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ABSTRACT

This thesis reviews and investigates social problem-solving with a particular focus on ar-

tificial and heterogeneous systems. More specifically, we not only compile and compre-

hensively examine recent research results, but also discuss future directions in the study

of such heterogeneous complex systems. Given their complex nature, such systems of-

ten defy analyses. Even computationally simple models can behave unpredictably after

a few iterations. Therefore, one central issue in Social Computing is to devise models of

social interaction that are amenable to investigation. This way, one can understand the

complex relationships among the components and the outcome of the social process. This

thesis surveys scientific inquiries concerned with fundamental aspects in social problem-

solving systems and their impact in ability and performance of such systems. These

aspects include modeling, communication structure and individual problem-solver traits.

This thesis also reports the student endeavour during the period of research and summa-

rizes several already published contributions. Among them there is (i) the study of gen-

eral frameworks for the study of social problem-solving, (ii) the investigation of the role

of centrality in individual and collective outcomes, and (iii) the exploration of heteroge-

neous models of social problem-solving. These three points, in an integrated perspective

underpin the understanding of network and communication structures, adjust the strategic

systems’ composition, and exploit problems’ structures and patterns in social problem-

solving systems.

Keywords: Computational social systems. computational social science. social comput-

ing.



Sistemas Heterogêneos de Resolução Social de Problemas

RESUMO

Metódos analíticos de investigação são usualmente ineficazes para sistemas computaci-

onais sociais já que apenas algumas iterações do sistema já são suficientes para que o

sistema se torne imprevisível. Portanto, uma das principais questões na Computação So-

cial é o desenvolvimento de modelos sociais passíveis de investigação. Assim é possível

que se compreenda o relacionamento complexo entre os componentes de sistemas sociais

computacionais e o resultado. Este aspectos incluem a modelagem, a estrutura de comu-

nicação e características individuais do agentes envolvidos na resolução dos problemas.

do processo social. Esta tese explora sistemas computacionais de resolução de problemas

com foco em sistemas artificiais e heterogêneos. Nela é feita uma compilação extensiva

da literatura relacionada em sistemas complexos onde as contribuições do candidato são

expostas dentro de contextos específicos da área. Entre elas está o estudo de modelos

abstratos e gerais de resolução social de problemas, a investigação do impacto da centra-

lidade no resultado individual e coletivo, a análise experimental de modelos heterogêneos

de resolução social de problemas. Quando integradas, estas contribuições reforçam o en-

tendimento sobre a importância da rede e das estruturas de comunicação, a composição

estratégica do sistema, a estrutura do problema e possíveis padrões gerais na resolução

social de problemas.

Palavras-chave: Sistemas Sociais Computacionais, Computação Social, Inteligência Ar-

tificial.
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1 INTRODUCTION

Behavioral research has shown that humans can excel at solving complex problems

where there are strong constraints and interdependencies (KEARNS, 2012). Yet, recent

research results are far from answering why (CHEN et al., 2016). One way to peer into

why humans excel into some complex problems is by building computational models of

social problem-solving that mimic fundamental aspects of the real systems (LAZER et al.,

2009; MASON; WATTS, 2012). However, there are many challenges in doing so. Even

simple systems composed of homogeneous parts can defy analyses after a few iterations,

while more sophisticated ones provide results which are often hard to generalize (MACY;

FLACHE, 2009).

One of the first attempts to understand social problem-solving in a controlled

laboratory-based setup can be traced back to early experiments at the Massachusetts In-

stitute of Technology, led by Bavelas (BAVELAS; BARRETT, 1951). Bavelas and his

group were interested in the eventual effects that different network structures could have

in a group’s communication pattern. Their experiments on networked communication and

social problem-solving were organized within physical laboratories where people would

solve problems and exchange information following rigid protocols. The network struc-

tures they investigated included a star formation with a central individual by whom all

information passed through or a complete clique where anyone could exchange informa-

tion with anyone else in the experiment. Their hypothesis considered that subjects more

“connected”, i.e. in a more privileged position within the internal network’s information

flow, would fare better when compared to non-privileged subjects. This kind of structural

property evolved under the general concept of centrality in graph theory (FREEMAN;

ROEDER; MULHOLLAND, 1979).

Centrality is one of the first concepts developed to formally describe the relevance

of positioning within a structured network (BURGESS, 1969; FREEMAN, 1978; FREE-

MAN; ROEDER; MULHOLLAND, 1979; BORGATTI, 2005). Experimental evidence

has suggested that centrality is positively correlated with individual’s performance in hu-

man social problem-solving experimental settings (MASON; WATTS, 2012). Moreover,

there is also evidence that long-distance connectivity, another structural network prop-

erty, may elicit opposing outcomes depending on the problem humans are trying to solve

(JUDD; KEARNS; VOROBEYCHIK, 2010). In such case, the position of an individual

alone may not account for her influence on neighbors and individual traits may play a
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more important role than previously thought. The authors also suggest some benefits of

broadening the research on social systems to include individual aspects of solvers instead

of focusing solely on network structure.

By knowing patterns and features of the communication structure, one can avoid

resource wasting and develop more flexible and efficient collaborative group work flows

(NEWELL; SIMON, 1972; MARCH, 1991; LAVIE; STETTNER; TUSHMAN, 2010). In

this search, Network Science techniques have become the standard tool to do so (BARABáSI;

ALBERT, 1999; KEARNS; SURI; MONTFORT, 2006; HOGG; HUBERMAN, 2008;

LAZER et al., 2009). Studies concerning how individual and group influence drives di-

versity1 in social networks abound in literature for the same reason (FLACHE; MACY,

2011).

Not only there is a lack of understanding of diversity effects in real-world scenar-

ios, but there are difficulties at the modeling and the analytical levels too (CHEN et al.,

2016). For instance, one of the most cited papers in social problem-solving and diver-

sity itself 2 published in the Proceedings of the National Academy of Science (HONG;

PAGE, 2004) has received some strong criticism. In this paper, the authors claim that

“diversity trumps ability” in the sense that a group of diverse problem solvers is more

likely to outperform a group of highly-able homogeneous solvers. However, (THOMP-

SON, 2014) presented a critical mathematical analysis of their results. Such kind of dis-

pute represents an expression of how complex and fertile the matter of diversity in social

problem-solving can be. One consequence of her work is the cautionary warning about

the claims of research using computational methods. Although her arguments are have

been recently criticized on qualitative grounds (KUEHN, 2017), her main conclusion re-

mains relevant to the field of computational social science. Fortunately, there is a current

research trend that seeks to provide a rigorous mathematical foundation to Social Com-

puting (CHEN et al., 2016). One of the objectives of this line of research is to determine

whether the results from different Social Computing system generalize (or not) to other

social problem-solving scenarios.

In a recent paper in Nature Communications (BARKOCZI; GALESIC, 2016) in-

vestigated a classic problem in Social Computing: the relationship between the com-

munication network and the system’s performance. Using agent-based simulations, they

investigated the interplay between network structure, how information is aggregated from

different sources, and the complexity of the problem being solved. Among their findings,

1The terms diversity and heterogeneity are used interchangeably throughout this thesis.
2As of 2017, the article has 25,559 total downloads and 583 citations according to Google Scholar.
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they found that well-connected networks favor solution aggregation by averaging as many

solution sources as possible while poorly connected networks favors copy of the single

best source. The authors used a synthetic problem space called the NK model (KAUFF-

MAN; WEINBERGER, 1989) and concluded that findings have “broad implications for

organizational learning, technological innovation, cultural evolution and the diffusion of

innovations”. Even though this is a recent result, their research question is not distant

from the 15 years old question asked by Mendes when he developed the FIPS model

(MENDES; KENNEDY; NEVES, 2003).

When investigating social problem-solving systems, one can experiment with roughly

two types of parameters: (i) problem-dependent parameters, or (ii) problem independent

parameters. Given a specific problem to be solved, problem-dependent parameters can be

grouped — but are not limited to — as:

The Problem to be Solved: This parameter defines what the agents are going to solve.

For instance, a search for the best transit route in a large set of possible routes.

The Problem’s Difficulty Level: The problem’s difficulty level can be measured in many

ways, and the asymptotic analysis of the best know algorithm is the accepted limit of

the problem’s difficulty. However, not all problems’ difficulty can be measured in an

centralized fashion. Social problem-solving is done in a networked, distributed and

collaborative manner from relatively local information and interaction (KEARNS,

2012). There is currently no variant to computational complexity that handles diffi-

culty in social problem-solving. For instance, the problem’s difficulty may depend

on the number of agents solving it in addition to the size of the problem and the

time given to solve it.

The Strategies Employed to Solve the Problem: This parameter refers to the methods

and strategies employed individually by solvers to process and communicate in-

formation about solutions. One example is trying to employ agents that excel at

solving chess to play Sudoku instead: they would find the Sudoku problem rather

difficult, even if the given Sudoku instance could be easily solvable by a backtrack-

ing procedure. 3

Some parameters that do not depend on the problem at hand are the following:

The Number of Solvers: This parameter describes the number of autonomous yet inter-

dependent agents employed to solve the same problem.

3Here one must assume that no individual learning occurs.
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The Solver’s Interconnectedness: This parameter describes the network’s topology that

connects the solvers. Since communication in the form of solution exchange only

happens among “connected” solvers. In other words, collaboration is highly de-

pendent on the network. This parameter in turn can be divided in more parameters

depending on the generative network model employed.

It is necessary to point to similar efforts on heterogeneous social problem-solving

systems in the related field of Computational Intelligence (ENGELBRECHT, 2007). How-

ever, such efforts had different objectives. In this approach, the model itself is the object

of study instead of a means to an end. In other words, there is no intent to help under-

standing how human social problem-solving systems 4 converge to good solutions. A

brief description of such line of investigation is presented in the next subsection.

Computational Intelligence is concerned, among other things, with population-

based heuristics and blending different heuristics into a single, homogeneous population-

based heuristic. This has been investigated for many years under the name of hybridiza-

tion (TALBI, 2002). Hybridization can be understood as blending different heuristics at

the individual level.

It is, however, interesting that at the same time that there was an explosion in the

number of heuristics in the last two decades (SÖRENSEN, 2015), there is a methodolog-

ical approach that “blends” different heuristics at the collective level, i.e. networked and

interdependent automatons collaborating in a search problem. This approach is at the root

of any heterogeneous collaborative system and its motivation lies in the exploitation of a

diverse population of solvers. This motivation is similarly employed in the development

of collaborative hybrid meta-heuristics (TANESE, 1989; ADAMIDIS; PETRIDIS, 1996;

TALBI, 2002; OUELHADJ; PETROVIC, 2010).

Blending different meta-heuristics into one at the collective level can be traced

back to (LESSER, 1990). Many other researchers in the field of Computational Intelli-

gence (ENGELBRECHT, 2007) and Swarm Intelligence (ENGELBRECHT, 2010) are

converging to this approach amid hundreds of new heuristics proposed each year, see e.g.

(KRINK; LØVBJERG, 2002; ALBA et al., 2004; ENGELBRECHT, 2011; OCA et al.,

2009b; ENGELBRECHT, 2010; LEONARD; ENGELBRECHT; WYK, 2011; OCA et

al., 2009a; NEPOMUCENO; ENGELBRECHT, 2012; RIBEIRO; ENEMBRECK, 2013;

HARA; SHIRAGA; TAKAHAMA, 2012; CHEUNG; DING; SHEN, 2013; PINCIROLI

et al., 2010; OLORUNDA; ENGELBRECHT, 2009; ATYABI; PHON-AMNUAISUK,

4An exception is the PSO model that will the further explained in the next section.
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2008; EBERHART, 2008; NEPOMUCENO; ENGELBRECHT, 2013; OLORUNDA;

ENGELBRECHT, 2008; OCA et al., 2009c).

Considering all that was previously elaborated, this thesis seeks to understand so-

cial problem-solving by investigating the impact of the main parameters that were histor-

ically studied in different areas of research in social systems. By integrating distinct yet

related work, finding the gaps in our knowledge, we can proceed to fill in the most urgent

and relevant gaps. Therefore we seek to contribute to the development of more sophis-

ticated computational models that could both (1) be used to guide research in real-world

settings and that (2) could be objects of research by themselves.

