and La
1. These bounds are complementary. LC1, for example, obtains the best results

of the bounds used in average at the root node of a branch-and-bound method, but is ineffective
when the partial solution evolves.
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Figure 4.4 – Comparison of lower bounds.

4.3 An Iterative Probabilistic Beam Search for the ALWABP

In this section, we describe an Iterative Probabilistic Beam Search (IPBS) for the ALWABP-
2. It systematically searches for a small cycle time by trying to solve the feasibility problem
ALWABP-F for different candidate cycle times from an interval ending at the current best upper
bound. For each candidate cycle time C, a probabilistic beam search tries to find a feasible
allocation.

An upper bound search starts from a known feasible cycle time and tries to reduce it it-
eratively. A common strategy is to decrement it successively and try to find a better feasible
solution by some heuristic algorithm. While this works for exact ALWABP-F methods, it is not
as good for heuristic assignment procedures, since they are not monotone. A heuristic method
could find a solution for a cycle time and could not find a solution for larger cycle times. There-
fore, we propose to modify the upper bound search to examine an interval of cycle times ending
at the current best upper bound. If the current lower and upper bounds on the cycle time are
C and C, the upper bound search will try to find a feasible solution for all cycle times between
max{C,

⌊
pC
⌋
} and C−1 for a given factor p ∈ (0,1) and update C to the best cycle time found,

if any. Otherwise, the upper bound search continues with the same interval. Since the beam
search is probabilistic this may produce a feasible solution in a later trial. The interval search
depends on three parameters: the minimum search time tmin, the maximum search time tmax and
the maximum number of repetitions r. The search terminates if the cycle time found equals the
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lower bound, or if the maximum time or the maximum number of repetitions are exceeded, but
not before the minimum search time has passed. Initially, the value of C is set to the best of all
lower bounds. The initial upper bound C is determined by a single run of the beam search with
a beam factor of one.

4.3.1 Probabilistic beam search for the ALWABP-F

Each time a cycle time should be tested, the ALWABP-F problem is solved heuristically
using a probabilistic beam search. The basis for the probabilistic beam search is a station-based
assignment procedure, which assigns tasks in a forward manner station by station.

For the ALWABP we have to decide which worker and which tasks to assign to the current
station. This is accomplished by applying a task assignment procedure to all workers which
are not yet assigned, and then choosing the best worker for the current station by a worker
prioritization rule. After that decision, the next station is processed. The procedure succeeds if
an assignment using at most the available number of stations is found. Station-based procedures
can be also applied in a backward manner, assigning tasks whose successors have been assigned
already. For this it is sufficient to apply a forward procedure to an instance with reversed
dependencies.

Considering a specific worker the task assignment procedure repeatedly selects an available
task and assigns it to the current station. A task is available if all its predecessors have been
assigned already. If none of the available tasks fits in the current station (i.e. the execution time
of the task is greater than the idle time of the current station) the station is said to be full. If
there are several available tasks the highest priority task as defined by a prioritization rule is
assigned next. When a station is full, the algorithm continues with the next station.

The probabilistic beam search extends the station-oriented assignment procedure in two
aspects. First, when assigning tasks to the current station, it randomly chooses one of the
available tasks with a probability proportional to its priority. Second, it applies beam search to
find the best assignment of workers and their corresponding tasks.

Beam search is a truncated breadth-first tree search procedure (LOWERRE, 1976; OW;
MORTON, 1988). When applied to the ALWABP-F, it maintains a set of partial solutions
called the beam during the station-based assignment. The number of solutions in the beam is
called its width γ . Beam search extends a partial solution by assigning each available worker
to the next station, and for each worker, chooses the tasks to execute according to the above
probabilistic rule. For each worker this is repeated several times, to select different subsets
of tasks. The number of repetitions is the beam’s branching factor f . Among all new partial
solutions the algorithm selects those of highest worker priority to form the new beam. The
number of solutions selected is at most the beam width.

Task and worker prioritization rules are important for the efficacy of the station-oriented
assignment procedure. We have chosen the task priority rule MaxPW− and the worker priority
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rule MinRLB, as proposed by Moreira et al. (2012) (see Section 3.4.2), which have been found
to produce the best results in average for the problem. Particularly in this method, we use the
task prioritization rule MaxPW−, that gives preference to tasks with larger minimum positional
weight pw−t = p−t +∑t ′∈F∗t p−t ′ . We also use the worker prioritization rule MinRLB, that gives
preference to workers with smaller restricted lower bound ∑t∈Tu p−t (Wu)/|Wu|, where p−t (W ′)=

minw∈W ′ ptw with the set Wu⊆W corresponding to the unassigned workers and Tu⊆ T to the set
of unassigned tasks of a partial assignment. Before computing MinRLB we apply to each partial
solution the logic of the continuity constraints (4.10) and (4.11) to strengthen the bound. If tasks
i and k have been assigned already to some worker w, we also assign all tasks succeeding i and
preceding k to w. Similarly, if i has been assigned to w and some successor (predecessor) j of
i is infeasible for w we set pkw = ∞ for all successors (predecessors) k of j. The probabilistic
beam search is shown in Algorithm 1.

Algorithm 1: Probabilistic beam search
input : A set of stations S, a candidate cycle time C, a beam width γ and a beam factor f .
output: A valid assignment or “failed” if no valid assignment could be found.

1 B←{ /0}; /* current set of partial assignments */
2 for k ∈ S do
3 B′← /0;
4 for s ∈ B do
5 for f times do
6 for all unassigned workers w ∈W do
7 s′← s concatenated with a new empty station k;
8 while there are available tasks P that do not overload the current station do
9 select a task t ∈ P with probability proportional to MaxPW−(t);

10 assign t to station k in s′;
11 end
12 if all tasks in T are assigned in s′ then return Solution s′ ;
13 else if |B′|< γ then B′← B′∪{s′} ;
14 else
15 o← argmin{MinRLB(o′) | o′ ∈ B′};
16 if MinRLB(s′)> MinRLB(o) then B′← B′∪{s′}\{o} ;
17 end
18 end
19 end
20 end
21 B← B′;
22 return “failed”;
23 end
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Figure 4.5 – Example of a shift operation. Task t5 is moved from worker w1 to worker w3.
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Figure 4.6 – Example of a swap operation. Task t5 is swapped with task t3.

4.3.2 Improvement by local search

A local search is applied to the results found by the interval search method. It focuses on
critical stations whose load equals the cycle time of the current assignment. It tries to remove
tasks from a critical station in order to reduce the cycle time. Since there can be multiple critical
stations, a move is considered successful if it reduces the number of critical stations. The local
search applies the following four types of moves, until the assignment cannot be improved any
more.

1. A shift of a task from a critical station to another station, considering the precedence
constraints.

2. A swap of two tasks. At least one of the tasks must be on a critical station, also consider-
ing the precedence constraints.

3. A sequence of two shift moves. Here the first shift move is allowed to produce a worse
result than the initial assignment, also considering the precedence constraints.

4. A swap of workers between two stations without reassigning the tasks.

w1 w2 w3

w1 : 3 w2 : 6 w3 : 4

t1 t2

t3

t4

w1 w2 w3

w1 : 3 w2 : 3 w3 : 8

t1 t2

t3

t4

w1 w2 w3

w1 : 5 w2 : 3 w3 : 4

t1 t2 t3

t4

Figure 4.7 – Example of a two-shifts operation. Task t3 is shifted to worker w3 and then task t4 is shifted
to worker w1.
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Figure 4.8 – Example of a workers swap operation. Worker w1 is swapped with worker w2.

Table 4.3 – Parameters of the iterative probabilistic beam search used in the computational experiments.

Beam width w 125
Branching factor f 5
Cycle time reduction for interval search p 0.95
Minimum search time tmin (s) 6
Maximum search time tmax (s) 900
Maximum number of interval searches r 20

4.3.3 Computational Results

We compare IPBS with three state of the art heuristic methods for the ALWABP-2, namely
the hybrid genetic algorithm (HGA) of Moreira et al. (2012), the iterated beam search (IBS)
of Blum and Miralles (2011), and the iterative genetic algorithm (IGA) of Mutlu, Polat and
Supciller (2013). We additionally compare to the results obtained by the branch-and-bound-
and-remember (BBR) method of Vilà and Pereira (2014), when stopped after sixty seconds.

In preliminary experiments we determined reasonable parameters for the probabilistic beam
search as shown in Table 4.3. For the HGA and the IBS we compare in Table 4.4 the relative
deviation from the current optimal value (Gap) and the computation time (t), in average for each
group of instances and 20 replications per instance. We further report the average computation
time to find the best value (tb), and the average relative deviation of the best solution of the 20
replications (Gapb). The total computation time of Blum and Miralles (2011) is always 120s
more than the time to find the best value, and has been omitted from the table.

We can see that the problem can be considered well solved for a low number of tasks, since
all three methods find the optimal solution with a few exceptions in less than ten seconds. In six
instance groups the IPBS terminates in less than the minimum search time, since the solution
was provably optimal. For instances with a high number of tasks, IBS produces better solutions
for more workers, while the HGA is better on less workers. IPBS always achieves better results
than both methods (confirmed by a Wilcoxon signed rank test with p < 0.01). This holds for the
averages as well as the best found solutions (except the first instance group of Wee-Mag, where
the best solution of IPBS is slightly worse than that of the HGA). IPBS is also very robust in
the sense that the difference between average and best relative deviations is the smallest of the
three methods. In average over all instances, its solutions are 1.9% over the optimal values.

To compare execution times, we have to consider that the results have been obtained on
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Table 4.4 – Comparison of the proposed heuristic with a hybrid genetic algorithm (MOREIRA et al.,
2012) and an iterated beam search (BLUM; MIRALLES, 2011).

HGA IBS IPBS
Instance |W | Var Inf t(s) tb(s) Gap Gapb tb(s) Gap Gapb t(s) tb(s) Gap Gapb

Roszieg

4
L 10% 3.3 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0

20% 4.5 0.0 0.1 0.0 0.1 0.0 0.0 5.4 0.0 0.0 0.0

H 10% 4.0 0.0 0.0 0.0 0.1 0.0 0.0 6.0 0.0 0.0 0.0
20% 3.4 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0

6
L 10% 3.6 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0

20% 4.0 0.1 1.1 1.0 0.0 0.0 0.0 6.0 0.1 0.0 0.0

H 10% 4.5 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0
20% 4.5 0.1 0.0 0.0 0.0 0.0 0.0 6.0 0.1 0.0 0.0

Heskia

4
L 10% 6.9 0.2 0.0 0.0 8.2 0.0 0.0 6.0 0.1 0.0 0.0

20% 9.3 0.3 0.1 0.1 3.0 0.0 0.0 6.0 0.1 0.0 0.0

H 10% 9.2 0.3 0.0 0.0 5.6 0.0 0.0 6.0 0.1 0.0 0.0
20% 9.5 0.5 0.3 0.0 5.2 0.0 0.0 6.0 0.2 0.0 0.0

7
L 10% 8.0 0.2 0.5 0.0 1.1 0.0 0.0 5.4 0.2 0.0 0.0

20% 7.4 0.3 0.6 0.0 2.5 0.0 0.0 4.3 0.2 0.5 0.3

H 10% 6.6 0.2 0.3 0.0 1.7 0.0 0.0 2.5 0.2 0.0 0.0
20% 9.2 1.5 0.7 0.0 2.5 0.0 0.0 3.7 0.2 0.0 0.0

Tonge

10
L 10% 205.7 34.4 5.9 2.4 86.4 6.7 4.8 56.2 19.7 1.9 0.9

20% 241.2 34.9 4.2 2.4 92.2 4.6 3.3 58.9 14.8 2.3 1.0

H 10% 391.0 98.6 4.4 1.8 160.1 5.5 3.5 89.2 26.8 1.4 0.9
20% 347.5 56.9 4.3 2.7 171.4 4.7 3.8 91.0 21.4 2.2 1.2

17
L 10% 296.9 74.0 11.3 7.8 88.0 8.2 4.7 61.2 26.2 2.8 1.9

20% 300.0 67.1 14.3 9.2 70.5 11.5 8.6 60.5 19.4 6.9 5.6

H 10% 446.7 129.1 10.7 5.7 124.3 7.9 5.4 96.7 31.8 3.0 2.3
20% 469.5 105.3 10.4 7.6 156.4 8.9 5.8 107.7 31.5 4.5 3.2

Wee-Mag

11
L 10% 136.9 56.9 6.6 2.3 104.9 13.9 9.9 25.1 9.4 5.8 3.8

20% 158.8 60.1 7.6 3.3 84.9 12.0 7.8 25.1 7.7 4.6 2.9

H 10% 248.5 115.8 8.9 3.9 160.3 12.6 9.3 37.1 12.4 5.6 3.7
20% 245.9 112.7 7.8 2.9 143.3 13.8 9.6 36.1 14.1 4.5 2.6

19
L 10% 213.9 61.4 16.0 9.5 57.1 11.6 7.4 39.9 11.6 4.6 3.2

20% 225.6 66.1 15.1 10.3 60.3 10.8 6.4 39.0 10.4 3.6 1.8

H 10% 283.7 97.9 15.3 9.1 71.4 11.1 6.5 38.3 11.0 4.6 3.7
20% 288.1 108.9 12.3 7.1 90.0 9.7 5.2 41.6 11.8 3.2 2.9

Total averages 143.7 40.1 4.9 2.7 54.7 4.7 3.1 31.0 8.8 1.8 1.2
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different machines. The IBS was executed in a PC with a 2.2 GHz AMD64X2 4400 processor
and 4GB of main memory, and the HGA in a PC with a Core 2 Duo 2.2 GHz processor in 3
GB of main memory. A conservative assumption is that their performance is within a factor of
two of each other. Taking this into account, over all instances HGA and IBS have comparable
computation times, and the IPBS is about a factor two faster. This holds for finding the best
solution and also for the total computation time. (Remember that the total computation time
of IBS is 120 s longer than the time to find the best solution.) The faster average computation
times are mainly due to the instances with a high number of tasks, for which IPBS scales better.
The best solutions are almost always found in less than 30 seconds.

