

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

JESSICA TAIS DE SOUZA REINALDO

AnHALytics: a Workflow for Text Mining

Trabalho de graduação

Trabalho realizado no Institut Polytechnique de
Grenoble dentro do acordo de dupla diplomação
UFRGS – Grenoble INP.

Orientadora brasileira: Prof. Renata de Matos
Galante
Orientadores franceses: Achraf Azhar e Didier
Chassignol

Porto Alegre
2018

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicene Oppermann
Vice-Reitor: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência da Computação: Prof. Raul Fernando Weber
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

RESUMO

AnHALytics é um framework para mineração de dados de documentos técnicos e científicos

oriundos de repositórios de grande porte. AnHALytics recupera, extrai dados importantes, e

enriquece esses arquivos usando informação sobre o próprio artigo, além de outras bases de

dados (por exemplo, a Wikipedia). O workflow de AnHALytics é executado de forma

manual, o que causa alguns problemas relacionados com a falta de tolerância a falhas e de um

fluxo de execução mais flexível, além da dificuldade para manter e garantir a

reprodutibilidade científica. Para prover uma solução para esse problema, um estudo sobre os

principais sistemas de workflow e como eles iriam se comportar com uma aplicação como

AnHALytics foi realizado. No final desse estudo, um desses sistemas foi selecionado, e sobre

ele foi executada uma simulação de performance em uma aplicação similar à AnHALytics,

onde foi observado seu comportamento em comparação a uma solução por scripts. Os

resultados dessa simulação mostraram que esse tipo de aplicação pode ser significantemente

melhorado com a integração de workflows científicos. Como os resultados da simulação

mostraram, workflows científicos — criados inicialmente para aplicações no domínio das

biociências — também podem ser utilizados em aplicações de mineração de dados, e

apresentam resultados similares, dando à aplicação significantes melhoras quando comparado

com a versão em script, manualmente executada, do workflow.

Resumo estendido

Este é um resumo estendido em português para a Universidade Federal do Rio Grande

do Sul do trabalho original que segue. O trabalho de conclusão original, em inglês, foi

apresentado na escola ENSIMAG do Institut National Polytechnique de Grenoble através do

programa de dupla diplomação UFRGS - Grenoble INP.

I

1 INTRODUÇÃO

O projeto descrito neste trabalho foi desenvolvido durante um estágio de fim de

estudos para o curso de Ciência de Dados do mestrado em pesquisa (MoSIG) da univer-

sidade francesa ENSIMAG, parte do Grenoble INP. O estágio se deu no laboratório de

pesquisa francês INRIA Alpes. O principal objetivo do projeto foi verificar se sistemas

de gerenciamento de workflow poderiam ser usados em uma aplicação de mineração de

dados chamada AnHALytics.

AnHALytics é uma plataforma que extrai, analisa e gera dados sobre artigos cien-

tíficos de grandes plataformas online, como HAL e Istex. AnHALytics é composta por

três componentes principais: GROBID, grobid-quantities, e NERD.

Durante o projeto, foram estudados dois paradigmas de sistemas de workflow:

workflow de negócios (business workflows) e workflows científicos (scientific workflows),

comparando as características de cada uma dessas modalidades de acordo com vários cri-

térios previamente estabelecidos e de considerável importância para um sistema do estilo

de AnHALytics. Com esse estudo comparativo, foi possível verificar que workflows ci-

entíficos apresentam funcionalidades que correspondem mais às necessidades do sistema

em questão, quando comparados a workflows de negócios.

Tendo definido que workflows científicos seriam uma solução mais interessante

para o problema, foi realizado um estudo comparativo dos principais sistemas de work-

flows científicos, avaliando-os segundo alguns critérios pré-estabelecidos (quantitativos e

qualitativos). Com base nessa avaliação, um desses sistemas – o que foi melhor avaliado

segundo nossos critérios – foi escolhido para a implementação de uma simulação, onde

um cenário simplificado da execução das principais tarefas do AnHALytics foi implemen-

tado usando i) o sistema escolhido e ii) um script Python. O objetivo dessa simulação é

verificar se e em que medida um sistema como o AnHALytics poderia se beneficiar de ser

executado em um sistema de gerenciamento de workflows. Os resultados obtidos indicam

que o uso de um sistema que gerencia o fluxo de execução pode trazer várias vantagens,

especialmente para aplicações que fazem uso extensivo de dados, como a plataforma es-

tudada.

O restante deste resumo está organizado como segue: na seção 2, a plataforma

AnHALytics é descrita de forma mais detalhada. Na seção 3, um estudo sobre os dois

principais paradigmas de workflow é apresentado, junto com um comparativo desses pa-

radigmas de acordo com algumas características do AnHALytics. Na seção 4, são apre-

II

sentados os principais sistemas de gerenciamento de workflows científicos, que serão

avaliados segundo critérios importantes para a plataforma AnHALytics. Na seção 5, um

cenário de simulação é apresentado, bem como seus resultados. Por fim, a seção 6 apre-

senta as conclusões deste trabalho.

2 ANHALYTICS

AnHALytics 1 é uma aplicação de mineração de dados cujo objetivo é facilitar o

acesso e organização de repositórios de documentos científicos para a comunidade cien-

tifica.

O workflow de AnHALytics é composto pelos seguintes processos:

• GROBID: é o processo principal do workflow, responsável pela recuperação dos

textos a partir da base de dados.

• grobid-quantities: responsável por adicionar informações extras relativas a diversas

medidas nos textos.

• NERD: responsável pela anotação e desambiguação dos dados obtidos e tratados

com os processos GROBID.

2.1 Problemas com a solução atual

O principal problema da solução atual da plataforma AnHALytics é o fato de que

suas tarefas devem ser executadas manualmente, pois não há uma sincronização automá-

tica da execução das tarefas. Isso acarreta em algumas dificuldades, como por exemplo

uma grande sensibilidade da plataforma a falhas durante a execução, o que leva à neces-

sidade de reexecutar um fluxo de execução desde o início se algum erro ocorrer durante

a execução de alguma tarefa do workflow. Por esse motivo, a possibilidade de executar

todas as tarefas que compõem o sistema AnHALytics de forma automatizada e com ca-

pacidade de lidar com esse tipo de falha é uma ideia interessante, que foi explorada neste

trabalho.

1http://anhalytics.readthedocs.io

III

3 WORKFLOWS

Um workflow é a automatização de um processo, contendo uma sequência bem

definida de tarefas a serem executadas, bem como de controle de fluxo, fluxo de dados, e

participação de usuários nessas tarefas. Sistemas que automatizam workflows já existem

há quase meio século. Os dois principais paradigmas de workflow são workflows de

negócio e workflows científicos.

3.1 Workflows de Negócios

O domínio de estudo de workflows de negócio teve início entre os anos 70 e 80

com a automação de sistemas daquela época. Workflows de negócio tem foco no controle

de fluxo de eventos e na automação de processos organizacionais.

3.2 Workflows Científicos

Workflows científicos têm como objetivo resolver problemas relacionados à pes-

quisa científica e e-science. O principal objetivo de workflows científicos é poupar ciclos

de trabalho humanos e de máquina.

3.3 Comparativo entre os modelos

Workflows de negócio e worklfows científicos têm muitas semelhanças, porém se

diferenciam em alguns pontos muito importantes. As principais diferenças entre eles são

relacionadas aos seguintes critérios:

• Propósito geral

O objetivo principal de workflows de negócio é estabelecer um conjunto de regras

de negócio e interações entre os papeis de cada usuário do sistema. O principal

objetivo de workflows científicos é automatizar algum processo científico.

• Fluxo de dados

Em workflows de negócio, apenas dados simples de controle de fluxo são utilizados.

Já em workflows científicos, os dados normalmente são complexos e extremamente

IV

importantes para a execução do processo.

• Fluxo de controle

Sistemas para workflows de negócios normalmente disponibilizam várias estruturas

básicas de controle de fluxo, que em geral são suficientes para descrever a maioria

dos workflows desse tipo. Workflows científicos necessitam de estruturas de con-

trole mais complexas, que sejam capazes de expressar concorrentemente a execução

de dados e de controle de fluxo.

• Objetivos do usuário

O objetivo do usuário de workflows de negócio é saber quais tarefas podem ser

otimizadas para reduzir custos. O objetivo do usuário de workflows científicos

é conhecer os detalhes do processo científico que levam ao resultado final (por

exemplo, dados de tarefas intermediárias).

Decidiu-se, com base no comparativo, que workflows científicos seriam mais apropriados

para o sistema AnHALytics. Na seção seguinte são apresentados os principais sistemas de

gerenciamento de workflows científicos, os quais serão analisados para que obtenhamos

o melhor candidato para ser usado junto à plataforma AnHALytics.

4 SISTEMAS DE GERENCIAMENTO DE WORKFLOWS CIENTÍFICOS

Um estudo sobre os principais sistemas de workflow científicos foi realizado para

decidir o sistema mais apropriado para uso em um sistema de mineração de dados.

As principais programas de workflow científico são:

• Kepler 1: desenvolvido com foco em biociências, possui diversos operadores para

aplicações deste domínio, podendo ser estendido para outros.

• Pegasus 2: sistema executado unicamente por um terminal (sem interface gráfica),

desenvolvido especialmente para execução em clusters e grids.

• Taverna 3: desenvolvido com foco em biociências, possui uma plataforma integrada

para compartilhamento de workflows entre usuários.

• Triana 4: desenvolvido com foco em sistemas de rádio e comunicação.
1https://kepler-project.org/
2https://pegasus.isi.edu/
3https://taverna.incubator.apache.org/
4http://www.trianacode.org/

V

• RapidMiner 5: desenvolvido para aplicações de big data, possui extensões que im-

plementam algoritmos para processamento de texto e mineração de dados.

• Knime 6: desenvolvido para aplicações de aprendizagem de máquina.

Com base no estudo comparativo realizado entre os sistemas de workflow cien-

tífico, RapidMiner foi o sistema considerado mais adequado quanto aos requisitos do

AnHALytics. RapidMiner é uma plataforma desenvolvida especialmente para aplicaca-

ções de processamento de dados, tendo, portanto, diversas ferramentas que facilitam a

manipulação de dados.