Even though the thesis is organized as a compilation of self-contained investiga-

tions, the main line of research was the study of how different parameters play a role in

social problem-solving. The following list enumerates the thesis’ specific objectives.

1. To investigate a method where one could employ different social problem-solving

models in such a way that individuals could exchange information seamlessly, i.e.

collaborate.

2. To investigate how the network’s structure impacts individual and collective out-

come.

3. To investigate the dynamics behind a diverse pool of solvers and their network

structure.

The most relevant results so far have already been published in international con-

ferences broadly associated with the Artificial Intelligence field. Table 1.1 presents them,

their respective publication year, the conference name, and the section in this thesis doc-

ument where it is described in more detail. There is a direct relationship between the

previous cited objectives and these papers, and such relationship information is presented

in the table.

The remainder of this thesis is organized as follows: Chapter 2 presents the study

of a general model of social problem-solving, Chapter 3 describes our recent results on

investigations of the network’s impact in social problem-solving (NOBLE et al., 2015b),

Chapter 4 points recent results from heterogeneous models (NOBLE et al., 2015a) and

Chapter 5 summarizes the main contributions from this thesis with respect to the author’s

published results. Finally, a summary of the thesis is presented in Portuguese, to comply

with formal university regulations.
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Table 1.1: Published works.

Objective Chapter Conference Year Title

1 2 AINA 2013 Investigating a Socially Inspired
Heterogeneous System of Problem

Solving Agents

2 3 GECCO 2015 The Impact of Centrality on Individual
and Collective Performance in Social

Problem-Solving Systems

3 4 AAAI 2015 Collaboration in Social
Problem-Solving: When Diversity

Trumps Network Efficiency
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2 ON THE FEASIBILITY OF A GENERAL FRAMEWORK FOR COMPUTA-

TIONAL SOCIAL PROBLEM-SOLVING

Many problem-solving methods in the field of Computational Intelligence draw

inspiration from nature (BROWNLEE, 2011). From the observation of a natural or phys-

ical phenomena, one can derive computational methods that solve a problem in a analo-

gous way as the original natural system does. These methods usually employ stochastic

heuristics. One would wonder how can two socially-inspired methods collaborate in a

networked scenario. The first study during our research contemplated such question and

combined two models at the collective level: the Memetic Networks model and the PSO

model. This approach did not create a new heuristic but combined the two cited models

to compose a population of individuals that could “communicate” seamlessly. In other

words, this means that particles from the PSO model could collaborate with memetic

nodes and vice-versa.

There are two main questions to be answered in this study. They are the following:

1. Can we use the principle of networked communication of socially-inspired systems

to create an heterogeneous collaborative system?

2. Do this approach hold some benefit in comparison to the homogeneous models?

Subsection 2.1 contains explanations on how we performed such investigation on

the framework followed by the results achieved 2.2, and a discussion in subsection 2.3.

2.1 Methods

This section describes in detail the two models used and then proceeds to describ-

ing the proposed general model which is being investigated.

2.1.1 Particle Swarm Optimization

The model of Particle Swarm Optimization had its inception in the work of Hep-

pner and Grenander (HEPPNER; GRENANDER, 1990). The authors originally investi-

gated simple social analogues of a population of interacting automatons which were mod-

eled as flocks of birds searching for food. Kennedy and Eberhart (KENNEDY; EBER-
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HART, 1995) evolved their ideas intending to produce computational intelligence from

the interactions of such automatons (POLI; KENNEDY; BLACKWELL, 2007). The re-

sulting model was then used with relative success with optimization problems. In 2008,

Poli (POLI, 2008) analyzed over 1100 publications concerning improvements and appli-

cations of the PSO model. He contributed to the understanding that the PSO model is a

mature and quite successful model of social problem-solving.

The PSO model basically defines how particles will interact collectively and the

individual effect of such interaction. At the collective level, particles are allowed to in-

teract if there is a communication channel between. This level is usually modeled using

undirected graphs, where particles are represented by nodes and communication channels

by edges of the graph.

Particles interact by copying solutions. More specifically, a particle will copy the

solution of its best ranked network neighbor and combine this solution with its own inner

solution. The interplay between a particle own solution the particle’s best neighbor solu-

tion characterizes a motion in search space of valid solutions. This motion is described

by a velocity vector.

Previous studies recognized the importance of restraining the particle’s velocity

in some way (POLI; KENNEDY; BLACKWELL, 2007). Thus, Kennedy (KENNEDY,

1998) developed the constriction factor mechanism. Equations (2.1) and (2.2) define an-

alytically the process of velocity update considering these constriction factors.

~vi+1 ← 0.7298(~vi + U(0, 2.05)

⊗(~pi − ~xi) + U(0, 2.05)

⊗(~pg − ~xi))

(2.1)

~xi+1 ← ~xi + vi+1 (2.2)

where vi and xi represent the respective the current velocity and solution of a given

particle, U(0, 2.05) represents a random vector with components uniformly distributed

between [0, 2.05],⊗ is the component-wise multiplication, pg is the best previous position

know by the best ranked neighbor — the collective influence, and pi is the best previous

position know by the own particle — the individual influence. The constant 2.05 was

experimentally derived in Kennedy (KENNEDY, 1998).

Yet, improvement was achieved when the particle’s speed was limited in each

dimension by the maximum range of such (EBERHART; SHI, 2000). The PSO with
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constriction factors combined with speed limits is considered to be the canonical version

of PSO (POLI; KENNEDY; BLACKWELL, 2007).

2.1.2 Memetic Networks

Memetic Networks is a recent model inspired by how humans collectively solve

problems (ARAUJO; LAMB, 2008b). The model determines guidelines for the develop-

ment of a system that can be used as means to solve an optimization problem or when

one seeks to investigate the effects of modeling real social features into artificial social

systems. Memetic Networks provide a framework from which it is possible to objectively

determine the impact of features such as network structure influence in the collective per-

formance of the system along the search process.

The model defines simple elements such as nodes, memes and links. It also defines

rules that state how these elements relate to each other. The concepts behind elements and

rules are problem invariant; however, their instantiation is not: one needs to encode infor-

mation about the problem’s domain in order to instantiate an effective problem-solving

system. In this sense, the Memetic Networks model is not a purely blackbox method

for optimization, but rather a design guideline for the development of algorithms with

embedded information about the problem domain.

A memenet is the final construct when one assembles the Memetic Network’s el-

ements and then describes the rules by which the elements will interact. The memenet’s

main objective is to achieve better solutions in less iterations than independent and iso-

lated nodes would achieve. To do so, nodes in a memenet are allowed to exchange infor-

mation.

The computing mechanism behind Memetic Networks is represented by nodes.

Each node contains a complete solution to the problem at hand. This solution can be

(i) evaluated using a global evaluation function, and (ii) compared or ranked against other

solutions. Nodes are responsible for retrieving, aggregating and processing memes, which

are the minimal meaningful pieces that compose complete solutions. The meme concept

is partly based on ideas from Dawkin’s book, The Selfish Gene (DAWKINS, 2006). Links

connect nodes and ultimately determine a supporting “social” network. If there is a link

between two nodes, then these nodes are allowed to exchange memes. Therefore, this

network allows communication of memes between nodes.

The Memetic Network elements alone are not self-sufficient to perform search as
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it remains necessary to define how these elements will behave when assembled together.

This is accomplished by three rules, which roughly capture how humans process infor-

mation in a social context (ARAUJO; LAMB, 2008b). These rules detail how nodes

choose to connect to each other, how information is retrieved from the social network and

how individual nodes contribute to a solution being sought. Each rule is detailed in what

follows.

Connection Rule: Defines how the nodes should connect, i.e. how links are to be

established. This rule can be performed once before the search takes place, characterizing

a static network topology. Alternatively, the connection rule can be executed during the

search process so the network topology can evolve together with the system. As in other

socially-inspired models (e.g. Particle Swarm Optimizers), there is currently no con-

clusive evidence about what topology is generally better for specific types of problems

(POLI; KENNEDY; BLACKWELL, 2007).

Aggregation Rule: This rule controls the interaction between connected nodes,

that is, how nodes retrieve and aggregate information from their network neighbors. Typ-

ically, a node retrieve information from better ranked neighbors only. After retrieving

memes, a node must aggregate - i.e. combine - them to assemble a new solution. The ag-

gregation rule must also describe algorithmically how these memes are to be combined.

Aggregation is highly dependent on the network topology 1.

Appropriation Rule: In possession of the recently aggregated solution, a node

may add some novelty to it. In this step, local information is added to the solution, al-

lowing memenets to explore the search space, much in the same way mutation works in

genetic algorithms. Appropriation can happen by simple random changes to the solution

or by applying some deterministic local search to it (in a similar fashion to Genetic Algo-

rithms (GOLDBERG, 1989) and Memetic Algorithms (MOSCATO, 1999) respectively).

Although the aggregation and the appropriation rules depend on the problem at

hand, the structure of a Memetic Network is the same across different problems.

2.1.3 An Heterogeneous Framework Composed by Particles and Memetic Nodes

The PSO and Memetic Networks models rely on the concept of social network to

regulate the internal information flow in a structured way. Such structure allow a node

1This feature is where socially-inspired optimization algorithms differ the most from Evolutionary Al-
gorithms.
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Algorithm 1: Structure of our heterogeneous system. Note that the
build_network() sub procedure is performed once only and that the stop
condition can be the number of iterations or a desired solution quality
threshold.

Input : Populationsize, stopcondiction, Problemsize

Output: Solutionbest
Population←− InitializePopulation ( Populationsize, Problemsize )
InitializeNetwork (Population)
repeat

foreach node ∈ Population do
UpdateState (node)
EvaluateState (node)
if node′scurrentscore < node′sbestscore_yet then

// Store new solution as best solution found so
far by node.

until stopcondition
Solutionbest←− RetrieveBestSolutionFrom (Population)
return Solutionbest

to retrieve and send information to as many sources as possible. Additionally, socially

inspired models need a few modifications from their canonical form to work in collabora-

tion, since communication and information processing are conceptually separated. This

contrasts with the canonical GA, for instance, which communication is done indirectly

trough crossover operations using two individuals.

Communication between a particle and a memetic node should be as seamlessly as

possible in order to avoid overhead. To facilitate such feature, all agents must encode the

solution in the same way. For example, if memetic nodes encode their solutions as arrays

of real values, particles shall encode their solutions as arrays of values as well. To solve

the problem, we developed a simple interface that must be followed by all nodes, particles

and memetic nodes. This interface follows from three premises: a node must have a

routine (1) to update its internal state by performing its respective search operations, (2)

evaluate its current internal state, and (3) store the internal state if it leads to a better

solution then any state.

Algorithm 1 describes the structure of the proposed framework including refer-

ences to initialization routines. The network structure is initialized only once. Hence, the

resulting system possess a static network. The stop condition can be a maximum number

of iterations, running time, or a desired solution quality threshold.

The next decision is about the communication between particles and memetic

nodes and vice versa. Each particle retrieves a solution from its best ranked neighbor
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while a memetic node retrieves multiple solutions from the set of better ranked neighbors.

However, if a memetic node is the best ranked neighbor of a particle, it must provide its

previous best position to the particle. Therefore, a memetic node must store its previous

best position even if this was originally not sought in the Memetic Networks model. If

a memetic node has a one or more particles in its neighborhood it can then retrieve their

current solution directly.

It remains necessary to implement the search operators from both particles and

memetic nodes trough the UpdateState routine for the problem of function minimization.

We will start by the particle UpdateState routine which is depicted in Algorithm 2.

Algorithm 2: Update state procedure for a particle.
Input: node

BestNeighbor←− RetrieveBestNeighbor (node)
UpdateVelocity (node,BestNeighbor)
UpdatePosition (node)

Our implementation follows the canonical PSO form stated in Poli’s review work

(POLI; KENNEDY; BLACKWELL, 2007); more details can be found in the original

work (EBERHART; SHI, 2000).

The UpdateState routine of a memetic node is depicted in Algorithm 3.

