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ABSTRACT

HPC device’s reliability is one of the major concerns for supercomputers today and for
the next generation. In fact, the high number of devices in large data centers makes the
probability of having at least a device corrupted to be very high. In this work, we first
evaluate the problem by performing radiation experiments. The data from the experiments
give us realistic error rate of HPC devices. Moreover, we evaluate a representative set of
algorithms deriving general insights of parallel algorithms and programming approaches
reliability.

To understand better the problem, we propose a novel methodology to go beyond the
quantification of the problem. We qualify the error by evaluating the criticality of each
corrupted execution through a dedicated set of metrics. We show that, as long as imprecise
computing is concerned, the simple mismatch detection is not sufficient to evaluate and
compare the radiation sensitivity of HPC devices and algorithms. Our analysis quantifies
and qualifies radiation effects on applications’ output correlating the number of corrupted
elements with their spatial locality. We also provide the mean relative error (dataset-wise)
to evaluate radiation-induced error magnitude.

Furthermore, we designed a homemade fault-injector, CAROL-FI, to understand further
the problem by collecting information using fault injection campaigns that is not possible
through radiation experiments. We inject different fault models to analyze the sensitivity
of given applications. We show that portions of applications can be graded by different
criticalities. Mitigation techniques can then be relaxed or hardened based on the criticality
of the particular portions.

This work also evaluates the reliability behaviors of six different architectures, ranging
from HPC devices to embedded ones, with the aim to isolate code- and architecture-
dependent behaviors. For this evaluation, we present and discuss radiation experiments
that cover a total of more than 352,000 years of natural exposure and fault-injection anal-
ysis based on a total of more than 120,000 injections.

Finally, Error-Correcting Code, Algorithm-Based Fault Tolerance, and Duplication With
Comparison hardening strategies are presented and evaluated on HPC devices through
radiation experiments. We present and compare both the reliability improvement and im-
posed overhead of the selected hardening solutions. Then, we propose and analyze the
impact of selective hardening for HPC algorithms. We perform fault-injection campaigns

to identify the most critical source code variables and present how to select the best can-



didates to maximize the reliability/overhead ratio.

Keywords: HPC. Fault Tolerance. Accelerators. Radiation Experiments. Fault Injection.

Reliability. Hardening Strategies. Selective Hardening.



Estratégias de Enrobustecimento para Aplicacoes PAD

RESUMO

A confiabilidade de dispositivos de Processamentos de Alto Desempenho (PAD) é uma
das principais preocupacdes dos supercomputadores hoje e para a proxima geragcdo. De
fato, o alto nimero de dispositivos em grandes centros de dados faz com que a proba-
bilidade de ter pelo menos um dispositivo corrompido seja muito alta. Neste trabalho,
primeiro avaliamos o problema realizando experimentos de radiacdo. Os dados dos expe-
rimentos nos dao uma taxa de erro realista de dispositivos PAD. Além disso, avaliamos
um conjunto representativo de algoritmos que derivam entendimentos gerais de algorit-
mos paralelos e a confiabilidade de abordagens de programacao.

Para entender melhor o problema, propomos uma nova metodologia para ir além da quan-
tificagdo do problema. Qualificamos o erro avaliando a importancia de cada execugdo
corrompida por meio de um conjunto dedicado de métricas. Mostramos que em relacio a
computagao imprecisa, a simples detec¢do de incompatibilidade ndo € suficiente para ava-
liar e comparar a sensibilidade a radiacdo de dispositivos e algoritmos PAD. Nossa andlise
quantifica e qualifica os efeitos da radiagc@o na saida das aplica¢des, correlacionando o nu-
mero de elementos corrompidos com sua localidade espacial. Também fornecemos o erro
relativo médio (em nivel do conjunto de dados) para avaliar a magnitude do erro induzido
pela radiagao.

Além disso, desenvolvemos um injetor de falhas, CAROL-FI, para entender melhor o
problema coletando informacdes usando campanhas de injecdo de falhas, o que ndo é
possivel através de experimentos de radiacdo. Injetamos diferentes modelos de falha para
analisar a sensitividade de determinadas aplicacdes. Mostramos que partes de aplicacdes
podem ser classificadas com diferentes criticalidades. As técnicas de mitigacdo podem
entdo ser relaxadas ou enrobustecidas com base na criticalidade de partes especificas da
aplicacao.

Este trabalho também avalia a confiabilidade de seis arquiteturas diferentes, variando de
dispositivos PAD a embarcados, com o objetivo de isolar comportamentos dependentes
de cdédigo e arquitetura. Para esta avaliacdo, apresentamos e discutimos experimentos de
radiacdo que abrangem um total de mais de 352.000 anos de exposi¢do natural e andlise
de injecao de falhas com base em um total de mais de 120.000 injec¢des.

Por fim, as estratégias de ECC, ABFT e de duplicagdo com comparagdo sdo apresentadas



e avaliadas em dispositivos PAD por meio de experimentos de radiagdo. Apresentamos e
comparamos a melhoria da confiabilidade e a sobrecarga imposta das solu¢des de enro-
bustecimento selecionadas. Em seguida, propomos e analisamos o impacto do enrobus-
tecimento seletivo para algoritmos de PAD. Realizamos campanhas de injecio de falhas
para identificar as varidveis de codigo-fonte mais criticas e apresentamos como selecionar

os melhores candidatos para maximizar a relacdo confiabilidade/sobrecarga.

Palavras-chave: PAD, Tolerincia a Falhas, Aceleradores, Experimentos de Radiacao,
Injecdo de Falhas, Confiabilidade, Estratégias de Enrobustecimento, Enrobustecimento

Seletivo.
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1 INTRODUCTION

Accelerators are extensively used nowadays to expedite calculations in large HPC
centers. Intel Xeon Phis and NVIDIA Kepler GPUs, for instance, power six of the top
10 supercomputers (DONGARRA; MEUER; STROHMAIER, 2015). Tianhe-2, Cori,
Trinity, and Oakforest-PACS are powered by Xeon Phis, while NVIDIA GPUs are used
as accelerators in Titan and Piz Daint. The main reasons to use accelerators are their
high computational capacity, low cost, reduced per-task energy consumption, and flexible
development platforms. However, accelerators are also extremely likely to experience
transient errors as they are built with cutting-edge technology, have very high operation
frequencies, and include large amounts of resources.

Nowadays, reliability is one of the major concerns not only for safety-critical but
for HPC applications as well. Various sources of faults could undermine the system re-
liability, including environmental perturbations, software errors, manufacturing process,
temperature, and voltage variations (LUTZ, 1993; LAPRIE, 1995; NICOLAIDIS, 1999).
Such faults may corrupt data values or logic operations and lead to Silent Data Corrup-
tion (SDC), Detected Uncorrectable Error (DUE), or be masked and cause no observ-
able error (CONSTANTINESCU, 2002; SAGGESE et al., 2005; SCHROEDER; PIN-
HEIRO; WEBER, 2011). This work focus on radiation-induced soft errors that, accord-
ing to (BAUMANN, 2005), are a considerable concern in modern computing devices
because, if uncorrected, may produce a failure rate that is higher than all the other error
sources combined. As a reference, DOE’s Titan, composed of more than 18,000 Kepler
GPUs, has a radiation-induced Mean Time Between Failures (MTBF) in the order of
dozens of hours (GOMEZ et al., 2014; TIWARI et al., 2015). As we approach exas-
cale, the resilience challenge will become even more critical due to an increase in system
scale (LUCAS, 2014; SNIR et al., 2014; RESEARCH, 2016). In this scenario, a lack
of understanding of HPC device resilience may lead to lower scientific productivity and
significant monetary loss (SNIR et al., 2014).

For this work, we intent to evaluate, understand, and develop mitigation strategies
for reliability issues in current and future supercomputers. To first evaluate the problem
we make a thorough analysis of HPC devices radiation reliability based on analytical
studies and a series of extensive accelerated beam tests. We evaluate the error rate of
registers and caches of two consecutive GPU generations. Details on pattern dependence

and multiple error occurrences are also provided. Then, we study a representative set
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of parallel algorithms from HPC domains, correlating their characteristics and observed
radiation sensitivity.

Depending on the application and circumstances, some SDCs that are satisfactory
close to the correct results may be tolerated in HPC (PUENTE et al., 2014; BREUER,
2005). To consider the outputs’ error severity and better understand the reliability issue,
we evaluate how errors manifest at the application’s output and measures how the error
rate reduces as a function of the tolerated level of imprecision in the output. For HotSpot,
for instance, the error rate is reduced by 85% if a 0.5% variation in the output value is
acceptable.

As part of this thesis, we designed a fault-injector, named CAROL-FI, to perform
a detailed analysis of the applications’ vulnerabilities to transient errors. Unlike most
fault-injection frameworks, CAROL-FI injections are made at the highest possible level,
to identify the algorithm portions that are more likely to generate an SDC or a DUE.
CAROL-FI is intended as a tool to help developers to identify the portions of their code
that, once corrupted, are more likely to affect the output and can then provide pragmatic
information to develop mitigation strategies for the reliability issue in HPC.

To understand deeper the reliability issue, we investigate the reliability of six com-
puting architectures (ARM Cortex A9, NVIDIA Maxwell, Kepler, Pascal, AMD Steam-
roller, and the Intel Knights Corner (KNC)). We carefully select a set of eight algorithms
to compare the reliability of the considered devices. Each code has peculiar characteristics
regarding memory utilization, computing power, control-flow operation, etc. To highlight
specific architecture behaviors that could be generalized to similar classes of algorithms.

Finally, to develop mitigation strategies for HPC applications we first evaluate
hardware and software techniques. We studied specific and generic hardening tech-
niques like Algorithm-Based Fault Tolerance (ABFT) and Duplication With Compari-
son (DWC), and then compare these techniques with hardware implemented Error Cor-
recting Code (ECC). We showed that ECC has the weakest protection, but it can provide
the best overhead if the application is not memory-bound. ABFT has better protection
with slightly higher overhead. DWC has the strongest protection but an extremely high
overhead. Then, using the CAROL-FI fault injector insights, we show that a selective
hardening of just a few variables can achieve protection close to the full DWC but with
an overhead similar do hardware implemented ECC.

This thesis is organized as follow. Chapters 2 and 3 describe the background

and related work for this thesis. Chapter 4 performs an in-depth analysis of radiation
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experiments to evaluate the problem in an HPC device. Then, chapters 5 and 6 evaluate
and go beyond the quantification of the problem and qualify the experiments to better
understand the problem. Chapter 7 broadens our understanding performing a thorough
comparison of several codes and architectures regarding the reliability issue. Finally,

chapter 8 evaluates and proposes mitigation strategies for HPC applications.
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2 BACKGROUND

The trend pursued by hardware designers to improve computing devices perfor-
mance and reduce power consumption is to employ higher-density chips, lower voltage
levels, higher clock rates, and to integrate a large number of computing cores on a sin-
gle chip. While these design factors yield performance enhancements, they also make
hardware components less reliable, rendering modern computing platforms very prone
to experience transient radiation-induced errors not only in radiation-harsh environments
such as space but also at sea level (DODD et al., 2002; GASIOT; GIOT; ROCHE, 2006).

Even a single radiation-induced fault may be harmful to both the correct operation
and the performance of the software. If not appropriately detected and corrected faults
can be responsible for silent data corruptions leading to altered data, incorrect program
executions, erroneous results, and eventually to machine crashes (BAUMANN, 2002). It
is worth noting that applying the hardening solutions designed for space applications to
terrestrial ones is unfeasible (costs will be prohibitive) and pointless as the error rate at
sea level is lower than space one.

These issues are an actual problem for large-scale applications and have already
caused severe failures with significant monetary losses. For instance, in 2000, Sun Mi-
crosystems reported that interferences of cosmic rays with cache memories were respon-
sible for server crashes at major customer sites, including America Online, eBay, and
many others (BAUMANN, 2002). Cypress Semiconductor acknowledged similar experi-
ences (ZIEGLER; PUCHNER, 2004) who reported monthly halts in an automotive sup-
plier factory and havoc at a large telephone company, and also by Hewlett Packard (MICHA-
LAK et al., 2005) reporting frequent crashes of their supercomputer at the Los Alamos
Neutron Science Center. A recent large-scale study on the field conducted on Google’s
server fleet over a period of nearly 2.5 years also observed error rates orders of magnitude
higher than previously reported in laboratory conditions (SCHROEDER; PINHEIRO;
WEBER, 2011).

2.1 Sources of Faults

Electric charge disturbance is the cause of faults in silicon. This charge distur-
bance may alter the data state of memory structures or generate an impulse in the logic

circuit that will be captured by a memory structure. If the fault affects the operation or
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results of the device, it is termed error. Otherwise, the fault was masked. If the device
is permanently damaged, the error will be termed hard. If the error is transient, the error
is termed soft. The main cause of soft error comes from energetic ions interacting with
the silicon and thus generating charge disturbance (ZIEGLER et al., 1996; BAUMANN,
2005).

2.1.1 Alpha Particles

Radioactive contaminants in package/solder materials, such as uranium and tho-
rium, generate Alpha particles. External sources of alpha particles are not a problem as
these particles penetration range in silicon is less than 100 pm.

To mitigate soft errors caused by alpha particles, Integrated circuits vendors must
provide materials highly purified. To a material be considered Ultra Low Alpha (ULA)
impurity must be below about one part per 10 billion. ULA implies emission at or below
0.002 a/h em?. Soft errors induced by alpha particle will probably be less than 20% of

the total soft errors if the materials are ULA.

2.1.2 Low-Energy Cosmic Rays

One significant cause of ionizing particles comes from the interactions of low-
energy neutrons and boron. Boron is a material that is used intensively in integrated
circuits. Low-energy neutrons come from the interaction of cosmic rays with the atmo-
sphere. The residual products of the reaction between low-energy neutrons and boron are
alpha particles and lithium recoil, both can induce soft errors.

To mitigate soft errors induced by low-energy neutrons one can simply eliminate
boron from the process of fabrication. Moreover, the range of ionized particles from low-
energy neutrons (alpha particles and lithium recoil) have a very limited range. Therefore,
to mitigate such errors, only the first layers from the silicon should be free of boron

materials.
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2.1.3 High-Energy Cosmic Rays

High-energy particles, especially neutrons, originated from the cosmic rays inter-
actions with the atmosphere, is a significant cause of soft errors. The interaction of neu-
trons with silicon materials may result in the nucleus breaking into ions that will induce
soft errors.

Unlike alpha particles and low-energy cosmic rays, high-energy neutrons cannot
be mitigated with high purity materials. Shielding could be a viable option for super-
computers. However, many meters of concrete thickness will be required to reduce the

neutron flux sufficiently, increasing the complexity and costs of supercomputers site.

2.2 Radiation Effects in HPC Accelerators

This thesis will focus on soft errors which cause only transient recoverable errors.
Hard errors permanently damage the device and are less likely to occur (BAUMANN,
2005). Additionally, expressive research has also been done on hard errors (MEIXNER;
SORIN, 2008; POWELL et al., 2009; HONG; KIM, 2015).

Soft errors outcomes are Silent Data Corruption (SDC) and Detectable Uncor-
rectable Error (DUE); DUEs can be divided into a crash or hang. SDC occurs when the
program exit successfully, but the output is incorrect. SDCs cannot be observed by the
final user without detection techniques like parity check; Detection techniques may still
not be able to detect every SDC. Crash occurs when the program state is changed in such
a way that it will exit unsuccessfully, like a division by zero interruption or a segmen-
tation fault exception. Finally, hang occurs when the program enters some infinite loop
and are not able to finish at all. For HPC systems, crash and hang can be easily detected
by timeout functions and unresponsive machines and will not affect the final output. The
affected node of HPC systems can be rebooted, and the task may resume by checkpoint
techniques or restart from the beginning. The major problem for HPC systems is, then,
SDCs as it cannot be easily observable and can leave the final user with significantly
corrupted outputs.

The major architectures used in HPC are accelerators, which are used to get the
high performance the applications need. Intel Xeon Phi and GPUs are the two most com-
monly used accelerators and will be described next. Tianhe-2, the second most powerful

supercomputer uses 48, 000 Intel Xeon Phi accelerators while Titan, the fifth most power-
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ful, uses 18, 688 K20x GPUs as accelerators. Details about these architectures are given

in the next subsections.

2.2.1 NVIDIA Graphics Processing Units

Graphics Processing Units (GPU) started aiming at rendering massively parallel
graphics for personal computing. In the personal computing scenario, the probability of
radiation-induced errors is low, and the multimedia applications can tolerate some er-
rors (BREUER; GUPTA; MAK, 2004). The massively parallel architecture is also suit-
able for accelerate scientific applications, and nowadays GPUs are widely used to acceler-
ate different scientific applications providing performance speedups up to 15 times (LEE
et al., 2010). Moreover, there are GPUs specifically build to supercomputers. Titan, for
example, uses Tesla GPUs (NVIDIA, 2015d) that are built with scientific applications in

mind.

2.2.1.1 SIMD Architecture

The nature of image applications, where the same operation must be applied to a
large set of pixels, led the GPU to be a SIMD architecture. GPUs can execute hundreds
of simultaneous operations.

The GPU is composed of hundreds of simple cores that execute the same flow
of instructions on different sets of data. Simple cores are grouped into multiprocessor
elements, where the tasks are scheduled. Each core of a multiprocessor executes the same
instructions on different sets of data.

