A suplementação com naringina durante a gestação altera a homeostase redox no hipocampo e no córtex pré-frontal dos filhotes de ratos

Mariana Scortegagna Crestani¹, Cristiane Matté^{1,2}

¹Departamento de Bioquímica, ICBS, UFRGS

²Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS

INTRODUÇÃO

Dietas ricas em frutas e verduras estão associadas a diversos benefícios à saúde devido a sua alta concentração de antioxidantes. A naringina, um flavonoide da classe das flavanonas, é predominantemente encontrada em frutas cítricas, como o pomelo. Diversos trabalhos já demonstraram os efeitos positivos da suplementação com naringina sobre a função cognitiva e o status redox no sistema nervoso central (SNC) (Gaur et al., 2009, Cui et al., 2014, Golechha et al., 2014.). Entretanto, pouco se sabe sobre os efeitos que o consumo de naringina durante a gestação exerce no SNC da prole. Portanto, esse trabalho buscou avaliar os efeitos da suplementação materna com naringina, durante todo o período gestacional, sobre a homeostase redox do hipocampo e córtex pré-frontal da prole no dia pós-natal 1 (PND1).

MATERIAIS E MÉTODOS

Ratas Wistar prenhez foram divididas em dois grupos: naringina (100 mg/kg) e controle (água destilada). O tratamento foi feito diariamente durante todo o período gestacional, por gavagem.

Em PND1, os filhotes foram eutanásiados e o hipocampo e o córtex pré-frontal foram dissecados para ensaios bioquímicos.

O projeto foi aprovado pela comissão ética local (CEUA - UFRGS), número

31397.			
Oxidantes e parâmetros mitocondriais	 Oxidação do DCFH₂ (LeBel et al., 1992) DAF-FM® MitoSOX ® Red MitoTracker® Red e Green 	Antioxidantes enzimáticos	- SOD (Misra & Fridovich, 1972) - CAT (Aebi, 1984) - GPx (Wendel, 1981) - Grx (Holmgren & Aslund, 1995) - GLO1 (Thornalley & Tisdale, 1988)
Antioxidante não-enzimático	- GSH (Browne & Amstrong,1998)	Parâmetros de dano	 Carbonilas (Reznick & Packer, 1994) Grupos SH (Aksenov & Markesbery 2001)

RESULTADOS

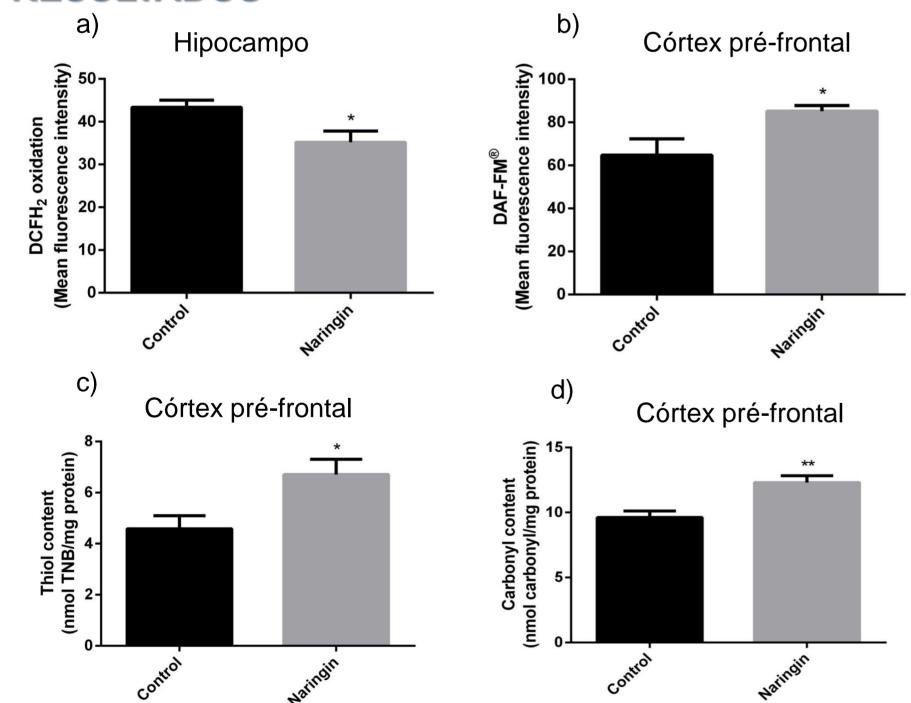
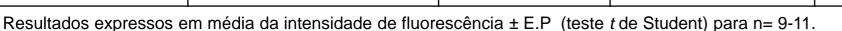
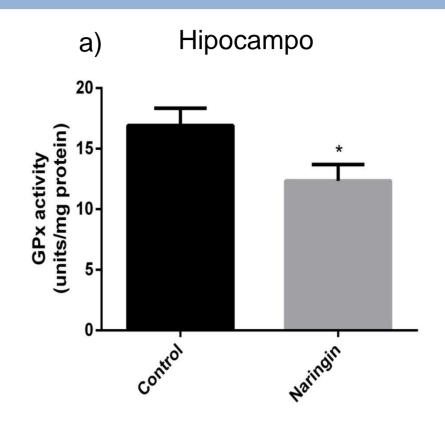




Figura 1. Efeitos da suplementação materna com naringina sobre o status redox no hipocampo e no córtex pré-frontal da prole. a) oxidação da DCFH, b) conteúdo de óxido nítrico, c) grupos sulfidrila, e d) conteúdo de carbonilas. Resultados expressos em média ± E.P (teste t de Student) para n= 9-11. *p<0.05, **p<0.01.