Algorithm 3: Update state procedure for a memetic node.
Input: node

BetterNeighbors←− RetrieveBetterNeighbors (node)
aggregatedsolution←− Aggregate (BetterNeighbors)
Appropriate ( aggregatedsolution)

The aggregation procedure retrieves and then combines memes from a set of solu-

tions from better ranked neighbors to create a new solution.

For real function minimization this process is described in Algorithm 4 and work

as follows: the memetic node generates an array of arrays called MemePool. The pur-

pose of this structure is to store solutions that came from neighbors with better scores and

also the node’s own solution. Each component of the solution is replaced with a respec-

tive meme of the MemePool list, that is a meme from the same position of the available

arrays. All solutions from MemePool have equal chances to be chosen but the meme

index is incrementally computed.

The appropriation procedure is the mechanism which allows nodes to exploit their

current solution, that is perform small modifications to it. For real-function minimization
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Algorithm 4: The aggregation rule instantiated to minimization.
Input : BetterNeighbors, Problemsize

Output: Solution

MemePool←− RetrieveSolutions (BetterNeighbors)
Append node’s solution to MemePool
Solution←− ∅
if CountSolutions (MemePool) > 1 then

for i← 1 to Problemsize do
SolutionChosen←− RandomlyChooseASolutionFrom

(MemePool)
Solutioni←− SolutionChoseni

else // When the node has no better neighbor, its solution
is kept.

Solution←− CurrentNodeSolution
return Solution

a simple mechanism is portrayed in Algorithm 5. For each component of the solution, a

valid meme is generated randomly by a uniform distribution and attributed with proba-

bility p. As with mutation probability in genetic algorithms, the p value should be small

enough so that convergence is not drastically disrupted.

Algorithm 5: The appropriation rule instantied to minimization.
Input : Solution, Problemsize, Pappropriation
Output: Solution

for i← 1 to Problemsize do
With Pappropriation probability:

Solutioni←− RandomlyChooseMeme ()
return Solution

2.1.4 Experimental Setup

This section provides the methodology used to validate the model. Five bench-

mark functions were used the real-function minimization problem. These functions were:

Ackley (f1), Griewank (f2), Rastrigin (f3), Rosenbrock (f4), and Sphere (f5). Three func-

tions are multimodal, f1 to f3 (Ackley, Griewank and Rastrigin) while two functions, f4

and f5, are unimodal. Functions f2 and f4 are not separable. Solutions are represented

by arrays of floating point numbers. Under our assumptions the dimensionality of the

function is directly represented by the size of the solution array. This value was set to 100

as usual in the related literature. The float precision used was of eight decimal digits for
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Table 2.1: Benchmark Functions

Name Definition Initialization Range
[xmin, xmax]

n
Search Range
[xmin, xmax]

n

Ackley 20 + e− 20e
−0.2
√

1
n

∑n

i=1
x2
i − e

1
n

∑n

i=1
cos(2πxi) [15.0, 30.0]n [−30.0, 30.0]n

Griewank 1
4000

∑n

i=1
(xi − 100)2 −

∏n

i=1
cos(xi−100√

i
) + 1 [300.0, 600.0]n [−600.0, 600.0]n

Rastrigin
∑n

i=1

(
x2i − 10 cos(2πxi) + 10

)
[2.5, 5.1]n [−5.1, 5.1]n

Rosenbrock
∑n−1

i=1

(
100(xi+1 − x2i )

2 + (xi − 1)2
)

[15.0, 30.0]n [−30.0, 30.0]n

Sphere
∑n

i=1
x2i [50.0, 100.0]n [−100.0, 100.0]n

both solution components and cost value.

Since four functions have the global minimum at the very center of the search

space 2, all particles and nodes were initialized following a uniform distribution inside a

limited search range to avoid any advantage a model may have over the other (ANGE-

LINE, 1998). The specific information about these functions is described in Table 2.1.

The total population size was set to 30, distributed as half particles and half

memetic nodes. The distribution of the population remained static along 10,000 itera-

tions that were used as the stop condition criteria.

The network topology chosen for all experiments was a 6 × 5 “Von Neumann”

neighborhood. In this setting, the population is arranged in a rectangular matrix where

each node is connected to one individual above, one below, and one at both sides, wrap-

ping the edges of the matrix (KENNEDY; MENDES, 2006). Previous works found sup-

porting evidence that this topology is better suited to the kind of problem we are tack-

ling (KENNEDY; MENDES, 2002; MENDES; KENNEDY; NEVES, 2003; KENNEDY;

MENDES, 2006). Moreover, this topology is balanced in terms of density and average

path length when compared to more traditional network topologies — like the fully con-

nected network or the ring network. Therefore, in the grid topology each node is at same

average distance from every other node. This allows one to cancel any advantage or dis-

advantage that network position alone may cause. Figure 2.1 provides a three dimensional

representation of the topology used.

In each experiment, the heterogeneous model was compared against the original

PSO and Memetic Network models. Also, an improved version of PSO algorithm, the

Fully Informed Particle Swarm (FIPS) algorithm (MENDES; KENNEDY; NEVES, 2003)

was included for comparative purposes. The FIPS algorithm improves over the original

PSO by gathering information of all neighbors the particle have and not only from the

best neighbor. Each experiment was repeated 50 times and the results were averaged.

The p probability used by memetic nodes in appropriation was 0.02. This value was

2The exception is the Rosenbrock Function.
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Figure 2.1: The 6×5 periodic grid graph used as the network topology in our experiments.

experimentally derived as a value that allowed convergence in all tested functions.

2.2 Results

Figure 2.2 presents the evolution of the best solution found by all algorithms av-

eraged over 50 independent trials. The heterogeneous model is represented by Hybrid,

the original memenet by MN, the original PSO by PSO and the Fully Informed Particle

Swarm by FIPS.

The heterogeneous model with the population distribution of half particles and

half memetic nodes presented no statistically difference from the best performing model

in the Griewank, Rosenbrock and Sphere functions. In such cases, the PSO was the

best performing model that composed the heterogeneous models. This result is positive

because if we suppose that one is to solve a novel problem that no exploitable structure

is known at moment, then a heterogeneous model can perform sometimes as better than

the worst performer or as good as the best performing model. The insight of which model

performs best is a valuable one, for it allows the designer to concentrate the efforts into a

single model. Moreover, such result confirms previous findings by Montes de Oca et al.

(OCA et al., 2009b). The extended version of PSO, the FIPS algorithm, presented slightly

advantage in cited functions.

In the Ackley and Rastrigin functions, both highly multimodal, the heterogeneous

model presented a remarkable advantage. We performed unpaired t-tests comparing all

the 50 last generations of the heterogeneous model against PSO, Memetic Networks and

FIPS, finding significant results (p = 0,t < 0). The hypothesis for such result is the

heterogeneous model presents a higher solution diversity in these functions. A higher

solution diversity translates into a more exploratory and less exploitative search behavior,
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which in turns increases the likelihood of finding a good solution. To test this hypothesis,

we extracted the 30 individuals from the last generation of all the 50 runs and analyzed

the distribution of the population according to their solution quality. Figure 2.3 presents

the boxplots of this distribution.

As hypothesized, the heterogeneous model presented the highest solution diversity

in the tested functions: Ackley and Rastrigin. This result was expected because the two

sorts of individuals 3 that compose our heterogeneous model can be seen as two driving

forces that guide the search to different regions. It is likely that particles may find a

specific region of the search space more promising than memetic nodes as well as the

opposite. From this lack of agreement, a favorable search pattern may have arisen in

these two functions. Nevertheless, we are further investigating the effect and developing

a visualization tools to analyze the population dynamics across all generations. Another

result was that the pure PSO model eventually found the global optimum in the Ackley

function — this can be seen as the lower whisker mark. However, the expected result is

much above it. The pure Memetic Networks model achieved similar results in most runs,

this fact is depicted by the equally distributed quartiles from the median.

2.3 Discussion

We proposed an initial heterogeneous problem-solving system based on socially

inspired models and we were concerned with the investigation of the benefits of a het-

erogeneous problem-solving system composed of two socially inspired models: Particle

Swarm Optimization and Memetic Networks. Our approach does not change how indi-

viduals behave, as it is commonly tackled by hybridization mechanisms, rather it allowed

different individuals, with different search heuristics, to communicate and collaborate to

solve the problem at hand – which we framed as minimization of five real valued func-

tions.

Individuals were connected by links in Von Neumann network and they were al-

lowed to communicate information about their solution through a communication medium

designed for that. Our results showed that at one hand the heterogeneous system was able

to outperform the Memetic Network model in all scenarios and considerably outperform

the PSO model in two of the most difficult (highly multimodal) scenarios. On the other

hand, in simpler scenarios (mostly unimodal functions), the heterogeneous model was

3Represented by their search heuristics.
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able to perform equally well as the homogeneous models. We further investigated why our

heterogeneous model performed well in highly multimodal scenarios and elaborated the

hypothesis that heterogeneous models increase diversity of solutions. From the analysis

of distribution of solution quality we were able to confirm our hypothesis. Together, these

results are evidence that heterogeneous systems are promising problem-solving tools but

their inner working mechanisms must still be better understood.
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Figure 2.2: The evolution of the best solution found by all algorithms averaged over
the 50 independent trials. Our heterogeneous model with the population distribution of
half particles and half memetic nodes presents better results for the Ackley and Rastrigin
Functions after one thousand iterations. In the other cases, the heterogeneous model was
equivalent to PSO and FIPS. Both axis are in logarithmic scale.
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Figure 2.3: Solution quality distribution extracted the 30 individuals from the last gener-
ation of all the 50 runs. The heterogeneous model presented the highest solution diversity
among all as we hypothesized.
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3 THE IMPACT OF CENTRALITY IN COMPUTATIONAL SOCIAL PROBLEM-

SOLVING

The concept of centrality has a long history within Graph Theory, Social Net-

works, and, more recently, in Network Science. Earlier researchers recognized that the

structure which people formed to collaborate could be beneficial to individuals at one

level and detrimental to the collective at the other level (BARONCHELLI et al., 2013;

STADLER; RAJWANI; KARABA, 2014). One question thus is posed: “How can one

determine optimal communication structures in collaborative networks that make use of

social problem-solving?”. One way to understand communication structure is through

the concept of centrality (BAVELAS; BARRETT, 1951; BURGESS, 1969; FREEMAN,

1978; FREEMAN; ROEDER; MULHOLLAND, 1979; BORGATTI, 2005; BORGATTI;

EVERETT, 2006).

One may then ask whether computational models of social problem-solving can

give us a better understating of the impact of centrality in social problem-solving. More

specifically:

1. Are central positions better to the individual in a social problem-solving system?

2. Do centralized networks lead to better collective outcomes?

3. Do results at both individual and collective levels in one model generalize to differ-

ent models of social problem-solving?

4. Which measure of centrality best correlates with individual or collective good out-

comes in Social Problem-solving systems?

The next section exposes the methods that respond to these questions.

3.1 Methods

Many decisions have to be made when investigating centrality’s impact in social

problem-solving. Those decisions include what networks would be used, what problems

the agents would solve and how the agents themselves would be modeled. After such

decisions, we gathered statistical correlations at the individual and the collective level.

This section provides details about those decisions.

The first decision pertains to the choice of an adequate network topology. While

regular or random networks are often used in sociological studies, we choose to use
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topologies where centrality distribution follows what is observed in social settings. To

generate such topologies, we employ the generative network process developed by Barabási

and Albert (BARABáSI; ALBERT, 1999). The process starts by adding one new node at

each iteration and connecting this node to m other nodes.

The population sizes used in experiments were of 16, 64 and 144 individuals

(nodes). These values represent a small, an intermediate, and a big population size when

one considers previous, standard experimental works from the literature.

Figure 3.1: Networks generated by the Barabási-Albert model where new nodes connect
to m = 2 following a preferential attachment mechanism of connection. The network
sizes were 16 a, 64 b, and 144 c. The node size in these pictures is directly proportional
to its degree.

(a) Size 16. (b) Size 64. (c) Size 144.

The next decision was the selection of the problem to be solved. We decided

to frame problem-solving as a minimization problem of real-valued functions. We have

chosen five functions: the Ackley function (here referenced as F1), the Griewank function

(F2), the Rastrigin function (F3), the Rosenbrock function (F4) and the Sphere function

(F5). By using a diversity of functions with different properties, regarding modality and

separability, we aimed at capturing features of distinct real-world problems. Interested

readers can refer to (LIANG et al., 2006) for more detailed information about these func-

tions. All functions were set to have 30 dimensions - i.e. 30 real-valued independent

variables.

