
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

PABLO RAFAEL BODMANN

Test Pattern Generator for Sequential Cells

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engeneering

Advisor: Prof. Dr. Renato Perez Ribas

Porto Alegre
January 2018

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. Renato Ventura Bayan Hen-
riques
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Computers are like Old Testament gods; lots of rules and no mercy.”

— JOSEPH CAMPBELL

AGRADECIMENTOS

Primeiramente, gostaria de agradecer aos meus pais pelo apoio e suporte durante

todos esses anos. Gostaria de agradecer ao Prof. Renato Perez Ribas por me proporcionar

um primerio contato no mundo acadêmico e por me incentivar em publicar o trabalho

feito durante a bolsa de iniciação científica. Gostaria de agradecer ao Prof. André Inácio

Reis e aos integrantes do grupo Logics pot todo apoio dado.

ABSTRACT

The validation of standard cell libraries used on digital integrated circuit design is a cru-

cial task. However, the validation of sequential logic gates is quite complex due to the

inherent memory effect found in these devices. In this work, it is proposed a generic test

pattern generator to be applied on the validation of sequential cells. This generator is ex-

pected to be independent of the cell under test behavior, to change only one input per step

and to be cyclic. To solve the problem, it is necessary to model this problem as a graph

and find an Euler cycle over it. In order to find a cycle it is proposed the use of a modified

Depth-first search. First the generator is validated using behavioral description of several

different sequential cells. Also, is is validated using several different topologies. It is also

proposed and analyzed the possibility of implementation on hardware.

Keywords: Sequential Cell. Testing. Digital Circuit. Standard Cell. Logic Gate.

Gerador de Padrões de Teste para Células Sequenciais

RESUMO

A validação de bibliotecas de Standard Cell usadas no design de circuitos integrados é

uma tarefa crucial. No entanto, a validação dos portas seqüenciais é bastante complexa

devido ao efeito de memória presente nestes dispositivos. Neste trabalho, propõe-se um

gerador de padrões de teste genérico a ser aplicado na validação de células seqüenciais.

Espera-se que este gerador seja independente do comportamento da célula sob teste, para

alterar apenas uma entrada por etapa e seja cíclico. Para resolver o problema, é necessário

modela-lo como um grafo e encontrar um ciclo de Euler sobre ele. Para encontrar um

ciclo, propõe-se o uso de uma pesquisa por profundidade modificada. Primeiro, o gerador

é validado usando a descrição comportamental de várias células seqüenciais diferentes.

Também é validado usando várias topologias diferentes. Também é proposto e analisado

a possibilidade de implementação em hardware.

Palavras-chave: Células sequenciais. Validação. Circuitos Digitais. Standard Cell. Por-

tas lógicas.

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application-specific integrated circuit

BFS Breadth First Search

BILBO Built-in Logic Block Observer

BIST Built-in Self-Test

CUT Cell Under Test

DFS Depth First Search

FFD Type D Flip-Flop

FFDR Type D Flip-Flop with asynchronous Reset

FFDS Type D Flip-Flop with asynchronous Set

FFDRS Type D Flip-Flop with asynchronous Reset and Set

FFT Type T Flip-Flop

FFTR Type T Flip-Flop with asynchronous Reset

FFTS Type T Flip-Flop with asynchronous Set

FFTRS Type T Flip-Flop with asynchronous Reset and Set

FPGA Field-programmable gate array

FSM Finite State Machine

IC Integrated Circuit

Lat Latch

LatD Type D Latch

LatDR Type D Latch with asynchronous Reset

LatDS Type D Latch with asynchronous Set

LatDRSType D Latch with asynchronous Reset and Set

NCL Null Convention Logic

PWL Piecewise Linear

ROM Read-only Memory

XOR Exclusive-Or

LIST OF FIGURES

Figure 3.1 Latch ROS described at (RIBAS et al., 2011a) ...20
Figure 3.2 Flip-Flop ROS described at (RIBAS et al., 2011a)20
Figure 3.3 Shift-register proposed at (RIBAS et al., 2011c)...22
Figure 3.4 Flip-flop testing setup proposed at (RIBAS et al., 2011c).............................23

Figure 4.1 3-Dimensional Hypercube representing a 3 bit Gray Code...........................25
Figure 4.2 Pseudocode for creating Table of adjacency lists ..26
Figure 4.3 Simulation of ROM implementing a 3-input generator.................................28
Figure 4.4 Growth behavior of the Boolean network per number of inputs29
Figure 4.5 Growth behavior of the FPGA per number of inputs29

Figure 5.1 Proposed improvement ..31
Figure 5.2 Flip Flop topology ...36
Figure 5.3 SPICE simulation of the first instance flip-flop. ...37
Figure 5.4 SPICE simulation of the second instance flip-flop ..38
Figure 5.5 SPICE simulation of the third instance flip-flop..38
Figure 5.6 Flip Flop topology ...39
Figure 5.7 SPICE simulation of the first instance flip-flop. ...39
Figure 5.8 SPICE simulation of the second instance flip-flop ..40
Figure 5.9 SPICE simulation of the third instance flip-flop..40
Figure 5.10 First Latch Topology..41
Figure 5.11 SPICE simulation of the first instance of the first topology.........................41
Figure 5.12 SPICE simulation of the second instance of the first topology42
Figure 5.13 SPICE simulation of the third instance of the first topology.......................42
Figure 5.14 Second Latch Topology ...43
Figure 5.15 SPICE simulation of the first instance of the second topology....................43
Figure 5.16 SPICE simulation of the second instance of the second topology44
Figure 5.17 SPICE simulation of the third instance of the second topology44

LIST OF TABLES

Table 1.1 Exclusive-or truth table ...13
Table 1.2 Type D Latch truth table..13
Table 1.3 Malfunctioning OR gate..14

Table 2.1 C-element steady states ...17
Table 2.2 D-type latch with asynchronous reset steady states ..17
Table 2.3 D-type Flip-Flop with asynchronous reset steady states17
Table 2.4 C-element expected transitions ...18
Table 2.5 D-type latch with asynchronous reset expected transitions.............................18
Table 2.6 D-type flip-flop with asynchronous reset expected transitions18
Table 2.7 C-element non-expected transitions ..19
Table 2.8 D-type latch with asynchronous reset non-expected transitions19
Table 2.9 D-type flip-flop with asynchronous reset non-expected transitions19

Table 4.1 3-bit Gray code and its missing transitions. ..24
Table 4.2 Table containing each node adjacency list representing the graph in Fig. 4.1 26
Table 4.3 2-input sequence..26
Table 4.4 3-input Sequence ...26
Table 4.5 Sequence growth ...27

Table 5.1 Cell with partial coverage..31
Table 5.2 States not Covered when disregarding the first iteration.................................32
Table 5.3 Cells used with input ordering and coverage ..33
Table 5.4 Number of instance used ...34
Table 5.5 Coverage and number of cells used disregarding the first iteration35
Table 5.6 Instances Input Setup ..37
Table 5.7 Instances Input Setup ..41

CONTENTS

1 INTRODUCTION...12
1.1 Sequential Cell Validation ..13
1.2 Motivation..14
1.3 Proposal ...15
1.4 Organization..15
2 PRELIMINARIES..16
2.1 Types of sequential logic circuits ...16
2.2 Steady States..17
2.3 Dynamic States ..18
2.3.1 Expected Transitions..18
2.3.2 Non-Expected Transitions..19
3 REALTED WORKS ...20
3.1 Ring Oscillators for Functional and Delay Test ...20
3.2 Checking Experiments to Test Latches...21
3.3 Self-Checking Test Circuits for Latches and Flip-Flops22
3.4 Automatic Circuit Generation for Sequential Logic Debug................................23
4 TEST PATTERN GENERATOR...24
4.1 Generator Modeling..24
4.2 Software Implentation ..25
4.3 Hardware implementation ...27
4.3.1 ROM Solution ..27
4.3.2 Boolean Network and LUT Based Solutions...28
5 VALIDATION OF SEQUENTIAL CELLS..30
5.1 Model Validation ...30
5.1.1 Single instance validation ..31
5.1.2 Multiple instances validation ...31
5.1.3 Continuous validation ..32
5.2 SPICE validation...36
5.2.1 Nor Type D Flip-Flop with Asynchronous Set and Reset36
5.2.2 NAND Type D Flip-Flop with Asynchronous Set and Reset39
5.2.3 Single Gate D Type Latch with Asynchronous Set and Reset...............................41
6 CONCLUSÕES...45
REFERENCES...46

12

1 INTRODUCTION

The design of integrated circuits (IC) is a lengthy process and it is composed of

many phases. During these phases, the project passes through different levels of abstrac-

tion, from a behavioral description to a netlist of gates. Before going to the following step

it is necessary that the current is working as expected in the specification.

Since it is interesting to validate the project during each phase as fast and accurate

as possible, a good testing methodology is necessary. There are several testing strategies,

from the use of external test benches to incorporate them inside of the chip. One of

these that incorporate additional circuitry for testing with the component, is the concept

of Built-in Self-Test (BIST) (BUSHNELL; AGRAWAL, 2013). This strategy is widely

used because it reduces test and maintenance cost.

Another concept used to decrease time-to-market and cost of a project is the Stan-

dard Cell methodology. This concept uses pre-validated blocks and small circuits (named

as cells) that implement logic functions. These pre-designed cells are available in a li-

brary. A library consists not only of different cells but also cells that implement the same

logical function but with different topology or different drive strength (RABAEY, 1996).

When using any library-based approach, all of its cells must be correct before

applying in a design. Since a single library comprises a large number of cells and all of

them must be validated, the testing strategy must be efficient in order to reduce time and

costs. Another problem encountered when validating libraries is the different types of

cells that may comprise the library. This increases the difficulty of validation.

A cell library is composed of many types of cell. There are combinational cells,

sequential cells, tri-states, buffers, I/O pads, fillers etc. Combinational cells are cells that

implement functions whose output depends only on the current inputs. Sequential cells

are the ones which have a memory effect, i.e., for a combination of inputs, the output can

be both logical values depending on the previous input sequence. The tri-state is a type

of cell which the output can have a third state called high impedance, which the output is

disconnected from both the source and ground nodes. Buffers are cells which regenerate

the input signal. The other types don’t implement a logical function, instead, they are used

for several functionalities, from filling gaps in the design, to ensure the correct electrical

behavior of the component.

13

1.1 Sequential Cell Validation

As discussed above, combinational cells and sequential have distinct logical be-

havior. Combinational cells are cells which implement Boolean functions. This means

that for an input combination the output will always be same for that particular com-

bination. For example, Table 1.1 shows the truth table for the combinational function

exclusive-or (XOR). As can be seen each combination of "A" and "B" appear only one

time. This means that for a combination of inputs there is only one possible output value.

Table 1.1: Exclusive-or truth table
A B Q
0 0 0
0 1 1
1 0 1
1 1 0

This is not true for a sequential cell. An input combination can have both output

values. Table 1.2 shows the truth table for a sequential cell called type D latch. As can

be seen, for several input combination there are both possible outputs. This is called the

memory effect. Therefore, for an input combination the output value cannot be directly

known. Another difference is that some sequential cells have temporal limitations when

transitioning inputs, and they must be respected otherwise the cell may go to an inconsis-

tent output.