For all heuristics, the computation time is significantly less for a low number of tasks, a low
number of workers, and a low order strength. Similarly, the relative deviations are smaller for
a low number of tasks and low order strength. However, the relative deviation does not depend
significantly on the number of workers, except for the HGA, which produces better solution
for a low number of workers. (These findings are confirmed by a Wilcoxon signed rank test at
significance level p < 0.01.) For IBS and IPBS there is an interaction between the number of
workers and the order strength: both produce better solutions for a low number of workers and
a high order strength or vice versa.

For the IGA no detailed results are available, therefore we compare in Table 4.5 with the
summarized values reported by Mutlu, Polat and Supciller (2013): the average cycle time (C),
the average cycle time of the best found solution (Cb), and the average computation time to find
the best value (tb). The values are again averages for all groups of instances, but over only 10
replications for the IGA. The results for the IPBS are the same as in Table 4.4 but in absolute
values. Note that this evaluation may mask large deviations in instances with low cycle times
and overestimate small deviations for high cycle times. We further provide the averages of the
optimal values (C).

As the other methods, the IGA solves the small instances optimally, but not the larger ones.
Compared to the IPBS, its average performance is worse except for three groups of wee-mag
with a low number of workers, where the average cycle time is about 0.2 lower. The comparison
is similar for the best found values, where the IGA is better by 0.4 in a single group. In average
over all large instances the IPBS produces a cycle time of about one unit less, and about one
unit above the optimal values over all instances.

The execution times of the two methods are comparable. The results of Mutlu, Polat and
Supciller (2013) have been obtained on a Intel Core 2 Duo T5750 processor running at 2.0 GHz,
whose performance is within a factor of three from our machine. Taking this into account, the
IPBS find the best value about 50% faster.

Finally, we compare the results of IPBS with the recent results obtained by the BBR of Vilà
and Pereira (2014). BBR obtains better results than IPBS for all instance groups in comparable
time (60 seconds). Even with a relative deviation from the optimal values of only 1.9% for IPBS,
BBR frequently obtains a cycle time which is one or two units lower. This can be explained by
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Table 4.5 – Comparison of the proposed heuristic with an iterated genetic algorithm (MUTLU; POLAT;
SUPCILLER, 2013).

IGA IPBS
Instance |W | Var Inf tb(s) C Cb tb(s) C Cb

Roszieg

4
L

10% 0.3 20.1 20.1 0.0 20.1 20.1
20% 0.3 31.5 31.5 0.0 31.5 31.5

H
10% 0.3 28.1 28.1 0.0 28.1 28.1
20% 0.2 28.0 28.0 0.0 28.0 28.0

6
L

10% 0.5 9.7 9.7 0.0 9.7 9.7
20% 0.5 11.0 11.0 0.1 11.0 11.0

H
10% 0.5 16.0 16.0 0.0 16.0 16.0
20% 0.5 15.1 15.1 0.0 15.1 15.1

Heskia

4
L

10% 0.3 102.3 102.3 0.1 102.3 102.3
20% 0.3 122.6 122.6 0.1 122.6 122.6

H
10% 0.3 172.5 172.5 0.1 172.5 172.5
20% 0.2 171.3 171.2 0.2 171.3 171.2

7
L

10% 0.5 34.9 34.9 0.2 34.9 34.9
20% 0.5 42.6 42.6 0.2 42.8 42.7

H
10% 0.5 75.2 75.2 0.1 75.2 75.2
20% 0.5 67.2 67.2 0.2 67.2 67.2

Tonge

10
L

10% 47.4 94.1 93.0 19.7 92.2 91.3
20% 40.5 110.2 109.3 14.8 109.1 107.8

H
10% 70.8 165.2 162.4 26.8 161.7 160.8
20% 59.4 170.1 168.4 21.4 167.5 165.9

17
L

10% 78.0 33.1 33.1 26.2 32.5 32.2
20% 68.4 40.4 40.1 19.4 39.4 38.9

H
10% 68.1 66.4 66.4 31.8 64.9 64.5
20% 78.0 64.8 64.6 31.5 63.9 63.1

Wee-Mag

11
L

10% 65.7 27.4 26.7 9.4 27.6 27.1
20% 61.8 32.7 32.3 7.7 32.6 32.1

H
10% 92.7 48.2 47.6 12.4 48.4 47.5
20% 81.9 46.0 45.8 14.2 46.2 45.4

19
L

10% 67.2 10.4 10.3 11.6 10.0 9.9
20% 67.2 12.1 12.1 10.4 11.6 11.4

H
10% 68.1 18.5 18.2 11.0 17.9 17.7
20% 77.4 18.4 18.0 11.8 17.7 17.7

Averages 34.3 59.6 59.3 8.8 59.1 58.8



58

the enumerative approach of BBR compared to the randomized generation of station loads in
IPBS. BBR achieves these results by storing all partial solutions, and thus IPBS may still be a
competitive method on larger instances.

In summary, the results show that IPBS can compete with and often outperforms existing
methods in solution quality as well as computation time. The enumerative approach of Vilà and
Pereira (2014), however, finds better solutions in about the same time. The difference to the
other methods is smallest for the large instances with a low order strength and a low number of
workers. IPBS in general is very robust over the entire set of instances.

4.4 A Task-Oriented Branch-and-Bound Algorithm

In this chapter we propose a branch-and-bound algorithm for ALWABP-2 using the bounds
and the heuristic presented in the previous chapters. Our method uses a depth-first search to find
solutions. In branch-and-bound algorithms for assembly line balancing three branching strate-
gies exist. The station-oriented, the task-oriented and the worker-oriented method. They were
explained in Chapter 3. The most effective methods for SALBP use station-oriented branching.
However, for the ALWABP the additional worker selection substantially increases the branch-
ing factor of the station-oriented approach. A worker-oriented strategy, on the other hand, has
to consider much more station loads, since all subsets of unassigned tasks which satisfy the
continuity constraints (4.10) are candidates to be assigned to a worker. Therefore, we propose
to use a task-oriented branching strategy.

At each node the method processes the partial solution, evaluates the lower bound according
to the current information, applies pruning techniques to avoid branches that not lead to good
solutions and, after that, selects a task t. The method assumes that the task that produces the
smallest number of branches should be selected first. With this, few branches are generated at
the beginning and at each branch, a better task selection can be made. So, for each task t of
the set of unassigned tasks (U) in the current node of the branch-and-bound tree, the number
of assignable workers |At | is defined, according to Section 4.4.1, and then we select a task
t∗ = argmin{|At | | t ∈U}. In case of ties, the task with the smallest lower bound is selected.
The lower bound of a task is given by the minimum lower bound found after assigning the task
to each of the assignable workers. For example, given the partial solution in Figure 4.9, task t2
could be assigned to workers w1 and w3, while the only invalid worker for tasks t6 and t7 is w3.

After the task has been selected, it must be assigned to each of the possible workers (At∗) in
a separate branch. Since the branches with a smaller lower bound tend to produce the best final
solutions, we explore them first. In Figure 4.9, the task t2 could be assigned for both w1 and w3.
If it is assigned to worker w1, the partial solution has cycle time 8. If it is assigned to w3, it has
partial solution with cycle time 6. Therefore, task t2 will be first assigned to w3 and then to w1.

The lower bound used for the task selection and prioritization of the branches is the LC1, as
well as the cycle time for the stations already assigned. In both cases the lower bound method
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Tasks Precedence Graph

w3: 4

w1: 3 w2: 2

w4: 2

t1 t2

t3

t4

t5

t6

t7 t9

t8

Task Execution Times
ptw t1 t2 t3 t4 t5 t6 t7 t8 t9
w1 4 3 2 1 2 6 3 ∞ 4
w2 ∞ 5 6 5 3 2 2 2 2
w3 3 4 1 ∞ 3 ∞ 2 3 ∞

w4 5 3 ∞ 2 2 2 3 2 2

Figure 4.9 – Example of task selection for a partial solution for an ALWABP-2 instance with nine tasks
and four workers. Task t2 is selected.

must be applied O(TW ) times and so a simple and fast lower bound is needed. When the
decisions are made and a new branch is created, the lower bound is updated with the results
of LC2,LC3,L

a
1. These bounds are among the fastest and produce efficient lower bounds when

applied to partial solutions. The lower bounds MW3 and L2 are too slow to be applied during the
search, although they obtain the best bounds.

The proposed task-oriented method executes the recursive procedure shown in Algorithm 2,
with an initial upper bound given by the heuristic presented in Section 4.3. At each new node
it applies the lower bounds (line 8). When a complete solution has been found, the algorithm
updates the incumbent (line 2). Otherwise, it selects an unassigned task t (line 5) and assigns
it to all feasible workers (loop in lines 6–12), when the reduction rules (line 7) have not been
successful.

4.4.1 Valid assignments

To define if a task t can be assigned to a worker w the branch-and-bound algorithm applies
a similar logic to that of the continuity constraints of models MW2 and MW3 (see Section 4.1).
Namely, the algorithm maintains a directed graph H on the set of workers to verify efficiently
if the precedence constraints are satisfied. It contains an edge (w,w′) if there is some task t

assigned to w and another task t0 assigned to w0, such that (t, t ′). The graph H also contains all
resulting transitive edges. For a valid assignment of tasks, H must be acyclic. If this is the case,
any topological sorting defines a valid assignment of workers to stations.

Three procedures are defined for the assignment of tasks to workers. Since the assign-
ment of task t to worker w must be verified many times when processing a node, procedure
assignmentIsValid(t,w) applies the verification but does not consider the violation of transitive
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Algorithm 2: branchTasks(llb,A)
Input : An upper bound gub, a set A⊆ T of assigned tasks, and a local lower bound llb.

1 if A = T then
2 if llb < gub then gub← llb;
3 return
4 end
5 select a task t ∈ T \A ;
6 foreach w ∈W | assignmentIsValid(t,w) do
7 apply reduction rules;
8 newllb← lower bound with new assignment (t,w);
9 if newllb < gub then

10 setAssignment(t,w);
11 branchTasks(newllb,A∪{t});
12 unsetAssignment(t,w);
13 end
14 end

dependencies in H in line 5, but only the creation of an immediate cyclic worker dependency,
which results from inserting an edge (w,w′) for which (w′,w) is already present. This can be
tested in time O(|Pt |+ |Ft |). The other two procedures are applied when the verification and
some pruning were already applied. The first, setAssignment(t,w), assigns a task t to a worker
w, and inserts the induced arcs in H as well as the arcs needed to produce the transitive closure
of H. This operation can be implemented in amortized time O(|W |) using a data structure pro-
posed by Italiano (1986). Finally, when the entire branch has been explored, the partial solution
is returned to its original state by applying the operation unsetAssignment(t,w).