Later, we elaborate our measure of individual’s performance (success of the agent).

We consider two kinds of individual performance, one global and the other local. Global

performance of a node is defined by the number of times it has found a solution which

was better than the previous best solution held by the whole system (i.e. all nodes) —

we call this the individual global contribution. The local performance is defined as the

number of times that a node held a solution which was better than those held by any of its

neighbors — we call this the individual local contribution.
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Algorithm 6: Algorithm structure used by all models.
Input : Populationsize, stop_condition, Problemsize, m
Output: Solutionbest
// Initialize the population with random solutions.

Population←InitializePopulation (Populationsize,Problemsize)

// Establish social ties among individuals.

BarabasiAlbert (Population,m)

repeat
foreach node ∈ Population do

UpdateState (node,Problemsize)
EvaluateState (node)

until stop_condition

Solutionbest←RetrieveBestSolution (Population)
return Solutionbest

Four agent-based models were used in the experiments: (i) Particle Swarm Algo-

rithm (PSO), (ii) the Fully Informed Particle Swarm (FIPS), (iii) an instance of Memetic

Networks (MN) model, and (iv) the Dynamic Search Range (DSR). All models share a

similar structure as depicted in Algorithm 6. All these models satisfy the social problem-

solving property we highlighted earlier: agents work better when they collaborate, despite

being capable of solving the problem by themselves. They start by initializing the popula-

tion with random solutions, yielding a uniform distribution of solutions within the search

space. After initializing the individuals’ solutions, we connect them according to the

Barabási-Albert model, using different random seeds for each independent trial. We also

used a bi-dimensional periodic grid as control network – i.e. all agents have the same

degree and have the same average distance from all nodes. Both network topologies were

static.

With the individuals in place and the network ties formed, the models start their

iterative stage, where each agent evaluates and updates its current solution according to

her own search operations. After all individuals have updated and evaluated their state,

the algorithm proceeds to the next round until the stop condition is found. We used 5,000

rounds as the stop criterion and four decimal digits of precision.

In the PSO model, particles hold a velocity vector which they update at each it-

eration. This vector is used to update the particle’s current position. This is calculated

by summing over two components: the cognitive component, which points to the own

particle’s best previous position; and the social component, which points to the particle’s
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Algorithm 7: UpdateState procedure of a particle. Operations
{+,×,−}are in the matrix notation.

Input: node,Problemsize

// Update particle’s velocity.

neighbor← FindBestNeighbor(nodeneighbors)

V1← RandomVector(min = 0.0,max = 2.05, size = Problemsize)
V2← RandomVector(min = 0.0,max = 2.05, size = Problemsize)

Cognitive← nodebest_previous_position − nodecurrent_position
Social← neighborbest_previous_position − nodecurrent_position

nodevelocity ← 0.7298 ∗ (nodevelocity + (Cognitive× V1) + (Social× V2))

CheckVelocityLimits(nodevelocity)

// Update particle’s position.

nodesolution ← nodesolution + nodevelocity
CheckSolutionLimits(nodesolution)

best ranked neighbor’s previous solution. After adding some perturbation to these com-

ponents, the particle sums its velocity vector to its current solution. If this new solution

is better evaluated than the previous best solution (used by the cognitive component), the

particle updates its previous best solution.

Our PSO implementation follows Clerc and Kennedy’s work (CLERC; KENNEDY,

2002). This implementation is considered the canonical form of the PSO model (POLI;

KENNEDY; BLACKWELL, 2007). Velocities are limited to the maximum absolute range

of each variable in each dimension (EBERHART; SHI, 2000). Any particle’s solution

component that leaves the boundary of the problem’s space is set to the maximum valid

value and its respective velocity component is reflected back by multiplying it by −1.0.

The Algorithm 7 depicts the PSO algorithm we used. Note that most operations in pseudo-

code are in the matrix notation to simplify and clarify understanding.

The first step is to find the particle’s best ranked neighbor. The second is to gener-

ate two random vectors that will be multiplied by the cognitive and the social components.

The cognitive component is given by the difference between the particle’s previous best

position visited and its current position, whereas, the social component is calculated from

the difference from the position of the best ranked neighbor and the particle’s current posi-

tion. Both components are multiplied by the random vectors and summed. The resulting

value is summed with the previous particle velocity, then it is multiplied by a constant
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c = 0.72981. Afterwards, the model performs a double boundary check during each iter-

ation: one on the velocity and other on the position. Finally, particles update their current

solution with the new one and, if it is the case, update their best previous solution.

Among the PSO extensions, there is the Fully-Informed Particle Swarm (FIPS)

by (KENNEDY; MENDES, 2006). The main difference is that FIPS’s particles use the

information from all of its neighbor particles to update their position, averaging over all

possibilities instead of relying only on the best ranked neighbor as the canonical PSO. We

can say that a FIPS particle receives more influence from its neighborhood than the other

models.

Recall that the MN is a class of socially-inspired networked problem-solving mod-

els. It was developed to test the impact of social network topology on a system’s perfor-

mance (ARAUJO; LAMB, 2008a). Memetic Networks are not exactly a model, but rather

a meta-model with guidelines for the design of an agent-based problem-solving system.

This model resembles the PSO model in the sense that both models make use of the social

network concept to structure communication, but the exchange of information is made

more explicit in MNs.

A MN makes use of the concept of memes (DAWKINS, 2006), in order to repre-

sent the basic units of information. Recall that its dynamics arise from three simple rules:

connection, aggregation and appropriation. The Memetic Networks model used here fol-

lows the version from (NOBLE; LAMB; ARAUJO, 2012) which in turn is inspired by

Araújo and Lamb’s version (ARAUJO; LAMB, 2008a). The Algorithm 8 depicts how a

memetic node updates its current state. Note that the appropriation rule does not depend

on any exogenous information and that the better ranked set of nodes include the node

itself.

Each node in a memenet performs aggregation by condensing a pool of better

ranked nodes. With this pool filled, the memetic node composes its solution by retrieving

randomly memes from it, one at a time, and conserving their respective positions. The

node’s own solution is added to the pool to guarantee that its solution is not lost. The

appropriation rule applies a small perturbation in order to introduce novel memes. As

memes flow through a social network, they are likely to change their original form and the

appropriation step incorporates such behavior, similarly to a mutation operator in Genetic

Algorithms. A system where individuals only aggregate information would converge to a

combination of the initial memes.

1This constant is originally part of the model
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Algorithm 8: UpdateState procedure of memetic node. Note that the ap-
propriation rule is purely endogenous and the better ranked set of nodes
include the node itself.

Input: node,Problemsize,Upperlimit,Lowerlimit

// Aggregation rule.

Better_Neighbors← RetrieveBetter(nodeNeighbors) ∪ node

for i← 1 to Problemsize do
Chosen_Neighbor← RandomChoose(Better_Neighbors)
nodeSolution[i]← Chosen_NeighborSolution[i]

// Appropriation rule.

for i← 1 to Problemsize do
With 1/Problemsizeprobability

nodeSolution[i]← Random(min = Lowerlimit,max = Upperlimit)

The Dynamic Search Range (DSR) model is an extension of the original Memetic

Networks model that includes a fundamental human trait: the individual ability to adapt to

the social context. The authors suggest the idea that individuals could be modeled as self-

adaptive regarding their social problem-solving strategies (NOBLE; LAMB; ARAUJO,

2012). The original idea stems from prior works that relate humans to motivated tacticians

(FISKE; TAYLOR, 1991; SCHWARZ, 1998). In the context of social problem-solving, it

represents an individual mechanism that balances exploration and exploitation during the

search process.

To perform this balance, the individual relies on network’s feedback information.

If a majority of its neighbors hold better solutions, then this focal node expands its search

range during the appropriation step. Hence, it can explore more of the search space in

hope of increasing the likelihood of finding a better solution than the status quo. Oth-

erwise, the node may gain little from intensifying the search around its relatively poor

solution. The DSR model basically allows nodes to count how many neighbors are better

than themselves and, with this information, adjust their search range during the appro-

priation step. Thus, the appropriation rule is not purely endogenous and is called R*

appropriation (NOBLE; LAMB; ARAUJO, 2012). The aggregation rule used here is the

same used in the canonical MN.

The R* appropriation embodies the idea of social adaptation through a mechanism

that controls the search range of a individual. This mechanism receives as input a ratio

called Social Relative Performance (SRP) before performing any operation on the memes.

The SRP is the ratio between the number of better ranked neighbors and the total number
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Algorithm 9: UpdateState procedure of memetic node employing a R*
appropriation (DSR). SRP stands for Social Relative Performance.

Input: node,Problemsize,Upperlimit,Lowerlimit

// Aggregation rule.

Better_Neighbors← RetrieveBetter(nodeNeighbors)

for i← 1 to Problemsize do
Chosen_Neighbor← RandomChoose(Better_Neighbors)
nodeSolution[i]← Chosen_NeighborSolution[i]

// R* Appropriation rule.

SRP ← Count(Better_Neighbors)/Count(nodeNeighbors)
∆← (|Upperlimit|+ |Lowerlimit|)/ 2× (SRP ) + α

for i← 1 to Problemsize do
With 1/Problemsizeprobability

nodeSolution[i]← Random(min = nodeSolution[i]−∆,max =
nodeSolution[i] + ∆)

of neighbors. An SRP of 1.0 means that all neighbors of the node possess better solutions

while a SRP of 0.0 means that no neighbor has a better solution. This value is multiplied

by half the maximum interval for each meme. The resulting value is the search range for

the node, being this interval centralized at the current meme so that the new solution is

within this range. The α constant represents the minimum interval that a node with SRP

of 0.0 is to search and for our experiments we used α as 0.0001 for all problems.

The more neighbors a node have, the more information it has to adjust its search

range. That is because the SRP can assume a larger set of values. This observation has

some parallel with real social systems in the sense that well connected nodes can make

more informed decisions if they pay attention to how their peers are faring.

Our experiments were composed by 1,000 independent trials for each configura-

tion (model, problem, population size, network topology), calculating individuals’ contri-

butions (global and local) and centrality values (degree, betweenness, closeness, eigenvec-

tor), normalized to the range [0, 1] as proposed by Freeman (1979) to allow comparison

of different networks sizes.

Pearson’s correlation was used to measure the degree of linear dependency be-

tween each contribution (global and local) and each centrality measure (degree, eigenvec-

tor, betweenness and closeness).

A correlation close to one indicates a strong relation between the individual cen-

trality and its contribution to their peers or to the whole system. On the other hand, a
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correlation value close to minus one shows a strong inverse correlation (the higher is the

contribution the more peripheral is the position of the individual in the network). Values

near zero for correlation denote a nonexistent or weak correlation between the metrics.

3.2 Results

Experimental results are summarized in Table 3.1 and Table 3.2. The former re-

gards global contribution, and the latter, local contribution. They show the averaged cor-

relation grouped by the model and then by the problem, for each centrality measure. Each

cell condenses three thousand experimental trials, being a thousand for each size of pop-

ulation.

Each pair composed by a model and a problem presented very distinct results.

Nevertheless, we observed high positive correlations between local contribution and every

centrality measure in the MN data. In this case, closeness was slightly better to estimate

local contribution.

The DSR model showed high positive correlation between global contribution and

every centrality measure, being the degree centrality slightly higher than the others. The

PSO model presented a moderate positive correlation between both kinds of contribution

and all measures. The FIPS model had a weak negative correlation with all the measures,

meaning that a central node is likely to contribute less than a peripheral node.

In addition, while DSR and MN did not present big differences in correlation

values between different problems, a central position seems more strongly correlated in

FIPS and PSO in the Sphere (F5) and the Rosenbrock (F4) problems. Moreover, standard

deviations for FIPS correlation values are very high (close to 0.3 on most cases) while

all other models are relatively low (close to 0.1), showing a strong noise and randomness

inherent to FIPS model regarding individual’s network position.