Table 1.2: Type D Latch truth table
E D Q
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 1 1

Testing combinational cells can be easily done with the solution proposed in (RIBAS

et al., 2011b). In that work it is proposed a testing setup in which there are two blocks.

One block has the cells-under-test and in the second there is a second stage which recover

the input combination in order to make the input equal to the output. For combinational

cells, it is an effective solution, however it is not appropriate for validation of sequential

14

cells, because for an input combination may have both output values. This make the re-

covery of the input value more complex. Another problem is that more than one input

may transition, violating the hold and setup time present in some sequential cells.

When validating a cell there are two main types of validation: the functional val-

idation and the temporal validation. In the first, the expected behavior from the CUT is

validated ensuring its correct functioning. In the second type it is validated the delay, i.e.,

the time required for an input transition to propagate to the output.

In the context of sequential cell testing, there are several proposals with differ-

ent strategies. At (MAKAR; MCCLUSKEY, 1995), it is proposed the use of Boolean

equation describing the gate and create a corresponding state table in order to calculate

the minimum input sequence to cover all possible defects usually observed in such cells.

Another approach evaluates latches and flip-flops using shift-register and counter circuits,

respectively (RIBAS et al., 2011c). An approach based on finite state machine, for de-

scribing the sequential gate behavior, is found in (AVELAR; BUTZEN; RIBAS, 2015).

At (RIBAS et al., 2011a), an oscillating ring made of D type latches and flip-flops with

asynchronous set and reset, is used to test the logical behavior and the temporal behavior

of such cells. The works previously cited are either not generic, i.e., the method used

depends on of the cell behavior or does not cover all the cell-under-test (CUT) behavior.

1.2 Motivation

Validation is not a trivial task. Even combinational cells represent a challenge

to IC designers. For example, Table 1.3 shows a malfunctioning 2-input OR logic gate.

When both inputs are on the "1" logical value, instead of output "1", the gate outputs

the previous output. If an IC designer test only the input combination, in crescent order

for example, the fault will not be detected. This is accentuated in sequential cells which

have a natural memory effect, thus, covering all input combinations is not sufficient, it is

important to cover the transitions as well.

Table 1.3: Malfunctioning OR gate
A B Q
0 0 0
0 1 1
1 0 1
1 1 Q−1

15

Moreover, when using of the Standard Cell methodology, it implies that the cells

used are pre-validated (AGATSTEIN; MCFAUL; THEMINS, 1990). Since sequential

cells, especially latches and flip-flops, are essential in synchronous and asynchronous IC

design, their correct validation is a necessity. Since there is a huge number of cells in a

library, an efficient method is required. Using a generic pattern generator, i.e., its behavior

is independent of the CUT, can help in the process since a lot of different cells can be

validated at the same time. Another problem is that a logic function can be implemented

with many different topologies with different electrical behavior (ALIOTO; CONSOLI;

PALUMBO, June 2011).

1.3 Proposal

In this work, it is proposed a pattern generator for the validation of sequential cell.

It is desired that this generator in independent of CUT behavior, instead the generator

behavior will be dependent only its output number. Another requirement is that the current

pattern yielded by the generator differentiate form the next only by one output, i.e., if both

pattern would be represented by a bit sequence, they would have a Hamming distance of

one. An additional requirement is that the generator would be cyclic, i.e., it should start

and end in the same pattern.

1.4 Organization

This work is organized as follows, in Chapter 2, it is discussed some essential

concepts used in this work. In Chapter 3, some previous works are discussed. In Chapter

4, the generator is proposed, modeled and some hardware implementation are analyzed.

In Chapter 5, the coverage of a set of cells are analyzed and four different sequential cell

topologies are validated. In Chapter 6, the conclusions are outlined.

16

2 PRELIMINARIES

This chapter presents some important concept for the understanding this work.

First, the different types of sequential cells and their logic behavior. Then it will be ex-

plained the different concepts such as the steady states and dynamic states (expected and

unexpected transitions). Three basic gates are taken into account to illustrate these situa-

tions: C-element (Müller cell), D-type latch and D-type flip-flop, both with asynchronous

reset signal.

2.1 Types of sequential logic circuits

There several types of sequential gates. Some are level sensitive, others are bor-

der sensitive and other have their behavior controlled by the current input combination.

The most common of level-sensitive sequential gates,i.e., their behavior is controlled by

the logical value of the enable input, are latches (WESTE; HARRIS, 2010), for border-

sensitive circuits, there are the flip-flops (WESTE; HARRIS, 2010). and for the third type

there are the C-element and the NULL Convention Logic (NCL).

The C-element has its behavior when both inputs are equal the same logic value is

presented at the output, and when the inputs are different, the gate output keeps its previ-

ous state (SPARS; FURBER, 2010). NCL is a method of representing an asynchronous

gate. A gate using this method is represented as having k inputs, each with a weight. If

all inputs are on the "0" logical value he output is "0". If the sum of the gates on the

"1" logical value multiplied by their corresponding weights, the output will be on the "1"

logical value, if not the gate holds its previous state(TRAN et al., 2017).

Latches and flip-flops are most commonly used in pipelines in synchronous archi-

tectures which have a global clock signal (HENNESSY; PATTERSON, 2011). However

this circuits can have asynchronous Set and Reset signals, i.e., these signals do not require

other signals to force the output to a specific logical value. The C-element and NCL gates

can be used in the data-path of asynchronous architectures which do not have a global

clock signal (SPARS; FURBER, 2010).

17

Table 2.1: C-element steady states
A B Previous Q expected Q
0 0 X 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 X 1

2.2 Steady States

The first aspect to analyzed is the Steady States coverage. The steady states are

the possible combination of inputs and output values, i.e., the truth table of the logical

function which the circuit implements. Table 2.1 shows the steady states of the C-element,

Table 2.2 presents the steady states of the D-type latch with asynchronous reset signal, and

Table 2.3 shows the steady states of the D-type flip-flop with asynchronous reset.

Table 2.2: D-type latch with asynchronous reset steady states
R D E Q
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 1
0 1 1 1
1 X X 0

Table 2.3: D-type Flip-Flop with asynchronous reset steady states
R D CLK Q
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 X X 0

Since they are sequential circuits, they posses a natural memory effect. This re-

flects int the steady states as duplication of some input combinations. In the flip-flop, this

effect is more significant. The reason for that is the fact that the latch is a level sensitive

gate whereas the flip-flop is a border sensitive circuit. Therefore, the flip-flop presents

18

Table 2.4: C-element expected transitions
A B Previous Q expected Q
1 ↑ 0 ↑
↑ 1 0 ↑
↓ 0 1 ↓
0 ↓ 1 ↓

more states to be covered. In order to cover these states, it is necessary to pass through

a specific transition. The states with reset with the "1" logic value were omitted because

the output is stuck at the 0 logical value. The C-element has an interesting behavior com-

pared with latch and flip-flop gates. Instead of having the memory behavior controlled by

a single input, in this case, it is controlled by both of them.

2.3 Dynamic States

2.3.1 Expected Transitions

Another important aspect of test coverage is the expected transitions, i.e., when an

input changes there is a transition at the output. As discussed before some sequential cells

are border-sensitive therefore it is important to pass through all of them.

Table 2.4 shows the expected transitions of the C-element gate, Table 2.5 presents

the expected transitions of the D-type latch, and Table 2.6 shows the expected transitions

of the D-type flip-flop.

Table 2.5: D-type latch with asynchronous reset expected transitions
R D E Previous Q Q
0 0 ↑ 1 ↓
0 ↑ 1 0 ↑
0 ↓ 1 1 ↓
↑ 1 1 1 ↓
↑ 1 0 1 ↓
↓ 1 1 0 ↑

Table 2.6: D-type flip-flop with asynchronous reset expected transitions
R D CLK Previous Q Q
0 1 ↑ 0 ↑
0 0 ↑ 1 ↓
↑ X X 1 ↓

Again, the difference among these circuits can be observed. The transition in the

19

data input is only propagated to the output when the enable input is high or when the

enable input rises the data input and this one differs from the current state of the latch.

This propagation only occurs in the flip-flop when the clock signal rises and the data

input differs from the current state of the flip-flop. The propagation of transitions in the

C-element occurs when one input transitions to a value equal to the other, and this new

input value differs from the current C-element state.

2.3.2 Non-Expected Transitions

Together with expected transitions are the non-expected transitions,i.e., the tran-

sitions that occur when the input is transitioned but the output must stay stable. It is

important to test the non-expected transitions, in order to evaluate the memory effect of

the circuit. Table 2.7 shows the non-expected transitions for C-element, Table 2.8 presents

the non-expected transitions for the latch, and Table 2.9 shows the ones for the flip-flop.

Table 2.7: C-element non-expected transitions
A B Previous Q expected Q

↑,↓ 0 0 0

↑,↓ 1 1 1

0 ↑,↓ 0 0

1 ↑,↓ 1 1

Table 2.8: D-type latch with asynchronous reset non-expected transitions
R D E Previous Q expected Q
0 ↑,↓ 0 X X
1 ↑,↓ X X X
1 X ↑,↓ X X
↑,↓ X X 0 0
0 0 ↑,↓ 0 0
0 1 ↑,↓ 1 1

Table 2.9: D-type flip-flop with asynchronous reset non-expected transitions
R D CLK Previous Q expected Q
0 ↑,↓ X X X
0 X ↓ X X
↑,↓ X X 0 0

The states show the memory effect of these circuits when a transition does not

propagate to the output. These transitions must be covered in order to completely test

whether the gate is holding the state and not transitioning.

20

3 REALTED WORKS

In this chapter, it is discussed some previous works which propose a solution for

sequential cell testing. In each section, it is discussed the goal, the proposed design, the

benefits and drawbacks.

3.1 Ring Oscillators for Functional and Delay Test

This work propose a design strategy using ring oscillators structure (ROS) for

functional and delay test of latches and flip-flops (RIBAS et al., 2011a). The main goal

is to validate the delay and power gate models applied and indirectly test the behavior of

the cells. The maximum frequency of operation of the ROS is dictated by the time arches

of the CUT.

As concept of work, it is used as an example a type D latch and flip-flop with

asynchronous set and reset. Figure 3.1 shows the setup for the latch and Figure 3.2 shows

the setup for the flip-flop. In each stage a time arch from the inputs to the outputs is

covered. The di and ki signals are controlled by an ROS made of a single flip-flop which

receives its negated output.

Figure 3.1: Latch ROS described at (RIBAS et al., 2011a)

Source: (RIBAS et al., 2011a)

Figure 3.2: Flip-Flop ROS described at (RIBAS et al., 2011a)

Source: (RIBAS et al., 2011a)

21

The ROS is very suitable for self-checking and self-timed testing, because the op-

erating frequency depends directly on the different timing arches. Besides, this structure

can be easily converted to a synchronous execution mode by adding registers barrier and

multiplexers. This test setup also covers all transitions of the cell using a small set of cells

and a simple setup. Since the setup uses a ROS, it can be considered cyclic.

