$$
\begin{gathered}
\text { 6- DiLATIONS } \\
\text { Ochide José Dotto } \\
\text { - Trabalho de Pesquisáa - } \\
\text { Série A4/Jun/89 }
\end{gathered}
$$

By Oclide José Dotto
Universidade Federal do Rio Grande do Sul

1. Introduction. The concept of dilation was introduced and investigated by several. important mathematicians. Given probability measures P, Q on the o-ficld of Borel subsets of a topological space S, we say that Q is a dilation of P relative to a set K of functons $S+\mathbb{R}$, and write $P \underset{K}{ } Q$, iff ffdP \leq f f.dQ for all fek (the integrability is assumed). The set of functions K is usually a cone. It is possible that, although Q does not dilate ? relatively to K, it nearly does so in some sense, giving rise to what we call an ε-dilation of P. A natural approach is to employ a "distance" of type

$$
\delta(P, Q):=\inf \left\{\varepsilon \geq 0 \mid \int f d P \leq \int f d Q+\epsilon L(f), f e K\right\},
$$

where $L(f) \geq 0$ measures the "size" of f. For exemple, suppose (S, d) is a separable metric space and $L(f)$ the Lipschitz constant of $f, L(f):=\inf \{c \in \mathbb{R}| | E(s)-f(t) \mid \leq c d(s, t)\}$. Let further $\mathrm{K}:=\left\{\mathrm{f} \mid \mathrm{L}(\mathrm{E})^{*}<\infty\right\}$. Then, provided all the functions in K are P-integrable and Q-integrable, Dudley (1976) proved that $\delta(P, Q)$ is equal to the Wasserstein metric.

$$
W(P, Q):=\inf \int d(s, t) d \mu,
$$

1980 Matenatical Subject Classification:Primary 60A05; Secondary 44A60, 60G44.
where the infimun is taken over all. μ e $M\left(S^{2}\right)$ having marginals P, Q (see Notations below). This result follows from Theorem 9 of Kemperman (1982) too and is often called the Kantarovich-Rubinstein Theorem (1958) because these authors established the special case where S is compact.

We allow any cone of bounded functions which is ad missible, $i . e ., ~ a ~ c o n v e x ~ c o n e ~ o f ~ c o n t i n u o u s ~ f u n c t i o n s ~ c o n t a i n-~$ ing the constants and beeing invariant under the operation v.
 ly $\mathrm{L}(f)$ will be taken as the oscilation of f. Afterwards, other e-dilations will also be discussed. Theorem 12 is our main result.
2. Notations. In this paper A^{C} denotes the complement of the set $A ; B=B(S)$ the σ-field of Borel subsets of a topological space $S ; C(S)$ the set of all continuous functions $S+\mathbb{R} ; C_{b}(S)$ and $C_{b b}(S)$ the set of all functions in $C(S)$ which are bounded and bounded from below, respectively; distribution function is abbreviated as d. f. $; K^{\prime}$ is the set of all $f e \mathrm{~K}$ (K is a cone of functions) with inf $f=0$ and sup $f=1 ; M(S)$ the set of all probability measures on the o-field of Borel subsets of S; oscf stands for oscilation of the function $f ; \delta$ represents the Dirac measure at the point s; and, finally, the symbols v, A have the usual meaning, i. e., they denote the maximum and the minumum operation, respectively, and l. s. c. abbreviates lower semicontinuous.
3. Lemma. If X is a compact topological. space and (E_{n}) is a sequence in $C(X)$ with $f_{n} f f e C(X)$ pointwise, then this convergence is uniform, in particular, $\operatorname{limmin} E_{n}=m i n f$.

Proof. Apply Dini's Theorem to the sequence ($f-f_{n}$). \|

The next lemma is essential for the fundamental Theorem . It was suggested by. Lemma 4 in [2], [o which it reduces when $\varepsilon=0$.
4. Lemma. Let S be a completely regular Hausdorfe topological space and $K \subset C_{b b}(S)$ an admissible cone. Let $P, Q \in M(S)$ be such that $/ f \mathrm{dP} \leq / \mathrm{f} d \mathrm{Q}+\mathrm{E}$ oscf for all fek. Let us fix bounded functions $\alpha, \beta, \phi_{i}: S+\mathbb{R}$, where α and β are Borel measurable and $\phi_{i} \geq 0, i=1, \cdots, n$. Further let us fix $f_{i} \in K, i=1, \ldots, n$. Then
(1) $\quad \inf _{s, \operatorname{teS}}\left[\alpha(s)+B(t)+\sum_{i=1}^{n}\left(f_{i}(s)-f_{i}(t)\right) \phi_{i}(s)\right] \geq 0$ implies

$$
\begin{equation*}
\int \alpha \mathrm{dP}+\int \beta \mathrm{dQ}+\epsilon \operatorname{osc} \beta \geq 0 . \tag{2}
\end{equation*}
$$

Proof. The proof is patterned after that of Lemma 4 in [2]. As
in that lemma, the crucial step consists of defining an auxiliary function $\hat{\beta}: \mathbb{R}^{n}+\overline{\mathbb{R}}:=[-\infty ;+\infty]$ having convenient properties. The Euclidean space \mathbb{R}^{n} will be equipped with the usual coordinatewise partial ordering. Throughout the rest of the proof we will use the notations $f:=\left(f_{1}, \ldots, f_{n}\right)$ and $f:=$ $\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)$ where \mathcal{F}_{i} denotes the Stone extension of \dot{f}_{i} (see, for instance, $[4], p: 86$), $i=1, \ldots, n$. Also $B S$ will denote the Stone-Cech compactification of S.

From (1) we obtain the inequality

$$
\begin{equation*}
\alpha(s)+\underline{B}(t)+\sum_{i=1}^{n}\left[f_{i}(s)-\mathcal{F}_{i}(t)\right] \phi_{i}(s) \geq 0, \tag{3}
\end{equation*}
$$

valid for all (s, t) e $S^{\circ} B S$. Here $B: B S+\mathbb{R}$ is the I. s. c. regu-

Let $x \in \mathbb{R}^{n}$ and consider the sequences
(4) $\quad\left(p_{1}, p_{2}, \ldots\right)$ e $[0 ; 1]^{\infty}$ with $\dot{p}_{1}+p_{2}+\ldots=1$,
(5)

$$
\left(t_{1}, t_{2}, \ldots\right) \in(B S)^{\infty} \text { with } x \leq \sum_{j} p_{j} f\left(t_{j}\right) \text {. }
$$

Set
and define

$$
T_{x}:=\left\{\sum_{j} p_{j}-\underline{B}_{j}\left(t_{j}\right) \mid \text { (4) and (5) hold }\right\}
$$

$\hat{B}(x):=\inf T_{x}$.
It is easy to see that $\hat{\beta} x$) is finite on and only on
the set $U:=\left\{x \in \mathbb{R}^{n} \mid x \leq y\right.$ for some $\left.y e c o n v(B S)\right\}$. Here the notation conv $F(B S)$ indicates the convex hull of $F(B S)$. The properties of \hat{B} that we are interested in are: (i) $-\alpha \leq \hat{B} o \bar{f}$ \leq B.on S, (i.j) \hat{B} is increasing, (iii) \hat{B} is convex, and (iv) \hat{B} is 1. s. c. . The last one is the more important and it is the Lema 5 in [2].