The program is structured in blocks of thread that can share data with a fast mem-
ory, called shared memory. The threads of each block can also synchronize through barri-
ers. The blocks are scheduled to multiprocessors and execute in this multiprocessors until
it finishes. Each multiprocessor can have a certain number of blocks being executed at

the same time.

2.2.1.2 Memory and Cache Hierarchy

The memory of GPUs is organized into two levels, the global and shared memory.
Global memory is slow but visible for all threads of the GPU. Shared memory is fast and

visible only to threads in the same multiprocessor.
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For the NVIDIA Kepler architecture, there are also two levels of caches. A unified
L2 cache serves all the multiprocessors into the GPU. The L1 cache is private to each
multiprocessor and its size is configurable using part of the shared memory. There is also
an additional read-only data cache for loading constants. Figure 2.1 shows the memory

hierarchy of the Kepler architecture.

Figure 2.1: NVIDIA Kepler Memory Hierarchy.
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2.2.1.3 Hardware Scheduler

NVIDIA GPUs hardware thread scheduler is divided into two hierarchical levels
providing very fast scheduling with almost no overhead (MAITRE, 2013). The first level,
called GigaThread Engine (WITTENBRINK; KILGARIFF; PRABHU, 2011), schedules
blocks of threads to SMs. GigaThread provides an immediate blocks assignment to SMs
when resources are available (PASSERAT-PALMBACH et al., 2015). The second level
schedules warps inside an SM. On Kepler GPUs, each SM has four dual-issue warp
schedulers that handle four simultaneous warps issuing two instructions per warp per
clock cycle, when possible (NVIDIA, 2015b). The four warp schedulers can handle 64

simultaneous warps of 32 threads or a maximum of 16 blocks.

2.2.1.4 Hardware Hardening and Radiation Effects in GPUs

High-End GPUs are protected only by ECC (NVIDIA, 2015d). The ECC imple-

mented in NVIDIA GPUs can detect single and multiple errors, but only correct single

'Available in:  https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK 110-Architecture-
Whitepaper.pdf. Accessed 2016
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errors. The resources protected are register files, shared memory, L1 and L2 caches, and
main memory. Scheduler and other resources are not protected. The double-bit error
detection triggers the device crash by default. ECC can be disabled leaving the device
completely unprotected.

Radiation effects in GPUs can affect single or multiple threads. If a shared re-
source like the cache is corrupted, the radiation-induced error can affect several threads
at once. Moreover, multiple bit-flips from a single particle hit can occur affecting more
than one resource. The block, thread, or warp scheduler can also be hit with several
threads generating SDCs, crashes or hangs. The PCI-e bus driver and hardware functions
like ECC can also be hit generating SDCs or crashes. Errors affecting instructions will
most likely generate a crash or hang. Therefore, a single particle hit can generate SDCs
in several threads at once besides crash or hang if the resource or function executed is

critical.

2.2.2 Intel Xeon Phi

Intel Xeon Phi is an Intel coprocessor developed to achieve high throughput per-
formance. Xeon Phi aims to compete with GPUs as an accelerator for HPC systems.
This architecture is similar to GPUs having many cores, targeting highly parallel appli-
cations. However, Xeon Phi features x86 in-order cores with coherent cache, supporting
traditional programming models such as pthreads and OpenMP.

The Xeon Phi architecture is shown in Figure 2.2, it is primarily composed of pro-
cessing cores, caches, memory controllers, PCle client logic, and a very high bandwidth,
bidirectional ring interconnect. Xeon Phi also supports the Hyper-Threading technology.
Each core can execute up to 4 threads simultaneously, hiding memory and multi-cycle

instruction latency.

2.2.2.1 Vector Processing Unit

Each Xeon Phi core has a Vector Processing Unit (VPU) and features the Intel
Initial Many-Core Instructions (IMCI), that is a 512-bit SIMD Instruction set. The VPU
can execute up to 16 single precision or 8 double precision operations in a single clock.

Fused Multiply-Add instructions are also supported; Hence, it can perform up to 32 single

2Available in: https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-
corner. Accessed 2016
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Figure 2.2: Intel Xeon Phi Architecture.
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precision or 16 double precision operations in a single clock.
Transcendental operations such as log and square root can be executed by the
VPU as it features an Extended Math Unit (EMU). The EMU unit calculates polynomial

approximations of these operations.

2.2.2.2 Memory and Cache Hierarchy

Similarly to GPU, Intel Xeon Phi is mounted on a PCle slot and has a dedicated
memory. Therefore, Xeon Phi has a different memory address and communication must
be done through message passing.

Two levels of cache are implemented, each core features a single cycle L1 cache
divided into 32 KB L1 instruction cache and 32 KB L1 data cache and a 512 KB L2
cache. The second level cache is entirely coherent implementing a directory-based MESI

coherence protocol. Xeon Phi also implements prefetch for L1 and L2 caches.

2.2.2.3 Hardware Hardening and Radiation Effects in Xeon Phi

The Xeon Phi is equipped with Machine Check Architecture (MCA), which in-
cludes various reliability solutions and logging features. Reliability solutions are used
to protect memory structures and I/O operations (INTEL, 2015a). MCA covers most of
the memory structures available in the Xeon Phi, but the details are intellectual property,
and they are not available. MCA can correct single errors and detect some unrecoverable
errors. The logging features will provide the system or user routines to react according

to the errors, performing checkpoints for instance. MCA unrecoverable error detection
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can be disabled to permit continued execution, instead of logging the error and trigger-
ing a crash or recovery routine. Error correction cannot be disabled leaving the device
unprotected.

SDCs in Xeon Phi could be more contained than GPUs as the resources affected
will be used by fewer threads than GPUs. However, errors in L2 cache caused by a single
particle hit can also be spread to several threads at once. The scheduler of Xeon Phi
should be less sensitive as it is managed by the operating system, with its data residing
most of the time in the ECC protected main memory. Crashes and hangs will still occur as
an error in critical functions, instruction, and a specific portion of the current application

can lead to a crash or hang.
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3 RELATED WORK

In this chapter, we first detail how to measure and evaluate the reliability of HPC
applications and devices. We show all the approaches used to collect reliability data and
the advantages of each one. Then, we describe the hardening mechanisms available to
mitigate faults at hardware and software level. Finally, we detail the applicability of the

mitigations mechanisms to HPC devices.

3.1 Reliability Evaluation

Reliability evaluation can be performed using field data providing the most real-
istic data. Moreover, we can also inject faults at hardware or software level to mimic
realistic behaviors or to better understand the reliability issue by collecting additional
information. In the following section, we detail the advantages and limitations of each

approach.

3.1.1 Field Data

One approach to realistically evaluate the reliability of devices is to collect field
data error logs (TTWARI et al., 2015). This approach requires access to supercomputers
logs. Then, system error logs such as ECC detection and correction can be parsed and
evaluated.

The time one needs to collect statistical relevant data will depend on the size and
also the altitude where the supercomputer system is located. The altitude influences the
radiation flux which is one of the primary sources of faults described in Section 2.1. The
time span one needs to evaluate varies from a couple of months to years.

Field data, however, can only measure detectable errors such as ECC detection
and system crash. Silent data corruption cannot be measured since production system
cannot afford the time or energy to run the same program twice to compare outputs, or
to run a code with a fixed input, without any actual result produced rather than the SDC

sensitivity. Thus, there is no viable method to measure silent errors using field data.
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3.1.2 Fault Injection

Since field data are not easily accessible, and can hardly provide a statistically
significant amount of errors, one of the most common approaches to evaluating the relia-
bility of devices or application reliability is to use fault injection. By injecting a fault, it is
possible to calculate the Architectural Vulnerability Factor (AVF), which is the probabil-
ity for corruption to propagate to the output (MUKHERIJEE et al., 2003), or the Program
Vulnerability Factor (PVF), which is the probability that a fault at the instruction level will
affect the program output (SRIDHARAN; KAELI, 2009). If the fault injection can realis-
tically mimic natural phenomena, like radiation beam fault injection, one can accurately

measure the error rate a supercomputer is expected to experience.

3.1.2.1 Software Fault Injection

Software fault injection can be performed at different levels of abstraction from
RTL to software or application level (SAGGESE et al., 2005). As the RTL level descrip-
tions of modern accelerators are not publicly available, RTL injections could be done only
on simplified circuits and, thus, may be imprecise or unrealistic (FARAZMAND; UBAL;
KAELI, 2012). A higher level software fault injector is also restricted to inject faults into
user-accessible resources, like register files, variables, etc. Even if it is hard for software
fault injection to mimic realistic error rates and behaviors, hardware fault injections may
be unpractical or too expensive. Moreover, software fault injection can provide additional
information sometimes impossible to be collected with hardware fault injection, such as
fault location and time of insertion.

There are several available software fault injection tools that differ in terms of
injection methods and domains of application. Some examples are described below.

Ferrari (KANAWATI; KANAWATI; ABRAHAM, 1995) provides an injection
mechanism based on software traps that are activated under certain conditions, like ac-
cessing a specific memory location or after a timeout. Under these conditions, a trap is
activated and a fault is introduced. Ferrari can also make the fault transient or permanent
depending on the user’s needs.

FTAPE (TSAI; IYER, 1995) is capable of inserting faults into memory, regis-
ters, and in disk accesses. To achieve fault injection into a disk, FTAPE uses a special
disk driver. Then, the data being read or written can be corrupted and delivered to the

application.
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SASSIFI (HARI et al., 2015) is a tool designed by NVIDIA that enables fault
injection at micro architectural level on GPUs. This toll is particularly useful as GPUs
are essential to many HPC and safety-critical applications. An interesting example of
the latter is reliability analysis of self-driving cars. SASSIFI implements fault injection
by using a low-level assembly-language tool called SASSI which profiles the code and
injects faults. As SASSIFI is executed on the device, it is fast, introducing an overhead of
about 5z the normal execution time.

GPU-Qin (FANG et al., 2014) is a fault injection tool whose goal is to obtain
information regarding transient faults on GPUs. GPU-Qin provides a fault injection
methodology that can achieve representative results even when considering the massive
parallelism of applications which can cause simulations to last longer than acceptable
simulation time. GPU-Qin is based on the debugger mode in NVIDIA GPUs. Unfortu-
nately, as several host-device synchronizations are required to inject a fault, GPU-Qin’s

overhead is extremely high (up to 100z the normal execution time).

3.1.2.2 Hardware Fault Injection

Hardware fault injection usually requires extra hardware or a facility to mimic
some of the events that can cause faults, such as power variation and radiation (HSUEH;
TSAIL IYER, 1997). Thus, the effort to inject faults at the hardware level can be much
higher, or expensive such as the need for a particle accelerator to induce radiation errors.

Methods with contact to the device attach hardware directly to the device under
test to insert current or produce electrical disturbance. This method can more precisely
control the place and time of fault injection. Contact methods can also mimic well per-
manent failures like stuck-at failures that force a permanent value in a specific place of
the circuitry.

Ionizing radiation (e.g., heavy-ion or neutron beam radiation) and laser tests do
not require contact, and some radiation tests mimic natural physical phenomena. Thus,
such methods are the most realistic fault injection to measure error rate. However, we

cannot control a specific place and time to inject a fault.
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Figure 3.1: Triple Modular Redundancy.
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3.2 Hardening Strategies

Several hardening techniques may be applied both at hardware and software level
to increase the reliability of a system. Hardware hardening includes, for instance, the en-
larging of transistor capacitance, hardened memory cells, or the implementation of Triple
Modular Redundancy (TMR) that typically require costly layout or architecture mod-
ifications (ZIEGLER; PUCHNER, 2004). Software hardening includes repeated code
execution, either at the compiler-level or through binary code instrumentation (ZHANG
et al., 2012), checkpoints, and checksum calculation (MITRA, 2012). The scope of this
work is to use Commercial off-the-shelf (COTS) devices. Techniques that can only be

implemented at hardware level will not be detailed.

3.2.1 Modular Redundancy

The modular redundancy is the most well-known technique to improve the relia-
bility of hardware or software system. Modular redundancy was first envisioned by Von
Neumann (NEUMANN, 1956). The most common implementation of modular redun-
dancy is called Triple Modular Redundancy and can be illustrated by the Figure 3.1. The
boxes are identical modules that can be a memory cell, logic circuit, a complete system,
or any replicated module. The circle is called the majority voting circuit; This circuit
takes as input the output of each replicated module and the output is the majority voter.
Therefore, if one of the modules produces faulty outputs, the voter will forward the output
of the other two modules masking the faulty module output.

TMR is a technique that can detect faults and mask them. Because there are more
than two modules, if an error occurs, the majority voter can still be considered correct.

With error masking, TMR can perform a continuous operation as the fault module output
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will not be propagated and the execution will safely continue. When there are only two
modules, the system is called Self-Checking Pair (SCP). It is not possible to perform a
continuous operation using SCP systems, and this configuration can only detect if a fault
occurs if the outputs of the identical modules do not match. When faults are detected
in SCP systems, it can trigger the full re-execution, a smarter rollback strategy, or any
defined error treatment strategy.

Modular redundancy was studied with the simultaneous multithreading chips lead-
ing to ideas such as partial redundant multithreading (PARASHAR; SIVASUBRAMA-
NIAM; GURUMURTHI, 2006; MUKHERIJEE; KONTZ; REINHARDT, 2002). The
main idea of partial redundant multithreading is to efficiently use hardware resources and
reuse data to improve performance. The key principle is to define a sphere of replication
where faults in the leading or trailing thread will be detected.

The strategy proposed by Mukherjee in (MUKHERIJEE; KONTZ; REINHARDT,
2002) is to set the largest possible sphere of replication including processor pipeline and
register files, but not replicating L1 data and instructions caches. The hardware is modi-
fied to delay the trailing thread so that cache misses for the leading thread will be fetched
before the trailing thread executes the load. Another optimization is to eliminate con-
trol flow misprediction by using the result of the leading thread branches. Additionally,
Slice-based threading and value and control flow locality optimizations were included
in (PARASHAR; SIVASUBRAMANIAM; GURUMURTHI, 2006) to further improve

the performance.

3.2.2 Control Flow Checking by Signature Monitoring

Signature-monitoring techniques have been proposed to detect control flow errors.
The main idea is to assign signatures to all Basic Blocks of the code. The signatures
can be assigned arbitrarily or derived from some characteristics such as binary code or
instructions addresses. During program execution, runtime signatures are generated and
checked against precomputed signatures to check control flow errors. The signatures can
be computed using the current and previous Basic Blocks characteristics. The scheme
used to generate signatures will determine which control flow error it can detect, such as
an illegal branch or branching in the middle of the Basic Block.

Many techniques propose the use of dedicated hardware to generate runtime sig-

natures and compare to the ones calculated at compile time. Dedicated hardware is used
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for: Continuous Signature Monitoring (CSM) (WILKEN; SHEN, 1991), On-line Signa-
ture Learning and Checking (OSLC) (MADEIRA; SILVA, 1992), and Implicit Signature
Checking (ISC) (OHLSSON; RIMEN, 1995). Many approaches use software-only tech-
niques to be able to use COTS hardware, such as Block Signature Self-Checking (BSSC)
(MIREMADI et al., 1992), Control Flow Checking by Software Signatures (CFCSS) (OH;
SHIRVANI; MCCLUSKEY, 2002a), and the Concurrent Control Flow Checking ap-
proach in (YAU; CHEN, 1980)

CFCSS were evaluated in (GOLOUBEVA et al., 2003), the memory and perfor-
mance overhead range from 107% to 338% for a Sparc V8 microprocessor. The fault
injection was performed inserting bit-flips only in immediate operands of the branch in-
structions. For the fifth order elliptical wave filter benchmarks, CFCSS increase the per-
centage of incorrect results. In general, CFCSS reduced the percentage of incorrect results

by 7% to 86%.

3.2.3 Control Flow Checking Using Assertions

Control Flow Checking Using Assertions (CCA) divides the instructions into sets
of Branch Free Intervals (BFIs), each BFIs then has two identifiers. The Branch Free
Interval Identifier (BID) is unique for each BFIs; BIDs are set to a variable at the entry-
point of the BFI and checked at the end of BFI. If the BID does not match, the BFI starts
at a different point than the entry-point and a control-flow error is detected. Control Flow
Identifier (CFID) is the second identifier and is the same among the BFIs that share the
same parent BFI. CFID is checked to ensure the correct sequence of BFIs. The CFIDs
are stored in a queue of size two. The CFID of the next BFI is enqueued at the beginning
of the BFI. A CFID is dequeued at the end of BFI and checked against the CFID of the
current BFI. If the program attempts to enqueue in a full queue, dequeues an empty queue
or fails the CFID check, an error is detected.

The main problems of CCA are the high overhead and the additional branches in-
serted by the technique, which remains vulnerable to control flow errors. To solve the high
overhead, Enhanced Control-flow Checking Using Assertions (ECCA) (ALKHALIFA et
al., 1999) divides the code into blocks, which can be a collection of BFIs where there are
only one entry point and one exit point. By tuning the size of the block, ECCA can reduce
the number of assertions inserted in the protected code. To solve the additional control

flow instructions, ECCA uses a scheme with prime number defined at preprocessing time
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and one variable assignment at runtime. The assignment is devised in such a way that
if a control flow occurs a division by zero will also occur, raising then the division by
zero exception. The scheme can also identify if the division by zero occurred because of
control flow error or a data divided by zero.