Despite having many benefits, these setups lacks some desired properties. It is

shown only how to create a setup for latches and flip-flops, but not for other types of

sequential cells, like C-elements that are asynchronous. Another problem is that the non-

expected transitions are not covered and the steady states in which set and reset are on are

not covered either. For the steady states of the flip-flop there are some other steady states

that are not covered.

3.2 Checking Experiments to Test Latches

In this work, it is discussed the minimal checking experiment, i.e., an input-output

sequence that distinguishes a given cell, represented as a Finite State Machine, from an-

other, for latches (MAKAR; MCCLUSKEY, 1995). The objective in this work is to show

some sequence that are necessary in order to cover the most common fault found at these

devices.

In order to determinate these minimum sequences, it is required that the CUT is

represented as an equation. From it, it is extracted the possible steady states. Using a

set of conditions it delimitates a checking sequence for the cell. For demonstrating the

sequences ten different latches were used for demonstration.

This strategy has a total coverage of states and detects any latch defect that do not

increase the number of states. But, despite covering all steady states it does not cover

all possible transitions possibly hiding errors caused by them. Another drawback is that

it is not shown how to delimitate minimum test sequence for border sensitive sequential

cells since they are difficult to model with a boolean expression. This strategy is also not

cyclic.

22

3.3 Self-Checking Test Circuits for Latches and Flip-Flops

In this work, it is proposed two structures for the purpose of testing latches and for

flip-flops (RIBAS et al., 2011c). The proposed setup use a self-timed and self-checking

strategy in order to evaluate the CUTs. The proposed setup also is useful for delay test

and power consumption analysis of these devices. Moreover, this setup can be used to

evaluate the power supply variation and aging effect on such devices.

The test of latches is made with a shift-register with each element being the same

as shown in Figure 3.3. However a couple of latches have their enable input negated.

Also, some latches have their set and reset activated with the current state of the shift-

register. The enable signal is also generated according to the general state of the register.

This setup has a steady state coverage almost 100% but the state where both set and reset

are on is not covered. Moreover, some possible and unexpected output transitions are not

covered by this approach.

Figure 3.3: Shift-register proposed at (RIBAS et al., 2011c)

Source: (RIBAS et al., 2011c)

For testing flip-flop, the work proposed the use of several counters made of the

CUT with a handshake circuit as shown in Figure 3.4. The clock, set and reset signals

are generated by the handshake circuit which uses the overall state of the counter. This

handshake circuit also halts if an error occurs. This setup covers all steady states and

expected transitions but those where both set and reset are activated. The coverage of

non-expected transitions are 50%.

These solutions, despite having high coverage and are cyclic, are not generic, i.e.,

they are specific for latches and flip-flops only. It is not shown how to test other types of

sequential cell.

23

Figure 3.4: Flip-flop testing setup proposed at (RIBAS et al., 2011c)

Source: (RIBAS et al., 2011c)

3.4 Automatic Circuit Generation for Sequential Logic Debug

This work propose an automated approach using finite-state-machines (FSM).

This approach creates a test sequence and a testbench automatically in order to validate a

sequential cell (AVELAR; BUTZEN; RIBAS, 2015).

Using a high level behavior description the possible steady states of the CUT are

created and from them its possible transitions. The transitions are stored in a table and us-

ing a greedy algorithm to generate a sequence. From it a FSM is created using a hardware

description language (HDL) code. The code is then synthesized along with the CUT.

This method has a total coverage of both steady and dynamic states. Since the

CUT behavior is used, the method can be applied to any type of sequential cell. Moreover,

it is topology independent if the cells have same behavior.

24

4 TEST PATTERN GENERATOR

In this work, it is proposed a generic pattern generator for testing sequential logic

gates, i.e., a generator independent from the CUT behavior. The generator provides sig-

nals in a cyclic sequence, i.e., a sequence that starts and terminates at the same input

vector. This is desired because the generator can be left running to stop only when an

error occurs if implemented in circuit with Self-test methodology. It covers also all input

states and signal transitions. The signal transitions occur by changing one bit per step.

Such a characteristic is important because it avoids timing race conditions that can cause

meta-stability and raise false-positive errors. Another reason is that it is easier to debug

when an error occurs.

This work uses concepts similar to (MAKAR; MCCLUSKEY, 1995) and (AVE-

LAR; BUTZEN; RIBAS, 2015) due to the use of a FSM strategy. The difference is that

the proposed generator disregards the gates behavior and only focus the number of in-

puts that the CUT have. Another difference between these two previous works and the

one proposed is that this generator is cyclic and can run multiple times without external

signals if necessary.

4.1 Generator Modeling

Since it is desired that the proposed generator is universal, its behavior must be

independent from the CUT. Therefore, the cells memory effect is ignored and treated as

a black box. One candidate for a testing sequence would be the Gray code (DORAN;

SCIENCE, 2007) but it does not cover all possible states, as shown in Table 4.1. Thus, a

better model is necessary in order to solve such a deficiency.

Table 4.1: 3-bit Gray code and its missing transitions.
Gray Code Missing Transitions

000 000 → 010 and 000 → 100
001 001 → 101 and 001 → 000
011 011 → 001 and 011 → 111
010 010 → 011 and 010 → 000
110 110 → 010 and 110 → 100
111 111 → 110 and 111 → 011
101 101 → 111 and 111 → 001
100 100 → 101 and 100 → 110

25

Despite the Gray code not meeting the requirements to be used as a test pattern

generator, a model can be built using the contents from Table 4.1. The possible inputs

are represented as nodes in a graph and the edges the possible transitions. Since it is

interesting to cover both rising transition, when a bit goes from logic value 0 to value 1,

and falling transition, when a bit goes from logic value 1 to value 0, the graph must be

bidirectional. Figure 4.1 shows the model for a 3-input cell generator.

Figure 4.1: 3-Dimensional Hypercube representing a 3 bit Gray Code

Source: The Author

Once having built the graph, it is only necessary to find out an Euler cycle, i.e., a

cycle that passes through all edges exactly once, beginning and ending at the same node.

Due to the form of the graph, it has many different Euler cycles, therefore it is proposed a

simpler solution.

A modified DFS (depth first search) is used in order to create the sequence. The

algorithm only jumps to nodes with larger labels than the current one. DFS was chosen

over BFS (breadth first search) because DFS gives the smallest vector sequence possible.

For instance, if the algorithm is in the node "001" when using DFS, then the algorithm

travels to the nodes that are closer to it (its sons). But using BFS, the algorithm needs to

explore the other nodes at the same level on the other branches of the tree before going

deeper. This causes a lot of unnecessary transitions. In order to keep 1-bit transition rule,

the algorithm must travel through the tree and pass over already covered transitions.

4.2 Software Implentation

In order to demonstrate the generator functioning, a Python application was cre-

ated. This application receives the desired pin number and outputs the resulting sequence.

The graph is represented in a modified adjacency list. Instead of showing every edge in

the graph, it is only shown the edges to the bigger neighbors. This can be calculated by

26

verifying each bit from the value and if it is "0" it is flipped and saved as a next node in

the current list. Figure 4.2 shows the pseudo-code for the creation of the table. Using as

an example for a 3-bit generator, a table was created in order to illustrate. Table 4.2 shows

the expected result for the given example. With the list built it is only necessary to make

the DFS.

Figure 4.2: Pseudocode for creating Table of adjacency lists
1: Input: The number of inputs of the CUT
2: procedure Create_Table(N)
3: adjacency_table = [[] ∗ 2N]
4: for i = 0; i < 2N ; i++ do
5: mask = 1
6: for j = 0; j < N ; j ++ do
7: if temp ∧mask == 0 then
8: temp = i⊕mask
9: adjacency_table[i].append(temp)

10: end if
11: mask � 1
12: end for
13: end for
14: return adjacency_table
15: end procedure

Source: The author

Table 4.2: Table containing each node adjacency list representing the graph in Fig. 4.1
Nodes 000 001 010 011 100 101 110 111

Next Nodes
001 011 011 111 101 111 111
010 101 110 110
100

After the table is created, the search through it can be made and the pattern se-

quence can be created. Using as an example a 2-input generator and a 3-input generator,

as shown in Table 4.2, the algorithm will output the sequences shown in Table 4.3 and

Table 4.4, respectively.

Table 4.3: 2-input sequence
2-input Sequence 00 01 11 01 00 10 11 10

Table 4.4: 3-input Sequence

3-input Sequence
000 001 011 111 011 001 101 111
101 001 000 010 011 010 110 111
110 010 000 100 101 100 110 100

27

Seeing the contents of Table 4.3 and Table 4.4, it can be seen that all transitions

are covered. But this growth can be easily calculated. For N inputs, there will be 2N

possible combinations. Each combination will have N neighbors, because of the 1-bit

transition rule. Therefore, in total, the sequence will have N ∗ 2N steps in order to cover

all transitions. Table 4.5 shows the length of the sequence with more inputs.

Table 4.5: Sequence growth
of inputs length of the sequence

2 8
3 24
4 64
5 160
6 384
7 896
8 2048
9 4608
10 10240

4.3 Hardware implementation

Since the proposed generator is independent of the CUT and it produces a cyclic

sequence, it is possible to use it in a Self-test setup when validating in hardware. There-

fore, it was investigated a chip size estimation.

4.3.1 ROM Solution

One proposed physical implementation is the use of a read-only memory (ROM).

In order to test this approach, a script was made. This application receives as input the

desired generator size and creates the sequence. After, it automatically creates a SPICE

netlist, which implements a decoder and the ROM matrix. In each line of the matrix is

an input vector. Since the generator grows 2N , the resulting memory must be capable of

mapping at least N ∗ 2N addresses. In order to profit of the full capacity of the memory,

the sequence can be parted in N banks of memory with a capacity for 2N addresses but

the simulated ROM has a single memory bank for simplicity and the memory lines, which

were not used, were filled with the first state (0). Figure 4.3 shows a simulation on SPICE

of a ROM design. One problem observed is the voltage spikes during each transition.

This can be avoided using a register in the memory output.

28

Figure 4.3: Simulation of ROM implementing a 3-input generator

Source: The author

4.3.2 Boolean Network and LUT Based Solutions

Since the generator can be modeled as a list of input patterns, it is easy to create

a behavioral description in a Hardware Description Language (HDL) such as Verilog. So

a script was created that creates a sequence and put it in a Verilog module. The module

receives as input as an index and outputs the corespondent vector. After that, using a com-

mercial synthesis tool, the Verilog code was transform into a Boolean Network consisting

of the following primitives: NAND, AND, NOR, OR, XOR, XNOR and NOT. Besides

that it was synthesized to a FPGA and a 4-input look-up table (4-LUT) network was cre-

ated. As expected, both implementations grow exponentially as the implementation using

a ROM, since the number of patterns grows exponentially as well.

29

Figure 4.4: Growth behavior of the Boolean network per number of inputs

Figure 4.5: Growth behavior of the FPGA per number of inputs

30

5 VALIDATION OF SEQUENTIAL CELLS

In this chapter, it is discussed the effectiveness of the proposed generator in val-

idating sequential cell. Several types of cells were used and their steady and dynamic

coverage analyzed.