Another factor that can be highlighted is that local and global contribution, as we

defined, resulted in diverse correlation values with the centrality measures, especially for

MN and DSR models, indicating that it plays an important role on the analysis.

The strong negative correlations shown by FIPS model (especially with F5 prob-

lem, in both contributions measures) was an unexpected result. We hypothesize this hap-

pens because central FIPS particles receive high amounts of influence, impairing any

possible convergence behavior. More importantly, it points that there is a strong depen-

dence between the problems and how each individual solves it. Such strong dependence
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calls attention to hasty associations of centrality with individual success.

The results also call attention to the fact that very similar models, the MN and

the DSR, presented distinct correlations for different kinds of contribution: centrality

(all measures) is useful to predict the MN individual ratio of local contribution while

in DSR it is useful to predict individual likelihood of global contribution. Central DSR

nodes have more sources of information to balance their own exploration/exploitation

rate, i.e. their problem-solving behavior, thus they had an advantage when in central

positions. MN nodes being unable to change their exploration/exploitation balance, fared

better locally only. It may be the case that when in central positions, thus in a high

information flow position2, a solver must be flexible to adapt its behavior and careful to

select what information must be useful to achieve high global contribution rates. However,

further investigation is required to confirm this hypothesis.

We also tested whether centrality really accounted for differences in contribution

rates. To do so, we measured the standard deviations of contributions of a control topol-

ogy (Grid) and compared to the centralized networks generated using the Barabási-Albert

model (NBA). Table 3.3 shows the comparison. A small standard deviation means that

contribution is uniformly distributed across the population at the end of the solving pro-

cess.

Each cell of Table 3.3 presents an average over three thousand trials (a thousand

for each size of population), except the third and sixth valued columns, which represent

how much (percentage) is the NBA’s standard deviation value higher than that of the Grid.

The Grid presented lower standard deviation than the NBA topology whenever

there was a high discrepancy between central nodes contribution and peripheral ones, and

also, the correlation values between centrality measures and the individuals’ contribution

are more extreme (closer to -1.0 or 1.0).

The opposite is also true, when the disparity amid the networks standard deviation

is low, correlation values between centrality measures and individuals’ contribution are

closer to zero — especially when NBA network standard deviation values are not more

than 50% of the ones shown by the Grid network. It also shows that whenever there

is a different behavior (being it an advantage or disadvantage) caused by individuals’

positions, centrality measures are good to predict which individuals will contribute more.

Figure 3.2 depicts three trials samples taken from our experiments of different cor-

relation values. The figure reinforces that centrality can be negatively correlated, weakly

2Here information is meant in the broad sense, it can regarded as pieces of solution themselves as well
as information about how neighbors solvers are faring.
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correlated and also positively correlated with individual contribution. These trials were

picked to show extreme results and the variations found in our experimental data regard-

ing centrality prediction of success in social problem-solving.

Figure 3.2: Sample trials depicting a close to zero correlation (FIPS, F4, population size
144), a negative correlation (-0.72, FIPS, F1, population size 144) and a positive correla-
tion (0.79, DSR, F5, population size 144) respectively top-down.
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In summary, specific cases demonstrate the disparity among different models and

tell us that individual’s traits and problem’s features are more relevant than the network

flow itself. Furthermore, this is a first and important step to identify how and when cen-

trality is relevant and can be successful applied in social problem-solving contexts.

3.3 Discussion

This main objective of the above was to investigate how centrality correlates with

individual performance in social problem-solving systems. In order to do so we performed

a series of experiments with agent-based models. These experiments sought to compare

these models and understand the relationship between different centrality measures and

individual performance.

The overall results present some of the difficulties in generalizing a centrality mea-

sure for very distinct problems and models, reinforcing that each kind of individual be-
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havior and problem being solved are important factors to determine which individual will

take more advantage from its position in the network. Sometimes central individuals get

a substantial advantage over the others, but that cannot be assumed true for all the cases

(we show one case where peripheral positions are advantageous).

In addition, we have shown that there is not a big difference between distinct cen-

trality measures, probably because larger variations caused by the models and problems

to overcome the measures variations and/or the power law network generation method

excludes topologies of networks that will present larger divergence among centrality mea-

sures.

When nodes are able to systematically exploit their network positions, we ob-

served that there is a higher correlation between centrality and individual’s contribution.

In this case, we observed that some measures have significantly better correlations than

others. This suggests that one should not rely on only one centrality measure when inves-

tigating individual’s performance in social problem-solving systems. We also provided

evidence that central nodes tend to “collaborate” more with their neighbors, but that did

not necessarily translated into higher global contribution (with the exception of the DSR

model).
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Table 3.1: Pearson’s Correlation Between Individual Global Contribution and Centrality.

Centrality

Model F Betweeness Closeness Degree Eigenvector

MN

F1 0.38 0.40 0.40 0.40
F2 0.37 0.39 0.39 0.39
F3 0.45 0.47 0.48 0.48
F4 0.33 0.35 0.35 0.36
F5 0.38 0.39 0.40 0.40

Mean 0.38 0.40 0.40 0.41
Std.Dev. 0.0398 0.0392 0.0417 0.0391

DSR

F1 0.74 0.71 0.78 0.73
F2 0.75 0.72 0.78 0.74
F3 0.69 0.67 0.73 0.68
F4 0.76 0.73 0.80 0.75
F5 0.75 0.72 0.78 0.74

Mean 0.74 0.71 0.78 0.73
Std. Dev. 0.0240 0.0201 0.0219 0.0243

PSO

F1 0.45 0.47 0.48 0.48
F2 0.44 0.46 0.47 0.47
F3 0.38 0.39 0.40 0.40
F4 0.62 0.65 0.66 0.67
F5 0.73 0.77 0.78 0.78

Mean 0.52 0.55 0.56 0.56
Std. Dev. 0.1324 0.1404 0.1414 0.1431

FIPS

F1 0.43 0.22 0.36 0.33
F2 0.25 0.03 0.17 0.15
F3 -0.29 -0.46 -0.34 -0.39
F4 -0.20 -0.46 -0.29 -0.33
F5 -0.44 -0.72 -0.54 -0.58

Mean -0.05 -0.28 -0.13 -0.16
Std. Dev. 0.3304 0.3459 0.3369 0.3457
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Table 3.2: Pearson’s Correlation Between Individual Local Contribution and Centrality.

Centrality

Model F Betweeness Closeness Degree Eigenvector

MN

F1 0.72 0.82 0.79 0.81
F2 0.72 0.82 0.79 0.81
F3 0.76 0.85 0.83 0.83
F4 0.68 0.79 0.75 0.77
F5 0.72 0.83 0.79 0.81

Mean 0.72 0.82 0.79 0.80
Std. Dev. 0.0239 0.0194 0.0240 0.0203

DSR

F1 0.12 0.14 0.14 0.13
F2 0.09 0.11 0.10 0.10
F3 0.06 0.09 0.08 0.08
F4 0.10 0.13 0.12 0.12
F5 0.12 0.14 0.14 0.13

Mean 0.10 0.12 0.12 0.11
Std. Dev. 0.0230 0.0193 0.0223 0.0208

PSO

F1 0.23 0.23 0.24 0.23
F2 0.22 0.22 0.23 0.23
F3 0.24 0.27 0.25 0.27
F4 0.62 0.65 0.66 0.67
F5 0.74 0.78 0.80 0.80

Mean 0.41 0.43 0.43 0.44
Std. Dev. 0.2257 0.2367 0.2436 0.2428

FIPS

F1 0.02 -0.14 0.01 -0.09
F2 -0.03 -0.19 -0.04 -0.13
F3 -0.15 -0.32 -0.17 -0.25
F4 -0.20 -0.36 -0.22 -0.31
F5 -0.41 -0.70 -0.51 -0.57

Mean -0.15 -0.34 -0.19 -0.27
Std. Dev. 0.1511 0.1971 0.1824 0.1675
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Table 3.3: Averaged Standard Deviation of Individuals’ Contributions.

Global Contribution Local Contribution

Model F Grid NBA % Grid NBA %

MN

F1 1.10 1.26 14.25 13.62 33.32 144.68
F2 1.09 1.25 14.66 13.69 33.35 143.55
F3 1.21 1.45 19.34 13.16 37.24 182.90
F4 1.10 1.21 10.67 14.06 29.61 110.66
F5 1.08 1.25 15.26 13.69 33.31 143.37

DSR

F1 2.20 3.99 81.82 23.05 25.24 9.50
F2 2.23 4.07 82.51 24.89 26.84 7.84
F3 2.12 3.49 64.55 21.04 24.08 14.45
F4 2.42 4.52 86.43 26.61 28.25 6.16
F5 2.25 4.11 82.54 23.62 25.85 9.46

PSO

F1 3.62 3.84 6.08 45.58 40.08 -12.05
F2 3.90 4.15 6.54 40.54 36.29 -10.49
F3 7.23 6.79 -5.98 82.10 58.55 -28.68
F4 16.75 21.77 29.97 43.81 54.97 25.47
F5 9.60 16.28 69.51 25.87 42.87 65.70

FIPS

F1 2.45 3.91 59.61 64.00 137.69 115.13
F2 3.61 5.79 60.68 71.74 129.81 80.96
F3 3.98 7.48 87.91 127.48 185.36 45.40
F4 6.02 16.37 171.91 53.31 114.53 114.84
F5 10.79 50.28 365.80 11.46 56.98 397.15
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4 HETEROGENEOUS MODELS COMPUTATIONAL OF SOCIAL PROBLEM-

SOLVING

Experiments with human social problem-solving showed that “results of both ar-

tificial simulations and artificial experiments should be generalized with caution” (MA-

SON; WATTS, 2012). The main argument in favor of this assertion was the empirically

verified richness and complexity of human problem-solving behavior that current artifi-

cial models of social problem-solving lacked. The existence of this knowledge gap may

jeopardize results from long standing computational models.

When comparing humans collaboratively solving a problem in a networked ex-

periment and a previous model of human problem-solving, it became clear that recent

models such as LF model1 at moment are “insufficiently sophisticated and heterogeneous

to reflect real human responses to changing circumstances”.

Considering such observations, it became clear that there was an urgent need to

study diversity in artificial social problem-solving systems. Such feature is present in real

human groups and needed to be integrated into the current models despite the increased

complexity brought about.

Following this line of thought, (NOBLE et al., 2015a) designed a study where

the simple and homogeneous LF model was exchanged by a diverse and heterogeneous

model. Their main objective was to understand the effects that such feature would be

bring to both the individual level, or micro, and the collective level, or macro.

The main questions tackled in (NOBLE et al., 2015a) work were:

1. What is the interplay among (1) collective diversity (heterogeneity), (2) dynamic

strategic behavior, and (3) network efficiency (in the form of network centralization)

2. Which of these variables impact more in the collective outcome: diversity, network

centralization, or dynamic strategies.

3. What happens when exploration and exploitation are mutually exclusive?

The methods and findings resulting from this study are described in the sequel.

1The Lazer-Friedman model (LAZER; FRIEDMAN, 2007)
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4.1 Methods

The heterogeneous model builds upon the one employed by Mason and Watts

(MASON; WATTS, 2012), which in turn draws inspiration from (LAZER; FRIEDMAN,

2007). The variation in the Mason and Watts’ model was derived mainly to support het-

erogeneity and dynamicity in the population, enabling different agents to have different

search radii (heterogeneity) and also enabling them to change their radii during execu-

tion (dynamicity). The agents are tasked with finding the maximum output value from a

bi-dimensional real valued function. Therefore, problem-solving was framed as a maxi-

mization problem.

The search space used in this study derives from previous works in early works in

computer graphics whose focus was to generate procedurally noise as a modeling tech-

nique of realistic landscapes (PERLIN, 1985). This idea can be adapted to generate a

combination noise plus signal where the problem is therefore finding the coordinates of

the signal among all the noise. The bigger the signal, the easier it gets to solve it since

the signal becomes unambiguous. Framing problem-solving through the use of a proce-

dural noise generation function plus adding a signal to noise was first proposed by Mason

and Watts (MASON; WATTS, 2012) and is replicated here. The signal in this case, was

modeled as a single bivariate Gaussian as well.