Let us prove the property (i). Taking (p_{1}, p_{2}, \ldots)
$:=(1,0, \ldots)$ and $\left(t_{1}, \dot{t}_{2}, \ldots\right):=(t, t, \ldots) \in(\beta S)^{\infty}$, we see that $B(t)$ e $T_{F(t)}$, hence $B(F(t)) \leq \underline{B}(t)$, that is,
(6)

$$
\hat{B} O F \leq \dot{B} \leq \beta \text { on } S \text {. }
$$

For the first inequality in (i), fix $s e S$, set $x:=f(s)$ and take sequences $\left(\mathrm{p}_{j}\right)$, (t_{j}) verifying (4) and (5), repectively. In particular
(7): $f(s) \leq \sum_{j} P_{j} \mathbb{F}\left(t_{j}\right)$.

Let us apply (3) with $t:=t_{j}$; afterwards, we multiply by p_{j} and sum over j obtaining

$$
\alpha(s)+\sum_{j} p_{j} B\left(t_{j}\right)+\sum_{i=1}^{n}\left[E_{i}(s)-\sum_{j} \dot{p}_{j} f_{i}\left(t_{j}\right)\right] \phi_{i}(s) \geq 0,
$$

which gives, using (7), $\alpha(s)+\sum_{j} p_{j} B\left(t_{j}\right) \geq 0$. This together with the deffinftion of $\hat{\beta}$ yielel $\alpha(s)+\hat{B} o f(s) \geq 0$ so that, by (6$)$,
(8) $-\alpha \leq \hat{\beta} o f \leq \beta$ on S.

That \hat{B} is increasing is imnediate: if $x, y e \mathbb{R}^{n}$ with $\mathrm{x} \leq \mathrm{y}$, then $\mathrm{T}_{\mathrm{y}} \subset \mathrm{T}_{\mathrm{x}}$. Therefore $\hat{\beta}(\mathrm{x})=$ inf $\mathrm{T}_{\mathrm{x}} \leq \inf T_{\mathrm{y}}=$ $\hat{\beta}(y)$.

The convexity is just as easy: let $p, q e[0 ; 1]$ with $p+q=1, x, y \in \mathbb{R}^{n}$ and

$$
\sum_{j} p_{j} B\left(t_{j}\right) \in T_{x}, \quad \sum_{j} q_{j} B\left(t_{j}\right) \in T_{y} .
$$

Therefore it is readily seen that

$$
\left[\sum_{j} p_{j} p_{j} \underline{\beta}\left(t_{j}\right)+\underset{j}{\varepsilon} q q_{j} \underline{B}\left(t_{j}\right)\right] e T_{p x+q y},
$$

hence

$$
\hat{\beta}(p x+q y) \leq p \sum_{j} p_{j} \underline{B}\left(t_{j}\right)+q_{j} \sum_{j} q_{j} \underline{B}\left(t_{j}\right),
$$

which produces

$$
\hat{\beta}(p x+q y) \leq p \inf T_{x}+q \inf T_{y}=p \hat{\beta}(x)+q \hat{\beta}(y),
$$

so \hat{B} is convex indeed.

It is known that a convex l. s. c. function like $\hat{\beta}$ restricted to U, which is a convex set with non-empty interior,
is the limit of an increasing sequence ($h(v)$ of functions

$$
h_{(v)}:=h_{1} \vee \cdots \vee h_{v},
$$

where, for $i=1, \ldots, v, h_{i}$ is the resticiction to u of an affine function on \mathbb{R}^{n} given by

$$
h_{i}(x):=\left\langle A_{i}, x\right\rangle+a_{i}, A_{i} \in \mathbb{R}^{n}, a_{i} \in \mathbb{R}
$$

Here $\left\langle V_{0} \cdot\right\rangle$ is the usual inner product. Since $\hat{\beta}$ is increasing, we can suppose that all the h's are increasing, equivalently, that $A_{i} \geq 0$. As K contains the constants, the linear combinations $h_{i j}$ ofeK, thus also $h_{(v)}$ of eK for all $v e \mathbb{N}$, because K is invariant under the operation v, so that

Therefore by the Monotone Convergence Theorem (each $h_{(v)}$ being bounded and thus integrable relatively to both P and Q)

$$
\int \hat{B} O f d P \leq \int \hat{B} O f d Q+E \operatorname{limosc}\left(h(v)^{\circ} f\right) .
$$

It is obvious that suph(v) of $\leq \sup$ Bof. Further $\operatorname{limh}(v)$ of $=$
inf Bof by Lemma 3. Thus Iimosc $\left(h(v)^{\circ}\right.$ f) $\leq \operatorname{osc}($ Bof $) \leq$ osc β. Putting all together, one arrives at the inequality
$(9)^{\circ} \quad \int \hat{\beta} o f d P \leq \int \hat{B} O E d Q+\varepsilon \operatorname{osc} B \cdot$

Finally, using (8) and (9), we conclude that

$$
\begin{aligned}
\int \alpha d P+\int \beta d Q & \geq \int \alpha d P+\int \hat{\beta} o f d Q \\
& \geq \int(\alpha+\hat{\beta} O f) d P-\varepsilon o s c \beta \\
& \geq-\varepsilon \text { osc } \beta . \|
\end{aligned}
$$

Let $P, Q \in M(S)$. We will describe the property $\int f d P \leq \int f d Q * \in O S C f$ for all f in a subset L of $C_{b}(S)$ aiso by saying that Q is an ε-dilation of P relative to L.

The following theorem supplies an equivalent definition of ϵ-dilation relative to an admissible cone $K \subset \mathcal{C}(S)$ for the case that S is compact. It says that a necessary and sufficient condition for Q to be an ε-dilation of P relative to K is that one can find a probability measures λ e $M\left(S^{2}\right)$ that satisfies

$$
\begin{equation*}
f(f(s)-f(t)) \phi(s) \lambda(d s, d t) \leq 0 \text { for all } f \text { e } K, \phi \in C^{+}(S) . \tag{10}
\end{equation*}
$$

and whose first marginal is P and second'marginal is "e-close" to Q.

Proof. We will show that $(a) \rightarrow(b) \cdots(c) \rightarrow(a)$.
$(a) \rightarrow(b)$: Since the indicator function 1_{A} of an open set AcS. is l. s. c., it is the pointwise limit of an increasing sequence of non-negative functions in $C_{b}(S)$. So (a) implies through the Monotone Convergence Theorem that $P(A) \leq Q(A)+\varepsilon$ for all open sets $A(C . S$. Now (b) follows by regularity of P.
(b) $\because(c):$ Let $a:=(P+Q) / 2$ and consider $f:=\frac{d P}{d \mu}, g:=\frac{d Q}{d \mu}$, the Rodon-Nikodyn derivatives. We have, using (b),

$$
\|P-Q\|=\int|f-g| d \mu \leq 2 \varepsilon
$$

$(c) \rightarrow(a):$ Lec r, f and g be asin the proof of $(b) \rightarrow(c)$, $\alpha \in C_{b}(S)$ and $c:=(\sup \alpha+\inf \alpha) / 2$. Therefore $2\|\alpha+c\|=\operatorname{osc} \alpha$ and

$$
\begin{aligned}
\int \alpha d P-\int \alpha d Q & =\int(\alpha+c)(E-g) d \mu \leq\|\alpha+c\| \int|E-g| d \mu \\
& =\|\alpha+c\| \cdot\|P-Q\| \leq \varepsilon \operatorname{osc} \alpha . \|
\end{aligned}
$$

7. Definitions. In view of Theorem 5 and Lemma 6 it becomes natural to study the five quantities $E_{i}(P, Q), i=1, \ldots, S$, denined as follows.