4.1 Discussão

Os principais pontos avaliados na simulação são: i) gerenciamento do workflow,

ii) execução do workflow, iii) gerenciamento do workflow durante execução, iv) to-

lerância a falhas, v) reprodutibilidade, vi) adaptabilidade, vii) escalabilidade. Os

critérios de avaliação levam em consideração as principais ferramentas necessárias para a

automatização do sistema AnHALytics.

5 IMPLEMENTAÇÃO E RESULTADOS

Um dos objetivos no início do projeto era o de implementar a aplicação AnHALy-

tics usando o tipo de sistema de workflow escolhido após o estudo das principais soluções

atuais. A complexidade do sistema impediu a implementação durante o período de esta-

gio, portanto foi optado pela realização de uma simulação utilizando um cenário similar

ao da aplicação.

5.1 Solução proposta

Foram propostos dois cenários de simulação: i) usando RapidMiner, ii) usando

um script Python.

O cenário simula uma versão simplificada do processo de extração de dados oriun-

dos das bases de dados utilizadas (HAL e Istex), o pré-processamento desses dados (to-
5https://rapidminer.com/
6https://www.knime.org/

VI

kenização, remoção de stop words), bem como a execução de um algoritmo de mineração

de dados (TD-IDF). Tarefas semelhantes são executadas pelo subprocesso GROBID, o

principal processo do workflow da plataforma AnHALytics.

A seguinte sequência de tarefas é executada na simulação:

1. Ler um arquivo Excel que contem URLs para trinta documentos TEI;

2. Obtenção do conteúdo desses documentos;

3. Extração do abstract em inglês;

4. Tokenização e remoção de stop words;

5. Cálculo da similaridade do cosseno e TF-IDF do abstract em inglês.

A figura 5.1 representa o cenário de simulação.

Figura 5.1:

5.2 Resultados

A tabela 5.1 apresenta os resultados da simulação.

Tabela 5.1: Resumo dos critérios de avaliação da simulação
CENÁRIO

CRITÉRIO

Script Workflow Científico
Reprodutibilidade Precisa ser implementado Mais fácil de obter, com logs

manualmente automáticos e portabilidade
Tolerância a Falhas Precisa ser implementado Execução pode ser reiniciada a partir

manualmente do último ponto
Tempo de Execução Computação mais lenta Computação mais rápida

(de harvesting + tokenization) (de harvesting + tokenization)
Controle Não possui Possui breakpoints e

de Execução pause/continua do workflow

VII

5.3 Discussão

Como pode ser visto na tabela 5.1, as principais vantagens da utilização de pro-

gramas de workflow científicos para o controle de execução de uma aplicação como

AnHALytics se dá especialemente em critérios qualitativos, não quantitativos. Embora

o tempo de execução tenha diminuído com a execução do cenário utilizando o programa

de controle de workflow, essa melhora foi de apenas cerca de 10% em relação à versão

executada manualmente. Quanto aos critérios qualitativos, RapidMiner oferece ferramen-

tas para garantir a reprodutibilidade dos workflows, bem como para o gerenciamento da

execução.

6 CONCLUSÃO

O projeto desenvolvido teve como base um estudo sobre os principais paradigmas

e tecnologias na área de workflows para automatização de tarefas computacionais.

O estudo mostrou que workflows científicos podem ser uma boa alternativa para o

gerenciamento da execução de sistemas baseados em mineração de dados. Ainda que boa

parte das tecnologias atuais tenha foco principal em aplicações voltadas para as biociên-

cias, novas aplicações para diferentes domínios vêm sendo desenvolvidas.

Trabalhos futuros relacionados a este projeto incluem a implementação do sis-

tema AnHALytics com a aplicação estudada, RapidMiner, bem como uma análise mais

profunda dos critérios qualitativos avaliados na prática.

Master of Science in Informatics at Grenoble
Master Mathématiques Informatique - spécialité Informatique

option Data Science

AnHALytics: a Workflow for Text
Mining

Jessica DE SOUZA REINALDO
September, 2017

Research project performed at INRIA

Under the supervision of:
Didier Chassignol and Achraf Azhar

Defended before a jury composed of:
Massih-Reza Amini

Achraf Azhar

September 2017

Abstract

AnHALytics is a framework for text mining of technical and scientific docu-
ments coming from very large repositories. AnHALytics retrieves, extracts im-
portant data, and enriches these files using information on the article itself and
other knowledge bases (e.g. Wikipedia). The AnHALytics workflow is executed
by hand, which causes some issues related to the lack of fault tolerance, of a more
flexible workflow execution, and the difficulty to maintain and guarantee In order
to provide a solution to this, we have made a study on the main workflow work-
benches and how they would perform with an application such as AnHALytics.
At the end of this study, we have selected one workbench in which we performed
a simulation of an application similar to AnHALytics and observed its behavior
when compared to a scripting solution. The simulation results have shown that this
kind of application can be significantly improved with the integration of scientific
workflows. As the simulation results have shown, scientific workflows – created
at first for applications from the biosciences domain – can also be used with text
mining applications and present similar results, giving the application significant
improvements compared to the classic scripting version of the workflow.

Acknowledgement

I would like to express my gratitude to my home university in Brazil, Federal
University of Rio Grande do Sul, for giving me the opportunity of being in this
double degree internship and for giving me the skills I needed to follow my studies
abroad.

I also want to thank my host university, Grenoble INP - Ensimag, for providing
me this fantastic and enriching experience and for presenting me this whole new
domain to explore. I want to thank Inria, for having me as an intern for my master’s
project, and specially thank those who helped in my stay here: Didier Chassignol,
Stephane Ribas, and Achraf Azhar.

I am also thankful to the members of the jury, for taking their time to read and
evaluate my work.

ii

Contents

Abstract i

Acknowledgement ii

1 Introduction 1

2 AnHALytics 3
2.1 Main processes . 5

2.1.1 GROBID . 5
2.1.2 grobid-quantities . 5
2.1.3 NERD . 6

2.2 Executing AnHALytics . 7
2.3 Issues with the current solution . 7

3 Workflows 9
3.1 Business Workflows . 11
3.2 Scientific Workflows . 11

3.2.1 Requirements and desiderata . 12
3.3 Scientific vs Business Workflows . 13
3.4 Discussion . 15

4 Scientific Workflow Management Systems 17
4.1 Kepler . 17
4.2 Pegasus . 18
4.3 Taverna . 18
4.4 Triana . 19
4.5 RapidMiner . 19

4.5.1 Radoop . 20
4.6 Knime . 20
4.7 Discussion / Comparison . 20

4.7.1 Workflow management and deployment 20
4.7.2 Workflow execution . 21
4.7.3 Deployment of a workflow while in execution 22
4.7.4 Fault tolerance and error handling . 23

4.7.5 Reproducibility . 23
4.7.6 Adaptability . 24
4.7.7 Challenges when comparing to scripting solutions 25
4.7.8 Scalability . 25

4.8 Discussion . 26

5 Implementation and Evaluation 29
5.1 Proposed solution . 29

5.1.1 Simulation . 29
Script . 30
Scientific workflow . 30

5.2 Evaluation . 31
5.2.1 Reproducibility . 32
5.2.2 Execution Time . 32
5.2.3 Execution Management . 33
5.2.4 Fault Tolerance . 33
5.2.5 Discussion . 33

6 Conclusion 35

Bibliography 37

iv

1
Introduction

AnHALytics [3] is a platform whose goal is to extract information and enrich scientific docu-
ments that are obtained from platforms such as HAL 1 and ISTEX 2 by using a combination
of text mining algorithms. AnHALytics is a complex application that involves several different
processes, from gathering documents from a database to obtaining information from a knowl-
edge base. Currently, the AnHALytics workflow is executed by hand, which brings issues,
such as difficulty to ensure fault tolerance and reproducibility, and a less efficient use of com-
putational resources. We have investigated different solutions to automate the AnHALytics
workflow in a way that it would improve its results both quantitatively and qualitatively. In
order to do this, we have studied the state of the art of business and scientific workflows.

The use of software workflows for the automation of processes started in the late 70’s with
the rise of business workflows. These types of workflows were conceived to work with pro-
cesses that are very heavy on control flow and that use data only as auxiliary to the control
flow.

As this type of workflow was not generic enough to all kinds of applications, in the 90’s
a new type of workflow came into the picture: scientific workflows. The domain of scientific
workflows emerged alongside with the ever-growing need of automation of processes coming
from specially the life sciences. They come to fill the gap in a very specific context because the
user of such workflows is a specialist in his own field but do not necessarily knows how to deal
with complex scripting schemes very well.

AnHALytics is a framework aimed at extracting information while at the same time en-
riching scientific documents in order to improve their indexation and retrieval. AnHALytics is
composed of a quite complex workflow that contains text mining processes all linked together
to achieve its goal.

This workflow is, at the moment, being manually executed by the user. Our main goal
is to find a way to automatize the execution of the AnHALytics workflow, while at the same
time obtaining more fault tolerance and the capability of resuming the execution of a faulty
workflow.

Given the characteristics inherent to the AnHALytics framework, we can achieve that with
the help of scientific workflows, as AnHALytics deals with large amounts of data, and is much
more focused on the interactions and processes applied into the data than in a complex control
flow.

1https://hal.inria.fr
2http://www.istex.fr

We started by studying the most well-known workbenches for scientific workflows, then
compared them under several criteria which are important to the context in which AnHALytics
is executed.From this comparison, we have decided that the workbench that better suits the
AnHALytics platform is RapidMiner [36].

In order to check whether or not scientific workflows would bring improvements to the
AnHALytics workflow, we implemented two simulation scenarios to emulate the behavior of
AnHALytics under a scientific workflow platform and AnHALytics executed by hand, as its
current version.

The simulation results have shown a good improvement in the version that was integrated
with RapidMiner. The benchmarks demonstrate a performance gain, with a lower execution
time.As for the qualitative results, the reproducibility is easier in the RapidMiner version be-
cause of the execution logs provided by default, which make it easier to track and analyze
previous executions.

The document is structured as follows. Chapter 2 presents an overview of the AnHALyt-
ics platform and its main tasks. Chapter 3 introduces the concept of workflow and the two
main types of workflow systems: business and scientific workflows. Chapter 4 presents and
compares the most well-known systems for creating scientific workflows. Chapter 5 describes
a simulation scenario we used to evaluate the performance of AnHALytics with a scientific
workflow, and its results. Finally, Chapter 6 presents our conclusions.