5.1 Model Validation

In order to do so, another application in Python was made, in which different types

of cells have their behavior described. Then, they were stimulated with the generators se-

quence and the coverage of both states recorded. Besides the normal latches and flip-flops,

several other types cells were used, and they are listed below with a brief description. The

selected cells were stimulated with 3 iterations of the sequence in order to determinate the

total coverage. It was assumed that all cells begin in the "0" state when possible.

BILBO Latch A latch used in a BILBO register which changes its behavior depending

of the coombination of the inputs B1 and B2.

C element A sequential cell, which behavior depend on the combination of its inputs.

Dual edge FFD This type of FFD propagates the Data input to the output on both rising

and falling edge.

Scan FFD and LatD This kind of FFD and LatD has a multiplexer in the D input and a

selector signal.

FFT The T type flip-flop inverts the current output when the "T" input is on and the clock

is rising.

Gated FFD This type of FFD has an additional a enable signal which enables the clock

signal.

Two Port latch This kind of LatD has two inputs and two corresponding enable signals.

If both signals are on an OR operation is made with both inputs.

Xor FF This kind of flip-flop has two "Data" input and a XOR operation is made between

them.

31

5.1.1 Single instance validation

First, it was tested if using only 1 instance of the cell would be enough in order

to cover all steady and dynamic states. In this first test the order of inputs used was the

one described in the cells behavior. Table 5.3 shows the cells used for testing, their input

ordering and both coverage for the cells used. For the Null Convention Logic (NCL)

description, it is shown the weight for each input. Using only a single cell, only one CUT

managed to get full coverage, the T flip-flop.

The reason for the other cells not being fully covered is the natural memory effect

of these cells and the asynchronous signals that may interfere with the current state of the

cell. The generator sequence despite covering all inputs transitions and possible states

does not cover all steady and dynamic states of the cell.

5.1.2 Multiple instances validation

Seeing that the generator alone does not fully validate the cells, improvements

must be made. It is interesting to maintain the sequence independent of the CUT behav-

ior so the only possibility is to use multiple instances of the CUT but with some inputs

permuted or negated, as shown in Figure 5.1.

Figure 5.1: Proposed improvement

Source: The author

Table 5.1: Cell with partial coverage

CUT State not covered

FFD [UP, 1, 1]

FFDR [UP, 1, 0, 1]

FFTR [UP, 1, 0, DOWN]

gated FFD [1, UP, 1, 1]

gated FFDR [1, UP, 1, 0, 1]

32

Using the improvement described, the selected CUTs were again stimulated with

the generators sequence. Since some inputs are negated, the initial output was corrected

to the appropriate value. All of them had total coverage for steady states but some did not

have total coverage for dynamic states. Table 5.4 shows the number of instances used and

Table 5.1 shows which cells did not have total coverage for both type of states and which

states were not covered. It is interesting to notice that the number of instances approach

the number used in (RIBAS et al., 2011c) but in this case the generator can be used for

any type of cell. Even for complex cells represented in NCL the number is acceptable.

5.1.3 Continuous validation

As discussed before, the generator can be implemented in hardware. However,

despite the generator producing a cyclic sequence, some CUTs change their state after the

first cycle. This introduces a problem, when the generator return to the first state of the

second cycle, the template will not match and a false positive error will be raised.

In order to avoid this problem, when validating on hardware, two solutions are

proposed. One can use a previous validated cell in order to use as a template, or the

first iteration is run without checking with the template. So, it is necessary to use only

instances of the cell which has the same state after the first cycle. In order to investigate

the coverage behavior when ignoring the first iteration, the sequence was run three times

but the first iteration was ignored. Table 5.2 shows the states not covered for the cells

which did not have total coverage and Table 5.5 shows the coverage and the number of

cells used for each CUT.

It is interesting to notice that some cells had the coverage decreased, or some had

the number of instances needed increased. This means that some Dynamic states are

covered only if the first cycle.

Table 5.2: States not Covered when disregarding the first iteration
Cell States not Covered

FFD [UP, 0, 0], [UP, 1, 1]

FFDR [UP, 1, 0, 1]

FFDS [UP, 0, 0, 0]

FFTR [UP, 1, 0, DOWN]

FFTS [UP, 1, 0, UP]

gated FFD [1, UP, 0, 0], [1, UP, 1, 1]

gated FFDR [1, UP, 1, 0, 1]

gated FFDS [1, UP, 0, 0, 0]

33

Table 5.3: Cells used with input ordering and coverage
CUT Input Ordering Steady Coverage Dynamic Coverage

BILBO Latch Enable, B1, B2, Qp, Zp 91.67% 67.08%
C element NA 100,00% 66.66%

Dual Edge FFD Clock, Data 87.5% 56.25%
Dual Edge FFDR Clock, Data, Reset 83.33% 66.66%
Dual Edge FFDS Clock, Data, Set 100.0% 69.44%

Dual Edge FFDRS Clock, Data, Reset, set 100.0% 81.25%
FFD Clock, Data 87.5% 56.25%

FFDR Clock, Data, Reset 83.33% 66.66%
FFDS Clock, Data, Set 91.67% 69.44%

FFDRS Clock, Data, Reset, set 100.0% 81.25%
FFD scan Clock, Scan Sel, Scan Data, Data 84.37% 50.78%

FFD scan R Clock, Scan Sel, Scan Data, Data, Reset 75.0% 66.66%
FFD scan S Clock, Scan Sel, Scan Data, Data, Set 97.91% 67.08%

FFD scan RS Clock, Scan Sel, Scan Data, Data, Reset, Set 100.0% 80.0%
FFJK K, J 81.25% 52.08%
FFT Clock, T 100.0% 100.0%

FFTR Clock, T, Reset 83.33% 66.66%
FFTS Clock, T, Set 100.0% 75.0%

FFTRS Clock, T, Reset, set 100.0% 83.75%
gated FFD Enable, Clock, Data 81.25% 54.16%

gated FFDR Enable, Clock, Data, Reset 75.0% 66.66%
gated FFDS Enable, Clock, Data, Set 83.33% 68.75%

gated FFDRS Enable, Clock, Data, Reset, Set 100.0% 80.0%
LatchD Enable, Data 100.0% 75.0%

LatchDR Enable, Data, Reset 90.0% 80.0%
LatchDS Enable, Data, Set 100.0% 83.33%

LatchDRS Enable, Data, Reset, Set 100.0% 90.27%
LatchD scan D Enable, Scan Sel, Scan Data, Data 95.83% 67.70%
LatchD scan R Enable, Scan Sel, Scan Data, Data, Reset 81.81% 72.72%
LatchD scan S Enable, Scan Sel, Scan Data, Data, Set 100.0% 80.5%

LatchD scan RS Enable, Scan Sel, Scan Data, Data, Reset, Set 100.0% 88.88%
NCL1 [1,2,3,6,12,18] 95.34% 75.14%
NCL2 [6,5,4,2,2,1] 89.21% 63.36%
NCL3 [4,3,1,1,1,1] 85.71% 61.53%

SR latch R, S 100.0% 90.0%
Two Port Latch Enable 1, Data 1, Enable 2, Data 100.0% 81.25%

Two Port Latch R Enable 1, Data 1, Enable 2, Data, Reset 97.22% 88.88%
Two Port Latch S Enable 1, Data 1, Enable 2, Data, Set 100.0% 89.44%

Two Port Latch RS Enable 1, Data 1, Enable 2, Data, Reset, Set 100.0% 94.36%
XOR FF Clock, Data 1, Data 2 87.5% 52.08%

XOR FF R Clock, Data 1, Data 2, Reset 87.5% 66.66%
XOR FF S Clock, Data 1, Data 2, Set 87.5% 67.70%

XOR FF RS Clock, Data 1, Data 2, Reset 100.0% 80.0%
XOR Latch Enable, Data 1, Data 2 100.0% 69.44%

XOR Latch R Enable, Data 1, Data 2, Reset 95.0% 80.0%
XOR Latch S Enable, Data 1, Data 2, Set 95.0% 81.25%

XOR Latch RS Enable, Data 1, Data 2, Set, Reset 100.0% 88.88%

34

Table 5.4: Number of instance used
Cell # of instances

BILBO Lat 5

C element 2

Dual Edge FFD 3

Dual Edge FFDR 4

Dual Edge FFDS 4

Dual Edge FFDRS 4

FFD 3

FFDR 6

FFDS 5

FFDRS 3

FFD scan 4

FFD scan R 12

FFD scan S 7

FFD scan RS 4

FFJK 3

FFT 1

FFTR 4

FFTS 4

FFTRS 2

gated FFD 2

gated FFDR 9

gated FFDS 8

gated FFDRS 3

LatD 2

LatDR 4

LatDS 3

LatDRS 3

LatD scan D 4

LatD scan R 7

LatD scan S 3

LatD scan RS 3

NCL1 30

NCL2 43

NCL3 39

SR Lat 2

Two Port Lat 4

Two Port Lat R 5

Two Port Lat S 6

Two Port Lat RS 3

XOR FF 3

XOR FF R 8

XOR FF S 8

XOR FF RS 4

XOR Lat 3

XOR Lat R 4

XOR Lat S 4

XOR Lat RS 3

35

Table 5.5: Coverage and number of cells used disregarding the first iteration
CUT # of cells Steady Coverage Dynamic Coverage

BILBO Latch 5 100,00% 100,00%

C element 2 100,00% 100,00%

Dual Edge FFD 4 100,00% 100,00%

Dual Edge FFDR 4 100,00% 100,00%

Dual Edge FFDS 4 100,00% 100,00%

Dual Edge FFDRS 4 100,00% 100,00%

FFD 4 100,00% 87,50%

FFDR 6 100,00% 97,22%

FFDS 6 100,00% 97,22%

FFDRS 3 100,00% 100,00%

FFD scan 4 100,00% 100,00%

FFD scan R 12 100,00% 100,00%

FFD scan S 7 100,00% 100,00%

FFD scan RS 4 100,00% 100,00%

FFJK 5 100,00% 100,00%

FFT 1 100,00% 100,00%

FFTR 4 100,00% 97,22%

FFTS 4 100,00% 97,22%

FFTRS 2 100,00% 100,00%

gated FFD 4 100,00% 95,83%

gated FFDR 9 100,00% 98,95%

gated FFDS 10 100,00% 98,95%

gated FFDRS 3 100,00% 100,00%

LatchD 3 100,00% 100,00%

LatchDR 4 100,00% 100,00%

LatchDS 4 100,00% 100,00%

LatchDRS 3 100,00% 100,00%

LatchD scan D 4 100,00% 100,00%

LatchD scan R 7 100,00% 100,00%

LatchD scan S 3 100,00% 100,00%

LatchD scan RS 3 100,00% 100,00%

NCL1 30 100,00% 100,00%

NCL2 43 100,00% 100,00%

NCL3 39 100,00% 100,00%

SR latch 2 100,00% 100,00%

Two Port Latch 5 100,00% 100,00%

Two Port Latch R 5 100,00% 100,00%

Two Port Latch S 3 100,00% 100,00%

Two Port Latch RS 6 100,00% 100,00%

XOR FF 4 100,00% 100,00%

XOR FF R 8 100,00% 100,00%

XOR FF S 8 100,00% 100,00%

XOR FF RS 4 100,00% 100,00%

XOR Latch 3 100,00% 100,00%

XOR Latch R 4 100,00% 100,00%

XOR Latch S 4 100,00% 100,00%

XOR Latch RS 3 100,00% 100,00%

36

5.2 SPICE validation

After validating the cells with a logical model, it is interesting to validate different

topologies. Using the previous application and using the SPICE simulator, the generator

sequence was implemented and a template with the expected output. Each input and each

expected output was implemented as a (Piece-wise Linear) PWL source and compared

with a XOR gate. The expected output was previously calculated with the sequence and

the CUT model. Two types of cell were used, a Type D Flip-Flop with Asynchronous

Set and Reset and Type D latch with Asynchronous Set and Reset. The flip-flops had two

topologies and the latch one.