Let S be a standard space, $K \subset C_{b}(S)$ an admissible conc and $P, Q e M(S)$. By " \langle " we will mean " K ". Let us define

$$
E_{1}:=\left\{c \geq 0 \mid / \mathrm{fdP} \leq \int f \mathrm{fdQ}+\varepsilon \text { osc } f \text { for all } f \in \mathrm{e}\right\}
$$

$$
\begin{gathered}
E_{2}:=\left\{c \geq 0 \mid \text { there exists } Q^{\prime} e M(S) \text { with } P<Q^{\prime}\right. \text { and } \\
\left.\left\|Q^{\prime}-Q\right\| \leq 2 \varepsilon\right\}, \\
E_{3}:=\left\{\varepsilon \geq 0 \mid \text { there exists } P^{\prime} e^{\prime} M(S) \text { with } P^{\prime}<Q\right. \text { and } \\
\left.\left\|P^{\prime}-P\right\| \leq 2 \varepsilon\right\},
\end{gathered}
$$

$$
\begin{gathered}
E_{4}:=\left\{\epsilon \geq 0 \mid \text { there exist } P^{\prime} ; Q^{\prime} e m(S) \text { with } P^{\prime}<Q^{\prime},\right. \\
\left.\quad\left\|P^{\prime}-P\right\| \leq 2 \varepsilon \text { and }\left\|Q^{\prime}-Q\right\| \leq 2 \varepsilon\right\},
\end{gathered}
$$

$$
\mathrm{E}_{5}:=\{\varepsilon \geq 0\} \text { there exist } \mathrm{P}^{\prime}, \mathrm{Q}^{\prime} \in M(\mathrm{~S}) \text { with } \mathrm{P}^{\prime}<\mathrm{Q}^{\prime} \text { and }
$$

$$
\left.\left\|P^{\prime}-P\right\|+\left\|Q^{\prime}-Q\right\|=2 \varepsilon\right\}
$$

Now we define

$$
\begin{equation*}
\epsilon_{i}(P, Q):=\inf E_{i}, i=1, \ldots, 5 \tag{13}
\end{equation*}
$$

It is trivial that $E_{2} \subset E_{1}$ and that $\left(E_{2} \cup E_{3}\right) \subset E_{5} \subset E_{4}$. Therefore $\varepsilon_{1} \leq \varepsilon_{2}$ and $\min \left\{\varepsilon_{2}, \varepsilon_{3}\right\} \geq \varepsilon_{5} \geq \varepsilon_{4}$.
8. Theorem. Suppose that S is compact. Then ${ }_{\epsilon_{1}}(P, Q) \leq \varepsilon_{1}(P, Q)$ $=\varepsilon_{2}(P, Q) \leq \varepsilon_{3}(P, Q)$.

Proof. It suffices to show that $E_{1} \mathbb{E}_{2}$ and $E_{3} \subset E_{2}$. The first
inclusion follows at once from Theorem 5 taking Q^{\prime} as the second marginal of the neasure λ in that theorem. For the other inclusion, jet ε e E_{3}. This means that there exists p^{\prime} e $M(S)$, such that,
(14) $\int f d P^{\prime} \leq \int f d Q$, for all $f e k$ and

$$
\begin{equation*}
\left\|P^{\prime}-P\right\| \leq 2 E . \tag{15}
\end{equation*}
$$

By Lemma 6 the inequality (15) can be expressed in the form

```
fadP s fadP' + Eosc \alpha, for all \alphaeC(S).
```

The relations (14) and (15) giveffdP $\leq f f d Q+e \operatorname{sef}$ for all fek. Thus ee E_{1}. \|
9. Remarks. (i) Later on it will be seen that $\varepsilon_{5}=\varepsilon_{1}$ and that the inequalities in Theorem 8 are frequently strict. (ii). If $P<Q$, then $\varepsilon_{i}(P, Q)=0, i=1, \ldots, 5$. (iii) We always have $0 \leq \varepsilon_{i}(P, Q) \leq 1, i=1, \ldots, 5$. (iv) Obviously
(17)

$$
\varepsilon_{1}(P, Q)=\underset{\substack{o s c \\ f \in K}}{=\sup _{\substack{ }}\left[\int f d P-\int f(i Q] .\right.}
$$

(v) Thcorem 5 is false for non-compact stanclard spaces. For such spaces the condition ffdP $\leq \int f d Q+\varepsilon$ osce for all fek is (obviously) necessary but no longer sufficient for (10), (11) and (12). To see that the named condition fails to be sufficient, consider $S:=[0 ; 1)$, take $P:=\delta_{x}$ and $\mathrm{Q}:=\delta_{\mathrm{y}}^{\mathrm{y}}$ with $0<\mathrm{y}<\mathrm{x}<1$ and let K consist of all increasing convex functions on S. One can show that $\varepsilon_{1}(P, Q)=(x-y) /(1-y)$ and that there is no $Q^{\prime} e m(S)$ dilating P with $\left\|Q^{\prime}-Q\right\| \leq 2 \varepsilon$. This contradicts Theorem . 8, specifically, it contradicts the inclusion $E_{1} \subset E_{2}$ thus Theorem 5. ||
10. Example. Let $S:=\{a ; b\} \in \mathbb{R}, K$ the cone of convex increasing continuous functions $S+\mathbb{R}$ and P, Q em(S). We want to compute $\varepsilon_{1}(P, Q)$. For that goal we need to take into account only the functions in K of the form $s \leftrightarrow(s-c)^{+}:=(s-c) v 0$, where c is a constant, because those, functions (together with the constants) span a cone dense in K. Here we implicitly also use that osc $(f+g)=o s c f+o s c g$ when f, g are increasing. Hence, by (17),
(1: $\quad \varepsilon_{1}(P, Q)=\sup _{a \leq c \leq b} \frac{1}{b-c}\left[\int(s-c)^{+} d P-f(s-c)^{+} d Q\right]$.

As a special illustration take $[a ; b]=[0 ; 1], \mathrm{P}(\mathrm{ds})$ the Lebesgue measure, and let Q be the discrete proba-
bility measure defined by $Q\left(11 / 2^{n}\right):=1 / 2^{n}, n=1,2, \ldots$: Then (1.8) becomes

$$
\begin{aligned}
c_{1}(P, Q) & =\sup _{0 \leq c \leq \frac{1}{2}} \frac{1}{1-c}\left[\int_{c}^{1}(s-c) d s-\int_{\left[c ; \frac{1}{2}\right]}(s-c) Q(d s)\right] \\
& =\sup _{0 \leq c \leq \frac{1}{2}} g(c)
\end{aligned}
$$

wherg $g(c):=\frac{1}{1-c}\left[\frac{1}{2}(1-c)^{2}-\frac{1}{3}\left(1-4^{-m}\right)+c\left(1-2^{-n m}\right)\right]$ and m is the largest integer with $c \leq 1 / 2^{\mathrm{m}}$. Note that it is only necessary to use c in. the interval $\left[0 ; \frac{1}{2}\right]$ because for $c>\frac{1}{2}$ the value $[1 /(1-c)] /(s-c)^{+} d s=1 / 2$, while $\int(s-c)^{+} \mathrm{Q}(\mathrm{d} s)=0$. Now using the derivative $g^{\prime}(c)$ one easily shows that $c=\frac{1}{4}$ and $c=\frac{1}{2}$ are the unicuen points of maximum of g. By computing one can see that $g\left(\frac{1}{4}\right)<g\left(\frac{1}{2}\right)=1 / 4$. Thus $\varepsilon_{1}(P, Q)=1 / 4$. \quad i

