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RESUMO 

 

Soja, uma cultura conhecida por sua importância econômica e nutricional, tem sido 

objeto de vários estudos que avaliam o impacto e as respostas efetivas das plantas aos 

estresses abióticos. O estresse salino é um dos principais estresses ambientais e afeta 

negativamente o crescimento e o rendimento das culturas, incluindo a soja. A edição de RNA 

é um processo pelo qual as sequências de nucleotídeos podem ser alteradas, revertendo 

mutações que podem mudar as sequências de proteínas para manter suas funções 

conservadas. As proteínas pentatricopeptide repeat (PPRs) são trans-elementos de edição 

caracterizados por reconhecer cis-elementos específicos de RNA e realizar a reação de 

edição. 

Vários estudos descreveram estes trans-elementos e seus sítios de edição cognatos, 

mas nem todas as proteínas que compõem o complexo de edição foram identificadas. A 

perda de eventos de edição de plastídios, resultante de mutações em fatores de edição de 

RNA ou através de interferência por estresse, leva a alterações de desenvolvimento, de 

fisiologia e da fotossíntese. O objetivo do presente trabalho é caracterizar os sítios de edição 

e os fatores associados à edição de RNA em Glycine max e a influência de estresses abióticos 

no processo de edição de RNA em cloroplastos. 

No capítulo 1, um método é apresentado para triar a edição de RNA de cloroplasto 

usando bibliotecas públicas de sRNAs de Arabidopsis, soja e arroz. Entre os sítios de edição 

previstos, 40,57, 34,78 e 25,31% foram confirmados utilizando sRNAs de Arabidopsis, soja 

e arroz, respectivamente. A análise de SNPs revelou alterações de C-to-U de 58,2, 43,9 e 

37,5% nas respectivas espécies e identificou conhecidas e possíveis novas edições de RNA 

de adenosina para inosina (A-to-I) em tRNAs. O método e os dados revelam o potencial do 

uso de sRNA como uma fonte confiável para identificar novos e confirmar sítios de edição 

conhecidos. 

No capítulo 2, o processo de edição de RNA foi avaliado em cloroplastos de plantas 

de soja sob estresse salino. A abordagem de bioinformática utilizando bibliotecas de sRNAs 

e mRNAs foi empregada para detectar sítios específicos que mostram diferenças na taxa de 

edição. RT-qPCR foi usado para medir a taxa de edição nos sítios selecionados. Observamos 

diferenças nas taxas de edição nos transcritos dos genes ndhA, ndhB, rps14 e rps16 ao 

comparar os dados das bibliotecas controle e das tratadas com NaCl. Os ensaios de RT-qPCR 
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demonstraram um aumento na edição dos genes selecionados. Esses aumentos podem ser 

uma resposta para manter a homeostase das funções das proteínas do cloroplasto em resposta 

ao estresse salino. 

No capítulo 3, para identificar os fatores relacionados aos sítios de edição analisados, 

sondas biotiniladas de RNA foram projetadas com base nos sítios de edição de RNA de 

plastídio de soja para realizar um isolamento proteico específico do fator de edição. Proteínas 

que interagiram com as sondas foram isoladas através da ligação das sondas à biotina e foram 

identificadas utilizando espectrometria de massa. Entre os peptídeos detectados, cinco 

corresponderam a proteínas PPR. A comparação dos genes de Arabidopsis com as proteínas 

PPR da soja permitiu a identificação dos homólogos mais próximos. 

O presente estudo representa a primeira identificação do conjunto de sítios de edição 

de RNA, de fatores associados aos sítios de edição de RNA e a caracterização dos efeitos do 

estresse abiótico na edição de RNA em Glycine max. 
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ABSTRACT 

 

 Soybean, a crop known by its economic and nutritional importance, has been the 

subject of several studies that assess the impact and the effective plant responses to abiotic 

stresses. Salt stress is one of the main environmental stresses and negatively impacts crop 

growth and yield. RNA editing is a process whereby nucleotide sequences can be altered, 

reverting mutations that could change protein sequences to maintain their conserved 

functions. Pentatricopeptide repeat proteins are editing trans-elements characterized by 

recognize specific RNA cis-elements and perform the editing reaction. 

 Several studies have described these trans-elements and their cognate editing sites, 

but not all proteins that compose the editing complex were identified. The loss of plastid 

editing events, resulting from mutations in RNA editing factors or through stress 

interference, leads to developmental, physiological and photosynthetic alterations. The aim 

of the present work is to characterize the editing sites and factors associated with RNA 

editing in Glycine max and the influence of abiotic stresses on the process of RNA editing 

in chloroplasts. 

 In chapter 1, a method is presented to screen chloroplast RNA editing using public 

sRNA libraries from Arabidopsis, soybean and rice. Among the predicted editing sites, 

40.57, 34.78, and 25.31% were confirmed using sRNAs from Arabidopsis, soybean and rice, 

respectively. SNP analysis revealed 58.2, 43.9, and 37.5% new C-to-U changes in the 

respective species and identified known and new putative adenosine to inosine (A-to-I) RNA 

editing in tRNAs. The method and data reveal the potential of sRNA as a reliable source to 

identify new and confirm known editing sites. 

 In chapter 2, RNA editing process was evaluated in the chloroplast of soybean plants 

under salt stress. Bioinformatics approach using sRNA and mRNA libraries was employed 

to detect specific sites showing differences in editing efficiency. RT-qPCR was used to 

measure editing efficiency at selected sites. We observed differences in ndhA, ndhB, rps14 

and rps16 editing rates between control and salt-treated libraries. RT-qPCR assays 

demonstrated an increase in editing efficiency of selected genes. These increases can be a 

response to keep the homeostasis of chloroplast protein functions in response to NaCl stress. 

 In chapter 3, to identify the trans-acting factors of editing sites analyzed, we have 

designed RNA biotinylated probes based in soybean plastid RNA editing sites to perform 
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specific isolation of proteins associated to editosomes. Proteins that interacted with the 

probes were isolated by binding the probes to biotin and were identified using mass 

spectrometry. Among the detected peptides, five corresponded to PPR proteins. Comparison 

of Arabidopsis genes to the soybean PPR proteins allow identification of the closest related 

homologs.  

 The present study represents the first identification of RNA editing sites set, 

associated factors to RNA editing sites and characterization of effects from abiotic stress in 

RNA editing in Glycine max. 
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1. INTRODUÇÃO 

1.1. Soja 

 A soja (Glycine max (L.) Merrill) é uma leguminosa anual pertencente à família 

Fabaceae, subgênero Soja dentro do gênero Glycine (Doyle et al. 2004). Análises 

morfológicas, citogenéticas e moleculares indicam que a soja foi domesticada a partir da soja 

selvagem, Glycine soja (Broich and Palmer 1980; Kollipara et al. 1997; Doyle et al. 2004). 

G. soja e G.max têm ambas 20 cromossomos (2n = 40), hibridizam com facilidade, exibem 

emparelhamento normal de cromossomos meióticos e geram híbridos férteis viáveis (Kim 

et al. 2010). Estudos relacionados à domesticação da soja têm reforçado a hipótese de 

múltipla domesticação em diversos locais do leste da Ásia e datado esses eventos entre 9000 

e 5000 anos atrás (Lee et al. 2011).  

Hoje, a soja é uma das cultura mais valiosas do mundo, usada como alimento para 

bilhões de animais, como fonte de proteína e óleo por milhões de pessoas, bem como na 

fabricação industrial de milhares de produtos (Nwokolo 1996). A alta demanda de proteína 

em gêneros alimentícios para consumo humano e animal levou a uma maior expansão da 

produção de oleaginosas e favoreceu o aumento da produção de soja, especialmente no 

Brasil (Guevara et al. 2015). Atualmente, o Brasil é o segundo maior produtor, atrás dos 

Estados Unidos. Em 2015, a produção de soja alcançou seu recorde; no total, 97 464 936 

toneladas foram colhidas, tendo um aumento de 10,7 milhões de toneladas (12,3%) em 

relação a produção de 2014 (IBGE 2015). 

Em 2016, devido à seca que assolou alguns estados produtores, a produção foi de 

96 296 714 toneladas, uma redução de 1,2% em relação à produção de 2015, e o valor dessa 

produção somou 104,9 bilhões de reais. Do total da produção, 67,3 milhões de toneladas 

(69,9%) foram exportados, tendo como principal destino o mercado chinês (IBGE 2016). 

Espera-se que a soja continue sendo o produto de exportação mais lucrativo com mais da 

metade da produção brasileira destinada aos mercados mundiais (Guevara et al. 2015). Mato 

Grosso, Paraná e Rio Grande do Sul são, nessa ordem, os maiores produtores de soja, 

correspondendo a cerca de 60% do total da produção. Em 2016 o Rio Grande do Sul produziu 

16 209 892 toneladas de soja, alta de 3,2% em relação com 2015. O aumento da produção é 

devido à ampliação da área colhida, 5 436 653 hectares, 3,3% em relação a 2015, juntamente 

com uma estabilidade na produtividade (IBGE 2016). 
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Além de sua importância econômica, a soja também tem se destacado como planta 

modelo para diversos estudos genéticos. O genoma da soja foi totalmente sequenciado no 

final de 2008 e publicado em 2010 (Schmutz et al. 2010; Cannon and Shoemaker 2012). 

Associados ao avanço nas tecnologias de sequenciamento, a montagem e anotação do 

genoma de soja permitiu o desenvolvimento de diversos estudos de genômica comparativa, 

análises filogenéticas e evolutivas de famílias gênicas, bem como a associação entre 

variações genéticas e traços agrícolas importantes, incluindo tolerância à diversos tipos de 

estresses (Choi et al. 2004; Kim et al. 2012; Ma et al. 2012; Zhang et al. 2013; Zhou et al. 

2015). Novas ferramentas para a análise de grandes conjuntos de dados têm permitido 

integrar dados de estudos genômicos, transcritômicos e proteômicos de uma coleção 

diversificada de tecidos sob diferentes condições, fornecendo dados valiosos que permitiram 

o avanço na agricultura de leguminosas (Komatsu and Ahsan 2009; Severin et al. 2010; 

Mathesius et al. 2011). 

A evolução nas tecnologias de sequenciamento de nova geração (do inglês, next 

generation sequencing - NGS) e de ferramentas de bioinformática permitiu o avanço não só 

de estudos genômicos e transcritômicos, mas também de identificação de pequenos RNAs 

(sRNAs) (Kulcheski et al. 2011; Borges and Martienssen 2015). Esses estudos focam no 

papel dos sRNAs na manutenção do genoma, no desenvolvimento, nas respostas das plantas 

às mudanças ambientais e nas defesas contra patógenos (Ruiz-Ferrer and Voinnet 2009; 

Simon et al. 2009; Long et al. 2015; Xu et al. 2015). Tais conhecimentos permitiram a 

criação de tecnologias que utilizam sRNAs para o melhoramento genético. A tecnologia 

RNAi, baseada em pequenos RNAs de interferência (siRNAs), evoluiu como uma 

importante ferramenta de engenharia genética e genômica funcional destinada à melhoria 

das culturas (Kamthan et al. 2015). MicroRNAs (miRNAs), uma classe de pequenos RNAs 

que regulam a expressão gênica por meio da degradação ou do bloqueio de tradução dos 

mRNAs alvos (Bartel 2004), foram identificados no genoma de soja (Liu et al. 2010; Turner 

et al. 2012). Além disso, o papel de alguns desses miRNAs na resposta a estresses bióticos 

e abióticos têm sido elucidados (Zeng et al. 2010; Kulcheski et al. 2011; Li et al. 2011).  

 Nos últimos anos, os estudos de sRNAs aumentaram consideravelmente, 

particularmente associados à sequenciamento de miRNAs e outros pequenos RNAs não 

codificantes (ncRNAs) de origem nuclear, produzindo uma grande quantidade de novos 
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dados de sequenciamento. Dessa forma, quantidades consideráveis de dados de sRNA estão 

disponíveis em bancos de dados públicos e podem ser empregados em diversos estudos. 

1.2. Estresses abióticos 

Como organismos sésseis, as plantas estão mais expostas a uma série de condições 

de estresse como variações de temperatura e intensidade da luz, inundações, seca, salinidade 

e presença de metais pesados no solo. Plantas requerem, fundamentalmente, energia 

proveniente da luz, água, carbono e nutrientes minerais para seu crescimento. O estresse 

abiótico é definido como condições ambientais que reduzem o crescimento e a produção 

abaixo dos níveis ótimos (Cramer et al. 2011). Estresses abióticos afetam a planta inteira, 

comprometendo aspectos moleculares e fisiológicos básicos, da germinação às fases de 

reprodução (Mahajan and Tuteja 2005). Entre os estresses supracitados, o estresse salino é 

um dos principais estresses ambientais e afeta espécies de culturas economicamente 

importantes que são sensíveis à salinidade, como feijão (Phaseolus vulgaris), milho (Zea 

mays), arroz (Oryza sativa) e soja (Wang et al. 2003; Zheng et al. 2009). Os solos afetados 

pela salinidade ocorrem em mais de 100 países e sua extensão mundial é estimada em cerca 

de 1 bilhão de ha (FAO and ITPS 2015).  

A salinidade afeta diversos componentes moleculares e funções fisiológicas como 

lipídios (Alvarez-Pizarro et al. 2009), níveis de íons (He et al. 2015), assimilação e 

metabolismo de nitrogênio (Silveira et al. 2001), enzimas antioxidantes (Gill and Tuteja 

2010), componentes proteicos e estrutura dos cloroplastos (Feller et al. 2008; He et al. 2014) 

e especialmente a fotossíntese (Wang et al. 2001; Parida and Das 2005). Diversos estudos 

têm caracterizado o impacto da salinidade na atividade fotossintética (Lu et al. 2009), na 

assimilação de carbono (Chaves et al. 2009), na composição de pigmentos (Koyro 2006), no 

transporte de elétrons e na eficiência dos fotossistemas I e II (Lu et al. 2002; Munekage et 

al. 2004; Lu et al. 2008; Kalaji et al. 2011). Claramente, devido aos efeitos na fotossíntese, 

é necessário compreender quais processos moleculares podem estar sofrendo os efeitos do 

estresse salino no cloroplasto (Gomez 2003; Feller et al. 2008; Zhang et al. 2008; Zheng et 

al. 2009). 

1.3. Edição de RNA 

A edição de RNA é um processo pós-transcricional que altera a informação genética 

contida em moléculas de RNA pela inserção, remoção ou alteração de nucleotídeos 

(Takenaka et al. 2013). Esse processo ocorre em transcritos codificados pelo genoma 
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nuclear, mitocondrial ou de cloroplasto, em uma ampla gama de organismos. A edição de 

RNA foi descoberta em 1986 em Trypanosoma brucei, quando demostrou-se que uridinas 

foram inseridas em locais específicos em transcritos da citocromo c oxidase II (coxII) 

restaurando a sequência adequada para a codificação da proteína (Benne et al. 1986). Após 

isso, em 1988, foram descritas deleções de uridinas no transcrito de coxIII (Feagin et al. 

1988). Em mamíferos, foram descritas conversões de citidina em uridina (C-para-U) em 

transcritos de apolipoproteína-B48 (Blanc and Davidson 2010) e de adenosina (A) para 

inosina (I) (A-para-I), em transcritos do gene GluR-B que codifica um receptor B de 

glutamato (Sommer et al. 1991), em elementos repetitivos presente em íntrons e 3’-UTRs de 

transcritos em cérebros humanos (Kim et al. 2004) e microRNAs (Chawla and Sokol 2014). 

No entanto, uma pequena fração de edições A-para-I estão localizadas em éxons, podendo 

mudar sítios de splicing ou levar a alteração não sinônimas de códons (Nishikura 2010). A 

edição A-para-I é comum nos metazoários (Albertin et al. 2015; Porath et al. 2017). 

Em plantas, estudos de edição de RNA estão voltados especificamente à 

mitocôndrias e cloroplastos, embora recentemente, modificações no RNA de transcritos 

nucleares tenham sido identificadas em A. thaliana, todavia, somente através de análises in 

silico (Meng et al. 2010). A edição mais comum ocorre em citidinas específicas, onde através 

de uma reação de deaminação, elas são modificadas para uridinas (C-para-U). A edição 

reversa (U-para-C) também ocorre em transcritos de mitocôndrias e cloroplastos, mas parece 

ser restrita a algumas briófitas, licopódios e samambaias (Kugita 2003; Wolf et al. 2004; 

Grewe et al. 2011; Guo et al. 2015). Outro tipo de edição, pouco estudado em comparação a 

edição C-para-U é a edição de tRNAs. A edição de anticódons de tRNAs pela desaminação 

de adenina para inosina é usada por procariotos e eucariotos para expandir a capacidade de 

decodificação de tRNAs individuais (Schaub and Keller 2002). A edição A-para-I em tRNA 

em cloroplastos já foi descrita, bem como a enzima responsável pela reação. Em 

Arabidopsis, o mutante para a proteína codificada pelo locus At1g68720, uma tRNA 

arginina adenosina deaminase, demonstrou uma drástica redução de proteínas codificadas 

no cloroplasto e deficiência na função fotossintética (Delannoy et al. 2009). 

A edição C-para-U de RNA em organelas tem sido descrita ocorrendo em íntrons, 

tRNAs e mRNAs. Sítios de edição dentro de íntrons do grupo II possuem importância 

funcional; a edição melhora o emparelhamento de bases, estabilizando o dobramento da 

estrutura necessária para o splicing (Carrillo 1997; Vogel et al. 1997; Castandet et al. 2010). 
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Em feijão, um evento de edição no tRNAPhe corrige a incompatibilidade do pareamento C:A 

para um pareamento U:A na extremidade aceptora (Mareéchal-Drouard et al. 1993). No 

tRNAHis de coníferas do gênero Larix, três eventos de edição, na extremidade aceptora, na 

haste da alça D e na haste da alça do anticódon, são necessários para o correto processamento 

desse tRNA (Maréchal-Drouard et al. 1996). Na briófita Takakia lepidozioides, a edição gera 

um anticódon UAA canônico no tRNALeu(CAA) antes mesmo do splicing que gera o tRNA 

maduro (Miyata et al. 2008).  

Em sequências codificantes, a maioria dos eventos de edição ocorrem na primeira 

ou segunda posição dos códons (Takenaka et al. 2013) e, portanto, geralmente resultam em 

alterações de códons, formando códons de iniciação e terminação (Oldenkott et al. 2014), 

bem como em alguns casos, à mudança de aminoácido, restaurando códons que são 

essenciais para a expressão de proteínas funcionais (Bock et al. 1994; Sasaki et al. 2001). 

Sem a edição de RNA várias proteínas da cadeia respiratória seriam produzidas com uma 

sequência que levariam a proteínas não funcionais, e assim nenhuma mitocôndria funcional 

poderia ser mantida em plantas (Takenaka et al. 2008). A caracterização da maior parte dos 

sítios de edição que tornam proteínas funcionais deu-se através da caracterização dos trans-

elementos que são responsáveis pela edição nesses sítios. 

A quantidade de sítios de edição em cloroplastos varia entre as espécies. Foram 

identificados 2 sítios de edição em Physcomitrella patens e 509 em Anthoceros formorsae, 

ambas briófitas (Kugita 2003; Miyata and Sugita 2004). As pteridófitas Adiantum capillus-

veneris e Ophioglossum californicum apresentam 315 e 297 sítios de edição respectivamente 

(Wolf et al. 2004); foram identificados 21 sítios de edição em Oryza sativa (Corneille et al. 

2000) e 43 sítios em Arabidopsis thaliana (Ruwe et al. 2013). Essa notável diferença no 

número de sítios de edição entre espécies tem sido alvo de pesquisas que visam compreender 

o papel da edição de RNA na evolução do genoma plastidial (Fiebig et al. 2004; Tillich et 

al. 2006a; Takenaka et al. 2013; Vu and Tsukahara 2017).  

Estudos em diversas espécies têm demonstrado que os sítios de edição são 

reconhecidos pela maquinaria de edição através de cis-elementos (Hirose and Sugiura 1996; 

Neuwirt et al. 2005; Kobayashi et al. 2007). Trechos de 20 a 25 nucleotídeos a montante do 

local de edição proporcionam um sítio de reconhecimento sequência específico que é alvo 

da atividade de edição (Bock et al. 1996; Ruf and Bock 2011). Apesar do avanço do 

reconhecimento dos sítios de edição e seus cis-elementos, nem todos os componentes da 
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maquinaria de edição foram identificados, o que dificulta a compreensão da evolução do 

processo de edição de RNA. 

1.4. Fatores proteicos associados à edição de RNA 

1.4.1. Proteínas pentatricopeptide repeat (PPR) 

Apesar da identificação dos sítios de edição, bem como seus cis-elementos, a 

primeira identificação de fatores de edição só foi possível através do estudo de mutantes 

fotossintéticos. O mutante crr4 (chlororespiratory reduction 4), apresentou defeitos no 

acúmulo do complexo NADH desidrogenase (NDH) em cloroplastos. Esses defeitos foram 

relacionados a perda do evento de edição que gera o códon de início (AUG) nos transcritos 

do gene plastidial ndhD (Kotera et al. 2005). O gene crr4 mutado corresponde à uma proteína 

pertencente à família PPR (pentatricopeptide repeat). CRR4 foi descrita posteriormente 

como responsável pelo reconhecimento do sítio de edição em ndhD (Okuda et al. 2006). 

Após a descoberta do CRR4, mapeamentos genéticos identificaram outros fatores adicionais 

para outros sítios de edição em cloroplasto, todos pertencentes à família de proteínas PPR 

(pentatricopeptide repeat). 

A família de genes que codificam PPRs é encontrada em quase todas as linhagens 

eucarióticas, mas expandiu-se dramaticamente em plantas. A maioria das algas verdes 

aquáticas tem cerca de 20 genes PPR, enquanto que plantas terrestres possuem 100 ou mais 

genes PPR, e há cerca de 400 a 600 genes na maioria dos genomas de angiospermas (Cheng 

et al. 2016). Selaginella moellendorffii apresenta mais de 800 PPRs em seu genoma (Banks 

et al. 2011). Surpreendemente, em um trabalho recente, cerca de 4000 sequências de PPRs 

sem sobreposição e não redundantes foram identificadas no genoma de S. moellendorffii 

(Cheng et al. 2016). A. thaliana, possui cerca de 490 genes PPR (Lurin et al. 2004; Cheng et 

al. 2016). Soja possui 1024 genes PPRs identificados (Cheng et al. 2016). Outras 

angiospermas que passaram por recentes eventos de poliploidia também apresentam um 

número particularmente grande de genes de PPR; por exemplo, há 1181, 1646, 1392 e 1139 

membros PPR em Panicum virgatum, Triticum aestivum, Malus domestica e Brassica napus, 

respectivamente (Cheng et al. 2016). 

As proteínas PPRs pertencem à superfamília α-solenóide de proteínas de repetições 

helicoidais (Hammani et al. 2014). A família PPR é caracterizada por apresentar um motivo 

altamente degenerado constituído por 35 aminoácidos, que geralmente aparecem como 

repetições in tandem nas proteínas. Estruturalmente, cada motivo PPR compreende duas α-



18 
 

hélices antiparalelas (Small and Peeters 2000). As proteínas da família PPR são reconhecidas 

por participarem no processamento de RNA em cloroplastos e mitocôndrias. PPRs canônicas 

foram incialmente descritas tendo como característica apresentar somente repetições de 35 

aminoácidos, classificados como motivo P. Outros motivos foram posteriormente 

caracterizados; os de repetições um pouco mais longas que 35 e 36 aminoácidos (L), ou mais 

curtas, de 31 a 34 aminoácidos (S) (Lurin et al. 2004; O’Toole et al. 2008; Barkan and Small 

2014). A família PPR foi então dividida em subfamílias P e PLS de acordo com os motivos 

que compõem essas proteínas. 

Além dos motivos que as compõem, PPRs da subfamília PLS diferem-se da 

subfamília P na porção C-terminal. Após o último motivo PPR, as PLS comumente possuem 

os domínios extras E, E+ e DYW. O domínio E é específico de plantas e está presente em 

quase todas as PLS. Cerca de metade das PLS que possuem domínio E, também possuem o 

domínio DYW, caracterizado por ser uma extremidade C-terminal altamente conservada 

constituída por aspartato (D), tirosina (Y) e triptofano (W) (Liu et al. 2016; Ichinose and 

Sugita 2016). O domínio DYW contém uma assinatura conservada semelhante a de citidina 

deaminases e diversos estudos tem comprovado sua participação efetiva na reação de edição 

de RNA (Salone et al. 2007; Boussardon et al. 2014; Wagoner et al. 2015). A organização 

relativa dos três motivos na extremidade C-terminal segue regras bem caracterizadas: (1) os 

motivos são observados em cópia única na mesma proteína; (2) quando observados na 

mesma proteína, são ordenados de forma colinear E – E+ – DYW, DYW sendo o tripeptídeo 

C-terminal; (3) nas proteínas que possuem o motivo DYW estes quase sempre são 

precedidos de motivos E e E+; da mesma forma, as proteínas que possuem o motivo E+ 

sempre têm um motivo E anterior (Lurin et al. 2004). Estudos têm demonstrado que esses 

domínios são necessários para a atividade de edição de RNA, a qual parece ser a principal 

função de muitas PPRs tipo PLS (Okuda et al. 2009; Ohtani et al. 2010; Chateigner-Boutin 

et al. 2013; Pyo et al. 2013; Brehme et al. 2014; Wang et al. 2017). 

Recentemente, uma nova classificação foi proposta baseada na análise de motivos 

PPR, usando Hidden Markov Model (HMM) em 41 genomas de plantas terrestres 

filogeneticamente diversas (Cheng et al. 2016). Assim, novos motivos foram propostos. Os 

motivos P1 e P2 foram criados derivados do motivo P, todavia, o motivo P se manteve. Os 

motivos L1 e L2 substituíram o motivo L. Os motivos S1, S2 e SS substituíram o motivo S. 

