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The effect of conducting pipes on the equilibrium of intense nonaxisymmetric continuous beams of
charged particles is investigated. For a cylindrical pipe and an elliptical beam, we obtain an exact
closed form analytical expression for the electrostatic potential. Using a variational principle, we
then explore the distortions that equilibrium beams suffer due to the conducting channel. Finally, we
present an exact proof that despite the nonlinear forces acting on beams of arbitrary cross section
inside conducting pipes of arbitrary shape, the density of these beams remains homogeneous and
their cross sectional area remains the same as the one in free space. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2827580�

In many applications where intense charged particle
beams are employed, it is desirable to have a nonaxisymmet-
ric beam distribution. This is particularly the case for
vacuum electronic devices for which the use of ribbon elec-
tron beams allows for the transport of a large amount of
current at low space-charge forces.1–5 This is accomplished
by distributing the current along a large beam width, while
keeping its height small enough to go across the small aper-
ture sizes required by the modern high-frequency devices.
Although the focusing field configuration necessary to trans-
port nonaxisymmetric beams is naturally more complex than
that of axisymmetric beams, a number of different schemes
has been proposed in the past few decades.1–4 They are all
based on anisotropic periodic focusing fields which generate
stronger focusing in one transverse direction than in another.
Both stability studies3,4 and experiments with low-intensity
beams2 show the viability of the transport of such beams.
More recently, Zhou et al.5 demonstrated the existence of a
class of equilibrium solutions for the transport of intense,
cold, nonaxisymmetric beams with variable aspect ratios
through periodic magnetic focusing fields in free space. In
equilibrium, the beam is uniformly distributed along an el-
lipse whose angle and semiaxis radii undergo some small
amplitude rapid oscillations around stationary, average, val-
ues. A very important question then arises: how will the equi-
librium beam configuration be affected by the presence of a
conducting wall of a vacuum chamber? While round beams
will not be disturbed by the coaxial circular conducting
pipe—such pipe is an equipotential surface—elliptical beams
may be strongly modified in such environment. In particular,
one might expect that the charge induced on a grounded
conducting wall will strongly attract the beam particles,
causing a significant modification of the beam equilibrium
shape and its homogeneity.

In this paper, we study in detail the effects of a conduct-
ing pipe on the equilibrium of intense nonaxisymmetric
beams. We start by analyzing the image effects of a cylindri-
cal conducting pipe on a continuous beam of an elliptical
form. In contrast to previous studies, which employed mul-
tipole expansions,6,7 we derive an explicit analytical expres-
sion for the self-field potential of the beam inside the pipe.

By means of a variational method, we then calculate the
relaxed equilibrium shape after a free space beam enters into
a conducting pipe. Finally, we prove that despite the nonlin-
ear forces produced by the conducting walls of arbitrary
cross section, intense beams preserve their homogeneity and
conserve the cross sectional area.

We consider an intense, cold, unbunched beam propagat-
ing with an axial velocity vz through a magnetic focusing
channel enclosed by a conducting pipe, both aligned with the
z axis. The focusing force is assumed to be linear and aniso-
tropic along the transverse directions. In the smooth-beam
approximation, where the fast oscillations due to the periodic
focusing field are averaged out, the dynamics of any beam
particle is governed by3,8

r� + ��UB + ��� = 0, �1�

where r=xêx+yêy, r= �x2+y2�1/2 is the radial distance from
the z axis, the prime denotes derivative with respect to z,
����� /�x�êx+ �� /�y�êy, UB=kxx

2 /2+kyy
2 /2 is the effective

confining potential due to the external field, ki
=�i

2q2B�z�2 /2�b
2�b

2m2c4, i=x ,y, B�z� is the magnetic field
along the z axis, the bar represents average over one focusing
period, �i are the form factors which satisfy �x+�y =1, �b
=vz /c, �b= �1−�b

2�−1/2, q and m are the mass and charge of
the beam particles, respectively, and c is the speed of light in
vacuo. In Eq. �1�, � is a normalized potential that incorpo-
rates both the self-electric and the self-magnetic fields and is
also affected by the presence of a conducting wall. It is re-
lated to the self-scalar and self-vector potentials by �s

=�b
−1Az

s=�b
3m�b

2c2��r ,s� /q and satisfies the Poisson equation

��
2 � = −

2�K

Nb
nb�r,z� , �2�

subjected to the boundary condition �=0 at the grounded
conducting wall. Here, nb�r ,z� is the beam density profile,
Nb=const is the number of particles per unit axial length, and
K=2q2Nb /�b

3�b
2mc2 is the so-called beam perveance, which

can be interpreted as a measure of the total two-dimensional
beam charge.