From (17) it follows immediately that ${ }_{1}$ satisfies the triangle inequality. But ε_{1} is not symmetric. The mapping $(P, Q) \leftrightarrow \dot{\delta}_{1}(P, Q):=\varepsilon_{1}(P, Q)+\varepsilon_{1}(Q, P)$ is a pseudo-metric on $M(S)$, in fact a metric when K is a determining class for $M(S)$ (for instance, S a convex compact metrizable subset of a topological vector space and $K \in C(S)$ the cone of convex functions). It is not difficult to prove that a sequence (P_{n}) in $M(S)$ converges with respect to δ_{1}, i. e., $\delta_{1}\left(P_{n}, P\right)+0$ for some $P e M(S)$, iff the sequence of linear functional $f \Leftrightarrow \int f d P_{n}$ converges uniformu y
on $K A\{E e C(S) \mid\|f\|=1\}$. As a consequence, if K is a determining class for $M(S)$, then the δ_{1}-topology on $M(S)$ is finer than the weak topology.

Neither ε_{3} nor ε_{4}, satisfy the triangle inequality as
Example 11 and 20 will show. On the other hand it is easy to see that $c_{4}(P, R) \leq 2\left[c_{4}(P, Q)+c_{4}(Q, R)\right]$.
11. Example. A case where $\varepsilon_{3}(P, R)>\varepsilon_{3}(P, Q)+\varepsilon_{3}(Q, R)$. Let $S:=[a ; b], K[C(S)$ be the cone of all convex functions and $a \leq x<y \leq b$. Put $z:=(1-\alpha) x+\alpha y$ with $0<\alpha<1$, so that $x \neq z \neq y$. Consider

$$
P:=\delta_{z}, Q:=(1-\alpha) \delta_{x}+\alpha \delta_{y}, R:=\delta_{x}
$$

For each fek, $f(z) \leq(1-\alpha) f(x)+\alpha f(y)$, so that $p<Q$, hence $\varepsilon_{3}(P, Q)=0$. Since $P^{\prime}<R:=\delta_{x}$ requires $P^{\prime}=\delta_{x}$ and since $P=\delta_{z}$ with $z \neq x$, it follows that $\varepsilon_{3}(P, R)=\left\|\delta_{x}-\delta_{z}\right\| / 2=1$. On the other hand $\varepsilon_{3}(Q, R) \leq\|Q-R\| / 2=\alpha$. \|

Probably there is no easy formula for computing the value $c_{i}, i=1, \ldots, 5$, but next theorem and corollary are an important step in this direction.
12. Theorem. Let S be a compact space, $K \subset C(S)$ an admissibie cone, $p, Q e m(S)$ and $u, v \geq 0$ constants. Then there exist
P^{\prime}, Q^{\prime} e $M(S)$, such that,
(1.9) $\quad\left\|P^{\prime}-P\right\| \leq 2 U, \quad\left\|Q^{\prime}-Q\right\| \leq 2 v, \quad P^{\prime} \underset{K}{<} Q^{\prime}$
if and only j.f, for all fe K with inff $=0$ and all $c e \mathbb{R}$ with $0<c \leq \sup \mathrm{E}$,

$$
\begin{equation*}
\int f \wedge c d P \leq \int f d Q+u c+v \sup f \tag{20}
\end{equation*}
$$

Proof. By the very definition of E_{2}, (1.9) is equivalent to the existence of P^{1} e $M(S)$, such that,

$$
\begin{equation*}
\left\|P^{\prime}-P\right\| \leq 2 u, \quad \varepsilon_{2}\left(P^{\prime}, Q\right) \leq v \tag{array}
\end{equation*}
$$

- By Lemma 5 , and the equality $\varepsilon_{2}=\varepsilon_{1}$, condition (2 1) on P^{\prime} is equivalent to

```
\int\alphadP'}\leq\int\alphadP+uosc\alpha, for all \alpha eC(S
|fdP'}\leq\intfdQ+voscf, for al.l fek
```

Since $C(S)$ and K are cones, Theorem A. 2 (see Appendix) tells us that a p^{\prime} e $M(S)$ satisfying (2 2) exists iff, for all fie K, $\alpha, \mathrm{e} C(S)$, and m, $n \mathrm{e} \mathbb{N}$, we have that
:) $\quad \ln f\left(\sum_{i=1}^{m}{ }_{i=1}+\sum_{j=1}^{n} \mathbb{F}_{j}\right) \geq 0$
implies
(24)

$$
\sum_{i=1}^{m}\left(\int \alpha_{i} \ddot{d P}+\operatorname{uosc} \alpha_{i}\right) \quad+\sum_{j=1}^{n}\left(\int f_{j} d Q+\operatorname{vosc} f_{j}\right) \geq 0 .
$$

Letting $\alpha:=\Sigma \alpha_{i}$ and $F:=\Sigma f_{j}$, then $\alpha e C(S)$ and $f e K$, since the cones $C(S)$ and K are convex. As osc $\alpha \leq \operatorname{cosc} \alpha_{i}$ and osc $f \leq$ coscff, it suffices to establjstr the implication
(25) $\alpha \in C(S), f e k, \inf (\alpha+f) \geq 0 \rightarrow \int a d P+\int f d Q+u \operatorname{osc} \alpha+\operatorname{vosc} f \geq 0$.

Introducing $h:=\alpha+f$, this is equivalent to the requirement that
(26) $\quad \int \mathrm{fdP}-\int \mathrm{f} \mathrm{dQ} \leq \int \mathrm{hdP}+\mathrm{uosc}(f-h)+\mathrm{vosc} f$, if fek, hec ${ }^{+}(S)$.

Given $f e K$, we want to choose h e $C^{+}(S)$ so as to minimize the righthand side of (26) Put a:= inf(f-h) and $c:=$ $\sup (f-h)$ so that $\operatorname{osc}(f-h)=c-a$ and $a \leq f-h \leq c$, or $f-c \leq h \leq f-a$. As $h \geq 0$, setting $h_{0}:=(f-c)^{+}:=(f-\dot{c}) \vee 0$, we have $\mathrm{f}-\mathrm{c} \leq \mathrm{h}_{0} \leq \mathrm{h} \leq \mathrm{f}-\mathrm{a}$. Further $\mathrm{f}-\mathrm{c} \leq \mathrm{h}_{\mathrm{o}} \leq \mathrm{f}-\mathrm{a}$, or $a \leq f-h_{0} \leq c$, which shows that osc $\left(f-h_{0}\right) \leq c-a=\operatorname{osc}(f-h)$. Since $0 \leq h_{o}=(f-c)^{+} \leq h$ and osc $\left(E-h_{o}\right) \leq \operatorname{osc}(f-h)$, it is clear from (26) that it suffices to consider only functions of the form $h:=(f-c)^{+}$, where c is a constant. Obscrving that
$f-(f-C)^{+}=f \wedge c,(26)$ is equivalent to
(27) $\quad \int$ f^c $d P-\int f d Q \leq u \operatorname{Osc}(f \wedge C)+\operatorname{Vosc} f$, for all Eek, ceIR

Let us show that in (27) we only need
(28) \quad infer $<\leq \leq \sup E$.

For, the choice $c>\sup f$ is the same as the choice $c=\sup \cdot f$ because in both cases $f \wedge c=E$. If $c \leq i n f f$, then $\int f \wedge c d P=c$ and $\int f d Q \geq$ inf. $f \geq c$ so that (27) is always true.