The size of the search spaces was fixed at 200 × 200 integer points - i.e. each

solution was a pair (x, y) where x and y are integers within the range [0, 200). Each

combination of (x, y) represented a solution which has a respective score and the problem

consists basically of finding the pair that maximizes the function output, ie. the signal.

The signal has score of a 100.0. Successful trials are the ones in which any agent achieve

a score equal to or higher than 95.0. Moreover, trials where any agent’s initial score was

higher than or equal to 55.0 were discarded in order to avoid the case where an agent is

positioned too close to the signal.

As in (MASON; WATTS, 2012), there were 3 parameters that need to be set to

generate the search space. Two parameters (ω and $) described how “rugged” the re-

sulting search space will be and one (σ) described how outspread the signal will be. The

signal coordinates are generated randomly for each new instance generated. The parame-

ters to generate problem instances are: ω = [2, 3, 4, 5, 6], σ = 9,and persistence parameter

$ = 0.7. Figure 4.1 depicts a sample search space generated using these parameters.

The size of the search spaces is fixed at 200×200 integer points - i.e. each solution
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is a pair (x, y) where x and y are integers within the range [0, 200). Each combination of

(x, y) represents a solution which has a respective score and the problem consists basically

of finding the pair that maximizes the function output. For each independent trial, a new

random instance was generated. A total of a 1000 independent trials were simulated.

Moreover, our search space was larger than the search space employed by Mason & Watts

that is of 128×128. The peak (best solution) has score of a 100.0. Successful trials are

the ones in which any agent achieve a score equal to or higher than 95.0. Moreover, we

discarded trials where any agent’s initial score score was higher than or equal to 55.0 in

order to avoid the case where an agent is positioned too close to the peak (best solution).

Figure 4.1: Sample problem instance: The peak is represented by the light green region
while the noise is represented in darker green.
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The precise meaning of the terms mentioned here and the details of the function

solved by the agents are detailed below.

Search Radius: The search radius is an agent parameter responsible for establish-

ing the boundaries of that agent’s search space. Each agent’s search space is bounded by

a circle whose center is determined by the coordinates of that agent’s current best solution

and whose radius is that particular agent’s search radius. It is only within the boundaries

of this circle that the agent can search for new solutions in the exploration phase.

Myopic Search: A myopic search is a task performed by agents in the Lazer-Friedman

(LF) model. It consists of selecting a point in the parameter space respecting the bound-

aries determined by the search radius.

Lazer-Friedman Model: (LAZER; FRIEDMAN, 2007) is a model of social problem-

solving in which agents are connected according to a particular network topology. The

problem is solved after a number of iterations. At each iteration, every agent updates its

own state; if the agent in question (focal agent) holds the best solution it performs myopic
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search; otherwise it copies the solution from the best neighbor agent.

Heterogeneity (diversity): An agent population is heterogeneous when agents have dif-

ferent search radii. A population is homogeneous when all agents have the same search

radii.

Dynamicity: When agents are able to change their search radius when solving a problem,

they are dynamic. In a static population all agents are endowed with predetermined search

radii throughout the entire problem-solving task.

In a myopic search, agents select a point in the parameter space respecting the

boundaries determined by their search radii. As our results will show, this approach can

be problematic: the fact that some agents have bigger circles than others puts the second

group in an unfair disadvantage towards the first one, as its agents have their search space

reduced in comparison. The problem with this disadvantage is that it generates a bias

toward homogeneous populations of high-ability agents and against populations of diverse

ones. It is always possible for a homogeneous population to outperform a heterogeneous

one - the only necessary condition is that the global radius of the homogeneous population

is greater than every single radii of the heterogeneous one.

This conclusion is logical, but is nevertheless inconsistent with the generally ac-

cepted idea that, at least to some extent, diversity trumps ability. It is particularly incon-

sistent with the findings of (HONG; PAGE, 2004) who show that high ability agents are

often outperformed by diverse ones. Naturally, the inconsistency is not due to the fact that

diversity actually does not trump ability - it does - but rather to the fact that using search

radii to determine circular search spaces creates a bias against heterogeneous populations.

This happens because circular search spaces fail to include the exploration-exploitation

dichotomy in the problem-solving task, as agents with larger circles are just as capable of

exploiting their current solutions as agents with smaller circles, but additionally capable of

exploring new solutions in a larger area. In short, although we can create heterogeneous

populations by diversifying their radii, we cannot create a heterogeneous population in

which agents have varied inclinations towards exploration and exploitation - we can only

diversify their search.

A strategy to solve this problem is to restrict the search space of exploration-

inclined agents to outside their close neighborhood, making it impossible for them to

exploit their current solutions. Exploitation-inclined agents should also have their search

space restricted, but this time to include only their close neighborhood. This strategy

can be implemented by replacing the circles in the myopic search by rings. Thus, when
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Algorithm 10: General algorithm structure used by all models.
Input : Populationsize, stop_condition, Problemsize

Output: Solutionbest
// Initialize the population with random solutions.

1 Population← InitPopulation (Populationsize,Problemsize)

// Establish social ties among individuals.

2 GenerateNetwork (Population)

3 repeat
4 foreach node ∈ Population do

// Execute the model search procedures.

5 NextState (node,Problemsize)

6 foreach node ∈ Population do
// Decide to accept or not the new state.

7 UpdateState (node,Problemsize)

until stop_condition

8 Solutionbest←RetrieveBestSolution (Population)
9 return Solutionbest

we enlarge a particular agent’s search radius, we are not only enlarging the ring’s outer

circle but the ring’s inner circle as well. This forces this agent to explore in a region that

becomes increasingly distant of the agent’s current solution as its search radius grows. By

manipulating an agent’s search radius, we can place this agent wherever we want in the

exploration-exploitation continuum. We refer to our model as theRing Model.

In our experiments, we tested the Mason & Watts instance of the LF model (MA-

SON; WATTS, 2012) as well as our proposed Ring Model and its variations. Although

these variations implement different logical rules to solve a problem, their algorithmic

structure is the same - as described in Algorithm 10.

Each agent is instantiated with a valid solution (line 1) then it is embedded in a

social network (line 2). Each social tie establishes that an agent will perform bidirectional

communication with another agent to whom it is connected. After these two stages, each

agent performs the search. The agent samples a new solution according to the procedure

NextState (line 5). This procedure is where each model implements its own search rules

(i.e. if the sampling will be done within a full circle or within a ring shaped area). If the

new solution improves the current one, then the agent accepts it, otherwise it will hold the

old solution (line 7). An iteration is complete after all agents have their search turn. The

process is repeated until there is no more iterations to be done. We limited the number of

iterations to one hundred.

Algorithm 11 details how each individual executes the NextState procedure in our
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Algorithm 11: Standard Ring Model procedure.

1 if node solution <max(Neigbors′solutions) then
// Local search procedure (or myopic search).

2 repeat
3 r← Random (low = max(node radius − 1, 0) high = radius)
4 angle← Random (low = 0, high = 2 ∗ π)
5 x← RandomInt (r∗ cos(angle)+node x)
6 y← RandomInt (r∗ sin(angle)+node y)

until Until a valid solution is found
else

// Copy procedure.

7 (x,y)← RetrieveBestSolution (node Neighbors)

8 node nextSolution← (x,y)

Ring Model.

The first step is to detect if the solver (agent) holds the best solution among its

neighbors (line 1). If this is the case, then the agent performs the myopic search proce-

dure, that is randomly selecting the coordinates of the next solution to be sampled. The

coordinates in lines 5 and 6 are bound by a ring shaped area with a constant radius and

constant thickness (lines 2 to 6). If the agent is not among the best in its neighborhood,

the agent copies both coordinates from her neighbor (line 7). A solution is valid if it is

within the search space coordinates.

The Ring Model can be divided into four types: Static Homogeneous — All

agents have the same fixed radius throughout the search process. Static Heterogeneous

— Though fixed, there may be diverse radii within the same population. Dynamic Social

— Agents copy not only their neighbor’s solutions, but their radius at each iteration.

Dynamic Random — At each iteration, the agent chooses a random radius from a limited

pool of choices.

4.2 Dissociating Exploitation from Exploration

One of our aims is to compare the effects of exploration and exploitation in agent

behaviors in social problem-solving systems. We also investigate when such effects are

mutually exclusive. This means that we consider the effects of using current information

to solve a problem, while keeping or not the chance of finding rather novel solutions.

In this experiment, we compare the LF model instantiated by (MASON; WATTS,

2012), with our proposed Ring Model. The probability of finding the peak for both mod-
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els is shown in Figures 4.2a and 4.2b. The main parameters used are the radius and the

population size. We considered the first 32 rounds for this experiment and arranged indi-

viduals in a bi-dimensional periodic grid network where all agents have the same degree

and are at the same average distance from any other node. By controlling the network,

we remove any effect that a network position may have on the agent behavior (KEARNS;

SURI; MONTFORT, 2006; JUDD; KEARNS; VOROBEYCHIK, 2010). Vertical bars

represent 99% confidence intervals using the Wilson score interval method.

Figure 4.2: Probability of finding the peak for various radius sizes in our Ring Model and
in the Mason & Watts model.
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(b) 64 agents.

Both models presented different behaviors when individuals have bigger radii.

The optimal behavior, w.r.t. radius size, is around 8 (4% of the grid’s size) in the Ring

Model, but in the Mason & Watts model, the bigger the radius the better. Thus, even

if these models do not significantly differ for radius equal to or less than 8, for bigger

radii they clearly depart. This trend is valid for both population sizes. Therefore, when

one has a homogeneous agents’ population that have traits associated with exploratory

behavior, one must pay attention to which kind of exploratory behavior the agents employ.

If exploration and exploitation are packed together (as in the Mason & Watts’ models),

the highest the exploratory bias, the better. However, if this is not the case, as it is in

the Ring Model, that exploratory and exploitative behaviors co-exist separately; one must

fine tune the agent group to the optimal strategy. We were able to reproduce the effect

we described before in the Mason & Watts’s version of the LF model: as the individual

radius increased, so did the collective performance.
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4.3 Diversity, Strategy and Network Efficiency

Until now, we experimented with the Ring Model and a homogeneous population

where every agent held the same radius during the entire solving process. From now on,

we will incorporate diversity into the Ring Model, with both static and dynamic diversity.

Static diversity is characterized by agents starting with different radii and holding such

radii until the end of the simulation, while in dynamic diversity they start with different

radii, but can change their own radius during the simulation. Recall that the Ring Model

with static diversity is known as the Static Heterogeneous Model. In this model, agents

start with a radius of 4, 8, 16, 24, or 32 units. Each radius has the same chance of being

chosen (the distribution is uniform).

Dynamic diversity invites an interesting question: how can strategies be changed

on an individual basis? To answer this question we designed two versions of the Ring

Model with dynamic diversity. The first is called the Social Model, where agents copy

not only the solution of their best neighbor, but also their radius at each iteration; the

second one is the Random Model, where agents always change their radius randomly

after performing search procedures. In both models, agents start with a random radius.

In the random model, the radii to be chosen are from the same radii pool used in the

Static Heterogeneous model. Copy is considered fundamental in social learning systems

(RENDELL et al., 2010).

Figure 4.3 depicts the average score of the population over all trials. We consider

4 models: (1) the homogeneous Ring Model with radius 8, (2) the Static Heterogeneous

Model, (3) the Random Model, and (4) the Social Model. The average score includes

all trials, whether or not the trial is successful. We isolated the effect of the individual

position in the network by using a bi-dimensional periodic grid topology.

For both population sizes, we observed that the Random Model and the Heteroge-

neous Model presented the same average behavior. The difference between the Hetero-

geneous Model and the Random Model is not significant for population sizes of 16 and

64 (p=0.2 and p=0.9, respectively). Thus, random dynamic diversity does not statistically

differ from static diversity in this context. We can also see that the Social Model never

outperformed the Static Heterogeneous, nor the Random Model; it is not significantly bet-

ter than the Static Homogeneous model for a bigger population (p=0.57). Even if agents

are dynamic, and diverse, the Social Model is not better than the Static Homogeneous

Model. When we remove the influence of network topology our results suggest that di-
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Figure 4.3: Average scores over time for different population sizes and models.
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(b) 64 agents.

versity could be more relevant than individual strategy dynamics which supports results

of (JUDD; KEARNS; VOROBEYCHIK, 2010).

