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Compact E-Convex Hypersurfaces .. 

Jaime B. Ri poli 

1. hUroduction. A classical result due to Hadam<ed ([1]) and its 
generalization: dueto Hopf ([2]), prove that if a compact hyyersurface of the 
Euclidean space has Gauss-Kroneckcr curvature everywhere different from 
Zero th~n the hypersurface a)is diiTüomorphic to a sphere1 b) is embedded, 
and c) is the boundary of a convex body. The hyjJothesis on the Gauss­
Kronecker ·curvature and the compa.ctncss is equivalent (as ::t hypersurface 
of the Euclidean space) to the hype.rsUrface having the priw ~al curv<}tures 
with the same sign a:qd with ábwlute value grcater than a pt. i tive constant. 
This Iast statement wa'5 used by Eschcnbu.rg in [3] to introduce the concept 
of a E-convex hypersurface in an arbitrary Riernannian manifold, namely, a 

. hypersurface whose principal cmvatures have the same sign and absolute 
value greater. t"h?n E. . . . 

Eschenburg asks .if it is possible to chinacterize ali compact E-convex 
hypersurfaces of a Ricmannian manifold. Being more· speéific, wc can ask 
under which conditions we can conclude that a given ~ompact E-convex 
hypersurface of a complete Riema.nnian manifold has to sa;tisfy a), b) and 
c) as ~tated above, For the case that the ambient space ha.s non nega:tive 
c~rvature, Eschenburg proved that conditio-n ar is always true. Precisely, 
he proved that a compact E··Convex hypersurface of a complete Rieman­
nian· manifOld with non negative. sectional curvature, for any E > O, is thc 
boundary of an imm~rsed disk in the space ([3J). A complete answer for 
the cibové question (in the sense that it answ~rs conditions b) and c)}, but 
less general thaii the Eschenburg's Theqrem. is a result of do Carmo and 
Warner which extcnds the res~lts of Hadan:ard and B;opf to any simply 
connected space of Constant curvature ([4]). Anothêr important theorem 
dueto Tr_ibuzy ([5]) answers also affirmatively conditlons a), b) and c) when 
the ambient space is a complete noh compact Riemannian manifold whose 
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sectional cufvatures are posí'j;'C <t:n;:'i bounded. 
Our rnain airn in thiG pape:r is i:o prove the following theorem: 

'.rheormY! A. Let"N L'! a compleJc_ Rieman..11ian manifold. Then there .exists 
L = L(N)· ?: O, detcrrninc.d i'1. t·cnr.s of geom;~tric ~·ntm.riants of N, ~ut~h 

.that .if J..1 is d co;npact c"con:_..;:x hyi?e.r:;urfwce oj N w:'th E > L thcn i\{ :'s 
di;ífeomorphic to é]. $phc~c, en•~<cL.!ed, and h thc boundary o f a convex hüdy. 

The value of L(N) &.S detc·~nlned in the- proof of Theorem A is not 
generally thc best onc, i.llat is, the minimum nc.n negative real number for 
each cónditions a), b) and c) <'lr.:': true. lf N is compact, then it follows 
fro:n: thc proof of Theorem A tha.t L(N) is n.ait.c. It is also finite if N is a 
homogeneous manifÜld (scc rcm~r~s i.) anO. ii). of §3). For the special case 
that N is a simp·]y connccted space of consta.nt curvature, we can adapt 
the proof of Theorcm A: using thc technE(lU.es introduced in [3], to prove it 
with L= O (we rcobt.ain this '.v::cy do Carmo, \Vm·ncr's Theorem, although 
in a weaker form, compared with it8 original statement, see [4]). 

Y.le ·observe tha.t if N is just complete then L(N) can be infinite, as 
. shows the picturc bclow. Thc circle2. drawed in fhe picture also show thftt 
the thcorem is actually false for such an N. In this Case this ~eans "tha.t 
for any ó > O there exits an E-convex hypersurface of N wjth E > ó which 
is not embcddcd: 
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lf we co~sicler just condit.ion a), then Esc.henburg's result implics that 
we can take L = O jf·N has non-negative curvature. \Ve also prove here 
Lhat if we Consider just condition a), then we can takc L = O in many 
R.icmanniall hornogeneous manifolcb_, for cxample, a Lie groúp with a !eft 
invariant meÚic; or a _syTILrnetric space whose irreducible factors are not 
of Compact type (sectíon §5). Since most of thcse spaces have negati-ve 

curvature, this result is not contained in Eschenburr,'s Theorem. \Ve aiso­
observe that'the boundá.ry of a tubular ncighbourhood of a. closed geodesic 
in a sPace of negative curvature shows that Such a -result is not generally 
true in these spaces .. 