ECCA is unable to detect control flow errors that remain in the same Basic Block.
Yet Another Control-Flow Checking using Assertions (YACCA) (GOLOUBEVA et al.,
2003) improves the error detection capability by using signature monitoring technique.
YACCA generates the signatures at compile and runtime to use in the assertions. Addi-
tionally, YACCA inserts a rule in the assertions to detect faults in the decision operand of
a conditional branch.

Results in (GOLOUBEVA et al., 2003) showed a memory and performance over-
head ranging from 107% to 630%. The fault injection model used inserts random bit-flips
in the immediate operands of the branch instructions. The unhardened version of the
codes showed correct results for 49% to 56% of the faults injected. A maximum of 25%
of the faults generates incorrect results in the fault injecting campaign. When ECCA and
YACCA are applied, a maximum of 4% and 1% of the faults produce incorrect results

respectively.

3.2.4 Error Detection by Duplicated Instruction

The main goal of Error Detection by Duplicated Instruction (EDDI) is to detect
errors introduced in the systems (OH; SHIRVANI; MCCLUSKEY, 2002b). The idea is
to include duplicated instructions into the code. The original instructions are called Mas-
ter Instructions (MI), and the duplicated ones are Shadow Instructions (SI). The general
purpose registers, as well as memory, are also duplicated for the use of MI and SI. Com-
parison Instructions (CI) are also included to compare registers and memory values from
both partitions, original and duplicated, to detect an error. If a mismatch is detected by
ClIs, an error handling function will be invoked.

Consider the following instruction:

ADD R3, RI, R2 ;R3<RI1+R2

The code will then be transformed in the following MI, SI, and CI:
The register R1, R2, and R3 are the master registers while R21, R22, and R23 are

the shadow ones. As the values of master and shadow registers should be the same, the
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ADD R3, RIl, R2 ; MI
ADD R23, R21, R22 ; SI
BNE R3, R23, gotoError ;CI

result stored in R3 and R23 should also be the same. Therefore, the CI is inserted using a
conditional branch to compare the values of R3 and R23.

The overhead of SI and Cls can be lowered as the results that need to be checked
are only the ones before store instructions or conditional branches. Therefore, CIs will
only be inserted after the end of blocks of computation; the authors call such blocks as
Storeless Basic Block (SBB). Each SBB is a store and branch-free sequence of instruc-
tions; then a CI is inserted before the store or branch instruction at the end of each SBB.

The results in (OH; SHIRVANI; MCCLUSKEY, 2002b) show a performance over-
head ranging from 13% to 111% for the eight benchmarks executed in a 4-way superscalar
R10000 MIPS processor. Without the EDDI protection, 30% to 60% of the faults injected
did not produce incorrect results. The high percentage of correct results despite the faults
inserted is because the value corrupted was masked or never used. Moreover, from 6% to
38% of the faults injected produced incorrect results without EDDI. Using EDDI, only a

maximum of 2% for the benchmarks tested produced incorrect results.

3.2.5 Error Detection and Correction

Error Detection and Correction (EDAC) (LABEL et al., 1996) can be used to
detect and even correct a limited number of bit-flips in a sequence of binary data. The
first example of an EDAC method is the parity check bit. The parity check is a detect
only method where the idea is to simply count the number of logic ones in the binary
data. Then, the extra parity bit is set to indicate if there is an odd or even number of logic
ones. This parity check technique can detect if there were an odd number of bit-flips, but
is unable to detect an even number of bit-flips.

Hamming code is another technique that can detect single or two bit-flips and can
correct single bit-flips (MOON, 2005). A simple Hamming code inserts r redundancy
bits to n data bits such that 2" > n + r + 1. For example, it needs 7 bits to protect 64 bits
of data. The redundant bits are then positioned inside the data bit word in a 2" bit pattern.
For example, for a 7-bit word with four redundant bit, the positions of redundant bits are
1, 2, 4, and 8. The final word can be defined as PPBPBBBPBBB where B is data bit,
and P is parity bit. If only a single bit-flip occurred, the error pattern of parity bits could
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be used to identify the erroneous bit position and corrected it.

Another EDAC method is called Reed-Solomon (R-S) coding (WICKER, 1994).
This R-S method can detect and correct multiple and consecutive bit-flips. R-S is con-
structed by using k data symbols of s bits each. With 2t parity symbols, the final code-
word will consist of n data symbols such that n = k + 2¢. The example is depicted in the

Figure 3.2.

Figure 3.2: Reed-Solomon codeword.
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Decoding the codeword using finite field arithmetic, R-S can detect 2¢ erroneous

Source: The Author

symbols and correct ¢ erroneous symbols. One common example of R-S is the examples
called (255,233) where n = 255, k = 223, and the symbols are 8-bit size, then, 2t = 36
and ¢ = 16. For (255,233), R-S can correct 16 8-bit erroneous symbols, each symbol can

have one erroneous bit or all of them.

3.2.6 SWIFT

Software Implemented Fault Tolerance (SWIFT) (REIS et al., 2005b) is a tech-
nique which applies compiler transformations to duplicate instructions and insert com-
parisons at code generation. Basically, the idea is to use EDDI, ECC, and Control Flow
Checking techniques in conjunction and apply some optimizations. SWIFT is a software-
based technique that requires main memory to be hardware protected by ECC, then, it
cannot be applied to any system.

The first optimization comes from the conjunction use of EDDI and main memory
with ECC protection. Considering the main memory protected, EDDI duplicates only
values outside of the main memory. Then, using EDDI and ECC will reduce the number
of load and store instructions by half, improving performance. The memory footprint will
also be reduced, as the main memory will not be duplicated.

SWIFT insert Control Flow Check as EDDI will detect data errors, but control
flow errors can still occur. Another optimization is that control flow correctness can be

checked only in Basic Blocks that have store instructions. The erroneous value will only
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leave the sphere of replication, and cannot be detected afterward when store instructions
are executed. SWIFT, then, update the signature in all Basic Blocks but checks only
in Basic Blocks with a store. This late check reduces the number of instructions and
increases the performance while the fault detection will remain the same.

There are two main point-of-failures in this approach. The first one is when the
data is corrupted between the value validation and store instruction. If the data value or
address is corrupted when the store is executed, the error will not be detected. The second
one is when the opcode of instruction is changed to a store, this store will be executed
without validation and can corrupt values out of the sphere of replication.

Fault injection was performed using PIN to modify register values in (REIS et al.,
2005b). Unprotected code finished 15% of executions with an error while SWIFT had no
finished executions with error, detecting 70% of the faults. 63% of the executions finished
successfully for the unprotected code, and 18% for the SWIFT protected code. The high
number of successful execution of unprotected code is because most of the faults were
masked, not affecting the final output. The low number of correct executions for SWIFT
is because unharming faults, that not affect the final output, is detected nevertheless and
the execution is marked as faulty. The rest of the executions crashed with a segmentation

fault error.

3.2.7 Checkpoint and Rollback

The checkpoint is a common strategy used from large scale to reliable systems (MI-
TRA, 2012; NAKSINEHABOON et al., 2008; EGWUTUOHA et al., 2013; BAUTISTA-
GOMEZ et al., 2011; MARUYAMA; NUKADA; MATSUOKA, 2010). The main idea
is to save the program state to a safe memory, creating checkpoints of correctly known
states. When an error is detected, a rollback strategy is then applied to return the program
to a correct state and resume the execution from there. This technique can be applied to
recover from crashes and easily detected errors. However, if some fault detection mecha-
nism is available, checkpoint and rollback can also be applied to recover from faults that
could generate incorrect results and would otherwise be assumed to be correct.

The main drawbacks of the checkpoint are the memory overhead, used to save the
program state, and the performance overhead as the program needs to be paused during
the checkpoint creation. To better use this strategy, the user needs to evaluate the error

frequency to define the best checkpoint interval.
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3.2.8 Algorithm Specific Techniques for Fault Tolerance

Algorithms resilient to silent faults have been developed so far in a variety of clean
but often unrealistic models. Among others, we remind: the liar model (PELC, 2002)
which assumes transient comparator failures but no corruption of data, the models for the
design of resilient data structures residing in large and unreliable memories in a checking
scenario (BLUM et al., 1994; CHU; KANNAN; MCGREGOR, 2007) and in a recovery
setting (AUMANN; BENDER, 1996), the adversarial faulty-RAM model (FINOCCHI;
ITALIANO, 2008), where a malicious adversary can arbitrarily corrupt at any time a
fixed number of memory cells. In particular, many resilient solutions for a variety of
fundamental algorithmic problems (such as sorting (FINOCCHI; ITALIANO, 2008) and
suffix trees (CHRISTIANO; DEMAINE; KISHORE, 2011)) have been studied in the
faulty-RAM. The connection between fault tolerance and I/O-efficiency has been prelim-
inarily investigated in (BRODAL; JORGENSEN; M@LHAVE, 2009). Many significant
problems are still unsolved in faulty computational models: most notably, no resilient data
structures for storing graphs are known in the literature, and even basic graph traversal al-
gorithms are very poorly understood. Algorithm engineering work on resilient algorithms
is also in a very early stage, and only a few experimental papers contribute carefully en-
gineered implementations (see, e.g., (FERRARO-PETRILLO; FINOCCHI; ITALIANO,
2009)).

All these works focus on sequential models of computation. However, the work
of Abraham in (HUANG; ABRAHAM, 1984; JOU; ABRAHAM, 1988), which is called
Algorithm-Based Fault Tolerance (ABFT), can be directly applied to parallel algorithms.
For matrix operations, Abraham showed that the checksum of the input matrices, A and
B, will preserve some characteristics after certain matrix operations such as multiplica-
tion. For example, in a matrix multiplication where M = A x B, transforming the input
matrices A and B to include the checksums of each column and row respectively, we can
use these values in the resulting M matrix to detect and correct some errors. This matrix
transformation is depicted in the Figure 3.3. The Fast Fourier Transform can be hardened

in a similar way as demonstrated in (JOU; ABRAHAM, 1988).
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Figure 3.3: ABFT Matrix Multiplication Scheme.
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3.2.9 Hardening Techniques Applicability to HPC Devices

The techniques presented in the previous subsections are among the best options
to include in HPC devices as software-based technique. There are some variations of the
techniques which were not described here, but the key ideas presented in the techniques
here are sufficient to give an overall good insight on how to improve the resilience of HPC
devices.

Modular redundancy can be used to achieve high levels of reliability. However,
modular redundancy can substantially increase the costs and complexity of the design at
the hardware level. Software modular redundancy can be easily implemented eliminating
the hardware cost and complexity, but the execution time overhead will significantly in-
crease. However, limiting the sphere of replication, duplicating only a few portions of the
code can be a good strategy if the code portions are wisely chosen. Later in section 8.1.3,
we show the results of software modular replication applied in HPC devices.

EDDI technique is very similar to modular replication. One of the benefits of using
this instead of modular replication would be to lower the scheduling stress, which can be
beneficial if the architecture has a sensitive scheduler, as is the case of GPUs (RECH et
al., 2013b). However, Modular redundancy and EDDI cannot be indiscriminately applied
as the performance overhead rapidly increases resulting in poor performance, which can
be unacceptable to HPC.

Control flow checking can be used to detect errors faster than other techniques,
such as modular replication, that would wait for the entire execution to finish and check
the outputs. Therefore, control flow check could speed up the recovery time from faults.
However, this technique will not suffice if the scientific applications are mainly data flow,
and many of the scientific applications are engineered to be mainly data flow as the devices

are designed to be more efficient this way. The nature of HPC applications that executes
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in an accelerator, then, limits the gain that could be obtained by control flow strategies.

EDAC techniques can be efficiently implemented in HPC devices (CURRY et al.,
2008). Software-based implementation can be used to verify the consistency of data pro-
duced by an application. However, the main drawback would be to change the algorithm
to use the extra bits necessary to check and correct the output data. EDAC, then, could
lead to increased costs and time to write a scientific application with performance over-
head and resilience gains that can vary widely according to the specific EDAC used.

The checkpoint technique may face problems such as different memory address
space from HPC accelerators and host server. Another issue is the cost to copy the mem-
ory back to accelerators and restart the application, inserting an extra overhead. However,
this technique can also be applied, and some accelerator like Xeon Phi already implement
some checkpoint (INTEL, 2015a) that can be used.

SWIFT technique introduces the idea to bring together techniques to best suit the
hardware and software. SWIFT also presents the idea to harden only portions of the code
to lower the overhead. The results were expressive, and HPC devices could benefit from
such approach.

Algorithm specific fault tolerance techniques can yield great results, even when
using COTS hardware. This work will not focus on a specific algorithm or class of al-
gorithms, but in a more general way to improve the resilience of several applications.
However, well known and well used algorithms, like matrix operations, are used inside
bigger applications and the ABFT hardening can still be used to improve the overall re-
silience of such applications.

The available hardening techniques can then be applied to HPC devices with par-
ticular advantages for the algorithm and hardware used. Therefore, well understanding
the device and algorithm, we can match the best hardening techniques or some variation

of them to produce the best results for HPC applications and devices.
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4 RELIABILITY ANALYSIS

In this section, a reliability analysis using radiation experiments for a representa-
tive set of parallel algorithms for HPC applications is presented. Usually, when perform-
ing radiation experiments, the error propagation observability is limited in a way that is
not possible to identify the source of the observed failure unequivocally. As a result, the
evaluation may be limited to the tested configuration and be hardly generalizable. The aim
is to go a step further with the experiments by selecting a broad set of applications and

configurations that cover a wide range of computational and data movement requirements.

4.1 Methodology

The natural flux of heavy ions that wanders in the deep space, protons that sur-
round the earth and fast neutrons created by the incidence of cosmic rays on the earth’s
atmosphere can be simulated through the use of particle accelerator facilities. Such facil-
ities attempt to mimic the energy spectrum of particles, but with a flux that is millions of
times greater than the terrestrial one, one hour of a test at these facilities represents many
hundreds of years of natural exposure. This accelerated flux, in turn, allows performing
extensive testing to assess the sensitivity of electronic devices to radiation.

The radiation experiments presented in this work were performed at the Los Alamos
National Laboratory (LANL) Los Alamos Neutron Science Center (LANSCE) Irradiation
of Chips and Electronics House II, and at the VESUVIO beam line in ISIS, Rutherford
Appleton Laboratories, Didcot, UK. Figure 4.1 shows that LANSCE and ISIS provide a
white neutron source that emulates the energy spectrum of the atmospheric neutron flux
from 10 to 750 MeV. Moreover, the beam at ISIS and LANSCE was empirically demon-
strated to mimic the terrestrial radiation environment (VIOLANTE et al., 2007).

The neutron flux used in both facilities was higher than the neutron flux at sea
level (JEDEC, 2006). However, it is important to notice that is very unlikely to have
more than one neutron hit inducing an error per execution in normal condition, then, we
carefully designed the experiments to make sure that the probability of more than one
neutron generating a failure is negligible. The observed error rates were lower than 1072
errors/execution.

The beam was focused on a spot with a diameter of 2 inches, which provided uni-

form irradiation of the device chip without directly affecting nearby board power control
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Figure 4.1: LANSCE and ISIS neutrons spectra plotted against the reference of neutrons
spectrum at the sea level.
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circuitry and DRAM chips. The beam focus implies that data stored in the main memory
is not corrupted, allowing an analysis focused on just the device cores. Actually, having
the DRAM exposed would have masked most of the device cores behavior under radiation
that was intended to highlight. Moreover, DRAM sensitivity to radiation has already been
deeply analyzed and proved to decrease with the shrinking of technology nodes (BAU-
MANN, 2005), and modern DRAM chips are provided with efficient ECC circuits that
increase device reliability by several orders of magnitude (KIM et al., 2007). It is worth
noting that such a consideration does not apply to caches, for which technology shrinking,
compact design, and performance requirements increase the probability of having failures
as well as the efforts and penalties of adding ECC (ASADI et al., 2005).

A host computer initializes the test sending pre-selected input to the accelerator
and gathers results, comparing them with a pre-computed golden output. When a mis-
matched is detected, the execution is marked as affected by a Silent Data Corruption
(SDC). To avoid precision and round-off issues, golden outputs were calculated on the
very same device used for experiments. Input values were ensured to be small enough to
avoid overflow but still big enough to be considered representative. Additionally, to avoid
biases on input values, small input sizes are a subset of big input sizes and input has been
generated balancing the number of Os and 1s.

Copying memory from the host computer to the devices through the PCle bus is

a very time consuming operation, even longer than the code execution time itself when
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working with accelerators. During the memory copy, the device is in idle mode and
DRAM is not irradiated. Thus, the time spent during memory copy is wasted and should
be reduced at the minimum. The input vector is copied from the host to the device DRAM
only at the beginning of each run, and those inputs are used for several code executions.
Once an error is detected, DRAM content is dumped and checked to ensure input con-
sistency. Observed SDCs were never caused by input errors (DRAM is not irradiated).
As SDC rate is relatively low (about one error every 10° executions), this methodology
smooths memory copy overhead and improve the effective device exposure time.
Software and hardware watchdogs were included in the setup. The software watch-
dog monitors the application under test detecting DUEs, 1.e., application crashes or con-
trol flow errors that prevent the device from completing assigned tasks (e.g., the device
enters an infinite loop). The hardware watchdog is an Ethernet controlled switch that
performs a power cycle of the host computer if the host computer itself does not acknowl-
edge any ping requests in ten minutes. The hardware watchdog is necessary as radiation
can corrupt the PCle controller on the device board as well, possibly causing the host

computer to hang.