2

2
AnHALytics

AnHALytics 1 is a text mining application that aims at facilitating the access and indexing of
scientific repositories by the research community. It achieves this by normalizing the scientific
documents to a standardized format, as well as adding information to scientific documents in
order to enrich them, making the indexation and the retrieval easier and more efficient. This
enrichment concerns in particular the key terms and key categories of the document, as well as
a process of disambiguation of the author of the article, which improves the retrieval process.

Lopez [23] describes parameters used by AnHalytics to enrich scientific documents:

• Keyword: a phrase that is usually selected by the author, and it is generally located in the
header of the document.

• Keyterm: the most discriminant phrase in a document. Each keyterm is associated to a
relevance score, which corresponds to the probability that a reader of the document would
select a given keyterm as a key phrase. Keyterms are extracted with grobid-keyterm.

• Key category: obtained from the set of Wikipedia categories that are the most relevant to a
document given its corpus. These parameters are categories associated with the keyterms
(that were extracted with grobid-keyterm), and NERD performs the disambiguation.

• Concept: an annotation produced by the NERDcomponent. As NERDhas a more seman-
tic approach, it annotates mentions in the text with their concepts.

• Key concept: the most discriminant concepts (i.e., Wikipedia article) to characterize a
document, given its corpus.

Lopez continues by defining a term as being described by three different scores: phraseness,
informativeness, and keywordness. The phraseness measures lexical cohesion, that is, the
degree to which a sequence of words can be considered a phrase. Informativeness measures
the degree to which a term is representative of a document. This is a very standard measure
in document classification, called TF-IDF (Term Frequency - Inverse Document Frequency).
Lastly, the keywordness measures the degree to which a term is selected as a keyword. It is
given simply by the frequency of a keyword in the global corpus.

The extraction of these terms and keywords is the responsibility of the GROBID process.
GROBID has three subprocesses that perform slightly different tasks : grobid-keyterm, grobid-
quantities, and grobid-nerd.

1https://github.com/anHALytics

Besides the term extraction and enrichment of the scientific documents, AnHALytics is also
responsible for harvesting these documents from their original repositories and storing them in
local databases, and for creating a standardized TEI file with all the information added by this
enrichment, which will also facilitate the indexing of these files afterwards.

Figure 2.1 shows the AnHALytics execution workflow.

Figure 2.1: AnHALytics workflow

The core processes of the AnHALytics workflow are the GROBID processing and the an-
notations. We will describe these processes in more detail in section 2.1. In section 2.2 we
describe how the execution of AnHALytics takes place. And at last, in section 2.3, we dis-
cuss some issues and drawbacks of the current implementation of the AnHALytics execution
workflow and some alternatives to solve the problem.

4

2.1 Main processes

2.1.1 GROBID

GROBID 2, which stands for GeneRation Of BIbliographic Data, is a data extraction algo-
rithm based on conditional random fields (CRF) algorithm. This algorithm allows GROBID to
automatically extract and restructure raw and heterogeneous content into a standardized format.

More specifically, GROBID is responsible for the extraction of keywords and the addition
of annotations in scientific documents. The subprocess of GROBID that extracts the keywords
is called grobid-keyterm.

One of the main obstacles of the extraction of information in scientific documents is the
fact that these files are not in an standardized format and some of them do not even provide
information that can be easily extracted.

GROBID is usually successful in extracting information from documents, but mistakes can
happen occasionally. The information extracted is mostly concentrated in the header of the
file: the title, the authors and their affiliations, document key words. The header is the main
information of a scientific document, as it allows the document to be cited and indexed in
library systems.

After the keyword extraction, the documents can also be annotated with GROBID, through
grobid-quantities and grobid-NERD.

2.1.2 grobid-quantities

grobid-quantities3 is focused at recognizing expressions of measurements in textual documents.
These measurements can be later converted to SI units.The measurements will be grouped
according to the different types found in the document (e.g., years, pressure, mass) and will be
shown to the user by using different colors to specify these groups.

Figure 2.2 shows an example of the result of executing grobid-quantities on a document.

Figure 2.2: A grobid-quantities example

2https://github.com/kermitt2/GROBID
3https://github.com/kermitt2/grobid-quantities

2.1.3 NERD
Named Entity Recognition and Disambiguation (NERD) is the part of the AnHALytics work-
flow that deals with entity disambiguation by using knowledge bases, more specifically,
wikipedia. NERD is a process that gives semantical meaning to the terms that were extracted
with GROBID. It uses Wikipedia data to train the examples and then supervised machine learn-
ing algorithms to perform the disambiguation.

A browser accessible NERD console is also available, and it takes a PDF file or raw text
as an input. Entities are recognized and displayed in different colors according to their types,
which can be several different things, such as personal names, cities and countries, chemical
elements, etc. The training is performed with Wikipedia articles.

NERD performs the following tasks:

• Entity recognition and disambiguation against wikidata and wikipedia in a raw text, par-
tially annotated segment.

• Entity recognition and disambiguation against wikidata and Wikipedia at document level,
for example a PDF with layout positioning and structure aware annotations.

• Search query disambiguation - bellow disambiguation of the search query "concrete
pump sensor" in the service test console.

• Weighted term vector disambiguation (a term being a phrase).

• Interactive disambiguation in text editing mode.

Figure 2.3 shows an example of the result of executing NERD on a document.

Figure 2.3: A grobid-NERD example

But the tool does not always get the context right. Figure 2.4 shows a case in which the
meaning extracted by the knowledge bases of NERD is not the same as the one used by the
author of the article.

Besides the term extraction and enrichment of the scientific documents, AnHALytics is
also responsible for harvesting these documents from their original repositories, storing them
in local databases, and creating a standardized TEI file with all the information added by this
document enrichment, which will also facilitate the indexing of these files.

6

Figure 2.4: A grobid-NERD example – different context

2.2 Executing AnHALytics
From the point of view of the execution, the AnHALytics framework is divided in two parts:
the AnHALytics-core and the AnHALytics-frontend. The AnHALytics-core is the server part;
here, documents are harvested and analyzed by GROBID. The frontend part is the client side
of the framework, where a user can control the execution that happens in the backend.

A user can access the AnHALytics-frontend through his web browser, where he can then
search documents from main scientific databases. These documents are annotated and sepa-
rated in categories that were learned by executing the AnHALytics server on the database.

2.3 Issues with the current solution
One of the main problems of the AnHALytics platform at the moment is that all the processes
that we described in this chapter are manually executed, which takes a great deal of human
time and makes the platform more susceptible to errors and mistakes. Besides, by manually
executing the whole AnHALytics workflow, the platform is also not capable of providing fault
tolerance, error handling, or workflow resuming/restarting. One of the possible solutions for
this issue is the use of automated workflows.

Automated workflows are capable of executing the processes in an automatic fashion, which
means that there is less user interference during the execution. Usually automated workflow
applications will also provide some level of fault tolerance and of resuming a workflow process
after a failure. The two most well known types of automated workflows are business and
scientific workflows.

We will describe these two in more detail in chapter 3.

3
Workflows

A workflow [6, Chapter 5] is the automation of a process, containing a well-defined sequence
of tasks, control flow, data flows, and participation of users. The design of a workflow is usually
achieved by using a workflow system.

There were traditionally two types of workflows systems [10] – one focused on business
processes and other for functional style computation of data. Later on, scientific workflows
came as a third option that lies in between the two traditional ones, with properties for both data
and control flows, which are characteristics of functional and business workflows, respectively.

The most known and broadly used type of workflow is the business workflow. Even the
workflow management coalition [16], one of the main references in the domain, defined work-
flows in terms of business workflows, as the automation of a business process (BP), in whole or
part, during which documents, information or tasks are passed from one participant to another
for action, according to a set of procedural rules. This definition does not exactly apply for
scientific workflows, as they are not usually focused on participants and actions but rather on
activities and data flow.

One of the reasons to use workflows is that they present several advantages when compared
to other common solutions. Workflows can, for instance, automate and manage processes that
were being controlled by a script.

Ludascher et al. [25] cite some advantages of using workflows over scripting approaches:
(i) scripting languages lack built-in provenance recording facilities, and (ii) it is difficult to
use a single script to automate a process spanning multiple computer nodes, heterogeneous
communication.

Workflows are much more scalable than scripts, and they also provide functionalities such
as fault tolerance and management on the fly of the execution.

Scaling Workflows are dealing with growing amounts of data, so the scalability of a work-
flow is very important.

The following metrics need to be scaled: (i) data, (ii) number of workflows, (iii) number of
resources involved, and (iv) number of participants

Workflow requirements and desiderata According to McPhilips et al. [28], a workflow
should provide:

• Well-formedness: Workflow systems should make it easy to design and validate work-
flows.

• Clarity: Workflow systems should make it easy to create self-explanatory workflows.

• Predictability: Purpose of products of workflow are easy to see and understand.

• Recordability: The system should make it easy to see what a workflow did when it ran.

• Reportability: Workflow systems should make it easy to see if a result makes sense sci-
entifically.

• Reusability: Workflow systems should make it easy to design new workflows using ex-
isting workflows.

• Scientific data modeling: Workflow systems should provide data modeling schemes that
let users represent their data in terms that are meaningful to them

• Automatic optimization: Workflow systems should take responsibility for optimizing
workflow performance

Gil et al. [14] describe some workflow application requirements:

• Collaborations: with the ever growing computation of large amounts of data in distributed
locations, these resources usually belong not to an individual, but to several, hence col-
laboration is necessary.

• Reproducibility: allowing scientists to reproduce the method used to obtain a result is
at the core of the scientific method. Reproducibility is highly dependent on provenance
information.

• Flexible environments: scientists must be able to perform both common analysis as well
as be able to set up their own methods in the workflow.

Abstract and Concrete workflows Yu et al. [46] state that when it comes to resource
allocation, workflows can come in two different models (also called specification): abstract
and concrete.

In the abstract model, the workflow is described in abstract form, without specifying grid
resources. In the concrete model, the workflow is described in concrete form, allocating tasks
to specific resources.

An abstract workflow is a workflow in which the activities are independent of the physical
resources used to execute them. As this workflow is just an abstraction and not linked to
anything tangible, it is also said to be portable. Usually the resources will be allocated to a
workflow on the fly, dynamically, as these resources are shared among several users and are
difficult to allocate to a given process ahead of time.

