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Compact e-Convex Hypersurfaces

Jaime B. Ripoll

1. Introduction. A classical result due to Hadamszzd ([1]) and its
generalization, due to Hopf ([2]), prove that if a compact hypersurface of the
Euclidean space has Gauss-Kronecker curvature everywhere different from
zero then the hypersurface a)is difféomorphic to a sphere, b} is embedded,
and c) is the boundary of a convex body. The hypothesis on the Gauss-
Kronecker curvature and the compactness is equivalent (as a hypersurface
of the Buclidean space} to the hypersiiiface having the prine pal curvatures

with the same sign and with absolute value greater than a pc itive constant.
- This last statement was used by Eschenburg in 3] to introduce the concept
of a e-convex hypersurface in an arbitrury Riemannian manifold, namely, a
_hypersurface whose principal curvatures have the same sign and absolute
value greater than €. - ' ‘

Eschenburg asks if it is possible to characterize all compact e-convex
hypersurfaces of a Riemannian manifold. Being more specific, we can ask
under which conditions we can conclude that a given compact é-convex
hypersurface of a complete Riemannian manifold has to satisfy a), b) and
¢} as stated above, For the case that the ambient space has non negative
curvature, Eschenburg proved that condition a) is always true. Precisely,
he proved that a compact e-convex hypersurface of a complete Rieman-
nian’ manifold with non negative sectional curvature, for any ¢ > 0, is the
boundary of an immersed disk in the space ([3]). A complete answer for
the above question (in the sense that it answers conditions b) and ¢}, but
less general than the Eschenburg’s Theorem. is a result of do Carmo and
Warner which extends ihe results of Hadarrard and Hopf to any simply
connected space of constant curvature {[4]). Another important theorem
due to Tribuzy ([5]) answers also affirmatively conditions a), b} and ¢) when
the ambient space is a complete non compact Riemannian manifold whose



sectional curvatures are positive and bounded.

Qur main alm in this paper is fo prove the following theorem:
Theorem A, Let' N be ¢ complefc Kiemannian mansfold. Then there exists
L = L{NY > 0, determined in fevms of gecm:z:.rxc tnvariants of N, such
that if M is a COIPECE C-CON LT r:ur,;e:our ce of N with ¢ > L then M is
diffeomorphic to a sphere, embsdded, and s ‘h boundary of a conwez body.

The value of L{N) as detcrmined in the proof of Theorem A is not
generally the hest one, that is, the minimum nen negative real number for
each conditions a), b} aud c) ars true. If N is compact, then it follows
from the proeof of Theorem A that L{N) is finite. It is also finite if NV is a
homogeneous manifold (see remerks i) and i) of §3). For the special case
that N is a simply connected space of constant curvature, we can adapt
" the proof of Theorem A, using the techniques introduced in |3}, to prove it

with L = 0 (we rcobtain this way do Carmo, Warner’s Theorem, although
in a weaker form, compared with its original statement, see [4]}).

We observe that if N is juct complete then L(IV) can be infinite, as

“shows the picture below. The ciccies drawed in the picture also show that

the theorem is actually false for such an N. In this case this means that
for any 6 > 0 thecre exits an e-convex hypersurface of N W)th eE> 6 wlnch
is not ermmbedded:
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1¥ we consider just condition a), then Eschenburg’s result implies that
we can take L = 0 if'N has non-negative curvature. We also prove here
that if we consider Just condition aj, then we can take L = 0 in many
Riemannian homoga,nt,oua manifolds, for example, a Lie group with a left
invariant metric, or a symmetric space whose irreducible factors are not
of compact type (section §5). Since most of these spaces have negative
curvature, this result is not contained in Eschenburg’s Theorem. We also
chserve that the boundary of a tubular neighbourheod of a closed geodesic
in a space of negative curvature shows that such a result is not generally .
true In these spaces. ' : _

We think that it would be interesting to compute the best value of L{N)
_ (or at least to obtain ain cstzmate), in terms of geometric invariants of IV,
for which just condmon a) is true and for which conditions a}, b) and c)
are frue, : '

The proof of ’I‘heorem A, apart from some technical definitions, is very
- _simple, going back o the classical proof of Hadamard by defining, with the
aid of a “referencial frame” defined on the hypersurface, a.map from the
hypersurface to the sphere of the same dimension (this map generalises the
usunal Gauss map of a hypersurface in the Euclidean space) and proving
that this map, under the hypothesis of the theorern, is a diffeomorphism.
As in the Tuclidean. space, this fact will also imply that the hypersurface
is embedded and boundaries a convex body. This technique is an improve-
ment of the one introduced by the author in [6] for studying hypersurfaces
of 2 Lie group. In fact, Theorem 9 of [6] is a corolla,ry of the results of this
paper (see section 5) ) . :

2. Proof of the Theorem A. _

Let us assume dim(N) =n+ 1.
Given a geodeSJC v . R — N denote by ., the pro_]ectlon over -,
namely: .

7y(p) = g € (R} «— d(p,7(R)) =d(p,q), PEN

where d is the Riemannian distance in N.