4.1.1 Metrics to Evaluate Experimental Results

Radiation experiments aim at measuring the cross section, which is the sensitive
area of the device. i.e., that portion of area that, if hit by an impinging particle, causes an
observable failure. When an algorithm is tested, the cross section is measured dividing the
observed error rate (errors/s) by the average particle flux (particles/(cm? x s)), yield-
ing an area. The larger the cross section, the higher the use of sensitive resources (BAU-
MANN, 2005; MUKHERIJEE et al., 2003). So, the cross section depends on the overall
amount of resources required for computation and on their criticality, but does not include
any information on execution time. As ISIS and LANSCE reasonably mimic the atmo-
spheric neutron flux, the probability of having a neutron corrupting the device during our
experiments or at sea level during normal operation is very similar (VIOLANTE et al.,
2007). The experimentally observed cross section is then an intrinsic characteristic of the
device and code, independent on the neutron source. Multiplying the cross section (cm?)
with the expected neutron flux on the device (13n/(cm? x h) at sea level JEDEC, 2006)),

one can estimate the device error rate or Failure In Time (FIT), expressed as errors/10%h.
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4.1.2 Device Under Test

In this chapter, we consider NVIDIA K20 which was the accelerator used in the
Titan supercomputer at Oak Ridge National Laboratory. Titan was the second fastest
supercomputer at the time measurements were performed.

Kepler K20 GPUs are designed by NVIDIA in a 28nm technology node (NVIDIA,
2015d). The K20 is composed of 13 SM, each of which is divided into 192 CUDA cores.
K20 features a 706 MHz SM core clock, 1.25MB L2 cache, a total of 832KB in L1 cache,
and a total of 3.25MB of register file storage. Register files, shared-memory, L1 and
L2 caches are SECDED protected, read-only data cache is parity protected. The tested
devices have CUDA capability 3.5, which allows each SM to execute a warp of up to 192
parallel threads in a single computing cycle. If the block size exceeds 192, the execution
of some threads will be delayed until the computation of the preceding warps of the block
has been completed. Each SM has two schedulers. At every instruction issue time, the first
scheduler issues one instruction for some warp with an odd ID and the second scheduler
issues one instruction for those with an even ID, when double-precision floating-point
instructions have to be executed, the second scheduler cannot issue any instruction.

The experiments with K20 were conducted with the ECC mechanism disabled.
On the NVIDIA GPUs ECC can be disabled using nvidia — smi tool (NVIDIA, 2015d).
Performing the experiments with reliability mechanisms enabled would require a large
amount of time to gather a statistically significant amount of data. Additionally, while
disabling mitigation mechanisms seems unrealistic, disabling them is fundamental to find
the raw architectures reliability. ECC, for instance, could mislead SDC and DUE dis-
tinction. In fact, when the ECC is disabled, a double bit error may be masked without
affecting the code output (WILKENING et al., 2014). The same double bit error will
trigger an application DUE when ECC is ON (NVIDIA, 2015d). Later in this thesis, we
also evaluate the efficiency and efficacy of ECC in section 8.1.4, we discovered that ECC

reduces the SDC rate by about one order of magnitude.

4.1.3 Selected Algorithms

Several benchmark suites are available for performance and efficiency evaluation
of computer architectures (BAILEY et al., 1994; WOO et al., 1995; BIENIA et al., 2008;
CHE et al., 2009). A standard set of benchmarks for the reliability evaluation of HPC
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devices has not been established, yet. General guidelines for reliability evaluation of
computing devices suggest to consider codes from different domains and comprising dif-
ferent computation and communication patterns (ASANOVIC et al., 2006; QUINN et al.,
2015). Therefore, we selected algorithms representative of different domains and appli-
cation classes. The algorithms are detailed in the following.

Matrix Transpose is a procedure that copies a complete matrix to another swapping
columns and lines element by element. Matrix Transpose is a representative tool for
various graphical procedures that do not make any operation on data, but reorders it.
Such data transfers are common on matrix rotation and many matrix transformations.
The Matrix Transpose workload can also be considered to be similar to sorting algorithms,
where elements are not modified but only rearranged.

Matrix Multiplication serves as a cornerstone kernel for several applications and
performance evaluation tools. The simple implementation, Mz M, uses one thread to
compute each cell of the resulting matrix. The DGEMM implementation reuses a thread
to compute sixteen cells of the output matrix and uses local memory and registers to
maintain parts of the source matrices. Memory accesses are coalesced/vectorized. This
strategy results in a better memory locality and a high device utilization, but also stresses
the register file, local memory, and Floating Point Unit (FPU).

Fast Fourier Transform is one of the most representative algorithms in HPC. FFT
algorithms are used in several applications such as signal processing, vibration and spec-
trum analysis, speech processing, communication, linear algebra, statistics, and stock
options pricing determination (KRUGER; WESTERMANN, 2003; OWENS et al., 2008).
FFT is based on the code developed by Volkov and Kazian (VOLKOV; DEMMEL, 2008).
Each 512-point 1D-FFT is computed by a block of 64 threads to improve global memory
access and use shared memory.

LavaMD calculates particle potential and relocation due to mutual forces between
particles within a large 3D space. This space is divided into cubes, or large boxes, that
are allocated to individual blocks of threads (CHE et al., 2009). The main computation in
this kernel lies on dot products with floating-point data, where each thread computes the
interaction of one particle with all particles in neighboring boxes (26 neighbor boxes in
the cutoff radius plus the home box allocated to the block of threads). As the home box
and a neighbor box are kept at all times in local memory, and each particle’s data includes
coordinates and velocity, LavaMD stresses local memory the most.

HotSpot simulates the energy dissipation on an architectural floor plan to estimate
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processor temperature (CHE et al., 2009). At each iteration, HotSpot computes the av-
erage temperature on areas of the chip based on their previous temperature and power
input. The kernel behaves like a 2D stencil computing on single-precision floating-point
values. Given HotSpot small local memory footprint, a high number of iterations using
local memory and registers only, and use of single-precision instead of double-precision,
HotSpot achieves the highest occupancy among tested codes.

Needleman-Wunsch was one of the first applications of dynamic programming
used to compare biological sequences (NEEDLEMAN S.B., 1969). NW, developed by
Saul B. Needleman and Christian and D. Wunsch is an important algorithm in bioin-
formatics to align protein or nucleotide sequences. Needleman-Wunsch is based on the
comparison of integer values only, therefore, no floating point operations are computed.
NW organizes a 2D matrix in groups of 32 x 32 cells, parallelism happens between cells
in the antidiagonal as a wavefront. The kernel is called each time to compute independent

groups of cells on the same antidiagonal.

4.2 Experimental Results

Table 4.1: Parallel applications details and experimental results. "Tested in LANSCE,
Stested in ISIS

Input (=) Output (=) Instr. Exec. (=) Ex.time[s] SDCFIT DUE FIT

MaxM(2'0) 2.10M 1.05M 1.07G 0.05 4.63 x 102 3.97 x 102
MaxM(2'1)1 8.39M 4.19M 8.59G 0.37 5.79 x 102 2.64 x 10?
MaM(2'2) 33.55M  16.78M 68.72G 2.90 6.03 x 10 2.61 x 102
DGEMM(2'%)t  2.10M 1.05M 1.07G 0.01 7.43 x 10 2.79 x 10?
DGEMM(2'Y)t  8.39M 4.19M 8.60G 0.02 7.83 x 10> 1.96 x 102
DGEMM(2'2)t  33.55M  16.78M 68.75G 0.14 1.04 x 103 2.28 x 10?
MTrans® 4.19M 4.19M 88.08 M 3.46 1.80 x 10" 1.60 x 10!
FFTT 33.55M  33.55M 402.65M 0.07 2.88 x 10*  7.02 x 102
LavaM D} 1.69M 1.69M 63.49G 0.18 3.44 x 103 1.52 x 103
Hotspot® 2.10M 1.05M 14.68G 7.49 2.04 x 10> 1.12 x 102
NW (2!2)f 8.19K 16.78 M 65.56 M 0.06 6.33 x 10! 5.48 x 10}
NW (213)f 16.38K 67.10M 261.73M 0.22 3.06 x 10 2.17 x 10?
NW (2H)f 32.7TK  268.44M 1.05G 0.83 9.00 x 10 3.60 x 102

To give an overview of the difference among the tested algorithms (described in
section 4.1.3), Table 4.1 lists the amount of input and output data, intended as double-
precision floating-point elements for all the algorithms but for NV, which is executed

with integer data. Each complex element in 'F'T" is counted as 2 double numbers. Please
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note that DGEMM requires an additional input matrix with respect to MxM that was
filled with zeros in our experiments, which is why DGEMM and MxM are listed with
the same input size.

It is reasonable to believe that the higher the amount of data to be elaborated, the
higher the error rate. Nevertheless, the radiation sensitivity may not be linearly dependent
on input size. In fact, computational power will also influence the radiation sensitivity
of the code. A higher number of instructions, threads, and operations will increase the
probability for a neutron to generate a control flow error, a scheduler failure, and a single
transient event that propagates to the output (RECH et al., 2014). MxM, DGEMM, and
NW were tested with different input sizes to study the radiation sensitivity dependencies
on problem size. When increasing the input size, only the number of instantiated blocks
was increased, while the number of threads per block was kept constant, which allows
maintaining the SM caches and resources efficiency throughout the different configura-
tions.

Table 4.1 also lists the number of CUDA instructions each benchmark executes
and the kernel execution time. LavalM D is the benchmarks with the highest compu-
tational demand as it needs one order of magnitude more instructions — per — data
(obtained dividing column 5 by column 3 in Table 4.1) than the others. M7Trans, the
opposite case, is considered to evaluate the radiation effects on a GPU when rapid data
movements are performed with little computation.

The last two columns of Table 4.1 show the results of experimental evaluation
for all the tested algorithms. LavaM D, Hotspot, and M Trans were tested at ISIS in
December 2013 and May 2014 while the others were tested at LANSCE in September
2013 and December 2014. FIT are reported with a 95% confidence interval that includes

both statistical error and neutron counts uncertainty.

4.2.1 Silent Data Corruption

The SDC rate ranges from 1.80 x 10! FIT for M Trans to 3.44 x 103 for LavaM D,
varying by almost two orders of magnitude between tested applications (Please, refer to
Table 4.1). The underlying reason is differences in the GPU resources utilization and in-
trinsic code characteristics (i.e., the sensitivity of resources (MUKHERIJEE et al., 2003)),
amount of data elaborated, and the number of executions performed. For instance, the

sensitivity of register files for the Hotspot and Mx M benchmarks has been estimated
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to be approximately 20% while for the M Trans benchmark the estimation is one or-
der of magnitude lower (about 2%) (TAN et al., 2011). As register files represent more
than 50% of memory resources in the K20, it is reasonable to assume that registers are
among the main sources of errors. Our experimental observations agree with the sensi-
tivity estimations as the difference of one order of magnitude is preserved for both SDC
and DUE rates. Fast Wavelet Transform (F'W1T') also shows a sensitivity of 20% for reg-
ister files (TAN et al., 2011). As F'W'T"is comparable with F'F'T’, we can conclude that
a similar sensitivity applies to F'F'T register files, which agrees with our F'F'T" FIT rate
trend. Applications that heavily use register files are then expected to be more prone to be
corrupted.

The difference between M ax M and DGEMM is of particular interest as they solve
the same problem with different implementations, modifying the resources criticality
(mainly memory). Data in the GPU memory is exposed to radiation and susceptible to
be corrupted. No effect is expected if the corrupted data has already been digested by
the GPU, is obsolete, or will be overwritten. Data that still has to be used or needs to be
written back is critical and, if corrupted, leads to an observable failure which is counted
in the FIT measure. In other words, a high caches hit rate brings better performances but
a higher SDC cross section and FIT.

In Mz M, the data required by a thread does not fit in the caches, so the execution
time is dominated by memory latencies to move data from the DDR. While waiting for
new data, possible neutron-induced failures in logic are not critical as the thread is in idle
state, and data in cache is likely to be removed to accommodate new requests, so radiation
corrupts obsolete data. Meanwhile, a thread in DGEMM digests all data in the SM caches
before requiring new elements, and the whole optimization aims at maximizing the hit
rate in cache and reducing accesses to the device memory. Under radiation, this turns
into a higher criticality for DGEMM caches, which increases the code FIT. The resource
utilization efficiency, then, affects the radiation sensitivity of the GPU. State registers, on
the contrary, are critical during memory exchange latencies, which is why Mx M has a

higher DUE rate than DGEMM, as described in the following subsection.

4.2.2 Detectable Uncorrectable Error

The DUE rate depends on the application, and it ranges from between 20% and
30% of the SDC rate for DGEMM to 55% for Hotspot, and almost 90% for M Trans and
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NW (see the last two columns of Table 4.1). The higher occurrences of DUE vs. SDC
in MTrans are explained noting that DUEs are directly related to the number of instruc-
tions executed by a thread that, if corrupted, lead to a control flow error. Additionally, it
depends on the number of parallel threads instantiated (i.e., the scheduler strain required
for computation). In MT'rans, it is unlikely for radiation to corrupt data, as it sits on
internal memory for a very short period of time. M7T'rans does not perform arithmetical
operations on data but only re-allocations. A failure in such an operation may have a high
probability of leading to a control flow error and, thus, to a DUE. NW has little data to
work on, but a great number of operations are performed on each element. N will then
require a higher amount of instruction cache than data cache with respect to other algo-
rithms (DANALIS et al., 2010). A failure in the instruction cache is likely to generate a
control flow error, explaining why for NW the ratio of DUE vs. SDC is higher than other

codes.

4.2.3 Input Size Variation

To further investigate the operative behaviors of GPUs under radiation, the amount
of data elaborated alone is not sufficient to indicate the program neutron-induced error
rate. For example, M'I'rans elaborates 4 x more data than LavaM D but has a two or-
ders of magnitude lower SDC FIT. Similarly, F'F"T" elaborates about 20 x more data than
LavaM D, but has a comparable SDC FIT. The SDC sensitivity of a code actually in-
creases with input dimensions, as demonstrated for Mz M, DGEMM, and NW executed
with different input sizes, but the increase is not linear. In M xM and DGEMM, the GPU
caches are fully loaded even with the smallest tested size, so the actual exposed sensi-
tive area does not change linearly with the input size. If a cache region is used twice for
computation, the data it holds changes but the exposed area remains the same. The same
occurs for logic computing resources. Parallel codes for GPUs are typically extremely
regular (DANALIS et al., 2010; NVIDIA, 2014). When the input size is increased, there
is no significant modification in the number and kind of per-data-operations to be per-
formed. If the GPU is fully loaded, the increased input size requires the reuse of some
logic gates without a significant increase in the GPU exposed area. As a result, the cross
section and FIT increase with input size are caused by the additional resources required to
manage a higher amount of blocks (the number of threads per block is kept constant) and

synchronize a more complex execution (RECH et al., 2014). In NW, the FIT increase
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with input dimension is more remarkable, as the GPU memories are not fully filled. The
input integer vectors, in fact, largely fit in the K20 register files, 1,280KB L2 and 832KB
L1 caches. Thus, increasing the input dimensions has the side effect of increasing the
GPU used (and exposed) area. As a general result, increasing the amount of data elab-
orated increases the GPU SDC FIT. If the data fills the GPU memory, the increase is
sub-linear and caused by the additional scheduling resources required.

When the problem size is increased, the number of instructions in the instruction
cache is not significantly increased, as the code is compiled only once and executed with
different inputs (KIRK; WEN-MEI, 2012). It is unlikely for CUDA to introduce input
specific optimizations at kernel launch or run time. This is in accordance with experimen-
tal data reported in the last column of Table 4.1 that shows an almost constant DUE FIT
for MxM, DGEMM, and NW when the problem size is increased (variations are inside
statistical error tolerance). The combination of SDC increase and almost constant DUE
makes the ratio of DUE vs. SDC to be significantly reduced with increasing problem size.
In fact, DUEs are 85% of SDC for Mz M (2'°) and 43% for MM (2'?). A similar trend
is observed for DGEMM and NW. As a general result, we can conclude that increasing

the problem size will not significantly increase the DUE FIT of the application.

4.2.4 Code Comparison

The code radiation sensitivity discussed in the previous subsection indicates the
probability for a neutron that strikes the GPU during the code execution to generate an
observable failure. When analyzing processors reliability, the execution time has also to
be taken into account. The execution time, in fact, determines the number of neutrons that
hit the processor during computation. The higher the execution time, the more neutrons
will impinge the processor before completing computation. To take execution time into
account, the Mean Executions Between Failures (MEBF), defined as the number of ex-
ecutions correctly completed between failures, was introduced (WEAVER et al., 2004).
The MEBF is calculated dividing the Mean Time Between Failures (MTBF) by the code
execution time.