Since K contains the constants we can take always inf. $f=0$, in which case osc $f=\sup E$. Thus the proof will be complete if we show that osc $\left(f^{\wedge} c\right)=c$. Indeed, by (2 8) $\inf (f \wedge c)=\inf f=0$ and $\sup (f \wedge c)=0 . \|$

Besides using only functions E e K with inf $f=0$ in (20) one may also assume without loss of generality that $\sup f=1$. Hence (20), thus also (19), is equivalent to

$$
\begin{equation*}
t u+v \geq \phi(t), \text { for all } 0 \leq t \leq 1 \tag{29}
\end{equation*}
$$

Here

$$
\phi(t):=\sup \left\{\int f \wedge E d P-\int E d Q \mid f e K, \inf f=0, \sup f=1\right\}
$$

The set of relations (29) represents a family
$\left(H_{t}\right)_{\text {ee }}[0 ; 1]$ of closed half planes. The intersection

$$
A:=A(P, Q, K):=\left(\bigcap_{\operatorname{te}[0 ; 1]}^{H_{t}}\right) \bigcap\left\{(u, v) \in \mathbb{R}^{2} \mid u \geq 0, v \geq 0\right\}
$$

is a closed convex subset of \mathbb{R}^{2}. The pairs (u,v) e A are precisely the pairs for which there exist $P^{\prime}, Q^{\prime} e^{M}(S)$ satisfying (19)

Considering the definitions of $\epsilon_{i}(P, Q)$ it is clear that

$$
\begin{aligned}
& \varepsilon_{2}(P, Q)=\inf \{v \mid(0, v) \text { e } A\} \\
& { }_{\varepsilon_{3}}(P, Q)=\inf \{u \mid(u, 0) \text { e } A\} \\
& \varepsilon_{4}(P, Q)=\inf \{u \mid(u, u) \text { e } A\} \\
& \varepsilon_{5}(P, Q)=\inf \{u+v \mid(u, v) \text { e } A\} .
\end{aligned}
$$

The geometric meaning of $\varepsilon_{1}=\varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ and ε_{5} is clear. So putting all together we have the situation described in Fig. 1.

Fig. 1

The only thing that is not clear is how ε_{5} fits into the picture. In fact one has:

13. Corollary. $\varepsilon_{5}=\varepsilon_{2}$.

Proof. The function $t \rightarrow \phi(t)$ in (29): is increasing. Hence $\varepsilon_{2}(P, Q)=\phi(1)$. Therefore taking. $t \doteq 1$ in (29) all points (u, v) e A satisfy

$$
u+v \geq E_{2}(P, Q)
$$

The equality sign is attained at $\left(0, \varepsilon_{2}(P, Q)\right)$. This proves that $\varepsilon_{5}=\varepsilon_{2} . \|$

Before going further, we will present some illustrations. We will consistently use the notation

$$
K^{\prime}:=\{f \in K \mid \inf f=0, \sup f=1\}
$$

where K is a given cone of functions.
14. Example. We will study in detail the case $S:=[0 ; 1]$, . K:= cone of all convex increasing continuous functions $S+\mathbb{R}$, thus inf $f=f(0)$ and $\sup f=f(1)$ for each $E X^{\prime}$. Let further Pem(S) be arbitrary and $Q:=\delta_{0}$, the Dirac measure at 0 . Note
that, for each f e K^{\prime}, we have $f(0)=0, f(1)=1$ and $f(t) \leq$ $\mathrm{f}^{*}(\mathrm{t}):=\mathrm{t}$, where $\mathrm{f}^{*} \mathrm{e} \mathrm{K}^{\prime}$.

The function ϕ in (29) is given by

$$
\begin{aligned}
\phi(t) & =\sup _{f \in K^{\prime}}\left(\int f \wedge t d P-\int f d \delta_{o}\right) \\
& \left.=\sup _{f e K^{\prime}} \int f \wedge t d P=\int f * \wedge t d P=\int f^{*} ; t\right] d P+t \int_{(t ; 1]} d P \\
& =t F(t)-\int_{0}^{t} F(s) d s+t(F(1)-F(t)) \\
& =t-\int_{0}^{t} F(s) d s .
\end{aligned}
$$

Here F denotes the distribution function (d. f.j) of P and we have integrated by parts. Therefore (29) in this case reads

$$
\begin{equation*}
t u+v \geq \phi(t)=t-\int_{0}^{t} F(s) d s, \text { for all } t e[0 ; 1] \tag{30}
\end{equation*}
$$

We observe that, letting X be a random variable whose discribution is P, then $t=1$ in (30) leads to $u+v \geq E[X]$.
(i) Let us consider the case in which P is supported by $\left\{x_{1}, \ldots, x_{n}\right\}, 0<x_{1}<\ldots<x_{n}$. Let $P\left(\left\{x_{j}\right\}\right)=p_{j}$. of course $\mathrm{p}_{1}+\cdots+\mathrm{p}_{\mathrm{n}}=1$. Here

$$
F(s)=\sum_{i=1}^{n} p_{i} I\left(x_{i} ; \infty\right)(s)
$$

Hence

$$
t-\phi(t)=\int_{0}^{t} F(s) d s=\sum_{i=1}^{n} p_{i}\left(t-x_{i}\right)^{+}
$$

The line $t u+v=\phi(t)=t$ rotates about the point $T_{0}:=(1,0)$ when t increases from 0 to x_{1}. Similarly, the line $t u \neq v=\phi(t)=t-p_{1}\left(t-x_{1}\right)-\ldots-p_{j}\left(t-x_{j}\right)$ rotates about the point

$$
T_{j}:=\left(1-p_{1}-\cdots-p_{j}, p_{1} x_{1}+\ldots+p_{j} x_{j}\right)
$$

when t increases from x_{j} to x_{j+1}, this for for $j=1, \ldots, n$. In particular for $j=\dot{n}$ the line rotates about $T_{n}:=(0, E[X])$. The point T_{j} is also the intersection of the two lines with $t=x_{j}$ and $t=x_{j+1}$. Hence the region $A\left(P, \delta_{o}, K\right)$ looks like in Fig: 2, and we see that its lower boundary is polygonal.

We conclude that $\epsilon_{1}\left(P ; \delta_{0}\right)=E[X]$. It was obvious from the beginning that $\epsilon_{3}\left(P, \delta_{o}\right)=1$, because δ_{o} only dilates itself relatively to K (see definition (13)). The value ${ }_{4}\left(P, \delta_{0}\right)$ cannot be given by a simple formula.