5.2.1 Nor Type D Flip-Flop with Asynchronous Set and Reset

Figure 5.2: Flip Flop topology

Source: The author

This first cell to be validated implements a flip-flop, whose topology is different

from the usual master-slave latch topology. This one is made using NOR-gates as shown

in Figure 5.2. Using 3 instance previously calculated from the application created on

Section 5.1.2, a SPICE simulation was made in order to validate this topology. Table

5.6 shows the input setup for the three of the instances respecting the generator output

ordering.

37

Table 5.6: Instances Input Setup

Instance Input Setup Negated Inputs

0 Reset, Data, Set,Clock Reset, Data, Clock

1 Reset, Data, Set,Clock Set

2 Reset, Data, Set,Clock Set, Clock

Using the setup with 3 instances of the flip-flop, it was discovered that because

of the flip-flop topology, when the "Clock" input is "1", the "Reset" or the "Set" signal

changes to the "0" logical value, the value on the "Data" input is transmitted to the output,

indicated by the black squares. This is an erroneous behavior. Figure 5.3, Figure 5.4

and Figure 5.5 show the waveforms for the 3 instances. This is a proof why, testing the

transitions is important.

Figure 5.3: SPICE simulation of the first instance flip-flop.

Source: The author

38

Figure 5.4: SPICE simulation of the second instance flip-flop

Source: The author

Figure 5.5: SPICE simulation of the third instance flip-flop

Source: The author

39

5.2.2 NAND Type D Flip-Flop with Asynchronous Set and Reset

Like the previous cell, this one also implements a Flip Flop with asynchronous set

and reset but with NANDs, as shown in Figure 5.6. Another difference is that when both

set and reset are on at the same time set takes precedence before reset. The same instances

as the previous example were used since they have the same theoretical model. Figure 5.7,

Figure 5.8 and Figure 5.9 show the resulting simulation. As the previous topology present

the same error as indicated by the black squares.

Figure 5.6: Flip Flop topology

Source: The author

Figure 5.7: SPICE simulation of the first instance flip-flop.

Source: The author

40

Figure 5.8: SPICE simulation of the second instance flip-flop

Source: The author

Figure 5.9: SPICE simulation of the third instance flip-flop

Source: The author

41

5.2.3 Single Gate D Type Latch with Asynchronous Set and Reset

Table 5.7: Instances Input Setup
Instance Input Setup Negated Inputs
0 & Reset Enable, Set, Data, Reset Enable
1 & Reset Enable, Set, Data, Reset Set
2 & Reset Enable, Set, Data, Reset Data

Figure 5.10: First Latch Topology

In the previous experiment, it was demonstrated the capacity of detecting errors.

However, it is important to see if a correct topology will pass the validation. The topology

tested came from the original topology shown in Figure 5.10. In order to shown the

original functioning, it was also validated using this application. Table 5.7 shows the

input ordering and which one was negated. Figure 5.11, Figure 5.12 and Figure 5.13

show the resulting waveforms after simulating.

Figure 5.11: SPICE simulation of the first instance of the first topology.

Source: The author

42

Figure 5.12: SPICE simulation of the second instance of the first topology

Source: The author

Figure 5.13: SPICE simulation of the third instance of the first topology

Source: The author

43

Figure 5.14: Second Latch Topology

Seeing that the first topology is functioning correctly, the second topology must

be functioning properly. Using DeMorgan and other Boolean properties the single gate

topology shown in Figure 5.14 can be created from the topology in Figure 5.10. Again,

it was simulated with the same instances found in Table 5.7. Figure 5.15, Figure 5.16

and Figure 5.17 show the resulting waveforms after simulating. As expected, the second

topology is functioning with the expected behavior, therefore the transformation from the

first topology was made without errors.

Figure 5.15: SPICE simulation of the first instance of the second topology.

E

D

R

S

Q

Template

Checker

Source: The author

44

Figure 5.16: SPICE simulation of the second instance of the second topology

E

D

R

S

Q

Template

Checker

Source: The author

Figure 5.17: SPICE simulation of the third instance of the second topology

E

D

R

S

Q

Template

Checker

Source: The author

45

6 CONCLUSÕES

In this work, a test pattern generator was proposed. The proposed generator at-

tends all specified requirements. It was proven to be generic, cyclic and transitionate

only one bit per step. Since it covers all possible input combination and all transitions, it

produces a sequence with a length of N ∗ 2N , for a cell with N inputs.

In the context of sequential cells validation, the generator proved to be effective,

having a high coverage. This was achieved using some modifications in order to keep

the generator generic. Only one cell had total coverage when using a single instance,

the other required a few instances. When validating in hardware, some instances proved

to not behave in a cycle and may raise a false positive error, therefore it was proposed

to disregarding the coverage of the first cycle. This method only slightly decrease the

coverage of some cells and others had a slight increase of instances necessary to keep

total coverage. In the context of validating in SPICE, the generator was proved to be

easily adaptable to this environment.

This generator model was published in two previous articles on for Simpósio Sul

de Microeletrônica (SIM) and the other for the journal Revista Jr de Iniciação Científica

em Ciências Exatas e Engenharia (ICCEEg) annexed to this work. In the ICCEEg article

only the generators model was discussed.

46

REFERENCES

AGATSTEIN, W.; MCFAUL, K.; THEMINS, P. Validating an asic standard cell library.
In: Third Annual IEEE Proceedings on ASIC Seminar and Exhibit. [S.l.: s.n.], 1990.
p. P12/6.1–P12/6.5.

ALIOTO, M.; CONSOLI, E.; PALUMBO, G. Analysis and comparison in the
energy-delay- area domain of nanometer cmos flip-flops: Part i—methodology and
design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, June
2011.

AVELAR, H. H.; BUTZEN, P. F.; RIBAS, R. P. Automatic circuit generation for
sequential logic debug. In: 2015 IEEE International Conference on Electronics,
Circuits, and Systems (ICECS). [S.l.: s.n.], 2015. p. 141–144.

BUSHNELL, M.; AGRAWAL, V. Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. [S.l.]: Springer Publishing Company, Incorporated,
2013. ISBN 1475781423, 9781475781427.

DORAN, R.; SCIENCE, C. for D. M. . T. C. The Gray Code. Centre for Discrete
Mathematics and Theoretical Computer Science, University of Auckland, 2007.
(CDMTCS research report series). Available from Internet: <https://books.google.com.
br/books?id=ff25jwEACAAJ>.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture, Fifth Edition:
A Quantitative Approach. 5th. ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011. ISBN 012383872X, 9780123838728.

MAKAR, S. R.; MCCLUSKEY, E. J. Checking experiments to test latches. p. 196–201,
Apr 1995. ISSN 1093-0167.

RABAEY, J. M. Digital Integrated Circuits: A Design Perspective. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1996. ISBN 0-13-178609-1.

RIBAS, R. et al. Ring oscillators for functional and delay test of latches and flip-flops. 08
2011.

RIBAS, R. P. et al. Circuit design for testing standard cell libraries. WCAS 2011,
Workshop on Circuits and System Design, v. 1, 2011.

RIBAS, R. P. et al. Self-checking test circuits for latches and flip-flops. In: 2011 IEEE
17th International On-Line Testing Symposium. [S.l.: s.n.], 2011. p. 210–213. ISSN
1942-9398.

SPARS, J.; FURBER, S. Principles of Asynchronous Circuit Design: A Systems
Perspective. 1st. ed. [S.l.]: Springer Publishing Company, Incorporated, 2010. ISBN
1441949364, 9781441949363.

TRAN, L. et al. Null convention logic (NCL) based asynchronous design —
fundamentals and recent advances. [S.l.: s.n.], 2017. 158-163 p.

https://books.google.com.br/books?id=ff25jwEACAAJ
https://books.google.com.br/books?id=ff25jwEACAAJ

47

WESTE, N.; HARRIS, D. CMOS VLSI Design: A Circuits and Systems Perspective.
4th. ed. USA: Addison-Wesley Publishing Company, 2010. ISBN 0321547748,
9780321547743.

Design Strategy for Testing Sequential Logic Gates
Based on Signal Pattern Generator

Pablo Rafael Bodmann, Renato Perez Ribas

Abstract—The validation of standard cell libraries used on
digital integrated circuit design is a crucial task. However, the
test of sequential logic gates is quite complex due to the inherent
memory effect. In this work, it is proposed a universal signal
pattern generator to be applied in a novel test circuit strategy. To
model the problem our approach creates a pattern sequence over
structures like graph and tree structures. As proof-of-concept, a
Java application has been developed. Experimental results have
shown that such a strategy has attained a high coverage of logic
faults.

Index Terms—digital circuit, standard cell library, logic gate,
sequential cell, test.

I. INTRODUCTION

THE design of integrated circuits (IC) comprises many
tasks. In order to reduce design costs and time-to-market,

standard cells design methodology has been widely adopted.
This methodology is based on the reuse of blocks and small
circuits (named as cells) that implement logic functions. These
pre-designed cells are available in a library and must be pre-
evaluated and pre-validated before using in ASIC design.

Since a library usually comprises a large number of logic
gates and all of them must be validated, efficient test setups
are essential to reduce design costs. For combinational gates,
we consider that the solution proposed in [1] is quite simple
and effective. However, the test of sequential logic gates is
more complex than the combinational ones due to the inherent
memory behavior, i.e., the current output signals depend not
only on the current input variables but also on the previous
sequence of these ones. Another difficulty is the presence
of asynchronous signals that have priority in the sequential
behavior.

Several attempts have been proposed related to the testing
of sequential logic gates. In [2], the authors propose the
use of Boolean equation describing the gate and create a
corresponding state table in order to calculate the minimum
input sequence to cover all possible defects usually observed
in the registers. Despite of having high coverage, this solution
is not general, i.e., the sequence depends on the specific circuit
behavior targeted. This is a huge problem when testing a large
set of gates with different behaviors because for each group
of gates a single generator must be created so increasing the
complexity of the test. Another approach evaluates latches and
flip-flops using shift-register and counter circuitries, respec-
tively [3]. However, it is not shown the way to create a new
shift-register for testing other sequential logic gates different

Pablo Rafael Bodmann and Renato Perez Ribas are with the Institute of
Informatics, Federal University of Rio Grande do Sul (UFRGS), 9500 Porto
Alegre, Brazil (e-mail: {prbodmann, rpribas}@inf.ufrgs.br).