We then test how network efficiency impacts each model. We define network

efficiency the as the speed that solutions flow through the network, which is related to

the average shortest path between any two network nodes (MASON; WATTS, 2012). An

efficient network has small average path lengths while an inefficient has large ones; i.e. an

efficient network can be seen as a decentralized network where a good solution spreads

faster on average when compared to a centralized network where the average distance

between peripheral and central agents tend to be higher. The inefficient (centralized)

network was built using the Barabàsi’s generative model1999. This model produces a

network topology with a power-law distribution that guarantees a centralization of the

network as a minority of agents will hold most connections. The periodic grid topology

was used as the efficient (decentralized) network.

Table 4.1 presents data from the experiments for all models in efficient and ineffi-

cient networks. Values between parenthesis represent 99% confidence interval using the

Wilson score. We used the population size 64. We observe that a small population of 16

agents would present a less clear difference between an efficient and an inefficient net-

work. We measured these probabilities after the 32nd round, therefore if any agent found

the best solution (peak), we considered it a successful trial.

The difference among the above models was much stronger and clear than the

difference regarding network efficiency. With the exception of the Social Model, all

models performed slightly better in efficient (decentralized) networks when compared

to inefficient (centralized) networks. However, the likelihood of finding the best solution
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Table 4.1: Probabilities of finding the peak for efficient (decentralized) and inefficient
(centralized) networks.

Model Network

Efficient Inefficient

Homogeneous radius 8 0.41 (± 0.06) 0.33 (± 0.06)
Homogeneous radius 16 0.15 (± 0.04) 0.13 (± 0.04)
Homogeneous radius 32 0.01 (± 0.01) 0.03 (± 0.02)
Static Heterogeneous 0.62 (± 0.06) 0.59 (± 0.06)
Dynamic Random 0.62 (± 0.06) 0.54 (± 0.06)
Dynamic Social 0.23 (± 0.05) 0.27 (± 0.05)

varied considerably among the models. The Dynamic Random and the Static Heteroge-

neous models presented the highest odds of finding the solution. The small difference

between these models is evidence that static diversity is as effective as dynamic diversity.

Among the Static Homogeneous versions, the Ring Model with radius 8 was the best

ranked model in both networks. In this case, the difference between network efficiency

accounted for approximately 20%, while between the Ring Model with radius 16, the dif-

ference was approximately 64%. The model with radius 32 presented the worst results for

both networks. The Social Model was the only one that took advantage of an inefficient

network; its performance increased by approximately 17% when compared to the efficient

network. These results provide evidence - by means of artificial agents simulations - that

individual behavior may have a stronger influence in the collective outcome than network

topologies themselves. This evidence, as previous researchers have shown, reinforce that

“the intrinsic behavioral traits of human actors may play a stronger role in their relative

influence than purely structural properties of their network position” (JUDD; KEARNS;

VOROBEYCHIK, 2010).

After that, we tested if the most central agent would reach the best solution earlier

than the median agent or the least central one. In order to do so, we retrieved the round that

each of the above agents found the solution, from all independent trials. One could expect

central agents to find the best solution before the peripheral ones. Results are depicted in

Figure 4.4. We used betweenness (BORGATTI; EVERETT, 2006) as a centrality metric

and used the Barabàsi-Albert (BARABáSI; ALBERT, 1999) generative model to generate

the networks. Results are depicted in Figure 4.4.

For this problem, an agent’s individual position in a network was irrelevant. On

average, the least central agent, the median and the most central agent achieved the best

solutions at the same round as seen in Figure 4.4.
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Figure 4.4: Rounds before finding the peak (solution) for the most, median, and least
central node in: (a) Static Homogeneous with radius 8, and the (b) Dynamic Random
model.

Most Median Least
0

5

10

15

20

25

30

Ro
un

ds
 B

ef
or

e 
Fi

nd
in

g 
Pe

ak

(a) Ring 8 model.
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(b) Random model

4.4 Discussion

In homogeneous populations, all agents are restricted to a fixed search radius. As

a result, all of them see the search space through the lens of exactly the same ring. For

example, a possible setup for an homogeneous population consists of all agents having

a search ring delimited by an outer circle of radius 5 and an inner circle of radius 1.

We could also envision a setup in which all agents have an outer radius of 10 and an

inner radius of 8.7. Although the rings used by agents in both examples would have

approximately the same area (24π and 24.3π), they would render two completely different

strategies. The first setup would render the population highly exploitation-oriented, as

each agent would be able to see its surroundings in great detail, while not being granted

access to further areas which would usually be searched by exploration-oriented agents.

In contrast, the second setup above (radius 10 and inner radius of 8.7) would render the

population highly exploration-oriented, being unable to exploit their current solution and

thus would be forced to search for other, far away solutions.

The search space we used in our experiments was a bi-dimensional Gaussian func-

tion with additional random noise. Let us consider an one-dimensional analogue of this

search space. For simplicity, let us also assume we have a sinusoidal wave of fixed fre-

quency instead of random noise. This search space has a global maximum near x = 0,

but several well-distributed local maxima. As a result, agents that rely solely on exploita-

tion will have a hard time finding the global maximum, often getting stuck at local ones.

As each agent’s ring is limited (agents cannot see through the ring’s cavity), agents will
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sometimes be unable to grasp the general behavior of the curve in a given point, and

would refuse to accept a solution that would bring them closer to the global maximum,

even though they can see it with their annular vision.

In a homogeneous population, the situation described above is bound to happen

very often. As all agents have the same search radius, the population as a whole will

not be able to overcome the pitfalls of their particular search ring, with its agents finding

themselves stuck on local maxima a lot more often than they should. Conversely, in a

heterogeneous population, the diversity of shapes agents’ rings can take assures that no

pitfall is more common than any other. As a result, the probability that at least one search

ring will meet the necessary criteria to get its agent climbing the search space without

getting stuck in any point is maximized. Therefore the social dynamics of the agent

model can then spread this agent’s solution throughout the entire population.
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5 CONCLUSIONS

There is a plethora of arguments both in favor and against diversity in social col-

laboration and social problem-solving. In a recent meta-analysis (EAGLY, 2016), it was

observed that the enhancement in performance brought about by a diverse group of hu-

man subjects can have limited or, at least, negligible effect. In addition, current empirical

results are mixed. It is advised, therefore, that future researchers “conduct research to

identify the conditions under which the effects of diversity are positive or negative” (see

Loc. cit.). Even when dealing with conflicting agendas, there is a call for an improved

understanding of the effects of diversity before the implementation of policies that favor

such a predicate. Despite years of research by organizational scientists, psychologists,

sociologists, and economists, open questions regarding diversity are abound.

The main topic throughout this thesis was the investigation of how different as-

pects of diversity impacted social problem-solving. Under this topic, we contributed with

the following results and analyses:

The feasibility of a general framework for computational social problem-solving: We

developed a meta-model which allowed to blend seamlessly two different social

problem-solving models — Memetic Networks and PSO — into the same popula-

tion to collaboratively solve the same problem. In most problem cases tested, the

heterogeneous population performed as good as the best model, sometimes even

outperforming it and converging to the best solution.

The impact of centrality in computational social problem-solving: Can the individual

network position in a social problem-solving system be decisive in the solver’s per-

formance? We answered this question with a positive answer and therefore con-

cluded that the individual network position does indeed represents a form of het-

erogeneity. However, results were not clearcut, different models had different re-

lationships with different centrality measures. Generalizing results in this setting

seemed to be more challenging than expected.

Heterogeneous models of computational problem-solving: Under certain conditions —

especially regarding how exploitation of the search space is modeled within each

individual — heterogeneous systems could achieve better results than their homo-

geneous counterparts. Results seemed to be sensitive to project modeling decisions

and this results begs to more deeper investigations on our current models of social

problem-solving.



57

When integrated, these results point out that there are many complex aspects of

diversity in social problem-solving that still need further investigation. Therefore, we are

far from completely understand this problem. Fortunately, there is a current trend in Social

Computing that seeks to provide a rigorous mathematical foundation to Social Computing

(CHEN et al., 2016). This foundation can provide formal definitions about what problems

are interested to investigated, how one can model a diverse set of solvers and yet derive

general results, among other contributions. Whether results from one system could be

generalized to another system are still open endeavors in Social Computing (KEARNS,

2012; CHEN et al., 2016).
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APPENDIX A — RESUMO DA TESE

Sabe-se que humanos podem resolver problemas complexos em pouco tempo com

respostas quase ótimas (KEARNS, 2012; CHEN et al., 2016). Identificar o porquê deste

fato ainda é uma questão em aberto que requer a integração de diferentes áreas do conhec-

imento humano. A Computação Social busca responder esta e outras questões pertinentes

a forma com que as pessoas resolvem problemas colaborativamente.

Uma forma de expandir a compreensão sobre o fenômeno social é através da

experimentação com sistemas sociais computacionais. Estes sistemas são construídos

através da modelagem computacional do ambiente social humano (LAZER et al., 2009;

MASON; WATTS, 2012). Modelos computacionais não substituem o estudo de sistemas

sociais reais; eles podem, sim, informar direções, variáveis e novas perspectivas que aux-

iliem no estudo e desenvolvimento de experimentos em condições reais. Além disso,

sistemas computacionais permitem o teste rápido de hipóteses em ambientes controlados

(MACY; FLACHE, 2009).

Entretanto, existem desafios no uso de sistemas computacionais sociais. Sistemas

simples podem se comportar de forma imprevisível após algumas iterações assim como

sistemas mais sofisticados podem ter resultados difíceis de serem generalizados. Entender

as características destes sistemas e os padrões que governam a comunicação é fundamen-

tal para o desenvolvimento de sistemas mais sofisticados e precisos (NEWELL; SIMON,

1972; MARCH, 1991; BARABáSI; ALBERT, 1999; KEARNS; SURI; MONTFORT,

2006; HOGG; HUBERMAN, 2008; LAZER et al., 2009; LAVIE; STETTNER; TUSH-

MAN, 2010; FLACHE; MACY, 2011).

Este resumo da tese está organizado da seguinte forma: a seção A.1 apresenta

os objetivos, a seção A.2 descreve um modelo computacional geral de resolução social

de problemas, a seção A.3 apresenta os resultados da investigação sobre a relevância da

centralidade na resolução social de problemas, a seção A.4 aborda sistemas heterogêneos

de resolução de problemas e a seção A.5 faz uma discussão geral dos principais resultados

em cada investigação. Com exceção da seção de conclusões, cada uma das seções a seguir

representa uma investigação autocontida que resultou em um trabalho científico. Cada

trabalho foi publicado em conferências ligadas ao problema abordado conforme descrito

na tabela 1.1.
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A.1 Principais Objetivos e Trabalhos Publicados

No contexto desta tese, resolução social de problemas pode ser definida como

a atividade onde indivíduos, humanos ou computacionais, trocam informações para re-

solver um mesmo problema de forma que eles podem resolver o problema em um tempo

menor ou então com uma resposta melhor do que o caso onde cada indivíduo resolveria de

forma isolada e independente o problema em questão. Esta tese está focada na extensão

e investigação de modelos e sistemas computacionais de resolução social de problemas.

Mais especificamente, os dois principais objetivos desta tese são os seguintes:

1. Encontrar combinações paramétricas que favoreçam o processo de resolução social

de problemas.

2. Otimizar o uso de recursos (tempo, conexões de rede, etc) a partir de um sistema

social computacional já existente.

Parâmetros podem incluir o problema em si a ser resolvido, a dificuldade1 das

instâncias do problema, as estratégias dos indivíduos, a quão conectada é a estrutura de

comunicação, o número de indivíduos, etc.

A.2 Estudo de Viabilidade de um Modelo Geral de Resolução Social de Problemas

Existem inúmeros modelos de resolução social de problemas. A concepção de

modelos inspirados nos mais diversos fenômenos naturais extrapolou a nossa habilidade

em saber de todos, muitos menos entendê-los (TALBI, 2002; SÖRENSEN, 2015). Con-

siderando esta dificuldade, surge a pergunta se é viável combinar indivíduos de diferentes

modelos em apenas um modelo de forma que eles possam colaborar entre si de forma

transparente. Além disso, supondo que seja viável, o modelo resultante apresenta algum

benefício?