(ii). Assume now P has no atoms. Therefore F in (30) is continuous. Hence we obtain from (30) that the part of the lower boundary of $A\left(P, \delta_{0}, K\right)$ not contained in the coordinate axes is a mooth curve (envelope) with parametric equations

$$
\mathrm{u}=1-\mathrm{F}(\mathrm{t})
$$

*

$$
\begin{equation*}
v=t F(t)-\int_{0}^{t} F(s) d s, t e[0 ; 1] \tag{311}
\end{equation*}
$$

Letting $u=0$, the first equation gives $F(t)=1$, which has a solution $t=1$ (not necessarily unique). Substituting these
values for $F\left(t^{\prime}\right)$ and t in the second equation of (31), we arrive to

$$
\begin{equation*}
E_{1}\left(p, \delta_{0}\right)=1-\int_{0}^{1} F(s) d s=E[X] \tag{32}
\end{equation*}
$$

It is obvious that $\epsilon_{3}\left(p, \delta_{0}\right)=1$. Finally (solving for $v=u$ in (31)),

$$
\begin{equation*}
\varepsilon_{4}\left(P, \delta_{0}\right)=1-F\left(t_{0}\right) \tag{33}
\end{equation*}
$$

where $t_{0} e[0 ; 1]$ is a solution of the equation
$(34) \quad \int_{0}^{t} F(s) d s=(t+1) F(t)-1$.
(iii) Let us specialize (ij) taking for P a measure $P_{n} \in M([0 ; 1])$ given by

$$
P_{n}(B):=\int_{B}(n+1) s^{n} d s, n e(0,1, \ldots)
$$

The d. f. of P_{n} is the function F given by $F(s)=P_{n}(-\infty ; s)$. Hence, by (32),

$$
\varepsilon_{1}\left(P_{n}, \delta_{a}\right)=1-\int_{0}^{1} F(s) d s=\frac{n+1}{n+2} .
$$

Eliminating the parameter t in (31) we get

$$
\begin{equation*}
v=\frac{n+1}{n+2}(1+u)^{(n+2) /(n+1)}, u e[0 ; 1] \tag{35}
\end{equation*}
$$

which is the Cartesian equation of the lower boundary of $A\left(P_{n}, \delta_{o}, K\right)$. Taking $v=u$ in (35) we see that $\varepsilon_{4}=\varepsilon_{4}\left(P_{n}, \delta_{o}\right)$ is implicitly given by

$$
\varepsilon_{4}=\frac{n+1}{n+2}\left(1+\varepsilon_{4}\right)^{(n+2) /(n+1)} .
$$

For $\mathrm{n}=0, \mathrm{P}_{\mathrm{n}}=\mathrm{P}_{\mathrm{o}}=\mathrm{ds}$ is the Lebesgue measure on [0;1] and (35) represents a convex parabola with vertix (1,0) - see Fig. 3. ||

Fig. 3
15. Example. Let $S:=[0 ; 1], P:=d s$ (Lebesgue measure), $Q:=\delta x$, $x \in(0 ; 1)$, and $K \subset C(S)$ the cone of convex increasing functions. This example generalize the Example 14 (iii). Here with some work we obtain
$\varepsilon_{1}\left(d s, \delta_{x}\right)=(1-x) / 2, c_{3}\left(d s, \delta_{x}\right)=1-x, \epsilon_{4}\left(d s, \delta_{x}\right)=(1-x)(2-\sqrt{2})$, valid for all x e $[0 ; 1]$. Il

Previous calculations with $Q=\delta$ were easy because K^{\prime} contained a largest element f^{*} while $f(0)=0$ for all fek'. More general: let S be a compact space with a partial order, and kthe cone of all continuous increasing functions that assume their minimum at every point of $U:=\operatorname{supp} Q$, the support of Q. Note that such cone K is not only invariant under the operation v but also under n.. Letting $P e m(S)$ be arbitrary, we have as $\phi(t)$ in (29)

$$
\phi(t)=\int t \wedge l_{U^{c}}(s) P(d s)=t P\left(U^{c}\right)
$$

which leads to $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=2 \varepsilon_{4}$

$$
=\varepsilon_{5}=\mathrm{P}\left(U^{C}\right) \text { - see Fig. } 4
$$

Fig. 4

The above expression for $\phi(t)$ was possible because K^{\prime} is filtering from right (see [1], p. 145), i. e., given f, gek', there exists $h e K^{\prime}$ with $f, g \leq h$. In general, if S is a compact space with a partial ordering, $K \subset C(S)$ an admissible cone, such that, K^{\prime} is filtering from the right, and Qem(S) is such that each. fek' assumes its minimum at every point of $\operatorname{supp} Q$, then (29) takes the form
(36).

$$
t u+v \geq \phi(t)=t-\int_{0}^{t} F(s) d s, \quad t e[0 ; 1]
$$

where F is the P-distribution function of $s H \sup _{\text {fek }} f(s):=f^{*}(s)$.
It is true in general that the right slope r of the lower boundary of a region $A(P, Q)$ at $\left(0, \epsilon_{1}\right)$ is given by the formula $r=-\inf \{t e[0 ; 1] \mid \phi$ is constant on $[t ; 1]\}$, where ϕ is as in (29). Now, if $\phi(t)$ is the right hand sicle in (36), then, as it is easy to see, the formula for r specializes to
(37). $\quad r=-\inf \{t \in[0 ; 1] \mid F(t)=1\}$.

Similarly, it is true in general that the left slope l of the lower boundary of $A(P, Q)$ at $\left(\varepsilon_{3}, 0\right)$ is obtained by the formula $l=-\sup \left\{t_{1} \in[0 ; 1] \mid \phi(t) / t\right.$ is constant on $\left.\left(0 ; t_{1}\right]\right\}$, which, in the situation of (36), becones

$$
\begin{equation*}
h=-\sup \left\{t_{1} \in[0 ; 1] \mid F \text { is constant on }\left[0 ; t_{1}\right]\right\} \tag{38}
\end{equation*}
$$

16. Example. Let.us reconsider Example 14 (iii). In that example $f *$ is given by $f *(s)=s$, whose P_{n}-distribution function F is given by $F(s)=s^{n+1}$ if $s e[0 ; 1]$. Hence formulas (37) and (38) yield $r=-1$ and $l=0$, respectively, for all, n.- see Fig. 3. ||
17. Example. Let S be the interval $[0 ; 1], K \dot{C} C(S)$ the cone
of convex increasing functions, $P e m(S)$ the measure with density $\frac{1}{b-a} 1_{[a ; b]}(s) d s$ where $0 \leq a<b \leq 1$, and $Q:=\delta_{0}$. The corresponding d. f. F is given by $F(s):=(s-a) /(b-a)$ if $s e[a ; b]$. Hence here $r=-b$ and $l=-a$, which shows that the right slope of the lower boundary of A at $\left(0, \varepsilon_{1}\right)$ can be any number in $[-1 ; 0)$ and its left slope at $\left(\varepsilon_{3} ; 0\right)$ any number in $(-1 ; 0]$. We observe also that here $\varepsilon_{1}\left(P, \delta_{0}\right)=1-\int_{0}^{1} F(s) d s=(a+b) / 2$, so that ϵ_{1} can be close to 0 or 1 .

$$
\text { For instance, letting } a=0 \text { and } b=\frac{1}{2} \text {, we calculate }
$$

the function ϕ in (36) by

$$
\phi(t)=\left\{\begin{array}{l}
\left.t-t^{2}, \text { if.te[0; } \frac{1}{2}\right] \\
\frac{1}{4}, \text { if } t \in\left[\frac{1}{2} ; 1\right]
\end{array}\right.
$$

The system of inequalities $t u+v \geq t-t^{2}$; t e [0; $\left.\frac{2}{2}\right]$, determines $A(P, Q)$. The lower boundary of the latter is the envelope of the family of lines $t u+v=t \sim t^{2}$, $t e\left[0 ; \frac{1}{2}\right]$, which has as Cartesian representation $v=\left(\frac{1}{4}\right)(1-u)^{2}$, ue $\left.0 ; 1\right]$ - see Fig. 5 .