O motivo E foi substituído pelos motivos E1 e E2. Manteve-se o motivo E+ e DYW (Cheng 
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et al. 2016). Dessa forma, a subfamília PLS foi subdividida em subgrupos: PLS, E1, E2, E+ 

e DYW (Figura 1). 

 

 

Figura 1. Representação dos motivos que compõe as subfamílias e subgrupos da 

família de proteínas PPR. O número de motivos em cada proteína pode variar de 2 a 35, e o 

primeiro motivo pode ser qualquer motivo P, P1, L1, S1 ou SS. O subgrupo E + consiste em 

proteínas com um domínio DYW degenerado ou truncado (Adaptado de Cheng et al, 2016). 

 

O reconhecimento dos sítios de edição através dos cis-elementos é realizado pelos 

motivos PPRs (P, L e S). Os motivos têm a capacidade de reconhecer RNA de cadeia simples 

seguindo uma regra de um motivo para uma base (Figura 2) e a composição dos motivos de 

cada proteína determina a especificidade da ligação com o RNA (Barkan et al. 2012; Okuda 
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et al. 2014; Kindgren et al. 2015; Cheng et al. 2016). Todavia, apesar dessa especificidade, 

uma única PPR pode agir em diversos sítios de edição por reconhecer mais de um cis-

elemento ou por esse cis-elemento ser compartilhado entre diferentes sítios de edição (Van 

Der Merwe et al. 2006; Kobayashi et al. 2007; Heller et al. 2008; Zehrmann et al. 2009; 

Okuda and Shikanai 2012). Além disso, devido à expansão das PPRs em plantas, alguns 

estudos têm demonstrado que mais de uma PPR pode agir em um único sítio de edição 

(Verbitskiy et al. 2012). 

Figura 2. Estrutura de um motivo PPR e modelo da ligação da PPR ao RNA. Uma 

repetição consiste em um par de hélices antiparalelas, com a hélice N-terminal de cada 

motivo formando a face de ligação ao RNA e a hélice C-terminal formando a superfície 

externa da proteína. (a) Um único motivo PPR da RNase P organelar de Arabidopsis 

(PRORP1). Resíduos das posições 6 e 1’ foram propostos para determinar a especificidade 

de ligação de nucleotídeos dos motivos PPR. (b) Um modelo de 10 repetições PPR (cinza) 

ligadas a um RNA composto por 9 nucleotídeos de uracila (U) (magenta), orientadas para 

mostrar que as bases estão previstas para interdigitar com as hélices PPR. O sexto motivo 

PPR é sombreado em preto para destacar uma única repetição. (Adaptado de Barkan and 

Small, 2014) 

 



21 
 

Duas PPRs do tipo DYW, RARE1 e AtECB2 (VAC1), foram identificadas como 

fatores de edição de um mesmo sítio em transcritos do gene accD (posição 794) em 

cloroplastos de Arabidopsis. A mutação de RARE1 resultou na abolição completa da edição 

de accD-794 (Robbins et al. 2009), enquanto que em AtECB2 levou a uma redução de edição 

de 60% em relação ao nível do tipo selvagem (Tseng et al. 2010). Análises in silico de 

atribuição de alvo sugeriram que RARE1, mas não AtECB2, seria de fato um fator de 

reconhecimento para edição de accD-794. AtECB2 estaria envolvido na edição de accD-

794, mas não seria necessária para o reconhecimento do sítio de edição (Yagi et al. 2013b). 

Dessa forma, PPRs poderiam atuar de forma cooperativa na edição de RNA; a perda de 

função de uma PPR poderia reduzir, mas não abolir completamente a edição em um sítio de 

edição específico, já que a edição restante poderia ser realizada por outra PPR (Yagi et al. 

2013b; Ichinose and Sugita 2016). 

1.4.2. Outros fatores de edição 

Proteínas não-PPR foram identificadas como componentes essenciais no 

editosomo: primeiro a família RIP/MORF (Multiple Organellar RNA-editing Factors), 

depois a família ORRM (Organelle-localized RNA-Recognition Motif-containing) e, mais 

tarde, um membro da família OZ (Tabela 1). A imunoprecipitação de RARE1 marcada com 

epítopo resultou na identificação de uma proteína não-PPR, a proteína RIP1 (RNA editing 

factor interacting protein 1) (Bentolila et al. 2012). O mutante rip1 de Arabidopsis tem uma 

significativa redução da edição em mais de 400 sítios em mitocôndrias e 11 sítios em 

cloroplastos, tornando-se o fator de edição mais influente já identificado em plantas 

(Bentolila et al. 2013). A família RIP/MORF  é composta por 10 membros em Arabidopsis; 

destes, cinco são os principais fatores de edição para mitocôndrias e/ou cloroplastos, 

enquanto membros restantes têm menor ou nenhum efeito na edição (Takenaka et al. 2012; 

Bentolila et al. 2013).  

 

Tabela 1. Lista de fatores de edição não-PPR (Adaptado de Sun et al. 2016) 

Família proteica Proteína 
Localização 

subcelular 

% sítios de 

edição afetados 

em cloroplastos 

% sítios de 

edição afetados 

em mitocôndrias 

RIP/MORF RIP1/MORF8 Dupla* 22% 77% 

 RIP2/MORF2 Cloroplasto 100% NA 

 RIP3/MORF3 Mitocôndria NA 26% 

 RIP8/MORF1 Mitocôndria NA 19% 
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 RIP9/MORF9 Cloroplasto 97% NA 

ORRM ORRM1 Cloroplasto 62% NA 

 ORRM2 Mitocôndria NA 6% 

 ORRM3 Mitocôndria NA 19% 

 ORRM4 Mitocôndria NA 44% 

 ORRM5 Mitocôndria NA 14% 
 ORRM6 Cloroplasto 1% NA 

OZ OZ1 Cloroplasto 81% NA 

 PPO1 Cloroplasto 50% NA 

 OCP3 Cloroplasto 12% NA 

 CP31 Cloroplasto 38% NA 

*Dupla: mitocôndria e cloroplasto 

 

RIP2/MORF2 e RIP9/MORF9 são direcionadas para cloroplastos, enquanto que 

RIP1/MORF8 é direcionada para cloroplastos e mitocôndrias. Os membros restantes são 

direcionados para mitocôndrias, com a exceção de RIP10, que pode ser codificado por um 

pseudogene (Bentolila et al. 2013; Shikanai 2015). Excluindo-se RIP1/MORF8, 

RIP9/MORF9 e RIP8/MORF1 são responsáveis pela maior parte da edição em cloroplastos 

e mitocôndria, respectivamente. Devido à sua importância, estudos têm procurado descrever 

as características estruturais dessas proteínas (Haag et al. 2017). Duas proteínas RIP/MORF 

podem formar heterodímeros, cuja função pode ser substituída por homodímeros em alguns 

sítios (Takenaka et al. 2012; Zehrmann et al. 2015a; Glass et al. 2015). Interações seletivas 

entre PPR-PLS, bem como PPRs que possuem o domínio E e proteínas RIP/MORF sugerem 

que os domínios que compõem as PPRs e as proteínas MORF desempenham um papel 

fundamental para que complexos de proteínas específicos se agrupem em diferentes locais 

para a edição de RNA (Glass et al. 2015; Bayer-Császár et al. 2017; Yan et al. 2017). 

O primeiro fator de edição da família ORRM descrito foi ORRM1. ORRM1 possui 

dois motivos RIP truncados que interagem com RIP1/MORF8 em sua extremidade N-

terminal, além de um domínio RRM na extremidade C-terminal, sendo descoberto através 

de análises in silico em bancos de dados com a sequência da proteína RIP1/MORF8 (Sun et 

al. 2013). ORRM1 controla mais de 60% dos sítios de edição de cloroplastos em Arabidopsis 

(Sun et al. 2016). Embora o RRM seja um motivo muito comum em eucariotos, o motivo 

RRM em ORRM1 pertence a um clado distinto de aproximadamente 20 membros em 

Arabidopsis (Sun et al. 2013). Exceto para ORRM1, nenhum dos outros membros possui um 

domínio RIP, em vez disso, muitos contêm regiões ricas em glicina (Shi et al. 2017b).  
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A família ORRM possui 6 membros (ORRM1-6) que estão relacionados com 

edição de RNA em cloroplastos e mitocôndrias; ORRM1 e 6 em cloroplastos e ORRM2, 3, 

4 e 5 em mitocôndrias (Sun et al. 2013; Shi et al. 2015; Shi et al. 2016a; Shi et al. 2016b; 

Hackett et al. 2017; Shi et al. 2017a). Experimentos de interação proteína-proteína 

demonstram que as proteínas ORRM interagem com outros componentes dos complexos de 

edição de RNA (Sun et al. 2016): com PPRs que são necessárias para a edição dos sítios 

regulados por cada ORRM (Sun et al. 2013); com RIP/MORFs (Hackett et al. 2017) e em 

alguns casos, com elas próprias, formando homo e heterodímeros (Shi et al. 2015; Shi et al. 

2016b). Além disso, as proteínas ORRM se ligam a RNAs com uma ampla gama de 

afinidades e especificidades (Vermel et al. 2002; Sun et al. 2013; Hackett et al. 2017). 

A descoberta da proteína membro da família OZ foi análoga à descoberta de RIP1; 

OZ1 foi encontrado em um complexo de proteínas coimunoprecipitada com ORRM1 (Sun 

et al. 2015). O mutante oz1 em Arabidopsis tem uma perda na edição de 30 sítios em 

cloroplastos, sendo que em 14 destes, a diminuição é maior que 90% quando comparado ao 

nível do tipo selvagem. Em Arabidopsis, a família OZ contém 4 membros, OZ1-4, dos quais 

três estão previstos para serem localizados em cloroplastos enquanto um é mitocondrial 

(Ichinose and Sugita 2016). O único domínio anotado da família é o zinc-finger tipo RanBP2 

que é repetido em diferentes quantidades nos membros OZ; no entanto, existe outro domínio 

conservado de função desconhecida nas quatro proteínas OZ (Sun et al. 2016). OZ1 interage 

seletivamente com PPRs e também se associa fortemente a ORRM1 e ORRM6, mas não 

parece se ligar diretamente a RIPs/MORFs, apesar de apresentar uma interação fraca com 

RIP1 em ensaios de duplo híbrido (Sun et al. 2013; Sun et al. 2015; Hackett et al. 2017). 

OZ1 também pode formar homodímeros (Sun et al. 2015). A função dos domínios zinc-

finger e dos outros domínios não caracterizados das proteínas OZ na edição de RNA 

aguardam uma investigação mais aprofundada. 

Além das proteínas já citadas e suas respectivas famílias, outras três proteínas 

adicionais - CP31, PPO1 e OCP3 - afetam a eficiência de edição de RNA em cloroplastos. 

CP31 é uma proteína que contém domínios RRM. No entanto, numa análise filogenética, 

CP31 não pertence ao mesmo clado das ORRMs e apesar da perda de CP31 levar a níveis 

de edição reduzidos em vários sítios, não afeta a edição em um padrão específico de sítios 

como é visto no mutante orrm1 (Tillich et al. 2009; Sun et al. 2013; Shi et al. 2017b). Além 

disso, a transcrição é bastante reduzida em mutantes cp31, o que sugere que CP31 pode ser 
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principalmente um fator de estabilidade de RNA (Tillich et al. 2009; Kupsch et al. 2012; Sun 

et al. 2016). 

A protoporfirinogênio IX oxidase 1 (PPO1) medeia o passo final da via comum 

compartilhada pela biossíntese de clorofila e heme (Koch et al. 2004). O mutante ppo1 tem 

a edição reduzida em 18 sítios de edição, sendo a maioria em transcritos de genes do 

complexo Ndh (Zhang et al. 2014). Apesar da redução, com exceção de um sítio, nenhum 

dos sítios afetados perde completamente a edição quando PPO1 está ausente. PPO1 interage 

diretamente com RIP/MORFs de cloroplastos (RIP1/MORF8 e RIP9/MORF9), mas não 

com PPRs, sugerindo que PPO1 controle o nível de edição de cloroplasto através da 

estabilização de RIP/MORFs (Zhang et al. 2014; Sun et al. 2016).  

A proteína que menos se conhece sobre sua relação com a edição de RNA até o 

momento é o fator de transcrição OVEREXPRESSOR OF CATIONIC PEROXIDASE3 

(OCP3). OCP3 é endereçado ao cloroplasto e se combina a PPR. Além disso, uma análise 

demonstrou sua coexpressão com um conjunto de 9 genes que codificam PPRs. Mutantes 

ocp3 exibe apenas uma edição suavemente reduzida, afetando a edição de múltiplos sítios 

em transcritos do gene plastidial ndhB (García-Andrade et al. 2013). Embora reduzida, foi 

suficiente para prejudicar a atividade de NDH, o que consequentemente aumentou a 

resistência da planta à infecção por fungos (Coego 2005; García-Andrade et al. 2013). 

1.5. Efeito de estresses abióticos na edição de RNA 

Poucos trabalhos caracterizaram os efeitos de estresses abióticos na edição de RNA 

em cloroplastos. O aumento da temperatura leva a uma diminuição das taxas de edição de 

transcritos dos genes rps14 e rpl20 em milho, apesar do aumento significante da taxa de 

transcrição destes genes (Nakajima et al. 2001). Além destes dois genes, efeitos do calor na 

edição dos transcritos do gene ndhB foi demonstrado em tabaco. Quando sob uma 

temperatura de 42°C, o bloqueio da edição ocorre especificamente em 3 sítios. Além da 

edição, o processamento através de splicing neste gene é comprometido (Karcher and Bock 

2002). Uma perda da interação das proteínas que promovem a ligação aos sítios e o RNA 

alvo, devido alterações da conformação das proteínas pode levar a efeitos negativos no 

processo de edição de RNA. 

Além da quantidade reduzida de informações dos efeitos dos estresses no processo 

de edição, os trabalhos que visam caracterizar sítios de edição em RNA plastidial limitam-

se à caracterização dos sítios conservados. Dessa forma, o impacto de estresses na edição de 
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sítios espécie-específicos não pode ser avaliado. A caracterização dos sítios de edição, seus 

cis-elementos e respectivos fatores de edição é um importante passo para a compreensão da 

história do processo de edição de RNA dentro do processo evolutivo das plantas e suas 

organelas. A análise da influência de estresses abióticos no processo de edição pode 

contribuir para a compreensão do papel da edição de RNA nas respostas a esses estresses, 

bem como na seleção de genes responsivos frente aos estresses. 
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2. OBJETIVOS 

 O presente trabalho teve como objetivo a caracterização dos sítios de edição e de 

fatores associados à edição de RNA em Glycine max, e a influência do estresse abiótico no 

processo de edição de RNA em cloroplastos. 

 

 

Objetivos específicos: 

 

• Estabelecer um método in silico para identificação de sítios de edição em 

cloroplastos utilizando bibliotecas de sequenciamento de nova geração; 

• Identificar os sítios de edição de RNA em cloroplastos de Glycine max; 

• Avaliar o padrão de edição de RNA em cloroplastos de soja sob estresse salino; 

• Identificar PPRs que se ligam a cis-elementos de sítios de edição de RNA em 

cloroplastos de Glycine max; 
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3. Capítulo 1 - Unveiling chloroplast RNA editing events using next generation small 

RNA sequencing data 
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Organellar RNA editing involves the modification of nucleotide sequences to maintain

conserved protein functions, mainly by reverting non-neutral codon mutations. The loss

of plastid editing events, resulting from mutations in RNA editing factors or through

stress interference, leads to developmental, physiological and photosynthetic alterations.

Recently, next generation sequencing technology has generated the massive discovery

of sRNA sequences and expanded the number of sRNA data. Here, we present amethod

to screen chloroplast RNA editing using public sRNA libraries from Arabidopsis, soybean

and rice. We mapped the sRNAs against the nuclear, mitochondrial and plastid genomes

to confirm predicted cytosine to uracil (C-to-U) editing events and identify new editing

sites in plastids. Among the predicted editing sites, 40.57, 34.78, and 25.31% were

confirmed using sRNAs from Arabidopsis, soybean and rice, respectively. SNP analysis

revealed 58.2, 43.9, and 37.5% new C-to-U changes in the respective species and

identified known and new putative adenosine to inosine (A-to-I) RNA editing in tRNAs.

The present method and data reveal the potential of sRNA as a reliable source to identify

new and confirm known editing sites.

Keywords: small RNA, chloroplast, RNA editing, NGS, SNP genotyping

INTRODUCTION

Chloroplasts are notable examples of successful endosymbiosis in the early origin of modern
life forms. These organelles possess their own gene expression machinery, with complex
posttranscriptional processes and fine nucleus-cytosol crosstalk. In plants, these organelles undergo
a posttranscriptional process called RNA editing, corresponding to nucleotide changes from
cytosine to uracil (C-to-U) and less frequently from uracil to cytosine (U-to-C), in some sites
of coding sequences (Tillich et al., 2006; Chateigner-Boutin and Small, 2010). These nucleotide
changes correct the codons to encode appropriate amino acids, maintaining the functional amino
acid sequence of the evolutionarily conserved protein (Takenaka et al., 2013). Another well-known
mechanism of RNA editing is the adenine to inosine (A-to-I) editing, as observed in the chloroplast
tRNAArg (ACG). This type of editing enables hydrogen bond formation with more than one base
in the corresponding codon position (Su and Randau, 2011). The A-to-I editing in position 34 of
the tRNAArg (ACG) produces the wobble nucleotide described as essential for efficient chloroplast
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translation (Delannoy et al., 2009). In Arabidopsis thaliana,
arginine tRNA adenosine deaminase (TAD or ADAT) performs
this deamination (Elias and Huang, 2005; Delannoy et al., 2009).

RNA editing in coding sequences increases the conservation
levels among proteins across several plants species.
Evolutionarily, codons generated by RNA editing are more
conserved than codons encoded by genomic DNA (Guo et al.,
2015). Editing sites located within coding sequences have been
well studied, despite the existence of editing sites in non-coding
regions, such as introns and tRNAs. There are several cases of
different editing efficiencies from plant to plant, and even among
different plant tissues (Peeters and Hanson, 2002; Chateigner-
Boutin and Hanson, 2003; Tseng et al., 2013), suggesting that
several different RNA editing sites remain to be elucidated.

The identification of all components from the RNA editing
machinery has not yet been achieved, although several proteins
have been identified as important for the maintenance of
editing processes. The pentatricopeptide repeat proteins (PPR)
are a highly diverse protein family. In the plant evolutionary
landscape of PPR proteins, 109 genomes/proteomes were
analyzed, resulting in a total of 49,204 PPR genes and 616,206
motifs (Cheng et al., 2016). Some of these PPRs harbor a DYW
motif, similar to the deaminasemotifs observed in other proteins,
which could explain the C-to-U nucleotide conversion (Salone
et al., 2007; Schallenberg-Rüdinger et al., 2013; Hayes et al., 2015).
In addition, several studies have reported PPRs associated with
specific RNA editing events, demonstrating that these molecules
bind to specific cis-elements located upstream of the RNA editing
site (Okuda et al., 2006; Barkan and Small, 2014). Moreover, the
PPR alone is not sufficient to promote RNA editing but requires
other proteins, such as RNA editing-interacting (RIP/MORF),
OMMR and OZ proteins, to achieve a successful editing event
(Bentolila et al., 2013; Sun et al., 2016).

The most frequent plastid RNA editing type in flowering
plants is the C-to-U change, with approximately 40 sites detected
thus far in Arabidopsis (Takenaka et al., 2013). To facilitate RNA
editing site prediction in organelles, software, such as PREP suite
has been developed (Mower, 2009). These programs enable RNA
editing site prediction in genes from organelles by considering
homology and conservation among protein sequences compared
to genomic databases. Currently, thousands of partial and
complete plastid genomes are available in NCBI, which can be
used to extensively search for RNA editing events.

Different experimental techniques have identified chloroplast
RNA editing sites. A widely used method is the reverse
transcription PCR (RT-PCR) of plastidmessenger RNAs in which
several chloroplast cDNA fragments are cloned into vectors and
further sequenced (Rüdinger et al., 2009). Additionally, if a
chloroplast candidate gene sequence is previously known, then
specific primers can be designed to direct the gene amplification
from cDNA samples, with subsequent sequencing (Wolf et al.,
2004). RNA editing events can also be detected through the
Poisoned Primer Extension method or High Resolution Melting
(HRM) analysis (Chateigner-Boutin and Small, 2007), using
chloroplast cDNA as a template for amplification. Another
method to measure RNA editing is multiplex RT-PCR mass
spectrometry, described as a robust and convenient method

(Germain et al., 2015). Although robust, these methods are
dependent on specific primers and are restricted to RNA editing
studies only.

RNA sequencing has facilitated RNA editing analyses
by comparing reads from RNA-seq data with organelle
genome references. Currently, RNA-seq is primarily adapted to
study polyadenylated transcripts. Thus, as their cyanobacterial
ancestor, several plastid polyadenylated RNA transcripts are
associated with the RNA decay pathway via degradation by
3′– 5′ exoribonucleases (Komine et al., 2002; Zimmer et al.,
2009). Therefore, this approach generates RNA-seq libraries
with smaller amounts of plastid reads than libraries generated
from organelle-enriched RNA samples, with posterior reduction
of ribosomal RNA (Guo et al., 2015). Furthermore, these
approaches restrict the analysis to only transcripts located in
chloroplasts, preventing a comparative analysis between nuclear
and plastid transcripts.

In recent years, studies of small RNAs (sRNA) have
considerably increased, particularly associated with the deep
sequencing of microRNAs (miRNAs) and other small non-
coding RNAs (ncRNAs) from nuclear origin, producing a large
amount of new sequence data. These studies have focused on
the roles of sRNAs in genome maintenance, development and
plant responses to environmental stresses (Simon et al., 2009;
Long et al., 2015; Xu et al., 2015). However, plastid-derived sRNA
sequences have also been identified in these total sRNA libraries
(Ruwe and Schmitz-Linneweber, 2012; Zhelyazkova et al., 2012;
Ruwe et al., 2016). Therefore, considerable amounts of sRNA
data are available in public databases and can be employed
for RNA editing studies. In the present study, we propose that
sRNA sequencing data could represent an additional resource
to identify chloroplast RNA editing events, in addition to other
approaches, such as strand-specific RNA sequencing and Single
Nucleotide Polymorphism (SNP). Here, we describe a method
for identifying a set of new editing sites in chloroplast transcripts
using sRNA data. Analyses of sRNA libraries can provide a
strong qualitative and reliable quantitative measure of plastid
RNA editing events.

MATERIALS AND METHODS

sRNA Libraries and Chloroplast Genomes
Public RNA libraries deposited in NCBI GEO
(www.ncbi.nlm.nih.gov/geo/) with accession numbers GSE85070
(Wu et al., 2016) (Arabidopsis thaliana, mRNA-seq and sRNA-
seq), GSE69571 (da Fonseca et al., 2016) (Glycine max, soybean,
mRNA-seq and sRNA-seq) and GSE77046 (Neto et al., 2015)
(Oryza sativa japonica group, rice, sRNA-seq; mRNA-seq data
unpublished) were used as input data to evaluate the proposed
method. These libraries were produced from samples with no
qualitative influence on RNA editing and did not use any method
to enrich the isolation of plastid RNAs. The Arabidopsis mutant
data present in the libraries were not used. For sRNA analyses,
only reads with 18–24 nucleotides were selected from the
libraries. Complete chloroplast genome, coding sequences and
tRNAs from Arabidopsis (NC_000932), soybean (NC_007942),
and rice (NC_001320) were obtained separately at the Index
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of Genomes from The CpBase: Chloroplast Genome Database
(http://chloroplast.ocean.washington.edu/).

Prediction of Conserved Editing Sites
The Predictive RNA Editor for Plants suite (PREP-Cp)
(http://prep.unl.edu/) (Mower, 2009) was used to predict
conserved plastid editing sites. These sites were used to evaluate
read coverage and editing percentage using the sRNA data.
Fasta files corresponding to plastid coding sequence data were
manually formatted to be usedfor use as an input batch file in
the PREP-Cp tool. To predict editing sites for each species, a
less stringent cutoff value of 0.5 was used, despite the 0.8 default
value. This lower cutoff value was used to evaluate the effective
occurrence of the predicted editing sites and their efficacious
detection from sRNA data.

RNA Mapping and Confirmation of
Predicted Sites
The sRNA/mRNA libraries were primarily mapped using Bowtie
(Langmead et al., 2009) with 0 mismatch and no reverse
complement against the chloroplast genome, coding sequences
and tRNAs. Mapped reads resulted in a new file (m0). Unmapped
reads were submitted to a second round of mapping with
no mismatches against nuclear and mitochondrial genomes.
This step eliminates all reads with perfect matches against
these genomes. Unmapped reads were further mapped with
two mismatches and no reverse complement against chloroplast
genome and coding sequences. This second group of mapped
reads produced another file containing reads with editing events
(m2). Both m0 and m2 fastq files were concatenated in an m0
+ m2 file. The C-to-U editing sites predicted by PREP-Cp in the
cpDNA coding sequence were subjected to m0 + m2 mapping
and further manual inspection using Tablet software (Milne
et al., 2013). The predicted editing sites were confirmed based
on a C-to-T mapping change. The steps described above are
summarized in Figure 1.

Single Nucleotide Polymorphism Analysis
The m0 + m2 fastq files from sRNA libraries were mapped
against the whole chloroplast genome, coding sequences and
tRNAs using Geneious-R8 (Kearse et al., 2012), with the Bowtie
algorithm and the same parameters of the previous mapping
(Figure 1). The Geneious find variation/SNPs tool was used
to search for A-to-G and C-to-T changes in putative new
editing sites that were not predicted by PREP. The following
parameters were used: Minimum Coverage of 5, Maximum
Variant P-value of 10−2, option to find polymorphism Inside
and Outside coding sequence and P-value calculation method as
approximate. In the manual inspection of mapping, reads with
putative editing events in the 5′ and 3′ end were discarded to
improve prediction and selection for validation using RT-qPCR
assay.