Foram usados três modelos originais para testar a viabilidade de um modelo het-

erogêneo:

MN Modelo de Redes Meméticas inspirado na forma com que humanos colaborativa-

mente resolvem problemas (ARAUJO; LAMB, 2008a; ARAUJO; LAMB, 2008b).

1 A dificuldade do problema não é necessariamente a ideia de complexidade algorítmica já que o prob-
lema é resolvido de forma distribuída e pode depender de variáveis endógenas ao sistema todo, como o tipo
de informação trocada
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Este modelos pode ser construído a partir de três regras que descrevem o compor-

tamento dos indivíduos e como eles trocam informações.

PSO Modelo de Enxame de Partículas inspirado em sistemas naturais coletivos como

enxames de insetos ou bandos de aves procurando alimentos (KENNEDY, 1998;

EBERHART; SHI, 2000; POLI; KENNEDY; BLACKWELL, 2007). Usa o con-

ceito de velocidade das partículas para dar origem ao sistema coletivo.

FIPS Evolução do modelo PSO considera uma dinâmica de comunicação diferente (MENDES;

KENNEDY; NEVES, 2003).

A rede usada foi um grid periódico de tamanho 6 × 5. Os problemas a serem

resolvidos foram todos problemas de minimização de funções contínuas frequentemente

usadas para teste de novos algoritmos.

A figura A.1 mostra os dados de convergência de todos modelos testados ao longo

de 100000 iterações. A população heterogênea é composta de metade partículas do mod-

elo de enxame (PSO) e o resto de indivíduos do modelo de Redes Meméticas.

O modelo heterogêneo convergiu, na média, da mesma forma que o modelo ho-

mogêneo que obteve os melhores resultados, isto é, que convergiu mais rapidamente para

a solução ótima.

A.3 A Relevância da Centralidade na Resolução Social de Problemas

O conceito de centralidade em resolução social de problemas é bastante antigo

(BAVELAS; BARRETT, 1951; BURGESS, 1969) e parte do pressuposto que indivíduos

em posições centrais da rede possuem vantagens durante o processo de resolução em re-

lação a indivíduos em posições periféricas. O primeiro problema histórico foi sobre a ne-

cessidade de formalização do conceito de centralidade (FREEMAN, 1978; FREEMAN;

ROEDER; MULHOLLAND, 1979), problema este que permanece em aberto (BOR-

GATTI, 2005).

A partir da vasta quantidade de modelos computacionais disponíveis, surge a opor-

tunidade de investigar o impacto da centralidade em diferentes modelos. Esta investigação

está descrita nas próximas subseções.
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A.3.1 Métodos e Principais Resultados

Qualquer indivíduo em um sistema social de resolução de problemas pode, even-

tualmente, contribuir tanto para seus vizinhos imediatos na rede quanto para todo o cole-

tivo quando este encontra uma solução melhor que a melhor solução já descoberta pelo

sistama. No primeiro caso, temos uma contribuição local e, no segundo, uma con-

tribuição global. Uma forma de medir a relevância ou não de posições centrais para o

indivíduo é medir a correlação entre a contribuição global, a contribuição local e as difer-

entes métricas de centralidade selecionadas. A tabela A.1 apresenta as correlações entre a

contribuição individual e centralidade para cinco funções de minimização2 e quatro mod-

elos de resolução social de problemas.

Os resultados para a contribuição local e para a contribuição global apontam para

a inexistência de um padrão claro. Alguma métricas mostraram correlações positivas

altas com alguns modelos enquanto que outras métricas tiveram, inclusive, correlações

negativas com a contribuição.

A.4 Modelos Heterogêneos de Resolução Social de Problemas

Ao mesmo tempo que experimentos com humanos apontem a nossa habilidade

para resolver problemas de forma colaborativa, fica evidente que não dispomos de mod-

elos sofisticados para recriar o que é observado (KEARNS; SURI; MONTFORT, 2006;

JUDD; KEARNS; VOROBEYCHIK, 2010; KEARNS, 2012; MASON; WATTS, 2012).

Duas características que foram observadas em humanos mas que modelos computacionais

de resolução social de problemas na época não possuíam eram a diversidade de estraté-

gias entre os indivíduos de uma mesma população e a forma com indivíduos adaptavam a

própria estratégia de busca (MASON; WATTS, 2012).

A.4.1 Métodos e Principais Resultados

A investigação partiu do modelo e problema original propostos no artigo (MA-

SON; WATTS, 2012). A partir destes sistemas originais, foram adicionados e testados

mecanismos que permitissem a heterogeneidade de estratégias, isto é, a diversidade, e

2F1 representa a função Ackley; F2, Griewank; F3, Rastrigin; F4, Rosenbrock; e F5, Sphere.
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a dinamicidade. Características comportamentais observadas em experimentos com hu-

manos no mesmo problema.

O problema que os indivíduos resolveram foi o mesmo: a maximização de uma

função composta por ruído de Perlin adicionado de um sinal. O sinal foi modelado como

uma gaussiana bidimensional conforme pode ser observado na figura A.2. A solução é

construída individualmente através da amostragem direta de pontos nesse espaço. Cada

ponto (x, y) representa uma solução nesse espaço, o problema está em encontrar o ponto

que maximiza o valor da função.

Uma das observações a respeito do trabalho original (MASON; WATTS, 2012) é

que o modelo usado lá associa a estratégia de busca como sendo o tamanho do raio. Isso

implica que diferentes tamanhos de raios de de busca representam diferentes estratégias

de busca. Uma das características dessa interpretação é que um raio maior não exclui a

amostragem de pontos mais próximos à solução atual.

A figura A.3 mostra a comparação entre o modelo original e uma variação do

modelo que propomos onde a estratégia que usa raios maiores exclui a possibilidade de

busca por soluções próximas à solução. O resultado dessa variação foi significativo o bas-

tante para que os modelos mostrassem um comportamento bastante diferente para raios

de tamanho médio a grande. Ou seja, o modelo original é bastante sensível a pequenas e

os resultados originais precisam ser generalizados com cautela.

Outro experimento foi a comparação de modelos com distribuições de raios ho-

mogêneas e heterogêneas assim como modelos onde indivíduos alteravam o próprio raio

de forma aleatória ou então copiavam o raio do melhor vizinho na rede social. Além

disso, foram comparadas redes eficientes com redes ineficientes. Os resultados estão na

tabela A.2

Os dados apontam que a distribuição de estratégias tem um impacto maior no

resultado coletivo final do que a rede. Essa evidência dá suporte à tendência de acrescentar

ao foco da Computação Social dados sobre as estratégias e características individuais

(KEARNS; SURI; MONTFORT, 2006; KEARNS, 2012).

A.5 Conclusões Gerais

Este trabalho de tese apresentou resultados novos sobre sistemas computacionais

de resolução de problemas. As suas principais contribuições foram:
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O estudo da viabilidade de um modelo geral de resolução de problemas Foi desenvolvido

um modelo que permitiu com que indivíduos de dois modelos diferentes de res-

olução social de problemas — Redes Meméticas e Enxame de Partículas (PSO)

— colaborassem para resolver o mesmo problema. Na maioria dos problemas de

otimização testados, populações heterôgeneas tiveram resultados melhores ou tão

bons quanto os resultados das melhores populações homogêneas originais em ter-

mos de convergência para soluções ótimas.

A investigação do impacto da centralidade no resultado individual e coletivo Diferentes

métricas de centralidade tiveram diferentes impactos em diferentes modelos. Em

outras palavras, a investigação mostrou que existe muito o que ser estudado so-

bre o impacto da centralidade em diferentes modelos e o porquê algumas métricas

tiveram mais poder preditivo em alguns modelos computacionais de resolução de

problemas, mas não em outros. A principal contribuição, portanto, é que há uma

dificuldade em generalizar os resultados iniciais da importância e da vantagem da

centralidade na resolução social de problemas.

A análise experimental de modelos heterogêneos de resolução social de problema Os

resultados dos experimentos apontam que uma população heterogênea em relação

às estratégias usadas pelos indivíduos pode ter resultado positivo mas desde que cer-

tas condições estejam presentes. Estas condições estão relacionadas à forma com

que os indivíduos realizam a exploração de novas soluções no espaço de busca.

Quando integradas, estes resultados apontam que ainda existem muitos aspectos

a serem investigados na resolução social de problemas. O primeiro passo é a formaliza-

ção da área de Computação Social (CHEN et al., 2016), a iniciar pela definição de um

conjunto de problemas que contemplem várias aspectos que possam usar usados para de-

screver estratégias que humanos frequentemente usam para resolver problemas. Esta tese

aponta que a carência de modelos heterogêneos só pode ser resolvida a partir de mais es-

tudos com humanos. Além disso, existe a necessidade de definições mais precisas sobre

a resolução social de problemas, uma definição de diversidade que faça sentido tanto para

sistemas computacionais quanto para sistemas reais.
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Figure A.1: Convergência dos modelos para a melhor solução em diferentes modelos para
uma média de 50 execuções independentes, cada execução limitada a 100000 iterações.
A população heterogênea é composta de metade partículas do modelo de enxame (PSO)
e o resto de indivíduos do modelo de Redes Meméticas.
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(b) Função Griewank.
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(c) Função Rastrigin.
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(d) Função Rosenbrock.
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(e) Função Sphere.



72

Table A.1: Correlação de Pearson entre a contribuição individual ao coletivo e diferentes
métricas de centralidade.

Métrica

Modelo Função Intermédio Closeness Grau Eigenvector

MN

F1 0.38 0.40 0.40 0.40
F2 0.37 0.39 0.39 0.39
F3 0.45 0.47 0.48 0.48
F4 0.33 0.35 0.35 0.36
F5 0.38 0.39 0.40 0.40

Média 0.38 0.40 0.40 0.41
Desvio 0.0398 0.0392 0.0417 0.0391

DSR

F1 0.74 0.71 0.78 0.73
F2 0.75 0.72 0.78 0.74
F3 0.69 0.67 0.73 0.68
F4 0.76 0.73 0.80 0.75
F5 0.75 0.72 0.78 0.74

Média 0.74 0.71 0.78 0.73
Desvio 0.0240 0.0201 0.0219 0.0243

PSO

F1 0.45 0.47 0.48 0.48
F2 0.44 0.46 0.47 0.47
F3 0.38 0.39 0.40 0.40
F4 0.62 0.65 0.66 0.67
F5 0.73 0.77 0.78 0.78

Média 0.52 0.55 0.56 0.56
Desvio 0.1324 0.1404 0.1414 0.1431

FIPS

F1 0.43 0.22 0.36 0.33
F2 0.25 0.03 0.17 0.15
F3 -0.29 -0.46 -0.34 -0.39
F4 -0.20 -0.46 -0.29 -0.33
F5 -0.44 -0.72 -0.54 -0.58

Média -0.05 -0.28 -0.13 -0.16
Desvio 0.3304 0.3459 0.3369 0.3457

Table A.2: Probabilidades de encontrar a solução ótima para redes eficientes (descentral-
izadas) e redes ineficientes (centralizadas)

Modelo Rede

Eficiente Ineficiente

Homogêneo raio 8 0.41 (± 0.06) 0.33 (± 0.06)
Homogêneo raio 16 0.15 (± 0.04) 0.13 (± 0.04)
Homogêneo raio 32 0.01 (± 0.01) 0.03 (± 0.02)
Heterogêneo estático 0.62 (± 0.06) 0.59 (± 0.06)
Dinâmico Aleatório 0.62 (± 0.06) 0.54 (± 0.06)
Dinâmico Social 0.23 (± 0.05) 0.27 (± 0.05)
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Figure A.2: Exemplo de instância de otimização: a solução ótima está localizada na região
mais clara enquanto que a região escura representa o ruído. Cada ponto (x,y) do espaço
de busca representa uma solução cujo valor objetivo da função está associado à cor na
figura.
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Figure A.3: Probabilidade de encontrar a solução ótima para tamanhos de raios variados
no nosso modelo e no modelo original de Mason e Watts.
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(a) 16 indivíduos.
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(b) 64 indivíduos.
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