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We provide a universal expression of cross sections for the exclusive vector meson production and
deeply virtual Compton scattering (DVCS) in photon-proton and photon-nucleus interactions based on the
geometric scaling phenomenon. The theoretical parametrization based on the scaling property depends
only on the single variable τA ¼ Q2=Q2

sat, where the saturation scale, Qsat, drives the energy dependence
and the corresponding nuclear effects. This phenomenological result describes all available data from
DESY-HERA for ρ;ϕ; J=ψ production and DVCS measurements. A discussion is also carried out on the
size of nuclear shadowing corrections on photon-nucleus interaction.
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I. INTRODUCTION

A striking property of the nonlinear perturbative QCD
approaches for high energy deep inelastic electron-proton (or
electron-nucleus) scattering (DIS) is the geometric scaling
phenomenon. In the parton-saturation-based framework, the
total γ�p and γ�A cross sections are not a function of the two
independent variables x (Bjorken scale) and Q2 (photon
virtuality), but are rather a function [1] of a single scaling
variable, τA ¼ Q2=Q2

sat;A. Such a scaling is an exact asymp-
totic solution of a general class of nonlinear evolution
equations [2,3] and it is a universal property of them.
In particular, it corresponds to the traveling wave solutions
of those equations. The saturation scale Q2

sat;Aðx;AÞ ∝
xGAðx;Q2

satÞ=ðπR2
AÞ is connected with gluon saturation

effects. At very small x, the strong rise of the gluon
distribution function is expected to be controlled by satu-
ration. It was demonstrated [4], however, that geometric
scaling is not confined to the lowmomenta kinematic region;
it is in fact preserved by the QCD evolution up to relatively
large virtualities. For a proton target, it extends up to
Q2 ≲Q4

satðxÞ=Λ2
QCD, provided one stays in the small-x

region. For nuclear targets, that kinematic window is further
enlarged due to the nuclear enhancement of the saturation
scale, Q2

sat;A ≃ A1=3Q2
sat;p. It was proven for the first time in

Ref. [5] that the DESY-HERA ep collider data on the proton
structure functionF2 present a scaling pattern at x ≤ 0.01 and
Q2 ≤ 400 GeV2. Similar behavior was further observed
on electron-nuclei processes [6] and on inclusive charm
production [7]. In Ref. [8] it was demonstrated that the
data on diffractive DIS, γ�p → Xp, and other
diffractive observables present geometric scaling on the
variable τD¼Q2=Q2

satðxPÞ, in region xP < 0.01, where
xP¼ðQ2þM2

XÞ=ðQ2þW2Þ. Moreover, the total cross

sections for ρ, ϕ and J=ψ are shown to present scaling on
the variable τV ¼ ðQ2 þM2

VÞ=Q2
satðxPÞ. Nevertheless, the

authors of [8] provide no theoretical or phenomenological
expression for the scaling function.
Concerning lepton-nucleus interactions, in Ref. [9] the

nuclear dependence of the γ�A cross section was absorbed
in the A-dependence of the saturation scale via the geo-
metric scaling property. Namely, the γ�A cross section is
obtained from the corresponding cross section for the γ�p
process in the form

σγ
�A
tot ðτAÞ ¼

πR2
A

πR2
p
σγ

�p
tot

�
τp

�
πR2

A

AπR2
p

�Δ�
; ð1Þ

where τp ¼ Q2=Q2
sat is the saturation scale for a proton

target. The nuclear saturation scale was assumed to rise with
the quotient of the transverse parton densities to the powerΔ.
The nucleon saturation momentum is set to be
Q2

sat ¼ ðx0=x̄Þλ GeV2, where x0 ¼ 3.04 × 10−4, λ ¼ 0.288
and x̄ ¼ x½1þ ð4m2

f=Q
2Þ�, with mf ¼ 0.14 GeV, as taken

from the usual Golec-Biernat–Wüsthoff model [10]. The
nuclear radius is given byRA ¼ ð1.12A1=3 − 0.86A−1=3Þ fm.
The following scaling curve for the photoabsorption cross
section was considered [9]:

σγ
�p
tot ðτpÞ ¼ σ̄0½γE þ Γð0; νÞ þ lnðνÞ�; ð2Þ

where ν ¼ a=τbp, γE is the Euler constant and Γð0; νÞ the
incomplete gamma function. The parameters for the proton
casewere obtained from a fit to the small-x epDESY-HERA
data, producing a ¼ 1.868, b ¼ 0.746, and the overall
normalization was fixed by σ̄0 ¼ 40.56 μb. The parameters
for the nuclear saturation scalewere determined by fitting the
available lepton-hadron data using the relation in Eq. (1) and
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the same scaling function, Eq. (2). They obtained δ ¼ 1=Δ ¼
0.79� 0.02 and πR2

p ¼ 1.55� 0.02 fm2.
In this work, we extend the approach presented in

Ref. [9] to exclusive (diffractive) processes to describe
also the observed scaling features demonstrated in Ref. [8].
Based on the eikonal model in impact parameter space, we
provide an expression for the cross section for the exclusive
production of vector mesons and DVCS as well. This
expression provides a reasonable description for the avail-
able data for V ¼ ρ;ϕ; J=ψ and real photons. The results
are improved by allowing a global fit using the universal
scaling expression which depends on very few parameters.
These theoretical and phenomenological results have direct
consequences on predictions for future electron-ion col-
liders [11] and also for vector meson photoproduction
measured in ultraperipheral nucleus-nucleus collisions at
the LHC [12,13]. In the next section, we present the
theoretical framework employed in the construction of
the scaling function and analyze the data description
discussing the possible limitations of approach and possible
improvements. Finally, in the last section, we present our
main conclusions.

II. CROSS SECTIONS FOR EXCLUSIVE VECTOR
MESON PRODUCTION AND DVCS

The starting point in the derivation of our scaling formula
for the exclusive cross section for the process γ�h → Eh
(with h ¼ p, A and E ¼ V, γ) is the eikonal model in the
impact parameter space [14]. The elastic scattering amplitude
aðs; bÞ in general is assumed to be purely imaginary and the
s-channel unitarity implies that jaðs; bÞj ≤ 1. In the eikonal
approach, aðs; bÞ ¼ ið1 − e−Ωðs;bÞÞ, where the eikonalΩ is a
real function. Thus,Pðs; bÞ ¼ e−2Ωðs;bÞ gives the probability
that no inelastic interaction takes place at impact parameter b.
Assuming for simplicity a Gaussian form for the eikonal,
Ωðs; bÞ ¼ νðsÞ exp ð−b2=R2Þ, analytical expressions for
total and elastic cross sections are generated,

σtot ¼ 2

Z
d2bImaðs; bÞ; ð3Þ

σel ¼
Z

d2bjaðs; bÞj2: ð4Þ

Therefore, by use of the eikonal function in the factor-
ized form [with ν ¼ νðsÞ] discussed above one obtains

σtot ¼ 2πR2½lnðνÞ þ γE þ Γð0; νÞ�; ð5Þ

σel ¼ πR2

�
ln

�
ν

2

�
þ γE − Γð0; 2νÞ þ 2Γð0; νÞ

�
: ð6Þ

In hadronic models, the quantity R depends on energy
(in general, logarithmic behavior on energy). For the purpose
presented here, the cross sections are being computed
for fixed energy and thus we consider R to be energy
independent. The Gaussian function is chosen as it allows
the b-integration to be analytically computed. Moreover, the
two-dimensional Fourier transform of the Gaussian profile
has the exponential form, dσðγ�p → EpÞ=dt ∝ e−BGjtj (with
BG ≃ R2), which is supported by the data on exclusive
production in DIS. More sophisticated models can be used,
as the one corresponding to the powerlike (dipole) form
factor in the momentum transfer representation [15], SðbÞ ¼
ðβ=πR2ÞK1ðβÞ (with β ¼ ffiffiffi