Validation and Analysis of the RNA Editing
Sites Using RT-qPCR
To validate predicted and new C-to-U RNA editing sites from
the sRNA data in soybean chloroplast transcripts [Glycine max

FIGURE 1 | Pipeline for identification of editing sites using chloroplast RNA

transcripts. (1) sRNA-seq/mRNA-seq reads were filtered by mapping against

the chloroplast reference genome. Mapped reads were saved as another file

named as m0 (chloroplast RNAs m0). (2) Reads that did not map were

subjected to a new round of mapping against nuclear and mitochondrial

reference genomes, and those reads that did map were discarded. (3) The

remaining unmapped reads were remapped against the chloroplast genome

allowing up to 2 mismatches using Bowtie. (4) The resulting mapped reads

(chloroplast m0 + m2), plus the m0 file, were used in the analysis to predict

transcript editing sites through PREP and Geneious SNPs approaches.

(L.) Merrill], we collected the roots, leaves and petals from
the soybean cultivar Conquista. These tissues were collected
as biological triplicates. All samples were immediately frozen
in liquid nitrogen, and total RNA was extracted using Trizol
(Invitrogen, CA, USA). The RNA quality was evaluated through
electrophoresis on a 1% agarose gel, and the RNA amount was
verified using a Qubit fluorometer and Quant-iT RNA assay kit
according to the manufacturer’s instructions (Invitrogen, CA,
USA).

Reverse transcription quantitative polymerase chain reaction
(RT-qPCR) was performed to validate the C-to-U RNA editing
rates for some predicted editing sites in soybean chloroplast
genes across three different tissues (roots, leaves and petals).
To validate and quantify new RNA editing sites, only leaf
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samples were used. The cDNA synthesis was performed with
approximately 1 µg of total RNA. Each reaction was primed
with 1 µM dT25V oligonucleotide (Invitrogen, Carlsbad, CA,
USA). Prior to transcription, RNA and the oligo(dT)25V primer
oligo were mixed with RNase-free water to a total volume of
10 µL and incubated at 70◦C for 5 min, followed by cooling
on ice. The reactions were reverse transcribed with 1X M-MLV
RT buffer, 0.5 mM dNTPs (Ludwig, Porto Alegre, RS, Brazil)
and 200 U of M-MLV RT Enzyme (Promega, Madison, WI,
USA) in a final volume of 30 µL. The synthesis was performed
at 40◦C for 60 min. All cDNA samples were diluted 100-
fold with RNase-free water and subsequently used as templates
in RT-qPCR analysis. The subsequent PCR amplification was
performed using a set of primers designed according to Chen
et al. (2008), with modifications. A set of primers, comprising
two specific editing primers and one unique universal primer,
were designed for each editing site. Specific editing primers
were characterized by a unique difference in the last nucleotide
at the 3′ end that recognizes and differentiates edited and
unedited sites. All primers employed in the reaction are listed in
Table S1.

All RT-qPCR reactions were performed on a Bio-Rad CFX384
real-time PCR detection system (Bio-Rad, Hercules, CA, USA)
using SYBR Green I (Invitrogen, Carlsbad, CA, USA) to detect
double-stranded cDNA synthesis. The reactions were conducted
in a 10 µL volume containing 5 µL of diluted cDNA (1:100),
0.2X SYBR Green I, 0.1 mM dNTP, 1X PCR buffer, 3 mMMgCl2,
0.25 U Platinum Taq DNA Polymerase (Invitrogen, Carlsbad,
CA, USA) and 200 nM of each forward and reverse primer.
The samples were analyzed as biological triplicates and technical
quadruplicates in a 384-well plate. A non-template control was
also included. The PCR reactions were run under the following
conditions: an initial polymerase hot start at 94◦C for 5 min,
followed by 40 cycles at 94◦C for 15 s, 60◦C for 15 s and
72◦C for 10 s. A melting curve analysis was programmed at
the end of the PCR run over the range of 65 to 99◦C, and
the temperature increased stepwise by 0.5◦C. The threshold and
baseline were manually determined using Bio-Rad CFX manager
software.

To calculate the RNA editing rates, we used the threshold cycle
(Ct) generated during the qPCR amplifications. To calculate the
percentage of editing, an equation that considered the difference

between the Ct-values of each editing variant was used:

% RNA editing =

2(Ct mean of T variant − Ct mean of C variant)

2(Ct mean of T variant − Ct mean of C variant) + 1
× 100

RESULTS

sRNA Reads Mapped to Chloroplast
Genomes
The sRNA libraries sequenced without plastid RNA isolation
were mapped to Arabidopsis, soybean and rice chloroplast
genomes using an in-house pipeline (Figure 1). Approximately
3.2, 1.6, and 0.9 million reads did not map to nuclear and
mitochondrial genomes but mapped to Arabidopsis, soybean and
rice chloroplast genomes, respectively. These chloroplast (cp)-
mapped reads represented approximately 22.9% (Arabidopsis),
4.79% (soybean), and 3.62% (rice) of the total reads in
these libraries (Table 1). The editing informative m2 reads
corresponded to 455,904 (Arabidopsis), 208,417 (soybean), and
144,609 (rice). The histograms representing the percentage
length distribution of each individual class are shown in
Figure S1. The mean coverage was 838.6 in Arabidopsis, 358.6
in soybean and 222 in rice. The maximum coverage values were
872,674 in Arabidopsis, 380,116 in soybean and 166,534 in rice.
Some chloroplast regions were not covered by the sRNA library
reads, with minimal coverage of zero. The number of plastid
genome positions with no coverage was 47,057 in Arabidopsis,
24,505 in soybean and 3,039 in rice, representing approximately
30.46, 16.09, and 2.25% of each chloroplast genome, respectively.
The genome fraction coverage for Arabidopsis, soybean and rice
is represented in Figure S2.

sRNA Polymorphisms Confirm PREP
Editing Site Prediction in Coding-Sequence
Genes
The conserved chloroplast C-to-U RNA editing sites were
predicted using the Predictive RNA Editor for Plants (PREP-Cp)
(http://prep.unl.edu/) (Mower, 2009). The PREP suite predicted
69 potential editing sites in Arabidopsis, 92 sites in soybean and
79 sites in rice chloroplast genes. These predicted editing sites

TABLE 1 | Distribution of sRNA sequences among nuclear, mitochondrial and plastid genomes.

Organism Total Nuclear mtDNA cpDNA

(m0)

cpDNA

(m2)

cpDNA

total

Not aligned

Arabidopsis 14,113,280 6,369,985 18,393 2,778,067 454,904 3,232,971 4,491,931

100% 45.13% 0.13% 19.68% 3.22% 22.9% 31.82%

Soybean 34,313,559 28,219,467 46,399 1,438,193 208,417 1,646,610 4,401,083

100% 82.23% 0.13% 4.19% 0.60% 4.79% 12.82%

Rice 25,247,958 21,479,400 12,003 768,437 144,609 913,046 2,843,509

100% 85.07% 0.05% 3.04% 0.57% 3.62% 11.27%

m0, reads with no mismatches.

m2, reads with until 2 mismatches.
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were distributed in 21 different coding sequences in Arabidopsis
and rice and 23 coding sequences in soybean. The mapped
chloroplast sRNA reads were analyzed using Tablet software to
evaluate the presence/absence of C-to-U editing events in the
predicted sites. Different numbers of confirmed editing sites were
observed among the three species: 28 sites in Arabidopsis, 32
sites in soybean and 20 sites in rice, corresponding to 40.57,
34.78, and 25.31% of the total sites, respectively. The PREP
score (values between 0 and 1) indicates editing site prediction
confidence to control the relative proportion of false positive
and false negative predictions. When a more stringent score
value (≥0.8) was considered, the predicted editing site numbers
decreased to 45, 59, and 29 for Arabidopsis, soybean and rice,
respectively. Analyses of chloroplast sRNA alignment confirmed
the 23 predicted editing sites in Arabidopsis, 28 sites in soybean,

and 14 sites in rice, corresponding to 51.1, 47.45, and 48.27%
of the total predicted editing sites, respectively (Figure 2A).
Even with a higher score value, some predicted sites were not
confirmed, reflecting the absence of reads corresponding to
editing or not enough coverage (Table S2). Four editing sites were
conservatively predicted and confirmed among the three species.
These sites corresponded to three sites inside the ndhB transcript
and one site in the rps14 transcript. Soybean and Arabidopsis
shared 11 common editing sites in the atpF, clpP, ndhB, ndhD,
psbE, psbF, rpoB, rpoC1, and rps14 transcripts. Concerning the
rice atpF, clpP, ndhB, psbE, and psbF genes, a thymine was already
present in these editing sites. Rice shared a single editing site
with Arabidopsis in the ndhB transcript at position 467, which
in soybean corresponds to a thymine. The numbers of unique
confirmed editing sites for each species were 12, 16, and 14

FIGURE 2 | PREP predicted editing sites and graphical read distribution and editing in the ndhB transcript. (A) Venn diagram with confirmed RNA editing sites

predicted by PREP in Arabidopsis, soybean and rice. Gene names followed by the position numbering of the editing site in the coding sequence are indicated. (B)

Graphical representation of sRNA coverage and predicted editing sites in the ndhB gene; (S) editing sites identified by SNP analysis, (T) predicted editing site in

another species that already has a thymine in the species, (*) editing site predicted by PREP and confirmed by read mapping and coverage, (−) predicted sites with

reads but not confirmed by editing and (0) predicted editing sites without read coverage.
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for Arabidopsis, soybean and rice, respectively (Figure 2A). The
complete distribution of PREP predicted editing sites according
to species is described in Table S2.

mRNA-Seq and sRNA-Seq Differences in
RNA Editing Analysis
To provide information concerning sRNA data reliability, the
C-to-U RNA editing profiles were compared to the PREP
predicted editing sites between the sRNA and mRNA (messenger
RNA) libraries in Arabidopsis, soybean and rice. The mRNA-Seq
data confirmed 27 predicted editing sites in Arabidopsis, 37 sites
in soybean and 20 sites in rice, corresponding to 39.13, 40.21,
and 25.31% of the predicted sites, respectively (Table S3). One
predicted editing site was exclusively confirmed using mRNA-
Seq libraries in Arabidopsis, and 11 predicted editing sites were
confirmed in soybean and rice. However, analyses using sRNA-
Seq libraries detected two exclusively confirmed editing sites in
Arabidopsis, six sites in soybean and eight sites in rice. The
confirmed predicted editing sites shared between mRNA and
sRNA data corresponded to 37.68, 28.26, and 15.19% of the
total predicted editing sites in Arabidopsis, soybean and rice,
respectively (Figure 3).

Confirmation of PREP Predicted Editing
Sites and New Editing Site Prediction
through SNP Analysis in
Coding-Sequences Using sRNA Data
In addition to the confirmation of the predicted editing sites,
new candidates for editing sites were searched. A SNP analysis
was used with a minimum P-value of ≤ 10−10 to identify sites
with C-to-T changes. This parameter enabled the identification
of 59 potential editing sites in Arabidopsis, 43 sites in soybean,
and 19 sites in rice. Among these editing sites, 58, 37, and 15

FIGURE 3 | Comparison of predicted editing site confirmation between sRNA

and mRNA data. On the left, values of total confirmed predicted editing sites

by data type (mRNA or sRNA). Green boxes represent editing sites confirmed

in both data; yellow boxes represent editing sites confirmed only in mRNA

data; blue boxes represent editing sites confirmed only in sRNA data; and

black boxes represent unconfirmed predicted editing sites.

sites encode amino acid changes in Arabidopsis, soybean and
rice, respectively (Table S4). These editing sites were distributed
in 27 genes in Arabidopsis, 24 genes in soybean and 11 genes
in rice. Comparison of these editing sites against the editing
sites predicted using PREP revealed that 20, 18, and 7 sites
were previously predicted in Arabidopsis, soybean and rice,
respectively (Table S5). Among these sites, 18, 18, and 6 sites were
predicted with a higher score value in Arabidopsis, soybean and
rice, respectively.

When the edited transcript distribution was evaluated in all
species (Figure 4A), a higher editing frequency was associated
with a core of genes (clpP, ndhB, ndhF, rpoA, rpoB, rpoC1,
rpoC2, and rps14) and confirmed with at least one method used
for all species evaluated. Considering exclusive edited genes,
Arabidopsis showed 14 editing sites distributed among nine
genes identified using SNP analysis. The editing in the rice atpA
gene, detected through SNP analysis, was predicted by PREP.
Soybean presented four exclusive editing sites confirmed by
sRNA reads and predicted by PREP. They sites were distributed
among the petB, rps2, and rps14 genes. C-to-U changes promote
a serine to leucine amino acid change in petB and rps14 and

FIGURE 4 | Number of genes with C-to-U editing sites in the studied species.

(A) Venn diagram with the total number of genes with editing sites in

Arabidopsis, soybean and rice, when using both PREP (only confirmed) and

SNP analysis. Not all genes share common editing sites among species. The

gene identities are described in Table S6. (B) Percentages of total RNA editing

sites identified by distinct approaches, as observed in Arabidopsis, soybean

and rice. The absolute number of editing sites for each method is in

parentheses. Black bars correspond to the percentage of total sites confirmed

only by PREP prediction (>0.8 in prediction score); white bars indicate the

percentage of total sites confirmed by the SNP approach; and gray bars show

the percentage of total sites confirmed using both approaches.
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a histidine to tyrosine amino acid change in rps2. Arabidopsis,
soybean and rice SNP analysis revealed 19, 15, and 7 C-to-
T changes distributed among 11, 10 and five exclusive genes,
respectively. All genes and their respective editing sites are listed
in Table S6. The comparative C-to-T analysis using different
identification methods demonstrated that the SNP method
could identify reliable C-to-U editing events, including events
previously predicted using PREP at a lower PREP score (>
0.5) (Figure S3) or a more stringent cutoff (PREP score >0.8)
(Figure 4B).

C-to-U RNA Editing in the ndhB Gene
The well-studied ndhB gene was the most frequently edited gene
detected through PREP prediction in all plants. The number
of editing sites predicted by PREP in this gene varied between
species: 9 sites in Arabidopsis, 13 in soybean and 10 in rice.
The number of editing sites confirmed by sRNA alignment
was 7 sites in Arabidopsis, 9 sites in soybean and 7 sites in
rice, representing 77.7, 69.23, and 70% of the predicted editing
sites, respectively. Other editing sites could not be confirmed,
reflecting insufficient read coverage (Table 2). In contrast, despite
high predicted editing site numbers, 7 sites in Arabidopsis, 9
sites in soybean and 5 sites in rice, the matK gene had only
two confirmed predicted editing sites in Arabidopsis and one
confirmed predicted editing site in soybean and rice (Table S2).

In the ndhB gene, SNP analysis detected potential new editing
sites in all three species (Table 2). However, this gene was not the
most edited gene according to SNP analysis in rice. In this species,
ndhB had three new potential editing sites, while rpoC2 gene
had four new sites. In Arabidopsis, ndhD had 8 new potential
editing sites according to SNP analysis. In soybean, the ndhB
gene remained as the most edited gene (Table S6). Comparative
analyses showed a different read distribution of the predicted sites
in ndhB among species (Figure 2B). Some regions showed higher
coverage, not only in the editing site, but also in neighboring sites.
For example, PREP predicted 467 editing sites (C-to-U), with
varied coverage between species, but reads confirming the editing
event were observed in both Arabidopsis and rice. Although
soybean had a higher amount of reads in this site, a T was present
in this genomic position. Notably, several sites showed more
than 10 reads of coverage but did not confirm editing events.
Some putative editing sites predicted using SNP analysis showed
higher coverage than the predicted sites confirmed using PREP
(Table 2).

A-to-I Editing Events Predicted Using SNP
Analysis in Chloroplast tRNA Genes
Chloroplast sRNAs can also be useful in adenosine to inosine (A-
to-I) RNA editing screening. tRNA genes were used to evaluate
editing events, by searching for a guanosine (G) SNP in sRNA
mapping since inosine is read as G by cellular machineries (Kim,
2004).

tRNA genes showed at least one position with an A-to-G
change in at least two species (Table S7), totaling 11, 4, and 12
putative A-to-I editing events in Arabidopsis, soybean and rice,
respectively. These A-to-G changes were distributed in 8, 4, and
10 tRNAs in Arabidopsis, soybean and rice, respectively. Among

these sites, two sites were conserved between species: position 58
of tRNA-Trp (CCA) between soybean and rice and position 35
of tRNA-Arg (ACG) among all species evaluated. In tRNA-Arg
(ACG), nucleotide 35 presented 40, 58.8, and 67.8% of the edited
reads in Arabidopsis, soybean and rice, respectively (Table 3).
The tRNAs most frequently edited were tRNA-Ser (UGA), with 3
A-to-G changes in Arabidopsis, and tRNA-Leu (UAG) and tRNA-
Trp (CCA) with two A-to-G changes in Arabidopsis and rice,
respectively.

Validation of C-to-U RNA Editing in
Soybean Plastid Genes
To validate some predicted editing sites and demonstrate sRNA
data reliability as a resourceful tool for the identification of RNA
editing sites, four PREP predicted editing sites were selected
for C-to-U RNA editing analysis using RT-qPCR. The ndhA
(position 1073), ndhB (position 149), rps14 (position 80), and
rps16 (position 212) editing sites were comparatively quantified
in different soybean tissues (Figures 5A–D). Five new putative
editing sites, identified by SNP analysis, were also confirmed and
quantified in leaf samples: accD (position 617), ndhE (position
233), petB (position 611), rps2 (position 248), and rps3 (position
383) (Figure 5E). RT-qPCR showed that the percentage of ndhA
editing was higher in leaves (76.75%) than in petals (20.11%)
or roots (30.23%) (Figure 5A). The same editing pattern was
observed for ndhB and rps14. In ndhB, the percentage editing was
72.41, 30.54, and 16.55% (Figure 5B), while values of 74, 17.86,
and 8.15% were obtained in rps14 editing in the leaves, petals
and roots, respectively (Figure 5C). The rps16 editing profile was
different, with an editing percentage that was higher than 60%
in all tissues (Figure 5D). With respect to putative new C-to-U
editing sites identified using SNP analysis, RT-qPCR confirmed
C-to-U editing events and demonstrated different editing rates
among genes: accD (60.2%), ndhE (39.85%,) petB (54.3%), rps2
(71.52%), and rps3 (20.02%) (Figure 5E).

DISCUSSION

In the present study, we propose an additional resource and
new method to identify conserved and new RNA editing
sites in plastid RNA sequences. Currently, an increasing
number of high-throughput sequencing data have become
available. Among these datasets, there are substantial data
corresponding to sRNA sequencing libraries. After analyzing
some of these libraries, we observed that even without
previous isolation of chloroplasts for further RNA extraction
and sequencing, millions of chloroplast-derived sRNA reads
could be recovered, reflecting mapping against the chloroplast
genome. An important constraint of the presented method
refers to the library quality and the read coverage of reference
genomes.

In the present study, Arabidopsis libraries had the highest
mean coverage using sRNA reads, which likely facilitated the
recovery of the largest number of confirmed editing sites.
The coverage percentage across genomes was different between
species, with lower values detected in Arabidopsis. This result
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TABLE 2 | NdhB C-to-U editing events by PREP and SNP approach using reads derived from sRNA-seq.

Organism Codon

change

Nucleotide

position

AA

change

AA

position

Total

coverage

Edited

coverage

%

Editing

SNP

P-value

PREP

score

Arabidopsis TCA–TTA 149 S–L 50 40 32 80 4.8E-108 1

(1,539: 870)* CCA–CTA 467 P–L 156 40 28 75 8.5E-109 1

CAT–TAT 586 H–Y 196 1 0 no editing - 1

TCA–TTA 611 S–L 204 5 0 no editing - 0.8

TCT–TTT 746 S–F 249 12 5 41.7 5.3E-109 1

TCA–TTA 830 S–L 277 20 9 45 8.4E-29 1

TCA–TTA 836 S–L 279 21 10 47.6 1.1E-23 1

GCC–GTC 842 T–I 281 19 2 10.5 1.3E-8 nd

CAT–TAT 1,255 H–Y 419 47 47 100 nd 1

CCA–CTA 1,481 P–L 494 34 14 41.2 5.5E-40 1

Soybean CCT–CTT 74 P–L 25 4 0 no editing nd 1

(1,533: 543)* TCA–TTA 149 S–L 50 35 10 28 3.3E-11 1

ACG–ATG 542 T–M 181 1 1 100 nd 1

CAT–TAT 586 H–Y 196 11 2 18.2 0.0000038 1

TCA–TTA 611 S–L 204 14 0 no editing nd 0.8

CCA–CTA 737 P–L 246 2 2 100 nd 1

TCT–TTT 746 S–F 249 12 4 33.3 2.0E-14 1

TCA–TTA 830 S–L 277 12 5 41.7 3E-17 1

TCA–TTA 836 S–L 279 11 5 45.5 2.6E-15 1

TCA–TTA 1,112 S–L 371 22 5 22.7 4.3E-17 1

CAT–TAT 1,255 H–Y 419 1 0 no editing nd 1

CCT–CTT 1,391 P–L 464 9 2 22.7 0.0000036

CCC–TCC 1,414 P–S 472 10 0 no editing nd 1

CCA–CTA 1,481 P–L 494 13 8 64.3 1.3E-31 1

Rice AGC–AGT 258 S–S 86 8 2 25 1.6E-8 nd

(1,533: 619)* CCA–CTA 467 P–L 156 14 9 64.3 1.30E-31 1

CAT–TAT 586 H–Y 196 5 3 60 4.00E-12 1

TCA–TTA 611 S–L 204 2 1 50 nd 0.8

TCC–TTC 704 S–F 235 16 3 18.8 7.10E-08 1

CCA–CTA 737 P–L 246 0 0 nd nd 1

TCA–TTA 830 S–L 277 3 1 33 nd 1

TCA–TTA 836 S–L 279 4 1 25 nd 1

CTC–TTC 850 L–F 284 2 0 no editing nd 0.6

ACT–ATT 1,454 T–I 485 30 0 no editing nd 0.6

CCA–CTA 1,481 P–L 494 6 5 83 8.0E-17 1

*Coding sequence length and coverage values.

“Nucleotide position”: position in base pair is from the A of the initiator codon.

“Total Coverage”: total mapped reads in respective nucleotide position.

“Edited Coverage”: number of reads shown T, instead C.

“% Editing”: percentage of RNA editing using the edited reads divided by total mapped reads.

“PREP score”: confidence value of prediction according PREP.

“nd”: no defined.

demonstrated that the use of sRNA libraries for mapping editing
events is not directly related to a significant coverage across the
entire plastid genome. Although this method has the capacity
to confirm and discover editing sites in chloroplasts, a smaller
number of mitochondrial reads would likely affect RNA editing
analysis in this organelle. In the present study, the approach
for the identification of editing sites was compared to the PREP
and SNP strategies. The editing sites and percentage editing may
vary between species because some species may already possess a
thymine in the genome. In these cases, C-to-U editing will not
occur. The same situation can occur with some A-to-I editing

sites, which could affect the general percentage of editing among
species. The use of a different PREP score, resulting in distinct
cut-off values, may also affect these percentages. In addition,
editing factors and their editing sites may evolve differently
among species.

The elementary step employed in the pipeline used in the
present study was the initial sRNA library mapping against the
chloroplast genome, considering 0 mismatches. Plastid DNA
insertions in nuclear genomes have been demonstrated for
partial, intact or even truncated coding sequences in several
species (Chen et al., 2015). Thus, an initial filtration step against
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TABLE 3 | A-to-I editing analysis of tRNA-Arg(ACG) sites by SNP approach with corresponding reads derived from sRNA-seq.

Organism Nucleotide position Nucleotide change Total coverage Edited coverage % Editing Variant P-value

Arabidopsis 35 A–G 80 32 40 3.8E-655

(74: 3,015)*

Soybean 35 A–G 80 47 58.5 2.3E-144

(74: 65,787)*

Rice 35 A–G 214 145 67.8 1.5E-465

(74: 1,673)*

*tRNA sequence length and coverage values.

“Total Coverage”: total mapped reads in respective nucleotide position.

“Edited Coverage”: number of reads shown G, instead A.

“% Editing”: percentage of RNA editing using the edited reads divided by total mapped reads.

the chloroplast genome prevents the loss of unedited reads to
those loci present in nuclear insertions. Unedited reads are
necessary, particularly in quantitative editing analysis, where the
editing percentage is measured and cannot be ruled out.

Some C-to-U editing studies have previously used mRNA-Seq
to demonstrate and quantify editing events in plantmitochondria
(Bentolila et al., 2013) and chloroplasts (Guo et al., 2015).
Comparison of sRNAs and mRNA data sequences demonstrated
that most of the confirmed editing sites can be recovered using
both datasets. However, there are differences between these data,
demonstrating that sRNAs can identify editing sites that were not
detected using mRNA data and vice versa (Figure 3). The use
of sRNA data to complement RNA editing analysis can improve
the identification and measurement of RNA editing in various
aspects.