Research partially funded by CNPq Brazilian agency

from the ones treated in that work. Therefore, this solution is
not general yet. An approach based on finite state machine,
for describing the sequential gate behavior, is found in [4].
However, as this approach also represents particular solutions
for specific sequential gates, a large circuit area overhead is
expected.

In this work, we proposed a universal logic vector generator
for testing sequential circuits. The main idea is that the
generator provides one signal transition per cycle, covering all
possible steady states and signal transitions. Repeated output
signal transitions do not occur.

This article is organized as follows. Section II discusses
the possible static states, expected and unexpected transitions
of sequential logic gates. Section III analyzes some previous
approaches related to the testing of sequential cells. Section IV
presents the proposed approach. Section V shows the circuit
generator implementation. Section VI shows and discusses
some experimental results. The conclusions are outlined in
Section VII.

II. PRELIMINARIES

This section presents the logic behavior observed in se-
quential logic gates such as the steady states and dynamic
states (expected and unexpected transitions). Three basic gates
are taken into account to illustrate these situations: C-element
(Mller cell), D-type latch and D-type flip-flop, both with
asynchronous reset signal. In the C-element circuit, when
both inputs are equal the same logic value is presented at
the output, and when the inputs are different the gate output
keeps its previous state [5]. In the case of D-type latch with
asynchronous reset, it is a level sensitive logic gate, i.e.,
when the enable signal is high the value at the data input
is transmitted to the output, and when the enable input is low
the previous output is maintained. The D-type flip-flop, on
the other hand, has a similar behavior to the latch but it is
border sensitive circuit, i.e., the value at the data input is only
transmitted to the output when the clock input rises.

A. Steady States

In order to have the maximum test coverage, the analysis
of the steady states of the circuit is a crucial task. The steady
states are the combination of inputs and output values. Table
I shows the steady states of the C-element, Table II presents
the steady states of the D-type latch with asynchronous reset
signal, and Table III shows the steady states of the D-type
flip-flop with asynchronous reset.

It is worth to note that some input combinations can have
two possible outputs. The reason is the memory effect of the

TABLE I
C-ELEMENT STEADY STATES

A B Previous Q expected Q
0 0 X 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 X 1

TABLE II
D-TYPE LATCH WITH ASYNCHRONOUS RESET STEADY STATES

R D E Q
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 1
0 1 1 1
1 X X 0

TABLE III
D-TYPE FLIP-FLOP WITH ASYNCHRONOUS RESET STEADY STATES

R D CLK Q
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 X X 0

latch. In the flip-flop, it still is more significant. The reason for
that is the fact that the latch is a level sensitive gate whereas
the flip-flop is a border sensitive circuit. Therefore, the flip-
flop presents more states to be covered. In order to cover these
states, it is necessary to pass through a specific transition. The
states with reset with the ”1” logic value were omitted because
the output is stuck at the 0 logical value. The C-element has an
interesting behavior compared with latch and flip-flop gates.
Instead of having the memory behavior controlled by a single
input, in this case, it is controlled by both of them. This
behavior is desired in asynchronous circuit, where there is no
global clock signal [5].

B. Dynamic States: Expected Transitions

Another important aspect of test coverage is the expected
transitions, i.e., when an input changes there is a transition
at the output. Table IV shows the expected transitions of the
C-element gate, Table V presents the expected transitions of
the D-type latch, and Table VI shows the expected transitions
of the D-type flip-flop.

Again, the difference among these circuits can be observed.
The transition in the data input is only propagated to the output
when the enable input is high or when the enable input rises
the data input and this one differs from the current state of the
latch. This propagation only occurs in the flip-flop when the
clock signal rises and the data input differs from the current

TABLE IV
C-ELEMENT EXPECTED TRANSITIONS

A B Previous Q expected Q
1 ↑ 0 ↑
↑ 1 0 ↑
↓ 0 1 ↓
0 ↓ 1 ↓

TABLE V
D-TYPE LATCH WITH ASYNCHRONOUS RESET EXPECTED TRANSITIONS

R D E Previous Q Q
0 0 ↑ 1 ↓
0 ↑ 1 0 ↑
0 ↓ 1 1 ↓
↑ 1 1 1 ↓
↑ 1 0 1 ↓
↓ 1 1 0 ↑

TABLE VI
D-TYPE FLIP-FLOP WITH ASYNCHRONOUS RESET EXPECTED TRANSITIONS

R D CLK Previous Q Q
0 1 ↑ 0 ↑
0 0 ↑ 1 ↓
↑ X X 1 ↓

state of the flip-flop. The propagation of transitions in the C-
element occurs when one input transitions to a value equal to
the other, and this new input value differs from the current
C-element state.

C. Dynamic States: Non-Expected Transitions

Besides testing expected transitions, it is important to test
the non-expected transitions. These transitions occur when the
input is transitioned but the output must stay stable. Table VII
shows the non-expected transitions for C-element, Table VIII
presents the non-expected transitions for latch, and Table IX
shows the ones for the flip-flop.

The states show the memory effect of these circuits, when
a transition does not propagate to the output. These transitions
must be covered in order to completely test whether the gate
is holding the state and not transitioning.

III. RELATED WORKS

As mentioned in the Introduction section, there are proposed
works which show some approaches to test sequential cells,
especially D-type latches with asynchronous set and reset and
D-type flip-flop with asynchronous set and reset.

At [2], it is proposed a set of necessary conditions in order
to fully test latches. Using a logical equation to describe the
possible states of the gate, the paper delimiters some essential

TABLE VII
C-ELEMENT NON-EXPECTED TRANSITIONS

A B Previous Q expected Q
↑,↓ 0 0 0
↑,↓ 1 1 1
0 ↑,↓ 0 0
1 ↑,↓ 1 1

TABLE VIII
D-TYPE LATCH WITH ASYNCHRONOUS RESET NON-EXPECTED

TRANSITIONS

R D E Previous Q expected Q
0 ↑,↓ 0 X X
1 ↑,↓ X X X
1 X ↑,↓ X X
↑,↓ X X 0 0
0 0 ↑,↓ 0 0
0 1 ↑,↓ 1 1

TABLE IX
D-TYPE FLIP-FLOP WITH ASYNCHRONOUS RESET NON-EXPECTED

TRANSITIONS

R D CLK Previous Q expected Q
0 ↑,↓ X X X
0 X ↓ X X
↑,↓ X X 0 0

sequences that must be part of the checking experiment in
order to cover all possible steady states. Despite detecting
all faults of a logic gate, this solution misses some possible
transitions, as well as it is not generic and it is not cyclic,
requiring a reset signal.

At [3], the testing of D-type latch with asynchronous set
and reset is done by instantiating a 12-bit shift-register with
the same gate under test, as shown in Fig. 1. However, some
latches have the set and reset signals behavior determined by
the current overall state of the register, and the enable polarity
signal is inverted at every couple of latches. The steady state
coverage is almost 100% but the state where both set and reset
are on is not covered. Moreover, some possible and unexpected
output transitions are not covered by this approach.

Fig. 1. Shift register setup described at [3]

For testing the D-type flip-flop with asynchronous set and
reset, a modified 5-bit counter is created where each bit is
the same gate under test, as shown in Fig. 2. Similar to the
test of the latch, the set and reset signals of several bits are
dependent of different states of the counter and are calculated
by a handshake circuit. The test covers all steady states
excluding the ones with both set and reset signals activated.
The transition coverage is 50% of the unexpected transitions.
Both solutions are specific either latch or to flip-flop, and it is
not shown the way to create a shift-register to test other kind
of sequential gates.

Another approach is defined at [4], where finite-state ma-
chine (FSM) is created using the circuit behavior description.
The FSM passes through all steady states and signal transitions
in order to create an input pattern sequence that has 100% of
coverage. Despite being similar to this work, the mentioned

Fig. 2. Modified counter described at [3]

generator is dependent of the gate behavior and the proposed
one is dependent only to the number of signals. Another
problem is that the length of the sequence varies with the initial
state. This solution, despite of having 100% of coverage, is not
general aw well as it is not cyclic requiring a reset signal.

IV. PROPOSED SELF-CHECK SETUP

In this paper, it is proposed a universal generator for testing
sequential logic gates, i.e., a generator independent from the
circuit behavior. The generator provides signals in a cyclic
sequence, i.e., a sequence that starts and terminates at the same
input vector. This is desired because the generator can be left
running to stops only when an error occurs. It covers also all
input states and signal transitions. The signal transitions occur
by changing one bit per step. Such a characteristic is important
because it avoids timing race conditions that can cause meta-
stability and raise false-positive errors. Another reason is that
it is easier to debug when an error occurs.

This work is very similar to [2] and [4] due to the use of
FSM strategy. The difference is that we disregard the gates
behavior and only focus the number of inputs that the circuits
have. Another difference between these two previous works
and the one proposed is that this generator is cyclic and can
run multiple times without external signals if necessary.

The proposed generator is part of a larger test bench. Fig.
3 shows the proposed generator and the test bench. Using
the concept of self-checking, i.e., the test bench does not
need external clock signal to run. Instead, it creates its own
temporizing signal. When using this principle, the generator
must also provide a template that is compared with the gate
output. Since the template signal is usually faster than the
circuit output, the checker provides a 0 logic value. If the
output is correct, then the checker provides 1 logic value,
creating a rising border at the internal clock signal. Thus,
making the generator provides the next states. If an error
occurs, this rising edge does not occur, locking the generator
at the current state.

V. GENERATOR MODEL

A. Modeling

Since the proposed generator is universal, its behavior must
be independent from the gate under test. Therefore, we ignore
the gate memory effect and treat it as a black box. One

Generator

Cells
Under
Test

Checker
Inputs Outputs

Templates

Clock Signal

Fig. 3. The self-check setup

candidate would be the Gray code but it does not cover all
possible states, as shown in Table X. Thus, a better model is
necessary in order to solve such a deficiency.

TABLE X
3-BIT GRAY CODE AND ITS MISSING TRANSITIONS.

Gray Code Missing Transitions
000 000 → 010 and 000 → 100
001 001 → 101 and 001 → 000
011 011 → 001 and 011 → 111
010 010 → 011 and 010 → 000
110 110 → 010 and 110 → 100
111 111 → 110 and 111 → 011
101 101 → 111 and 111 → 001
100 100 → 101 and 100 → 110

Using the content in Table X, a graph can be built. The
nodes represent the possible states and the edges of the
transitions. Fig. 4 shows the resulting graph of a 3-input gate.
This kind of graph is called an n-cube graph or a hypercube.
Since it is interesting to cover both rising transition, when a
bit goes from logic value 0 to value 1, and falling transition,
when a bit goes from logic value 1 to value 0, the graph must
be bidirectional.

Fig. 4. 3-Dimensional Hypercube representing a 3 bit Gray Code

Once having built the graph, it is only necessary to find
out an Euler cycle, i.e., a cycle that passes through all edges
exactly once, beginning and ending at the same node. Due

to the form of the graph, it has many different Euler cycles
and to find one, it is proposed a simple solution. The graph
is transformed in a tree. Each node can be interpreted as a
number and each node must have their sons with larger values
and their father with smaller value. The root will have the
lowest value possible, the state with every input at the 0 logic
value. In order to preserve all possible transitions, some nodes
must be repeated. Fig. 5 shows the resulting tree for the graph
in Fig. 4. Once having the tree, it is only necessary to make a
depth first search (DFS) in order to generate an Euler cycle.