8
p

b=R). It is clearly evident that
the proposal of a scaling inclusive cross section having the
form in Eq. (2) relies on the total cross section from the
eikonal model, Eq. (5), with the following identification,
σ̄0 ¼ 2πR2 and ν ¼ a=τbp. Thea and b parameters absorb the
lost information when using an oversimplified photon wave-
function overlapΦγ�γ� ∝ δðr − 1=QÞwithin the color dipole
framework. Therefore, wewill construct the scaling function
for describing exclusive diffractive processes starting from
Eq. (6). The main point is to associate the exclusive vector
meson production and DVCS process as a quasielastic
scattering.
Before we proceed to the exclusive case, we would like to

discuss in further detail the derivation of Eq. (2) using the
eikonal model. The starting point is to define the elementary
dipole-target (proton) scattering amplitude, excluding multi-
ple scattering of the color dipole. Using color transparency
and a geometric scaling property one has, in general, for a

fixed dipole size r [10], Nqq̄ðs; rÞ ¼ ðr2Q2
sat

4
Þγs , where effec-

tive γs ≃ 1 is the anomalous dimension. Now, we construct
the elastic amplitude in b-space using the eikonal formalism
(which includes the multiple dipole-target scattering) and
averaging over dipole sizes,

aðs; bÞ ¼ haðs; r; bÞi

≡
Z

d2r
Z

1

0

dzΦγ�γ�
ðTþLÞðz; r; Q2Þi½1 − exp ð−Nqq̄ðs; rÞSðbÞÞ�;

≈
Z

dr2
Z

1

0

dzδ

�
r2 −

A
Q2

�
δ

�
z −

1

2

�
i

�
1 − exp

�
−
ðr2Q2

satÞγsSðbÞ
4γ

��

≈ i

�
1 − exp

�
−
ðQ2

sat=Q2ÞγsSðbÞ
ð4=AÞγs

��
¼ i

�
1 − exp

�
−
aSðbÞ
τγsp

��
; ð7Þ
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where a ¼ ð4=AÞ−γs and we can write ν ¼ a=τbp (with
b ¼ γs). Using the recent determination of effective anoma-
lous dimension γs ¼ 0.762� 0.004 [16] and the typical
values for A ¼ 10 from phenomenology [17], we can
estimate the parameters a≃ 2.01 and b≃ 0.762. They are
quite close to the values a ¼ 1.868, b ¼ 0.746 found
in Ref. [9].
For vector meson production, we have to include

information related to the meson wave function and in
the DVCS case information on the real photon appearing in
the final state. Adding this new information will modify the
overall normalization in Eq. (6) and possibly also the
parameters a and b considered in Ref. [9]. In order to
clarify the situation, we shortly review the exclusive
production within the color dipole framework.
In an exclusive production process (vector mesons or

DVCS) the photon splits into a dipole of transverse size r
and longitudinal momentum fraction z which scatters
elastically off the target (proton or nucleus), with virtuality
Q2, and recombines into a vector meson of massMV or real
photon of zero virtuality, Qγ ¼ 0. Specifically for the
former process, one introduces the wave functions
ψV;λ
f;h;h̄

ðz; r;M2
V;Q

2Þ which describe the splitting of the

vector meson with polarization λ into the dipole. An
important ingredient to compute the production amplitude
is the corresponding overlap function. These functions for
the vector meson case and for DVCS are

Φγ�V
λ ðz;r;μ2Þ¼

X
fhh̄

½ψV;λ
f;h;h̄

ðz;r;M2
VÞ��ψγ�;λ

f;h;h̄
ðz;r;Q2Þ; ð8Þ

Φγ�γ
T ðz; r;Q2Þ ¼

X
fhh̄

½ψγ�;T
f;h;h̄

ðz; r; 0Þ��ψγ�;T
f;h;h̄

ðz; r;Q2Þ; ð9Þ

where the wave functions ψγ�;λ
f;h;h̄

ðz; r;Q2Þ describe the

splitting of a virtual photon with polarization λ ¼ 0;�1

into a dipole. The indices h ¼ �1 and h̄ ¼ �1 denote the
helicities of the quark and the antiquark composing the
dipole of flavor f. Vector meson wave functions rely on
phenomenological models as the boosted Gaussian (BG)
[18] and the light-cone Gaussian (LCG) [19].
The overlap functions for exclusive processes are well