We think that it would bc intere:;ting to compute the best value of L(N) 
(or at least to obiain ari estimate), in tcrrns of geometric invariants of N, 
for which juSt condition a) is true a11d for which CondiÜons a), b) and c) 
are true. 

The proof of Theorem A, apart from so!Ife technical definitions, is very 
. simple, going back to the classical proof of HadaiJ?-ard by defining, with the 
aid of a ccrefercncial frame'' defined on the hypersurface, a. map from the 
hypersurface to the sphere of the sa.me dimension (this·map generalises the 
usual Gauss map of a hypersurfacc in ihe Euclidean space) and proving 
that this map, under the hypotliesis of the theorern, is a diffeomorphism . 
As in the Euclidean.space, this fact will ais~ imply that the hypersurface 
is embedded and boundaries a convex body. This technique is an improve­
ment ·of the one introduced by the auihor in (6] for s~udying hypersu;faces 
of a Lie group. In_fact, Theorem 9 of [6] is a corollary of the results of this 
paper (see section 5).. · 

2. Proof of the Thcorcrn A. 
Let us assume dim(N) = ·n + 1.· 

Given a geodesic '"'I :. R --1- N, d.ena:te by 1f"1 the projectioR over '"'f, 
namely: 

,-,(p) = q < 7(R) <-----+ d(p, 7(R)) = d(p, q), p E N 

where d is th~ Riemanni-an distance in N. 
Given '"'f, let U'"~ be the bigg"est open subs~t of N such that 1r'"~ is a well 

defined differentiable map, without crl.tiCal points in U'"~. For'1 a given '"'f, we 
define a function d-,: U,--+ R by d,(p) := d(7r,(p),')(O)). . 
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Let D := {X-y :=[~;: c:~:.L,) I "f is <';. :',Coàesic of N}. Given X E D; the 
doma.in of Xis U): =.=L/"~. '..'ih::rc í" i.:::_such t.hat X =grad(d1). 

Lçt 8(1{) ·:= .sup{: < \-vX! ·v >;p j j X E D, p E Ux, v E 
Tp("N), !lv!! = 1 j, w1,,.·;·(· 7 ~s thc r .. k\'i-Civita connection of l-l. 

Choosc ahy p E l-l, -:Ln.ote by 13~,(r) thc geodc::ic bail of N centered at 
p with "radius r > o) <:t:nrJ .~·:Jt: 

a) Dp := {X t..: D i X ~, .. :gr3.J.(d-y) where í' is a. geodcSic such that 
,(o)= P }, 

b) For a given X E Dp, sei; R(p, X) := sup{r E R+ I there exist 
Xb···,X:l E Dp such i.hat B.r(1·) c Uxi, 1 ~ j ~ n, Bp(r) c Ux, and 
X(q),X1(q), ... ,X,(q) cw linearly in<hpendent, for any q E Bp(r)}. 

Given p E N, le\ j)(p) > O be Buch that lÍ(q,X) :0: 2R(p),for any 
q E Bp(li.(p)) and for :n:y X E 1J,1• 

c) R(N) := infpEN Jí(p) . 

Given X E Dp, we de!lne 

d) G(p,X) := {r := {X,Xr, ... ,X,.} X,X; E lJP, 1 < j :S n, and 
X(q),X1(q), ... ,Xn(q) prclinearly indcpendent, for ali q E Bp(II(p))}, 

a.nd for X E Dp anel f E G(p,X), r= {X,X1,_._..,Xn+l}, X1· :=X, we 
associated the bundle: 

) E ·- {. ( ,~n+l . v.(·)) I ''"+! J _ ·1} e r.- q,L-i=l aJ·~'•·J q "L..i=l ai- • 

Given q E Bp(II(p)), thc fiber Edq) of Er, namely 

E ( ) { ·"I;;""'JJ-1-1 X ( ) I "'. ,"~+rl a,' .1} t· q = "--;~r a; ; q "--

is an cllipsoid in T,(N)'. 
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f) A " f . ' f " '[' .,''( '" 1 <h t re erencw.1 rmne C u p, A} ~;ilC.l .. , ;_1 · 

inf{llvlll v E Er(g), for '"'l' q E B,.(IC(p))} 2: inf{llvlll v E E.(q), 
for anx K, E G(plX), for Gl\'/ q E H;c(.i'((p)) }, we vvill denote'by rp,X· 

Sct 
g) S(p) := inf{l!vii \v E E;·hx• q ,t L'p(l~(p)), fo~ some r;,x E G(p,X)}, 

h) S(N) c= inf,c.v S(p), acc<l üna!ly, 
• 

i) L(N) :=max{.)n+Ib(l·l)/S(lV), 2;;/.U(N)}. 