4.4.2 Reduction rules

After a task t has been assigned to a worker w, and before branching, we apply several more
costly reduction rules to strengthen the lower bounds (line 7). First, to improve the calculation
of the lower bounds, we can set all ptw′ = ∞ for any w′ 6= w. This will guarantee that the
remaining workers are not used for task t.

The continuity constraints (4.10) and (4.11) of model MW3 can be analogously applied to
prune the branch-and-bound tree. If there is another task t ′ already assigned to w and there is a
set of tasks A between t and t ′ in the precedence graph G, all tasks in A must be assigned to w as
well, so we can set paw′ = ∞ for every a∈ A and w′ ∈W \{w}. If there is a task t ′ ∈ F∗t assigned
to another worker w′ 6= w, it is possible to assume that every task t ′′ ∈ F∗t ′ cannot be assigned to
w, and so we set pt ′′w = ∞ for every t ′′ ∈ F∗t ′ . This rule can be applied in both directions of the
graph.

Generalizing this, we can assume that an assignment of task t ′ to worker w is invalid if the
time of this task, the task t and all tasks between them, sum the current upper bound or more
than that. Then we can set pt ′w = ∞ if the the total execution time ptw + pt ′w +∑u∈i(t,t ′) puw is
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greater or equal than the upper bound for tasks i(t, t ′) = (P∗t ∩F∗t ′ )∪ (F
∗

t ∩P∗t ′ ) between t and t ′.
The rules can be applied iteratively until no rule changes the times of tasks.

4.4.3 Computational Results for the Branch-and-Bound Algorithm

We evaluated the branch-and-bound algorithm presented on the 320 test instances used in
the literature (please refer to Section 4.1.4). IPBS was used to produce an initial heuristic solu-
tion. It was made deterministic by fixing a random seed of 42 and configured with a minimum
search time of 0s and a maximum search time of |T ||W |/10s. During the search the number
of iterations of the ascent direction method to compute L1 has been limited to 50, and the num-
ber of iterations for the subgradient optimization to compute L2 to 20. The branch-and-bound
algorithm was implemented in C++, and compiled with the GNU C compiler 4.6.3 with max-
imum optimization. For lower bounds using linear relaxation, CPLEX 12.3 was used. The
experiments were executed on a PC with a 2.8 GHz Core i7 930 processor and 12 GB of main
memory, running a 64-bit Ubuntu Linux. All tests used only one core.

The first branch-and-bound algorithm in the literature, proposed by Miralles et al. (2008b)
for the ALWABP-2, has been found inferior to model MW1 by Chaves, Lorena and Miralles
(2009) in tests with CPLEX (version 10.1). We therefore limit our comparison to the MIP
models. We first compare our approach to CPLEX on the best model MW3 on the instances with
a low number of tasks in Table 4.6. In Table 4.7 we then present the results of the branch-and-
bound algorithm with a time limit of one hour on the larger instances. CPLEX is not able to
solve any of the models on the instances with a high number of tasks within this time limit.

Table 4.6 shows the average solving time and the average number of nodes in the branch-
and-bound tree for all instance groups with a low number of workers. On these instances both
methods have a similar performance, solving all instances in a few seconds, and are even com-
petitive with the heuristic methods. In most cases the branch-and-bound algorithm needs fewer
nodes than CPLEX, except for five groups with a low number of workers. Computation times
are also comparable, although the time of the branch-and-bound algorithm is dominated by the
initial heuristic.

Table 4.7 shows the results of our branch-and-bound algorithm on the larger instances, and
compares them to the results of Vilà and Pereira (2014). We report the number of optimal
solutions found (Opt) and the number of solutions proven to be optimal (Prov), the average
computation time (t), the average relative deviation from the optimal value (Gap), and the
average cycle time for each group of instances (C). Vilà and Pereira (2014) do not report
average computation times.

In about 75% of the instances the optimal solution was found, and about 62% of the solutions
could be proven to be optimal within the time limit. All instances Tonge except four instances
with a high order strength were solved. The average relative deviation over all 320 instances is
0.7%, about one-third of the average of the best heuristic.
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Table 4.6 – Comparison of model MW3 to the branch-and-bound algorithm on instances with a low
number of workers.

Model MW3 B&B
Instance |W | Var Inf t (s) Nodes t (s) Nodes

Roszieg

4
L

10% 0.7 37.8 0.1 32.7
20% 0.4 11.7 0.1 15.5

H
10% 1.5 58.6 0.2 40.9
20% 0.8 53.8 0.1 35.9

6
L

10% 4.6 249.9 0.4 120.8
20% 2.3 168.7 0.3 78.0

H
10% 6.3 389.0 0.5 189.3
20% 4.5 281.5 0.4 131.0

Heskia

4
L

10% 0.3 29.8 0.2 34.7
20% 0.2 37.5 0.2 39.8

H
10% 0.3 49.0 0.2 52.5
20% 0.2 45.5 0.2 59.5

7
L

10% 1.0 86.8 1.2 15.0
20% 1.0 102.4 1.4 20.1

H
10% 1.1 115.4 1.2 13.9
20% 1.4 151.7 1.4 18.1

Averages 1.7 116.8 0.5 56.1
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Table 4.7 – Results of the B&B algorithm on instances with a high number of workers.

Instance |W | Var Inf BBR B&B
Opt. Prov. Gap C Opt. Prov. t(s) Gap C

Tonge

10
L

10% 10 10 0.0 90.6 10 10 165.4 0.0 90.6
20% 10 10 0.0 106.7 10 10 134.2 0.0 106.7

H
10% 10 10 0.0 159.3 10 10 362.1 0.0 159.3
20% 10 10 0.0 163.9 10 10 233.9 0.0 163.9

17
L

10% 9 0 0.3 31.7 10 10 789.9 0.0 31.6
20% 10 1 0.0 36.9 10 9 822.5 0.0 36.9

H
10% 10 0 0.0 63.2 9 7 1438.2 0.3 63.4
20% 10 0 0.0 61.2 10 10 1294.8 0.0 61.2

Wee-mag

11
L

10% 10 10 0.0 26.8 5 2 3316.6 2.6 26.8
20% 10 10 0.0 32.2 3 1 3534.2 3.2 32.2

H
10% 10 10 0.0 47.5 3 1 3295.5 3.6 47.5
20% 10 10 0.0 45.2 4 3 2929.8 1.9 45.2

19
L

10% 10 9 0.0 9.9 7 3 3504.6 3.2 9.9
20% 10 7 0.0 11.4 8 4 2727.8 1.9 11.4

H
10% 9 8 0.6 17.6 6 6 2251.9 3.0 17.6
20% 10 5 0.0 17.6 6 4 2677.1 2.3 17.6

Totals/Averages 158 110 0.9 111 95 1896.0 1.20
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As expected, the solution times are higher than those of the heuristic methods but for the
instances with a high order strength only about an order of magnitude, in average. The solving
time depends mainly on the number of tasks, the number of workers, and the order strength
(as confirmed by a Kruskal Wallis test followed by Wilcoxon signed rank post hoc tests at
significance level p < 0.01). The instances with a high order strength or a low number of
workers are easier to solve, because the reduction rules are more effective.

We further investigated the dependence of the algorithm on the initial solutions found by
IPBS, by repeating the experiments with solutions obtained by a single run of IPBS with a
beam factor of 1, which is equivalent to a simple station-oriented constructive heuristic. This
substantially increases the relative deviation from the optimal value of the initial solutions from
1.8% to 17.8%. The results obtained by the branch-and-bound algorithm with initial solutions
from IPBS are, as expected, better than those starting from the simple heuristic. The final
relative deviation increases from 0.7% to 2.9%, and the number of optimal and provably optimal
solutions reduces to 98 and 82, respectively. This shows that good initial upper bounds help to
find good solution and, in particular, prove their optimality.

Compared to the BBR of Vilà and Pereira (2014) we find that our method can prove opti-
mality of a comparable number of instances. The results of BBR have been obtained on a PC
with a 3.2 GHz Intel Core i5 processor which is slightly faster than our machine. Indeed, if
we run our algorithm for 2 hours, we can prove optimality of 114 instances, i.e., the number
of instances provably optimal is about the same, within reasonable time limits. The solution
quality of BBR is better, reaching the optimal value in all except two instances. This confirms
the findings of the comparison of the heuristics, that BBR is able to find good solutions fast.
The methods are complementary since BBR is station-oriented and strongly exploits memory-
based dominance rules, while our method is task-oriented, and focuses on good lower bounds.
As a result, BBR proves more instances with a low order strength and short processing times
optimal, which typically permit lots of equivalent solutions and have weak lower bounds, while
our method performs better for high order strengths. In particular, the 40 instances with high
order strength and a high number of workers our method proves 36 solutions optimal and BBR
only 1. Note that in this case BBR is limited by the size of the memory, which exhausts before
reaching the time limit.

4.4.4 Parallelization

An approach to decrease the time needed to execute the method is to parallelize the method.
The technique proposed for the parallelization modifies the depth first search and for each new
branch has two options: First, at each branch, a new thread is created, until all processors are
occupied. When all processors are occupied, the new branches must be executed on the same
processor as its parent.

Each processor executes until all nodes of its branch have been explored. Then, some branch
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will have to be transferred to the now-free processor. When a processor is freed, the remaining
processors will provide each a new branch to the empty processor. The simplest solution selects
the first branch and executes it on the free processor. However, a better approach is possible.
Since branches with better lower bounds are more likely to produce good solutions, we chose
to explore the branch with the smallest lower bound in an empty processor.

To implement parallelism we start P processors that wait for new branches. Every time a
new branch is created, the method evaluates if there is any empty processor. If there is such
a processor and the current branch has the best lower bound among all branches being exe-
cuted, then the branch is sent to the empty processor. Every time one of this branches ends, its
processor begins to wait for the remaining processors to produce branches.

4.4.5 Computational Results for the Parallel Branch-and-Bound Algorithm

The Parallel Task-Oriented Branch-and-Bound for the ALWABP (PTOBB) was implemented
using C++ and compiled in a GNU C compiler 4.63 using the flag -O3 for maximum optimiza-
tion. The threads library from Boost was used for parallelization. The experiments were run on
a PC with a 3.60 GHz AMD FX-8150 8-Core Zambezi processor and 32 GB of main memory,
running a 64-bit Ubuntu Linux. The method was also applied to the 320 instances from the
literature (see Section 4.1.4).

4.4.5.1 Impact of the number of processors

First of all, we will analyze the effect of multiple processors in PTOBB. For the small
instances Roszieg and Heskia all instances are solved and are proven to be optimal in a few
seconds. Table 4.8 shows the number of nodes needed to prove a solution optimal (column
“Nodes”), the time needed (“t(c)”), and the time needed per node (“ms/node”).

For Roszieg instances, the number of nodes visited in each of the tests equal for all cases.
The time varies only in the two groups with a high number of workers and high time variability.
The time needed to execute some instances of these two groups is slightly greater than one
second for one processor. For two or more processors all Roszieg instances are solved in less
than a second. For the Heskia instances, however, there is a variation of time between the one,
two and four processor cases. In these cases the number of nodes, as expected, varies. Since
the branching tree may be different according to the current incumbent solution, the number
of processors affects the number of nodes. The time needed to prove optimality decreases by
37.05% from one to two processors and 22.81% from two to four processors and so does the
time needed per node. The eight processor case has very similar values to the four processor
case. It indicates that the speed up is limited to four processors. This tests show the efficacy of
using multiple processors until a limit of four for small instances.

Table 4.9 shows the number of solutions proven optimal in an hour (“Prov.”) and the gap of
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Table 4.8 – Multiple processors results for the small instances: Roszieg and Heskia.