known [18–20] and we summarize them below. First, for
the DVCS process one has

Φγ�γ
T ¼

X
f

e2f
αeNc

2π2
f½z2þð1− zÞ2�Q̄fK1ðrQ̄fÞmfK1ðrmfÞ

þm2
fK0ðrQ̄fÞK0ðrmfÞg; ð10Þ

where ef and mf denote the charge and mass of the quark
with flavor f with Q̄2

f ¼ zð1 − zÞQ2 þm2
f. Now, for the

vector meson of polarizations λ ¼ L, T, one obtains

Φγ�V
L ¼ êf

ffiffiffiffiffiffi
αe
4π

r
Nc2QK0ðrQ̄fÞ

�
MVzð1 − zÞϕLðr; zÞ

þ δ
m2

f −∇2
r

MV
ϕLðr; zÞ

�
; ð11Þ

Φγ�V
T ¼ êf

ffiffiffiffiffiffi
αe
4π

r
Ncfm2

fK0ðrQ̄fÞϕTðr; zÞ

− ½z2 þ ð1 − zÞ2�Q̄fK1ðrQ̄fÞ∂rϕTðr; zÞg; ð12Þ
where the constant êf is an effective charge. Those
expressions are very similar to the photon ones except
for the function ϕλ ∝ fλðz;MVÞ exp ½−r2=ð2R2

λÞ�, which is
related to the vertex function and depends on the model.
Accordingly, considering the scattering amplitude for the

exclusive process, γ�p → Ep (E ¼ V, γ), as a function
containing only imaginary part and disregarding real
part contribution and skewness corrections as well, the
differential cross section reads

dσγ
�p→Ep

dt
¼ 1

16π

����
Z

d2b
Z

d2r
Z

1

0

dzðΦγ�E
T þΦγ�E

L Þ

× exp ½iq · ðb − zrÞ�aðr; b; YÞ
����2; ð13Þ

where aðr; b; YÞ is the dipole-target scattering amplitude
and carries all the energy dependence via the rapidity Y
which is obtained from the center-of-mass energy W and
the typical momentum scale for the exclusive process. For
instance, for vector meson production of mass MV one
writes Y ¼ log½ðW2 þQ2Þ=ðM2

V þQ2Þ�. Moreover, one
has t ¼ −q2, where q represents the transverse momentum
transferred by the target during the collision.
From Eqs. (11) and (12), the main features about the

meson properties are embedded into the ϕλ function. In
general, the wave functions in the mixed representation
ðz; rÞ are obtained from the momentum representation
ðz;k⊥Þ wave functions using a Fourier transform,

ϕVðr; zÞ ¼
Z

d2k⊥
4π2

ϕVðz; k⊥Þeir·k⊥ : ð14Þ

In the simplest case one considers that a heavy q and q̄
have the same longitudinal momentum fraction and that the
transverse momentum is quite small. Such a hypothesis
yields ϕVðz; ktÞ ¼ NVδðz − 1=2Þδ2ðk⊥Þ. The only free
parameter is the normalization, NV , which can be deter-
mined by fixing the partial width for V → eþe− to the
experimentally measured value,

ΓV
eþe− ¼ 32πα2ee2q

MV

����
Z

dz
Z

d2k⊥
8π3=2

ϕVðz; k⊥Þ
����2: ð15Þ

Therefore, the wave function in the mixed representation
obtained via Eq. (14) is written as
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ϕVðr; zÞ ¼
1

2MV

ffiffiffi
π

p

2
ffiffiffi
6

p
eqαe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ΓV

eþe−MV

π

s
δ

�
z −

1

2

�
;

¼ 1

2MV

ffiffiffi
π

pffiffiffi
6

p
eq

fVδ

�
z −

1

2

�
; ð16Þ

where 3ΓV
eþe−MV ¼ 4πα2ef2V , with fV being the coupling

of the meson to the electromagnetic current. We will use
the approximation in Eq. (16) in the following discussion.
The wave-function overlap appearing in Eq. (13) takes the
simplified form, Φγ�V