The concrete workflow is the executable workflow, that is, a workflow with all the necessary
resources allocated and mapped to specific grid or cluster unities to run their tasks, as well as
all the necessary data movement that happens between the workflow activities

In the following sections we will get into more detail on business and scientific workflows. In
section 3.3 we present some important differences between business and scientific workflows.
Finally, in section 3.4 we discuss how the characteristics of these workflow types could be used
in the context of the AnHALytics workflow process.

10

3.1 Business Workflows
The field of business workflows have its origins traced back to the 70’s and 80’s with the office
automation systems of that time [24]. Today they are mostly used in web services for service
choreography.

Business workflows are focused on control-flow and events and on automation of orga-
nization processes [44]. These processes usually involve different roles that manipulate re-
sources and are mainly control flow-driven. Data flowing through a business workflow is usu-
ally lightweight control data, so this type of workflow is more suited for dealing with complex
control flow than with data flow.

As these types of workflows are very focused on control flow and participation of each role,
so they provide branching primitives such as loop and iteration by default.

The user of a business workflow is usually a computer science expert, and he is the one that
builds the workflow according to the needs of his client, the person or company interested in
the results of the workflow execution.

The main goal of a business workflow is to check which processes can be automated in
order to save resources – which could be human time, computation time, physical resources,
and money.

The most famous business workflow platforms is Business Process Management (BPM).
Van der Aalst et al. [40] define BPM as supporting BP processes using methods, techniques,
and software to design, enact, control and analyze operational processes involving humans,
organizations, applications, documents and other sources of information.

Business workflows are usually represented by using Petri nets. Petri nets are a basic model
for representing parallel and distributed systems. According to Peterson [32], the structure of
a Petri net is defined by its places, transitions, input function, and output function. A Petri net
graph is a representation of a Petri net structure as a bipartite directed multigraph. Van der
Aalst et al. [39] give three reasons why it is a wise choice to select Petri-net-based workflow:
(i) formal semantics (despite graphical nature), (ii) state-based instead of event-based, and
(iii) abundance of analysis techniques.

3.2 Scientific Workflows
Scientific workflows are workflow frameworks aimed at solving the problems of scientific re-
search and e-science. The term e-science was coined to describe computationally and data
intensive science. The use of workflows in this domain is growing because it is difficult to
manage computationally heavy processes by hand, without automation.

According to Ludascher et al. [25] , the main goals of scientific workflows are to save
"human" cycles and to save machine cycles. This means that scientific workflows need the
hard work to be performed by the machines rather than by the users. A user of a scientific
workflow wants to automate a scientific process and not be concerned about how this process
takes place.

Zhao et al. [47] state that scientific workflow systems are engaged and applied to the fol-
lowing aspects of scientific computations:

• Describing complex scientific procedures

• Automating data derivation processes

• High performance computing to improve throughput and performance

• Provenance management

Ludascher et al. [25] also define some scientific workflow concepts and system features:

• Integrated workflow environment

• Workflow preparation and execution support (parameter seeps to simplify multiple runs)

• "Smart reuse" is desirable

• Runtime monitoring

• Fault tolerance ("smart resume"), with checkpointing or logging, for instance.

These features are usually very similar for any kind of workflow, but are of great importance
in scientific workflows.

Life cycle The scientific workflow life cycle consists of the following steps: (i) workflow
design (usually reuse pre-existing workflows or refine them), (ii) workflow preparation (selec-
tion of sources and setting parameters), (iii) workflow execution (input data is consumed), and
(iv) post-execution analysis (evaluate data products and interpret results)

Reproducibility According to Gil et al. [14], one of the most important aspects of scientific
workflows is that they should easily allow the reproduction of the steps to obtain the final
results. Scientific reproducibility implies that someone can follow the general methodology,
relying on the same initial data, and hopefully obtain equivalent results.

3.2.1 Requirements and desiderata
Ludascher et al. [24] describe some requirements and desiderata of scientific workflows:

• Seamless access to resources and services: remote execution of jobs and access to
databases.

• Service composition and reuse, and workflow design: how to design actors to perform
simple tasks and how to reuse these actors in other workflows.

• Scalability: workflows can deal with a large number of nodes to execute a task or with
large amounts of data to process or analyze.

• Detached execution: workflows should be able to run in the background on a remote
server and not need to be connected to the user application during all the execution time.

• Reliability and fault tolerance: workflows should be made more reliable by using fault
tolerance mechanisms.

• User-interaction: users might be required to interact with workflows at several steps of
the execution, like choosing where to run a task or to resume the execution in a certain
node after a failure occurred.

12

• Smart re-runs: allows to change a parameter in an actor without the need to re-execute
the workflow from the beginning, only re-execute the nodes affected by this change.
Smart re-run also comprises checkpointing, so the workflow can be executed from the
last checkpoint if a failure occurs.

• Smart (semantic) links: a scientific workflow workbench should assist the design by
suggesting which components fit together and datasets that might be fed to each actor.
a scientific workflow system has to be able to capture some sort of semantics within the
data it is dealing with

• Data provenance: an experiment run in a scientific workflow should be reproducible.
so it is important to keep track of what has been done / executed in a workflow, such
as its results and which actors were and in what sequence. In this context comes data
provenance, that comprises information of what has been run in the workflow. Data
provenance gives semantic information about data (because it can track down how it was
produced and why).

3.3 Scientific vs Business Workflows

Scientific and business workflows share a lot of similarities, but they also differ on several
aspects. We will discuss the points where these two workflow standards differ and where they
coincide in this section. Most of the points raised in this section were based on evaluations
made by Yildiz et al. [44] and Barga et al. [4].

General purpose The goals, concerns and the nature of scientific and business workflows
are intrinsically different. While in business workflows the main goal is to have a set of business
rules and interactions between the roles, the goal of a scientific workflow is to facilitate a
scientific process by automating it. Business workflows usually focus on the roles of several
actors and how they interact with each other and the activities they have to perform, while
scientific workflows usually only have one "actor" (the scientist), and it is more focused on
dealing with data

The processes of the scientific field are much more dataflow-driven and rely on the analysis
of the data generated by the execution of the workflow (which is inherently much more complex
than the data in business workflows) rather than in the overall control / coordination dependency
scheme that is common in business workflow scenarios.

As it is more focused on data, the user of a scientific workflow needs to run a given workflow
multiple times, changing the input data in some of its tasks. This is the main difference of
business and scientific workflows: how they deal with data.

Data flow Business workflows deal mainly with lightweight control data, so the data flow is
not a very important aspect for this type of workflow.

Scientific workflows usually deal with large amounts of complex data. The data that results
from each step is important (because it contains intermediate results), and should be correctly
processed and stored.

Control flow Business workflows provide basic control flow methods such as sequence,
branching and choice.

A scientific workflow is usually represented by a directed acyclic graph (DAG), which
makes it more difficult to represent these simple primitives, as DAGs do not allow loops in the
basic structure.

In scientific workflows, the control flow is modeled in a (mainly) dataflow environment.
This makes dataflow and control-flow "entangled" in scientific workflows, which makes then
harder to design and to understand.

Scientific workflows might need a more expressive control flow mechanism compared to
business workflows in order to express both data and execution concurrency.

User Goals Users of business workflows want to know which tasks can be optimized in
order to reduce costs, while users of scientific workflows (that is, scientists) want to know
details about the scientific process that generates the final results.

Process modeling Scientific workflows usually model process using dataflow informa-
tion, while business workflows usually aim at expressing a certain order of the execution of the
tasks (control flow).

Dependency In business workflows, dependency is related to the partial order between two
tasks in the workflow. In short, the dependency in business workflows is related to the control
flow.

On the other hand, in scientific workflows the dependency is related to the data relationship
(data dependency) between two tasks in the workflow, but can also depend on the control flow,
because data and control flow are entangled in scientific workflows.

In conclusion, in business workflows the dependencies between activities are dependencies
in the control flow, while in scientific workflows dependencies are related to control flow, data
flow, or both.

Model of computation In business workflows, the model of computation is similar to
imperative programming. This is a very rigid approach, that couples modeling and execution.
This is not the best way to describe all processes, so approaches that allow a more flexible
modeling have been proposed too. In these approaches, the modeling is a mixture between
imperative programming and declarative programming.

In scientific workflows, the model of computation is dataflow oriented, so the execution of
a task is data-driven. A task is "activated" and will execute only when its input data is available.
This model does not impose an order of execution between the tasks, only data dependency.
However, some control structures might be needed, for instance to express conditionality.

Data and control flow The main difference between business and scientific workflows lies
in how they deal with data. Because it is more focused on data, it is common that a scientific
workflow needs to be run a given workflow multiple times, with different data in some of its
tasks.

14

Who builds the workflow Business workflows are generally constructed by professionals
in information technology, while scientific workflows are build by scientists themselves, who
are usually not experts in that domain.

Provenance Information In business workflows, the goal is to know the parts of the pro-
cess that can be optimized in order to reduce costs. In scientific workflows, there is much more
concern about the intermediate steps, that are data resulting of a scientific process.

Comparison Table 3.1 shows the comparison between business and scientific workflow.

Table 3.1: Differences between Scientific and Business Workflows

WORKFLOW

CHARACTERISTIC

Business Scientific
Implementation Process Executability

vs modeling
Goals Outcome is known Outcome may confirm

since the beginning or invalidate hypothesis
Users and roles Responsible for distributing Largely automated, requiring

work to human actors little to no human intervention
Dataflow vs A → B represent control flow A → B represents data flow
control flow (A produces data and B consumes it)
Reusability Does not allow Allows (and encourages)

Computation Service innovation Dataflow computations
Models of Petri nets Varied (can be job or

computation dataflow oriented)

3.4 Discussion
In chapter 2, we discussed the AnHALytics platform and some issues with its current imple-
mentation. We argued that a possible solution would be to use a workflow system to automatize
the processes that are currently executed by hand. In this chapter, we talked about the two most
well known types of automated workflows: business and scientific, pointing out their charac-
teristics and for which applications they are more suitable.

Knowing that AnHALytics is a platform that focus mainly on the processing of data, and
analyzing the pros and cons of each type of automated workflow, it is clear that the most
appropriate type of workflow for automatizing its processes is a scientific workflow.

The field of scientific workflows has been gaining a lot of attention in the last decade, and
several different workflow systems have been proposed, each with its own characteristics and
aimed at different types of scientific applications. In the next chapter we will describe the most
well known workflow systems and compare them according to some criteria in order to find the
one that would be most adapted for AnHALytics’ needs.