$$
\text { Similarly, if } \mathrm{a}=\frac{1}{2}, \mathrm{~b}=1 \text {, then } \mathrm{v}=\left(\frac{1}{4}\right) \mathrm{u}^{2}-\mathrm{u}+3 / 4,
$$

ue [0;1], instead - see Fig. 6. II

Fig. 5

Fig. 6
18. Example. Let $S \subset \mathbb{R}^{\dot{n}}$ be a compact convex set and let $P_{n}(A): \neq|A| /|S|$ be the normalized Lebesgue measure on S. Let ye int(S) and $K_{y}:=\{f e C(S) \mid f$ is convex, inf $f=f(y)\}$. Also let $Q:=y^{\prime}$. Here there exists the largest element $f *:=f \%$ of $K^{\prime}:=K_{y}^{1}$. Its graph is the "lateral" boundary of the solid cone in \mathbb{R}^{n+1} with vertex $(y, 0)$ and base $\left\{(s, 1)\right.$ e $\mathbb{R}^{n+1} \mid$ ses $\}$. For $z e[0 ; 1]$, let S_{z} be the part of the hyperplane $s_{n+1}=z$ (we call s_{i} the $i^{\text {th }}$ coordinate of a point $s \in \mathbb{R}^{n+1}$) inside the graph of f_{y}^{*}. Therefore

$$
P_{n}\left(\pi\left(S_{z}\right)\right)=z^{n},
$$

where $\pi: \mathbb{R}^{n+1}+\mathbb{R}^{n}$ is the natural projection. This implies that the d. f. F of $f *$ relative to the probability space (S, P_{n}) is given by $F(t)=t^{n}$, if, t e [0;1], which is independent of y
or the shape of S. Since, by (36), $A\left(P_{n}, \delta, K_{y}\right)$ depends only on F, the conclusions of Example 14 (iii) also hold for the present situation: i|
19. Measures P^{\prime}, Q^{\prime} Realizing the Boundary of $A(P, Q)$. As was already observed, $A(P, Q)$ is a closed subset of \mathbb{R}^{2}. This means that, for each point (u, v) on the boundary of $A(P, Q)$, one can attain both equality signs in (19) by a suitable choice of P^{\prime} and Q^{\prime}. Let us now. give an example where P^{\prime}, Q^{\prime} can be explicitly described.

Let S be a compact space and $K \subset \mathcal{C}(S)$ an admissible cone. Suppose K' possesses a largest element f\%. Choose Pem(S) and let F be the P-distribution function of $f \%$. Suppose there is a unique point y in S with $f *(y)=0$ and a unique point y^{\prime} in S with $f^{*}\left(y^{\prime}\right)=1$. (Example: let S be compact space with a partial ordering, a least element y and a greatest element y^{\prime}, and let $K \subset C(S)$ be the cone of all convex increasing fumctions.). Choose $Q=\delta_{y}$. The parametric equations for the lower portion of the boundary of $A\left(P, \delta_{y}, K\right)$ are, by (31) (we are also assuming that P has no atom),

$$
\begin{aligned}
& u(t)=1-F(t) \\
& v(t)=t F(t)-\int_{0}^{t} F(s) d s, \quad t e[0 ; 1] .
\end{aligned}
$$

Define. ${ }_{t}^{\prime}, Q_{t}$ e $M(S)$ by

$$
\begin{aligned}
& P_{t}^{\prime}(E):=P\left[E \cap\left(E^{*} \leq t\right)\right]+u(t) \delta_{y}(E), \\
& Q_{t}^{\prime}(E):=v(t) \delta_{y^{\prime}}(E)+(1-v(t)) \delta_{y}(E) .
\end{aligned}
$$

Certainly $\left\|P_{t}^{\prime}-P\right\|=2 u(t)$ and $\left\|Q_{t}^{\prime}-Q\right\|=2 v(t)$. Moreover, given $E \mathrm{e}^{\prime} \mathrm{K}^{\prime}$.

$$
\begin{aligned}
\int £ d P_{t}^{\prime} & \leq \int f * d P_{t}^{\prime}=\frac{\int}{[0 ; t]} s d F(s)+u f *(y) \\
& =\int_{[0 ; t]} \cdot s d F(s)=t F(t)-\int_{0}^{t} F(s) d s=v(t),
\end{aligned}
$$

and

$$
\int f d Q_{t}^{1}=v(t) f\left(y^{\prime}\right)+[1-v(t)] f(y)=v(t)
$$

Thus $\int f \mathrm{dP}_{t}^{\prime} \leq \int f \mathrm{dQ}_{t}^{\prime}$. This proves that $\mathrm{P}_{t}^{\prime}<Q_{t}^{\prime}$.
20. The Triangle Inequality. Fails for ε_{4}. Let $S:=[0 ; 1\}$, $K \subset C(S)$ be the cone of decreasing convex functions and $Q:=$ $\mathrm{p} \delta_{0}+q \delta_{1}$ with. $p+q=1$. We want to show that, for convenient values of p, q,
(39)

$$
\varepsilon_{4}\left(\delta_{\frac{1}{2}}, \delta_{1}\right)>\varepsilon_{4}\left(\delta_{\frac{1}{2}}, Q\right)+\varepsilon_{4}\left(Q, \delta_{1}\right)
$$

Let first compute $\varepsilon_{4}\left(\delta_{\frac{1}{2}}, \delta_{1}\right)$. Here (36) applies. The function $s \mapsto-s+1$ is the largest element in K and its
$\delta_{l_{2}^{2}}$-distribution function is $F=1_{\left(\frac{1}{2} ; \infty\right)}$.Using (36) we obtain the following family of half planes

$$
t u+v \geq \begin{cases}t, & \text { if } t \leq \frac{1}{2} \\ \frac{1}{2}, & \text { if } t \geq \frac{1}{2}\end{cases}
$$

Thus $w+2 v=1$ is the equation of the lower boundary of $A\left(\delta_{\frac{1}{2}}, \delta_{1}\right)$. Letting $v=u$ in that equation, we conclude that

$$
\varepsilon_{4}\left(\delta_{\frac{1}{2}}, \delta_{1}\right)=1 / 3
$$

Next, consider ${ }_{4}\left(\delta_{\frac{1}{2}}, Q\right)$. Here it is easier going back to (29). We have.

$$
\begin{aligned}
\phi(t) & =\sup _{f e K}\left[\int(f \wedge t) d \delta_{\frac{1}{2}}-\int f d Q\right] \\
& =\left\{\begin{array}{l}
t-p, t \leq \frac{1}{2} \\
\frac{1}{2}-p, \text { if } t \geq \frac{1}{2} .
\end{array}\right.
\end{aligned}
$$

The equation of the important part of the lower boundary of $\mathrm{A}\left(\delta_{\frac{3}{2}}, \mathrm{Q}\right)$ is $u+2 \mathrm{v}=1-2 \mathrm{p}$, from which, letting $\mathrm{v}=\mathrm{u}$, we obtain

$$
\varepsilon_{4}\left(\delta_{\frac{1}{2}}, Q\right)=\left\{\begin{array}{l}
0, \text { if } p \geq \frac{1}{2} \tag{40}\\
(1-2 \mathrm{p}) / 3, \text { if } p \leq \frac{1}{2}
\end{array}\right.
$$

As to $\varepsilon_{4}\left(Q, \delta_{1}\right)$, here again (36) applies. The Q-distribution function F of $s \longmapsto-s \nrightarrow 1$ has values $F(s)=0$ if $s<0$, $f(s)=G$ if. $0 \leq s<1$ and $F(s)=1$ if $s \geq 1$. By (36)

$$
t u+\dot{v} \geq t-\int_{0}^{t} F(s) d s=t-q t=p t, \quad t e[0 ; 1]
$$

So the part of the lower boundary of $A\left(Q, \delta_{1}\right)$ we are interested in is given by $u+v=p$, $u e[0 ; p]$, showing that

$$
\begin{equation*}
\varepsilon_{4}\left(Q, \delta_{1}\right)=p / 2 \tag{41}
\end{equation*}
$$