ðTþLÞ ∝ δðr2 − r2QÞδðz − 1=2Þ, where

r2Q ¼ AQ=ðQ2 þm2
VÞ. That is, the exclusive production

of vector mesons, γ�p → Vp, in deep inelastic scattering is
a hard scattering process in which the transverse size rQ of
quark configurations that dominate the production ampli-
tude are under theoretical control. The quantity AQ is now
process dependent (distinct for light and heavy mesons)
[21] and for a naive estimation one can use an average
value AQ ¼ 4 [21]. Repeating the discussion after Eq. (7),
for exclusive production of vector mesons one has
a ¼ ð4=AQÞ−γs ≈ 1. In our analysis we allow the parame-
ters a (and b) to be process dependent. We have shown in
Eq. (7) that the parameters a and b are correlated. Moreover,
the parameter a is connected to the peak (in the r variable) of
the overlap function, which is process dependent. Indeed, it
depends also on the corresponding kinematics as already
presented in Ref. [21]. In exact geometric scaling models,
the parameter b ¼ γs (the effective anomalous dimension)
should be process independent. Namely, it is a constant
between 0.5 (Balitsky-Fadin-Kuraev-Lipatov dynamics)
and 1 (Dokshitzer-Gribov-Lipatov-Altareli-Parisi dynam-
ics). However, in extended geometric scaling models
(see, for instance, Ref. [4]) it acquires an r-dependence
and this can be translated in a change of b value depending
on the specific wave function overlap the corresponding
process.
The exclusive processes described above can be directly

compared to the inclusive case, in which the total absorp-
tion cross section is related to the imaginary part of the
scattering amplitude,

σγ
�p→X¼

Z
d2r

Z
1

0

dz½Φγ�γ�
T ðz;r;Q2ÞþΦγ�γ�

L ðz;r;Q2Þ�

×2

Z
d2baðr;b;YÞ≡2

Z
d2bImhaðY;bÞi; ð17Þ

where the quantum mechanics average is taken over the
initial and final state virtual photons,

Φγ�γ�
T þΦγ�γ�

L ¼
X
f

e2f
αeNc

2π2
f½z2 þ ð1 − zÞ2�Q̄2

fK
2
1ðrQ̄fÞ

þ ½4Q2z2ð1 − zÞ2 þm2
f�K2

0ðrQ̄fÞg: ð18Þ
Finally, we can write down a scaling curve for exclusive

processes using the eikonal model result in Eq. (6) and the

geometric scaling assumption as derived in Eq. (7). The
remaining ingredient is to redefine the overall normaliza-
tion for the different cases. The total cross section for an
exclusive process (DVCS and vector mesons) is written as
follows:

σðγ�p → EpÞ ¼ σ̄E
2

�
ln

�
ν

2

�
þ γE − Γð0; 2νÞ þ 2Γð0; νÞ

�
;

ð19Þ

where σ̄E ¼ σ̄V in the case of vector mesons and σ̄E ¼
σ̄DVCS for DVCS process. In both cases, ν ¼ a=τb, with
τ ¼ ðQ2 þM2

VÞ=Q2
sat for exclusive production of mesons

and τ ¼ Q2=Q2
sat for DVCS. Explicitly, the overall nor-

malization of cross sections is obtained from the inspection
of the overlap functions in Eqs. (13) and (17). Therefore,
the final expressions for the overall normalization in our
scaling function are given by

σ̄DVCS ¼
�
αe
X
f

e2f

�
σ̄0; ð20Þ

σ̄V ¼ 4πê2ff
2
V

M2
Vð
P

fe
2
fÞ
σ̄0: ð21Þ

In next section we will test the assumption above and
discuss the consequences for the case where nuclei targets
are considered. The stability and model dependence for the
parameters (a and b) are analyzed.