Number of Processors
1 2 4 8

Instance |W | Var Inf Nodes t(s) ms/node Nodes t(s) ms/node Nodes t(s) ms/node Nodes t(s) ms/node

Roszieg

4
L

10% 32.0 0.0 0.00 32.0 0.0 0.00 32.0 0.0 0.00 32.0 0.0 0.00
20% 16.5 0.0 0.00 16.5 0.0 0.00 16.5 0.0 0.00 16.5 0.0 0.00

H
10% 41.8 0.0 0.00 41.8 0.0 0.00 41.8 0.0 0.00 41.8 0.0 0.00
20% 37.7 0.0 0.00 37.7 0.0 0.00 37.7 0.0 0.00 37.7 0.0 0.00

6
L

10% 119.9 0.0 0.00 119.9 0.0 0.00 119.9 0.0 0.00 119.9 0.0 0.00
20% 79.9 0.0 0.00 79.9 0.0 0.00 79.9 0.0 0.00 79.9 0.0 0.00

H
10% 195.8 0.3 1.53 195.8 0.0 0.00 195.8 0.0 0.00 195.8 0.0 0.00
20% 130.2 0.1 0.77 130.2 0.0 0.00 130.2 0.0 0.00 130.2 0.0 0.00

Heskia

4
L

10% 49.6 0.0 0.00 51.1 0.0 0.00 51.1 0.0 0.00 51.1 0.0 0.00
20% 40.1 0.0 0.00 40.4 0.0 0.00 40.3 0.0 0.00 40.4 0.0 0.00

H
10% 48.8 0.1 2.05 48.8 0.0 0.00 48.8 0.0 0.00 48.8 0.0 0.00
20% 57.4 0.0 0.00 57.6 0.0 0.00 59.1 0.0 0.00 59.0 0.0 0.00

7
L

10% 15.8 1.6 101.27 15.8 1.1 69.62 15.8 0.9 56.96 15.8 0.9 56.96
20% 15.6 2.1 134.62 15.6 1.4 89.74 15.6 1.0 64.10 15.6 1.0 64.10

H
10% 14.7 2.2 149.66 14.7 1.3 88.44 14.7 1.0 68.03 14.7 1.0 68.03
20% 19.3 2.5 129.53 19.3 1.5 77.72 19.3 1.2 62.18 19.3 1.2 62.18

Averages 57.2 0.6 32.46 57.3 0.3 20.34 57.4 0.3 14.68 57.4 0.3 15.70
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Table 4.9 – Multiple processors solutions for the bigger instances: Tonge and Wee-mag.

- Number of Processors
1 2 4 8

Instance |W | Var Inf Prov. Gap Prov. Gap Prov. Gap Prov. Gap

Tonge

10
L

10% 10 0.0 10 0.0 10 0.0 10 0.0
20% 10 0.0 10 0.0 10 0.0 10 0.0

H
10% 10 0.0 10 0.0 10 0.0 10 0.0
20% 10 0.0 10 0.0 10 0.0 10 0.0

17
L

10% 9 0.0 10 0.0 10 0.0 10 0.0
20% 9 0.6 9 0.0 10 0.0 10 0.0

H
10% 7 0.6 6 0.5 9 0.0 10 0.0
20% 9 0.0 10 0.0 10 0.0 10 0.0

Wee-Mag

11
L

10% 3 1.8 2 1.4 4 1.1 6 0.3
20% 1 2.0 3 2.0 5 2.0 6 0.0

H
10% 2 2.1 2 1.9 4 1.7 6 1.3
20% 5 1.5 5 0.9 5 0.9 8 0.0

19
L

10% 1 3.2 3 3.2 7 2.1 9 1.1
20% 5 0.9 6 0.9 7 0.9 7 0.9

H
10% 5 1.9 7 0.6 9 0.6 10 0.0
20% 5 1.7 5 1.7 7 1.1 8 0.6

Averages 101 1.0 108 0.8 127 0.6 140 0.3

-

the solutions to the best known value in literature (“Gap”).
We see in Table 4.9 an increase of the number of solutions proven optimal and also a de-

crease of the gap to the best known values according to the number of processors used. Table
4.10 explains this behavior. The columns are the number of nodes visited by the program
(“Nodes”), the time needed to prove optimality of a solution (“t(c)”), one hour if the pro-
gram reaches the time limit before finding an optimal solution) and the time executing a node
(ms/node).
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Table 4.10 – Multiple processors results for the large instances: Tonge and Wee-Mag.

Number of Processors
1 2 4 8

Instance |W | Var Inf Nodes t(s) ms/n Nodes t(s) ms/n Nodes t(s) ms/n Nodes t(s) ms/n

Tonge

10
L

10% 238756.1 242.1 1.01 207048.3 146.4 0.71 181562.9 103.7 0.57 186121.2 86.8 0.47
20% 137843.0 161.2 1.17 148674.6 119.3 0.80 155009.9 97.0 0.63 144443.8 84.1 0.58

H
10% 399743.5 392.0 0.98 381224.3 251.6 0.66 380483.7 151.3 0.40 394189.2 117.4 0.30
20% 248597.5 269.4 1.08 233062.6 157.0 0.67 235285.2 121.3 0.52 233930.3 99.3 0.42

17
L

10% 660634.5 1034.8 1.57 557170.2 521.4 0.94 608507.7 306.3 0.50 614217.8 203.1 0.33
20% 632140.9 997.4 1.58 995805.0 773.0 0.78 1115603.9 491.0 0.44 1170254.5 301.7 0.26

H
10% 996078.7 1595.4 1.60 1768098.1 1651.8 0.93 2181709.8 976.7 0.45 2327228.5 592.9 0.25
20% 1017553.0 1458.0 1.43 1133200.3 925.6 0.82 1067227.8 514.2 0.48 1087780.7 328.7 0.30

Wee-Mag

11
L

10% 4254359.8 3005.6 0.71 8002007.9 3002.0 0.38 13489828.1 2499.3 0.19 22287226.0 2151.8 0.10
20% 5138178.7 3540.2 0.69 8107863.9 3088.0 0.38 13998188.6 2658.1 0.19 20194857.4 1924.4 0.10

H
10% 4357923.3 3024.6 0.69 8360791.3 2969.9 0.36 14361423.6 2687.0 0.19 22720737.7 2182.1 0.10
20% 3645888.1 2681.3 0.74 6479562.4 2339.8 0.36 10811350.2 2082.8 0.19 18443534.2 1819.3 0.10

19
L

10% 4019388.5 3258.6 0.81 6352264.0 3057.2 0.48 10071860.9 2466.8 0.24 14622372.6 1824.2 0.12
20% 3172054.8 2572.2 0.81 5571889.8 2331.5 0.42 7823388.6 1739.9 0.22 13077777.0 1521.6 0.12

H
10% 3087639.0 2402.9 0.78 3767251.9 1765.6 0.47 5664634.1 1342.2 0.24 7559162.1 936.4 0.12
20% 3360713.1 2505.3 0.75 5813440.0 2373.5 0.41 7901963.9 1833.6 0.23 10974821.1 1364.3 0.12

Averages 2210468.0 1821.3 1.02 3617460.0 1592.1 0.60 5628002.0 1254.5 0.35 8502416.0 971.1 0.24
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First, it is possible to identify that the time needed to prove a solution to be optimal always
decreases when the number of processors increases. Yet, the number of nodes increases with
the number of processors. The format of the branching tree depends on the incumbent solution
found until the nodes are branched. In particular, in cases with wide and shallow branching
trees, a good incumbent solution accelerates the process of proving a solution optimal. This
happens because in this type of tree bad decisions taken early affect a larger part of the tree. With
multiple processors, we are searching bad branches early, without good incumbent solutions.
So, especially in the case of Wee-Mag instances, there is an increase of visited nodes. For
the Tonge instances, the behavior of the number of nodes is inconclusive, since there are both
increases and decreases of the number of nodes when the number of processors is greater. It
is also possible to perceive that the time per node is halved when the number of processors is
doubled, showing that the nodes are well distributed among processors.

4.4.5.2 Comparison with related work

Here we compare the parallel branch-and-bound algorithm with the two sequential state-
of-the-art exact methods: the station-oriented branch, bound-and-remember (BBR) Vilà and
Pereira (2014) and the single-threaded task-oriented branch-and-bound (TOBB). Table 4.11
shows the results for our method (PTOBB) and the two methods in literature. The columns are
similar to those of Section 4.4.5.1. Column “t(c)” specifies the time needed to execute a task
(bounded to an hour if the instance lasted more than an hour). The number of solutions proven
to be optimal in an hour are shown in column “Prov.”. The gap between the solution found after
an hour and the best known value in literature are shown in column “Gap”. Since no running
times were presented for the BBR method, only the times of TOBB and PTOBB are shown.

The BBR was executed on a 3.2 GHz Core i5 Processor and the TOBB on a 2.8 GHz Core
i7 processor. The performance of the three machines differs from one another by a factor of at
most 1.5. The table shows that PTOBB produces solutions in less time than the original TOBB,
even considering this factor. Also, the PTOBB solves all Tonge instances in an hour. This is
not the case for the other methods. BBR, on the other hand, solves only 41 Tonge instances and
TOBB solves 76. For the Wee-Mag instances, the BBR solves more instances to optimality but
for the instances with a high number of workers the PTOBB produces better results. Overall
PTOBB is the method that proves more solutions optimal (241). The Tonge instances are solved
by the PTOBB, but for the Wee-Mag case, some instances have a small gap. The gap of PTOBB
is much smaller than the original TOBB but is slightly larger than that of the BBR.
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Table 4.11 – Comparison with state-of-the-art methods

Methods
BBR TOBB PTOBB

Instance |W | Var Inf Prov. Gap Prov. Gap t(s) Prov. Gap t(s)

Tonge

10
L

10% 10 0.0 10 0.0 165.4 10 0.0 86.8
20% 10 0.0 10 0.0 134.2 10 0.0 84.1

H
10% 10 0.0 10 0.0 362.1 10 0.0 117.4
20% 10 0.0 10 0.0 233.9 10 0.0 99.3

17
L

10% 0 0.3 10 0.0 789.9 10 0.0 203.1
20% 1 0.0 9 0.0 822.5 10 0.0 301.7

H
10% 0 0.0 7 0.3 1438.2 10 0.0 592.9
20% 0 0.0 10 0.0 1294.8 10 0.0 328.7

Wee-Mag

11
L

10% 10 0.0 2 2.6 3316.6 6 0.3 2151.8
20% 10 0.0 1 3.2 3534.2 6 0.0 1924.4

H
10% 10 0.0 1 3.6 3295.5 6 1.3 2182.1
20% 10 0.0 3 1.9 2929.8 8 0.0 1819.3

19
L

10% 9 0.0 3 3.2 3504.6 9 1.1 1824.2
20% 7 0.0 4 1.9 2727.8 7 0.9 1521.6

H
10% 8 0.6 6 3.0 2251.9 10 0.0 936.4
20% 5 0.0 4 2.3 2677.1 8 0.6 1364.3

Averages 110 0.1 100 1.4 1842.4 140 0.3 971.1
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5 SOLUTIONS FOR THE ROBOTIC ASSEMBLY LINE BALANCING PROBLEM

In the next sections we will present solution procedures for the RALBP-2. We intro-
duce a mathematical formulation for the problem. We also investigate a novel lower bound,
that uses the task dependencies to improve the lower bounds in the literature. Furthermore,
a branch,bound-and-remember (BBR) method for the problem is proposed, with a series of
dominance rules adapted or created for RALBP. An iterative beam search using these same
dominance rules and lower bounds is then shown. All the methods are evaluated by computa-
tional experiments using the known instances and a new set of instances that explore different
characteristics of the problem.

5.1 Mathematical Formulation

The model MR1 (See Section 1.2) has quadratic constraints that make it impossible to solve
in conventional solvers. Therefore we propose using a model MR2, that avoids the quadratic
functions of model MR1. We also use the techniques proposed by (RITT; COSTA, 2015) to
improve the precedence constraints. The resulting model MR2, with notation described in Table
5.1, can then be defined by

MR2 = minimize C, (5.1)

subject to ∑
t∈As

ptrxts ≤C+Mr(1− ysr), ∀s ∈ S,r ∈ R, (5.2)

∑
r∈R

ysr = 1, ∀s ∈ S, (5.3)

∑
s∈It

xts = 1, ∀t ∈ T, (5.4)

∑
k∈Ii|k≤s

xik ≥ ∑
k∈I j|k≤s

x jk, ∀i ∈ T, j ∈ Fi,s ∈ S, (5.5)

xts ∈ {0,1}, ∀s ∈ S, t ∈ As, (5.6)

ysr ∈ {0,1}, ∀s ∈ S,r ∈ R. (5.7)

The model minimizes the cycle time C (5.1), defined in constraint (5.2). Since the right side
of constraint (5.2) must be free to assume any value when ysr is not set and, given a lower bound
C on the cycle time, we can assume that Mr ≥∑t∈T {ptr}−C, for each robot r. Constraints (5.3)
and (5.4) ensure that each task will be performed and that each station will have a robot assigned
to it. Constraint (5.5) defines the precedence relations between the tasks. The robots do not
affect the dependencies, therefore the precedence constraints for the SALBP can be directly
applied to the RALBP. We ensure that the variables xts are only defined for the tasks that can be
performed in a given station s (t ∈ As). Model MR2 is linear and has O(|T ||S|+ |S||R|) variables
and O(|S||R|+ |T |2|S|) constraints.
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Table 5.1 – Notation used in the article.