On a GPU, and parallel processors in general, all the design and programming
efforts aim at increasing performance. Not taking execution time into account would then
result in an unfair and imprecise GPU reliability evaluation. Moreover, the GPU through-

put depends on the input size, so the amount of data elaborated is not linearly dependent
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MaxM and NW MWBF decreases with input size. For Mx M, this is caused by
the increased scheduling resources required (and thus the increased FIT) and its reduced
efficiency. When the input size is increased, each thread will execute more operations
that require more data, thus increasing waiting time for memory and reducing the GPU
throughput. NW throughput does not decrease with input size (DANALIS et al., 2010).
However, the excessive increase in the cross section documented in the previous subsec-
tion undermines the benefit that the throughput possibly brings. Choosing DGEMM with
size 21 x 2! seems to be the most reliable solution for matrix multiplication. DGEMM
MWBEF increases slightly from 2!° to 2!! indicating that DGEMM throughput efficiency
and reliability is improved when increasing the input size. At 2! x 2!, the maximum
throughput gain is reached as the caches and register utilization saturates and does not im-
prove the throughput for bigger input sizes. As a general programming advice, increasing
the workload of a parallel code increases reliability if the throughput gain is sufficient to

balance the higher FIT rate caused by the higher use of scheduling resources.

4.3 Discussion

The reliability of scientific algorithms in HPC devices is a significant problem as
the results show. Highly efficient algorithms may provide a better MWBF as is the case do
DGEMM wich suits best the GPUs architecture. However, different algorithms classes,
like LavaM D and HotSpot, show a very different result. Moreover, the algorithms need
to improve the resilience, especially if we consider the future exascale supercomputers.
Today supercomputers already have an MTBF of dozen of hours (TIWARI et al., 2015),
and exascale supercomputers will suffer an even worse scenario if we do not improve the
reliability of hardware and software.

To appropriately and efficiently use today and future HPC supercomputers, we
need to devise fault tolerance strategies that can provide high resilience without under-
mining the performance gain of such architectures. One of the possible ways to improve
the resilience of such algorithms is to implement software-based hardening techniques.
The hardening techniques need to take into account the algorithm characteristics to use
the best opportunities to improve resilience. Therefore, as each algorithm behave dif-
ferently to radiation-induced errors, we need to thoroughly understand such errors for
specific algorithm classes and provide techniques that best suit the algorithm and hard-

ware to balance the performance/resilience trade-off. Then, a methodology will be needed



50

to better assess the algorithms and hardware to provide sufficient information to wisely

improve the resilience.
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5 RADIATION EXPERIMENTS CRITICALITY ASSESSMENT

In this chapter, we aim to not only have a quantitative evaluation of radiation-
induced errors, but a qualitative evaluation to better understand the reliability issue. Thus,
we propose a novel error criticality evaluation methodology based on specific metrics. We
then evaluate two HPC devices used by the first two fastest supercomputers according to
the Top500 list at the time of measurements. With the proposed methodology, we identify
which architecture is more likely to produce critical errors in the tested codes and which

parallelism management philosophy is more reliable than the other.

5.1 Methodology

In this section, we detail the metrics proposed to perform the qualitative evaluation
and the devices under test. Then, we present the selected algorithms and the reason for
the chosen input sizes. Finally, we describe the experimental procedure adopted for this

evaluation.

5.1.1 Metrics

We select four metrics to characterize radiation-induced output errors and to dis-
cuss their criticality in HPC applications: the number of incorrect elements, relative error,
mean relative error, and spatial locality.

We design our radiation experiments to have at most one neutron generating a
failure per execution, as detailed in section 4.1. When multiple elements in the output are
corrupted, it means that the effect of that single impinging neutron propagates and spreads
affecting multiple processes or values. The higher the number of incorrect elements in
the output data, the more likely for a code to propagate the error and exacerbate the
number of incorrect elements in the output. The number of incorrect elements, then,
correlates well with the algorithm and architecture sensitivities.

The number of incorrect elements is especially significant for parallel architec-
tures. HPC devices like Intel Xeon Phi and NVIDIA GPUs have dozens or thousands of
cores that share different levels of resources. If a shared resource is corrupted, several

threads may produce incorrect data. Moreover, each device handles parallelism differ-
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ently. NVIDIA has simple cores and a hardware scheduler (NVIDIA, 2015b; NVIDIA,
2015a) while Intel uses more complex cores and a complete operating system with soft-
ware scheduler (INTEL, 2015b; INTEL, 2015a). The corruption of the scheduler or op-
erating system is likely to affect the execution of multiple threads.

To measure output error magnitude, we calculate the relative error which is given

by the following equation:

|read — expected|

relative error = x 100.

lexpected|

Where read is the value of the corrupted element and expected is the correct one. Relative
error is a measure of how off the corrupted result is from what is expected, expressed
in percentage. The relative error of a corrupted element that has a value which is ten
times the expected will be 900%. If an algorithm produces text as output, one could apply
relative error treating the output as an integer.

The mean of relative errors is obtained averaging the relative errors of all the
corrupted elements in the output. The mean of relative errors gives an overview of how
much the overall corrupted output differs from the expected one. In our analysis, we cor-
relate the mean of relative errors with the number of incorrect elements. This correlation
highlights how many elements were corrupted and how much those elements differ from
the expected value. We can then distinguish situations in which radiation produces few
corrupted elements that are significantly different from the expected value, and situations
in which the corruption affects many elements which are only slightly different from the
expected value.

We also use the relative error to filter those errors that significantly impact the
results and those errors that could be ignored. Some applications may accept as correct
results that slightly wander off the precise value. For instance, a seismic wave application
accepts misfits of about 4% (PUENTE et al., 2014). Additionally, the relative error be-
comes fundamental for imprecise computations (SIMONITE, 2016; ERNST et al., 2004;
BREUER, 2005). In this work, being conservative, we chose to consider only mismatches
with relative errors greater than 2%. We are aware that the accuracy or relative error al-
lowed by a scientific application or imprecise computations may vary widely. Hence, we
made available all our corrupted outputs in a publicly accessible repository (RECH et al.,
2016) so to allow users to apply different filters.

When we apply the filter, we ignore all incorrect elements whose relative error is

lower than 2%. We remove faulty executions where there are no mismatches left after the
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filter. As will be shown in Section 5.2, several errors could have a relative error inferior to
some parameterized threshold. Considering every mismatch as an error would be, then,
an ineffective evaluation of resilience and error criticality. Therefore, the reliability of
architectures and algorithms that produce low relative errors could be immensely far from
the real one.

It is common for HPC output data to be structured as two or three-dimensional
arrays. The spatial locality of errors, then, identifies the output errors pattern. When
several elements are corrupted, but they do not share the same position in one of the axis,
they are tagged as random errors. When the corrupted elements share one, two, or three
dimensions of the axis we classify them as line, square, or cubic respectively. The spatial
locality of errors is important to understand error propagation in the considered architec-
ture and how data is actually used in the device. Locality information can be fruitfully
used to evaluate software-based hardening strategies detection efficacy. For example, the
Algorithm-Based Fault Tolerance (ABFT) DGEMM can detect and correct single and line
errors (HUANG; ABRAHAM, 1984; RECH et al., 2013a) but not square errors. There-
fore, by knowing the spatial locality we can evaluate if it is wise to implement ABFT. It
is worth noting that the spatial locality can be deeply affected by the relative error, as the
number of incorrect elements can decrease as we apply the filter.

The four presented metrics can be used in conjunction to better understand the reli-
ability of an algorithm or architecture and conceive a solution to improve their resilience.
The number of incorrect elements in the output can indicate the magnitude of error propa-
gation. Correlating the number of incorrect elements with the mean relative error provides
an overview of output correctness. Locality can give insights on errors propagation and
help to understand data placement or organization. Locality could also contribute to the

development and use of detection and correction strategies (BERROCAL et al., 2016).

5.1.2 Devices Under Test

For this criticality evaluation, we consider two devices: NVIDIA K40 and Intel
Xeon Phi 3120A. The K40 is an updated version of the K20 used in the previous chapter
and is widely used in supercomputers in the Top500 list. Xeon Phi is a device introduced
by Intel to accelerate performance in supercomputers similarly to NVIDIA GPUs, how-
ever with the advantage to using X86 codes. Intel Xeon Phi has also been adopted by

supercomputers listed in the TopS00 and is used by Tianhe-2 in China, which was the
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fastest supercomputer at the time measurements were performed. Thus, we evaluate two
state-of-the-art HPC devices used by supercomputers.

The K40 includes a Kepler architecture based on the GK110b GPU chip (NVIDIA,
2015¢). The GK110b is fabricated using 28nm planar bulk technology from TSMC and
includes 15 Streaming Multiprocessors (SMs), up to 2048 threads/SM, 30 Mbit total reg-
ister file (RF), 960 KB total L1 cache/Shared memory (64 KB per SM), 1536 KB L2
cache, and 12 GB GDDRS5 (which is not irradiated).

The Xeon Phi board, codenamed Knights Corner (KNC), is the coprocessor 3120A
(INTEL, 2015b; INTEL, 2015a). The coprocessor is fabricated using 22nm with the Intel
3-D Trigate transistors. The chip includes 57 physical in-order cores with four hardware
threads and 32 512-wide vector registers per core. The board has 6GB GDDRS (which is
not irradiated) with 64 KB L1 cache and 512 KB private L2 cache for each core (a total of
3648 KB and 29184 KB for L1 and L2 caches, respectively). L2 caches are fully coherent
and connected using a bidirectional 64 bytes wide data ring.

The physical implementations of Intel and NVIDIA devices are extremely differ-
ent. 3-D transistors have shown a 10x reduced per bit sensitivity to neutron compared
to planar devices (NOH et al., 2015). The raw resources corruption probability for the
Xeon Phi is then expected to be lower than for the K40. Unfortunately, as circuit level
details are proprietary, it is not possible to evaluate the devices low-level resources sensi-
tivity. A direct comparison between NVIDIA and Intel devices physical implementation
reliability is then unfeasible and out of the scope of this work. We focus on the criticality
of radiation-induced error, which depends on how the error propagates till the application
output and is related to the device architecture.

NVIDIA’s and Intel’s management of parallel processes are extremely different
and may impact both the device efficiency and reliability. NVIDIA has a hardware sched-
uler while Intel relies on a dedicated Operating System (OS) to orchestrate execution.
The characterization of the parallel threads management is part of the goal of our test

procedure (details in Section 5.1.4).

5.1.3 Selected Algorithms

To select a representative set of algorithms we choose: DGEMM , LavaMD, HotSpot
detailed in section 4.1.3. We also include CLAMR, which is a Department of Energy (DOE)
mini-application (GUAN et al., 2015). CLAMR is a DOE homemade fluid dynamics ap-
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Table 5.1: Classification of parallel kernels.

Bound by Load Balance Memory Access

DGEMM CPU Balanced Regular
LavaMD  Memory  Imbalanced Regular
HotSpot  Memory Balanced Regular
CLAMR CpPU Imbalanced Irregular

plication, representative of classified LANL supercomputers workloads. CLAMR simu-
lates the long range propagation of waves using a cell-based adaptive mesh refinement
implementation. By using the shallow water equations (conservation of mass, X momen-
tum, and y momentum) and by assuming that the fluid bottom is flat and that the flow in
the vertical direction is negligible, the simulation is implemented by having each cell of
the 2D space computed by a thread. CLAMR stresses FPU resources (by being compute-
bound and working over double-precision floating-point data), control flow resources (the
kernel uses several tests to handle questions like border conditions), and device control re-
sources due to its large number of kernel calls and changes in number of threads between
time steps to re-balance the load among computational resources.

We believe that results obtained with the selected benchmarks could be, under
certain premises, generalized to similar applications. It is worth noting that we should
restrain experimental radiation evaluation to few benchmarks because of beam time limi-
tations and the need to gather a statistically significant amount of data.

To broaden the representativeness of the selected applications, we have classified
each code using some general parameters such as: resources bounding the execution (i.e.,
either CPU or memory), load balance (balanced or imbalanced), and the regularity of the
memory access pattern — which affects the capacity of the algorithm to profit from the
memory hierarchy (e.g., coalesced accesses). Table 5.1 shows the classification for the
selected applications.

It is worth noting that even if the high level code of the selected algorithms is the
same for both devices, the post compiler code may be very different between the K40 and
the Xeon Phi. The code difference is due to different architectures and compilers. Nev-
ertheless, as highlighted earlier in the section, the selected set of codes is heterogeneous
in the sense that each stimulates a particular kind of resources the most. To reach the

solution, both Xeon Phi and K40 devices are forced to use those resources.
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Table 5.2: Parallel kernels’ details.

Domain Input size #Threads
DGEMM Linear algebra square matrix side (2'° — 213)  side?/16
LavaMD  Molecular dynamics grid size (13, 15, 29, 23) grid size3x #particles
(100 on Xeon Phi, 192
on K40)
HotSpot  Physics simulation #cells (1024 x 1024) #cells
CLAMR  Fluid dynamics #cells (512 x 512) #cells or more (AMR)

5.1.4 Selected Input Sizes

To have a proper reliability evaluation, it is essential to fully utilize the device re-
sources. An underused device can give different error criticalities due to smaller resource
usage and fewer threads created. Input sizes were tailored to achieve high resource uti-
lization (e.g., over 97.5% multiprocessor activity on the K40). This includes register files,
cache memories, buses, ALUs, FPUs, control resources, and others. Table 5.2 resumes
the input size and number of threads generated for each kernel and the selected config-
uration to achieve high resource usage. DGEMM input sizes (cell per matrix side) were
varied between 219 x 219 and 2% x 23 in powers of two. LavaMD’s number of cubes
in each dimension of a 3D grid was set to 13, 15, 19, and 23 (each cube contains 100
particles on Xeon Phi and 192 particles on K40. The number of particles was selected to
best fit the hardware).

As tested input sizes are sufficient to saturate most of the resources on both de-
vices, a bigger input size does not increase the number of resources required for compu-
tation and should not affect FIT (BAUMANN, 2005). However, increasing the input size
increases the number of instantiated parallel processes, and modifies the shared resources
distributions. Moreover, for most HPC applications the throughput is strongly dependent
on the input size. Evaluating how error criticality changes with input size provides novel
insights on parallel processes management reliability.

HotSpot’s 2D stencil includes 1024 x 1024 cells. The workload employed in
CLAMR is the standard test problem of a circular dam break. The mesh starts with

512 x 512 cells and simulates 5, 000 timesteps.
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Figure 5.1: Part of the experimental setup at LANSCE. Neutrons direction is indicated by
the arrow.

Source Te Autor

5.1.5 Neutron Beam Test Experimental Setup

Experiments were performed at the LANSCE facility, Los Alamos, NM, and at the
ISIS facility, RAL, Didcot, UK. Figure 5.1 shows part of the experimental setup mounted
at LANSCE. We irradiate a total of 2 Xeon Phis and 2 K40s, placed at different distances
from the neutron source. A de-rating factor was applied to consider distance attenuation.
After the de-rating the device radiation sensitivity seemed independent on the position,
suggesting that the neutron attenuation caused by other boards between the source and the

device under test is negligible. The experimental setup is described in detail in section 4.1.

5.2 Reliability and Criticality Evaluation

This section evaluates error criticality of HPC application classes. The analysis
is based on the metrics proposed in Section 5.1.1 using the codes and methodology pre-
sented in Section 5.1. While this work focuses only on SDCs, with our methodology it
is also possible to measure radiation-induced DUEs. As a reference, we measured that
SDCs are between 1.1 to tens of times more likely than DUEs for both the K40 and Xeon
Phi. For DGEMM, K40 experienced between 1.1x to 4x more SDCs than DUEs (the
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larger the input, the higher the DUE rate), while for Xeon Phi SDCs are about 4 x more
likely than DUEs (independently on the input). For LavaM D, K40 has about 3 and Xeon
Phi from 3x to 12X (increasing with input size) more SDCs than DUEs. For HotSpot,
K40 has 7x and Xeon Phi has 3x more SDCs. Observed differences may be dependent
on algorithm control-flow characteristics, control logic sensitivity, instruction cache pro-
prieties, or architecture peculiarities. We consider DUEs less critical than SDCs as, for
their nature, they are detectable. A detailed analysis of DUEs causes and effects is then
out of the scope of this work. In the following, we consider only SDCs obtained during
our radiation experiments.

Results are presented as relative FIT, expressed in arbitrary units (a.u.). Absolute
FITs are considered business-sensitive data and are not included in this work to protect
our industrial partners. Nevertheless, as we use the same normalization for each device
and code, relative FIT data still allows cross comparisons between codes and devices. As
stated in Section 5.1.2, Xeon Phi and K40 have extremely different architectures built
with different transistor layouts. The scope of this work is not to exhaustively compare
the error rate of the two devices, but rather to evaluate and compare the corrupted output
criticality for different classes of algorithms with different input sizes executed in different

HPC devices.

5.2.1 DGEMM

Figures 5.2a and 5.2b show the mean relative error correlated with the number of
corrupted elements for the faulty executions of DGEMM executed with 3 and 4 input sizes
on K40 and Xeon Phi, respectively. It is worth noting that, to improve figure quality, for
DGEMM we assign a 100% relative error to all those errors with a relative error higher or
equal to 100%.