III. RESULTS

Let us now compare the scaling curve, Eq. (19), to the
available experimental data in small-x lepton-proton colli-
sions. The data sets we have considered are presented in
Refs. [22–25]. Thevalues of parametersMV ,fV , and êV were
taken from Ref. [26] and displayed in Table I. We perform a
fit to the experimental data using MINPACK routines [27] for
choices of sets of parameters, described in the following. Our
results are presented in Table II and in the Figs. 1 and 2 as a
function of the scaling variable τ. Explicitly, the scaling
variable is τ ¼ τV ¼ ðQ2 þM2

VÞ=Q2
satðxÞ for exclusive pro-

duction of mesons and τ ¼ Q2=Q2
satðxÞ for DVCS, with

Q2
satðxÞ ¼ ðx0=x̄Þλ GeV2 as discussed in the Introduction.

TABLE I. Values of the parameters MV , fV and êV from
Ref. [26].

Meson MV (GeV) fV (GeV) êV

J=ψ 3.097 0.274 2=3
ϕ 1.019 0.076 1=3
ρ 0.776 0.156 1=

ffiffiffi
2

p

BEN, MACHADO, and SAUTER PHYSICAL REVIEW D 96, 054015 (2017)

054015-4



We use two different choices to perform the fits. The first
one, labeled Fit 1 in the figures and table, adjusts all three
parameters (a, b, and σ̄0). The other one, labeled Fit 2 in the
figures, fits the a and b parameters, maintaining fixed
σ̄0 ¼ 40.56 μb. In general both fits describe in good
agreement the available data for all observables (with the
exception of the ϕmeson) for photon-proton interactions. It
is very clear that the qualities of fit for Fit 1 and Fit 2 are
somewhat equivalent. Fit 2 is a straightforward extension of
the celebrated scaling curve presented in Ref. [9] for the
inclusive case. The overall normalization σ̄0 is common to
inclusive and exclusive photon-target processes. For the

sake of completeness, we also include the result using the
original values for the parameters from the fitting to
inclusive data [9] (labeled by ASW in the curves).
In Fig. 1 the cross section for DVCS and J=ψ production

is presented as a function of the scaling variable τ. Our
scaling curves are represented by the solid (Fit 1) and
dashed (Fit 2) lines in the figure. From Table II, the quality
of fit is very good even for Fit 2, which considers only two
parameters, and χ2=d:o:f:≃ 1. It is interesting to note the
stability of parameters a and b in both cases and the
proximity with the values obtained for the inclusive case
a ¼ 1.868 and b ¼ 0.746 [9] (deviation of ≈5%).
In Fig. 2 the scaling data for the ρ [23] and ϕ [24] meson

are presented, using the same notation as in the previous
figure. The corresponding χ2=d:o:f: for the ϕ case is
problematic even including the recent data from DESY-
HERA. The origin of such a discrepancy should be treated
in a deeper study as the ϕ meson is in the transition region
from light to heavy mesons. On the other hand, the quality
of fit for the ρ case is excellent where now χ2=d:o:f:≃ 1 in
Fit 2. We verify also that the parameters a and b deviate
more strongly from the original values for the inclusive
case. We will discuss the consequences of these facts in the
following. The main explanation on why the fit with three
parameters (Fit 1) provides almost always worse χ2=d:o:f:
than the one with two parameters (Fit 2) is the complex
behavior of the scaling curve as a function of the original
seed in the fitting procedure. It probably means that the
minimization procedure went to a local minimum (clearly,
Fit 2 with the parameter σ̄0 ¼ 40.56 μb gives a smaller χ2).
A possible improvement in our analysis would be to
consider a global analysis for exclusive observables. In
any case, Fit 2 still gives a reasonable data description
(we have tested the fit using the option where a and b are
much larger than the original ASW parameters and obtain

TABLE II. Summary of fitting procedure. ASW is the result
using the original parameters from the fit to ep HERA data [9].
Fit 1 adjusts parameters a and b and normalization σ̄0. Fit 2
adjusts a and b, keeping fixed σ̄0 ¼ 40.56 μb (as for the inclusive
case).

a b σ̄0ðμbÞ χ2=d:o:f:

DVCS
ASW 1.868 0.746 40.56 3.248
Fit 1 1.313 0.769 114.610 0.768
Fit 2 1.938 0.710 40.56 0.754

J=ψ
ASW 1.868 0.746 40.56 4.567
Fit 1 1.851 0.733 52.524 1.083
Fit 2 1.919 0.704 40.56 1.183

ϕ
ASW 1.868 0.746 40.56 21.706
Fit 1 1.936 0.750 72.717 8.843
Fit 2 2.061 0.695 40.56 14.419

ρ
ASW 1.868 0.746 40.56 529.004
Fit 1 1.684 0.916 27.333 1.266
Fit 2 1.467 0.943 40.56 1.011
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FIG. 1. The cross section for DVCS (left panel) [22] and J=ψ production (right panel) [25] as a function of the corresponding scaling
variable τ. The ASW result is represented by dotted-dashed lines, Fit 1 by solid lines, and Fit 2 by dashed ones.
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a ¼ 6.175 and b ¼ 1.07 with χ2=d:o:f:≃ 1.294). We
clearly have a problem to describe the ϕ case, and the
coherence could be improved by including also a scale
dependence of the t slope. It is well known that the t slope
strongly depends on Q2 for ρ and ϕ, while it is flat for
DVCS and J=ψ . For instance, parametrizing BVðQ2Þ ≈
RðQ2Þ and introducing it into the fit could improve the
coherence of parameters among the different processes.
Here, the cross section (integrated on t) was obtained using
the simplified Gaussian behavior for the impact parameter
dependence. The differential cross section was not calcu-
lated and probably would present distinct behavior when
comparing DVCS, J=ψ , and light mesons.
The main features from the scaling curve can be traced

from the asymptotic limit of Eq. (19). For instance, for ν ≫ 1
which corresponds to large values of scaling variable τ one
has σðγ�p → EpÞ ≈ ðσ̄E=2Þ½lnðν=2Þ þ γE� ∝ −b lnðτÞ. On
the other hand, in the limit ν ≪ 1 related to the large τ values
one has σðγ�p → EpÞ ∝ τ−b. This discussion is important in
the photoproduction case, where one has the smallest values
for the scaling variable τ. This is the case for the few available
data points for theω, ψð2SÞ, andϒ states [28], most of them
measured for Q2 ¼ 0 and having large experimental uncer-
tainties. For light mesons atW ¼ 200 GeV (HERA-HERA),
one can use the asymptotic expression for ν ≫ 1 and an
approximation in the photoproduction limit would be
σðγp → VPÞ ≈ ðσ̄V=2Þð1þ γEÞmodulo logarithmic correc-
tions. It gives 1.38 × 10−1 μb forω, which is consistent with
order of magnitude of data. For ψð2SÞ andϒ, the τV variable
is still large and then we can obtain the following approxi-
mation, σðγp → VPÞ ≈ ðσ̄V=2Þτ−bV (using b ¼ 0.746). This
produces 3.3 × 10−4 μb forϒ and 4 × 10−2 μb forψð2SÞ. In
any case, these crude estimations are consistent with the
current experimental results [28].

The geometric scaling present in the lepton-proton cross
sections for exclusive processes, as quantified by Eq. (19),
is translated to the scattering on nuclear targets at high
energies. Following the same arguments given in Ref. [9],
the atomic number dependence is absorbed in the nuclear
saturation scale and on the overall normalization related to
the nuclear radius. Therefore, the cross section for lepton-
nuclei scattering takes the following form,

σγ
�A→EAðτAÞ ¼

πR2
A

πR2
p
σγ

�p→Epðτ ¼ τAÞ; ð22Þ

where the scaling variable in the nuclear case is τA ¼
τp½πR2

A=ðAπR2
pÞ�Δ. In particular, we expect that for large

τA the relation is σðγ�A → EAÞ ∝ R2
Aτ

−b
A ¼ R2

Aτ
−b
p ðA1=3Þbδ.