Given 7, let U, be the biggest open subset of N such tha.t 7r., is a well
defined dlﬂ'erentla.ble map, without critical points in U,. For a given v, we
define a function &, : U, — R by d,{p) := d(m(p), '7(0])
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Let D = {X, r=pcc{d,) } 7 is & necodesic of N}, Given X € D) the
domain of X is Uy = U, where « i such that X =grad(d,).

Let &(N) := supi; VX >, || X € D,p € Uy, v €
TN}, {lvil = 1}, where ¥ is the Levi-Civita conneclion of N.

Choose any p € /¥, denote by B,{r} the gecdesic bail of NV centered at
p withradius r > 0, and of: oo

a) D, := {X € D | X =grad(d,) where « is a geodesic such that

W =r}
b} For a given X € Dy, set R{p,X) = sup{r € R | there exist
X1y X € Dy osuch that Bu(v) ¢ Ux,, 1 €7 < n, By(r) € Ux, and
- X(q), X (q), - A .(g) ere linearly ind=pendent, for any ¢ € B,{r)}.
Given p € N, let (i) > 0 be such that B(g, X) > 2R(p), for any
g & B,(it(p)) and for any X € D,. - '
) R(N) := inf e B(»).
Given X € D,, we define

d) G(p,X) = {T =={ SXab | X, X; € Dy, 1 €7 < n,and
X (), X1(q), .o Xu{g ) arc ncarly independent, for all ¢ € B (I_?,( N3

and for X & D,, and U € G(p, X}, T = {X,Xl,_._..,j(n+1}, X1 = X, we
associated the bundle: R

e) Er := {(4, E;”"f a; X; () | 2}”11 ¢ =1}
Given q € B,{R(p)), the fiber Zr(q) of Er, namely
(g} = { S asX,(a) | T o} = 13

is an cllipsoid in To(N). SRR -_ . :



f) A “referencial frame” U & ¢ (p,){} .u‘l “fui,
inf{|lv]] | v € Er(¢), for any ¢
for any £ € Gp, f{), forany ¢ & .

Set - _
g) S(p) =inf{jlv]|{v € BEr ., 7 & "n{f{r)), for some Ty x € G(p, X}},

h) §(N) := infpé‘?\r S{p), and finally,

i) L{N) :=max{/n + 16(N}/3{(N), 2= /B

Let M be a compact ¢-convex hypersurface of N with ¢ > L(N). Let

us prove that Af is dl{feomorphrc to a sphere, ernbedded, and boundaries a
convex body ' S ‘

From Bornnet-Meyers Theorem, given any p € M we b ve M C.B =

 B,(R(N)). Choose p.€ M, a vecior firld X € D, and a re erencial frame
I' € G{p,X). Assume that ' = {X, .y Xy Xy = X, '

Since M is e-convex, we can choos¢ an unitary normal vector field n

. to M such that < Vo, > 2 ¢, for any ¢ € M and for any v €

Ty (M), |lv]| = 1.
There exists a positive function f : M — R* such that f(q)n(q) €
Er(q), for any q & M. We deline then a map ' '
N3 M —
by putting

if . (a) = (“;("f')?"w“'n-l-l(f?))
| T@n(6) = (X0 enis@ Kol

Clearly, v is a we!l defined differentiable map.

Let us prove first that « is a diffeomnorphism. By contradiction, assume
the opposite. Then there exist go € AM.and v € T, (M), {|v|| =1, such
that dvy(¢)(v) = 0. Since : :

d1(q)(w) = {das(9) (), -, dansa () (w})

we obtain’



@1(4o}(v) = .. = domss (g0) (v) = .

By ancther hand, from the eqﬁality

Fa)nlg)) = i a (9)X:(g)

we ohtain

4 () (w)n(a) + 1 (0)Vun(g) = T3t day(g )('w.). X;(g) + 2321 2;(9) Ve Xi(g)

so that, at ¢ = go’and at v - € T (N), we obtain

df (@) {v)n(90) + f{g0) Vorr{20) = E?ff a;(40) Vo X;(00)-

Taking the inner product with v in both sides of this last equality, we get

(*) f(q{)) < Vu’?av o= 2n+1 0«:(9‘0) < vuA:a v >qo

From the e-convexity of M, and from the choice of ¢ we obtain
flgoye < T3E |aj{go)ll < VX 'V >0 |
< 8(N) T3 log(g0)l < x/n—+—5(N)
But we have | N
flar) = ilf(éo)_n(%)ll
and since |
1 (0}n(g0) B (g0)

we obtaln o '_ - o '\



e = ()
so that
S5{N)e < \/I’mc?(Nf]
that is |

. - ¢ < +/n T 16(N)/S(N)