Most executions had a small number of incorrect elements in both architectures
(at most 0.4% of the output elements corrupted). The number of incorrect elements grows
together with input size. We recall that, as described in Section 5.1.5, observed (multiple)
corrupted elements are caused by a single impinging particle. When multiple corrupted
elements affect the output it means that the initial corruption propagates disturbing the
calculation of more than one element. An increase of DGEMM input size requires a higher
number of parallel processes and a higher amount of shared resources (like caches). A

corruption in either one is likely to cause multiple corrupted elements.
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Figure 5.2: DGEMM Mean relative error and Incorrect Elements.
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As shown in Fig. 5.2b, the mean relative error is extremely high on the Xeon
Phi. Almost all the corrupted elements are extremely different from the expected value,
independent of the number of corrupted elements or input dimension.

For the K40, about 75% of radiation-induced output errors have a lower than
10% mean relative error. The K40 has overall fewer corrupted elements and those el-
ements’ values are less different to the expected ones than on the Xeon Phi, indicating
that DGEMM errors are then to be considered less critical on the K40 than on the Xeon
Phi.

Figures 5.3a and 5.3b present the spatial locality and relative errors for DGEMM
executed on K40 and Xeon Phi. For each input size, we show the relative FIT break
down into the different error patterns detected with our spatial locality analysis. For each
dimension we report two FIT break downs, one considering all the corrupted executions
and one applying the 2% relative error filter (All and > 2%, respectively, in Figure 5.3a).
For the > 2% break down, we do not consider as corrupted those output elements with a
relative error lower than 2%. As for the Xeon Phi no relative error was lower than 2%, we
present only the FIT break down for all errors. For the K40, on the contrary, 50% to 75%
corrupted executions had all the elements with a relative error lower than 2%. Therefore,
if we tolerate 2% of discrepancy from the correct value, K40’s reliability is at least 60%
better than when considering all mismatches.

It is worth noting that for the K40 errors distribution changes when results are fil-
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Figure 5.3: DGEMM spatial locality and magnitude.
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tered with the 2% tolerance. Random distributed errors almost disappear while single and
line errors are significantly lowered. The 2% filter does not clear those incorrect elements
with a magnitude higher than 2%. One execution classified as square may change to line
or single when some elements are filtered. Unfortunately, the spatial distribution after the
filter depends on the magnitude of each incorrect element and cannot be easily predicted.

Spatial locality has a strong impact on the effectiveness of hardening strategies
like ABFT (HUANG; ABRAHAM, 1984). Single and line are easily corrected in lin-
ear time on parallel devices (RECH et al., 2013a; WUNDERLICH; BRAUN; HALDER,
2013) while square and random errors are more difficult to detect and correct. Therefore,
applying ABFT, DGEMM would be affected by only 20% to 40% of all errors on K40,
and 60% to 80% on Xeon Phi.

Even if an exhaustive comparison between K40 and Xeon Phi is out of the scope of
this work, comparing Figures 5.3a and 5.3b it is clear that even considering a 2% tolerance
in the output, the K40 has still a higher error rate than the Xeon Phi. If ABFT is applied
to both devices, the error rates become comparable.

It is interesting to notice that the input size has a strong impact on K40 FIT but
not on Xeon Phi FIT. From 2° x 2% to 21 x 2! K40 FIT increases of 7x for ALL and
5x for > 2% while Xeon Phi FIT increases of only 1.8x. As discussed in Section 5.1.4,
the different behavior between NVIDIA and Intel devices when input size is increased

depends mainly on two reasons that derive from the different parallel threads management
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Figure 5.4: LavaMD Mean relative error and Incorrect Elements.
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philosophies:

(1) Increasing the number of parallel threads increases the scheduler strain re-
quired to manage and dispatch threads. The scheduler on NVIDIA devices is implemented
in hardware and has already been demonstrated to contribute to the device radiation sen-
sitivity (RECH et al., 2014). Intel Xeon Phi relies on the operating system to manage
execution (INTEL, 2015a) which may be less susceptible to radiation-induced failures. It
is worth noting that while the K40 thread management seems to increase its sensitivity, it
may be more efficient. The K40 may then produce more correct data before experiencing
a failure (RECH et al., 2014).

(2) NVIDIA and Intel adopt opposite solutions to manage those threads that are
active but waiting to be dispatched. On the K40, active threads’ data is kept in registers
while other threads are being executed. A larger number of threads increases, then, the
time data stays exposed in registers waiting to be used. The available ECC on K40 reg-
isters mitigates this effect, but data may still sit in internal queues or flip-flops that are
not protected. On the contrary Xeon Phi waits for current threads (up to four per core) to
finish before launching other ones. Subsequent threads’ data sit in the DRAM, so there is

no expected FIT increase caused by additional threads.
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Figure 5.5: LavaMD spatial locality and magnitude.
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5.2.2 LavaMD

Mean relative error and number of incorrect elements for LavaM D are reported in
Figures 5.4a and 5.4b. As the mean relative error is extremely high for LavaMD we rep-
resent errors with a mean average error up to 20,000%. Executions with a mean average
error higher or equal to 20,000% are shown as 20,000% to improve figure quality). We
hypothesize that the higher relative error of LavaMD compared to DGEMM is related to
the exponentiation operation used when computing particle interactions, which can turn
small value variations into large differences. The number of incorrect elements, on the
contrary, is low and concentrated for the K40. Xeon Phi shows a higher number of cor-
rupted elements than the K40 but a much lower average error. Although K40 simulates
more particles than Xeon Phi (192 and 100 per box, respectively), Xeon Phi is affected by
a larger number of incorrect elements. However, those corrupted elements for the Xeon
Phi have an overall lower difference with the expected values.

Spatial locality and relative error for LavaMD is presented in Figures 5.5a and 5.5b.
K40 has no errors with a relative error lower than 2% while Xeon Phi has only about one
tenth of errors lower than the 2% threshold. Spatial locality highlights that most of the
errors for Xeon Phi are cubic and square. K40 corrupted output affected by cubic and
square error patterns are 40% to 60% of the total. The spatial locality for Xeon Phi is re-

lated to the larger number of incorrect elements which corresponds to an increased spatial
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Figure 5.6: HotSpot Mean relative error and Incorrect Elements.
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area of corrupted data. As Xeon Phis have larger shared cache memories, it is easier for a
single impinging particle to affect data used by multiple cores when running LavaMD.

The percentage of K40 corrupted outputs with cubic and square error patterns are
decreasing as the input dimension grows (55% of all corrupted output for 15 cubes, 50%
for 19, and 42% for 23). With a larger input, more threads have to be scheduled and more
data has to be read and written. The increased pressure in the GPU reduces the sharing of
resources like caches, increasing the isolation between blocks of threads. This isolation,
in turn, reduces the probability of corrupted data to be shared among many blocks, causing
less cubic and square errors.

For the K40, LavaMD’s FIT rate increase with input size is only about 30% from
one input size to the next one, definitely less than for DGEMM. This is only in apparent
contrast with (1) and (2). In fact, LavaMD makes heavy usage of local memory (=14 KB
per block of threads), which limits the number of active threads at any given time on the
K40. Thus, the increase in the number of active threads is limited for LavaMD, reducing

the impact of the scheduler strain.

5.2.3 HotSpot

HotSpot values for mean relative error and incorrect elements are shown in Fig-

ures 5.6a and 5.6b. HotSpot shows an extremely low mean relative error (lower than 25%
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Figure 5.7: HotSpot spatial locality and magnitude.
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in all cases) independent of the number of incorrect elements for both architectures, which
is due to intrinsic algorithm characteristics. HotSpot simulates energy dissipation taking
into consideration the power input and the temperature of nearby cells. Therefore, errors
will eventually dissipate as the result tend to reach an equilibrium. Analyzing the number
of incorrect elements in Figures 5.6a and 5.6b, it is clear that Xeon Phi shows a greater
tendency to have multiple errors than K40. K40, in fact, has at most about 50,000 incor-
rect elements in the output while Xeon Phi experienced up to 130,000 incorrect elements
in the output (executions with a number of incorrect elements higher or equal to 50,000
are shown as 50,000 to improve figure quality).

Figures 5.7a and 5.7b depict the spatial locality and relative errors for HotSpot.
Both architectures presented only square and line errors. The computation of each cell
takes as direct input the values of the neighbor cells. Therefore, one single error will affect
neighbor cells in the next iteration, always increasing spatial locality criticality. Consider-
ing only errors above 2%, HotSpot shows the most expressive results as we could consider
as correct about 80% to 95% of faulty executions for Xeon Phi and K40, respectively.

HotSpot can greatly recover from errors naturally due to algorithm characteris-
tics. Most of the faulty executions presented errors smaller than 2%. HotSpot is intrin-
sically robust and considering all mismatches as an error would erroneously decrease its
resilience. Therefore, one can imprecisely classify HotSpot with a radiation sensitivity up

to 95% higher considering any mismatch with the expected value as the sole metric.
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Figure 5.8: CLAMR Mean relative error and Incorrect Elements for Xeon Phi.
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The evaluation of neighbors to detect disparities coming from errors in Stencil-like
applications like HotSpot can be difficult. The criticality results show that an error could
be dissipated to neighbors leading to small disparities but with a significant accumulated
error in the affected elements. Thus, to detect an error, the checking routine would need
to be executed constantly, reducing performance. The system entropy could be evaluated
to detect a widespread error in stencil-like applications, especially if the system is isolated
and the entropy needs to be constant. However, for non-isolated systems, if the growing
or lowering of system entropy is well-behaved, the entropy could be checked at regular
time intervals to detect disturbances caused by induced errors. The time interval could be

adjusted to better detect errors without affecting performance too much.

5.2.4 CLAMR

Fig. 5.8 shows the mean relative error and number of incorrect elements for CLAMR
on Xeon Phi. We do not have the results for K40 as CLAMR is a LANL’s proprietary
workload to be used in supercomputers like Trinity, which will be based on Xeon Phis.

CLAMR shows a mean relative error between 25% and 50% while incorrect el-
ements are definitely high. When mapping the incorrect elements to the 2D grid, most

of the forms were similar to the one presented in the Fig. 5.9. We can see that a wave
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Figure 5.9: CLAMR Error Locality Map. The output result is represented as a 2D matrix.
Red dots are incorrect elements.

Source: The Author

of incorrect elements was propagating confirming the fault injection analysis performed
in (GUAN et al., 2015). Incorrect elements are, then, not isolated, affecting first the neigh-
borhood and propagating as a wave, increasing the number of incorrect elements as the
executions continue.

All the faulty elements of CLAMR have relative errors greater than 2%. Square
errors amount to 99% of spatial locality as the errors propagate to all directions as depicted
in Fig. 5.9. CLAMR works with the shallow waters equations considering momentum as
well as mass. CLAMR errors may change the total mass of the system and will not be
recovered as the execution continue, on the contrary, because of the mass conservation
principle, the error will keep affecting the solution. Therefore, among all the codes studied
in this work, the error criticality of CLAMR was the most sensitive to radiation-induced
erTors.

The sparse spatial location of incorrect elements with a moderate to low relative
error makes it hard to provide efficient techniques for detecting errors. Similar to HotSpot,
one of the few ways that can be used to detect errors is to evaluate the whole system taking
advantage of the mass conservation principle, where the summation of all the incorrect
elements’ errors can lead to a detectable mass difference. This mass check technique
has already been implemented in CLAMR and fault injection showed a fault coverage of
82% (ATKINSON et al., 2014). Furthermore, the load imbalance of the algorithm can
provide opportunities to include mass-consistency checking routines that introduce little

overhead to the overall execution time.
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5.3 Discussion

The tested codes were selected as they stimulate specific resources, and have pe-
culiar control flow or arithmetic characteristics. Thus, it is reasonable to correlate the
particular behaviors observed for Xeon Phi and K40 with the code proprieties. Addition-
ally, in some cases we can extend the experimental criticality analysis to other codes that
share the same principles and data structures of the tested codes.

DGEMM is part of several applications and similar codes are even used as the stan-
dard HPC performance benchmark. Our analysis shows that K40 provides a lower error
criticality (i.e., smaller difference with the expected value and fewer corrupted elements)
for applications using DGEMM. We believe this is an intrinsic characteristic of GPUs,
which has shortened and faster pipelines compared to CPUs. As a result, purely arith-
metic operations, that are not based on control-flow instructions, are likely to be executed
in a faster and more reliable way on a GPU.

Solvers using FDM like LavaMD will have a lower relative error on Xeon Phi, in
contrast to DGEMM. Transcendental functions play a key role in FDMs performance and
reliability. In the case of LavaMD, the exponentiation operations can turn small value
variations into large differences. This is especially critical for the K40, for which all
the SDCs are significantly different from the expected value. A hypothesis is that the
transcendental function unit in the K40 is more prone to corruption. Its reliability should
be improved in the future. Also, LavaMD performs dot products between particles which
prevent the attenuation of transient errors with other correctly calculated particles.

While the Xeon Phi seems more resilient than the K40 when executing LavaMD,
it produced more incorrect elements, leading to a more widespread spatial locality. To
choose the platform in which to execute an FDM algorithm, it is fundamental to evaluate
the trade-off between having more incorrect elements with lower relative errors (so the
Xeon Phi) or the contrary (so the K40). Such a trade-off strictly depends on how FDMs
outputs are used.

Stencil applications have been proved to be the most resilient ones. HotSpot
showed that most of the errors have less than 2% of relative error. K40 seems slightly
more resilient than Xeon Phi as the former shows less incorrect elements than the latter.
We believe this behavior to be common for stencil applications that iteratively update the
solution based on the current state. For these applications a transient fault could mod-

ify the current simulation state but, in the following iterations, the error is smoothed and
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filtered.

Fluid dynamics like CLAMR are less reliable, especially simulations that involve
invariants such as mass or energy conservation. The impact of errors in such algorithms
only increases with execution time as the invariant is now altered, affecting neighbor
elements in the following iterations.

Based on our experimental analysis we can compare the reliability of some pecu-
liarities of Xeon Phi and K40 architectures. Xeon Phi shows a tendency to have more in-
correct elements than K40. Xeon Phi has larger caches than K40, so its data is not evicted
as often. Hence, corrupted data, once in the caches, will be used by more elements before
eviction. As a result, the same error spreads affecting several output elements.

The comparison of results with different input sizes for DGEMM and LavaMD
highlights that hardware scheduler makes the FIT rate dependent on the number of in-
stantiated threads. On the contrary, the Xeon Phi operating system seems less prone to be
corrupted. It is worth noting that the hardware scheduler may be more efficient, reducing
the execution time and, thus, the number of neutrons that hits the device during compu-
tation. Other architectural decisions like long pipelines or large caches that keep alive
data for a long time during computation modify both the code reliability and execution
time, enhancing performance but leaving data more exposed to radiation strikes. Thus,
the architectural design must tune the performance gain obtained by such decisions with
the reliability issues incurred (REIS et al., 2005a).

Finally, the spatial locality and magnitude of the errors measured for the dif-
ferent applications and devices can help users understand incorrect results generated
from radiation-induced errors, and guide the usage of detectors and replication mecha-

nisms (BERROCAL et al., 2016).
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6 FAULT INJECTION CRITICALITY ASSESSMENT

In this chapter, we aim to improve the understanding of the resilience problem for
HPC application. We will perform the criticality assessment for results from software
fault injection campaign. We use fault injection to obtain extra information that cannot be

obtained by radiation experiments.

6.1 Methodology

In this section, we describe the fault injection tool used to perform the criticality
assessment. Then, we detail the device under test, and the selected algorithms chose to

help understand the reliability issue.

6.1.1 CAROL-FI Fault Injector

We developed a high-level fault injector to better understand transient errors prop-
agation and provide useful insights to the code designer on how to mitigate their effects.
Unlike the other available tools, we do not try to inject faults at the lowest possible level,
but at the highest. The goal, in fact, is not to measure the sensitivity to a transient fault of
an application, as we gathered this information with the neutron beam experiments per-
formed in previous sections, but to identify the portions of the high-level code which are
more critical for the application execution. We believe this information to be extremely
useful for code developers. Therefore, we implemented a fault injector called CAROL-FI
(available at (OLIVEIRA, 2017)).

CAROL-FI allows the injection of various fault models and correlates the injected
faults with the algorithm structure. CAROL-FI is built upon GNU GDB. Debug informa-
tion is used to correlate each allocated memory portion with its corresponding variable
in the source code. Only compiling the code in debug mode allows gathering this in-
formation. As we are injecting at source code level, the fact that GDB impedes compiler
optimizations does not undermine our results. It is worth noting that GDB can also be used
to inject faults in release mode, changing registers value and instruction bits. However,
the goal of our study is to correlate the faults injected (and their outcomes) to particular

portions of the source code, so we limit the use of CAROL-FI to debug mode and memory
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content corruption. In other words, the injection sites accessed by CAROL-FI consist of
any source code variable allocated to a memory position.

The fault injector designed for this analysis is built upon two scripts. The first one,
named Supervisor, is responsible for initiating GDB with the defined configurations (e.g.,
input parameters and the binary code). The Supervisor also works as a watchdog to kill
the program if a user-defined time limit is surpassed. Finally, upon program execution
completion, the Supervisor runs a user-defined function to check the output generated
and log test data. The second script, named Flip-script, is called by GDB when the tested
program is interrupted. Flip-script injects the fault into the program currently executing.