In the present study, a new set of plastid editing sites was
identified in soybean. The C-to-U editing events have previously
been demonstrated in other species, and we recovered several
edited transcripts, including ndhB, ndhD, ndhG, rpoB, and
rpoC1 (Corneille et al., 2000; Okuda et al., 2009; Zhou et al.,
2009; Chateigner-Boutin et al., 2011; Boussardon et al., 2012;
Tseng et al., 2013), in the present analysis. For most known
C-to-U editing sites predicted through PREP and confirmed
by sRNA reads in the present study, 21 sites have previously
been demonstrated in Arabidopsis (Tsudzuki et al., 2001; Tillich
et al., 2005) and 19 sites have previously been demonstrated in
rice (Corneille et al., 2000; Tsudzuki et al., 2001), representing
30.43 and 24% of the total predicted editing sites, respectively
(Table S2). Moreover, we showed editing events in soybean
plastid genes, including ndhA, psaI, and petB, which had not
previously been demonstrated for rice or Arabidopsis. In the SNP
analysis, we identified new C-to-U editing sites. For example, in
the Arabidopsis ndhF gene, a putative C-to-U editing site was
identified at position 884, leading to a serine to phenylalanine
change. In the soybean ndhE gene, a putative C-to-U editing
site at position 233 was observed in 73.7% of the reads. This
editing led to a proline to leucine change in the encoded
protein. Despite this information, the impact of amino acid
modifications on respective protein structures remains unclear.
Both ndh genes encode thylakoid Ndh complex components
involved in photosynthesis optimization under different stress
conditions conditions (Casano, 2001;Martin et al., 2004; Rumeau

et al., 2007). NdhB mutants under lower air humidity conditions
or following exposure to ABA present a reduction in the
photosynthetic level, likely mediated through stomatal closure
triggered under these conditions (Horvath, 2000). Therefore,
a protein structure modification, resulting from a loss or
decrease in RNA editing events could affect adaptations to stress
conditions or cause other unknown changes.

The coding sequence of protein D2, encoded by the psbD
gene, a photosystem II (PSII) core protein, showed a putative
new editing event in rice at positions 1006 and 1007. However,
reflecting low coverage, these new editing sites still require
further experimental confirmation. Maintenance of the D2
protein structure is important not only for proton transport
(Pokhrel et al., 2013) but also for the phosphorylation dynamics
of this protein (Tikkanen and Aro, 2012) and its interaction with
the proteins responsible for PSII maintenance (Liu and Last,
2015). If this editing site is confirmed, then alterations in editing
site patterns resulting from factors, such as abiotic stress could be
associated with photo-oxidative damage susceptibility. Previous
studies have demonstrated that abiotic stress influences the
editing process and consequently plastid physiology (Nakajima
and Mulligan, 2001; Karcher and Bock, 2002).

Five putative C-to-U editing sites predicted using SNP analysis
were validated through RT-qPCR. This result demonstrates
the reliability and accuracy of sRNA data resources and the
method presented herein to confirm predicted sites in silico
and identify new RNA editing sites. Position 1073 in the ndhA
gene is an editing site identified only in the soybean chloroplast
editome. RT-qPCR revealed that the editing percentage varies
among different soybean tissues. The ndhB (position 149) gene
was previously evaluated in the non-photosynthetic tissues of
Arabidopsis. An RNA editing pattern previously demonstrated
in Arabidopsis (Tseng et al., 2013), with a higher percentage in
leaves (>75% edited), followed by flowers (25–75% edited) and
roots (unedited), was similarly observed in the present study.
An exception was observed for the root tissue, which showed a
low editing percentage (16.5%) in soybean instead of an unedited
rate, as observed in Arabidopsis. The editing site at position 80 in
rps14 also was evaluated across different tissues in Arabidopsis. A
high editing percentage was demonstrated in Arabidopsis leaves
(Tseng et al., 2013), a pattern also demonstrated in soybean
using RT-qPCR. The RNA editing percentages observed in roots
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FIGURE 5 | Confirmation and quantitation of soybean editing sites predicted by PREP. (A) ndhA-1053, (B) ndhB-149, (C) rps14-80, and (D) rps16-212 were

analyzed in leaves, petals and roots. Box area represents the lower and upper percentiles; (E) confirmation and quantitation of soybean editing sites identified by SNP

analysis. Transcripts from soybean leaves were analyzed for C-to-U editing in specific nucleotide positions: accD-617, ndhE-233, petB-611, rps2-248, and rps3-383.

Box area represents the lower and upper percentiles. The upper whisker of the boxplot indicates the highest editing value observed; the lower whisker, the lowest

editing value; and the middle line, the median.

and petals showed different patterns between Arabidopsis and
soybean, although a decrease in these values was observed in the
root tissue of both species. The editing of rps16 at position 212

was predicted and confirmed only in soybean and did not show
differences in the editing percentage between leaf and root tissues.
These results indicate that sRNA sequence mapping can not only
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be used to confirm the predicted editing sites, but also to quantify
the editing percentage.

The plastid acetyl-CoA carboxylase, necessary for de novo
fatty acid synthesis, comprises two components, accA and accD
proteins; accD encodes the β-carboxyl transferase subunit and
is required in tobacco plants for a functional enzyme (Kode
et al., 2005). The vanilla cream1 (vac1) albino mutant, reflecting
a PPR-DYW protein required for editing in accD and ndhF
in Arabidopsis, exhibits albino to pale yellow phenotype and
an RNA editing reduction in those transcripts (Tseng et al.,
2010). The requirement of plastid accD editing for functional
protein has previously been demonstrated (Sasaki et al., 2001),
and this new editing site, which promotes a serine to leucine
change, could also be important for the maintenance of protein
structure and functionality. The ndhE gene encodes a subunit
of a membrane subcomplex of the NAD(P)H dehydrogenase
complex (Peng et al., 2011). NdhE protein interacts with the
membrane subcomplex proteins, NdhC and NdhG, and with
subcomplex proteins, NhdH and NdhK (Efremov et al., 2010;
Peng et al., 2011). The new editing site described here promotes
a proline to leucine change, which could modify the interaction
between these proteins and lead to changes in electron transfer
to quinone. The petB gene encodes the cytochrome b6 protein, a
cytochrome b6f complex component responsible for mediating
electron transfer between photosystem I (PSI) and plastocyanin
(Baniulis et al., 2008); mutants of petB in tobacco showed
reduced levels of PSI, PSII and light-harvesting complex proteins
(Monde et al., 2000), indicating a requirement of cytochrome b6
to correct photosynthetic apparatus assembly. The new editing
site involving a serine to leucine change in petB at position
611, identified in the present study, could be required for the
maintenance of cytochrome b6f complex structure and stability.
Proteins S2 and S3 are located on the solvent side of ribosome
small subunit (Manuell et al., 2004), and RNA editing events can
modify their interactions among other ribosomal proteins and
likely with mRNA, with potential effects on the regulatory aspects
of plastid translation in response to stress or other homeostasis
processes.

The SNP analysis facilitated the evaluation of not only C-to-U
editing but also A-to-I editing events in chloroplast tRNAs. The
tRNA-Arg (ACG) A-to-I editing event was also observed in all
three species in the present study. This change corresponds to
an inosine in the wobble position, which encodes three arginine
codons CGU, CGC, and CGA that play a critical role in plastid
protein synthesis (Rogalski et al., 2008). The enzyme involved
in this mechanism in Arabidopsis, At1g68720, encodes a tRNA
adenosine deaminase (TADA), which is targeted to plastids.
RNAi lines of this gene show markedly reduced A-to-I editing
efficiency, displaying phenotype consequences, such as growth
and development delays (Elias and Huang, 2005; Delannoy et al.,
2009; Karcher and Bock, 2009). Editing events in others tRNAs
have been shown in some species and have been well studied
in animals (Su and Randau, 2011) and previously demonstrated
in moss Takakia lepidozioides (Miyata et al., 2008). The method
described here can help to identify and measure other tRNA
editing events not yet described in plants.

In addition to the high amount of data currently available
in public databases that can readily be assessed, there are some

plastid sRNAs biological features that can reveal important
mechanisms of RNA editing. The precise plastid sRNA biogenesis
remains unknown because there is no evidence of any RNAi
machinery in organelles that could originate small RNAs thus
far. Notably, there is evidence of a relaxed plastid genome
transcription mechanism, resulting in full plastid genome
transcription (Hotto et al., 2012). It has been suggested that
plastid sRNAs originated from RNA sequence regions protected
against degradation by forming secondary structures or from
associations with RNA-binding proteins regions (Pfalz et al.,
2009). The results of the present study demonstrated that sRNAs
are not necessarily over-represented in regions of editing sites
but are also evident in coding sequences with smaller lengths,
where these sRNAs can still be observed. These biological features
enable the use of sRNA datasets to confirm the results of different
RNA editing prediction tools and enable the analysis of editing
events not only in a qualitative but also a quantitative manner,
depending on the library quality and read coverage.

The identification of editing sites and measurement of editing
levels have demonstrated differences among tissues (Tseng et al.,
2013) and developmental stages (Miyata and Sugita, 2004). These
findings can be used to evaluate the impact of different stresses
on these mechanisms (Nakajima and Mulligan, 2001; Van Den
Bekerom et al., 2013). Thus, the use of sRNA data to confirm
predicted editing sites in association with SNP searches can
provide a powerful and reliable plastid editome characterization
and measurement, and the results can be applied to compare
editing levels in different tissues, developmental stages and
physiological conditions.

CONCLUSION

Analysis of sRNA libraries can be used to identify and quantify
RNA editing events. Using this source of sequence data and
pipeline of analyses, we obtained, for the first time, a consistent
set of non-conserved and new editing sites in soybean. We
propose the use of plastid sRNA libraries as a novel source and
approach to study RNA editing events. Until recently, no other
studies have taken advantage of such data to screen for RNA
editing sites. Thus, the results from the present study should
encourage researchers to use small RNA libraries to compare
RNA editing in different plants under different conditions to
improve knowledge on the editing role of plastid RNA in plant
biology.
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Figure S1 | sRNA length distribution. The histograms represent the percentage of

length distribution of each individual class. In black, gray and white bars,

Arabidopsis, soybean, and rice read data, respectively.

Figure S2 | Number of plastid genomic sites (Y-axis) and their respective sRNA

reads coverage (X-axis). In black, gray and white bars, Arabidopsis, soybean and

rice read data, respectively.

Figure S3 | RNA editing site numbers identified by the PREP and SNP

approaches in Arabidopsis, soybean and rice. Black bars correspond to sites

confirmed only by PREP prediction (>0.5 in prediction score); white bars indicate

sites confirmed using the SNP approach; and gray bars show sites confirmed

using both approaches.
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Abstract

Soybean, a crop known by its economic and nutritional importance, has been the subject of several studies that as-
sess the impact and the effective plant responses to abiotic stresses. Salt stress is one of the main environmental
stresses and negatively impacts crop growth and yield. In this work, the RNA editing process in the chloroplast of
soybean plants was evaluated in response to a salt stress. Bioinformatics approach using sRNA and mRNA libraries
were employed to detect specific sites showing differences in editing efficiency. RT-qPCR was used to measure edit-
ing efficiency at selected sites. We observed that transcripts of NDHA, NDHB, RPS14 and RPS16 genes presented
differences in coverage and editing rates between control and salt-treated libraries. RT-qPCR assays demonstrated
an increase in editing efficiency of selected genes. The salt stress enhanced the RNA editing process in transcripts,
indicating responses to components of the electron transfer chain, photosystem and translation complexes. These
increases can be a response to keep the homeostasis of chloroplast protein functions in response to salt stress.

Keywords: small RNA, chloroplast, RNA editing, PPR, salt stress.
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Introduction

Soybean (Glycine max L.) is one of the major legume

crops in the world, providing an abundant source of oil and

protein-rich food for human and animal consumption (Le et

al., 2012). The high demand for protein in meals drove to

further expansion of oilseed production and has favored an

increase of soybean production, especially in Brazil (Gue-

vara et al., 2015). In Brazilian agriculture, soybean is the

most important crop. Currently, Brazil is the second largest

producer behind the United States. Soybeans are expected

to continue being the most lucrative export product with

more than half of Brazilian production destined for world

markets (Guevara et al., 2015). However, like many crops,

soybean is subject to several abiotic stresses that reduce its

yield.

Plants are exposed to a range of stress conditions such

as oxidative stress, variant temperature, light intensity,

waterlogging, drought and salinity. These abiotic stresses

affect the whole plant, compromising basic molecular and

physiological aspects from germination to the reproduction

phases (Mahajan and Tuteja, 2005). Salt stress is one of the

main environmental stresses, and it affects economically

important crop species that are very sensitive to salinity,

such as bean (Phaseolus vulgaris), maize (Zea mays), rice

(Oryza sativa) and soybean (Wang et al., 2003; Zheng et

al., 2009). Salt-affected soils occur in more than 100 coun-

tries and their worldwide extent is estimated at about 1 bil-

lion ha (FAO and ITPS, 2015). Salinity stress affects

mainly lipids, ions levels, malate and nitrogen metabolism,

anti-oxidative enzymes and antioxidants, chloroplast struc-

ture and photosynthesis (Parida and Das, 2005). Many

studies have been dedicated to the impact of salinity on

photosynthetic activity, carbon assimilation, pigment com-

position, electron transport, and photosystem I and II effi-

ciency (Sudhir et al., 2005; Parida and Das, 2005; Koyro,

2006). Clearly, there is a link between effects on photosyn-

thesis and chloroplast, however, certain works have looked

specifically at plastid salt stress effects (Gomez, 2003;

Zhang et al., 2008; Zheng et al., 2009).

Chloroplasts are complex organelles that have their

own gene expression machinery, intricate post-trans-

criptional processes and a fine coordination with nuclear

gene expression. Chloroplasts have received particular in-

terest because they are responsible for photosynthesis. Al-
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terations in metabolic pathways, in specific signals like

redox state, or in protein structures can lead to disruption in

plastid activity and, consecutively, in plant yield. RNA ed-

iting, a post transcriptional process, consists in nucleotide

conversions from cytosine (C) to uracil (U), or, less fre-

quently, from U to C. This process, also present in mito-

chondria, is performed by deamination and amination

reactions (Chateigner-Boutin and Small, 2011; Hayes et

al., 2015). Usually, editing events preserve amino acids

that are phylogenetically conserved by restoring the codon

sequence. The most frequent change is serine to leucine,

but other alterations, including silent or non-conservative

changes, have also been described (Inada et al., 2004;

Chateigner-Boutin and Small, 2010). In both organelles,

editing can create an initiation codon, and create or remove

stop codons. Editing can also be found in introns (prerequi-

site for splicing in some cases) and in untranslated regions

(UTR) (Takenaka et al., 2008; Castandet and Araya, 2011).

This powerful and intriguing process has been studied due

its essential function and also because of the impact in the

evolutionary process (Takenaka et al., 2013).

Plastid RNA editing depends on the editosome ma-

chinery to precisely process the emerging transcripts. The

editosome composition has not yet been completely identi-

fied. However, some components of the editing machinery,

like the pentatricopeptide repeat (PPR) proteins, were al-

ready recognized. The PPR motif is a 35-amino-acid repeat

that folds into a pair of antiparallel alpha helices. Arrays of

tandem PPR motifs form a superhelical ribbon-like sheet

(Small and Peeters, 2000; Barkan and Small 2014). In land

plants, the PPR gene family contains from 400 to more than

1000 members (Barkan and Small, 2014). The PPR pro-

teins are classified into two major subfamilies, P-type and

PLS-type PPRs. The PLS-type PPR proteins can be further

divided into three subgroups: E, E+, and DYW, that differ

in the presence of an optional C-terminal region (Lurin et

al., 2004). Most PLS-type PPR proteins involved in editing

act as site-recognition factors, recognizing the 5’ region up-

stream of the editable C residue (Yagi et al., 2013). PLS-

type PPR proteins presenting cytidine deaminase motifs

within the DYW domain have been described as being di-

rectly responsible for RNA editing activity (Boussardon et

al., 2014; Wagoner et al., 2015). Other PPR proteins, as

HCF152 and PPR10, are involved in intercistronic process-

ing of polycistronic precursor transcripts or in stabilizing

specific RNAs (Barkan and Small, 2014; Yap et al., 2015).

Diverse studies have been done to analyze editing

regulation of plastids under various situations, such as tis-

sue-specific differences, responses to molecular signals, ef-

fects in immunity, and responses to abiotic stress (Kakizaki

et al., 2012; García-Andrade et al., 2013; Tseng et al.,

2013). The potential of the RNA editing efficiency as a

marker for stress tolerance or as a target for genetic modifi-

cation was evaluated in some studies. For example, incom-

plete editing caused by increased temperature is correlated

with change in plastid translation in maize (Nakajima and

Mulligan, 2001). Specifically, heat stress leads to loss of

editing sites and intron splicing reactions in NDHB tran-

scripts (Karcher and Bock 2002). Variations in the effi-

ciency of plastid editing in NDH transcripts was evaluated

and not linked to differences in drought tolerance in peren-

nial ryegrass (Lolium perenne) (Van Den Bekerom et al.,

2013).

Most of the studies on RNA editing have used the re-

verse transcription PCR (RT-PCR) method of total chloro-

plast mRNAs and cloning of several chloroplast cDNA

fragments into vectors to be sequenced (Rüdinger et al.,

2009). Another method is to design primers to amplify tar-

get genes from cDNA samples and sequence them (Wolf et

al., 2004). RNA editing events could also be detected by us-

ing chloroplast cDNA datasets as templates for amplifica-

tion in Poisoned Primer Extension methodology, or also by

High Resolution Melting (HRM) analysis (Chateigner-

Boutin and Small, 2007). Many plastid small RNAs

(sRNAs) showed sequence similarities to PPR-binding

sites, which provides support to the idea that large amounts

of sRNAs remnants resulted from PPR protein targets (Ru-

we and Schmitz-Linneweber, 2012). In this way, several

chloroplast sRNAs are recovered as RNA-binding protein

footprints, including PPR-editosome components, which

remain in the sequencing results due to protein protection

against ribonucleases.

Despite several different methodologies already de-

scribed in the literature for RNA-editing recognition, in this

work we evaluated the impact of salt stress on soybean C to

T editing efficiency by a new method comprised by in silico

screening of editing sequences of sRNA libraries obtained

by high-throughput sequencing, followed by RT-qPCR as-

says.

Materials and Methods

Plant material, stress treatment and RNA isolation

Soybean plants were grown over 8 days using Hoa-

gland solution. After this period, six plants were transferred

into a new Hoagland solution (establishing the control

group), and six plants were submitted to a salt-stress treat-

ment using a Hoagland solution supplemented with 200

mM NaCl. Leaves were collected after intervals of 4 and 24

hours and stored in liquid nitrogen until RNA extraction.

Total RNA from leaves was isolated using TRIzol reagent

(Invitrogen, CA, USA), and the RNA quality was evaluated

by Nanodrop quantification and gel inspection.

sRNA/mRNA libraries, chloroplast genome, and prediction
of conserved editing sites

Public sRNAs and mRNAs libraries of G. max leaves,

deposited in NCBI GEO

(http://www.ncbi.nlm.nih.gov/geo/), accession number

GSE69571, were used in this study to evaluate the differen-
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tial RNA editing rate when exposed to saline stress. Com-

plete chloroplast genome and coding sequences, as well as

tRNAs from soybean (NC_007942) were obtained sepa-

rately from the Index of Genomes from the Chloroplast Ge-

nome Database (http://chloroplast.ocean.washington.edu/).

To predict editing sites and evaluate their editing rates, the

PREP-Cp tool (http://prep.unl.edu/) (Mower 2009) was

used with a cutoff value of 0.5, in spite of the 0.8 default

value, using the coding sequences of the chloroplast ge-

nome mentioned above.

Analyses of edited sRNAs

The sRNAs libraries were primarily aligned against

the chloroplast genome, coding sequences and tRNAs, us-

ing Bowtie software (Langmead et al., 2009) with 0 mis-

match and not allowing reverse complement matches. The

aligned reads resulted in a new file called cp_m0. The un-

aligned reads were submitted to a second round of align-

ment with 0 mismatch, against nuclear and mitochondrial

genomes. The unaligned reads were further aligned with

two mismatches, and no reverse complement matches were

allowed against the chloroplast genome and coding se-

quences. This second group of aligned reads produced an-

other file called cp_m2. Both cp_DNA fastq files were

concatenated in a cp_m0_m2 file. The cp_m0_m2 files

were aligned against chloroplast coding sequences using

Geneious (Kearse et al., 2012) R8 with the Bowtie algo-

rithm, using the same parameters of the previous align-

ments. The Geneious Find Variation/SNPs tool was used

with parameters set as follows: Minimum Coverage of 5,

Maximum Variant P-Value of 10-2, to find polymorphism

Inside and Outside coding sequence and P-value calcula-

tion method as approximate. The coverage values of edited

and non-edited reads were transposed to the implementa-

tion of statistical analysis. The same pipeline was used to

analyze editing rates with mRNA data.

Differential expression analysis

SAM files created in the bowtie alignment were uti-

lized to generate a count table containing data from all li-

braries. This table was the input file to differential expres-

sion analysis performed using DeSeq2 package (Anders

and Huber, 2010) implemented in R package (R Core

Team, 2015). Heatmaps were generated with normalized

counts of all plastid genes for data visualization.

Editing analysis by RT-qPCR

The cDNA synthesis was carried out using approxi-

mately 1 �g of total RNA. The d26T primer was used in

each reaction. Before transcription, RNA and primers were

mixed with RNase-free water to a total volume of 10 �L

and incubated at 70 °C for 5 min followed by ice-cooling.

Then, 3 �L of 5 RT-Buffer (Promega, Madison, WI, USA),

1 �L of 5 mM dNTP (Ludwig, Porto Alegre, RS, Brazil)

and 1 �L of MMLV-RT Enzyme 200 U (Promega, Madi-

son, WI, USA) were added for a final volume of 20 �L. The

synthesis was performed at 42 °C for 30 min in a Veriti

Thermal Cycler (Applied Biosystems, Foster City, CA,

USA), and inactivation of the enzyme was completed at 85

°C for 5 min. All cDNA samples were 100-fold diluted with

RNase-free water before being used as a template in RT-

qPCR analysis.

A set of primers was designed according to (Chen et

al., 2008) with modifications. For each editing site, we de-

signed a set of primers composed by two specific editing

primers and one unique universal primer. When the spe-

cific editing primers were designed as forward, the univer-

sal primer was designed as reverse and vice-versa. The

specific editing primers containing a unique difference in

the first nucleotide recognized the edited or unedited site

(Figure 1). The RT-qPCR reactions were performed in a

Bio-Rad CFX384 real time PCR detection system (Bio-

Rad, Hercules, CA, USA) using SYBR Green I (Invitro-

gen, Carlsbad, CA, USA) to detect double-stranded cDNA

synthesis. Reactions were completed in a volume of 10 �L

containing 5 �L of diluted cDNA (1:100), 1 SYBR Green

I (Invitrogen, CA, USA), 0.025 mM dNTP, 1 PCR Buffer,

3 mM MgCl2, 0.25 U Platinum Taq DNA Polymerase

(Invitrogen, CA, USA) and 200 nM of each universal and

C or T-specific primer set. Samples were analyzed in tech-

nical quadruplicate in a 384-well plate, and a no-template

control was included. The conditions were set as follows:

an initial polymerase activation step for 5 min at 95 °C, 40

cycles for 15 s at 95 °C for denaturation, 10 s at 60 °C for

annealing and 10 s at 72 °C for elongation. A melting

curve analysis was programmed at the end of the PCR run

over the range of 65 to 99 °C, and the temperature in-

creased stepwise by 0.5 °C.

Threshold and baselines were manually determined

using the Bio-Rad CFX manager software. To calculate the
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Figure 1 - Schematic illustration of qPCR analysis of RNA editing fre-

quency showing relative locations of (A) specific-reverse and (B) spe-

cific-forward qPCR primers. Arrows depict the annealing sites of qPCR

primers.



relative expression of transcripts we used the 2-��Ct method

(Livak and Schmittgen, 2001). Primer efficiencies were

calculated by LinRegPCR software (Ruijter et al., 2009) to

evaluate a possible amplification by primer efficiency bias.

By doing so we obtained independent estimates of amplifi-

cation efficiency for each primer in each treatment. Differ-

ences in plastid transcript editing among treatments were

detected using two-tailed Student’s t-tests between means.

Significance was set at p < 0.05. Tests were performed with

R package software (R Core Team, 2015).

Results

Rates of editing in sRNAs libraries

The PREP analysis carried out on soybean chloro-

plasts identified 20 different genes that contained RNA ed-

iting sites (Table S1). All predicted editing sites were

confronted with the aligned sRNA reads in order to evalu-

ate the presence/absence of editing events. Edited reads

were identified in a set of 16 genes from at least one of the

sRNAs library (Table 1). Among 87 predicted edited sites,

34 were confirmed by sRNAs reads. Other predicted sites,
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Table 1 - Quantitative distribution of sRNAs reads in plastid editing sites, editing percentages and p-values (t-test).