4
Scientific Workflow Management Systems

Workflow management systems aim to automate the execution of processes [44]. The automa-
tion of a process involves the scheduling, control and monitoring of the tasks that comprise
it. A workflow system provides means to model, re-engineer and automate the execution of
processes.

In chapter 3, we described the standards for business and scientific workflows and their
differences and similarities. In this section, we will present some of the most well known
systems for creating and managing scientific workflows. For each of them, we will provide a
brief description and at the end of the chapter we included a section in which they are compared
based on some characteristics that are fundamental for our application.

Yildiz et al. [45] stated that the main advantage of workflow management systems is the
modeling capabilities that allow users, who may not be specialized in programming, to imple-
ment their processes using the comprehensible design primitives such as activities, dependen-
cies, and control structures.

Our goal is to find the workflow system that is more adapted to our application needs.

4.1 Kepler
According to Zhao et al. [47], Kepler 1 is a scientific workflow framework based on Ptolemy II,
which is a framework to design heterogeneous and concurrent systems. Kepler uses cinema as
a metaphor for how it sees the components of a workflow: each workflow has a director and
several actors. Directors specify when an event occurs while actors specify what occurs. There
are different types of directors, each of them more specified to work in a different scenario.

Curcin et al. [10] classify Kepler’s core directors in four different types:

• SDF (synchronous data flow): it has fixed rates for token production and consumption.
The order of execution is statically determined from the model.

• PN (process network): it is a derestricted version of SDF, where the actor is invoked only
when the data arrives, although there is no need to have all data to invoke the actor. This
leads to a more dynamic environment, where actors can be executing in parallel.

• CT (continuous time): it introduces the notion of timestamps on tokens and it is usually
described in terms of differential equations to approximate functions and schedule the
executions.

1https://kepler-project.org/

• DE (discrete event): it also uses timestamps on the tokens to measure average waiting
times.

Kepler does not have a functional composition – it is the director that controls the order in
which the actors will execute. Each director can be classified as strict, loose or loosest, based
on the semantics. Embedding in Kepler are allowed only when an inner director is at least as
strict as an outer director.

In order to give a semantic meaning to what an actor does, the actor has to be directed. It is
the director that controls, for instance, how many times an actor is to be executed or if it can be
executed in parallel with other actors.

Some highlights of Kepler: (i) web service extensions, (ii) grid and other extensions, and
(iii) actor-oriented modeling

4.2 Pegasus
Pegasus (Planning for Execution in Grids) 2, as its name implies, is a tool designed to map
workflows onto grid resources that can execute them. Pegasus does not provide a GUI, so
workflows must be created by describing their scheme in the DAX (Directed Acyclic Graph
XML) language. Pegasus provides libraries to DAX generators in Perl, Python, and Java. This
DAX description is portable and it does not depend on local files or information to execute.
The workflow created with the DAX language is only an abstract form of the workflow.

According to Deelman et al. [11], to map an abstract workflow into a concrete (executable)
one, three things have to be found: resources to execute the tasks, data used in the workflow,
and the necessary software.

Pegasus is also capable of performing workflow reduction when mapping an abstract work-
flow into its concrete form. For instance, if a file is the input to a task and it has been already
computed, Pegasus will use this file and not recompute the task that created it (and for which
the file is an output).

The concrete workflow produced by Pegasus can be executed by DAGMan. It generates a
submit file that contains information about the allocation of tasks to resources and the order in
which the tasks should be executed.

According to Ludascher et al. [24], Pegasus is (at that moment) semi-dynamic, because
abstract workflows are mapped to concrete workflows only when they are given to Pegasus.

Pegasus uses three different information catalogs:

• Site catalog: description of the sites where each workflow job is going to be executed

• Transformation catalog: description of the executables used by the workflow (location,
operating system, etc)

• Replica catalog: description of the location of each input file used in the workflow

4.3 Taverna
According to Wolsterncroft et al. [41], Taverna is designed to combine distributed webservices
and local tools into complex analysis pipelines, which can be executed in clusters, grids, etc or

2https://pegasus.isi.edu/

18

even on the local machine. Taverna is composed [10] by the Taverna workbench, the SCUFL
language and the FreeFluo enactment engine.

The workbench is composed of the graphical user interface and several components that
the user can use (by dragging and dropping into the workflow canvas) to build his workflow.
The workflow a user builds is going to be stored in the SCUFL representation language. The
workflow is represented as a DAG. When the user wants to run workflows he has build, they
will be run with the Freefluo engine. SCUFL, the language in which Taverna workflows are
represented has some limitations.SCUFL is a dataflow language with only some control flow
primitives. The only control structure Taverna has is a conditional construct, similar to the case
construction. Loops can be achieved only in a limited form.

Usually Taverna workflows are composed from a mixture of distributed web services, local
scripts and other services (for instance, R scripts). The biggest advantage of using distributed
systems is that all the computation overhead of the execution happens in a remote location, and
not the local machine, so there is no need to install any tools locally. This is specially evident
for the execution in the cloud, where the cloud server can easily provide the user with all the
tools he needs to execute his workflow from the start.

4.4 Triana

Cursin et al. [10] describe Triana 3 as being a visual workflow-based problem solving environ-
ment developed at Cardiff university. A workflow component in Triana is called unit, and units
can connect with each other by directed cables.

Triana is a dataflow system, but can provide support for control flow by using some special
messages that can trigger control between units.There are also special nodes for branching and
looping, and they can be combined with other functional units to build more sophisticated forms
of control flow.

One of the main disadvantages of Triana is that it has not had any recent updates. The
GitHub repository that hosts the Triana development code was last updated almost three years
ago, with the last stable version launched more than four years ago.

4.5 RapidMiner

RapidMiner is a data science / data mining platform. Its workbench is called RapidMiner Stu-
dio, and it offers the users a very modern GUI in which they can build their workflows. It
provides several tools to work with the data and to create workflows that focus on the relation-
ships and the transference of data.

Jungermann et al. [17] described the information extraction in RapidMiner 4 as being a
plugin that converts documents containing natural language texts to machine-readable form in
order to extract interesting information and relationships between them.

The process-view in RapidMiner presents a modular view of the experiment. it usually con-
sists of four stages: (i) input stage, (ii) preprocessing stage, (iii) learning stage, and (iv) evalu-
ation stage.

3http://www.trianacode.org/
4https://rapidminer.com/

4.5.1 Radoop
One of the issues with Hadoop is that it is not very user-friendly because it lacks a graphical
user interface.

Prekopcsak et al. [34] developed Radoop, an extension to RapidMiner which allows it to
work with Hadoop.

Radoop aims at dealing with the problem of big data (and for that, distributed computa-
tion) while hiding the complexity of data analytics through a high level framework such as
RapidMiner.

4.6 Knime
Knime 5 [5], also known as Konstanz Information Miner, is an environment for the interactive
execution of a data pipeline. It allows the user to create (and visualize) the analysis flow by
building blocks connected through pipes that represent the data flow between those blocks.

The user can model and visualize workflows. A workflow is consists of nodes and connec-
tions between these nodes; the nodes process data and the connections carry the data among
the nodes.

A node in Knime processes all its data before forwarding it. This means that the process
can be stopped and easily resumed and also that new nodes can be added to the workflow
scheme after the node in execution and it will not be necessary to rerun the previous nodes of
the workflow again.

Workflows in Knime are directed acyclic graphs (DAGs). Besides the nodes that com-
pose the workflow per se, there is also the workflow manager. The workflow manager holds
the power to allow (or not) the addition of new nodes and connections between nodes in the
workflow schema.

Besides the built-in nodes provided by Knime, a user can also create his own workflow
nodes by using Knime plugins. New nodes are created by extending one of the abstract classes
for nodes, so the user must know how to code in order to build new nodes from scratch.

A workflow in Knime is represented by a DAG, and for this reason, loops cannot be repre-
sented. To overcome this problem, Knime provides two special nodes: loop start and loop-end.
These nodes, unlike regular nodes, are not reset when the loop executes and they can exchange
information with each other.

4.7 Discussion / Comparison
In this section we will present a comparison study between the scientific workflow systems
previously described in this chapter. This comparison takes into account some important cri-
teria to the execution of an application such as AnHALytics, mainly focusing on a distributed
scenario.

4.7.1 Workflow management and deployment
Kepler Kepler has a monitor manager that, for each element of the workflow, allows the user
to indicate the style and the events to be monitored [19]. This is, however, a experimental

5https://www.knime.org/

20

module and might not work perfectly.

Pegasus In Pegasus, the management of the workflow being run is done with logs, which
can be of three different types [38]:

• Pegasus mapper log

• DAGman log

• Job logs (aka kickstart records)

DAGman writes a log file in near real time during execution. This log file contains the
status of each job in the workflow, as well as the scripts associated with it.

Taverna Taverna workflows can be annotated (by the user or configurable to be automati-
cally annotated). However, Taverna does not capture provenance of a workflow definition, and
assumes that the scientist is managing this through versioning (names, git, etc). Each time a
workflow is changed, an internal identifier it has also changing, which allows the user to keep
track of these changes and workflows that have the same ancestry [35].

Triana Triana can be used alongside stampede to provide better management and deploy-
ment tools. Besides that, Triana does not have any kind of logging or management tools or
information [38].

Knime Knime does not have a logging scheme per se, but it has some tools that can store
some intermediate execution information about the nodes of a workflow.

RapidMiner RapidMiner has a log table which can store all kinds of information, such as
parameters, execution time, etc. The information stored in the log table can also be analyzed in
form of graphs in RapidMiner’s result workspace [21].

4.7.2 Workflow execution

Kepler Kepler supports multiple levels of distributed execution, on the workflow, subwork-
flow and atomic actor levels. It supports master-slave, map/reduce, and grid distributed execu-
tion, among others [33].

Pegasus Pegasus can run, from the point-of-view of the user, workflows across multiple
heterogeneous resources distributed in a wide area, while at the same time shielding the user
from the grid specific details [12]. Both data storage and the workflow execution itself can be
distributed.

Taverna Taverna workflows can be executed in distributed web services, using services on a
grid or on a cloud [41].

Triana Triana is mainly focused on executing workflows on the grid or as web services. It
has two distribution policies: parallel and pipeline, as well as two modes of execution: dynamic
and static [8]. In the dynamic approach, the workflows are sent to services that can execute any
subworkflow and communicate with other Triana services they are connected to. In the static
approach, a user can chose to launch a group unit as a specific remote service, so Triana units
or groups may be deployed as Web services.