B. Implementation

During the implementation, some shortcuts can be used in
order to speed up the process. The graph building phase can
be skipped and the tree can be represented with a table, such
as shown in Table XI. The columns are the nodes and each
row has the possible next node. The creation of this table can
be done by flipping the bits with 0 in order to save only the
numbers larger than the current. Fig. 6 shows the pseudocode
for the creation of data shown in Table XI. The DFS can be
performed by saving the current column, jumping to the first
son and marking it as visited. If jumping to a column with no
sons or with all sons visited, the algorithm jumps back to the
previous node from which it came. The algorithm stops when
all sons from the 0 state are visited. Fig. 7 shows the pseudo
algorithm for the creation of the sequence.

C. Complexity

With a gate with N inputs, the possible states are 2N

different states. In order to calculate the larger values, each
bit up to the Nth bit must be tested and inverted if necessary.
Thus, the complexity for creation of data in Table is N ∗ 2N .
The creation of the sequence is also N ∗ 2N . That is, in order
to represent all possible transitions, it is necessary to storage
and pass through N ∗ 2N +1 states. Since the last state is the
0 state, it can be ignored and, in order to maintain this last
transition, it is only necessary to return to the beginning of
the list.

VI. RESULTS

In order to validate the proposed universal signal generator,
a Java application has been created. In this application, the
behavior of the circuit under test was described and the
corresponding steady states and signal transitions calculated
automatically. Afterwards, the behavioral model of the logic
gate was submitted to the sequence stimuli transitions and
the test coverage was evaluated. The first steady state of
the generator output is set at the logic value 0. The gates

TABLE XI
TABLE CONTAINING EACH NODE ADJACENCY LIST REPRESENTING THE

TREE IN FIG. 5

Nodes 000 001 010 011 100 101 110 111

Next Nodes
001 011 011 111 101 111 111
010 101 110 110
100

000

001 010 100

011 101 011110 101 110

111 111 111

Fig. 5. The resulting tree from the graph in Fig 4

1: Input: The number of inputs of the CUT
2: procedure Create Table(N)
3: adjacency table = [[] ∗N]
4: for i = 0; i < 2N ; i++ do
5: mask = 1
6: for j = 0; j < N ; j ++ do
7: if temp ∧mask == 0 then
8: temp = i⊕mask
9: adjacency table[i].append(temp)

10: end if
11: mask � 1
12: end for
13: end for
14: return adjacency table
15: end procedure

Fig. 6. Pseudocode for creating Table of adjacency lists

1: Global pattern list
2: Global adjacency table
3: procedure Create pattern(node)
4: pattern list.append(node)
5: for each element in adjacency table[node] do
6: Create pattern(element)
7: pattern list.append(node)
8: end for
9: mark visited(node)

10: end procedure

Fig. 7. Pseudocode for creating the pattern sequence

used as case studies for such a validation was the D-type
latch, D-type latch with asynchronous set, D-type latch with
asynchronous reset, D-type latch with asynchronous set and
reset, D-type flip-flop, D-type flip-flop with asynchronous set,
D-type flip-flop with asynchronous reset, D-type flip-flop with
asynchronous set and reset, and a Mller cell (or C-element).
The generator outputs ordering of signal connections used was:
output 0 is enable (E) or clock (Ck) inputs, output 1 is data
(D) input, output 2 is reset (R) or set (S) input, and output
3 is set when reset signal is also available. Since there are
vectors where set and reset are turned on, it was supposed that

reset has priority over set, it means, when both set and reset
asynchronous signals are activates the gate output goes down
(value 0). Table XII shows the test coverage when considering
a single instance of each sequential gate connected to the
proposed generator.

TABLE XII
COVERAGE USING A SINGLE CELL

Cell Steady State
Coverage

Dynamic States
Coverage

D-Latch 100% 75%
SD-Latch 100% 83.34%
RD-Latch 90% 80%

RSD-Latch 100% 90.27%
D-FF 87.5% 56.25%

SD-FF 91.67% 69.44%
RD-FF 83.34% 66.66%
RSD-Ff 100% 81.25%

C-element 100% 66.66%

Using a single instantiation of the circuit under test, 100%
of coverage was not attained in some cases, neither in steady
state coverage nor in dynamic coverage (transitions). It is
resulting from the memory effect of sequential circuit. Some
input to output signal transitions and states are hidden from
the stimulus sequence of the generator. Fig. VI shows the
modelling of a D-type flip-flop with asynchronous reset. The
borderless green circle represents the possible input vectors
that the corresponding output is expected to be 1, and the red
border circle represents the input vector with the output in 0.
When compared to the modelling in Fig. 4, it can be seen that
some input vectors are repeated and there are more transitions,
being some of them one-direction only.

Since it is desired to maintain the universal characteristics of
the generator, the direct use of the circuit under test behavior
cannot be used to create a specific sequence with higher
coverage. Instead, the circuit behavior, the vector sequence and
the multiple instantiations of the same gate can be previously
calculated. This multiple instances can have none, one or more
negated inputs, that means, the connection of the signal from
the generator to the circuit is negated before arriving in the
circuit input. Moreover, such a connection can be permuted,
i.e., not following the previous connection ordering. Table XIII
shows the dynamic coverage using such a strategy. The number

000

001

010

100

011101

110

011

111

000

010

001

Fig. 8. D-type flip-flop with asynchronous reset model

of instances of the gate under test is the minimum necessary to
achieve the maximum test coverage. By making so, all steady
state coverage attained (100%), therefore it was omitted. As
can be seen for almost all gates under test, the dynamic test
coverage is 100%. It is possible because when permuting or
negating the stimulus signals, the circuit is actually starting
at a different state and passing through a different sequences
without modifying the generator. In the case of the flip-flops
without asynchronous signals (D-FF) and with reset signal
(RD-FF), where the complete test coverage is not achieved,
only a single dynamic state has not been observed, when clock
signal is rising, data signal is at high value, reset is at low
value, and the current output state is high and does not change.

In order to evaluate the scaling factor of the proposed
approach in terms of circuit area, it is considered two possible
designs for the generator: the first one by synthesizing the
circuit from a Verilog description of the universal generator;
the second one by applying a ROM block with the planned
signal sequence. In the synthesis solution, the logic gates used
were been restricted to only 2-input NOR (NOR2), inverter
and flip-flop in order to estimate the resulting circuit size in
equivalent gate metric, defined as a NOR2-based circuit area.
Fig. 9 shows the number of logic gates used in the resulting
map per number of outputs of the generator. As can be seen,

TABLE XIII
COVERAGE USING MULTIPLE INSTANCES

Cell # of cells used Dynamic State
Coverage

D-Latch 2 100%
SD-Latch 3 100%
RD-Latch 4 100%

RSD-Latch 2 100%
D-FF 3 93.75%

SD-FF 4 100%
RD-FF 5 97.23%
RSD-Ff 3 100%

C-element 2 100%

the number of NOR2 and inverters grows exponentially with
the number of bits at the output signal vector. The number of
flip-flops grows linearly because they are only required in the
counter circuit and in the output register.

Fig. 9. Graph showing the numbers of gates per generator

The other possible physical implementation is the use of
a read-only-memory (ROM) block. Since each signal state
(output of generator) uses one line of the ROM, the resulting
memory must be capable of mapping at least N∗2N addresses.
In order to profit of the full capacity of the memory, the
sequence can be parted in N banks of memory with capacity
for 2N addresses. As in the previous design solution, through
standard cells synthesis, this one grows exponentially as well.

VII. CONCLUSION

In this paper was proposed a general signal generator for
testing standard cell libraries, in particular sequential logic
gates (latches and flip-flops). Due to the inherent memory
effect of these gates, even providing all possible single signal
transition as stimuli, it was proven to be not sufficient in some
cases to attain 100% of test coverage. On the other hand, the
same generator can be applied to test several logic gates in
parallel, reducing the area overhead. The generator was im-
plemented in Java language, as proof-of-concept. The physical
implementation of corresponding circuit is on progress.

REFERENCES

[1] R. Ribas, S. Bavaresco, N. Schuch, V. Callegaro, M. Lubaszewski, and
A. Reis, “Contributions to the evaluation of ensembles of combinational

logic gates,” Microelectronics Journal, vol. 42, no. 2, pp. 371 – 381,
2011.

[2] S. R. Makar and E. J. McCluskey, “Checking experiments to test latches,”
pp. 196–201, Apr 1995.

[3] R. P. Ribas, Y. Sun, A. I. Reis, and A. Ivanov, “Self-checking test circuits
for latches and flip-flops,” in 2011 IEEE 17th International On-Line
Testing Symposium, July 2011, pp. 210–213.

[4] H. H. Avelar, P. F. Butzen, and R. P. Ribas, “Automatic circuit generation
for sequential logic debug,” in 2015 IEEE International Conference on
Electronics, Circuits, and Systems (ICECS), Dec 2015, pp. 141–144.

[5] J. Spars and S. Furber, Principles of Asynchronous Circuit Design: A
Systems Perspective, 1st ed. Springer Publishing Company, Incorporated,
2010.

Test Pattern Generator for Latches and Flip-Flops
Pablo Rafael Bodmann1

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

prbodmann@gmail.com

Abstract. This article describes a proposition for a term paper. In this paper it
is described a test pattern generator for latches and flip-flops. Some previous
work in the literature are described and the results discussed. After, the model
for the generator is described and it is proposed a way to improve the steady
states coverage and the transition coverage. Finally it is described how it will
be validated and a schedule.

Resumo. Este artigo descreve uma proposta para um trabalho de conclusão de
curso. Neste artigo, é descrito um gerador de vetores de teste para latches e
flip-flops. Comparamos com algums trabalhos anteriores existente na literatura
e seus resultados são discutidos. Após, descrevemos a idéia por trás do gerador
e é proposto uma maneira de melhorar a cobertura de estados e de transições.
Finalmente, é descrito como será validado o trabalho e um cronograma.

1. Introduction
The cell-based methodology for ASIC design, named Standard Cell, is very popular for
its reduced project complexity, time-to-market and therefore overall cost. When using this
technique, a more complex design is built from simpler logical blocks which are prevali-
dated, previous tested in order to see if the cell behavior is correct, and pre-characterized,
when the timing and power characteristics are extracted taking into account the input
slopes, temperature, power-supply voltage and etc. Furthermore, these blocks, also called
cells, can be classified into 3 groups: inverters/buffers; combinational blocks and sequen-
tial/storage blocks. Usually, they are aggregated in a cell library. These libraries are made
by Semiconductors fabrication companies, as known as, foundries which validate and
characterize all the library’s cells.