Gene Position (nt) PREP score Cnt-1 % edition Cnt-2 % edition Salt-1 % edition Salt-2 % edition p-value

NDHA 1073 1 4 0.75 1 1 1 0.20 9 0.60 0.033

NDHB 149 1 11 0.55 4 0.80 6 0.33 5 0.36 0.046

PSBF 77 1 8 1 10 1 14 1 7 1 -

RPS14 80 1 24 0.75 17 0.85 14 0.88 19 0.90 0.079

RPS16 212 0.83 10 0.90 6 0.75 4 0.57 9 0.75 0.073

ACCD 617 0.8 7 0.86 5 1 8 1 0 nd 0.275

ATPF 92 0.86 0 nd 3 1 3 1 3 1 0.225

CLPP 559 1 16 0.81 13 0.81 8 1 10 0.71 0.643

MATK 935 0.57 6 ne 0 nd 0 nd 1 0.08 0.225

NDHB 542 1 0 nd 1 1 1 1 0 nd 1.00

586 1 0 ne 1 1 2 1 0 nd 1.00

737 1 1 1 2 1 0 nd 0 nd -

746 1 1 1 4 1 0 nd 1 0.50 0.035

830 1 0 ne 1 0.50 1 1 4 0.67 0.035

836 1 0 ne 2 1 0 nd 6 0.86 0.860

1112 1 6 0.67 4 1 5 0.83 3 0.60 0.383

1255 1 1 1 0 nd 0 nd 0 nd 0.225

1481 1 3 1 3 1 2 0.67 4 1 0.225

NDHD 2 1 1 ne 1 1 0 nd 0 nd 0.225

674 1 0 nd 0 nd 1 1 0 nd 0.225

878 1 1 ne 2 0.67 2 1 2 0.67 0.104

1298 0.8 0 nd 2 1 0 nd 0 nd 0.225

NDHF 586 0.8 1 ne 1 0.33 0 nd 0 nd 0.225

PSAI 79 1 0 nd 1 1 3 1 0 nd 1.000

PSBE 214 1 23 0.91 20 0.91 20 0.91 24 1 0.239

RPOB 338 1 2 0.50 1 1 0 nd 1 1 0.496

551 1 0 nd 1 1 0 nd 0 nd 0.225

566 1 0 nd 1 0.33 0 nd 1 0.50 0.660

2000 1 1 1 0 nd 1 1.00 1 0.20 0.801

2819 1 2 0.50 0 nd 0 nd 0 nd 0.225

RPOC1 41 1 0 nd 1 1 0 nd 0 nd 0.225

488 0.71 0 nd 0 nd 0 nd 2 0.67 0.225

RPOC2 3284 0.57 2 0.50 0 nd 0 nd 0 nd 0.225

RPS14 194 0.71 20 0.05 26 0.04 9 0.11 11 0.09 0.003

Ne: no edition; nd: not defined (without coverage)



even with a higher PREP score value, that should indicate a

higher confidence, could not be confirmed because they did

not present enough coverage (Table S1). A group of four

genes was selected considering their total coverage and for

being sites with statistical differential values of edited reads

between control and salt treatment: NDHA-1073 (p =

0.033), NDHB-149 (p = 0.046), RPS14-80 (p = 0.079) and

RPS16-212 (p = 0.073) (Table 1). Other editing sites

showed relevant p-value in leaves libraries, however, they

were not selected when their total coverage was lower than

four reads (Table 1).

Specific primers were designed to detect edition in

the four genes and also in PSBF-77 (Table S2) that pre-

sented 100% of edited reads in all anchored sRNAs. Except

for RPS14-80, sRNA analysis demonstrated that in the se-

lected genes, the editing percentage was higher in control

libraries than in salt-treated ones (Table 1). A parallel anal-

ysis of editing sites using mRNA data showed relevant val-

ues in coverage and edited reads that shared similar patterns

to those observed with sRNA, except for NDHA-1073 and

NDHB-149 (Table S3).

Rate of editing of chloroplast transcripts by
RT-qPCR

RT-qPCR was used to measure the relative amount of

edited and unedited plastid transcripts at 4 and 24 hours,

comparing control and salt treatment. Using LinRegPCR

software, the efficiency of each amplification was calcu-

lated; for each editing primer, only reactions with effi-

ciency higher than 1.75 were maintained in the analysis.

The mean efficiency of all primers was higher than 1.80,

and was not significantly different when compared with the

pairs of C/G and T/A specific primers (Table S4).

The rate of edition was affected in all four genes when

leaf samples were collected 4 hours after the salt treatment.

The percentage of C to T editing varied in all genes. A sta-

tistically significant increase in RNA edition was observed

for salt-treated samples: NDHB-149 presented an increase

in editing from 88.7% to 93.7% (p = 0.004) (Figure 2a),

RPS14-80 from 94.76% to 96.20% (p = 0.05) (Figure 2c)

and RPS16-212 from 74.5% to 78.99% (p = 0.003) (Figure

2d). NDHA-1073 presented an absolute reduction in the av-

erage of editing percentage, but due to variance, without

statistical significance (from 77.79% to 70.53%, p = 0.285)

(Figure S3); the PSBF-77 editing percentage was not sig-

nificantly different (from 83.36% to 84%, p = 0.629) (Fig-

ure 2b). When salt treatment was extended to 24 hours, an

increase in editing percentage was verified in PSBF-77

from 88.75% to 94.70% (p = 0.0001) (Figure 2b), RPS14-

80 from 96.31% to 97.76% (p = 0.025) (Figure 2c) and

RPS16-212 from 73.10% to 91.65% (p = 0.0002) (Figure

2d). NDHA-1073 and NDHB-149 presented no statistical

differences in their editing percentages, with values from

61.51% to 60.97% (p = 0.861) (Figure S3), and from

82.18% to 84.39% (p = 0.395) (Figure 2a) respectively.

In order to evaluate if differences in editing efficiency

could be correlated with transcriptional rate, a differential

gene expression of chloroplast editing genes was per-

formed using RNA sequence libraries. In sRNAs libraries,

no differences were found between control and salt treat-

ment for the analyzed chloroplast editing genes (Figure

S1). The same analysis of chloroplast gene expression was

performed with mRNA libraries, and no differences were

found (Figure S2a). Contrarily, when all nuclear genes

were compared, a differential expression was detected.

Discussion

Plant responses to salt stress have been examined due

to their agronomic implications. Our results demonstrated

variability in plastid transcript editing in soybeans, in re-

sponse to salt treatment. The selected editing sites showed

different coverage of sRNAs when control samples were

compared to salt treated ones. Plastid sRNAs present as

peaks of sequence reads indicated that they are found at

coverage levels similar to, or even higher than matching

mRNAs (Zhelyazkova et al., 2011). The parameters that

determine the rate of the initiating endonucleolytic cleav-

age for chloroplast RNA decay are not known. These pa-

rameters are likely to include sequence and structure of

mRNAs, their extent of ribosome association, and the pres-

ence of other RNA-binding proteins that mask or expose

potential RNase cleavage sites (Barkan, 2011). Therefore,

an increase in translation and consequent protection by the

ribosome and PPR-like proteins association can lead to a

reduction in the degradation of edited transcripts. This

could explain the reverse correlation between total sRNA

coverage decrease in editing sites and the increase in edit-

ing percentage demonstrated by RT-qPCR assays, as ob-

served for NDHB-149.

The NDHB gene encodes part of the hydrophobic

thylakoid-inserted arm in the NAD(P)H dehydrogenase

(NDH) complex; this complex plays a role in alleviating

over-reduction in the stroma under stress conditions (Mar-

tín and Sabater, 2010; Peng et al., 2011); therefore, the in-

crease in NDHB-149 editing found after 4 hours of salt

treatment could contribute to the maintenance of the NDH

complex, avoiding an initial impact in the redox state of

plastids in treated plants. Moreover, NDHB editing mainte-

nance is also essential to cyclic electron flow around photo-

system 1 (CEF1), that has been demonstrated as a corre-

lated process in salt tolerance (Lu et al., 2008). In G. max

varieties, chlorophyll fluorescence, NDH-dependent CEF

activity, NDHB mRNA abundance, and constitutive levels

of NDH-B protein were much higher in a salt-tolerant vari-

ety than in the salt-sensitive one (He et al., 2015);. The ele-

vated editing percentage, observed 4 hours after salt treat-

ment, can be linked to this increase in translation of the

NDHB gene and NDH-dependent CEF activity enhance-

ment in the salt-tolerance response. Our chloroplast gene

expression data presented no differences, but other experi-
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mental approaches are necessary to confirm a possible role

of transcriptional changes in the increase of editing. After

24 hours of treatment, the NDHB editing level returned to

normal baseline, possibly causing a mechanism by which

the photosynthesis system can be impaired, when ROS be-

gin to cause effects, such as inhibition of PSII repair and of

protein synthesis.

The impact of non-editing of the PSBF plastid gene

has been described in an LPA66 mutant for which a PPR re-

sponsible for editing PSBF-77 should be encoded. Its mor-

phological aspects were reduced growth, and pale green

leaves under optimal growth, due to perturbed PSII func-

tions (Cai et al., 2009). In our results, the editing percentage

of PSBF-77 showed an increase during the salt stressed

condition, probably aiming at translation and repair en-

hancement of PSII. Although after 24 hours of treatment an

increase in editing percentage of PSBF transcripts (compo-

nent of PSII) occurred, salt stress has been reported to en-

hance photodamage to PSII by excess ROS suppressing

transcription and translation of the PSBA gene and inhibit-

ing the repair of PSII in Synechocystis (Kreslavski et al.,

2007; Murata et al., 2007).

The RPS14 and RPS16 genes encode small ribosomal

subunits, and among the plastid ribosomal genes, RPS16 is

an essential plastid gene that cannot be inactivated, having

thus, an important role in the translation process (Tiller et

al., 2012). In both treatment intervals, the editing percent-

age showed an increase, being higher at 24 hours than at 4

hours of treatment. This increase can be related to a need

for further translation of plastid proteins under salt stress.
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Figure 2 - Boxplot indicating the editing of (a) NDHB-149, (b) PSBF-77, (c) RPS14-80, and (d) RPS16-212 sites of control and salt stress plants, in 4h and

24 hours treatment. Box area represents the lower and the upper percentiles. The upper whisker of the boxplot indicates the highest editing value ob-

served; the lower whisker, the lowest editing value; and the middle line, the median editing value. Asterisk indicate significantly different values at P <

0.05.



Decreased or incomplete editing of RPS14 and RPS16 tran-

scripts can affect the plastid-encoded protein synthesis. Ef-

fects of incomplete editing in RPS12 were reported, result-

ing in the synthesis of polymorphic polypeptides in plant

mitochondria (Phreaner, 1996). In heat stress, the editing

status of RPS14 decreased rapidly in response to change in

temperature, and it remained low after an extended period

of acclimatization (Nakajima and Mulligan, 2001). RPS14

and RPS16 gene expression is regulated by cytokinins (CK)

and abscisic acid (ABA) (Cherepneva et al., 2003;

Yamburenko et al., 2013). Chloroplast transcription can be

stimulated by CK in response to ABA, drought, and

salt-induced senescence. Specific ABA and stress-respon-

sive CK receptors have been described, and maybe a cross-

talk among CK, ABA and stress signaling pathways exists

(Tran et al., 2007). The increase in editing of RPS14 and

RPS16 transcripts can be linked to a CK response against

salt-induced senescence.

Based on our results, salt stress enhances the editing

process in transcript components of the NDH, PSII, and

translation complexes. All analyzed editing sites had a per-

centage of increase that can be a response to keep homeo-

stasis of chloroplast functions. The maintenance of edited

codons seems to be essential for protein function, and the

editing process responds to this demand. Other studies that

measure transcription, editing and translation of edited

genes in different time intervals and salt concentrations can

help to reveal the floating diversity in all edited transcripts

and correlate these to other salt stress-induced responses of

the editing process.
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Abstract 

RNA editing is a posttranscriptional process that changes nucleotide sequences of cytosine-

to-uracil by a deamination reaction that can revert non-neutral codon mutations. 

Pentatricopeptide repeat proteins are editing trans-elements described to recognize specific 

RNA cis-elements and perform the deamination reaction. The PPR proteins are classified in 

P and PLS subfamily. Several studies have described these trans-elements and their cognate 

editing sites. In this paper, we have designed RNA biotinylated probes based in soybean 

plastid RNA editing sites to perform a trans-element specific protein isolation. Soybean cis-

elements from the three different RNA probes show some differences in respect to other 

species. Samples from probe pulldown were submitted to mass spectrometry for protein 

identification. Among the detected peptides, five corresponded to PPR proteins. More than 

one PPR protein, with distinct functional domains, was pulled-down with a unique RNA 

probe. Comparison of Arabidopsis genes to the soybean PPR proteins allow identification 

of the closest related homologs. A differential gene expression analysis demonstrated that 

one PPR protein have an increased expression under salt stress. The present study represents 

the first identification of RNA editing trans-elements in soybeans. Our data also indicates 

that potential multiple trans-elements should interact to RNA cis-elements in order to 

perform the editing. 

 

Introduction 

Chloroplasts harbor the metabolic core that makes plants what they are. But the 

evolutionary history of these organelles was not easy. Chloroplast were once free-living 

prokaryotes. Several adaptations were essential to circumvent the conflicts between the host 

genome and the endosymbiont ones. Massive transfers of genetic information to the host 

genome and its functional assimilation leads to retraction in endosymbiotic genome (Timmis 

et al. 2004; Chen et al. 2015). A strong selective pressure acted to maintain the remaining 

endosymbiotic genetic information. Posttranscriptional processes were selected by 

promoting the maintenance of essential sequences for gene expression and functional 

proteins. In plastids, RNA editing is a nucleotide change from cytosine to uracil (C-to-U) 

and less frequently from uracil to cytosine (U-to-C) by a deamination and amination reaction 

respectively (Tillich et al. 2006a; Chateigner-Boutin and Small 2010; Takenaka et al. 2013). 
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These changes are necessary to RNA maturation, to generate start or stop codons or even to 

result in changes of amino acid identity (Schallenberg-Rüdinger and Knoop 2016). 

Studies have extensively been performed to elucidate molecular features, mechanism 

and machinery of plastid RNA editing. Cis-acting regulatory sequence were identified and 

reported to be determinant to plastid RNA editing site specificity (Bock et al. 1996). In 

general, 20 nucleotides upstream sequence, and in some case 10 nucleotides downstream 

sequence of RNA editing site correspond to the cis-elements for RNA editing (Shikanai 

2006; Vu and Tsukahara 2017). Besides that, several mutants in Arabidopsis thaliana have 

been identified with plastid RNA editing defects. These defects allowed to characterize 

trans-acting factors that perform RNA editing. The first trans-acting factors identified were 

the Pentatricopeptide Repeat proteins (PPRs) (Fisk et al. 1999; Kotera et al. 2005; Fujii and 

Small 2011). PPR proteins are characterized by tandem arrays of the degenerate 31 to 36-

amino acid repeating units, called PPR motifs, repeated in tandem up to 30 times, that folds 

into a pair of antiparallel α-helices, forming a solenoid structure (Small and Peeters 2000; 

Ichinose and Sugita 2016).  

PPR proteins constitute a large family of nuclear-encoded proteins in land plants, 

likely to have involved in retrotransposition, genome duplication events and retention of 

duplicated genes (Lurin et al. 2004; O’Toole et al. 2008; Fujii and Small 2011). This protein 

family have about 450 members in Arabidopsis and over 1000 in land plants and correspond 

the most studied RNA editing factors already recognized (Cheng et al. 2016). PPR proteins 

form sequence-specific associations with RNA, and these associations affect folding, 

processing and/or translation of the RNA, thus manipulating expression of the transcript 

(Fujii and Small 2011). The sequence-specific associations occurs from the interaction 

between protein motifs and RNA, where 1 motif corresponds to 1 base, and the amino acids 

at particular positions determine the nucleotide-binding specificity (Kobayashi et al. 2012; 

Yagi et al. 2013a). 

The plastid editosome machinery have also non-PPR proteins components. The 

RIP/MORF family have ten members in Arabidopsis and is widespread in angiosperms. 

RIP1/MORF8, the first RIP/MORF member described to compose plastid editosome, was 

identified by immunoprecipation of an epitope-tagged RARE1, a PPR protein. The rip1 

mutant shown alterations in editing events of 14 editing sites (Bentolila et al. 2012). Other 

two members, RIP2/MORF2 and RIP9/MORF9, are required for almost every editing site 
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in plastids (Takenaka et al. 2012; Bentolila et al. 2013). RIP2/MORF2 interacts with CLB19 

to promote RNA editing in rpoA and clpP transcripts (Ramos-Vega et al. 2015). 

RIP9/MORF9 interact with PLS-type PPRs, leading to conformational changes increasing 

the PPR RNA-binding activity (Hackett et al. 2017). Yeast two-hybrid assays have shown 

that RIP2/MORF2 and RIP9/MORF9 can form heterodimers (Takenaka et al. 2012; 

Zehrmann et al. 2015b).  

The ORRM protein family have 20 members in Arabidopsis most of which are 

organelle targeted. ORRM1 is plastid-targeted and the unique that harbor a RIP/MORF motif 

(Sun et al. 2013). ORRM1 controls more than 60% of plastid editing sites in Arabidopsis 

(Sun et al. 2013; Sun et al. 2016). ORRM6 is required to psbF transcript editing (Hackett et 

al. 2017). The function of the ORRM domain in editing remains unclear, but based in 

OMMR1 function, is speculated that its ORRM binds nearby to editing sites, preparing 

additional factors or enhancing the specificity of the PPR protein to binds in the cis-element 

recognition sequences (Tillich et al. 2009; Sun et al. 2013; Sun et al. 2016). The OZ protein 

family, with four members in Arabidopsis, have an annotated zinc finger domain. All 

members are organelle targeted. OZ1 mutant and transient silencing have altered editing 

activity in most of plastid editing sites (Naested 2004; Sun et al. 2015). Another additional 

proteins, CP31, OCP3 and PPO1, have been described to affects RNA editing efficiency 

(Coego 2005; Tillich et al. 2009; García-Andrade et al. 2013; Zhang et al. 2014). 

Plastid RNA editing was reported in most of plant lineages, with exception of some 

liverworts in Marchantiales (Rudinger et al. 2008). The number of editing sites varies among 

species. In seed plants, plastid editing sites have already been reported in rice (21), maize 

(26), tobacco (34), cucumber (51) and A. thaliana (43) (Maier et al. 1995; Corneille et al. 

2000; Ruwe et al. 2013; Ichinose and Sugita 2016). The identification of editing sites and 

measurement of editing levels have demonstrated differences among tissues (Tseng et al. 

2013) and developmental stages (Miyata and Sugita 2004). These findings can be used to 

evaluate the impact of different stresses on these mechanisms (Nakajima and Mulligan 2001; 

Van Den Bekerom et al. 2013).  

Soybean is a model crop with few previously studies about plastid RNA editing. Our 

group has described 43 phylogenetically conserved and 5 non-conserved editing sites in 

Glycine max using sRNA, RNA-seq data (Rodrigues et al. 2017a). Besides that, we also have 

described the salt stress effect in soybean plastid RNA editing (Rodrigues et al. 2017b). 
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Based in sequencing data, three cis-elements were selected, all of them presenting high 

editing levels, where greater plastid editosome activity is expected. These sequences were 

used to perform a RNA-pulldown protein purification to identify plastid editosome trans-

elements components acting in selected soybean plastid editing sites and its specificity 

among sites, as well as other proteins that have non-specific RNA binding activity. 

 

Materials and Methods 

Cis-elements RNA Probe design 

The soybean chloroplast genome was retrieved from NC_007942.1 accession. The 

coding sequences were used to designing the probes. The probe design used atpF-92, ndhB-

1481 and rps14-80 editing sites as reference to select 28 upstream and 7 downstream 

nucleotides, totalizing a 36 nucleotides probe from each editing site: atpF-92, 

UUUAAUACCGAUAUUUUAGCAACAAAUCCAAUAAAU; ndhB-1481, 

GUAUGUGUGAUAGCAUCUACUAUACCAGGAAUAUCA; and rps14-80, 

AAAUAUCAUUUGAUUCGUCGAUCCUCAAAAAAGGAA. The RNA probes were 

synthesized and biotinylated at 5’ end. To analyze the recognition sequence conservation 

among species, chloroplast coding sequences for each transcript were retrieved from A. 

thaliana (NC_000932.1), Eucalyptus grandis (NC_014570.1), Eugenia uniflora 

(NC_027744.1), Nicotiana tabacum (NC_001879.2), Oryza sativa (NC_001320.1), 

Panicum virgatum (NC_015990.1), Sorghum bicolor (NC_008602.1) and Zea mays 

(NC_001666.2). A tree was created using Neighbor-Joining method with p-distance model 

performed in the Molecular Evolutionary Genetics Analysis (MEGA) 6.0 software (Tamura 

et al. 2013) and sequence logos were generated using WebLogo3 (Crooks 2004) at 

http://weblogo.threeplusone.com. 

Plant material and chloroplast isolation 

 To chloroplast isolation, soybean (Glycine max (L.) Merrill) cultivar Conquista were 

cultivated until the fifth trifoliate (V5) stage. The modified high salt chloroplast isolation 

protocol (Shi et al. 2012; Vieira et al. 2014) was followed to obtain chloroplasts. All the 

following steps were carried out at 0º C. Prior to extraction, 25 g (fresh weight) of leaves 

without petioles were collected and kept in dark for 48 h at 4º C to decrease starch level. 

Fresh leaves were cleaned with distilled water and homogenized in 400 ml of isolation buffer 

(1.5 M NaCl, 0.25 M ascorbic acid, 12.5 mM boric acid, 50 mM Tris-HCl pH 8.0, 7 mM 

http://weblogo.threeplusone.com/
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EDTA, 1% PVP-40 and 1 mM DTT) for 30 s. Homogenate was filtered into Falcon tubes, 

using two layers of Miracloth by softly squeezing the cloth. The homogenate was centrifuged 

twice at 200 g for 20 min at 4º C. The pellet, containing nucleus and cell-wall debris, were 

discarded. The supernatant was centrifuged at 3500 g for 20 min at 4º C, resulting in a 

chloroplast pellet contaminated with some nuclear DNA. The pellet was gently resuspended 

in 40 ml per tube of wash buffer (1.5 M NaCl, 12.5 mM boric acid, 50 mM Tris-HCl pH 8.0, 

25 mM EDTA, 1 % PVP-40 and 1 mM DTT), followed by centrifugation at 3500 g for 20 

min at 4º C. The supernatant was discarded. The pellet was resuspended again with 40 ml 

wash buffer and centrifuged at 3500 g for 20 min at 4º C twice to obtain the final chloroplast 

pellet. 

Plastid protein extraction and protein isolation by RNA probe pulldown 

 All the following steps were carried out at 0º C, if not otherwise stated. The final 

chloroplast pellet was resuspended in lysis buffer (0.2 M CH₃COOK, 30 mM Tris-HCl pH 

8.0, 10 mM MgCl2, 2 mM DTT) and transferred to a microcentrifuge tube. The resuspended 

solution was pulled through a syringe (0.3 mm × 8 mm) 60 times. The homogenate was 

centrifuged twice at 16.000 g for 20 min at 4º C. A supernatant aliquot was transferred to a 

new tube, and the same volume of incubation buffer (150 mM NaCl, 20 mM Tris-HCl pH 

8.0, 1 mM EDTA, 5 mM MgCl2, 0.5% Triton X-100) was added. The homogenate was 

transferred to a new tube and added biotinylated probes (final concentration 5 µM) 

corresponding to each editing sites. The solution was incubated at 160 rpm for 30 min at 25º 

C. The homogenate was transferred to a centrifuge tube containing streptavidin-agarose resin 

previously washed with lysis and incubation buffer 1:1 (v/v), thrice. The washing step 

correspond to add the solution, gentle manual shaking and resin decantation, followed by 

discarding the volume above the resin. The solution was maintained on gentle manual 

shaking for 15 min. Two washing steps were performed with lysis and incubation buffer 1:1 

(v/v), followed by three washing steps with lysis and incubation buffer (without Triton X-

100) 1:1 (v/v). The final solution containing streptavidin-agarose resin, biotinylated probes 

and plastid proteins was maintained at -20º C before sample preparation. 

Sample preparation for proteomic analysis 

The resins were incubated for 5 minutes, at room temperature, with 7 M urea/2 M 

thiourea. Proteins extracted from resins were further reduced using 10 mM DTT for 60 min 

at 35° C and alkylated using 40 mM iodoacetamide for 60 min at 35º C in dark. Urea 
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concentration was diluted to less than 1 M using 50 mM NH4HCO3 pH 8.0 and proteins were 

digested with trypsin (Promega) overnight at 35° C. Trifluoroacetic acid (TFA) was added 

(final concentration 0.1%) in order to stop digestion and peptides were passed through spin 

columns (Harvard Apparatus) filled with C-18 material, dried under vacuum and stored at -

20° C for further use. Two biological replicates were subjected to digestion for each RNA 

probe. 

 

Protein identification by mass spectrometry assays 

 Peptides derived from the tryptic digestion (2 μg) were loaded onto a C18 reversed-

phase pre-column (2 cm long, 100 μm internal diameter, with ReproSil-Pur C18-AQ 5 μm 

beads - Dr. Maisch GmbH) and fractionated on a New Objective PicoFrit® Self-Pack 

column (18 cm long, 75 μm internal diameter, with ReproSil-Pur C18-AQ 3 μm beads - Dr. 

Maisch GmbH). The samples were analyzed in an EASY-nLC II system (Proxeon 

Biosystems) coupled in sequence to a high resolution ESI-LTQ-Orbitrap Velos mass 

spectrometer (Thermo Scientific). The peptides were eluted using the gradient starting from 

100% phase A (0.1% formic acid, 5% acetonitrile) to 35% phase B (0.1% formic acid, 95% 

acetonitrile) for 107 minutes, 35-100% of phase B for 5 minutes, and 100% of phase B for 

8 minutes, totaling 120 minutes in a flow of 250 mL min-1. After each run, the column was 

washed with 100% of phase B and re-equilibrated with phase A. The m/z spectra were 

obtained in positive mode with data-dependent automatic acquisition - Data Dependent 

Acquisition (DDA) - of the MS and MS/MS spectra. The MS spectra were obtained in high 

resolution in the Orbitrap analyzer with resolution from 30,000 at m/z 400, mass range of 

m/z 350-2000, Automatic Gain Control (AGC) of 1 x 106 and maximum injection time of 

500 MS. The MS/MS spectra were obtained by higher energy collisional dissociation (HCD) 

in the Orbitrap for the 10 most intense ions with a charge ≥ 2; resolution of 7500 at m/z 400; 

signal threshold of 10,000; normalized energy of collision (NCE) of 30; and dynamic 

exclusion of 45 s. 