Knime Knime has no free option for distributed execution. It has three main frameworks,
Knime Cluster Executor, Knime Server, and Knime Spark Executor, but they are all commercial
products [42].

RapidMiner RapidMiner has an extension called Radoop which allows it to be integrated
with the Hadoop framework more easily. The main method of distributed execution in Rapid-
Miner is by using Radoop to run tasks on Hadoop, which is the most well known platform
for distributed execution focused on the map/reduce model, very efficient in distributing the
execution of big data applications [34].

4.7.3 Deployment of a workflow while in execution
Kepler Kepler has an execution monitoring that keeps track of all the activities performed in
a workflow as well as the data it is using [19].

Pegasus Pegasus has a monitoring framework called NetLogger that runs under Stampede
(Synthesized Tools for Archiving, Monitoring Performance and Enhanced DEbugging). The
goal of Stampede is to enable real-time debugging and performance and behavior analysis of
workflows [38].

Taverna During a workflow execution, Taverna displays status information. For each
SCUFL processor, the last event is displayed alongside with detailed information (if any),
which can include the progress through an iteration and retry information. This status informa-
tion also provides more details about intermediate inputs and outputs [30].

Taverna also has a workflow monitor web application that performs periodic monitoring of
workflow activities and provides information about their current status [43].

Triana Triana can be extended to use Stampede Monitoring, just like Pegasus. When inte-
grating Triana and Stampede, each task within a task graph is run locally [38].

Knime Knime has a monitoring tool called NodeMonitor. Using the debug feature of Node-
Monitor allows the user to check the execution times for each node of a workflow.

RapidMiner Logging and Monitoring are utilities available for RapidMiner + Radoop. Mon-
itoring contains information on the cluster’s status, health, version, etc. It provides detailed
information on the applications and jobs running in the cluster, as well as logs and information
about the MapReduce jobs. These utilities are also available whenever RapidMiner is used with
the spark web UI. If the user wants to execute jobs on the cloud, RapidMiner also provides a
tool called CloudMonitor that monitors the jobs executing on the cloud [22].

22

4.7.4 Fault tolerance and error handling

Kepler Kepler has some specialized actors to deal with errors and exceptions, such as the so
called "exception catching actors". Kepler also has the rerun capability based on the provenance
of the information collected by the system [1].

Pegasus Pegasus provides the following fault tolerance mechanisms [13]:

• Job retry: jobs and data transfers are automatically retried in case of failures.

• Data movement reliability

• Failed workflow recovery / rescue DAGs: the workflow will restart from the point of
failure

• Workflow re-planning: in case of workflow failures, users can re-plan the workflow and
continue the computation using a different resource

Taverna Taverna provides fault tolerance mechanisms such as dynamic service substitution
and retry [30].

Triana Triana provides fault tolerance (prevention and recover capabilities) at task level,
workflow level and user level. It can also easily detect faults on hardware level, but not so
much on the OS level [9].

Knime Knime provides try/catch nodes and basic error handling. Its mechanisms for fault
tolerance are not as sophisticated as the ones of some other workflow management systems.

RapidMiner Using only RapidMiner, in order to restart from an intermediate step, the user
needs to save the data to the disk, which can be done through the GUI. Using Radoop alongside
RapidMiner allows to use the fault tolerance provided by Hadoop [34].

4.7.5 Reproducibility

Most workflow management systems provide reproducibility through data provenance. To ob-
tain data provenance, these systems log each step of the workflow with great detail, in order to
make that workflow easily reproducible by anyone, thus asserting scientific reproducibility.

For scientific workflows, provenance can be of three different types [35]:

1. Provenance of the workflow definition

2. Provenance of a workflow run

3. Provenance of data

Each workflow system might capture a different set of these provenance types.

Kepler Kepler has an add-on module that allows the user to record a workflow execution
history. It is a button in the GUI which the user can activate and deactivate as he sees fit.
Whenever a user changes some parameters of an actor, the workflow might be able to perform
a smart re-run, which takes data dependencies into account and only executes the parts of the
workflow that were affected by the changes [29].

Pegasus Pegasus keeps track of what has been done (provenance) including the locations
of data used and produced, and which software was used with which parameters. By default,
all jobs in Pegasus are launched using the Kickstart wrapper that captures runtime provenance
of the job and helps in debugging. Provenance data is collected in a database, and the data can
be queried with Pegasus specific tools or directly using SQL [31].

Taverna The Taverna Engine (workbench + command line) enacts the workflows and col-
lects the provenance of workflow runs, including individual processor iterations and their inputs
and outputs. It is also able to provide some level of provenance of workflow data through some
tools in myGrid, such as annotations [18].

Triana Triana provides data provenance through workflow annotation, which can happen
manually (user annotates the workflow) or automatically. Provenance data recorded includes:
date and time composed, date and time of the execution, details of the resource on which a
service was executed, and intermediate data products generated [26].

Knime At any point of the workflow, the user can inspect data, model, etc., which provides
intermediate results of the workflow. Knime also provides logging which is divided in several
levels such as DEBUG, INFO, WARN and ERROR. The verbosity of this log can be controlled
by the user beforehand [20].

RapidMiner In RapidMiner, there is little built-in support for recording and accessing the
information of how data outputs have been produced by different versions of a flow. Most
logging is focused on logging the Radoop extension in order to access and monitor the cluster’s
web interfaces [15] . RapidMiner also provides a log operator that can be used to store the
values a user has chosen.

4.7.6 Adaptability

Most workflow management systems allow the execution both locally and on distributed envi-
ronments (be it a cluster, a grid, or a cloud). Generally, this is not transparent to the user; the
user needs to state his or her preference for where the workflow is going to be run.

Kepler Extensions allow Kepler to be executed in a distributed environment, such as clusters,
grids, and clouds. Kepler is not targeted to a particular distributed execution requirement. The
distributed execution in Kepler can happen at the workflow level, subworkflow level, director
level or actor level. Because of these wide variations, this is not transparent to the user.

24

Pegasus In Pegasus, user created workflows can be easily run in different environments
without alteration. Pegasus currently runs workflows on top of Condor, grid infrastructures,
and clusters. The same workflow can run on a single system or across a heterogeneous set of
resources.

Taverna In Taverna, the distributed execution happens in the form of webservices. A work-
flow (or subworkflow) is seem as a service. Taverna also provides local and distributed pipeline
execution. In order to use Taverna’s distributed resources, the user needs to be using Taverna
Server.

Triana The user needs to select the resources for execution. A user will, for example, select
a group of tasks he wants to execute in parallel. The main unit of Triana distributed execution
are those group tasks; data is distributed accordingly.

Knime Knime only allows distributed execution with the help of a paid extension, which
means that the open source and free version does not allow / adapt to distributed environments,
only single user machine.

RapidMiner RapidMiner has the Radoop extension, so the behavior for execution (be it
distributed or not) will be similar to using Hadoop while using this extension. The user has to
describe the available machines in a file, and any tasks that can be distributed are going to be
allocated to each of these machines. Without this extension, RapidMiner can only execute the
workflows locally.

4.7.7 Challenges when comparing to scripting solutions
The design and implementation of a solution using a scientific workflow can be more difficult
than using scripts. This happens because while using scientific workflows, one needs to think
in terms of actors/operators to execute a task, instead of functions and classes as in usual pro-
gramming languages. After this first step, it can be actually easier to develop new features and
manage the execution while using a workflow management platform than while using scripts.

4.7.8 Scalability
All of the workflow systems we studied are said to scale well in distributed environments, being
able to deal with up to thousands of workflow elements.

Kepler Kepler has specialized actors to deal with grid architectures / environments and can
also be integrated with Hadoop and Spark [2].

Pegasus Pegasus can easily scale well to both the size of the workflow and the resources.
Pegasus can run workflows ranging from just a few computational tasks up to one million tasks.
The number of resources involved in executing a workflow can scale as needed without any
impediments to performance [31]. Among the workflow systems we have considered, Pegasus
is the best for distributed execution.

Taverna Taverna was build to be scalable through the SCAPE project, aimed at building
a scalable platform for planning and executing workflows. The workflows are deployed on a
large scale (using Hadoop) and executed over large, distributed and heterogeneous objects [37].

Triana Triana workflows can be executed on the grid and in P2P by selecting resources for
execution, so it scales well for the number of nodes. Triana can also be executed on the cloud
if an appropriate extension is used in the workflow [26].

Knime The Knime distributed execution module is paid, and the system does not scale well
with local execution (limited ram, processors, and disk space).

RapidMiner RapidMiner uses Radoop, and extension that allows users to use Hadoop inside
of RapidMiner very easily; so, in theory, it should scale as well as Hadoop [26]. However, the
distributed version of RapidMiner is paid, so in the free version only one thread is used to run
the workflow.

4.8 Discussion
In chapter 2, we discussed the AnHALytics platform and how automatizing its processes could
improve the overall performance of the framework. In chapter 3 we presented the two most used
and well known types of automated workflow types, and we argued that scientific workflows
would be a better fit for the automation of AnHALytics, according to its characteristics and
general needs. In this chapter, we presented some of the most well known and widely used
scientific workflow platforms and compared them using some criteria that is of great importance
in the context of the AnHALytics application.

Table 4.1 shows a comparison between the systems studied regarding the most important
criteria analyzed.

Among the workflow systems described in this chapter we believe that the AnHALytics
framework would work better with RapidMiner.

Taverna and Kepler could also be good fits for AnHALytics, but they are focused applica-
tions for the biosciences. Implementing data mining algorithms in these workbenches would
be a lot more expensive in terms of time and work than with RapidMiner. Besides the domain,
RapidMiner is also the workbench with the best documentation among all of those we have
studied and the one that is more often updated.

RapidMiner provides operators that implement data mining algorithms, fault tolerance, pro-
cess logging, and easy execution management. However, only its core is free and open source.
Distributed execution is not available in the free version, so the criterion of scalability should
not be the first priority when using RapidMiner. Even with this drawback, we consider that it
is a good fit for AnHALytics.

In the next chapter we discuss how we can use this scientific workflow system to improve
the AnHALytics workflow process.