T set of tasks;
R set of robots;
S set of workstations;
Et and Lt the earliest and latest station, respectively, where a task can be placed;
As As = {t ∈ T | Et ≤ s≤ Lt}, the set of tasks that can be assigned to station s;
It It = {s ∈ S | Et ≤ s≤ Lt}, the set of stations where task t can be performed;
G(T,A) precedence graph of tasks, where (t, t ′) ∈ A indicates that task t must be performed before

task t ′;
G∗(T,A∗) the transitive closure of graph G(T,A);
ptr execution time of task t by robot r;
Pt ⊆ T set of immediate predecessors of task t;
Ft ⊆ T set of immediate followers of task t;
P∗t ⊆ T set of all predecessors of task t;
F∗t ⊆ T set of all followers of task t;
C the cycle time of a solution;
Mr a constant equal to ∑t∈T {ptr}−C;
xts 1 if task t is assigned to station s, and 0 otherwise;
ysr 1 if robot r is assigned to station s, and 0 otherwise.

5.1.1 Computational Experiments

In the literature of the RALBP, only one set of 32 instances is provided (GAO et al., 2009).
We call it Instance Set 1. It uses eight precedence graphs from the literature of the SALBP-1
(Roszieg, Gunther, Hahn, Tonge, Lutz3, Arc111, Barthol2 and Scholl) and four instances for
each of the graphs. These four instances are generated using increasing WEST ratios (DAR-EL,
1973), varying from 2 to 15. The WEST ratio defines the average number of tasks per station.
In all the cases, the number of stations is considered to be equal to the number of robots. Each
task time ptr is defined based on three randomly chosen values: the difficulty of performing the
task t (dt ∈ [100,200]), the efficiency factor of the robot r (er ∈ [1,2]), and the specialization
ability of the robot r to perform the task t (ctr ∈ [1,3]). Given these three factors, we define
ptr = dt/(etctr).

We first compare our model MR2 to the model MR1 by Mukund Nilakantan et al. (2015) on
instance set 1. The models were solved with CPLEX 12.5.0 using a single thread on a PC with
a 3.66 GHz AMD FX-8150 processor with 32 GB of memory, and a time limit of one hour. The
results are presented in Table 5.2.

In the table, column “Gap” shows the relative deviation (C−C∗)/(C∗) of the cycle time C

found by the model compared to the best known value C∗ for each instance, and column “Time”
presents the time in seconds needed to solve it. The table shows that model MR2 consistently
produces smaller cycle times than model MR1 and it also proves more solutions to be optimal.
Nine instances are proven optimal by model MR2 compared to only two instances by model
MR1. The performance of model MR2 is strongly influenced by the number of robots. Instances
with more robots take much longer to be solved and when they are not optimally solved the
gaps are larger than instances with a smaller number of robots.
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Table 5.2 – Comparison of MIP models MR1 (Mukund Nilakantan et al., 2015) and MR2 on instance set
1.

MR1 MR2
|T| |R| Gap (%) Time (s) Gap (%) Time (s)

25

3 0.00 12.30 0.00 0.10
4 0.00 1,254.11 0.00 0.15
6 11.34 3,600.00 0.00 3.98
9 60.55 3,600.00 0.00 22.01

35

4 2.93 3,600.00 0.00 0.15
5 22.80 3,600.00 0.00 1.43
7 36.32 3,600.00 0.00 351.72

12 186.02 3,600.00 5.38 3,600.00

53

5 41.65 3,600.00 0.00 0.36
7 21.20 3,600.00 0.00 9.27

10 318.23 3,600.00 0.00 1,859.77
14 561.19 3,600.00 2.99 3,600.00

70

7 142.27 3,600.00 0.00 1,332.32
10 193.97 3,600.00 3.88 3,600.00
14 331.76 3,600.00 5.29 3,600.00
19 949.17 3,600.00 7.50 3,600.00

89

8 92.13 3,600.00 0.46 3,600.00
12 461.77 3,600.00 1.71 3,600.00
16 822.93 3,600.00 3.42 3,600.00
21 1,021.29 3,600.00 7.10 3,600.00

111

9 291.63 3,600.00 3.00 3,600.00
13 419.85 3,600.00 8.09 3,600.00
17 809.05 3,600.00 5.71 3,600.00
22 755.26 3,600.00 15.13 3,600.00

148

10 488.01 3,600.00 2.40 3,600.00
14 718.98 3,600.00 2.27 3,600.00
21 1,388.79 3,600.00 12.11 3,600.00
29 1,748.68 3,600.00 15.79 3,600.00

297

19 610.27 3,600.00 10.27 3,600.00
29 2,311.87 3,600.00 15.77 3,600.00
38 1,718.62 3,600.00 26.72 3,600.00
50 2,701.08 3,600.00 0.20 3,600.00

Avg. 602.67 3414.60 7.41 2617.97
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5.2 Lower Bounds

The lower bound LC1 (RUBINOVITZ; BUKCHIN; LENZ, 1993) relaxes all the precedence
constraints of the problem. We generalize this method and improve the result of the lower
bound by maintaining some of the precedence constraints in the lower bound calculation. In
this method, any set of disjoint task chains Tc is selected and all the remaining task precedence
constraints are relaxed. Since the precedence constraints of this set of chains are present in the
original graph, all the solutions that are valid for the original problem are valid for the adapted
instance. Therefore, an optimal solution for the new instance is a valid lower bound for the
original problem.

To select the set of task chains Tc, we iteratively select the longest chain in the graph until
all tasks have been assigned to one of the chains. Initially, the longest chain of the graph is
calculated, they form the first chain of tasks of the set Tc. The tasks of this chain are, then
removed from the original graph and the next chain is calculated using the same procedure. The
longest chain is always selected since this increases the chance that multiple tasks are assigned
to the same station and the same robot has to perform them.

Consider the example shown in Figure 1.4. We first select the longest chain (t1, t2, t5, t6) of
the graph. Then, only tasks t3 and t4 remain and they form the second chain.

To calculate the smallest total task time of the instance, we sum the smallest total task time
of all chains. The smallest total task time of a chain is given by ∑t∈T pt(rt), where rt is the robot
selected to perform task t in the best case scenario. In the best case scenario, for a given chain
Q∈ Tc, at most |S| robots must be selected and if |T | is greater than |S|, at least a number of tasks
must be assigned to the same station, and therefore, to the same robot. Thus, for a given chain
Q = (q0,q1, . . . ,qn−1) the minimum total task time can be computed by dynamic programming.
Let

MQ(t,s) =


0, if t = n,

∞, if t < n∧ s = 0,

min
t<t ′≤n

min
r∈R

∑
t≤t ′′<t ′

pt ′′,r +MQ(t ′,s−1), otherwise,

(5.8)

be the minimum total task time for tasks qt , . . . ,qn−1 on s stations. Then MQ(0, |S|) is the
minimum total task time for chain Q.

The first two conditions handle the base case: if all tasks have been assigned, the sum of the
remaining tasks is zero; and if there are no stations left but still tasks to assign, it is impossible
to solve the problem. Otherwise we assign the tasks in the range [t, t ′), for some t < t ′ ≤ n to
the current station, and assign the robot that executes them fastest to that station. To the time
for executing these tasks we have to add the minimum total time for executing the remaining
tasks starting with t ′ on one station less.

For example, consider the case where we have a chain Q = (q0,q1,q2,q3) of length four,
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two stations and two robots. The tasks have times p11 = 1, p12 = 2, p21 = 2, p22 = 1, p21 = 1,
p22 = 2, p41 = 2, and p42 = 1. The sum of the minimum task times is 4. However, at least two
subsequent tasks must be assigned to the same robot. Indeed, the result of the minimum total
task time obtained by recurrence (5.8) is MQ(0,2) = 5.

Function M can be determined by dynamic programming in time O(n2sr) for a chain of
length n, and to calculate the result for all the chains, the total complexity is O(|T |2sr). We can
define lower bound LCR2 by

LCR2 = ∑
Q∈Tc

MQ(0, |S|)/C.

Lower bound LCR2 is the minimum possible sum of task times considering that some tasks
must be assigned to the same station. In the best case, the total sum of the task times will be
equally distributed among stations, and therefore dividing the minimum sum of task times by
the cycle time we have a valid lower bound on the number of stations.

A longest path can be found in time O(|T |+ |A|) and this process is repeated at most |T |
times. Thus, computing LCR2 takes total time O(|T |2sr+ |T | |A|).

5.2.1 Computational Results

To evaluate the lower bounds we need to consider instance characteristics that are not con-
sidered by the set of 32 instances in the literature. First, the number of robots and stations is
equal, so it is not possible to study their influence separately. Second, only one graph is used for
each number of tasks. Therefore, the influence of different graph structures on the algorithms
can not be evaluated.

We propose to adapt the SALBP instance set of Otto, Otto and Scholl (2013) for the RALBP.
The set considers three graph structures: chain graphs (“CH”), bottleneck graphs (“BN”) and
mixed graphs (“MX”). In a chain graph, at least 40% of the tasks are part of a chain, i.e. tasks
that have at most one predecessor and one successor. A graph is a bottleneck graph if it has at
least one bottleneck task. A bottleneck task has at least b tasks that precede it and have no other
successors, and at least b successors that have no other predecessors. For the instances with
50 and 100 tasks explored here, the number b is set to 4. In the mixed graphs, no limitations
are imposed on the graph generation. Different order strengths (OS) ranging from 20% to
90% are also represented in these instances. The order strength represents the percentage of
precedence relations of the instance in comparison to all the precedence relations possible:
|A|/(|T |2−|T |). Different task time distributions are considered. To define the task times, three
types of distributions are used (KILBRIDGE; WESTER, 1961): a normal distribution with a
peak at task times of a tenth of the cycle time (PB), a normal distribution with a peak at half the
cycle time (PM) and a bimodal distribution with peaks at a tenth of the cycle time and half the
cycle time (BM), where the peak at a tenth of the cycle time is larger. Finally, the set contains
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Table 5.3 – Parameters of the Instance Set of Otto, Otto and Scholl (2013)

Parameter Levels
Number of Tasks |T | 50, 100

Graph Types CH, BN and MX
Order Strength (OS) 20%, 60% and 90% (only for type MX)

Task Times Distribution (Dist.) PM, PB, BM
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Figure 5.1 – Comparison of the two lower bounds. The figures show the gap between LCR2 and LC1 as
a function of the number of stations. On the left are the results for n = 50 tasks, on the right for n = 100
tasks.

instances with 20,50, 100 and 1000 tasks but here we only consider instances with 50 and 100
tasks. This instance set is summarized in Table 5.3.

For each combination of the parameters above, Otto, Otto and Scholl (2013) produce 30
instances. To adapt the instances for the RALBP we select 5 of them, and generate RALBP-2
instances with two different numbers of types of robots (|R| ∈ (|T |/7, |T |/4)), three different
numbers of stations (|S| ∈ (|R|/2, |R|,2|R|)), and two task time variabilities (var). The task time
variability defines the range from which the task times ptr are uniformly selected. Given the
time of a task pt from the (OTTO; OTTO; SCHOLL, 2013) SALBP instance, the range for a
task time ptr can be [pt ,2pt ] (low variability), or [pt ,5pt ] (high variability). Therefore for each
of the 210 instances selected of Otto, Otto and Scholl (2013), we generate twelve instances,
totaling 2520 RALBP-2 instances to be used in our experiments.

Specifically for the lower bounds, we consider even more numbers of stations. We analyze
|S| from 1 to 0.3|T | for each of the instances in our benchmark set of instances. In Figure 5.1,
we present the gaps between lower bounds LCR2 and LC1 for 50 and 100 tasks.