Proteome Discoverer 2.1 software was used for data analysis applying the SequestTM 

algorithm and a G. max database downloaded from Phytozome (June 2017). The parameters 

used were: full-tryptic search space, up to two missed cleavages allowed for trypsin, 

precursor mass tolerance of 10 ppm, and fragment mass tolerance of 0.1 Da. 
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Carbamidomethylation of cysteine was included as fixed modification, and methionine 

oxidation and protein N-terminal acetylation as dynamic modifications 

Phylogenetic analysis of trans-acting editing factors 

 Sequences corresponding to complete gene, coding regions, transcripts and proteins 

were retrieved from Phytozome database. These protein sequences were used as queries in 

the BLASTP with default parameters at the Phytozome database to retrieve A. thaliana, and 

G. max. To determine the structural organization and motif/domain composition of the trans-

factors, the protein sequences were submitted to Pfam web server (http://pfam.xfam.org/) to 

prediction of functional domains (Finn et al. 2016). The sequence domain found in each 

protein sequence were retrieved to create a fasta file. The domains protein sequences were 

aligned using MUSCLE (Edgar 2004). The multiple alignments were manually inspected 

using Molecular Evolutionary Genetics Analysis (MEGA) 6.0 software (Tamura et al. 2013). 

The model of protein evolution for protein matrix substitution was calculated from multiple 

alignment by ProtTest3 (Darriba et al. 2011). The phylogenetic tree was constructed using 

Bayesian method, performed in BEAST 1.8.4 software (Drummond and Rambaut 2007). 

The Yule tree was selected as a tree prior to Bayesian analysis and 10,000,000 generations 

were performed with Markov chain Monte Carlo (MCMC) algorithms. The tree was 

visualized and edited using FigTree v1.4.3 software. 

 

Differential gene expression 

Public mRNAs libraries of soybean leaves, deposited in NCBI GEO 

(http://www.ncbi.nlm.nih.gov/geo/), accession number GSE69571, were used in this study 

to evaluate the differential gene expression of PPRs proteins identified. SAM files were 

created using the bowtie alignment (Langmead et al. 2009) and default parameters, with zero 

mismatches. A count table containing data from all libraries was created. This table was the 

input file to differential expression analysis performed using the Bioconductor DESeq2 

package (Love et al. 2014) with a adjusted p-value cutoff of 0.05. 

 

Results 

Editing sites cis-elements conservation 

 Recognition sequence from atpF-92, ndhB-1481 and rps14-80 editing sites were 

analyzed at 30 downstream and 20 upstream nucleotides in eight species (Fig. 1). The atpF-

http://pfam.xfam.org/
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90 sequence is clearly divided among monocots and dicots (Fig 1a). Monocots already have 

a thymine in editing site location (Fig. S1a). Other differences occur after 10 upstream and 

28 downstream nucleotides. The ndhB-1481 recognition sequence is the most conserved 

among all analyzed recognition sequences. Differences could be observed only in position 

27 upstream and 19 downstream from editing site (Fig 1b). The rps14-80 recognition 

sequence is the most variable sequence among all analyzed. Differences could be observed 

even within monocots (Fig. 1c). In total, were observed 14 positions with nucleotide 

differences in rps14-80 recognition sequence (Fig. S1c). 

 

Protein profiles of RNA probe pulldown 

 Despite sequence differences in the designed RNA probes, several proteins could be 

identified by using RNA probes pulldown. The list containing all proteins identified in this 

study is found in Supplemental Table 1. The elution profile using atpF-92, ndhB-1481 and 

rps14-80 probes comprises 83, 106 and 78 proteins respectively. The non-probes elution 

profile comprises 160 proteins. The non-redundant set of 317 proteins were submitted to 

TargetP (http://www.cbs.dtu.dk/services/TargetP/) web-server to predicts subcellular 

location. Fortyfive proteins were predicted to localize to chloroplast, 30 proteins to localize 

to mitochondria and 44 to secretory pathway (Supplemental Table 2). Chloroplast RNA 

binding proteins, PPRs, RNA helicases and translation factors, were identified in RNA probe 

pulldown profiles. These proteins are involved in RNA metabolism as RNA splicing and 

editing, and in the translation process (Table 1).  

 Two RNA helicases were identified in proteins profiles of RNA probe pulldown. 

Glyma.02G119000 was found in all RNA probe pulldown profiles and correspond to a 

DEAD/DEAH box helicase, an ATP-dependent RNA helicase. It’s have four domains: an 

AAA (ATPases associated with a variety of cellular activities) domain, a helicase conserved 

C-terminal domain, a helicase associated domain (HA2) and an 

Oligonucleotide/oligosaccharide-binding (OB)-fold domain. Glyma.18G014800 correspond 

to a Helicase, IBR and zinc finger protein domain-containing protein and was found in RNA 

pulldown of rps14-80 probe. Translation initiator factors IF-2 (Glyma.19G044300 and 

Glyma.08G174200) were identified in RNA probe pulldown. Both were predicted to localize 

to chloroplast by TargetP. Glyma.08G174200 and Glyma.19G044300 were identified 

respectively in atpF-90 and ndhB-1481 probes pulldown profiles.  
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Others plastid proteins that are not RNA binding were also identified. The Light-

harvesting complex II chlorophyll a/b binding protein 1, LHCB1 (Glyma.16G165200), was 

identified in rps14-80 probe pulldown. The CHLOROPLAST UNUSUAL POSITIONING1, 

CHUP1 protein (Glyma.20G185300) was identified in protein profiles of atpF-90 and ndhB-

1481 probes. The weak chloroplast movement under blue light, WEB1 protein 

(Glyma.18G021300 and Glyma.08G266500), were identified in protein profiles of atpF-90, 

ndhB-1481 and rps14-80 probes. The magnesium chelatase subunit H (Glyma.10G097800) 

was identified in atpF-90 probe pulldown. Non-plastid proteins were also identified. 

Cytosolic translation and transcription factors, kinases, metabolic enzymes and, in a fewer 

abundance, cytoskeleton components were the main non-plastid contaminations in the RNA 

probe pulldown profiles (Supplemental Table 1).  

 

Pentatricopeptide repeat proteins 

 PPR proteins were identified in different RNA probe pulldown profiles. In total, five 

PPR proteins were identified (Table 1). Glyma.11G217500 and Glyma.19G025700 proteins 

were identified in the atpF-90 pulldown profile. Glyma.11G217500 have two Pfam domains, 

PPR (PF01535) and PPR_2 (PF13041). Glyma.19G025700 have three domains; PPR 

(PF01535), PPR_3 (PF13812) and DYW (PF14432), a cytosine-deaminase domain. 

Glyma.01G016100 and Glyma.11G111200 were found in the ndhB-1481 pulldown profile. 

Glyma.01G016100 have three domains, PPR (PF01535), PPR_2 (PF13041) and PPR_3 

(PF13812). Glyma.11G111200 two domains, PPR (PF01535) and PPR_2 (PF13041). 

Glyma.02G174500 and Glyma.11G111200 proteins were identified in rps14-80 probe 

pulldown profile. Glyma.02G174500 have three domains, PPR (PF01535), PPR_2 

(PF13041) and DYW (PF14432). A neighbor-joining tree was created to observe the 

relationship between proteins. Glyma.19G025700 grouped with Glyma.02G174500, due 

DYW domains. The Glyma.11G217500 and Glyma.11G111200 protein grouped in another 

clade. They have only PPR and PPR_2 domains, although in different amounts. The protein 

Glyma.01G016100 have also PPR and PPR_2 domains, but besides these, due have a PPR_1 

domain, it´s take place in an intermediary local in tree (Figure 2). 

To identify homologs and understand the evolutionary relationships of the identified 

PPRs with described PPRs that are involved in plastid RNA editing in A. thaliana, we 

conducted a phylogenetic analysis using the only domain protein sequences. The final 
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dataset consists in 33 sequences, the five soybean PPRs identified by RNA probe pulldown 

and 28 Arabidopsis PPRs proteins (Table S3). The phylogenetic analysis of the PPR amino 

acid sequences resulted in the formation of well-supported clades separating the different 

PPR types (Figure 3). Besides that, PPRs from Arabidopsis formed groups with soybean 

identified PPRs proteins supported by high posteriori probabilities. The Glyma.02G174500 

and Glyma.19G025700 grouped respectively to AT3G13770 and AT5G15340 proteins 

within DYW clade. Glyma.01G016100 grouped to AT5G39710 in a PPR_1/PPR2 domain 

clade. The Glyma.11G111200 protein grouped to AT5G50280 in a PPR/PPR2 domain clade. 

The Glyma.11G217500 could not group to any Arabidopsis protein and remained as a basal 

protein. 

 

Gene expression analysis of identified PPR genes 

 A differential gene expression analysis was conducted to evaluate the expression of 

respective PPRs under salt stress. Were evaluated the five identified PPR genes and another 

seven genes, five eukaryotic elongation factor 1-beta (Glyma.02G276600, 

Glyma.04G195100, Glyma.06G170900, Glyma.13G073200 and Glyma.14G039100) and 

two F-box (Glyma.11G126500.1 and Glyma.12G051100) genes that correspond to reference 

genes. These genes were already described as reference genes for normalization in soybean 

under salt stress (Le et al. 2012). Only two genes, Glyma.02G174500 and 

Glyma.11G111200, both identified in rps14-80 probe pulldown, demonstrated differential 

expression between control and salt treatment libraries. Glyma.02G174500 had a 1.09-fold 

change (p-value 0.0117) increase. Glyma.11G111200 decrease your expression in -0.65-fold 

change (p-value 0.0004) (Fig. S2).  

 

Discussion 

To date, despite the great amount of plastid genome characterization studies, some 

of them have focused only on description of RNA editing sites and even fewer ones on their 

respective cis-elements. Besides that, model species to RNA editing trans-factors studies 

have been restricted to Arabidopsis, maize (Nakajima et al. 2001; Sun et al. 2013), rice 

(Asano et al. 2013; Tan et al. 2014) and Physcomitrella patens (Ichinose et al. 2014). In this 

paper, were analyzed three soybean plastid RNA editing sites and their respective cis and 

trans-factors. The recognition sequence of three editing sites were compared among eight 
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species. Each evaluated editing site have a conservation pattern that may leads to a site-

recognition protein alteration among species. In tobacco plastids, RNA editing sites with 

similar cis-elements are recognized by an identical site-recognition protein (Kobayashi et al. 

2007). Also in tobacco plastids, mutations in recognition sequences were harmful to editing 

or resulted in the generation of a new editing target (Hayes and Hanson 2006). Therefore, 

few mutations in the recognition sequences may not alter the site recognition protein through 

the evolutionary history of the species. In this same perspective, in vitro RNA editing 

demonstrated that deletions, insertions and mutations events can leads to a variation in 

protein that recognize the editing site between plant species, without loss of RNA editing 

(Neuwirt et al. 2005). In this way, there is a selective pressure to RNA editing trans-factors 

be conserved independently of their targets editing sites (Tillich et al. 2006b).  

Most studies that have identified RNA editing trans-factors and their interactions are 

based on co-immunoprecipitation and mutant genetic screening. The immunoprecipitation 

is based in the use of antibodies that recognize the “target” protein fused to the generic GFP 

tag. The RNA binding protein coupled to RNA sequences are isolated by an anti-GFP 

antibody, following the RNA identification (Terzi and Simpson 2009). In this paper, we have 

used specific biotinylated-RNA probes binding to streptavidin resins as isolation protein step 

to mass spectrometry assays. This approach allowed isolate plastid proteins, including non-

RNA binding proteins. The light-harvesting chlorophyll a/b-binding (LHC) proteins 

constitutes the higher plant light-harvesting antenna. The LHCII complex, composed by 

proteins Lhcb1-6, is associated with photosystem II (PSII) and mediates the flow of 

excitation energy toward the reaction center (Jackowski G. et al. 2001; Mozzo et al. 2008). 

Light-harvesting complex II chlorophyll a/b binding protein 1 (Lhcb1) is the main 

constituent of LHCII (Umate 2010). The CHUP1 and WEMBL proteins are involved in 

chloroplast positioning and photorealocation movement (Oikawa 2003; Kodama et al. 2010). 

CHUP1, a actin-binding protein, is involved in the chloroplast-actin filament polymerization 

by binding to profilin, F-actin (in vitro) and G-actin (Schmidt von Braun and Schleiff 2008). 

The WEB1 protein acts together with PMI2 by suppressing J-domain protein required for 

chloroplast accumulation response 1 (JAC1) to regulate the chloroplast-actin filament 

dynamics, modulating the velocity of chloroplast photorelocation movement (Kodama et al. 

2010; Kong and Wada 2011). The presence of these proteins indicates a plastid specific 

protein isolation, although it does not indicate isolation of specific stroma proteins. 
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The magnesium chelatase catalyzes the insertion of Mg2+ into protoporphyrin IX the 

first dedicated step in chlorophyll biosynthesis. In higher plants, the magnesium chelatase 

enzyme consists of three subunits, ChlI, ChlD, and ChlH (Jensen et al. 1996). The 

magnesium chelatase subunit H (ChlH) have been described in Arabidopsis as a GUN 

(genomes uncoupled) 5 protein, a component of plastid-to-nucleus signal transduction 

(Mochizuki et al. 2001). A thioredoxin was also identified in same RNA pulldown profile. 

The thioredoxin-assisted reduction of CHLI1 subunit activates the ATPase activity of 

magnesium chelatase (Ikegami et al. 2007). However, thioredoxin-assisted reduction could 

maintains the ChlH subunit activated (Jensen et al. 2000). Other genomes uncoupled protein, 

GUN1, a PPR protein, have been suggest that might transiently interact with magnesium 

chelatase subunit D (CHLD) (Tadini et al. 2016). So, these proteins could transiently form a 

“complex” involved in retrograde signaling. The identification of these enzymes was already 

reported on other studies (Olinares et al. 2010). 

RNA binding proteins were identified in all RNA probes pulldown. Two initiation 

factors were identified. For Glyma.08G174200, the Arabidopsis homolog is cpIF2. cpIF2 

plays a vital role in translation by binding fMet-tRNAmet with 30S ribosomes and 

subsequently forms a large complex with 50S ribosomes in a GTP-dependent manner (Miura 

et al. 2007). eIF2B is a guanine nucleotide exchange factor (GEF) protein that controls the 

cpIF2 activity. After cpIF2 is therefore released from ribosomes in its inactive (GDP-bound) 

state in complex with eIF5, cpIF2 must be reactivated to the GTP form(Singh et al. 2006). 

This process is carried out by eIF2B (Jennings and Pavitt 2014; Wortham and Proud 2015). 

Two RNA helicases were identified. One of them, Glyma.02G119000, is present in all probe 

pulldown. Its Arabidopsis homolog, AT1G26370 is a DEAH-box RNA helicase involved in 

pre-mRNA splicing (Ohtani et al. 2013). Although the Glyma.02G119000 have been 

predicted to localize to chloroplast by TargetP, the AT1G26370 protein was detected in the 

nucleolar region by subcellular localization experiments (Ohtani et al. 2013). We could not 

find only one Arabidopsis homolog for Glyma.18G014800 protein. The two candidates, 

At4G01020 and AT5G10370 are described as a ATP-dependent DEAH-box RNA helicase, 

chloroplastic. Despite this, AT5G10370 have been described only highly expressed in 

primary root tissue using microarray expression data from various datasets in the Gene Chip 

platform of Genevestigator (Xu et al. 2013). Despite the identification of these proteins and 
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their respective homologs, the significance of the relationship with probes is not yet clear. 

Their identification may have been due to nonspecific RNA binding. 

PPR proteins were identified in probe pulldown. Recently, a study redefined the 

structural motifs of PPR domains (Cheng et al. 2016). According to this definition and based 

in our phylogenetic analysis, Glyma.01G016100, Glyma.11G217500 and 

Glyma.11G111200 belong to P subfamily, while Glyma.02G174500 and Glyma.19G025700 

to DYW subgroup of PLS subfamily. P-type PPR proteins are involved in two main 

functions: stabilization and processing of specific RNA termini and control of the translation 

of specific mRNAs (Barkan and Small 2014). The DYW-type PPR proteins are involved in 

editing their cognate editing sites, and in some cases, the DYW domain may participate in 

editing additional sites (Hayes et al. 2015). The distribution of PPR among probe pulldown 

profile suggest that multiple trans-elements are necessary to editing in analyzed editing sites. 

In case of atpF-90 and rps14-80, a P-type and a DYW-type can interact to promotes editing. 

Some studies have demonstrated the requirement of two PPR proteins to RNA editing in 

plastid and mitochondria (Andrés-Colás et al. 2017; Guillaumot et al. 2017). The 

Glyma.11G111200 protein was identified in two pulldown profiles, ndhB-1481, rps14-80. 

OTP82 and CRR22 have been reported to acts as a site-specificity factors at multiple RNA 

editing sites with unrelated cis-acting elements in plastids (Okuda and Shikanai 2012). The 

same can occurs with The Glyma.11G111200. In vitro experiments have demonstrated a 

cross-competition in plastid RNA editing, suggesting a sharing of trans-factors between 

different editing sites (Heller et al. 2008). Sharing of trans-factors can confer a vantage by 

could recognize more editing sites with a lower number of required proteins. Beside that, a 

unique PPR can be dual target to plastid and mitochondria, acting in different cis-element of 

different organelles (Yap et al. 2015; Ichinose and Sugita 2016; Andrés-Colás et al. 2017). 

In a previous study (Rodrigues et al. 2017b), we demonstrated some plastid RNA 

editing enhancement in soybean leaves under salt stress. One of them was the rps14-80 

editing site. Here, we evaluated the expression pattern of PPR proteins under salt stress. 

Interestingly, Glyma.02G174500, a DYW-type protein identified in rps14-80 pulldown, 

have an increase by about one-fold. Despite slight increase, is possible that the increase in 

editing rate and in the Glyma.02G174500 gene expression are related because it’s their 

cognate trans-factor. However, other experiments to confirm the relation of identified PPRs 

proteins with respective editing sites are necessary. 
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Conclusions 

 RNA biotinylated probes of atpF-90, ndhB-1481 and rps14-80 allowed the 

identification of five PPR proteins. Three P-type genes; Glyma.01g016100, 

Glyma.11g217500 and Glyma.11g111200 and two DYW-type PPR genes; 

Glyma.02g174500 and Glyma.19g025700. Multiple PPR proteins can interact to promote 

RNA editing in all three editing sites analyzed. The expression pattern of Glyma.02g174500 

correspond to RNA editing pattern of a cognate editing site under salt stress, suggesting the 

trans-action function of DYW-type protein. 
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Table 1. RNA-interacting proteins identified in mass spectrometry assays and their respective 

probes. 

Protein Accession RNA probe 

Pentatricopeptide repeat proteins   

PPR Glyma.11g217500 atpF-90 

PPR Glyma.19g025700 atpF-90 

PPR Glyma.01g016100 ndhB-1481 

PPR Glyma.11g111200 ndhB-1481, rps14-80 

PPR Glyma.02g174500 rps14-80 

RNA helicases   

DEAD/DEAH box helicase Glyma.02g119000 atpF-90, ndhB-1481, rps14-

80 

Helicase, IBR and zinc finger protein 

domain-containing protein 

Glyma.18g014800 rps14-80 

Translation factors   

Initiation factor (IF-2) Glyma.08g174200 atpF-90 

Initiation factor eIF-2B subunit delta 

(EIF2B4) 

Glyma.19g044300 ndhB-1481 
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Fig. 1 – Sequence analysis of cis-elements. A neighbor-joining tree was created using the p-

distance method and the sequence alignment of the region surrounding the (a) atpF-90, (b) 

ndhB-1481 and (c) rps14-80 editing sites, from -30 to +20 around the edited C (position 

zero) of A. thaliana (Atha), E. uniflora (Euni), G. max (Gmax), N. tabacum (Ntab), O. sativa 

(Osat), P. virgatum (Pvir), S. bicolor (Sbic) and Z. mays (Zmays). A consensus logo is 

showed from each alignment. 
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Fig. 2 – Phylogenetic relationship and structural analysis of G. max PPR proteins. The 

phylogenetic tree was inferred using the Neighbor-Joining method. The evolutionary 

distances were computed using the p-distance method. The protein structures were designed 

based in PFAM prediction.  
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Fig. 3 - Phylogenetic relationship among PPR protein sequences. The phylogenetic analysis 

was performed with PPR protein sequences from Arabidopsis thaliana and Glycine max. 

Posteriori probabilities are labeled above the branches. In blue, PPR P-type proteins; in 

yellow PPR E-type proteins; in green, PPR DYW-type proteins. 
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Fig. S1 – Alignment of analyzed cis-elements. Sequence alignment of the region surrounding 

the (a) atpF-90, (b) ndhB-1481 and (c) rps14-80 editing sites. The alignment includes the 

sequence from -30 to +20 around the edited C (position 31) of A. thaliana (Atha), E. uniflora 

(Euni), G. max (Gmax), N. tabacum (Ntab), O. sativa (Osat), P. virgatum (Pvir), S. bicolor 

(Sbic) and Z. mays (Zmays). Above each alignment a consensus logo is showed. 
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Fig. S2 - Mean difference (M) vs. average expression (A) plot of differential gene expression 

in salt treated versus control soybean leaves. The red dots indicate differentially expressed 

genes.  
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6. DISCUSSÃO E CONSIDERAÇÕES FINAIS 

 Atualmente, alguns estudos que objetivam a caracterização de genomas de 

cloroplastos têm também utilizado predições in silico dos sítios de edição de RNA, visando 

entender relações filogenéticas (Silva et al. 2016; Huang et al. 2017). Softwares que realizam 

essa predição, como PREP-Suite (Mower 2009) e PREPACT (Lenz et al. 2010) têm sido 

atualizados e aperfeiçoados. Todavia a predição é baseada em relações filogenéticas já 

descritas, não permitindo a uma predição de novos sítios. Ainda assim, após a predição, tais 

sítios precisam de confirmação através de outros experimentos. ChloroSeq, um programa 

que avalia a taxa de edição utilizando bibliotecas de sequenciamento de RNA foi 

recentemente disponibilizado (Castandet et al. 2016); todavia, os sítios de edição analisados 

são pré-estabelecidos, não sendo permitida a predição de sítios conservados ou novos (Smith 

and Sanitá Lima 2016). Portanto, programas ou pipelines para predição de novos sítios de 

edição que utilizem dados das plataformas de sequenciamento já disponíveis e que permitam 

uma análise quantitativa da edição nesses sítios não tinham sido desenvolvidos. 

 No primeiro artigo desenvolvemos e demonstramos um método que permite, 

utilizando-se dados de sequenciamento de sRNAs, a predição de novos sítios de edição e 

confirmação de sítios de edição preditos por outros programas. A confirmação desses sítios 

por meio de experimentos de RT-qPCR demonstraram a confiabilidade do nosso método de 

identificação. Nesse trabalho, apresentamos pela primeira vez, um amplo conjunto de sítios 

de edição em soja, incluindo sítios de edição espécie-específicos. O método descrito também 

permite utilizar sequenciamento de RNA (RNA-seq) para identificação e quantificação de 

sítios de edição. 

 O método desenvolvido nesse trabalho foi utilizado para avaliar os efeitos do estresse 

salino na edição de RNA de cloroplastos. O impacto de estresses abióticos no processo de 

edição tem sido demonstrado em alguns transcritos de genes específicos. Transcritos do gene 

ndhB, uma subunidade da NAD(P)H desidrogenase de cloroplasto, quando sob estresse 

causado por calor, apresentam edição incompleta dos sítios, resultando em defeitos de 

splicing (Nakajima et al. 2001). A edição de RNA em outros transcritos de cloroplastos 

também respondem sensivelmente ao calor (Karcher and Bock 2002). Além de uma redução 

global na eficiência da edição e splicing, uma maior abundância de transcritos de cloroplasto, 

incluindo intergênicos e antisensos é verificada, provavelmente resultado uma redução na 

atividade das proteínas de metabolismo de RNA. 
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 O segundo artigo demonstrou efeitos da salinidade na edição de RNA em 

cloroplastos de soja. O estresse salino levou a um aumento da edição de RNA em alguns 

transcritos dos componentes da cadeia de transferência de elétrons, fotossistemas e 

complexos de tradução. Já tem sido descrito que a salinidade reduz a atividade fotossintética 

pela inibição do PSII (Parida and Das 2005; Zheng et al. 2009; Allu et al. 2014). Estudos 

proteômicos demonstraram o aumento da tradução em diversos genes, incluindo fatores de 

tradução e genes de cloroplastos, como psaB e rps12 durante estresses abióticos (Salekdeh 

et al. 2002; Jiang et al. 2007; Hashiguchi et al. 2009). Portanto, o aumento na edição dos 

transcritos identificados podem ser uma resposta para manutenção da homeostase através da 

atividade funcional das proteínas em resposta ao estresse salino. Entender alterações 

adaptativas que otimizam funções básicas como fotossíntese, metabolismo de RNA ou 

tradução de transcritos plastidiais pode contribuir na geração de cultivares que sejam 

tolerantes à estresses abióticos (Tonti-Filippini et al. 2017). 

 No terceiro artigo, fatores associados a cis-elementos de três sítios de edição em soja, 

atpF-92, ndhB-1481 e rps14-80, foram isolados por coprecipitação com sondas de RNA 

biotinilados e identificados utilizando-se espectrometria de massas. No total, cinco PPRs 

foram identificadas, além de outras proteínas de ligação ao RNA. A predição de 

endereçamento indicou cloroplastos e mitocôndrias como alvo dessas PPRs. Ensaios de 

localização são necessários para confirmar as predições.  