26

Table 4.1: Comparison between workbenches

WORKFLOW SYSTEM

CRITERION

Kepler Pegasus Taverna Triana Knime RapidMiner
Focus bio- bio- bio- signal data-driven data

sciences sciences sciences processing appl. science
Open-source 7 7

Reproduc-
ibility (prov.) (prov.) (prov.) (annot.) (log/ (log)

inspection)
Fault job retry job retry, job retry job retry try-catch job retry

Tolerance try-catch actors WF re-plan
Monitoring/ 7 7

logging
Workflow

management
(pause, stop)
Distributed cluster, cluster, webservices grid, hadoop cluster, grid
execution grid grid p2p (paid) (paid)

5
Implementation and Evaluation

At first, we had planned to implement the AnHALytics framework over one of the workflow
workbenches, but we underestimated the complexity of this task.

Because of the nature of the scientific workflow systems we have studied so far, implement-
ing a large application such as AnHALytics over one of these workbenches is going to require
a lot of technical work, possibly with the need of redesigning the whole application.

As time was an important factor during an internship, we decided it would be best to im-
plement a simulation using two different scenarios instead. These scenarios aim to reflect the
behavior of the execution of the AnHALytics platform in its current form (with all the processes
being executed by hand) and the execution of AnHALytics being managed by a scientific work-
flow system.

5.1 Proposed solution
As stated in the previous section, the process of integrating AnHALytics with scientific work-
flow workbench goes beyond the scope of this internship, as it deals with a lot of technicalities
and would require more time to redesign the system. Two scenarios are proposed in order
to simulate the behavior of the AnHALytics platform in its current state and with a scientific
workflow. These two implementation are presented in more detail in the next subsection.

5.1.1 Simulation
The simulation scenario is composed by a series of tasks that involve web crawling and the
application of text mining algorithms, both important steps in the AnHALytics workflow.

The following tasks were implemented:

• Read an excel file containing URLs to thirty TEI documents from the HAL platform.

• Web crawling to obtain the content of these documents.

• Extraction of the English abstract.

• Tokenization and removal of stop words in these documents.

• Cosine similarity and TF-IDF metrics calculated for the English abstract of these docu-
ments.

For each of the documents obtained from the HAL platform, we extracted its English ab-
stracts and calculated the cosine similarity and the TF-IDF measures when compared to the
other documents.

The scenario that simulates the current state of AnHALytics was implemented using Python
scripts, while the scientific workflow scenario was implemented in RapidMiner. In the scripting
version, we needed to use several Python libraries to implement the algorithms we needed, such
as libraries to exclude the stop words from the original text and to read and parse the XLS and
XML files. With RapidMiner, all the functions we needed were either available off the shelf
or implemented in the Text Processing and Web Mining extension, which are free and can be
easily installed from the extension manager.

The simulation schemes are presented in the next subsections.

Script

The scripting scenario aims to simulate the behavior of the current implementation of the An-
HALytics platform.

Figure 5.1 shows an scheme with the simulation scenario implemented with Python scripts.

Figure 5.1: Simulation scenario: scripting

Python is one of the most used programming languages in data mining applications, so it
has external libraries that implement several data mining algorithms.

The following libraries were used in the Python script:

• NLTK (Natural Language Toolkit): used to tokenize and remove the stop words from the
text.

• urllib: used to fetch the documents listed in the XLS file and extract their information.

• TextBlob: used to calculate the TF-IDF.

• xlrd: used to read the XLS file.

• NumPy: used to get more precise float numbers in the cosine similarity calculation.

Scientific workflow

The scientific workflow scenario was implemented in RapidMiner. As RapidMiner is focused
on data science applications, it provides two extensions that implement text mining algorithms:
the Text Processing and the Web Mining extensions. Consequently, in this scenario we only
needed to use RapidMiner’s operators, no external scripts were needed.

30

Figure 5.2: Simulation scenario: scientific workflow

Figure 5.2 shows the scheme implemented in RapidMiner.
The task "Process Documents" is a subworkflow. Its complete scheme is shown in figure

5.3. This subworkflow is responsible for the task of processing the documents: the English
abstract is extracted, the stop words and punctuation signs are removed, and the result is tok-
enized. In the end, the TF-IDF metric is calculated.

Figure 5.3: Inside the "Process Documents" operator

Some of the operators used in the scenario were available by default in the RapidMiner
application, others were implemented by the extensions Text Processing and Web Mining. The
table 5.1 shows where each RapidMiner operator used in the scenario is implemented.

Table 5.1: Where RapidMiner operators are implemented

OPERATORS IMPLEMENTED

EXTENSION

RapidMiner Read Excel, Data to Similarity
Text Processing Data to Documents, Process Documents, Extract Information, Keep

Document Parts, Tokenize, Transform Cases, Filter Stopwords
Web Mining Get Pages

The evaluation for these two scenarios is described in the next section.

5.2 Evaluation
The goal of both scenarios is to simulate a simplified version of the behavior of the AnHALytics
process.

The two simulation scenarios are evaluated under the same criteria, some of which was
already discussed in section 4.7. We used the following criteria to evaluate the solutions:

• Reproducibility

• Execution time

• Execution management (resuming, pausing)

• Fault tolerance

All these criteria, with the exception of execution time, can be considered as qualitative.
For this reason, we will discuss how they can be achieved in each scenario.

5.2.1 Reproducibility
Cacioppo et al. [7] argue that reproducibility refers to the ability of a researcher to duplicate
the results of a prior study using the same materials as were used by the original investigator.

Marcus [27] links reproducibility with the credibility in scientific experiments, and states
that without credibility, others can’t/won’t build on our work, and as a result, the pace of
scientific advance is slowed. Reproducibility is one of the most important criteria we need to
evaluate, as it is at the very basis of the scientific process.

In the scripting scenario, any means to achieve reproducibility have to be manually imple-
mented, as they are not available by default. Most of modern programming languages have
libraries that allow the user to create their own logs for an execution, but still it would be the
user’s choice to decide what to put into the log.

In the scientific workflow scenario, there are tools that can be used to achieve reproducibil-
ity, such as detailed logging and validation of a process workflow. The workflows generated
are also portable, which makes it easier for a different observer to analyze the results obtained.

It is also important to note that RapidMiner provides a rich view of the results after the
execution is finished, including statistics and charts to visualize the results. This is also a factor
that is related to reproducibility, because it is much more simple to analyze and compare the
results of the execution.

5.2.2 Execution Time
One of our goals with the automation of AnHALytics would be to reduce the execution time –
mainly by optimizing the number of threads used to execute the application. As AnHALytics
seem to be an application very prone to distribution, as each document is individually treated
at each time, we expect the execution time to be reduced with the use of a scientific workflow
controlling its execution.

The table 5.2 shows the results for execution time for the simulation scenarios. The scenar-
ios were run on a MacBook Pro with the following configurations: processor Intel Core i7 3,1
GHz, 16GB RAM, OS version 10.12.6. The results show the mean execution time obtained in
five executions for each scenario.

As shown by the table above, the RapidMiner scenario executes the text harvesting task in
a time around 10% lower when compared to the scripting version. The computation of cosine
similarity and TF-IDF take about the same amount of time in both scenarios.

32

Table 5.2: Execution time in the simulation scenarios

SCENARIO

TASK

Script Scientific workflow
Text harvesting + 23.48s 21s

tokenization
Cosine similarity /TF-IDF 0.34s 0.3s

5.2.3 Execution Management
The execution management, which comprises specially the resuming and pausing of the execu-
tion, is also an important criterion we need to evaluate.

The scripting solution does not provide any form of execution management, because pro-
gramming languages do not provide such resource. The closest thing to an execution man-
agement that this solution can provide is adding breakpoints in some parts of the code. The
execution stops at each breakpoint and the user can check the state of the variables, and then
manually continue the execution until the next breakpoint.

In the scientific workflow scenario we also have the option of using breakpoints for debug-
ging, but the platform allows a user to pause/resume the execution of the workflow by pressing
a button.

5.2.4 Fault Tolerance
Fault tolerance is another important criterion to be evaluated, as it ensures that the work previ-
ously executed will not be lost if a technical problem happens in the middle of the execution
process.

The scripting solution does not provide fault tolerance in itself, but could be executed in an
environment that guarantees fault tolerance.

It is on the basis of scientific workflows to provide fault tolerance. In the case of RapidMiner
it is provided by its Radoop extension. Radoop is a Hadoop implementation for RapidMiner, so
it provides fault tolerance. In the implemented scenario we do not use Radoop, so the resources
for fault tolerance were not being used.

5.2.5 Discussion
According to the evaluation results shown in table 5.3, it can be seen that the RapidMiner
solution provides some significant advantages when compared to the scripting solution.

By using RapidMiner it is easier to achieve workflow reproducibility and the execution time
was about 10% lower when compared to the scripting solution. improved. RapidMiner also
provides tools that allow a better execution management and deployment, with the possibility
of pausing and resuming the execution at any time, as well as easily adding breakpoints in any
part of the workflow process.

We believe that the results found in the simulation will also be found in an actual imple-
mentation.

Table 5.3: Overview of criteria in the simulation scenarios

SCENARIO

CRITERION

Script Scientific workflow
Reproducibility It has to be manually implemented Easier to achieve with the automatic

logs and portability of solution
Fault Tolerance It has to be manually implemented Execution can be restarted from

last point
Execution time Slower computation Faster computation

(of harvesting + tokenization) (of harvesting + tokenization)
Execution Does not provide it Provides breakpoints and

management pausing/resuming of the workflow

34

6
Conclusion

We presented an overview of the field of workflows to automate processes, as well as discussed
the differences between the two most important types of workflows – business and scientific.

We presented the AnHALytics platform and explained the issues with the current solution.
We discussed how we could use automated workflows to improve AnHALytics, and performed
a thorough study on which type of workflow and which workflow system would be more ap-
propriate to automate AnHALytics, taking into consideration the inherent characteristics of
AnHALytics and our priorities in terms of quantitative and qualitative results of this implemen-
tation.

Then we presented a simulation scenario which aims to represent the AnHALytics process
workflow, and we implemented it in two ways: one was integrated into the scientific workflow,
and the other was manually executed (scripting) – a solution similar to the current implemen-
tation of AnHALytics.

An evaluation of the two simulation scenarios was presented, taking into account the most
important criteria concerning the execution of the AnHALytics workflow. We discussed the
results obtained with the evaluation, which have shown a considerable advantage in the scenario
that uses the scientific workflow approach.

The simulation results have shown that the scenario implemented on RapidMiner performed
better than the scripting scenario in terms of execution time, and that it provides tools for
achieving reproducibility and better execution management and deployment.