As the current data on nuclear targets are quite scarce in the
small-x region, the scaling formula above can be tested in
future measurements in EICs or in ultraperipheral heavy ion
collisions. The robustness of the geometric scaling treatment
for the interaction is quite impressive and similar scaling
properties have been proven theoretically and experimen-
tally, for instance in charged hadron production [29] and in
prompt photon production [30] on pA and AA collisions in
the collider energy regime.
For the nuclear case, the fitted values for the b parameter

have strong consequences on the role played by the nuclear
shadowing for the distinct final states we have considered
here. As defined in [9], the relation between the nuclear
saturation scale,Qsat;A, and the proton one,Qsat;p, is given by

Q2
sat;A¼Q2

sat;p

�
AπR2

p

πR2
A

�Δ
; δ¼ 1

Δ
¼0.79�0.02; ð23Þ

which implies that the small-x data on nuclear structure
functions FA

2 favor an enhancement of the nuclear saturation
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τ. The ASW result is represented by dotted-dashed lines, Fit 1 by solid lines, and Fit 2 by dashed ones.
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scale faster than the usual Q2
sat;A ¼ A1=3Q2

sat;p estimation.
Moreover, the coincidence of the b and δ parameters in the
inclusive case indicates an absence of shadowing in
the nuclear parton distributions at Q2 ≫ Q2

sat;A. We see that
the situation is different in the exclusive case. For instance,
for DVCS at high Q2 and for electroproduction of J=ψ the
parameter b is still similar to the inclusive case. On the
contrary, for the light ρ meson the deviation is quite large,
whereb=δ > 1. This indicates that a study for thevalue of the
δ parameter in an electron-ion collider is quite important.
Probably, its value for exclusive processes in γ�A interactions
should be larger than for the inclusive case allowing for a
strong nuclear shadowing even for milder values of photon
virtualities. In order to qualify this discussion, we compare
our predictions to the cross sections, σðγA → VAÞ, extracted
from the ultraperipheral AA data from RHIC and LHC.
Figure 3 (left panel) shows the photonuclear cross section for
J=ψ production using the parameters of Fit 2 as a function of
photon-nucleus energy,WγA. The extracted cross sections are
from Ref. [31] (labeled GKSZ) and Ref. [32] (labeled
Contreras), and the data description is quite reasonable. A
similar analysis could be done also for the ψð2SÞ state using
an extracted cross section as discussed, for instance, in
Ref. [33]. In Fig. 3 (right panel), the prediction for ρ
production is considered also using the parameters from
Fit 2. The situation here is more complicated as the extracted
cross sections include the UPC data from RHIC (AuAu
collisions) which correspond to the low energy range. The
cross section at higher energy is obtained from theLHCPbPb
data.We have considered the cross sectionvalues available in
Ref. [34] (labeled FGSZ). For simplicity, at low energy we
consider a black disk scaling following Ref. [35],
i.e., σðγA → ρAÞ≃ A4=3σðγp → ρpÞ ¼ A4=3YW−η (with
Y ¼ 26 μb and η ¼ 1.23). The low energy contribution

corresponds to the dashed curve, the geometric scaling
prediction is the dotted-dashed curve, and the total result
is represented by the solid curve. The data description is still
reasonable given the simplicity of the approach,with the total
result underestimating the high energy extracted cross
section.

IV. SUMMARY AND CONCLUSIONS

This work demonstrates that by assuming a geometric
scaling phenomenon in exclusive processes at small-x and
simple considerations on the scope of the eikonal model,
one is able to describe the available data on DVCS and
vector meson production on the nucleon target with a
universal scaling function without any further parameters.
We establish that the geometric scaling parametrization can
be extrapolated to nuclear targets to be tested in future EICs
or in ultraperipheral collisions. This implies that such a
dimensionless scale absorbs their energy and their depend-
ence on atomic number. The scaling curve is derived for the
first time for the exclusive case, generalizing the scaling
curve found for the inclusive case. The identification of the
physical meaning of the corresponding parameters is done
and the implications of those values in the nuclear case have
been discussed. The application of the current result for the
diffractive structure function and the ratio σD=σtot is
straightforward.
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