CAROL-FI's workflow is described as follows. The supervisor will initiate GDB,
which will launch the code performing the first step. Next, the Supervisor script will send
the interrupt signal through the killall command after a random time. After the interrupt
signal is captured by the program, GDB initiates the next step running the Flip-script.
The Flip-script first selects one of the available threads and frames (which is the GDB’s
terminology for the call stack containing information of active process subroutines). Flip-
script looks up the current frame upward the external one containing the global variables.
Then, one of the variables of the selected frame will have its bits flipped. Such variables
include pointers, arrays, enums, and Integers. After the memory address and offset
of the selected data are known, Flip-script applies one of the fault models presented in
Section 6.1.1.1. Then, Supervisor performs the final step, which kills the program if
needed, and stores all the test data.

Finally, CAROL-FI logs the source code position that corresponds to the current
instruction, the backtrace from GDB, the variable name, file name and line number where
the variable is defined, the fault type applied, and the time window when the fault was
injected.

CAROI-FI is very fast. On the average, its overhead is about 4 X the normal exe-
cution time, with a worst case of 8 x, as its only significant overheads are the ones caused
by the GDB and the debug mode that disables compiler optimizations. There is no pro-
filing phase and no breakpoints by GDB, in contrast to approaches like GPU-Qin, which
can significantly increase the execution time. CAROL-FI executes the code at full speed
until the interrupt signal is sent (GDB will not interact with the code). Once the pro-
gram’s execution stops, the GDB executes the flip functions with an execution time that
varies according to how many subroutines are active and how many variables are allo-

cated. Finally, the evaluated program will resume execution at full speed without further
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interaction with the GDB.

6.1.1.1 Fault Models

The fault injection does not distinguish between logic and memory errors. As the
fault is generated at high-level, by modifying the value of allocated memory, we are con-
sidering all possible transient faults that, by propagating from the transistor level, change
the value of a memory location. These transient faults include errors that originated in
memory, registers, caches, flip-flops in internal queues, control logic, etc. It is worth
noting that identifying the individual probabilities of failures in the different logic and
memory units is not feasible for components whose architecture details are not available.
We use four different fault models to simulate the propagation of faults from a low level

to code level. The four models are:
e Single: flip a single random bit
e Double: flip two random bits from the same variable
e Random: overwrite every bit by a random bit
e Zero: set every bit to zero

Single is the most commonly used fault model in the available fault-injectors, as
described in Section 3.1.2. The double fault model is also often used when evaluating
memory faults, as the probability of a single particle corrupting more than one word bit
is not negligible (FANG; OATES, 2016). SECDED ECC normally triggers application
crash when a double bit error is detected. The implementation of the Double model
chooses two random bits located at the same byte offset, restricting the distance between
the flipped bits. We emphasize that our Single and Double fault injections are not to
be considered as faults in the memory alone, as those would be detected by ECC. We
are simulating faults in all the unprotected resources that manifest in several ways at the
highest level of abstraction. As shown in section 5.2, the Xeon Phi error rate is comparable
to NVIDIA GPUs, even if ECC is enabled. The probability of experiencing a corruption
in unprotected resources that manifests at a high level is clearly not negligible.

Single and Double models are not considered sufficient for our purposes. Single
bit faults are representative and adequate only if injected at the lowest accessible level
and track how the original fault propagates to the microarchitecture level. Injections at a

higher level require a more wide set of fault types to account for all possible effects of the
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original fault propagation. Thus, Single, Double, Random, and Zero models are a more

representative set of the possible outcomes that a fault can manifest at a higher level.

6.1.2 Device Under Test

The CAROL-FI Fault Injector was first developed using the Intel Xeon Phi as the
platform. Thus, we use the Xeon Phi, described in section 5.1.2, as the device under test.

However, CAROL-FI has been extended to NVIDIA GPUs as well.

6.1.3 Selected Algorithms

We selected the algorithms CLAMR, DGEMM, HotSpot, and LavaMD detailed in
sections 4.1.3 and 5.1.3. We have also selected LUD detailed next.

LUD is also a dense linear algebra as DGEMM. However, LUD uses less mem-
ory than DGEMM and has more interdependencies resulting in an algorithm that is less
compute-bound than DGEMM . LUD decomposes the input matrix into a product of lower
and upper triangular matrices (CHE et al., 2009). LUD uses a static partitioning of the

data and has a regular memory access pattern.

6.2 Results

We have injected at least 10,000 faults into each of the selected benchmarks, which
are sufficient to guarantee the worst case statistical error bars at 95% confidence level to
be at most 1.96%. For each fault injection experiment, we collected the output of the
program execution and compared it to a previously computed golden copy. Figure 6.1
presents the percentage of faults that are masked or cause an SDC or DUE for each bench-
mark presented in sections 4.1.3 and 5.1.3. For most of the benchmarks, SDCs are less
likely to occur than DUEs, while the majority of injected faults are masked during com-
putation (except for DGEMM). As explained in Section 4.2.2, it is not possible to directly
correlate our beam experiments with CAROL-FI results. Figure 6.1 shows the probability
of corrupted portions of the source code to affect the execution.

Figures 6.2 and 6.3 show the Program Vulnerability Factor (PVF) for SDC and
DUE, respectively, for each fault model described in Section 6.1.1.1. The different fault
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Figure 6.1: Outcomes of fault injections.
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models yield quite different PVFs depending on the benchmark application class and
characteristics. For example, algebraic benchmarks like DGEMM and LUD have similar
PVFs. The different models also affect the type of errors observed, for instance, the Zero
model provides lower DUE.

To evaluate the dependence of the impact of faults on the timing of their occur-
rence, we divided the benchmarks into equal parts based on the execution time. The length
of each part is selected to be short enough to provide insight into the injection time vs.
fault sensitivity, and long enough to allow a statistically significant amount of injections.
CLAMR is divided into nine time windows of equal length. DGEMM and HotSpot are
split into five time windows while LUD and NW are divided into four parts each. We then
calculated the percentage of faults injected into each time window that caused an SDC or
DUE (shown in Figures 6.4 and 6.5, respectively). Please note that Figures 6.4 and 6.5
show the PVF for each time window, not to be confused with the contribution of each

time window to the benchmark PVF, which is why the sum of percentages is higher than
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Figure 6.2: SDC’s PVF of the benchmarks for the different fault models.
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100%.
In the following, we analyze each benchmark individually to demonstrate how
CAROL-FI can be used to derive information about benchmark sensitivity and also pro-

vide insights on how to improve the resilience of each benchmark.

DGEMM

As shown in Figure 6.1, about 60% of the faults injected in DGEMM generate
an error (SDC or DUE). Most of the observed SDCs and DUEs are the result of faults
injected into the input and output matrices and control variables.

Faults injected in the matrices caused SDCs and DUEs 43% and 19% of the
times, respectively. For control variables, 38% of the faults injected generate SDCs and
38% cause DUEs. DGEMM creates nine loop control variables of integer type, which
may seem to be a negligible number and, thus, unlikely to be corrupted. However, each
of the 228 threads active in parallel on the Xeon Phi allocates those nine integers to have

their own copy of the loop control variables, increasing the memory portion used to store
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Figure 6.3: DUE’s PVF of the benchmarks for the different fault models.

40

liltl'

CLAMR DGEMM HotSpot LavaMD  LUD NW

Fault Model PVF

Fault Models [ single ] Double [l Random [11] Zero

Source: The Author

them. In contrast, the memory portion used to store the matrices remains the same re-
gardless of the level of parallelism. As a result, the probability of having a corrupted loop
control variable becomes significant, and the severity of that corruption is very high.

Evaluating the fault models, we observe in Figures 6.2 and 6.3 that the Single and
Double models have a similar outcome. On the other hand, the Random model exhibits
a lower SDC error rate while the Zero model has a higher one. Observing the DUE rate
in Figure 6.3, we find that Random and Zero have opposite behaviors. Random and Zero
models have a higher likelihood to generate largely different values than the expected
ones. However, we believe that the Random converts some SDCs to DUEs since the
corrupted values can be used to access invalid memory addresses, invalid indexes, or
another operation that will lead to a DUE. The Zero model, in contrast, generates values
that will most likely cause an SDC instead of a DUE.

The DGEMM benchmark has the same memory and resources usage during the

entire execution. Therefore, the time window dependent sensitivity in Figure 6.4 shows
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Figure 6.4: The dependence of the SDC’s PVF of the benchmarks on the execution time
window.
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that the SDC error rate remains unchanged between time windows. However, in Fig-
ure 6.5 we see that DGEMM DUE rate is lower at the beginning when the program is still
initializing and control flow operations are less common.

Protecting the control variables can lead to a significant impact on the final DUE
rate. Selective duplication with comparison can be applied to protect the internal memory
structures that contain such control variables. ECC or parity implemented to protect all
memory structures will detect or even correct such errors but, to improve the resilience at
a lower overhead, a selective protection should be preferred.

Additionally, logic errors that modify the result of instructions that update loop
control variables are likely to impact the output and could not be detected with ECC but

could be detected by residue module check.
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Figure 6.5: The dependence of the DUE’s PVF of the benchmarks on the execution time
window.
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CLAMR

Injected faults are masked 75% of the time in CLAMR, as shown in Figure 6.1.
CAROL-FI identifies mesh to be the most critical portion of the benchmark. We can
divide the mesh operations into three parts: Sort, Tree, and others.

Of all the injections in Sort, 39% generate an SDC and 43% cause DUEs. The
Tree part of CLAMR includes the functions responsible for the creation and operation of
a K-D Tree. 20% of all the faults in Tree generate an SDC and 41% cause a DUE. All
the faults in the remaining variables of the mesh code are classified as others. Only 33%
of the faults in this part generate an SDC and 28% cause DUEs.

The fault models show similar rates for CLAMR SDCs (see Figure 6.2). For DUEs,
only the Zero model yields a different rate than the other models, as can be seen in Fig-
ure 6.3. The reason for this is the same for DGEMM, where zero values are less likely to

generate errors that cause a DUE.
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We can observe in Figures 6.4 and 6.5 that time window 3 exhibits the highest
error rate and then it decreases. This behavior is similar to the one observed when using
a more low-level fault injection in (GUAN et al., 2015). CLAMR becomes more sensitive
when the number of active cells reaches its maximum value, which can be automatically
set by the algorithm itself.

The fault injection analysis shows that M esh operations and structure are the most
sensitive portions of CLAMR, which is expected since it is the main structure used to de-
fine and hold the system data. Furthermore, Sort and T'ree operations are equally sensi-
tive to DUEs, causing the majority of the harmful outcomes. However, for SDCs, Sort
has double the sensitivity and should have a higher priority when attempting to improve
reliability. Thus, specific techniques targeting Sort (ARGYRIDES et al., 2009) and Tree
operations can improve the overall resilience of CLAMR. Additionally, general techniques
like redundant multithreading applied only to those critical functions and operations may
also yield an improved resilience with a fair overhead. Moreover, by reducing the DUE
rate caused by a fault in Sort or Tree, HPC systems can allow lowering the frequency of

checkpointing techniques.

HotSpot

HotSpot shows trends similar to CLAMR. About 75% of the faults are masked and
do not affect the output, as shown in Figure 6.1. Most of the observed SDCs and DUEs
are caused by injections in constant and control variables used during computation.
The fault injection analysis shows that about 30% of the faults in control and constant
variables cause an SDC and 40% generate a DUE.

HotSpot is a stencil algorithm like CLAMR, but HotSpot simulates an open system.
Thus, SDCs in the program can be dissipated out of the system given enough iterations.
Out of the four fault models, the Single model has the highest chance to introduce small
errors since it flips only one bit, while the other fault models flip two or more bits. We
can see in Figure 6.2 that the Single model has indeed the lowest error rate, showing the
HotSpot ability to recover from it. Considering DUEs, the Single model has the same
outcome as the Double and Random ones. The Zero model has the lowest rate since any
bit flipped using the other models can lead to invalid operations while Zero will likely
cause an SDC.

Similarly to DGEMM, HotSpot keeps the memory and resources utilization around
the same level during the execution. Therefore, the sensitivity for each time window

deviates only by a small amount as can be seen in Figures 6.4 and 6.5.
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HotSpot computes the temperature of functional blocks in a chip when executing
a program, given the power consumed by these blocks. The temperatures of the differ-
ent blocks are calculated iteratively, and thus, errors in intermediate values will have a
negligible effect on the final results. This computing strategy is intrinsically robust to
data errors. In fact, the impact of a fault on the value of a variable will be reduced by
the use of nearby correct values in subsequent iterations. Taking advantage of the intrin-
sic robustness of the algorithm, we can focus hardening efforts on the variables that the
fault injection campaign has shown to be more sensitive. Thus, applying a simple replica-
tion of the sensitive variables will yield a better performance/reliability ratio than a more

comprehensive strategy.

LavaMD

Figure 6.1 shows that, for LavaMD, only 15% of the injected faults produce an
SDC or DUE. Faults in the charge and distance arrays and control variables cause the
vast majority of harmful outcomes.

The charge and distance arrays used in the algorithm are responsible for 57% of
the SDCs and 11% of the DUEs. The two arrays are up to five orders of magnitude larger
than the other data structures that cause harmful effects. Thus, the probability of a fault to
occur in the two input arrays is higher than for the other data structures. Therefore, these
two arrays are the most critical parts of the benchmark.

Figures 6.2 and 6.3 show that the four fault models have similar results for SDCs
and DUEs in LavaMD. LavaMD is a complex algorithm, and the impact of each fault
depends on several factors such as the item (particle) corrupted, position in the 3D space,
and the state of neighboring particles. However, the fault model and magnitude of the cor-
rupted element seem to have the same impact due the nature of the operations performed.
LavaMD executes exponentiation operation, and this will exacerbate any error.

LavaMD presents one of the biggest challenges to devise a hardening technique
that can significantly improve resilience without compromising performance. In fact, a
large amount of memory is exposed to corruption that is likely to generate an SDC or
DUE. Thus, unless a specific technique for LavaMD is developed, a generic technique,
like modular replication and checkpointing should be applied, which may consume up to

twice the execution time and energy.

LUD
LUD exhibits a behavior similar to that of DGEMM . Most of the harmful outcomes

are due to faults in the matrices and control variables. However, the DUE and SDC
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rates for LUD are well-balanced, and LUD has a much lower DUE rate than DGEMM
(see Figure 6.1).

Faults in the main matrix and the temporary matrices allocated during the com-
putation of the decomposition generate an SDC for about 54% of the injected faults and
28% cause a DUE. Evaluating the control variables, we observe that 24% of the faults
generate an SDC and 36% cause a DUE.

Figures 6.2 and 6.3 show that the fault models have a similar behavior for algebraic
algorithms like LUD and DGEMM. The Random and Zero models seem to shift some
SDCs to DUEs and vice versa. This similarity indicates that the fault models behavior
among algorithms from the same class can be similar, and the same insights obtained
from one benchmark can be applied to a larger number of algorithms.

LUD has many row and column interdependencies resulting in a higher load in the
middle of execution, which also corresponds to the more critical time windows. There-
fore, while the fault model behavior is dependent on the algorithm class, the time window
sensitivity is associated with the workload computed during that time.

To mitigate errors in LUD, we can take advantage of the time-dependent sensitivity
and use a heavier mitigation technique in the middle of the execution and a lighter one
in the beginning and end. Moreover, we can rely on residue check for matrix operations
and apply redundant multithreading or duplication with comparison to control variables,

improving reliability without compromising performance too much.

NW

NW has a well-balanced rate between SDC and DUE, as Figure 6.1 shows. The
rates of SDCs and DUEs are similar because faults that cause the vast majority of errors
are in the matrices used as input and output. We notice that SDC and DUE have a similar
probability to occur when a fault is injected in the matrices.

NW is the only algorithm using integers as its main data type. We can see in
Figure 6.2 that the Zero faults do not cause any errors. NW dynamically constructs a
matrix based on matches and mismatches of the input values, and a large portion of the
matrix and values manipulated will be zero. Thus, the Zero faults have the highest chance
to be masked. Double and Random have the highest probability to introduce significantly
different values in NW since the algorithm works with small and zero values. Still, Single
is the fault model with the highest rate of SDCs in NW while Double and Random result
in very few SDCs, but when we look into DUE (refer to Figure 6.3), Double and Random
have the highest error rate for NW. Thus, NW will most likely crash when the value is
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largely different from the expected one.

NW presents a lower DUE rate in the beginning when the algorithm has a limited
workload to compute. After the workload reaches its highest value, the sensitivity at each
time window stabilizes for DUEs and SDCs.

Similarly to LavaMD, NW presents a considerable challenge to hardening if one
wishes to protect all the sensitive memory which is most of the memory used by the al-
gorithm. The source of SDCs and DUEs is the same, i.e., faults in the matrices. Thus,
protecting the matrices will improve both rates. Residue check and control flow tech-

niques may provide a good reliability without a high degradation in performance.

6.3 Discussion

As we can see from radiation experiment results in previous chapters, the actual
FIT rate is already too high even with ECC in most memory structures. Internal queues,
flip-flops, or even logic circuits, are not protected, and errors in these parts will propagate
to memory. Furthermore, errors in these unprotected parts, especially the logic circuit,
can manifest in different ways such as random or zero values. The overhead to protect
from all the fault types can be too costly. Thus, we can evaluate the most critical code
portions, fault models, and time windows for each class of application and apply the most
appropriate level of protection to provide the desired level of resilience.