We begin by studying how to include the effects of cy-
lindrical conducting pipe of radius rw in the self-field poten-
tial. Let us consider an arbitrary transverse particle distribu-
tion of total charge K contained in the region r�rw. In thea�Electronic mail: pakter@if.ufrgs.br
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free space, the electrostatic potential satisfies the Laplace
equation ��

2 �free=0 for r�rw. We assume that �free is
known. One can then verify that the function �free�rw

2 /r ,	�
also satisfies the Laplace equation. This function, however,
has a singular point of charge K at r=0, as well as other
singularities—corresponding to the image charges—located
at r�rw. We then note that the combination

��r� = �free�r,	� − �free�rw
2 /r,	� − K log�r/rw� �3�

satisfies the Poisson equation with the original charge density
and vanishes at r=rw. This means that rw corresponds to the
location of a grounded conducting wall. Note that although
we are only interested in the electrostatic potential ��r� in-
side the pipe, to obtain it, it is necessary to know �free�r�
over the whole space.

We employ the above result to investigate the transport
of an elliptically symmetric inhomogeneous beam propagat-
ing inside a conducting pipe of radius rw. We assume a para-
bolic density profile of the form

n�x,y� =
Nb

�ab
�1 + 
 − 2
� x2

a2 +
y2

b2�	 �4�

inside the beam core, �x /a�2+ �y /b�2�1, where 
 is the in-
homogeneity parameter �−1�
�1�, and a and b are the
elliptical semiaxis radii. In the absence of a conducting wall,
a free space analytic solution to the Poisson equation �free�r�
is known inside the beam core.8,9 Solving the Laplace equa-
tion in elliptical coordinates, imposing the continuity of the
electric field at the beam boundary, and taking advantage of
complex variable properties, we can also obtain a closed-
form expression for the self-field outside the beam core

�free�r� = Re�3 + 


6
H +




12
H2 − arccosh� �

c
�	 , �5�

where �=x+ iy, H=1−2�� /c�2�1−
1− �c /��2�, and c
=
a2−b2. In the limit of c→0, �free→ log�2r /c�, as ex-
pected. Substituting �free�r� in Eq. �3�, we find an exact ana-
lytic expression for the electrostatic potential of an inhomo-
geneous elliptic beam inside a grounded conducting pipe.
The electric field generated by such a confined beam can be
then calculated and used to study, for instance, the dynamics
of test particles.10 Here, we will use the analytical expres-
sions and a variational calculation to investigate the effects
of conductors on the equilibrium beam profile.

For a given set of transport channel parameters kx, ky,
and rw, we compute the total beam energy per particle

ET =
1

Nb
� ���r�

2
+ UB�r�	n�r�d2r , �6�

as a function of the beam parameters a, b, and 
. By mini-
mizing ET�a ,b ,
� with respect to these parameters, we then
determine the equilibrium beam shape inside the pipe. Note
that in this variational calculation, the beam shape is con-
strained to be elliptical, while its inhomogeneity is allowed
to vary parabolically. For rw→, the minimization can be
performed explicitly to find that the equilibrium corresponds
to a uniform beam �
=0� with a=a0�
2Kky / �kx�kx+ky��
and b=b0�
2Kkx / �ky�kx+ky��. The free space radii a0 and
b0 can then be used to characterize the focusing field inten-
sities kx and ky. In Fig. 1, we show the results obtained for
rw /a0=1.2 and varying values of b0 /a0. For later comparison