Estudos que identificam fatores de edição usaram screening de mutantes e 

imunoprecipitação dos alvos marcados com epítopos. Com mutantes disponíveis em 

Arabidopsis, a caracterização dos níveis de edição permitiram identificar os sítios de edição 

regulados pelos fatores em questão (Kotera et al. 2005; Sun et al. 2013). Sendo soja uma 

espécie modelo com métodos de transformação mais laboriosos (Homrich et al. 2012), o 

silenciamento das PPRs identificadas em um sistema transiente e a caracterização do nível 

de expressão nos respectivos sítios de edição podem confirmar a associação identificada pela 

espectrometria de massas de forma mais rápida. No segundo artigo, demonstramos o 

aumento da edição no sítio rps14-80. Um dos fatores identificados que está associado a esse 

sítio, Glyma.02g174500, uma PPR-DYW, apresentou um aumento da expressão nas 

bibliotecas de folhas tratadas com sal. É possível que o aumento da taxa de edição e da 

expressão do gene Glyma.02g174500 estejam relacionados por ser seu fator de edição 
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cognato. Dessa forma, esse gene poderia ser um alvo para estudos de tolerância a estresses 

abióticos.  

Proteínas da família PPR são ótimas candidatas a fatores de tolerância a estresses; 

algumas PPRs têm sido demonstradas como participantes da edição de RNA em organelas e 

também necessárias para respostas a estresses abióticos (Liu et al. 2016). SLG1 é uma PPR 

pertence à subclasse E+ endereçada para mitocôndria. O mutante slg1, tem um defeito na 

edição de RNA do sítio nad3-250, da NADH desidrogenase do complexo I de mitocôndrias, 

exibindo crescimento lento e fenótipo de desenvolvimento atrasado. slg1 também demonstra 

uma maior sensibilidade a vários estresses abióticos (Yuan and Liu 2012). SLO2, também 

uma PPR-E+, participa da edição de RNA de sete sítios em mitocôndrias (Zhu et al. 2012). 

Os mutantes slo2 são hipersensíveis ao estresse salino e osmótico durante o estágio de 

germinação, enquanto plantas adultas mostram aumento da tolerância à seca e ao sal (Zhu et 

al. 2014).  

 WSL é uma PPR direcionada para cloroplastos em arroz, que está envolvida com 

splicing de transcritos do gene rpl2. O mutante wsl mostra sensibilidade aumentada à 

salinidade e acumula mais H2O2 do que o tipo selvagem. Dessa forma, a redução de 

eficiência da tradução pode afetar a resposta do mutante ao estresse abiótico, o que é 

corroborado pelos nossos dados pelo aumento de edição para manutenção da resposta ao 

estresse (Tan et al. 2014). SOAR1, uma PPR duplamente marcada para endereçamento para 

o núcleo e citoplasma, regula negativamente a sinalização de ABA, é um regulador positivo 

da resposta da planta aos estresses abióticos. A superexpressão de SOAR1 resulta na 

resistência da germinação das sementes a uma salinidade extremamente alta e na 

insensibilidade ao sal em plantas maduras, em contraste com a hipersensibilidade ao sal do 

mutante soar1. Alterações na expressão SOAR1 alteram a expressão de um subconjunto de 

genes envolvidos em respostas a estresse osmótico, salino e de frio (Jiang et al. 2015). 

Portanto, proteínas da família PPR são ótimos alvos em estudos de tolerância a estresses 

abióticos, estando envolvidas em edição, ou não. 

 Além de todo o conhecimento gerado sobre edição de RNA de cloroplastos em soja, 

a influência de estresses abióticos e a identificação dos primeiros fatores de edição nessa 

espécie, os métodos e dados do presente trabalho também contribuirão para a descoberta de 

novos fatores de edição em plantas não modelos. A prospecção desses novos fatores pode 

ser de grande importância permitindo a identificação de proteínas de resposta a tolerância a 
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estresses abióticos que podem ser utilizadas em programas de melhoramento de cultivares 

de importância econômica.  
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Abstract

Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has
great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in
the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies fo-
cusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome
of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae
genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and sin-
gle-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 pro-
tein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated
that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini
than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics
studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization.
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Plinia trunciflora (O.Berg) Kausel, synonym

Myrciaria trunciflora O.Berg, is a native Brazilian tree that

belongs to the Myrtaceae family and is widely distributed

in the southern and southeastern areas of Brazil (Sobral et

al., 2012). Among all identified Plinia sp. species, P.

cauliflora (DC.) Berg (synonym M. cauliflora (Mart.)

O.Berg), P. jaboticaba (Vell.) Berg (synonym M. jabotica-

ba O.Berg) and P. trunciflora are endemic to Brazil. All of

these species produce a similar grape-like edible fruit,

known as jaboticaba, which presents a sweet jelly-like

white pulp covered by a purple peel. Jaboticaba (P.

trunciflora) has attracted attention because of its significant

levels of phenolic compounds associated with health bene-

fits, such as antidepressant and antioxidant effects and the

prevention of neurodegenerative diseases and diabetes

(Stasi and Hiruma-Lima, 2002; Sacchet et al., 2015). These

benefits have largely been attributed to the capacity of these

compounds to prevent or reduce oxidative stress. Addi-

tionally, jaboticaba (P. trunciflora) is largely consumed

fresh or used to make jellies, juices, wines, spirits and vine-

gar (Balerdi et al., 2006).

Despite the nutritional and productive recognized im-

portance of this species, the taxonomic classification is still

controversial. This is mostly so because it is based on mor-

phological evaluation of the trees, fruits and seeds, regard-

ing physical, chemical, physicochemical, and germinal

characters that have shown the existence of variability

(Guedes et al., 2014). Therefore, molecular studies are

needed to better clarify the phylogenetic relationships

among the species from this genus.

The chloroplast (cp) genome is a circular molecule of

double-stranded DNA that consists of four distinct regions,

a large and a small single copy region (LSC and SSC, re-

spectively) separated by two inverted repeat regions (IRa

and IRb). Despite the high degree of conservation in its

structure, gene content and organization, the presence of

mutations, duplications and rearrangements of genes make

it an attractive option for phylogenetic studies (Costa et al.,

2016). In the case of Myrtaceae, there are only few phylo-

genetic and evolutionary studies based on cp genes (Craven

and Biffin 2005; Payn et al., 2007; Biffin et al., 2010; Bayly
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et al., 2013; Eguiluz et al., 2017; Machado et al., 2017), and

there are even less that include the Plinia genus (Vascon-

celos et al., 2017).

In this study, young leaves from a Plinia trunciflora

tree harvested in Gravataí, RS, Brazil (latitude (S):

29°51’52"; longitude (W): 50°53’53") were used to extract

total DNA by the CTAB method (Doyle and Doyle, 1990).

DNA quality was evaluated by electrophoresis in a 1%

agarose gel, and DNA quantity was determined using a

NanoDrop spectrophotometer (NanoDrop Technologies,

Wilmington, DE, USA). One genomic paired-end library of

100 nt length was generated by Fasteris SA (Plan-les-

Ouates, Switzerland) using an Illumina HiSeq2000 plat-

form (Illumina Inc., San Diego, CA, USA). The paired-end

sequence reads were filtered against 42 Myrtaceae cp geno-

mes (Table S1) using BWA software with two mismatches

allowed (Li and Durbin, 2009). The obtained reads were as-

sembled de novo with ABySS software (Simpson et al.,

2009). The cp genome scaffolds were orientated using cp

genome sequences of Eucalyptus globulus, Eucalyptus

grandis and Eugenia uniflora L. using BLASTN (Camacho

et al., 2009). A gap region was filled in by Sanger sequenc-

ing using primers F: 5’ GGGTTATCCTGCACTTGGAA

and R: 3’ TGCTGTCGAAGCTCCATCTA. Genes were

annotated using DOGMA (Wyman et al., 2004) and

BLAST homology searches. tRNAs (transfer RNA) were

predicted using tRNAscan-SE program (Schattner et al.,

2005) and confirmed by comparison with the appropriate

homologs in E. globulus. The circular cp genome map was

drawn using OGDRAW online program (Lohse et al.,

2007). For the phylogenetic analysis, a set of 57 cp pro-

tein-coding sequences (Table S2) from 56 species belong-

ing to Malvids (Eurosids II) (Table S3) were used with Vitis

vinifera serving as outgroup. Nucleotide sequences were

aligned using MUSCLE available in MEGA version 6.0

(Tamura et al., 2013), and a Bayesian tree was generated

using MrBayes version 3.1.2 (Ronquist and Huelsenbeck,

2003) with 5,000,000 generations sampled every 100 gen-

erations and discarding the first 25% of trees as burn-in,

with posterior probability (PP) values for each node. The

GTR+I+G nucleotide substitution model determined by

MODELTEST version 3.7 (Posada and Crandall, 1998)

was used. The phylogenetic tree was rooted and visualized

using FigTree software (http://tree.bio.ed.ac.uk/soft-

ware/figtree/).

A total of 148,824,244 raw Illumina paired-end reads

from the P. truncliflora nuclear genome were filtered

against 42 Myrtaceae cp genomes. The 8,912,157 obtained

reads were de novo assembled into non-redundant contigs

and singletons covering about 99% of the genome (mini-

mum coverage=144 reads, maximum coverage=18,789

reads). Two final large scaffolds were obtained and joined

into a cp circular genome using Sanger sequencing. The

complete cp genome of P. trunciflora is 159,512 bp in size

and was submitted to GenBank (accession number:

KU318111). The size is similar to that of other Myrtaceae

species (Eguiluz et al., 2017; Machado et al., 2017). The cp

genome included an LSC region of 88,097 bp, an SSC re-

gion of 18,587 bp and a pair of inverted repeats (IRa and

IRb) of 26,414 bp each (Figure 1). Coding regions com-

prise 47.2%, 13.3% correspond to rRNAs and tRNAs, and

39.5% of the genome comprises non-coding regions, in-

cluding introns, pseudogenes and intergenic spacers (Table

1). In general, all genomic features showed similarity in

structure and gene abundance with other Myrtaceae species

(Bayly et al., 2013; Eguiluz et al., 2017; Machado et al.,

2017). The genome contained 131 genes in total, which in-

cludes 111 single-copy genes corresponding to 77 pro-

tein-coding genes, 30 transfer RNA (tRNA) genes and four

ribosomal genes (rRNA) (Figure 1, Table 1). The ycf1, ycf2

and ycf15 sequences were annotated as pseudogenes based

on the presence of many stop codons in their coding se-

quences and by comparison with sequences of E. globulus

and S. cumini. Of the 131 genes in P. trunciflora, seven of

the tRNAs genes and all four rRNA genes occurred within

the IR regions and consequently were duplicated (Table 1).

The cp genome has 20 intron-containing genes: 12 protein

coding genes and six tRNA genes which contain one intron,

and the clpP and ycf3 genes that contain two introns each.

The rps12 gene is a trans-spliced gene with the 5’end lo-

cated in the LSC region and the duplicated 3’end in the IR
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Table 1 - Summary of the Plinia trunciflora chloroplast genome characteristics.

Feature Plinia trunciflora

Total cpDNA size 159,512 bp

LSC size (bp) 88,097 bp

SSC size (bp) 18,586 bp

IR size (bp) 26,414 bp

Protein coding regions (%) 60.48%

rRNA and tRNA (%) 13.3%

Introns size (% total) 10.65%

Intergenic sequences and pseudogenes size (%) 28.9%

Feature Plinia trunciflora

Number of genes 131 genes

Number of different protein coding genes 77

Number of different tRNA genes 30

Number of different rRNA genes 4

Number of different duplicated genes 16

Pseudogenes 3

GC content (%) 37%



regions. The trnK-UUU has 2,529 bp, with the largest

intron encompassing also the matK gene.

The whole cp genome analysis revealed that the cp

genomes of P. trunciflora and E. uniflora are shorter in

comparison to other Myrtaceae, such as E. globulus, E.

grandis, E. uniflora and S. cumini, (Figure 2). Despite its

size, the total length of introns in P. trunciflora (16,972 pb)

is the largest in Myrtaceae, e.g. S. cumini presents 14,469

bp and the same is observed in E. globulus and E. grandis.

The size of the intergenic spacer located between the

IRa/LSC border and the first gene of LSC in P. trunciflora

is more similar to Eucalyptus species than its closer species

E. uniflora (Figure 2). The comparison of the ndhK gene of

P. trunciflora, with 678 bp, indicated a smaller gene size

than that in other plants, such as E. uniflora (858 pb), S.

cumini (855 bp), E. globulus (855 bp) and E. grandis (853

bp). The same size (678 bp) for this gene is found in

Arabidopsis thaliana. The effective size of the coding

sequence is confirmed by the presence of a thymine in posi-

tion 53,811 bp in the cp genome from P. trunciflora that

creates a stop codon and makes this gene shorter than in

other Myrtaceae.

Our phylogeny includes the sister relationship of the

orders Brassicales, Malvales and Sapindales and the orders

Geraniales and Myrtales. All these results agree with previ-

ous studies based on multiple genes or complete cp geno-

mes (Ruhfel et al., 2014). By analyzing the Myrtaceae

family clade we showed that P. trunciflora, E. uniflora and

Acca sellowiana form a single cluster of Neotropical

Myrtaceae, and that this clade has a shorter genetic distance

with S. cumini than to the Australian Myrtaceae clade (Fig-

ure 3). Additionally, our analysis corroborates that

Corymbia gummifera is paraphyletic in respect to Ango-

phora. A previous phylogenetic analysis using certain cp

The chloroplast genome of Plinia trunciflora 873

Figure 1 - Gene map of the Plinia trunciflora chloroplast genome. The structure of the cp genome consists of one large and small single copy (LSC and

SSC, respectively) and a pair of inverted repeats (IRa and IRb). Genes drawn inside the circle are transcribed counterclockwise and those outsides are

clockwise. Genes belonging to different functional groups are indicated by different tonalities. The darker gray in the inner circle corresponds to GC con-

tent, while the lighter gray corresponds to AT content.



genes (ITS, matK and ndhF) of Myrtaceae species showed

that Eucalyptus, Syzygium, Eugenia and Myrciaria (syn-

onym of Plinia) form a distinct clade that is consistent with

characteristics of the pollen (Thornhill et al., 2012). As can

be observed in the Bayesian tree (Figure 3), Plinia could be

paraphyletic in relation to Eugenia and Acca, in agreement

with the embryo morphology and studies using cp regions

that placed Plinia, Myrciaria and Siphoneugena as the

emerging “Plinia group” (Lucas et al., 2007). Taxon

sampling and phylogenetic methodology could affect the

different results. Therefore, additional complete cp genome

sequences will help in the comprehension of the relation-

ship among Myrtaceae species.

The Plinia trunciflora genome represents the first

complete cp genome sequence for the genus Plinia and

shows a set of features that could be further explored for
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Figure 2 - Comparison of the borders of LSC, SSC and IR regions among five chloroplast genomes. Boxes above the main line indicate the predicted

genes, while pseudogenes at the borders are shown by �. Variation in rps19 gene length is displayed at the IRb/LSC borders of Plinia trunciflora,

Eugenia uniflora, Syzygium cumini, Eucalyptus globulus and Eucalyptus grandis, but only in P. trunciflora, this gene is located at IRb and LSC regions.

This figure is not drawn to scale.



population and phylogenetic studies within this group.

Moreover, these data increase the genetic and genomic re-

sources available in Myrtaceae by adding a new strategy of

organelle genome assembly.
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Abstract Eugenia uniflora is a plant native to tropical

America that holds great ecological and economic impor-

tance. The complete chloroplast (cp) genome sequence of

Eugenia uniflora, a member of the Neotropical Myrtaceae

family, is reported here. The genome is 158,445 bp in

length and exhibits a typical quadripartite structure of the

large (LSC, 87,459 bp) and small (SSC, 18,318 bp) single-

copy regions, separated by a pair of inverted repeats (IRs,

26,334 bp). It contains 111 unique genes, including 77

protein-coding genes, 30 tRNAs and 4 rRNAs. The genome

structure, gene order, GC content and codon usage are

similar to the typical angiosperm cp genomes. Comparison

of the entire cp genomes of E. uniflora L. and three other

Myrtaceae revealed an expansion of 43 bp in the intergenic

spacer located between the IRA/large single-copy (LSC)

border and the first gene of LSC region. Simple sequence

repeat (SSR) analysis revealed that most SSRs are AT rich,

which contribute to the overall AT richness of the cp

genome. Additionally, fewer SSRs are distributed in the

protein-coding sequences compared to the noncoding

regions. Phylogenetic analysis among 58 species based on

57 cp genes demonstrated a closer relationship between E.

uniflora L. and Syzygium cumini (L). Skeels compared to

the Eucalyptus clade in the Myrtaceae family. The com-

plete cp genome sequence of E. uniflora reported here has

importance for population genetics, as well as phylogenetic

and evolutionary studies in this species and other Myr-

taceae species from Neotropical regions.

Keywords cpDNA � Fruit tree � Genome sequencing �
NGS � Pitanga � Plant evolution

Introduction

Chloroplasts are multifunctional organelles, which possess

their own genetic material and are believed to have origi-

nated from ancient endosymbiotic cyanobacteria (Ravi

et al. 2008). The chloroplast (cp) genome in angiosperms

usually varies between 115 and 165 kb in size and main-

tains highly conserved organization in most land plants.

The lack of recombination, low rates of nucleotide sub-

stitutions (Wolfe et al. 1987) and primarily uniparental

inheritance make plant cpDNA a valuable genetic source

for phylogenetic relationship studies (Bayly et al. 2013).

Sequence data from the plastid genome have transformed

plant systematics and contributed greatly to unravel deep-

level evolutionary relationships of taxonomically unre-

solved plant taxa (Jansen et al. 2007; Moore et al. 2010;

Ruhfel et al. 2014).

The Myrtaceae (Myrtle, Eucalyptus, clove or guava

family) is the eighth largest flowering plant family, and it is

dominant among several vegetation types in South Amer-

ica through a variety of ecotypes (Pennington et al. 2009).

Eugenia is the largest genus of Neotropical Myrtaceae
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family, encompassing about 5600 species, two-thirds of

which are present in Brazilian ecosystems (Govaerts et al.

2015). Eugenia can be distinguished from the other genera

of tribe Myrteae DC. by the generally 4-merous flowers,

which have free calyx lobes that are separate in the flower

bud, a non-tubular hypanthium that usually not extend

beyond the tip of the bilocular multiovulate ovary, and

finally by their embryo with cotyledons fused in a solid

homogeneous mass (Mazine et al. 2014).

Eugenia uniflora L. is a fruit tree native to South

America that serves as a good model for ecological

studies because it grows in several different vegetation

types, including forests, restingas, and arid and semiarid

environments in the Brazilian northeast. This species is

very versatile in terms of adaptability and plays a fun-

damental role in the maintenance of the shrubby coastal

vegetation. Ecologically, it is an important food source

for a variety of birds and mammals, and it can survive in

disturbed sites within restinga habitats, especially near

the beach (Almeida et al. 2012). Besides its ecologic

importance, E. uniflora L. produces edible cherry-like

fruits characterized by a low lipid and caloric content

and by high amounts of polyphenols, carotenoids, and

other antioxidant compounds (Spada et al. 2008) being

traditionally used in folk medicine as antipyretic, stom-

achic, hypoglycemic, and to lower blood pressure (Lim

2012).

Despite the importance of the family, the phyloge-

netic relationships and delimitation of some genera are

still debatable, especially in the fleshy fruit members.

Many studies have provided insights into Myrtaceae

phylogeny using nuclear ribosomal DNA and cp markers

(Wilson et al. 2005; Lucas et al. 2007; Biffin et al. 2010;

Thornhill et al. 2015; Berger et al. 2016). Although it

has been recently published a phylogenetic work based

on complete cp genome sequences from Myrteae tribe

(Machado et al. 2017), most of these studies have been

performed mainly on Eucalyptus and related genera

(Steane 2005; Asif et al. 2013; Bayly et al. 2013;

Reginato et al. 2016). Therefore, the availability of

complete cp genomes exhibiting new variable and

informative regions would help to reconstruct a more

accurate phylogeny.

In this study, we present the cp genome of the fleshy

fruit, Eugenia uniflora, obtained from whole genome

sequencing and de novo assembly. This represents a solid

resource for phylogenetic studies in the Myrtaceae family.

We analyzed the genome features of E. uniflora and

compared them with cp genomes from other Myrtaceae

tribes. In addition, we performed a phylogenomic approach

using 57 cp genes to reconstruct the phylogeny of Malvi-

dae/Eurosid II group, which includes the Myrtales order.

Materials and methods

Plant material

Young leaves from Eugenia uniflora tree were collected

from Porto Alegre, RS, Brazil (latitude (S): 30�402.7100;
longitude (W): 51�7011.8800). Voucher specimen was

deposited at the Herbário do Instituto de Ciências Naturais

(ICN 193277).

DNA sequencing and genome assembly

Total DNA was extracted from 1 g of fresh leaves using a

CTAB method (Doyle and Doyle 1990). DNA quality was

evaluated by electrophoresis on a 1% agarose gel, and

quantification was determined using a NanoDrop spec-

trophotometer (NanoDrop Technologies, Wilmington, DE,

USA).

Total DNA (10 lg) was sent to Fasteris SA (Plan-les-

Ouates, Switzerland) for processing. One genomic paired-

end library of 100-nt-long reads was generated using Illu-

mina HiSeq 2000 platform (Illumina Inc., San Diego, CA,

USA). To filter reads from the cp genome, the obtained

paired-end sequence reads were aligned using Bowtie

(Langmead 2010), against Arabidopsis thaliana Schur.,

Glycine max Merr., and 40 other Myrtaceae cp genomes

(Online Resource 1) with a maximum of two mismatches

per read. The filtered reads were assembled with ABYSS

software (Simpson et al. 2009). The cp genome scaffolds

were orientated by BLAST using the cp genome sequences

of Eucalyptus globulus Labill and Eucalyptus grandis

W.Hill as reference genomes (Altschul et al. 1990). Gap

regions were filled in after Sanger sequencing using pri-

mers F: CATCCGCCAGGAGAGTTTAT, R: AAAGGG

CCCTGCTATGAAAA and F: TCGGGTTGTGAGACAC

ATTC, R: AACCCGCGTCTTCTCCTT. PCR was carried

out in total volume of 20 ll containing 10 ng of DNA, 19

PCR buffer, 1.5 mM MgCl2, 0.25 mM dNTP mix, 0.05 U

of Platinum Taq DNA polymerase and 0.5 lM each of

forward and reverse primers. The PCR cycle had an initial

hot-start step at 94 �C for 5 min, followed by 35 cycles of

94 �C for 45 s, 60 �C for 1 min, 72 �C for 2 min and a

final extension step at 72 �C for 5 min. Sanger sequencing

reactions were performed using BigDye Terminator v3.1

Cycle sequencing kit and were resolved on ABI 3700 DNA

Analyzer.

Genome analysis, codon usage, and repeat structure

Coding sequences (cds), rRNA, and tRNA were annotated

using the automatic annotator DOGMA (Dual Organellar

GenoME Annotator) (Wyman et al. 2004), verified using
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BLAST searches against other plant cp genomes, and

finally manually curated. tRNA genes were confirmed by

comparison with the appropriate homologs in Eucalyptus

globulus Labill cp genome and folding-verified with the

tRNA scan-SE online program (http://lowelab.ucsc.edu/

tRNAscan-SE). The codon usage frequency was analyzed

by using MEGA (Tamura et al. 2007). A circular map of

the genome was designed using the online OGDRAW

program (Lohse et al. 2013). Whole chloroplast gene dis-

tribution was performed and visualized between E. glob-

ulus and Syzygium cumini (L.) Skeels. with mVISTA

software using E. uniflora as the reference genome (Frazer

et al. 2004).

The positions and type of simple sequence repeats

(SSRs) were detected using MISA (http://pgrc.ipk-gate

rsleben.de/misa/), with thresholds of eight repeat units for

mononucleotide SSRs, four repeat units for di- and trinu-

cleotide SSRs, and three repeat units for tetra-, penta- and

hexanucleotide SSRs. All of the repeats found were man-

ually verified, and redundant results were removed. Tan-

dem repeats were analyzed using Tandem Repeats Finder

(TRF) v4.07b (Benson 1999) with the prior mentioned

parameter settings. REPuter was used to identify and locate

direct and inverted repeats in the cp genome of E. uniflora

(Kurtz et al. 2001). The minimal repeat size was set to

30 bp, and the identity of repeats was no less than 90%

(hamming distance equal to 3).

Phylogenetic analysis

Fifty-seven common cp protein-coding genes (PCGs)

(Online Resource 2) were used to infer the phylogenetic

relationships among 58 species belonging to the Malvids

(Eurosids II) group available in GenBank (Online

Resource 3). Vitis vinifera L. was set as out-group.

Nucleotide sequences were aligned by MUSCLE avail-

able in MEGA version 6.0 (Tamura et al. 2007). Phy-

logenetic trees were generated by the maximum

likelihood (ML) method, using the GTR?I?G nucleo-

tide substitution determined by Modeltest ver. 3.7

(Posada and Crandall 1998), using RAxML v8.2.4

(Stamatakis 2014). The stability of each tree node was

tested by bootstrap analysis with 1000 replicates.

Bayesian analysis on the same dataset was also per-

formed using MrBayes version 3.1.2 (Ronquist and

Huelsenbeck 2003). We used the same evolutionary

model with 5,000,000 generations sampled every 100

generations. The first 25% of trees were discarded as

burn-into produce a consensus phylogram, with posterior

probability (PP) values for each node. The phylogenetic

trees were rooted and visualized using FigTree software

(http://tree.bio.ed.ac.uk/software/figtree/).

Results

Genome assembly

Reads from Illumina sequencing of the Eugenia uniflora

nuclear genome were used to assemble the cp genome. The

total reads (75,127,218) were filtered and assembled de

novo into non-redundant contigs and singletons joined into

10 scaffolds. This first draft of the cp genome resulted in

mapped reads covering about 99.9% of the genome (cov-

erage 10,938 reads, minimum coverage = 757 reads,

maximum coverage = 26 327 reads).