Adding (40) and (41) we obtain

$$
\varepsilon_{4}\left(\delta_{\frac{1}{2}}, Q\right)+\varepsilon_{4}\left(Q, \delta_{1}\right)=\left\{\begin{array}{l}
p / 2, \text { if } p \geq \frac{1}{2} \\
1 / 3-p / 6, \text { if } p \leq \frac{1}{2}
\end{array}\right.
$$

Since. $\varepsilon_{4}\left(\delta_{\frac{1}{2}}, \delta_{1}\right)=1 / 3$, this shows that (39) obtains whenever $0<\mathrm{p}<\dot{2} / 3$. \|

When we dealt with cones both invariant under max and min operation, the corresponding picture, Fig. 4, was very peculiar. In particular $\varepsilon_{2}=\varepsilon_{3}=2 \varepsilon_{4}$ in that situation. Let us show that this is always so whenever the cone has the mentioned property through the following proposition.
21. Proposition. Let S be a compact space, $K \subset C(S)$ an admis-. sible cone which is invariant under the operation \wedge and let $P, Q e M(S)$. Then the portion of the boundary of $A(P, Q, K)$ not contained in the u-axis is a line segment with slope -1 .

In particular $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=2 \varepsilon_{4}=\varepsilon_{5}$ at (P; Q).

Proof. The lower boundary of $A(P, Q, K)$ has slope ≤ 1 (in absolute value). But so has the corresponding set $A(P, Q,-K)$, where $-K:=\{f \mid-f e K\}$. Since $A(P, Q,-K)$ is simply the reflexion $\{(v, u) \mid(u, y)$ e $A(P, Q, K)\}$ of $A(P, Q, K)$, the lower boundary of the latter is a straight line of slope -1. ||

Before ending this article it is worthwile to make the following
22. Remark. Let S be a compact space, $K \subset C(S)$ an admissible cone and $P, Q \in M(S)$. Using the definition of $\varepsilon_{1}(P, Q)$ and Theorems 8 and 12 , we have

$$
\begin{aligned}
& \varepsilon_{i}^{\prime}(P, Q)=\sup _{E}\left[\int f d P-\int f d Q\right], i=1,2,5 ; \\
& \varepsilon_{3}(P, Q)=\sup _{f, t}\left[\frac{1}{t} \int f \wedge t d P-\frac{1}{t} \int f d Q\right] ; \\
& \varepsilon_{4}=\sup _{F, t}\left[\frac{1}{I+t} \int f \wedge t d P-\frac{1}{1+t} \int f d Q\right] ;
\end{aligned}
$$

" where f runs over K^{\prime} and t over (0;1). It follows that, endowing $M(S)$ with the weak topology, the function ($P, Q)+c_{i}(P, Q)$, i $=1, \ldots, 5$, is $1 . \operatorname{s.c}$. and convex. it is easy to produce examples showing that those functions are not (weakly) continuous. ||

Here we are going to state two moment theorems, Theorem A.1 and Theorem A. 2 below, which are basic tools for this paper. 'En fact they were used several times. As stated below they are particular cases of Theorem. 5 and Theorem 7 in. [7], respectively. A more general result for Polish spaces of the second theorem can be found in [6]. Below J will be any index set.
A.1. Theorem. Let S be compact topological space. For each $j \in J$ let $h_{j}: S+\mathbb{R}$ be a l. s. c. function and $n_{j} \in \mathbb{R}$. Then there exists P e $M(S)$, such that, $\int h_{j} d P \leq \eta_{j}$ for each j e J if and only if

$$
\inf \operatorname{seS}_{j \in J}^{\Sigma} b_{j} h_{j}(s) \geq 0 \rightarrow \sum_{j \in J}^{\Sigma} b_{j}{ }^{n} j \geq 0,
$$

for each choice of the family (b_{j}) jeJ of non-negative constants all but finitely many equal to zero.

Let S_{1}, S_{2} be metric spaces and $P_{i} \in M\left(S_{i}\right), i=1,2$. Let $\left\{\left(h_{j}, n_{j}\right)\right\}_{j e j}$ be a family of pairs where $h_{j}: S_{1} \times S_{2}+\mathbb{R}$ is a i. s. c. Eunction and $\eta_{j} \in \mathbb{R}$. Next let K_{i} be a convex cone of bounded below l. s. c: P_{i}-integrable functions $\alpha_{i}: S_{i}+\mathbb{R}$ and containing the bounded l. s. c. functions, this for $i=1,2$. In addition, suppose that, for each $j e J$, there exists $\phi_{j i} e K_{i}$, $i=1,2$, such that, the.1.s.c. function $(s, t) \longmapsto h_{j}(s, t)+$ ${ }^{4}{ }_{j 1}(s)+{ }_{j 2}(t)$ on $S_{1} \times S_{2}$ is bounded from below. We have the
A.2. Theorem. There exists λ e $M\left(S_{1} \times S_{2}\right)$ with marginals P_{1}, P_{2}, such that,

$$
\int h_{j}(s, t) \lambda(d s, d t) \leq n_{j} \text { for } a l l j \text { eJ }
$$

if. and only if

$$
a_{1}(s)+a_{2}(t)+\sum_{j \in J}^{\varepsilon} b_{j} h_{j}(s, t) \geq 0 \text { for all }(s, t) e S_{1} \times S_{2}
$$

implies

$$
\int \alpha_{1} d P_{1}+\int \alpha_{2} d P_{2}+\underset{j \in J}{\varepsilon} b_{j} \eta_{j} \geq 0
$$

for each family (b_{j}) jeJ of non-negative constants all but finitely many equal to zero and each choice of the $a_{i} \in K_{i}, i=1,2$.
[1] N. Bourbaki, Intégration, Chap. 1, 2, 3, 4. Hermann, Paris (1968).
[2] 0. J. Dotto, An extension of a Meyer theorem. Portugaliae Mathematica, vol. 42, fasc. 2 (1983-1984).
[3] R. M. Dud]ey, Probability and Metrics. Lecture Notes Series NO 45, Matematisk Institut, Aarhus Universitat (1976).
[4] L. Gillman and M. Jerison, Rings of Continuous Functions. Van Nostrand, N. Y. (1960).
[5] L. Kant arovich and G. Rubinstein, On a space of completely additive functions. Vestnik Leningrad Univ., 13 No 7 (1958), pp. 52-59.
[6]. J: H. B. Kemperman, Generalized dilations and other moment Problems for measures with given marginals. Manuscript.
[7] \qquad On the role of duality in the theory of roments. Proceeding Intern. Symp. Semi-infinite Programming and Applications (1982). Springer-Verlag.

Serie A: Trabaho de Pesquisa.

1. Marcos Sebastiani - Transformation des Singularites - MAR/89
2. Jaime B. Ripoll - On a Theorem of R. Langevin About Curvature and Complex Singularities-MAR/89
3. Eduardo Cisneros, Miguel Ferrero e Maria Inés González - Prime Ideds of Skew Polynomial Rings and Skew Laurent Polynomial Rings - ABR/89.
4. Olide Jose Dotto - E-Dilations-JUN/89.