contradiction! ' ,

We prove now ; that M s embedded. By contradiction, assume the
opposite. Since M is compact, it has a self interséction. point, say p. Let
us choose X1, X; € ), such thet X; is normal to M at p, 1 <5 <2,
Let us consider the “Gauss map” ~ : M — S* determi: 2d by a frame
I'px,. As above, we have that « is a diffeomorphism. . 5 an immersed
hypersurface, p is in the image of iwo points py,p; of M and we may
assume that X is the normal at p,. We can not have X; = X, otherwise
y(p1) = (r) = (1,0,...,0), contradiction! Now, let us suppose that Xi is
- the gradient vector field of d,, where v is a geodesic of N with v{0) = p.
Then, p; is a critical point of d; restricted to M. If X3 = —X3, then py is
also a critical point of d, restricied to M. Since py, p;-have the same image
p in N, they can not be simultaneously maximum and minimal critical
points of d.. Therclore, by the cempactness of M, d., restricted to M has
to assume another critical point {maximum or minimum), different from
pl,pg, contradicting the injectivity of ~ (in these points we would have
v= £(1,0,...,0)). ' '

If X, # .I:Xg, then p; can neither be a point of maximun nor a mini-
mum of dy, and this o.galn by the compa.ctness of M, will contradicts the
injectivity of . :

Let us prove-now that M is convex. Let p; and p; be points in the same
connected component of N/M, and let fy be a minimizing geodesic joining
p; to ps. By contradiction, let us assume thet «y intersects transversaly M
in a point p. Let X € D, be such that X(p) is normal to M at p, and
suppose that X ngad[dr,) Then p-is a critical point of dy restricted to M
which, sincc the angle betwecn ~ and ')f at p is Iess then /2, 2, is neLther a

- _



‘:.':;a-.x‘r-**“-'?-.- nor a point of glebal minimun. Therefore, since
» will have at least three different critical points. But this

sebivety of the “Gauss map” associated to any referencial
. _‘;{- .

ooint of @

sack, since R{p) > 0 fl.u. any p € N we have that R(N) =
4. For the same reason, since S(p) > 0 for any p € N, we
P foand therofors, from 1) §2, we obtain L(N} < co.
2 Romogensuus anifold thew R{N) = E(p) > 0 and S{N) =
vy ¢ & N oand this implies that L{N) < oo.

4, The caea of simply connected spaces of constant curvature.

n these cases, the level sets of dy are totally geodesic hypersurfaces of
N. Therefore, §{N) = 0. When N is the Euclidean space or the hyperbolic
space, then clearly 2{N) = oo s0 that L{N} = 0 in these cases, according
to definitions &},...,1) of §2. When N is {he sphere, we have R(N) < oo,
so that L{N) > 0. However, we can prové the theorem for L = 0 in the
{ollowing way. . ; : :

According to [3], we can doform the hypersurface along its mean cur-
vatdre vector preserving its e-convexity. We do this deformation until the
hypersurface is completly contained in a’hemisphere of the sphere.- Then we
apply Theorem A an d.we conclude that this {(deformed} hypersurface is em-
bedded and boundariés a convex body of the sphere. Now we start coming
back through the same deformation and we continue with this deformation
until the hypersurface tpuches the boundary of the hemisphere for the first
time. If this first time does not exist it is because the hypersurface was
already contained in the hemisphere and we are done." Otherwise, from the
e-convexity of the hypersurface we conclude that. the hypersurface is itself
the boundary of the hemisphere, that is, a totally g_eociesic hypersurface.



5. Hoimnogeneous spaces

We use here a variation of the proof of Thecrem A to prove that condi- |
tion a} is always satisfied for e-convex co*npw:.t hypersurfaces in a class of
homogeneous spaces.

For, let us consider a ¢-convex coanpact hynersurface M {;f a Riemannian
manifold N. Let us assume that there exists =+ 1 vector ficlds X, ..., X4z
of N which are lincarly independents over M, n+41 = dzm(N) We assume
also that jhese vector fields satisfy the cqve.tion

LY

(’“) <VX3,U> -{-{V >,=0 .

forany pe M a.nd for any u,» € 3 (M’) »

As in the proof of Thcorem A, we can deline, with the aid of these vector
fields, a map v : M — 8" We le.lm thot thls map is a ¢'ffeomorphism.
Otherwise, we would have: | ‘ '

f (g0} < Vu'q,v 24,7 :;‘!11“3(5’0; < Vo &Kj,v >y

for some ¢o € M and for some v € T,.(M), v # 0, as in the equation
" (¥} in the proof of Theorem A. But it follows {rom equation (*¥} that

<-VUX_,-,v> =0, 7=1,.,n+1

which contracdlcts the e-convexity of Af.

It is known that a Killing field satisfes cquation (*¥¥). Thcrefore since
a horriogeneous spaces has locally as much linearly independents Killing
fields as its dimension, it follows that this result applies to these spaces.
In special for those homogeneous spaces addmitting globally linearly inde-
pendents Klllmg fields (in a number equal to the dimension of the space),
as a Lie group with a left invariant metric (ir. which Killing fields are right-
invariant vector fields), or a syminetric space whose irreducible factors are
not of compact type (ta.klng the transvectiol s along Imeally mdependcnts
geodesics).
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