In this figure, each point represents the average relative deviation (LCR2− LC1)/LC1 of
lower bound LCR2 from LC1 for a given number of stations. The graphs show that the difference
between the two lower bounds decreases for an increasing number of stations. The lower bound
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Figure 5.2 – Results of the lower bound LC f
R2 for varying values of f

LCR2 has better results when multiple tasks need to be assigned to the same station for some
of the chains. Therefore, LCR2 is better if there are much fewer stations than tasks. Because
of this, we have studied the application of LCR2 only in cases where the number of stations is
smaller than a fraction f of the number of tasks (|S| ≤ f |T |).

Figure 5.2 compares the quality of the lower bound compared to the time to compute it for
varying values of f from 0% to 30%. The quality is defined, as above, as the relative deviation
from lower bound LC1 on instance set 2. Both the gap and the time increase with f . However,
for f ≥ 20%, the time increases significantly with almost no improvements of the gap. The
time needed to compute lower bounds LC0%

R2 and LC5%
R2 is very similar, but their results are

significantly different. The gap is improved to 3.2% using f = 20% and this result is obtained
in 1.22 milliseconds in average. After that, the quality does not improve significantly and thus
we select f = 20% for our experiments.

5.3 An Iterative Branch,Bound-and-Remember Method

The optimal solution for the RALBP-2 is the smallest cycle time C for which a valid solution
can be found. To find the value C, we iterate over cycle times in the interval [C,C], where C

is a lower bound and C an upper bound for the problem. We initially set the cycle time to the
upper bound C =C. The value C is the result of our heuristic method defined in Section 5.3.3.
Afterwards the cycle time C is decremented one unit at a time until it is impossible to find a
valid solution for C. The optimal cycle time C∗ then is C+1. Therefore, we only need to prove
infeasibility for one cycle time. The problem of verifying if there is a valid solution for a fixed
number of stations and a fixed cycle time C is called RALBP-F in the literature.
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First Iteration
s0 s1 s2 s3

a0 a1

a2

a3

a4

a5

a6

a7

Second Iteration
s0 s1 s2 s3

a2 a4

b0

a5

b1

b2

b3

a7

Figure 5.3 – An example of CBFS. In the first iteration the method expands the partial solutions a0, a1,
a3 and a6. In the second iteration, the first priority queue is empty and the method continues to expand
partial solutions a2, a4 and b2, which is a valid solution for the given cycle time. The method ends after
expanding five nodes.

5.3.1 Branch,Bound-and-Remember Algorithm

For the RALBP-F we propose using a station-oriented BBR algorithm. Our branching strat-
egy consists of filling one station at a time. In the initial node of the branch-and-bound method,
we generate all possible station loads for the first workstation. A branch is generated for each
station load and the first station is closed. Then, the method expands the generated branches.
The expansion process generates all the station loads for the first open station of the current
node. A solution is valid when all tasks are assigned to less than |S| stations.

To decide the order in which the branches are explored, we use a cyclic best-first search
(CBFS). In the cyclic best-first search the partial solutions are divided in levels. In the RALBP,
each level k contains all the partial solutions with k stations. At each iteration of the algorithm,
the method selects the solution of the least lower bound and expands it, adding the new branches
to the next level. Lower bounds LC1 and LCR2 can be used to prioritize the solutions and their
performance will be evaluated in Section 5.3.4. When lower bound LCR2 is used, the chain
decomposition is computed at each node anew, to improve the bound.

In our method, level zero starts with only one partial solution with no stations loaded. This
branch is expanded and the new partial solutions are added to level one. After that, the method
selects the best solution and expands it by assigning tasks to the second station. The method
continues until the last level and if no valid solution is found the method returns to the first level
with partial solutions yet to expand, starting a new iteration. The process is repeated until a
solution is found or all the partial solutions have been explored. In this case, we know that there
are no valid solutions for the current cycle time. The CBFS is exemplified in Figure 5.3.

5.3.2 Dominance Rules

To reduce the number of partial solutions explored, we use four dominance rules:

• Maximal Station Load Rule (JACKSON, 1956): A station is said to be maximally
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loaded if no other task can be assigned to the current station without exceeding the cycle
time. We only consider maximally loaded stations. If a partial station load is not maximal,
a task can be added to the current station. The new solution with this task dominates the
previous one.

• Feasible Set Dominance Rule (SCHRAGE; BAKER, 1978): Given a partial solution
v1 with a set of tasks already assigned to the first m1 stations, if the same set of tasks has
already been assigned to another set of m2 stations in another solution v2, with m2 ≤ m1,
then solution v2 dominates solution v1, because assigning the remaining tasks would take
the same number of stations in both cases. To apply this rule, our algorithm memorizes
the tasks already assigned in a given partial solution and every time a branch visits a
partial solution with a set of tasks visited previously, the branch is cut.

• Late Acceptance Dominance Rule (SEWELL; JACOBSON, 2011): If none of the
tasks of a station load has successors, this set of tasks can be assigned to any future
station. A station load has no successors if no unassigned task succeeds the tasks in
the current station. Therefore, to avoid multiple equivalent solutions, if it is possible to
postpone the current station load to a future station, the current partial solution can be
eliminated.

• Best Robot Dominance Rule: Since we can use the same type of robot as many times as
needed, the assignment of a robot to a station is independent from the rest of the solution.
Therefore for each station with a set of tasks assigned, we only need to consider the robot
that executes the set of tasks fastest. This rule can be combined with the Maximal Station
Load Rule and we can ignore a station load if there exists any other robot for which the
current station load is not maximal.

Given these dominance rules, the number of nodes explored by the BBR algorithm can
be bounded as follows. First, consider a fixed cycle time. If we decompose the precedence
graph into the smallest number of chains w by a Dilworth chain decomposition (w is the partial
order’s width, see Dilworth (1950)), and the length of the longest chain in this decomposition
is l, then there are at most (l +1)w partial solutions. This holds since each partial solution can
be described by the already assigned tasks, which are uniquely defined by a position in [0, l] for
each of the w chains. By the feasible set dominance rule, each set of assigned tasks is visited
only once. Therefore, since at most C−C different cycle times must be considered, the total
number of nodes is bounded by O((C−C)lw).

5.3.3 An Iterative Beam Search

By running the BBR method with a time limit, we obtain a heuristic for the RALBP. The
BBR method, however, stores branches, which will probably never be used in the case of a
limited execution. A beam search reduces this problem by storing only a few of the best partial
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solutions found. Since in our case, our method is a cyclic best-first search, we limit the number
of partial solutions stored by level. As in the cyclic best first search, the best partial solution
of a given level is selected and all station loads for the next level are generated. However,
the method keeps only the best bw solutions of that level. The best solutions are those with
the smallest lower bound, and the lower bounds used are the same as the lower bounds in the
branch-bound-and-remember method. All the dominance rules are also applied.

The method is iterative. For each cycle time the heuristic searches for a valid solution for at
most time h. Because of the limited beam width bw the time for each iteration for small cycle
times is not as high as for the branch-and-bound algorithm and we can apply a binary search to
test the cycle times. Here, to define the initial upper bound C, we use the sum of the task times
as performed by the best robot to perform all tasks minr∈R ∑t∈T ptr, and we set the initial lower
bound to C = LC1. At each iteration of the method, we test the cycle time (C+C)/2. If a valid
solution is found for the given cycle time, we set C to the current tested cycle time, otherwise
we set C to the cycle time being tested.

We also do not need to generate all the station loads for a given station. The lower bound
LM1 can be improved during the generation of the station loads. If a partial load is already
worse than the worst partial solution stored for the next level and the next level already has bw

partial solutions, then the solution with the current set of tasks will not be added to the next
level and this branch is not explored. The partial lower bound LM′1 can be defined by

LM′1 = s+min
r∈R ∑

t∈Ts

ptr + ∑
t∈U

min
r∈R

ptr

where s is the number of stations already fully loaded in the current partial solution, Ts is the set
of tasks already assigned to the current station and U is the set of unassigned tasks. The lower
bound LCR2 is not used in the beam search.

5.3.4 Computational results

The iterative beam search has only two parameters, the beam width bw for all the levels,
and the time h, in seconds, for each of the iterations of the binary search. We have considered
values of bw ∈ {5,10,20,40} and h ∈ {5,10,20,40}. For longer search times h and greater
beam widths bw, the results are better, but with a higher computational cost. Parameter h has
the strongest influence on the results. The pairs of parameters with the longest search time h

produce the smallest average gap. The best results are found with h = 40 and bw = 40 and are
achieved in less than 15 minutes for every instance from both instance sets.

We compare the method with this set of parameters against the two heuristic methods avail-
able in the literature: the Particle Swarm Optimization (PSO) and the hybrid Cuckoo Search
with Particle Swarm Optimization (CS-PSO), both proposed by Mukund Nilakantan et al.
(2015). Their article presents results for 10 replications of the method but all the replications
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have the exact same result. The iterative beam search is deterministic and, therefore, for the
same instance, always produces the same result. Thus, we only present results for one replica-
tion of the methods in Table 5.4.

In Table 5.4 we present the relative deviation from the best known cycle time (C−C∗)/C∗

(column “Gap”) and the running time for each of the methods (column “t”). PSO and CS-PSO
were run on a PC with a 2.30 GHz Core i5 processor, while our method was run on a PC with
an AMD FX-8150 processor, running at 3.60 GHz. Both processors are comparable according
to the Passmark benchmarks (Passmark Software Pty. Ltd., 2017). The average time of our
method (22.84s) is much smaller than the times of both methods of Mukund Nilakantan et
al. (2015) (194.86s for the PSO and 233.53s for the CS-PSO). Our method is faster than the
methods in the literature for every instance but also produces the best results when compared
to the best known values. The average relative deviation from the best known values is 0.38%,
against 13.60% and 11.05% of the PSO and CS-PSO, respectively, and in every instance, the
gap produced by our method is smaller or equal to that of either PSO or CS-PSO.

For the BBR method we evaluate two variants: the first uses the lower bound LC1 in each of
the nodes of the branch-and-bound algorithm and the second uses LC20%

R2 . Both methods were
run on a PC with a 3.66 GHz AMD FX-8150 processor with 32 GB of memory, using one thread
per execution. We use the IBS method to produce an initial solution for the BBR algorithm. We
have tested the heuristic with different values of bw and h. The method with bw = 40 and h = 40
has the best results but can take up to 15 minutes without improving much the results compared
to setting bw = 20 and h = 20, which takes up to 6 minutes and half the average time of the
previous parameter set. Therefore, we set bw = 20 and h = 20 for finding the initial solutions.
The time limit for each run was one hour. The memory usage of none of the runs did exceed
28 GB of main memory.

We first compare both BBR variants to model M2 solved by CPLEX in the same compu-
tational environment using the same time limit on instance set 1. The results are presented
in the Table 5.5. It reports the relative deviation (C−C∗)/C∗ of the best cycle time C from
the best known value C∗ (columns “Gap”), the total running time in seconds (columns “t”) for
each instance. We can see that both BBR methods solve all instances with up to 89 tasks and
prove them to be optimal in less than three minutes. Only in some cases with a small number
of robots the solution of M2 takes less time than the BBR algorithm and in the case of M2 the
time grows exponentially with the number of robots. In average, the BBR is faster than model
M2 solved by CPLEX and the gap found by the BBR method with LC1 is better than the gap
found by the method with LC20%

R2 . This can be explained by the longer time to compute lower
bound LC20%

R2 . For cycle times where a valid solution is found the number of explored nodes of
both BBR methods is very similar. The largest difference in number of nodes between the two
methods occurs in the last step, where the entire branch-and-bound tree must be explored. The
method with LC1 is faster until the last cycle time being tested, but is slower than the method
with LC20%

R2 in this last step, and therefore, it takes more time to prove a solution to be optimal.
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Table 5.4 – Comparison of the Iterative Beam Search (IBS) with the PSO and CS-PSO by (Mukund
Nilakantan et al., 2015)

PSO CS-PSO IBS
|T| |R| Gap (%) t (s) Gap (%) t (s) Gap (%) t (s)

25

3 0.00 2.65 0.00 3.60 0.00 0.11
4 12.37 2.90 12.37 3.90 0.00 0.05
6 7.22 3.00 3.09 4.20 0.00 0.07
9 4.59 3.25 0.92 4.50 0.00 0.04

35

4 0.88 4.90 0.00 5.20 0.00 0.06
5 2.13 5.40 0.91 6.30 0.00 0.12
7 6.47 6.90 4.98 6.90 0.00 0.10

12 12.90 8.50 10.75 8.90 0.00 0.07

53

5 1.11 13.10 0.00 13.50 0.00 0.15
7 6.36 14.90 3.89 16.80 0.00 0.15

10 10.34 16.20 8.87 17.90 0.00 0.16
14 8.96 19.90 5.97 20.00 0.00 0.14

70

7 11.08 29.00 10.82 32.90 0.77 2.12
10 15.95 32.50 13.79 35.80 0.43 0.54
14 17.65 39.10 14.12 43.30 0.00 0.35
19 22.50 43.40 16.67 47.80 0.83 0.85

89

8 7.18 41.90 6.48 45.70 0.93 0.43
12 21.16 50.40 9.22 51.60 1.02 0.57
16 14.15 59.60 6.83 63.30 0.00 0.18
21 13.55 75.30 9.68 80.50 0.65 0.70

111

9 12.88 82.30 12.23 85.50 0.43 27.69
13 16.18 89.50 18.01 92.50 1.10 11.00
17 20.95 98.50 14.29 107.40 0.95 5.83
22 21.71 110.80 19.74 114.50 1.32 4.00

148

10 11.25 179.80 9.41 183.50 1.48 157.73
14 19.32 205.50 19.03 207.90 0.00 46.87
21 24.22 215.90 22.42 219.50 0.90 19.60
29 25.00 230.30 24.34 242.20 1.32 20.24

297

19 15.81 891.80 13.14 1,118.30 0.00 136.78
29 19.58 997.60 18.67 1,331.30 0.00 125.59
38 19.43 1,269.90 23.48 1,593.50 0.00 93.62
50 32.43 1,390.80 19.46 1,664.30 0.00 73.43

Avg. 13.60 194.86 11.05 233.53 0.38 22.84
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Table 5.5 – Comparison of the results of Model M2 and the BBR methods.