Tabela 1: Efeito da suplementação materna com naringina sobre o status redox no hipocampo e no córtex pré-frontal da prole Maringina n value

cortex pro frontal da prole		Controle	Naringina	p value
Hipocampo	Oxidação do DAF- FM®	53,3 ± 5,45	38,7 ± 6,86	0,1125
	MitoSOX® Red	54 ± 4,78	43,3 ± 7,89	0,2539
	MitoTRACKER® Green e Red	86,7 ± 1,7	85,5 ± 2,35	0,6936
Córtex pré-frontal	Oxidação da DCFH ₂	55,9 ± 4,73	56,5 ± 6,89	0,9367
	MitoSOX® Red	53,3 ± 5,02	50,8 ± 4,64	0,7273
	MitoTRACKER® Green e Red	88,8 ± 2,51	83 ± 3,23	0,1695

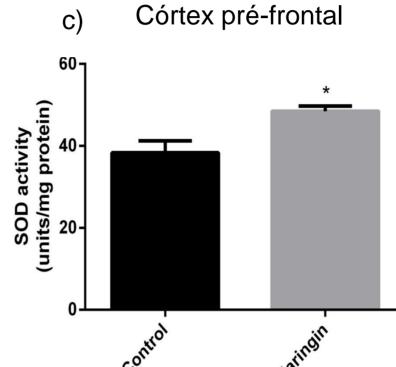


Figura 2. Efeito da suplementação naringina sobre materna com antioxidantes enzimáticos no hipocampo e no córtex pré-frontal da prole. a) atividade da GPx, b) atividade da Grx, e atividade da SOD. Resultados expressos em média ± E.P (teste t de Student) para n= 6-8. *p<0.05, **p<0.01.

Tabela 2: Efeito da suplementação materna com naringina sobre antioxidantes enzimáticos e status redox no hipocampo e no córtex pré-frontal da prole

		Controle	Naringina	p value
.	SOD	41,1 ± 1,84	43,97 ± 1,46	0,2776
	CAT	1,9 ± 0,18	1,4 ± 0,22	0,1420
	GLO1	128,1 ± 17,59	92,8 ± 23,53	0,2508
Hipocampo	GSH	$4,3 \pm 008$	4.8 ± 0.37	0,2187
	Grupos SH	2,6 ± 0,32	$2,3 \pm 0,33$	0,6211
	Carbonilas	3.3 ± 0.58	$3,4 \pm 0,75$	0,2456
	CAT	1,0 ± 0,13	1,0 ± 0,10	0,9934
	GPx	16,7 ± 1,99	13,5 ± 2,02	0,2866
Córtex pré-frontal	GLO1	85,6 ± 15,06	60,7 ± 11,51	0,2220
	Grx	20,35 ± 1,39	16,6 ± 1,05	0,0642
	GSH	5,2 ± 0,65	3,8 ± 0,41	0,1111

Atividade enzimática expressa em unidades/mg de proteína. GSH, SH e Carbonilas expressas em nmol/mg de proteína. Resultados expressos em média \pm E.P (teste t de Student) para n=6-9.

DISCUSSÃO E CONCLUSÃO

- Os parâmetros neuroquímicos avaliados exibiram diferentes perfis entre as estruturas analisadas. Ambas apresentaram comprometimento da homeostase redox, porém, o hipocampo mostrou reduzida atividade antioxidante enzimática, enquanto que o córtex pré-frontal mostrou aumento nos níveis de espécies reativas e parâmetros de dano bem como aumento na produção de defesas antioxidantes.
- Janssen et al. (2015) mostrou redução no fluxo sanguíneo cerebral no córtex e tálamo, porém não no hipocampo, e alteração no aprendizado de camundongos adultos nascidos de mães suplementadas com flavonoides no período gestacional.
- Vanhees et al. (2013) mostrou aumento da expressão dos genes para Nrf2, CAT e GPx3, associados a menores níveis de dano ao DNA induzido por estresse oxidativo no fígado de camundongos adultos expostos a flavonoides na fase intrauterina.
- Nossos achados indicam uma possível adaptação negativa do sistema redox no hipocampo e córtex pré-frontal da prole em PND1, desencadeada pelo consumo materno de naringina durante o período gestacional.

REFERÊNCIAS

Aebi , H. Methods Enzymol, 1984. Aksenov, M. Y. and Markesbery, W. R. Neurosci Lett, 2001. Browne, R. W. and Armstrong, D. Methods Mol

Biol, 1988. Cui, Q.J., et al. Neurochem Res, 2014. Gaur, V., A. Aggarwal, and A. Kumar. Eur J

Pharmacol, 2009. Golechha, M., et al. Epilepsy Behav, 2014. Janssen, C., et al. Neurochemistry International,

2015. Holmgren, A. and Aslund, F. Methods in Lowry, et al. J Biol Chem, 1951. Marcelino, T. B. Neuroscience, 2013. Misra, H. P. and Fridovich, I. J Biol Chem, 1972. Rabbani, N. and Thornalley, P. J. Diabetes, 2014.

Reznick, A. Z. and Packer, L. Methods in enzymology, 1994.

Thornalley, P. J. and Tisdale, M. J. Leuk Res, 1988. Vanhees, K., et al. Free Rad. Biol. And Med, 2013. Wang, D., et al. Cell Mol Neurobiol, 2015. Wendel, A. Methods Enzymol, 1981.

FINANCIAMENTO