For our purposes one of the most important criterion is the reproducibility, which is hard to
guarantee in the current AnHALytics version, but with the use of scientific workflows it can be
achieved much more easily.

Taking these results in consideration and extrapolating it to the real life implementation, we
strongly believe that the automation of AnHALytics would also show improvements in the cri-
teria under which it was evaluated, specially reproducibility and easier execution management.

The natural next step within the context of this research project is the implementation of the
studied concepts directly on the AnHALytics platform – that is, to integrate AnHALytics with
the chosen scientific workflow workbench, Kepler. Although the implementation was proven
to be more difficult than we expected, we believe that the results show that the additional effort
pays off, in delivering an application that will be more reliable and efficient in the long run.

Concerning scientific workflows and the remarkable growth in data science research in the
last few years, we believe that new platforms aimed at these types of applications are to be
expected in the near future. RapidMiner, which is the only workbench among those we studied
that provides tools off-the-shelf for implementing machine learning algorithms, seems to indi-

cate that this could be a trend in the next years, which will strongly facilitate the development
and deployment of data science applications.

The results obtained with this study are not limited to the AnHALytics platform or even to
text mining applications. Our results demonstrate that using scientific workflows to organize
complex process flows can improve the execution in several aspects and it is well worth the
additional work.

36

Bibliography

[1] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. Provenance collection support in
the kepler scientific workflow system. In International Provenance and Annotation Work-
shop, pages 118–132. Springer, 2006.

[2] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and Steve
Mock. Kepler: an extensible system for design and execution of scientific workflows. In
Scientific and Statistical Database Management, 2004. Proceedings. 16th International
Conference on, pages 423–424. IEEE, 2004.

[3] AnHALytics Documentation. http://anhalytics.readthedocs.io/. Accessed:
2018-01-03.

[4] Roger Barga and Dennis Gannon. Scientific versus business workflows. In Workflows for
e-Science, pages 9–16. Springer, 2007.

[5] Michael R Berthold, Nicolas Cebron, Fabian Dill, Thomas R Gabriel, Tobias Kötter,
Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel. Knime-the konstanz infor-
mation miner: version 2.0 and beyond. AcM SIGKDD explorations Newsletter, 11(1):26–
31, 2009.

[6] Erik Blasch, Élio Bossé, and Dale A Lambert. High-level information fusion management
and systems design. Artech House, 2012.

[7] John T Cacioppo, Robert M Kaplan, Jon A Krosnick, James L Olds, and Heather Dean.
Social, behavioral, and economic sciences perspectives on robust and reliable science.
2015.

[8] David Churches, Gabor Gombas, Andrew Harrison, Jason Maassen, Craig Robinson,
Matthew Shields, Ian Taylor, and Ian Wang. Programming scientific and distributed
workflow with triana services. Concurrency and Computation: Practice and Experience,
18(10):1021–1037, 2006.

[9] Alexandru Costan, Corina Stratan, Eliana-Dina Tirsa, Mugurel Ionut Andreica, and
Valentin Cristea. Towards a grid platform for scientific workflows management. arXiv
preprint arXiv:0910.0626, 2009.

[10] Vasa Curcin and Moustafa Ghanem. Scientific workflow systems-can one size fit all? In
Biomedical Engineering Conference, 2008. CIBEC 2008. Cairo International, pages 1–9.
IEEE, 2008.

[11] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil,
Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping scientific workflows onto
the grid. In undefined, pages 11–20. Springer, 2004.

[12] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman,
Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good, et al. Pegasus: A framework
for mapping complex scientific workflows onto distributed systems. Scientific Program-
ming, 13(3):219–237, 2005.

[13] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J Maech-
ling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, et al. Pegasus,
a workflow management system for science automation. Future Generation Computer
Systems, 46:17–35, 2015.

[14] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis
Gannon, Carole Goble, Miron Livny, Luc Moreau, and Jim Myers. Examining the chal-
lenges of scientific workflows. Computer, 40(12), 2007.

[15] Fenno F Terry Heath III and Richard Hull. Analytics process management: A new chal-
lenge for the bpm community. In Business Process Management Workshops, pages 175–
185, 2014.

[16] David Hollingsworth and UK Hampshire. Workflow management coalition: The work-
flow reference model. Document Number TC00-1003, 19, 1995.

[17] Felix Jungermann. Information extraction with rapidminer. In Proceedings of the GSCL
SymposiumâSprachtechnologie und eHumanities, pages 50–61. Citeseer, 2009.

[18] Simon Jupp, James Eales, Simon Fischer, Sebastian Land, Rishi Ramgolam, Alan
Williams, and Robert Stevens. Combining rapidminer operators with bioinformatics
services. a powerful combination. In RapidMiner Community Meeting and Conference.
Shaker, 2011.

[19] Kepler Execution Monitor. https://kepler-project.org/
developers/incubation/kepler-execution-monitoring/archive/
kepler-execution-monitoring. Accessed: 2017-07-05.

[20] KNIME Quickstart Guide. http://www.mi.fu-berlin.de/wiki/pub/ABI/
KnimeSec/KNIME_quickstart.pdf. Accessed: 2017-07-05.

[21] Log (RapidMiner Studio Core) . https://docs.rapidminer.com/studio/
operators/utility/logging/log.html. Accessed: 2017-07-05.

[22] Logging and Monitoring. https://docs.rapidminer.com/radoop/
troubleshooting/logging-and-monitoring.html. Accessed: 2017-07-05.

38

[23] Patrice Lopez and Laurent Romary. Humb: Automatic key term extraction from scien-
tific articles in grobid. In Proceedings of the 5th international workshop on semantic
evaluation, pages 248–251. Association for Computational Linguistics, 2010.

[24] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew
Jones, Edward A Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the
kepler system. Concurrency and Computation: Practice and Experience, 18(10):1039–
1065, 2006.

[25] Bertram Ludäscher, Mathias Weske, Timothy McPhillips, and Shawn Bowers. Scientific
workflows: Business as usual? In International Conference on Business Process Man-
agement, pages 31–47. Springer, 2009.

[26] Shalil Majithia, Matthew Shields, Ian Taylor, and Ian Wang. Triana: A graphical web
service composition and execution toolkit. In Web Services, 2004. Proceedings. IEEE
International Conference on, pages 514–521. IEEE, 2004.

[27] Emilie Marcus. Credibility and reproducibility. Structure, 23(1):1–2, 2015.

[28] Timothy McPhillips, Shawn Bowers, Daniel Zinn, and Bertram Ludäscher. Scientific
workflow design for mere mortals. Future Generation Computer Systems, 25(5):541–
551, 2009.

[29] Luc Moreau. Provenance and Annotation of Data: International Provenance and Anno-
tation Workshop, IPAW 2006, Chicago, IL, USA, May 3-5, 2006, Revised Selected Papers,
volume 4145. Springer Science & Business Media, 2006.

[30] Tom Oinn, Mark Greenwood, Matthew Addis, M Nedim Alpdemir, Justin Ferris, Kevin
Glover, Carole Goble, Antoon Goderis, Duncan Hull, Darren Marvin, et al. Taverna:
lessons in creating a workflow environment for the life sciences. Concurrency and Com-
putation: Practice and Experience, 18(10):1067–1100, 2006.

[31] Pegasus - Workflow Management System. https://pegasus.isi.edu/overview/.
Accessed: 2017-07-05.

[32] James L Peterson. Petri net theory and the modeling of systems. 1981.

[33] Marcin Płóciennik, Tomasz Żok, Ilkay Altintas, Jianwu Wang, Daniel Crawl, David
Abramson, Frederic Imbeaux, Bernard Guillerminet, Marcos Lopez-Caniego, Is-
abel Campos Plasencia, et al. Approaches to distributed execution of scientific workflows
in kepler. Fundamenta Informaticae, 128(3):281–302, 2013.

[34] Zoltan Prekopcsak, Gabor Makrai, Tamas Henk, and Csaba Gaspar-Papanek. Radoop:
Analyzing big data with rapidminer and hadoop. In Proceedings of the 2nd RapidMiner
community meeting and conference (RCOMM 2011), pages 1–12. Citeseer, 2011.

[35] Provenance Management. http://www.taverna.org.uk/documentation/
taverna-2-x/provenance/. Accessed: 2017-07-05.

[36] RapidMiner: Data Science Platform. https://rapidminer.com/. Accessed: 2018-01-
03.

[37] SCAPE. http://www.taverna.org.uk/introduction/related-projects/
scape/. Accessed: 2017-07-05.

[38] Karan Vahi, Ian Harvey, Taghrid Samak, Daniel Gunter, Kieran Evans, David Rogers, Ian
Taylor, Monte Goode, Fabio Silva, Eddie Al-Shakarchi, et al. A case study into using
common real-time workflow monitoring infrastructure for scientific workflows. Journal
of grid computing, 11(3):381–406, 2013.

[39] Wil MP Van Der Aalst. Three good reasons for using a petri-net-based workflow man-
agement system. In Proceedings of the International Working Conference on Information
and Process Integration in Enterprises (IPICâ96), pages 179–201. Citeseer, 1996.

[40] Wil MP Van Der Aalst, Arthur HM Ter Hofstede, and Mathias Weske. Business process
management: A survey. In International conference on business process management,
pages 1–12. Springer, 2003.

[41] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers,
Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher, et al.
The taverna workflow suite: designing and executing workflows of web services on the
desktop, web or in the cloud. Nucleic acids research, page gkt328, 2013.

[42] KNIME Performance Extensions. https://www.knime.org/
knime-performance-extensions. Accessed: 2017-07-05.

[43] Workflow Monitor. http://www.taverna.org.uk/download/associated-tools/
workflow-monitor/. Accessed: 2017-07-05.

[44] Ustun Yildiz, Adnene Guabtni, and Anne HH Ngu. Business versus scientific workflows:
A comparative study. In Services-I, 2009 World Conference on, pages 340–343. IEEE,
2009.

[45] Ustun Yildiz, Adnene Guabtni, and Anne HH Ngu. Towards scientific workflow patterns.
In Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science,
page 13. ACM, 2009.

[46] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for grid com-
puting. ACM Sigmod Record, 34(3):44–49, 2005.

[47] Yong Zhao, Ioan Raicu, and Ian Foster. Scientific workflow systems for 21st century, new
bottle or new wine? In Services-Part I, 2008. IEEE Congress on, pages 467–471. IEEE,
2008.

40