Le~ M be a compact ·t:--conYcx hypcr:::urface of N with é > L(N). Let 
us prove t~at l\1 ís diffeomorphic to o. ~phr;re, embetldecl;and. bounda_rieS á 
convex body. 

From Bor~ne.t-Mcyers ThO!orcm, ci·,'c''- any p E M wc }-. ve M c.B := 

B11 (R(N)). Choosc p.E l\1, o.'v-2ctor f~cld X E D1, R.tld a n· _erencial frame 
r E G(p,X). Assume Lho.t. l' = {X1 , •.• ,Xn+!}, X 1 :=X. 

Since j\f is .r:-convex, we can clHJ(;~:e QTt unitary normal vcctor field 77 

. toM sUch that < 'V,/11, v >q ·~ c:, fnr any q E J..i[ and for any v E 
T,(M), llvll ~ 1.. . 

There exists a positivo [U'lction f : M _, R+ such that f(q)ry(q) E 
Er-(q), for any q E M. VVc define then a. map 

'"'f : ]vi . ..., gr. 

by put\ing 
"Y(q) ~ (a 1 (q), ... ,a, 11 (q)) 

i f. 

C.Iearly, '"ris a.wel.l·defmed diffe:rc.:ntiable ma.p. 
Let us prove fi_rst that '"r is a difieomorphism. By contradiction, assume 

the opposite. Thcn therc cx:ist q0 E 1\.f. and v E Tq0 (M), !!v!!= 1, such 
that d"Y(g0)(v) =O. Since 

d"Y(q)(w) = (dal(q)(w), ... ,dan+l(q)(w)) 

we obtain· 
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By another hand, from thG equality 

~f( )-( )) ·- ""+! ( ) v·( \ q 'I q -- L...tf~:l ai q .L,__, qJ 

we obtain 

so that, at q = q0 ·and at v E Tq.,(N), we obtain 

Taking the inner pra"duct with v in both sidcs of this last equality, we get 

From tht. €-conv~xity of M, and from the choice of € we obtain 

But we have 

and since 

we obtain 

f(qo)' S L:j;;[ la;(qo)ll <\!;X;, v >00 I 

· < ~(N) L:j;;[ la;(qo)l S ..,In +~ló(N). 
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f(qo)E?: 8(N)E 

so thai 

S(N)E :; ,In+ ló(N) 

that is 

'<::,In+ ló(N)/S(N) 

contradktion! 
\Ve prove now th2,t JW is embc:dded. By contradiction, assume the 

op:Posite. Since M is co.mpact, it. hc'!,S a self inter::;éction. point, say p. Let 
us choose-Xl, x2 E IJ}J SUC~l thut X; is normal to M at. _p, 1 < j < 2. 
Let us considcr the uGn.uss ma.p" ·~ : lt-1 -+ S" deterÍni~ ~a· by a frame 
I'p,X1• As above, wc }J<tYe tltat í' i~ a difr"eomorphism . .1. > an immersed 
hypersurface, p. is iil, tl1o imap;e of two point,s p1,p2 of M and we may 
assume that X 1 is the nol'mal 2-t p 1• \V e can not have X 1 = X 2 otherwise 
"'Y(Pt) = I(P2) = (1,0, ... ,0), co~t.radiction! Now, let us suppose that X 1 is 
the gradicnt vector ficld of d .. 11 •~'hcre 1 is a ·geodesic of N with 1(0) = p. 
Then, P1 is ri. crítical po'int of d .. r restridcd toM. If X 1 = -X~, then P2 is 
also a critic<ol point of d, f(o:.;i:;idPd to A1. Since pt,p2 ·havé the same image 
p in N, thcy can not be simultaneously maximum and minimal criticai 
points of dT Thercforc, hy the cc;npactness of M, d1 r~st~·icted to M has 
to asSume another criticai poif1t (maxirnum or minimum}, different from 
p1,p2 ; contradicting the injectivity of 'I (iri these points w.e would have 
')= ±(1,0, ... ,0)). 

If X 1 I ±X2 , thcn. p 1 can m:;ither be a point of maximun nor a mini­
muro of d1 , a.rid this again, by the cornpactness of M, will contradicts the 
ínjectivity of "f. 