Model M2 BBR method with LC1 BBR method with LC20%
R2

|T| |W| Gap(%) t (s) Gap(%) t (s) Gap(%) t (s)

25

3 0.00 0.10 0.00 1.72 0.00 1.61
4 0.00 0.15 0.00 1.89 0.00 1.60
6 0.00 3.98 0.00 1.71 0.00 1.43
9 0.00 22.01 0.00 1.64 0.00 1.56

35

4 0.00 0.15 0.00 1.48 0.00 1.55
5 0.00 1.43 0.00 1.48 0.00 1.86
7 0.00 351.72 0.00 1.54 0.00 1.62

12 5.38 3,600.00 0.00 2.42 0.00 1.75

53

5 0.00 0.36 0.00 1.61 0.00 1.65
7 0.00 9.27 0.00 2.07 0.00 1.79

10 0.00 1,859.77 0.00 1.68 0.00 1.96
14 2.99 3,600.00 0.00 1.85 0.00 1.96

70

7 0.00 1,332.32 0.00 239.94 0.00 117.87
10 3.88 3,600.00 0.00 19.62 0.00 22.91
14 5.29 3,600.00 0.00 12.52 0.00 12.75
19 7.50 3,600.00 0.00 25.30 0.00 25.49

89

8 0.46 3,600.00 0.00 26.05 0.00 31.06
12 1.71 3,600.00 0.00 21.97 0.00 33.09
16 3.42 3,600.00 0.00 21.63 0.00 22.19
21 7.10 3,600.00 0.00 17.19 0.00 17.06

111

9 3.00 3,600.00 0.00 3,600.00 0.64 3,600.00
13 8.09 3,600.00 1.10 3,600.00 1.10 3,600.00
17 5.71 3,600.00 0.48 3,600.00 0.95 3,600.00
22 15.13 3,600.00 0.66 3,600.00 0.66 3,600.00

148

10 2.40 3,600.00 1.66 3,600.00 1.66 3,600.00
14 2.27 3,600.00 0.28 3,600.00 0.28 3,600.00
21 12.11 3,600.00 1.35 3,600.00 1.35 3,600.00
29 15.79 3,600.00 1.32 3,600.00 1.32 3,600.00

297

19 10.27 3,600.00 0.19 3,600.00 0.19 3,600.00
29 15.77 3,600.00 0.30 3,600.00 0.30 3,600.00
38 26.72 3,600.00 0.40 3,600.00 0.40 3,600.00
50 0.20 3,600.00 0.54 3,600.00 0.54 3,600.00

Avg. 7.41 2617.97 0.12 1357.94 0.33 1355.16
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Table 5.6 – Comparison of the BBR method and the IBS on the instance set 2.

IBS BBR method with LC1 BBR method with LC20%
R2

|T| Gr. OS Dist. ∆lb(%) ∆bkv(%) t (s) Prov. (%) ∆lb(%) ∆bkv(%) t (s) Prov. (%) ∆lb(%) ∆bkv(%) t (s)

50

BN

2
bimodal 7.21 1.08 5.38 66.67 5.98 0.00 1,748.30 68.33 5.99 0.01 1,701.29
bottom 9.02 1.03 8.18 55.00 7.83 0.00 2,047.44 60.00 7.84 0.01 2,016.44
middle 13.20 1.14 5.28 58.33 11.88 0.00 2,035.93 61.67 11.88 0.00 1,947.29

6
bimodal 0.54 0.54 0.36 100.00 0.00 0.00 5.01 100.00 0.00 0.00 5.38
bottom 0.38 0.38 0.54 100.00 0.00 0.00 8.62 100.00 0.00 0.00 8.61
middle 0.58 0.58 0.60 100.00 0.00 0.00 7.11 100.00 0.00 0.00 7.59

CH

2
bimodal 1.47 0.95 2.19 88.33 0.51 0.00 887.51 98.33 0.51 0.00 537.31
bottom 2.35 0.96 2.31 88.33 1.36 0.00 1,034.52 93.33 1.36 0.00 738.63
middle 3.62 1.01 2.59 75.00 2.59 0.00 1,381.73 88.33 2.59 0.00 1,202.95

6
bimodal 0.63 0.63 0.21 100.00 0.00 0.00 2.86 100.00 0.00 0.00 2.95
bottom 0.77 0.77 0.24 100.00 0.00 0.00 4.04 100.00 0.00 0.00 3.92
middle 0.24 0.24 0.42 100.00 0.00 0.00 2.91 100.00 0.00 0.00 3.05

MX

2
bimodal 9.05 1.00 4.78 61.67 7.96 0.00 1,734.77 66.67 7.97 0.00 1,668.45
bottom 13.91 0.97 8.51 46.67 12.78 0.00 2,321.75 48.33 12.79 0.01 2,307.88
middle 15.97 1.36 7.05 53.33 14.34 0.00 2,118.09 56.67 14.35 0.01 2,065.57

6
bimodal 0.48 0.48 0.30 100.00 0.00 0.00 3.47 100.00 0.00 0.00 3.44
bottom 0.40 0.40 0.34 100.00 0.00 0.00 3.07 100.00 0.00 0.00 2.88
middle 0.34 0.34 0.56 100.00 0.00 0.00 3.57 100.00 0.00 0.00 3.36

9
bimodal 0.68 0.68 0.07 100.00 0.00 0.00 1.85 100.00 0.00 0.00 1.84
bottom 0.40 0.40 0.07 100.00 0.00 0.00 1.66 100.00 0.00 0.00 1.63
middle 0.09 0.09 0.12 100.00 0.00 0.00 1.57 100.00 0.00 0.00 1.57

Avg. 3.87 0.72 2.39 85.40 3.11 0.00 731.23 87.70 3.11 0.00 677.72

100

BN

2
bimodal 22.62 0.81 55.85 18.33 21.55 0.00 2,940.15 18.33 21.93 0.32 2,940.15
bottom 29.07 0.89 40.22 16.67 27.84 0.00 3,013.22 16.67 28.21 0.31 3,013.18
middle 57.41 1.24 44.91 1.67 55.42 0.00 3,540.01 1.67 55.95 0.43 3,540.01

6
bimodal 28.52 1.12 21.79 18.33 27.04 0.00 2,940.14 18.33 27.42 0.29 2,940.14
bottom 29.18 1.09 14.40 18.33 27.70 0.00 2,940.15 18.33 28.14 0.34 2,940.14
middle 64.51 1.40 17.74 0.00 62.16 0.00 3,600.00 0.00 62.56 0.30 3,600.00

CH

2
bimodal 24.73 0.96 38.75 16.67 23.48 0.00 3,000.14 16.67 24.05 0.46 3,000.14
bottom 22.43 1.00 29.61 21.67 21.15 0.00 2,820.18 21.67 21.72 0.47 2,820.18
middle 59.17 1.22 35.92 1.67 57.26 0.01 3,540.06 1.67 57.80 0.43 3,540.06

6
bimodal 18.65 0.85 5.30 46.67 17.56 0.00 2,228.71 48.33 17.62 0.04 2,194.82
bottom 7.94 0.80 4.76 76.67 7.02 0.00 1,429.44 76.67 7.02 0.00 1,465.26
middle 9.81 0.87 4.61 85.00 8.86 0.00 1,173.73 86.67 8.86 0.00 1,257.92

MX

2
bimodal 23.28 0.77 50.05 16.67 22.41 0.08 3,000.14 16.67 22.68 0.33 3,000.14
bottom 26.47 1.02 38.90 18.33 25.14 0.01 2,940.21 18.33 25.69 0.46 2,940.23
middle 55.84 1.03 46.92 0.00 54.22 0.00 3,600.00 0.00 54.68 0.38 3,600.00

6
bimodal 17.83 0.93 8.84 45.00 16.67 0.00 2,470.88 45.00 16.67 0.00 2,481.00
bottom 16.99 0.82 7.53 46.67 15.92 0.00 2,356.43 46.67 15.93 0.01 2,356.28
middle 36.96 1.06 9.73 30.00 35.47 0.00 2,926.36 30.00 35.49 0.01 2,934.46

9
bimodal 0.42 0.42 0.36 100.00 0.00 0.00 3.19 100.00 0.00 0.00 3.23
bottom 0.34 0.34 0.34 100.00 0.00 0.00 2.70 100.00 0.00 0.00 2.68
middle 0.16 0.16 0.55 100.00 0.00 0.00 3.34 100.00 0.00 0.00 3.46

Avg. 26.30 0.90 22.72 37.06 25.09 0.01 2403.294 37.22 25.35 0.22 2408.261
Overall Results 15.09 0.81 12.55 61.23 14.10 0.00 1567.26 62.46 14.23 0.11 1542.99

In instances where both methods prove a solution to be optimal, the method using LC20%
R2 is, in

average, about 35% faster than the method using LC1.

The heuristic and the BBR methods presented were also executed for all the instances of
instance set 2. The heuristic was configured with the same parameters used for the small in-
stances. To present the results we divide the instance parameters in two groups: the parameters
derived from Otto, Otto and Scholl (2013), which relate to the tasks (task times distribution and
precedence graph), and the parameters related to robots and workstations.

The results related to the first set of parameters are presented in Table 5.6. It shows for each
set of parameters with a fixed number of tasks (|T |), graph type (Gr.), order strength (OS), and
task time distribution (Dist.), the results for the heuristic and the BBR method. In both tables
in this section, we present the average time in seconds (“t”) needed to solve all the instances
with the given parameters, the average relative deviation (“∆lb”) between the current result and
the best known lower bound for the instance, the average relative deviation (“∆bkv”) between
the current result and the best known value, as well as the percentage of instances proven to be
optimal (“Prov.”).

First, it is possible to observe that both BBR methods consistently produce smaller gaps than
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the IBS, but need two orders of magnitude more time in average to find these results. In only
18 of the instances, the gap of the IBS is better than the gap by one of the BBR methods, and in
1639 instances the result produced by the BBR algorithm is better than the result of the IBS. It
is possible to observe the high influence of the order strength on the quality of the results. Since
the number of nodes to be explored in a full branch-and-bound algorithm is larger for instances
with low order strength (see Section 5.3.2), the nodes visited by the IBS are a smaller fraction
of the complete space of solutions for the low order strength instances, and therefore are less
probable to lead to optimal solutions. The type of the graph also influences the time needed to
solve an instance but does not affect significantly the gaps found. In particular, chain graphs are
the fastest to solve.

The BBR algorithm finds a provably optimal solution for 87.78% of the instances with 50
tasks, including all instances with order strength 60% or higher. Overall, 62.50% of the 2520
instances are solved and proven to be optimal, including all instances with order strength 90%,
independently of the number of tasks.