After running BLAST with Eucalyptus genomes, the

cp genome sequences resulted in two large scaffolds

whose ends were finally closed using PCR and Sanger

sequencing. The four junctions between IRs and SSC/LSC

were determined by aligning the E. uniflora cp genome

versus E. globulus and Syzygium cumini genomes. The

final cp genome was then submitted to GenBank (acces-

sion number NC_027744).

The overall structure and general features

of the Eugenia uniflora cp genome

The complete length of the Eugenia cp genome is

158,445 bp, and it includes the canonical quadripartite

structure consisting of one LSC (87,459 bp), one SSC

(18,318 bp) and a pair of IRs (26,334 bp) (Fig. 1). Coding

regions (92,848 bp; 58.93%) account for over half of the cp

genome, with the peptide-coding regions forming the lar-

gest group (81,462 bp; 51.41%), followed by ribosomal

RNA genes (9050 bp; 5.71%) and transfer RNA genes

(2863 bp; 1.81%). The remaining 41.07% is covered by

intergenic regions, introns or pseudogenes (Table 1). The

average total AT content is 63% with the IRs having lowest

amount (57.2%). A total of 111 different genes, including

30 tRNAs, 4 rRNAs and 77 predicted protein-coding genes,

were annotated (Table 2). Among these, seven tRNAs, four

rRNAs and six protein-coding genes (ycf15, rps7, ndhB,

ycf2, rpl23, rpl2) were present in duplicate in the IR

regions. Three pseudogenes, ycf1, ycf15 and infA, were

identified and located in the boundary IRb/SSC, IRb and

LSC region, respectively. In the Eugenia cp genome, there

are 18 gene containing introns, the majority of them (12

genes) are located in the LSC region (four tRNAs and eight

protein-coding genes) and the rest are distributed in IRs

(two tRNA and three protein-coding genes) and SSC (1

protein-coding gene) region (Table 3). Most of the genes

have only one intron, but clpP and ycf3 have two introns

each. The trnK(UUU) gene has the largest intron (2530 bp)

containing within it the matK gene. The rps12 gene

sequence is a trans-spliced gene with the 50end located in
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the LSC region and the duplicated 30end in the IR regions.

Based on the sequences of protein-coding genes and tRNA

genes, the frequency of codon usage was deduced for the

cp genome and is summarized in Table 4. The codon usage

was biased toward a high representation of A and U at the

third codon position, as observed in most land plant cp

genes (Ravi et al. 2008).

Comparison of Eugenia uniflora to other Myrtaceae

cp genomes

The overall sequence alignment of E. globulus and S.

cumini cp genomes was compared using the annotation of

Eugenia uniflora as a reference. The same order of genes

was confirmed because order variations in cp genomes are

Fig. 1 Eugenia uniflora chloroplast genome map. The thick lines

indicate the extent of the inverted repeats (IRa and IRb), which

separate the genome into small and large single-copy regions. Genes

on the outside of the map are transcribed clockwise and those on the

inside of the map are transcribed counterclockwise. GC content is

shown. Gene function or identifiers are displayed by different colors

as it is indicated by inner legend
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relatively uncommon. The two IRs from the three cp

genomes show high similarity in sequence (Fig. 2), on the

other hand, the most divergent regions were those localized

in the intergenic spacers in the noncoding genes. The

coding region sequences show a high level of conservation.

Slightly more sequence variation was observed between E.

uniflora and E. globulus cp genomes in the psaA, psaB and

ycf2 genes, compared with S. cumini.

IR contraction and expansion

In general, E. uniflora has the smallest cp genome com-

pared to E. globulus, E. grandis and S. cumini and shows

an expansion of the IR over the LSC region (Fig. 3). This

also explains the presence of pseudogenes in the border

regions, like ycf1 in which length variation depends upon if

the IR has extended into the SSC region. In the case of E.

uniflora, a shorter ycf1 pseudogene and a larger ndhF gene

cause a reduction in the intergenic sequence. This last gene

is relatively highly variable in the 30 region (Dong et al.

Table 1 Summary of the characteristics of Eugenia uniflora

chloroplast genome

Feature E. uniflora

Total cpDNA size (bp) 158,445

LSC size (bp) 87,459

SSC size (bp) 18,318

IR size (bp) 26,334

Protein-coding regions (%) 58.6%

rRNA and tRNA (%) 7.52%

Introns size (% total) 12.05%

Intergenic sequences and pseudogenes (%) 29.02%

Number of genes 131

Number of different protein-coding genes 77

Number of different tRNA genes 30

Number of different rRNA genes 4

Number of different duplicated genes 17

Pseudogenes 3

GC content 37%

Table 2 Genes present in Eugenia uniflora chloroplast genome

Category Group of genes Name of genes

Self-

replication

Large subunit of

ribosomal proteins

rpl2b,c, 14, 16b, 20, 22, 23c, 32, 33, 36

Small subunit of

ribosomal proteins

rps2, 3, 4, 7c, 8, 11, 12b-d, 14, 15, 16b, 18, 19

rRNA genes rrn4.5, 5, 16, 23

tRNA genes trnA(UGC)b,c, C(GCA), D(GUC), E(UUC), F(GAA), G(UCC)b,c, G(GCC), H(GUG), I(CAU)c, I(GAU)b,c, K(UUU)b,

L(UAG), L(CAA)c, L(UAA)b, M(CAU), fM(CAU), N(GUU)c, Q(UUG), R(ACG)c, R(UCU), S(GGA), S(GCU),

S(UGA), T(GGU), T(UGU), V(UAC)b, V(GAC)c, W(CCA), Y(GUA), P(UGG)

Photosynthesis Photosystem I psaA, B, C, I, J, ycf3a, ycf4

Photosystem II psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z

NADH oxidoreductase ndhAb, Bb,c, C, D, E, F, G, H, I, J, K

Cytochrome b6/f

complex

petA, Bb, Db, G, L, N

ATP synthase atpA, B, E, Fb, H, I, L

Rubisco rbcL

Other gene Maturase matK

Protease clpPa

Envelop membrane

protein

cemA

Subunit Acetyl-CoA

carboxylase

accD

c-type cytochrome

synthesis gene

ccsA

Unknown

gene

Conserved open reading

frames

ycf1, ycf2c, ycf15c

a Genes containing two introns
b Genes containing a single intron
c Genes with two copies
d Genes split into two independent transcription units
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2012). The intergenic spacer located between the IRA/LSC

border and the trnH gene of the LSC region established

differences between the cp genomes. This region is 43 bp

in E. uniflora, similar to that of S. cumini (55 bp), but

different from other dicots where it ranges in size of

2–12 bp (Shinozaki et al. 1986; Ibrahim et al. 2006).

Repeat structure and SSR analysis

For repeat structure analysis, eleven forward, one inverted,

and twelve tandem repeats were detected in the E. uniflora

cp genome (Table 5). Most of these repeats (67%) exhib-

ited lengths between 20 and 50 bp and were located in

intergenic spacers regions and introns. The coding regions

of psaA, psaB, ycf1 and ycf2 genes showed some repeated

sequences. Although the number of repeats was variable

respect to Syzygium and Eucalyptus, they were identified in

the same genes. Most of the repeated regions identified in

this work have already been compared in S. cumini,

Eugenia grandis, E. globulus, Nicotiana tabacum L.,

Gossypium barbadense L. and show a high degree of

conservation (Asif et al. 2013). It appears that dispersed

repeats are very common in angiosperm cp genomes, but

future comparative studies are needed to determine the

functional and evolutionary role of these repeats.

SSRs are repeated DNA sequences consisting of

direct tandem repeats of short (1–10 bp) nucleotide

motifs. In this study, a total of 215 SSR loci were

identified, most of them (76.25%) were A and T

mononucleotide repeats (Table 6) similar to other

Myrtaceae cp genomes (Asif et al. 2013). Most SSRs are

located in intergenic regions, but some were found in

ndhF, petA, ycf2, rpoC2, psaJ, psbB, ycf1, ccsA, ycf4

and rps19 coding genes (Table 6).

Phylogenetic analysis

In this study, the concatenated nucleotide sequences of 57

PCGs of 58 cp genomes of Malvidae group were used to

reconstruct the phylogenetic relationships by the ML and

Bayesian method. These 57 genes were present in all the cp

genomes so the problem of missing data from the sequence

alignment was minimized. The sequence alignment used

comprised 36,206 characters. The final alignment was

submitted and assigned as 21,047 in the TreeBASE data-

base (https://treebase.org/). ML analysis resulted in a single

tree with ln L = -249,032.011, and bootstrap values were

high with values[80% for 4 of 55 nodes, and 48 nodes

with 100% bootstrap (Online Resource 4). Although the

Bayesian and ML analyses showed similar topologies, the

posterior probabilities in the Bayesian analysis were better

than the bootstrap values in the ML (Fig. 4). Therefore,

only the Bayesian tree was chosen for discussing the

phylogenetic results.

There are congruence areas strongly supported by the

phylogeny (PP = 1.0) that include the monophyly of

Brassicales and their sister relationship to Malvales and

Sapindales and monophyly of Geraniales and Myrtales.

Our phylogenies placed Myrtales in a sister relationship to

Geraniales with solid support and resolution (PP = 0.95),

Table 3 Genes with introns in

the Eugenia uniflora chloroplast

genome and the length of the

exons and introns

Gene Location exon I (bp) intron I (bp) exon II (bp) intron II (bp) exon III (bp)

trnK(UUU) LSC 37 2568 35

rps16 LSC 39 867 204

trnG(UCC) LSC 23 755 49

atpF LSC 147 742 408

rpoC1 LSC 453 729 1614

ycf3 LSC 126 758 228 727 148

trnL(UAA) LSC 37 502 46

trnV(UAC) LSC 39 600 37

clpP LSC 69 866 291 619 223

petB LSC 6 771 639

petD LSC 9 752 471

rpl16 LSC 9 1000 396

rpl2 IR 390 664 432

ndhB IR 777 681 753

rps12 IR 210 567 27

trnI(GAU) IR 37 957 35

trnA(UGC) IR 38 803 35

ndhA SSC 549 1067 537
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despite the fact that this order still has a controversial

position in respect to other members of the Rosids

(Fig. 4).

In analyzing the Myrtales clade, we showed a closer

relationship between species from Melastomataceae and

Myrtaceae family than to Onagraceae family. Our phylo-

genetic tree clearly supports the monophyly of the three

Myrtoideae tribes: Myrteae, Eucalypteae and Syzygieae

(PP = 1.0). Additionally, we corroborated the paraphyly of

Corymbia in the Eucalypteae tribe and observed that the

latter has a closer relationship to Syzygieae than Myrteae

(Bayly et al. 2013). Eugenia uniflora is placed along with

Acca sellowiana (O.Berg) Burret as the diverging lineage,

and they have a closer relationship with S. cumini (Syzy-

gieae tribe) than to the Eucalypteae tribe.

Discussion

The cp genome of Eugenia uniflora was assembled de novo

from the Illumina NGS reads derived from the whole

genome. This approach, without prior purification of the

cpDNA, provides a new way to obtain the cp genome and

has been successful in several studies (Leseberg and Duvall

2009; Tangphatsornruang et al. 2010; Straub et al. 2011).

Our work serves as another example of this approach for

obtaining high coverage (99%) of the cp genome.

The E. uniflora cp genome has the typical quadripartite

structure (Fig. 1) and gene content with a size in range with

other Myrtaceae family members (Asif et al. 2013; Bayly

et al. 2013; Machado et al. 2017). Major differences among

angiosperm cp genomes are due to gene loss, inversions,

Table 4 Codon–anticodon

recognition pattern and codon

usage for the Eugenia uniflora

chloroplast genome

Codon Aminoacid Count RSCU trnA Codon Aminoacid Count RSCU trnA

UUU F 2308 1.19 trnF(GAA) UAU Y 1456 1.34 trnY(GUA)

UUC F 1587 0.81 UAC Y 715 0.66

UUA L 1080 1.19 trnL(UAA) UAA * 1225 1.21

UUG L 1160 1.28 trnL(CAA) UAG * 855 0.84

CUU L 1110 1.22 trnL(UAG) CAU H 967 1.4 trnH(GUG)

CUC L 717 0.79 CAC H 416 0.6

CUA L 848 0.94 CAA Q 1102 1.39 trnQ(UUG)

CUG L 526 0.58 CAG Q 478 0.61

AUU I 1888 1.21 trnI(GAU) AAU N 1819 1.39 trnN(GUU)

AUC I 1230 0.79 AAC N 795 0.61

AUA I 1565 1 trnI(CAU) AAA K 2172 1.32 trnK(UUU)

AUG M 958 1 trn(f)M(CAU) AAG K 1117 0.68

GUU V 839 1.36 trnV(GAC) GAU D 1025 1.41 trnD(GUC)

GUC V 437 0.71 GAC D 429 0.59

GUG V 446 1.22 GAA E 1379 1.38 trnE(UUC)

GUA V 754 0.72 trnV(UAC) GAG E 622 0.62

UCU S 1117 1.48 trnS(GGA) UGU C 667 1.2 trnC(GCA)

UCC S 855 1.13 UGC C 449 0.8

UCG S 602 0.8 UGA * 956 0.94

UCA S 861 1.14 trnS(UGA) UGG W 704 1 trnW(CCA)

CCU P 662 1.07 trnP(UGG) CGU R 321 0.6 trnR(ACG)

CCC P 564 0.92 CGC R 252 0.47 trnR(UCU)

CCA P 799 1.3 CGA R 577 1.08

CCG P 440 0.71 CGG R 363 0.68

ACU T 647 1.17 trnT(GGU) AGA R 1079 2.01

ACC T 549 0.99 AGG R 626 1.17

ACG T 362 0.65 AGU S 627 0.83 trnS(GCU)

ACA T 656 1.19 trnT(UGU) AGC S 471 0.62

GCU A 469 1.3 trnA(UGC) GGU G 510 0.95 trnG(GCC)

GCC A 329 0.91 GGC G 330 0.62

GCA A 420 1.16 GGG G 537 1

GCG A 225 0.62 GGA G 764 1.43 trnG(UCC)
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and expansion/contraction of inverted repeat regions. The

IR contraction and expansion events, the presence of many

stop codons in the coding sequence, or a probable partial

duplication are all reasons that could explain the presence

of pseudogenes in the cp genome. In our work, this is

represented in the ycf1, infA and ycf15 pseudogenes

(Fig. 1; Table 1). Some alternative codons were also

identified, ACG was used as an alternative initiation codon

in the psbL and ndhD genes and GUG was only found as a

start codon in the ycf15 pseudogene and rps19 gene. ACG

has been shown to convert to an AUG initiation site as

reported in N. tabacum (Sasaki 2003), and GUG codons

have been reported to be more efficient than ACG in

translation initiation (Rohde et al. 1994). Most cp genomes

are quite AT rich with (above 60%) unevenly distributed

AT contents, as well as conserved regions of lower AT

contents. The features of the E. uniflora cp genome are the

same, and of all the cp regions, the IRs have the lowest AT

content (57.2%) because of the presence of ribosomal

genes (Ravi et al. 2008). These values are congruent with

those reported in other Myrtaceae cp genomes (Asif et al.

2013; Bayly et al. 2013; Machado et al. 2017).

Chloroplast SSRs (cpSSRs) are generally short

mononucleotide tandem repeats that, when located in the

noncoding regions of the cp genome, commonly show

intraspecific variation in repeat number. CpSSRs can

exhibit high variation within the same species and thus are

considered valuable markers for population genetics

Fig. 2 Sequence identity plot comparing the chloroplast genome of

Eugenia uniflora to other Myrtaceae. Pairwise comparisons between E.

uniflora and E. globulus (top) and Syzygium cumini (bottom)

chloroplast genomes using mVISTA. The y-axis represents % identity

ranging from 50 to 100%. Coding, rRNA, tRNA and conserved

noncoding sequences (CNS) are shown as indicated by inner legend

M. Eguiluz et al.

123



(Provan et al. 2001). In this work, we identified some SSRs

that can be utilized to increase our understanding of the

genetic structure of E. uniflora populations (Margis et al.

2002; Salgueiro et al. 2004; Ferreira-Ramos et al. 2008).

Understanding the effects of spatial isolation on the levels

of genetic diversity and gene flow is crucial to providing

recommendations for in situ and ex situ conservation of the

species. In addition, these SSR markers will also be useful

in future studies of other Myrtaceae species from the

Neotropics.

Although previous phylogenetic studies improved our

understanding of intergeneric relationships within the

Myrtales order, the relationship between fleshy-fruited and

dry-capsular clades remains unresolved. In this work, some

representative cp genomes from Melastomataceae, Ona-

graceae and Myrtaceae family were selected to build a

Malvidae metatree. We used species from the Malvidae

group because the order Myrtales belongs to this group and

there are several cp genomes available. To do this, 57

protein-coding genes for 13 taxa were analyzed using both

the ML and Bayesian methods. Both trees are congruent to

that presented in a recent study using 78 cp coding genes

from 30 angiosperm taxa (Ruhfel et al. 2014) and to that

using 72 complete cp genomes from Rosids (Su et al.

2014). Although our results clearly favor a closer rela-

tionship of Myrtales to the Geraniales clade, expanded

sampling of complete cp genome sequences of Rosids is

needed to resolve this issue, especially since limited taxon

sampling can lead to erroneous tree topologies (Leebens-

Mack et al. 2005).

Eugenia uniflora formed one monophyletic clade along

with A. sellowiana, another Myrtaceae from Neotropical

region, as previously reported by Machado et al. 2017

using complete cp genomes. These two species were more

closely related to Syzygium cumini than the Eucalypteae

tribe. The Syzygieae tribe has had a long association with

the predominantly New World Myrtaceous, mostly because

they showed a high similarity between their cp complete

Fig. 3 Comparison of border positions of LSC, SSC and IR among

Eugenia uniflora and related Myrtaceae family species. Boxes above

the main line indicate the predicted genes, while pseudogenes at the

borders are shown by W. Their length is displayed in the

corresponding regions. The figure is not scaled and just shows

relative changes at or near the IR-SC borders. Sc Syzygium cumini,

Egl E. globulus, Egr E. grandis
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genome sequences. Additionally, they have characteristics

in common such as fleshy large-seeded fruits, biotic dis-

persal, and they are both woody rainforest trees. These

results are in agreement with Biffin et al. (2010), who

concluded that Syzygieae and Myrteae show highly sig-

nificant positive variation in diversification rates associated

with both of these lineages relative to the overall evolu-

tionary radiation of Myrtaceae. Our phylogenetic tree also

confirmed the closer relationship between Melastomat-

aceae and Myrtaceae than to the Onagraceae family as

reported by previous analyses based on complete cpDNA

(Berger et al. 2016; Reginato et al. 2016). Our phylogenetic

analyses based on complete cp genomes further expand the

taxon sampling of entire genomes as we included one more

Neotropical Myrtaceae genome in a metatree analysis.

Conclusions

The Eugenia uniflora cp genome organization and gene

content are typical of most angiosperms and are similar to

that of Myrtaceae species. It features a relevant number of

simple sequence repeats, which could be further explored

for population studies within the Eugenia genus. Moreover,

these data increase the genetic and genomic resources

available in Myrtaceae by adding a new strategy of

Table 5 Repeated sequences in the Eugenia uniflora chloroplast genome

Repeat

size (bp)

Start position of

first repeat

Typea Start position the repeat found

in other region

Copy

number

Locationb Region

15 55,610 T 55,625 (92) IGS (trnM(CAU)-atpE) LSC

15 130,810 T 130,825, 130,840 (93) ycf1 SSC, IRB

16 10,031 T 10,047 (92) intron (trnS(UCC)) LSC

16 87,134 T 87,150 (92) IGS (rpl22-rps19) LSC

17 102,403 T 102,420 (92) IGS (rps12-trnV(GAC)) IRA

18 66,388 T 66,406 (92) IGS (petA-psbJ) LSC

18 94,667 T 94,685, 94,703 (93) ycf2 IRA

20 6373 T 6393 (92) IGS (rps16-trnQ(UUG)) LSC

20 39,036 T 39,056 (92) IGS (psbZ-trnG(GCC)) LSC

20 70,664 T 70,684 (92) IGS (psaJ-rpl33) LSC

21 92,239 T 92,260, 92,281 (93) ycf2 IRA

31 92,238 F 92,259 (92) ycf2 IRA

31 45,820 F 102,036 (92) intron I (ycf3); IGS (rps12-trnV(GAC)) LSC, IRA

31 153,617 F 153,638 (92) ycf2 IRB

32 8762 F 38,011 (92) IGS (psbI-trnS(GCU), trnS(GCU);

IGS (psbC-trnS(UGA), trnS(UGA))

LSC

35 70,665 I 70,665 (92) IGS (psaJ-rpl33) LSC

39 46,761 F 102,014 (92) intron II (ycf3); IGS (rps12-trnV(GAC)) LSC, IRA

40 102,014 F 123,971 (92) rps12; intron (ndhA) IRA, SSC

41 41,804 F 44,028 (92) psaB; psaA LSC

42 46,758 F 123,968 (92) intron II (ycf3); intron ndhA LSC, SSC

45 94,666 F 94,684 (92) ycf2 IRA

45 151,175 F 151,193 (92) ycf2 IRB

50 38,352 T 38,402 (92) IGS (trnS(UGA)-psbZ) LSC

62 38,351 F 38,401 (92) IGS (trnS(UGA)-psbZ) LSC

a F Forward; I Inverted; T Tandem
b IGS intergenic spacer region
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Table 6 List of simple sequence repeats in Eugenia uniflora. The SSR-containing coding regions are indicated in parentheses

Repeat

unit

Length

(bp)

Number

of SSRs

Start position

A 8 31 1992; 4532; 6547; 6772; 8905; 9344; 14,290; 19,917; 23,570; 23,757; 39,529; 45,575; 45,600; 55,722; 62,539;
65,559 (petA); 68,727; 68,795; 72,516; 75,695; 81,223; 113,806 (ndhF); 114,538 (ndhF); 118,402; 120,673;
120,744; 131,958; 139,500; 143,496; 146,803; 158,425

9 22 17; 7940; 9048; 12,656; 13,443; 14,472; 31,941; 32,744; 32,817; 38,913; 47,458; 48,054; 57,737; 71,263; 71,766;
92,859 (ycf2); 116,745; 117,617; 118,856; 122,698; 126,805; 134,276

10 10 303; 4705; 4780; 8176; 47,420; 48,211; 48,271; 62,286; 74,562; 131,613

11 7 5678; 8732; 50,518; 75,032; 117,327; 124,318; 130,258

12 2 60,317; 84,317

13 1 8707; 74,079

15 1 14,765

19 1 32,343

T 8 33 4296; 5792; 8338; 18,391 (rpoC2); 29,269; 31,642; 37,906; 45,860; 69,550; 70,515 (psaJ); 70,892; 74,164; 76,564
(psbB); 78,464; 84,363; 85,593; 85,682; 87,473; 99,095; 102,402; 106,398; 117,953 (ccsA); 118,488 (ccsA);
119,042; 119,067; 119,739; 127,133; 127,935 (ycf1); 128,476 (ycf1); 130,326 (ycf1); 131,338 (ycf1); 131,455
(ycf1); 131,573 (ycf1)

9 22 141; 2481; 9565; 14,030; 19,668; 31,404; 34,703; 47,358; 49,898; 54,438; 62,923; 68,293; 74,663; 87,435 (rps19);
111,621; 117,239; 122,789; 124,393; 128,707; 130,023 (ycf1); 130,846 (ycf1); 153,038 (ycf2)

10 17 7863; 9093; 10,950; 15,525; 22,370 (rpoC1 - exon II); 27,435 (rpoB); 45,944 (ycf3 - intron I); 47,321 (ycf3 - intron
II); 54,299; 54,696; 57,631; 70,066; 72,927; 74,602; 75,767; 85,868; 86,670 (rpl22)

11 8 13,215; 17,551; 19,774 (rpoC2); 63,472 (ycf4); 66,969; 73,028; 73,341; 124,796

12 2 66,289; 73,896

13 1 70,607

14 2 15,692; 53,692 (ndhK)

15 1 83,775

20 1 51,433

C 8 2 39,678; 65,485 (petA)

AG 8 2 98,454 (ndhB - exon I); 136,156 (rrn23)

AT 8 15 1884; 10,527; 45,420; 58,748 (rbcL); 60,365; 60,817 (accD); 62,673; 65,199 (petA); 66,816; 70,297; 87,039
(rpl22); 124,099; 127,519; 148,203; 157,836

10 1 33,835

CA 8 1 3100

CT 8 3 31,961; 109,742 (rrn23); 147,444 (ndhB - exon II)

GA 8 4 38,017 (trnS(UGA); 58,932 (rbcL); 90,677 (ycf2); 92,880 (ycf2)

TA 8 5 7506; 88,061; 96,251 (ycf2); 97,694; 149,647 (ycf2)

TC 8 3 131,255 (ycf1); 153,018 (ycf2); 155,221 (ycf2)

10 1 64,285 (cemA)

AGA 12 1 139,167

CAG 12 1 1177 (psbA)

TTA 12 1 68,856

TTC 12 1 106,726

AATA 12 1 119,348 (ndhD)

AGAT 12 1 4894

ATAG 12 1 115,884 (ndhF)

ATTA 12 1 33,664

ATTT 12 1 11,090

CTTG 12 1 29,446

TAAG 12 1 46,202

TAAT 12 1 129,206 (ycf1)

TCTT 12 1 63,902

TTAT 12 1 78,171

TTTC 12 2 78,202; 85,555
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organelle genome assembly. The cp genome reported here

will enrich and help to resolve the phylogeny of the Rosids

subclass. In addition, studies of the Eugenia uniflora gen-

ome will also allow for discovery and interpretation of

functional elements encoded within those sequences, pro-

viding a basis for understanding key evolutionary changes

that correlate with the high diversification rate of Myrteae

tribe.
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