with the full N-particle simulations, we present in panel �a�
the equilibrium effective semiaxis arms�2�x21/2=a�1
−
 /3�1/2 and brms�2�y21/2=b�1−
 /3�1/2, where �¯ stands
for the average over the beam distribution. The figure con-
firms that for nearly axisymmetric beams with b0 /a0�1,
wall effects are negligible and arms /a0 and brms /b0 are close
to unity. As the focusing channel becomes more anisotropic
with b0 /a0�1, wall effects become important, always acting
to further intensify the beam anisotropy. The figure also re-
veals that the dependence of the equilibrium beam sizes on
the focusing field anisotropy b0 /a0 is nonmonotonic, being
more pronounced for aspect ratios close to b0 /a0=0.5. This
feature was verified for different wall positions rw. In all the
cases, the inhomogeneity parameter 
 was found to be small,
on the order of a few percent. Full N-particle simulations
were performed to compare with the results of the variational
calculations. In the simulations, a large number N=20 000 of
macroparticles evolved according to Eq. �1�. The influence of
a grounded conducting wall was taken into account using the
image charges.11 The particles were launched in an arbitrary
configuration and attained equilibrium state through a slow
damping in their dynamics. The simulation results obtained
for arms and brms are represented by the symbols in Fig. 1�a�,
showing a very good agreement with the predictions of the
variational calculation. An intriguing property of the varia-
tional calculation is that the effective area occupied by the
beam in the presence of a wall is exactly the same as that of
the free beam, i.e., armsbrms=a0b0 �see Fig. 1�a��. This feature
in a variational calculation suggests a hidden symmetry
which, however, cannot be seen at the level of variational
equations because of their complexity.

To uncover the hidden symmetry, we now appeal to the
following mathematical adiabatic construction. Consider an
equilibrium beam in the absence of a wall. Because each
particle is in equilibrium, the force balance Eq. �1� requires
that

��UB + ��� = 0. �7�

If we picture the beam as a continuous charge distribution,
this equation holds at all points inside the the beam distribu-
tion. We now suppose that a conducting boundary of an ar-
bitrary shape initially at infinity is adiabatically approaching
the beam �shrinking toward it�. The equilibrium beam charge

FIG. 1. Equilibrium beam dimensions as a function of the aspect ratio b0 /a0

for rw /a0=1.2. The curves correspond to the results of the variational cal-
culation, whereas the symbols correspond to those obtained from the full
N-particle simulations.
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distribution deforms but since the wall motion is adiabatic,
the equilibrium condition Eq. �7� remains unaltered. Operat-
ing with �� on Eq. �7�, we obtain

��
2 UB�r� −

2�K

Nb
nb�r,rw� = 0, �8�

where rw now stands for a typical distance from the focusing
channel axis to the conductor and use has been made of the
Poisson equation �Eq. �2��. Note that while nb is a function of
rw, UB�r� only depends on the external focusing field. As the
wall undergoes a small displacement �rw with rw→rw+�rw,
the beam particle positions will be modified, r→r+�r. Us-
ing this in Eq. �8� and expanding to linear order in �rw and
�r, we obtain

� �

�rw
+ v · ��	nb�r,rw� =

Nb

2�K
v · �����

2 UB� , �9�

where v��r /�rw. Thus, as long as UB is a quadratic func-
tion of r—the focusing force is linear—the right-hand side of
Eq. �8� vanishes and the total �convective� derivative of nb�r�
with respect to variations in rw is zero. Since in the absence
of the wall the density is uniform, vanishing of the convec-
tive derivative implies that it remains so for any rw, preserv-
ing the beam cross sectional area. Therefore, the beam den-
sity and cross-sectional area are adiabatic invariants. This
places a stringent constraint on the effects that conductors
can exert on beam equilibria. To illustrate this, in Fig. 2, we
show the large distortion of the equilibrium charge distribu-
tion caused by a nearby conducting plate. Nevertheless, in
agreement with Eq. �9�, the particle density inside the beam
remains uniform and constant and the cross sectional area of
the beam is unchanged.

To conclude, we have investigated the effects of a con-
ducting pipe on the equilibrium of intense nonaxisymmetric
beams. First, we analyzed the image effects of a cylindrical
conducting pipe on a continuous beam with elliptical sym-
metry and derived an exact expression for the electrostatic
potential. Using a variational method, we then calculated the
equilibrium beam shape and its charge distribution. It was
found that the presence of a pipe does not alter the effective
beam cross sectional area. This suggested that the variational
equations possess an underlying hidden symmetry. Using an
adiabatic construction, we were able to prove that despite the
nonlinear forces exerted by the induced charges, the intense

particle beams preserve a uniform equilibrium density, as
long as the focusing forces are linear. Furthermore, the cross
sectional area of the beam remains the same as in the ab-
sence of a conductor. These findings should have important
practical implications for the design of intense beam trans-
port channels.
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FIG. 2. Equilibrium distribution in a focusing field with b0 /a0=1 /1.9 near a
conducting plate obtained using a full N-particle simulation. The dashed
ellipse shows the equilibrium beam border in the absence of the conducting
plate.
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