The instances with chain precedence graphs are significantly faster to solve than the mixed
graphs, which in turn are significantly faster to solve than the bottleneck graphs. That corrobo-
rates the time complexity presented in Section 5.3, since the chain graphs are composed of a few
long chains, while a bottleneck task forces the decomposition in multiple small chains. Also,
the time needed to solve instances with the “peak in the middle” distribution is significantly
larger than the time needed for the other distributions. That happens because the task times for
the “peak in the middle” distribution are larger than the task times in the other two distributions,
and consequently the difference between the initial upper bound and the final result is a much
greater than in the other two distributions, which leads to more iterations needed to achieve the
final result.

As for instance set 1, the BBR method with LC20%
R2 solves more instances than the version

with LC1, and in average in less time, but the gaps found by the former in the cases that are
not proved to be optimal, are significantly worse than those found with LC1. Despite this, in
all the instances proved to be optimal by both methods, the number of nodes visited and the
time to prove optimality by the solution using LC20%

R2 are in average 6.10% and 7.55% smaller
than the number of nodes visited by the solution using LC1. This means that for instances with
50 and 100 tasks the cost of executing the LC20%

R2 method is more significant for the result than
the reduction of nodes caused by it. The largest difference in the relative deviation is found for
instances with 100 tasks, especially in bottleneck graphs, because the division in chains of a CH

graph creates larger chains than those produced in BN graphs, and the family of bounds LCR2

has better results for instances with large chains. This finding is corroborated by the fact that
the instances with graphs CH and MX where LC20%

R2 improves the most have the highest order
strength.
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Table 5.7 – Comparison of the BBR method and the IBS on instance set 2, aggregated by the RALBP-specific instance parameters.

IBS BBR method with LC1 BBR method with LC20%
R2

|T| |R| |S| Var. ∆lb(%) ∆bkv(%) t (s) Prov. (%) ∆lb(%) ∆bkv(%) t (s) Prov. (%) ∆lb(%) ∆bkv(%) t (s)

50

7

3
2 3.14 0.29 12.91 0.70 2.84 0.00 1,304.43 0.76 2.84 0.00 1,160.82
2 1.31 0.46 0.66 0.87 0.84 0.00 811.35 0.88 0.84 0.00 770.05

14
2 0.38 0.38 0.50 1.00 0.00 0.00 154.79 1.00 0.00 0.00 156.18
5 9.85 0.99 9.43 0.63 8.70 0.00 1,436.40 0.72 8.71 0.01 1,236.77

7
5 3.82 1.50 0.62 0.84 2.25 0.00 1,041.18 0.87 2.25 0.00 906.63
5 0.95 0.95 0.50 1.00 0.00 0.00 113.86 1.00 0.00 0.00 109.92

12

6
2 3.31 0.48 0.99 0.69 2.81 0.00 1,301.88 0.71 2.81 0.00 1,232.99
2 5.33 0.26 0.54 0.96 5.04 0.00 472.85 0.96 5.04 0.00 471.90

24
2 0.93 0.16 0.40 0.98 0.75 0.00 124.18 0.98 0.75 0.00 124.63
5 10.12 1.62 1.03 0.65 8.26 0.00 1,390.23 0.70 8.27 0.01 1,327.23

12
5 7.07 1.21 0.60 0.94 5.77 0.00 573.30 0.93 5.78 0.00 586.60
5 0.28 0.28 0.43 1.00 0.00 0.00 50.28 1.00 0.00 0.00 48.89

Avg. 3.87 0.72 2.39 85.40 3.11 0.00 731.23 87.70 3.11 0.00 677.72

100

14

7
2 10.98 0.34 80.26 0.21 10.61 0.01 2,938.47 0.21 10.72 0.10 2,928.35
2 6.06 0.58 12.43 0.28 5.44 0.00 2,784.22 0.28 5.75 0.29 2,800.56

28
2 42.13 0.46 4.28 0.40 41.42 0.00 2,357.59 0.40 41.42 0.00 2,359.94
5 36.12 1.01 99.35 0.19 34.79 0.05 3,016.83 0.21 35.23 0.36 2,988.83

14
5 20.81 2.08 9.51 0.24 18.27 0.00 2,883.94 0.24 19.24 0.80 2,905.63
5 30.60 1.39 3.65 0.43 28.71 0.00 2,333.32 0.43 28.70 0.00 2,337.06

25

12
2 8.32 0.40 25.59 0.22 7.88 0.00 2,912.32 0.22 8.11 0.21 2,922.99
2 59.53 0.46 5.26 0.36 58.72 0.00 2,539.47 0.36 58.72 0.00 2,540.45

50
2 6.64 0.25 2.04 0.79 6.33 0.00 783.29 0.79 6.33 0.00 783.95
5 29.48 1.76 22.91 0.21 27.16 0.00 2,916.75 0.21 28.25 0.83 2,935.19

25
5 60.98 1.63 5.33 0.30 58.22 0.00 2,718.05 0.30 58.24 0.02 2,740.34
5 3.97 0.40 2.02 0.83 3.52 0.00 655.28 0.83 3.52 0.00 655.84

Avg. 26.30 0.90 22.72 37.06 25.09 0.01 2403.294 37.22 25.35 0.22 2408.261
Overall Results 15.09 0.81 12.55 61.23 14.10 0.00 1567.26 62.46 14.23 0.11 1542.99
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The results for the new parameters introduced for RALBP, the number of stations and robots,
as well as the task time variability are presented in Table 5.7. In this table, the parameters
considered are the number of tasks “|T |”, the number of robots “|R|”, and the number of stations
“|S|”, as well as the task time variability “Var”. While we can not observe an influence of the
task time variability on the time needed by the BBR algorithm to optimize the problem, both the
parameters |W | and |S| influence the result. The number of nodes given by bound (5.3.2) does
not depend on the number of robots, for the instances proven to be optimal. The running time,
however, depends on the number of robots r because in each node the method has to select the
best robot to perform the current station in a time linear in r.

The number of stations in the worst case complexity calculated in Section 5.3.2 impacts
directly the time of the algorithm. However we can see that instances with more stations are
significantly faster to solve than instances with fewer stations and the number of solutions prov-
ably optimal also increases with the number of stations. The reason is that with more stations
only a few tasks are assigned to each station, so less station loads are generated and, since the
dominance rules and lower bounds are applied only tp maximal station loads, much of the par-
tial solutions are removed. It can also be observed that in general the difference between the
lower bound and the upper bound for the cycle time is much smaller than the same difference
in instances with a small number of stations. This difference substantially influences the time
of the algorithm. In particular, the method with LC20%

R2 is slower than the method with LC1 for
fewer stations and a larger cycle time. The time used in early iterations of the method increases
the overall time by the BBR method with LC20%

R2 .
The BBR algorithm with LC20%

R2 proves more solutions to be optimal than BBR algorithm
with LC1 because it solves more instances with 50 tasks and a low number of stations. This is
expected because the family of bounds LCR2 is more efficient when there are fewer stations.
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6 CONCLUSIONS

This work proposed methods for two heterogeneous assembly line balancing problems: the
Assembly Line Worker Assignment and Balancing Problem, and the Robotic Assembly Line
Balancing Problem. Both problems studied were of type 2, i.e. they minimize the cycle time
of the line. While they share some characteristics, they are very different to solve. In the
ALWABP-2, a worker can only be assigned to one station, and in the RALBP-2 the robots are
an unlimited resource.

We have proposed MIP models, lower bounds, heuristics and branch-and-bound methods
that are the state-of-the-art for both problems. For the MIP models, we have used a very similar
model as a basis for both problems. These models use two-index variables and it made pos-
sible the use of continuity constraints in the ALWABP-2. We have shown the importance of
the continuity constraints to improve the results of the models. As for the lower bounds, the
relation with the SALBP-2 is very strong for both problems, in different manners, and therefore
variations of the lower bounds of the SALBP-2 were used in both of them. Also, specifically for
the ALWABP-2, we observed that the precedence constraints influence the lower bounds less
than the heterogeneities. Thus we proposed using lower bounds that relax the ALWABP-2 to
the Unrelated Parallel Machine Scheduling Problem. For the RALPB-2, it was shown that there
is a sufficiently fast algorithm that relaxes only a fraction of the precedence constraints. The
results obtained by not relaxing all the precedence constraints were shown to be better than the
results of the SALBP-2 lower bounds. This observation is stronger in cases with a low number
of stations.

As for the heuristics, for the size of instances that are being solved in the literature, we have
observed that beam search methods derived from station-oriented branch-and-bound methods
are the best way to solve the problems. We used, in both cases, a station-oriented beam search
with slight variations. In the case of the ALWABP-2, where it was impossible to generate all the
station loads for a given station, we also used a sampling of the possible assignments to a station
to decrease the time needed to generate the loads. These heuristics produce good results in a
very small amount of time, and though they are competitive with the state-of-the-art heuristics,
they are only used to produce initial upper bounds for our exact methods.

For the branch-and-bound methods, two branching strategies are used in the literature: the
station-oriented methods and the task-oriented methods. For the ALWABP-2 the two methods
have competitive results as we have seen by the comparison with the work of Vilà and Pereira
(2014). Also, the two are complementary and we have shown that by using both we were
able to solve and prove optimality of every instance in the literature of the ALWABP-2. The
task-oriented method proposed by us is shown to be more efficient in instances with a high
order strength, while the station-oriented method is more efficient in instances with a low order
strength. For the RALBP-2 we have shown excellent results with an iterated station-oriented
branch-bound-and-remember algorithm that uses cyclic best first search to find valid solutions
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for fixed cycle times and since the method finds valid solutions early in the search, it can rapidly
validate solutions and decrease the cycle time. This method has the best result for almost every
instance in the literature and also proves solutions to be optimal in less time than most of the
heuristics take to find valid solutions that are 10% worse. Two variants of the branch,bound-and-
remember for the RALBP-2 are shown, one using the SALBP-2 lower bounds and one using our
proposed lower bound. The results show that while the method with SALBP-2 bounds produces
the smallest average gap, with a time limit of one hour, the method with the novel lower bound
proves more solutions to be optimal in the same amount of time.

6.1 Future Work

While much work has been done to solve the instances in the literature and we have gen-
erated instances to evaluate the RALBP-2 algorithms, the current instances are mostly solved
by our methods for both problems. Even for the RALBP-2 instances with 100 tasks, we have
proved optimality of many of them and have found results that are very near to the lower bound
of the problem. Therefore, to evaluate the limits of the algorithms, it is necessary to expand
these instances. Both the branch-and-bound and the beam search methods are not scalable to
instances with a large number of tasks. Thus, new heuristics based on local improvement instead
of constructive heuristics should emerge to solve the larger instances.

The lower bounds LCR2 propose a concept that could be translated for other problems like
the ALWABP-2 and the Assembly Line Design Problem (ALDP) (BUKCHIN; TZUR, 2000).
The ALDP is very similar to the SALBP-1, but instead of minimizing the number of stations

∑s∈S ∑r∈R ysr, where ysr indicates if a robot r is assigned to a station s, the ALDP minimizes
the cost of the line ∑s∈S ∑r∈R ECrysr, where ECr is the cost of robot r. Most of the solutions
presented for the RALBP-F can be adapted with slight modifications for the ALDP. To adapt the
branch,bound-and-remember, the only modification is in the memoization process. Instead of
storing the number of stations with the tasks already assigned, the method for the ALDP should
store the current cost of the line.

Besides that, further study on the use of task-oriented branch-and-bound methods could lead
to interesting results. While the method has shown good results for the ALWABP-2, it has been
outperformed by the station-oriented methods in the SALBP and the RALBP. Therefore, it is
necessary to identify in which contexts the task-oriented branch-and-bound method should be
used. As an example, there is the Mixed-Model Assembly Line Balancing Problem. In this
problem, the tasks take a different time to be performed according to the model that is being
produced. The cycle time of the line is given by the weighted average of the cycle times of the
models. Therefore, a MMALBP instance of type 1, has a fixed cycle time, but it may lead to
a combinatorial number of selections of cycle times for the models. Since the station-oriented
method relies on the cycle times to use the maximal station load dominance rule, and solving
the problem a combinatorial number of times for different cycle times is impracticable, the
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task-oriented method emerges as a possibility to solve the MMALBP.
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