Realizing that a single library may be composed of a large number of cells and
before characterization, it is important to validate the cells, a automated approach is nec-
essary in order to speed up the process. The test of inverters can be simply done using
a ring oscillator, and testing of combinational cells can be done using a combinational
block where inside are the Circuit under Test (CUT), and a second stage which makes the
output of the block equal to the input, as described at [3]. The test o sequential cell are
more intricate to resolve because of the sequential nature of these blocks, i.e. the current
output value is dependent of the current input and the past sequence of them. A solution
was proposed using a shift-register for testing latches and an up-counter for flip-flops[5].
Another work proposed using a ring oscillator made of latches or flip-flops[4]. These
works will be discussed further.

In this work, it is proposed a teat pattern generator for flip-flops and latches. The
generator will cover all possible input states and theirs transitions. The generator will

avoid repeated input transitions, be circular, i.e. begin and end in the same pattern and
transition 1 input per step therefore easing debugging and avoid errors canceling each
other out. Using the behavioral description of the cell and the test pattenr sequence, a
template is created and compared with the CUT’s output. If the coverage is less than
100%, multiples instantiations of the same cell may be used but with the inputs permuted
or with one or more inputs negated. These multiple instances are chosen using the behav-
ioral description and the sequence of inputs.

This article is organized as follows: In section 2, it is discussed the proposed work
motivation; in section 3, previous works related to this one are analyzed and discussed;
in section 4 it is described the generators project and a theoretical approach; in section 5
it is shown how the generator is going to be validated; and in section 6 a schedule for the
project is shown.

2. Motivation

Today sequential logic is essential for the correct functioning of diverse systems being
the the D-type flip-flop and D-type latch one of the most used sequential elements. This
element is fundamental in order to build registers, which are used to in modern processors
as a fast storage device and pipelines. Pipelines help parallelize multiple instructions
avoiding idleness of the CPU and increasing the overall throughput of instructions.

Seeing the importance of sequential cells in today’s circuits, testing them is very
difficult. The main reason for it is that the current output state depends not only of the
current inputs but the past input sequence, thus the problem may become time and mem-
ory consuming. Another problem is the presence of both set and reset signals which may
cause a erasure effect, i.e., the current state may not depends of the past input sequence
anymore.

In addition, several sequential cells may compose a single Standard Cell Library
and they require validation before being available for the customers, a automatic approach
is necessary in order to reduce time-to-market and costs. Further more, some cells can
have for a single logical function various implementation with different channel width
and topology. A example of different D-type flip-flop topology is reported at [1]. The
use of cells with same topology but with different transistor channel width is for timing,
power and area constrains demanded by the target application. These factors increase the
validation complexity of the library even more.

Taking these factors into account, a simple test generator is necessary in order to
speed up the test phase. With a generator independent from the behavior, the test setup
will be simpler and the test of several cells representing different logical functions can
be made, increasing the test speed and the library validation. But, test coverage is also
important factor to take in account and because of the sequential nature of these cells a
high coverage is difficult to achieve.

3. Related Works

As mentioned in the introduction, some works in the literature show some approaches to
test sequential cells, especially D-type latches with asynchronous set and reset (DLatSR)
and D-type flip-flop with asynchronous set and reset (DFFSR).

At [4], it is proposed a ring oscillator made of 6 instantiation of the same DLatSR
and another composed of 4 of the DFFSR. In each instance is represented a different
output transition caused by different inputs transitions of the cell. Therefore, multiple
input and output states and transitions are verified in each step of the ring. The figure 3
shows the test setup for latches and the figure 3 shows the setup for flip-flops. In both
cases all the possible output transitions when an input is transitioned are covered because
each of the ring step represent one input-output transition arc. However the coverage of
steady states is not 100% for there are steady states that the ring can not reach and the
coverage of a unexpected transition, i.e., a input transition does not cause a transition in
the output, are as well not totally covered. These cases must be evaluated because they
are part of the expected behavior of the DLatSR and the DFFSR and might contain errors.

Figure 1. Ring Oscillator setup with latches described at [4]

Figure 2. Ring Oscillator setup with flip-flops described at [4]

At [5], the testing of DLatSR is made by instantiating a 12 bit shift-register with
the same cell as show by the figure 3. However some latches have theirs set and reset sig-
nal behavior determined by the current overall state of the register and the enable polarity
signal is inverted at every couple of latches. The steady state coverage almost 100% but
the state where both set and reset are on. However, some possible transitions and unex-
pected output transitions are not covered by this setup. For testing of DFFSR, a modified
5 bit counter is created where each bit is the same cell under test. The figure 3 shows the
described setup. Similar as the test with the latch, the set and reset signals of several bits

Figure 3. Ring Oscillator setup described at [5]

are dependent of the different state of the counter and are calculated by the handshake
circuit. The test covers all steady states but the ones with both set and reset on and the
transition coverage covers 50—5 of the unexpected transitions.

Figure 4. Modified counter described at [5]

Another approach is defined at [2], where a Finite State Machine is created using
the cell behavior description. The FSM will pass through all states and transitions in order
to create an input pattern sequence that has 100% coverage. Despite, being similar to our
work, the article’s generator is dependent of the cell behavior and ours is dependent only
by the number of inputs. Another problem described is that the length of the sequence
varies with the initial state.

4. Project Definition
The proposed generator will yield a group of signals which will be used as input by a
Circuit under Test (CUT). In order to have a higher coverage, avoid error masking, it
must conform to the following rules: (1) to generate all possibles states and transitions;
(2) to be circular, i.e., the initial state must be equal to the last state or there must be
an 1-bit transition from the last state to the first one; (3) its transitions have a Hamming
distance of 1, i.e., the difference between two states is one bit, e.g. 0010→ 0110.

Using this set of rules, the generator can be modeled as an n-cube or an n-
hypercube where each vertex receives a input state and each one of its neighbors has
a state which differs by 1 bit. The edges represent a valid transition between two states.

Since it is interesting to cover both rising transition, when a bit goes from logic value ”0”
to value ”1”, and falling transition, when a bit goes from logic value ”1” to value ”0”,
the hypercube is bi-directed at every connection between two vertex. Fig. 5 shows the
modeled graph. This graph has 2N nodes and N ∗2N edges, being N the number of inputs
in the CUT.

000

001

010

100

011

101

110

111

Figure 5. 3-Dimensional Hypercube representing a 3 bit Gray Code

In order to cover all transitions it is necessary to find out an Euler cycle, i.e., a cycle
that passes through all edges exactly once beginning and ending at the same node. Due to
the form of the graph, it has many different Euler cycles. In order to find a single cycle,
some of the algorithms present in the literature can be used. However, some properties of
the modeled graph and the given problem can be used to find out a simpler solution to the
problem.

Since each node is labeled with a state which can be interpreted as binary numbers,
they can be ordered using the natural number ordering. Then, they can also be organized
in a tree structure with the smallest state, the one with all the inputs at the logic state
”0”, as the root. The state with all inputs at ”0” is used as root because it is the smallest
integer. Then, all nodes are placed in a way that theirs sons must have a label whose value
is grater than the father. But in order to represent all possible 1-bit transitions depicted in
the original graph, some nodes must be repeated and placed as sons of each of its smaller
label neighbors. This happens because one node can have several smaller neighbors. Fig
6 shows the results of the tree transformation on the graph depicted in Fig 5. With the tree
built, it is only necessary to make a search through it and the state sequence is created.

In order to compare the cells output and verified their behavior, a template must
be created using the cells behavior and the generator sequence. It will also conform to
a set of rules. It will change its output with the generator and output the desired result
that will be compared with the output of the CUT. As discussed previously, the sequential
cells have a memory effect, a input state may have more than one output state and they
must be tested. Since the generator is behavior independent and in order to cover as many
states and transitions as possible, one strategy possible is the use of multiple instantiation
of a cell but with the inputs permuted or one or more input bits negated. This means that
in parallel, the generator runs through multiples Euler cycles at the same time.

000

001 010 100

011 101 011110 101 110

111 111 111

Figure 6. The resulting tree from the graph in Fig 5

5. Validation

In order to validate this work, a application program will be made in order to verify the
steady states and transitions coverage. The program will have a component describing
the cell’s behavior and will output the steady states and the transition. The program will
calculate a sequence and calculate the steady coverage and transition coverage. With this
information, the program can choose which instantiation of the same cell , as described
in section 4, will be used in order to increase both steady and transitions coverage.

Further validation can be made integrating the previous program with the SPICE
simulator. The program will calculate the input pattern sequence, the template containing
the expected result and how many cell must be instantiated. After, a SPICE script will be
automatically created containing the generator, the cells and the template calculated by
the previous software.

The group of cells that will be used to validate this work is composed of D-type
latches, D-type flip-flops and T-type flip-flops.

6. Schedule

• First month:
– Language choice
– Setting of the data structure
– Implementation
– Final program debugging and fixes if necessary
– Preliminary results analysis

• Second and Third month:
– SPICE language syntax learning
– SPICE-application integration implementation
– Result analysis

• Forth and Fifth month:
– Undergraduate thesis writing

References
[1] Massimo Alioto, Elio Consoli, and Gaetano Palumbo. Analysis and comparison in the

energy-delay- area domain of nanometer cmos flip-flops: Part i—methodology and
design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, June
2011.

[2] Helder H. Avelar, Paulo F. Butzen, and Renato P. Ribas. Automatic circuit generation for
sequential logic debug. 2015 IEEE International Conference on Electronics, Circuits,
and Systems (ICECS), 2015.

[3] Renato P. Ribas, Vinicius Callegaro, Marcelo Lubaszewski, André Ivanov, and André I.
Reis. Circuit design for testing standard cell libraries. WCAS 2011, Workshop on
Circuits and System Design, 1, 2011.

[4] Renato P. Ribas, Yuyang Sun, André I. Reis, and André Ivanov. Ring oscillators for
functional and delay test of latches and flip-flops. SBCCI ’11 Proceedings of the 24th
symposium on Integrated circuits and systems design, 2011.

[5] Renato P. Ribas, Yuyang Sun, André I. Reis, and André Ivanov. Self-checking test circuits
for latches and flip-flops. On-Line Testing Symposium (IOLTS), IEEE 17th Interna-
tional, 2011.

	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Sequential Cell Validation
	1.2 Motivation
	1.3 Proposal
	1.4 Organization

	2 Preliminaries
	2.1 Types of sequential logic circuits
	2.2 Steady States
	2.3 Dynamic States
	2.3.1 Expected Transitions
	2.3.2 Non-Expected Transitions

	3 Realted Works
	3.1 Ring Oscillators for Functional and Delay Test
	3.2 Checking Experiments to Test Latches
	3.3 Self-Checking Test Circuits for Latches and Flip-Flops
	3.4 Automatic Circuit Generation for Sequential Logic Debug

	4 Test Pattern Generator
	4.1 Generator Modeling
	4.2 Software Implentation
	4.3 Hardware implementation
	4.3.1 ROM Solution
	4.3.2 Boolean Network and LUT Based Solutions

	5 Validation of Sequential Cells
	5.1 Model Validation
	5.1.1 Single instance validation
	5.1.2 Multiple instances validation
	5.1.3 Continuous validation

	5.2 SPICE validation
	5.2.1 Nor Type D Flip-Flop with Asynchronous Set and Reset
	5.2.2 NAND Type D Flip-Flop with Asynchronous Set and Reset
	5.2.3 Single Gate D Type Latch with Asynchronous Set and Reset

	6 Conclusões
	References