Let us prove-now thaí M is convcx. ·tet p1 and p2 be points in the same 
connected component of NjM, ancllet ~ be a minimiziJ.?g geodesic joining 
p1 to p2 • By contradiction, let Us assume th2.t 'I intersects transversaly M 
in a point p. Let X E _Dp be SJ.!Ch that X(p) is normal to M at p, .and 
suppose t]mi X =grad(drr)· Then p·is a cri.tical point of d>; restricted toM 
which, siitc~ thc angle betwecn "' anel i at p is less .then 1f /2, is neither a . . . 
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pcij-.!. of r::k:c'éd ;-:~c-x!m~::,. ,-,.or ?~ point of glo'!:-a.l minimun. Therefore, since 
/,f i;:.<::::n;·,f:.:c~, O·; \NiU llz;;.·c. <Ü le;::;.st thrr~e different criticai points. But this 
cc,·:Lrz:.dk-; :-; l ;. ~-· i_.:<./:dh·;=<-_'l .:-.f tlv,· «Gcmr;s ma:p'' associated to any ref~~rcncial 

:) ~~~ J.\" ;:: ~:.;;·..:: .. (J,Lt':, ~\~:::~ R.(p) > O for any p E N we have that R(N) = 
~r(-:EN J?.(p} > ,::1. F::::>.í" t:b• &<Jme reason, ~ince S(p) >O for any p E N, we 
r~'.-:":::_ln_ E("_".~) ::: [; ~~::-;d ~l:2r.Jo.re, from i) f2, we obt.ain L(N) < oo. 

il) If F ;;c, c::. ~1.-:::::··logcn-:::·)~;~ rn:::.nifóld t.hen R(N) = i?(p) >O and S(.~.V) = 
S ~.J) > 0, T(·:_· ~ .. :·.~, r E_ J\' ;_;_n(~ tb_i.õ: implies t~1at L(N) < oo. 

·i, The c.2:·~; of simply connectcd -spDces of cm~stant curvature. 

In th<:~_:(' cc.ses; the levei set~ o f d"f are totally geodesic hypersurfaces of ., 
N. Therciore, &(i\')= C. \Vhcn N is the Euc!idean space or the hyperbolic 
space, thcn clo::<trly R(N) = oo so that L(N) =O in these cases, according 
to definitians <J.), ... ,i) of §2. When N is the sphere, we 'have R(N) < oo, 
so that L(.lV') >O. I-Iowever, we can prove the theorem for L=- o. in the 
following way. 

According to [3], wc can dcform the hyp~rsurface along its mean cur­
vatJre vcctor prcscrving its t-convexity. We do this deformation uniil the 
hypcrsurf<tcc is completly contained in a·hcmisphere of the spherc. · Then we 
apply Thcor-e.m A and;we condu de that. this ( deformed} hypersurface is em­
b'cdded and b~1unclariÓs a convex body of the sphere. Now we start coming 
back through ~he same, dcformation and we continue. with this deformation 
until the hy'pcrsurf~ce tpuches the boundary of the hemisphere for the first 
time. If this first time does no~ exist it is because the hypersurface was 
already cont.ained in the hcmisphcre and we are dane.· Otherwis!'!, from the 
t-co'nvexity of the hypersurfacc we conclude that. the hypersurface is itself 
the .boundary of the hemisphere, that is, a totally f?eodesic hypersurface. 
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5. Hmnogcneous spaces · 

We use here a variation of the proof of Tl:ecrem A to prove t::.1a.t condi­
tion a) is always satisfied for <:-convcx comp;::v::.t hypcrsurÍ~1ccs in a class of 
homogcneous spaces. 

Fór, lct us consider a t-convqx o::.-:mpact hyr .. e:fsurfa.ce .M Q[ a. Riemannian 
manifold N. Let us assume that tljere exist.s n. + l.vector flc'lds X 1 , ••. , X,.-,+1 
of N which are lincz..rly independerits over Af, n+ i= dim(N). \Ve assume 
also that these vector fields satisfy the cquat'10n . 

• 

for a.ny p EM and for auy u, 11 E 1~(M). 
As· in ih e proof of Thcorem l .... , we can dcflne, with thc aid of t.hese vect.o"r 

fields, a m·ap"' : 111 ---t sn,. We cl~.im tk1.t this map is a (1:ffcomorphism. 
Otherwisc, we wou.ld have: 

for some q0 E M and for some v E 7~0 (l1f)s v f. O, as in the equation 
. (*)_in the pr~of ?f Theo~em A. But ít fopo~m:drom equ::ttion ('~~) that 

which .contracdicts the E-convcxity.of ]1{. 

It ~s known that a Killing field satisfi_cs cqnat_ion (**). Thcrefore, sillce 
a homogeneous spaces has locally as much Hnearly independents ~{i!ling 
fie:Ids as its dimension, it follows that this resnlt applies to·these spaces. 
In special fór thosc homogeneous ·Spõx.es addmitting globally linearly inde­
pendents Killi~g ficlds .(in a number equal to the dimension of the space), 
as aLie gi:oup with. a ieft invariant metric (ir_ which Killing fields are right 
invariant vector fields), or a symmetric spacc whose irreducible factors are 
not of compact type ( taJdng the trnnsvcctiot s along Iincarly independcnts 
geodesics). · 
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