Algebraic applications can be better protected with residue error detection than
ECC, which is unable to correct Random or Zero faults nor the logic circuit. We need
only 8 bits to use mod15 for the residue error protection, or only 2 bits for mod3. Residue
protection can also be applied to hardware providing fast mechanisms using small por-
tions of chip area.

For NW, a simple parity would detect most SDCs since single faults are more
critical than the others types of faults. Therefore, the ability to disable or to provide
weaker mitigation mechanisms will significantly improve the performance and sustain
the desired level of resilience.

For applications like HotSpot and CLAMR, we can take into consideration the nat-
ural resilience of the algorithm, especially when allowing a certain percentage of tolerated
error (see Figure 5.7) so a simple mitigation technique can provide the desired level of

resilience.
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7 RELIABILITY AND CRITICALITY COMPARISON

This chapter performs a thorough comparison of reliability and criticality of sev-
eral HPC applications in different architectures. Such comparison aims to better under-
stand the code-dependent and architecture-dependent aspects of the resilience problem.
Thus, we used the methodologies presented in previous sections, and we did not limit the
evaluation to HPC devices alone. We use a representative set of algorithms and a broad

range of devices, from HPC to embedded ones.

7.1 Methodology

In this section, we list and detail the devices tested in this work. Then, we de-
scribed the algorithms used to perform the comparison. Finally, we present the method-

ology for neutron bean and fault injection experiments.

7.1.1 Devices Under Test

In this study, we consider NVIDIA GPUs (Kepler K40, Tegra X1, and Titan X),
Intel Xeon Phi, AMD Kaveri APU, and ARM Cortex-A9. The NVIDIA K40 (Kepler)
and Intel Xeon Phi (KNC) are detailed in section 5.1.2, the remaining devices are detailed
below.

The ARM Cortex-A9 (ARM) is embedded in a Zyng-7000 APSoC (XILINX,
2016), designed by Xilinx. We use one core of the Zynq board dual-core ARM Cortex-
A9 processor built in a 45nm CMOS TSMC technology and containing about 26 million
transistors. The processor has two 4-way set-associative 32KB L1 caches (data and in-
struction) per core, and one 8-way set-associative L2 cache with 512KB shared between
both cores. A dual-ported 256KB on-chip SRAM memory (OCM) is shared between the
processor and the FPGA.

The Tegra X1 (Maxwell) is the embedded version of the M axwell GPU fabricated
in 20nm standard TSMC CMOS technology. It includes an ARM AS57 quad-core CPU
and a GPU with 256 CUDA cores divided into two Streaming Multiprocessors (SMs).
Each GPU SM has 64KB of L1 cache and 32KB of registers file capacity, and 256KB of
L2 cache shared between SM’s cores. The X1 operates at 1GHz. In this work, the ARM
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Table 7.1: Devices under test specifications summary.

Architecture Steamroller KNC Kepler Pascal Maxwell ARM
Tested Processor GPU Accelerator GPU GPU GPU CPU
Technology TSMC 28nm Intel 3-D TriGate 22nm  TSMC 28nm TSMC 16nm FinFET TSMC 20nm TSMC 45nm
L1 Cache [KB] 256 3648 960 1344 128 128
L2 Cache [KB] 4096 29184 1536 3072 256 512
# Cores 512 57 2880 3584 256 2
Core Frequency [MHz] 720 1100 745 1400 1000 667
# Transistors [B] 2.41 N/A 7.10 12 N/A 0.026

AS57 is used just as a host for the GPU.

AMD Kaveri APU (Steamroller) is the embedded A10-7850K built with the
Steamroller architecture with a 28nm standard CMOS technology. The GPU is an AMD
Radeon R7 Series containing 512 cores with 720MHz each. The A10-7850K has two sets
of 96KB 3-way set associative shared L1 instruction caches, and four sets of 16KB 4-way
set associative L1 data caches. Also, the APU has two sets of 2MB 16-way set associative
shared L2 caches.

The NVIDIA Titan X (Pascal) is designed with the Pascal architecture, in 16nm
TSMC FinFET technology. Titan X has 3584 CUDA cores split across 28 SMs, each
core running at a 1.4GHz base clock. NVIDIA Titan X has 12GB of GDDR5X SDRAM
memory. Each SM shares a 256KB register file and 48KB L1 cache. All the SMs share
3MB of L2 cache (NVIDIA, 2016).

A summary of the tested device’s specifications can be found in Table 7.1. It is
worth noting that the different transistor layouts and the different amount of available re-
sources will impact the probability of a particle generating bit-flips or logic errors (BAU-
MANN, 2005; NOH et al., 2015) while microarchitectural differences will affect the way
low-level faults propagate to a visible program output. Section 7.2 of this study evaluates

both aspects.

7.1.2 Selected Algorithms

We tested algorithms detailed in sections 4.1.3 and 5.1.3. However, we also in-
cluded sorting algorithms detailed below.

Quick sort is a traditional sorting algorithm. The sorting problem is solved by a
recursive procedure which is divided into three phases. The first phase chooses a pivot
element on the array. The second phase orders all the input elements relative to the chosen
pivot. The third phase divides the input elements into two parts centered on the chosen

pivot, then recursively calls the same procedure to each of the subsequently divided arrays
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of elements.

Merge sort is an optimized sorting algorithm. The Merge sort algorithm follows
the divide and conquer strategy, which consists in dividing a given problem into sev-
eral smaller problems. Smaller problems are then solved by simpler methods separately.
Merge sort accelerates the sort problem by solving several smaller problems concurrently
on the multiple cores available. This divide and conquer would make Merge sort too
inefficient for ARM processor, so we tested it only on parallel devices.

The input size defines the size of the problem to be solved. We tailor input sizes
to fully occupy the available resources of each device. A not fully used device would, in
fact, result in a lower FIT because of unused area. Table 7.2 lists the number of output
elements for all the codes. Input values were randomly generated, carefully balancing
the number of 1s and Os and selecting values that could not result in overflow during

computation.

7.1.3 Neutron Beam Test Experimental Setup

The data we present has been gathered from several radiation experiments per-
formed at the ChipIR facility of the Rutherford Appleton Laboratory (RAL) in Didcot,
UK, and the at Los Alamos Neutron Science Center (LANSCE) facility of the Los Alamos
National Laboratory (LANL). We test each device and configuration at both ChipIR and
LANSCE. FIT rates were similar (within a margin of error) across facilities.

Figure 7.1 shows part of our setup at ChipIR. A total of 2 ARM, 2 Steamroller
APUs, 6 Maxwells, 3 Kepler, 1 Pascal, and 3 KNC were irradiated. When measuring

FIT rates, we consider both board position and the number of boards between the neutron
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Table 7.2: Problem size, execution time, and FIT rates for the tested codes.

Execution | # Output Execution | # Output Execution | # Output
Benchmark FIT [a.u.] Time Elements FIT [a.u.] Time Elements FIT [a.u.] Time Elements
[s] M] [s] M] [s] M]
SDC | DUE SDC | DUE SDC | DUE
Kepler Kepler-ECC KNC
GEMM 16.267 | 1.656 0.017 4 1.659 | 2.485 0.0172 4 14.186 | 2.471 0.19 4
LavaMD | 163.969 | 19.769 0.059 ~0.183 11.891 | 46.450 0.059 ~0.183 || 11.255 | 24.774 0.72 ~0.654
Hotspot 21.676 | 18.450 0.2 1 3.087 | 17.630 0.233 1 22.904 | 24.774 0.37 1
NW 20.016 | 28.690 0.077 256 6.773 | 90.558 0.086 256 22.182 | 25.879 0.12 64
Quick sort | 105.807 | 36.775 2.265 64 1.165 | 20.535 2.322 64 4.366 | 5.867 7.78 64
Merge sort | 159.401 | 43.301 0.799 64 20.860 | 31.155 0.804 64 5.102 | 5.639 8.21 64
Maxwell Pascal Steamroller
GEMM 20.727 | 12.802 0.165 1 11.5 1 0.053 4 10.831 | 4.829 1.5 1
LavaMD 37.793 | 12.311 0.684 ~0.039 29.165 | 3.170 0.144 ~0.183 || 19.906 | 2.072 1.194 ~0.039
Hotspot 19.532 | 11.936 3919 1 9.035 1.348 0.131 1 9.451 | 6.037 1.898 1
ARM Kepler —
MxM 6.236 1.751 12.437 ~0.238 25.878 | 8.617 0.48 4 — — — —
FFT 19.357 | 3.925 5.745 ~0.031 196.126 | 72.436 0.4 16 — — — —
Quick sort | 18.652 | 4.666 1.430 ~0.047 || 105.807 | 36.775 2.265 64 — — — —

source and the device under test. The methodology for beam experiments is detailed in

section 4.1.

7.1.4 Fault Injection Frameworks

For our analysis, we inject errors on Kepler architecture using SASSIFI and on
KNC using CAROL-FI detailed in section 6.1.1.

SASSIFI is a tool used to inject faults into NVIDIA GPUs. It injects transient
errors in the GPU’s ISA visible state, including general purpose registers, memory val-
ues, predicate registers, and condition registers (HARI et al., 2017). Prior work used
GPUQin (FANG et al., 2014) to evaluate CUDA benchmarks reliability. We choose SAS-
SIFI mainly because: (1) it is much faster than GPUQin, (2) it injects faults both in
register file and instructions. We inject faults both in the instruction output (INST) and in
the register file (RF). INST injections measure the PVF, while RF injections measure the
register file AVE. We use two fault injection models: inserting single or double bit-flips
and random values (HARI et al., 2017). The types of faults can be injected into a single

thread or every thread in a warp.

7.2 Reliability Evaluation

In this section, we discuss and correlate fault-injection results and beam data.
Then, we analyze the Mean Workload Between Failures to consider the performance-

reliability trade-off. Based on architectures and algorithms characteristics we can identify
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Figure 7.2: Fault injections results on the KNC and Kepler. Injections are at source code
level for the KNC and both at register file (RF) and at the output of instructions (INST)
for the Kepler.
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some generic device-dependent and code-dependent reliability behaviors.

GEMM, LavaMD, NW, and Hotspot are specifically tailored for parallel devices
and would be very inefficient (and not representative) when executed on the ARM. On
the ARM we execute MxM, FFT, and Quick sort. To have a baseline comparison between
ARM and HPC devices we execute MxM and FFT also on the Kepler (but not on the
other HPC devices, for lack of beam time). We collected more than 100 SDCs and 100
DUEs per reported code, and we injected more than 10,000 faults per configuration, to

have Normal’s 95% confidence intervals lower than 10% of the presented values.

7.2.1 Fault Injection Results

Figure 7.2 shows the fault injection results for LavaMD, Hotspot, NW, Quick and
Merge sort as executed on the KNC and Kepler. It was not possible to inject errors in
GEMM, as it is a proprietary code.

Unfortunately, a unified fault injector for all the devices we are considering does
not exist. However, while a direct comparison between the fault-injectors is not possible,
we can use our results to compare the errors propagation probability between devices
executing the same code.

Comparing KNC and Kepler data in Figure 7.2, we can conclude that the probabil-

ity of errors to propagate depends both on the code and on the architecture. In particular,
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for the KNC, NW is the code with higher PVF for SDCs, while for the Kepler, LavaMD is
the most vulnerable code (for both RF and INST injections). NW adapts better to GPUs
architectures because it is very suitable to be parallelized, while LavaMD extensively uses
transcendental functions, which are inefficient (and less reliable) on GPUs. We anticipate
that beam data confirms this result.

Additionally, the DUE AVF/PVF is almost independent on the code for the KNC
(variations are lower than 20%) while for the Kepler the probability for injections to
generate a DUE strongly depends on the algorithm. This behavior is justified by the
fact that codes run on the top of an operating system on the KNC, while they run bare-to-
the-metal on the Kepler. The presence of an operating system significantly influences the
DUE rate (SANTINI et al., 2016).

The comparison between RF and INST injections on the Kepler can also be used
to predict the effectiveness of ECC. Errors injected in the RF are likely to be masked by
ECC. Additionally, as data in the cache needs to be loaded to registers to be digested,
RF AVF is a reasonable estimation of how cache errors (protected by ECC) would affect
computation. From Figure 7.2 we can conclude that even ECC effectiveness is code-
dependent. ECC is likely to reduce the SDC rate for LavaMD and Hotspot significantly.
Additionally, ECC is likely to reduce DUE induced by data corruption (errors in indexes,

control variables, etc.), mostly for Quick and Merge sort.

7.2.2 Beam Experiments Results

Figures 7.3 and 7.4 show the results of the neutron beam experiments as nor-
malized Failure in Time (FIT) rate for the tested architectures. Reported data have been
normalized to the lowest FIT rate (GEMM DUE as executed on the Pascal) to prevent
the leakage of business-sensitive data while allowing a direct comparison between de-
vices and codes error rates. Experimental data is divided into SDC (Figure 7.3) and DUE
(Figure 7.4).

In this section, we quantify the SDC FIT counting as faulty all executions with
any bit mismatch between the output of the program and the expected, error-free, output.
In Section 7.3 we qualify the observed SDCs also evaluating the number of corrupted
elements and the differences between the corrupted and expected data.

As expected, the FIT rates vary significantly between devices and codes. The SDC

FIT rate for the same code executed in two different devices can vary of up to 1 order of
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Figure 7.3: Beam experiment results, organized as relative FIT rate for SDC.
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Figure 7.4: Beam experiment results, organized as relative FIT rate for DUE
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magnitude (as the cases of LavaMD or Quick sort). Figure 7.3 shows that the SDC rate of
Kepler with ECC disabled is much higher than other devices for MxM, FFT, LavaMD and,
mostly, Quick and Merge sort. These are the algorithms that use more memory and suffer
from longer memory latencies. Devices with a higher amount of unprotected memory
(caches and registers) will have more data exposed while waiting to be digested, resulting
in a higher chance of experiencing a radiation-induced fault. GEMM, Hotspot, and NW
are compute-intense algorithms, designed to lower memory transfers and to digest data as
soon as possible. GPUs are particularly indicated for compute-intense codes, as they can
take advantage of the higher number of computing units to minimize latencies. On GPUs,

the exposure time is then significantly reduced. For the KNC and ARM, on the contrary,
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it is not possible to exploit the algorithm compute-intense structures completely. In fact,
KNC and ARM SDC rate are not significantly reduced when executing compute-bound
codes. The KNC shows a particularly low SDC FIT rate for sorting which, as discussed
in the following, is granted by ECC protection.

The DUE FIT rate has a significant device-dependent component (probability of
corruption of the scheduler, host-device interface, operating system, when available) and
a code-dependent component (number of control-flow operations, data-based branches,
etc.). The comparison between Figure 7.3 and Figure 7.4 shows that the DUE rate is
much less code-dependent than SDC rate. The device DUE rates vary at most of 30%
between MxM, LavaMD, Hotspot, and NW. For GEMM the DUE rate is extremely low
for all devices as the code has little control-flow operation, which reduces the chances
of having a data corruption to lead to a Crash. Moreover, the scheduling for GEMM is
very simple and defined, reducing the strain on the scheduler and, thus, the probability of
corruption.

The SDC/DUE ratio is higher for the ARM, Maxwell, and Steamroller (between
1.5 and 5 SDCs for each DUE) than for the Kepler with ECC OFF and Pascal (between 2
and 11 SDCs for each DUE). This SDC/DUE ratio is explained considering that the host is
exposed for embedded devices, while for GPUs and KNC the host is out of the beam. An
error during host operations is likely to create a DUE. The comparison between Figure 7.2
and Figure 7.4 shows that for most algorithms (but not for sort) DUEs are more likely to
be generated by radiation-induced faults in control-logic or inaccessible resources rather
than by data corruption. DUEs are more likely for sort algorithms than for other codes
only for unprotected devices (ARM and Kepler with ECC disabled). As explained in the
following, for sort, ECC can prevent data corruption-induced DUEs. Moreover, KNC
and Kepler with ECC enabled have, on the average, 1.2 and 4.4 DUEs for every SDC,
respectively. This is because ECC reduces SDCs but could increase DUE:s.

An additional interesting insight that can be retrieved from data in Figure 7.3 is
that ECC reduces significantly the SDC rate but not the DUE rate. Among the tested
devices only the Kepler and the KNC implement ECC. The ECC reduces the Kepler SDC
FIT of about one order of magnitude. The reduction is accentuated for codes that heavily
use memory, like Quick and Merge sort. Unfortunately, KNC ECC cannot be disabled,
preventing the measure of its efficacy. However, an empiric sign that ECC is effective
for the KNC is that its SDC FIT rates are comparable (if not lower) than much smaller
devices for all of the tested codes but Hotspot. For Quick sort, the KNC SDC FIT rate
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Figure 7.5: Mean Workload Between Failure: amount of useful data produced before
experiencing a SDC or DUE. Higher values imply higher reliability.
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is even (significantly) smaller than the ARM one. As already mentioned, Hotspot has a
different trend as it uses much less memory than other codes, reducing ECC benefits. For
the Kepler, enabling ECC reduces Hotspot SDC rate of only 70%, while for the other
codes the reduction is at least of one order of magnitude.

As shown in Figure 7.4, ECC increases the DUE rate for most codes. This in-
crease 1s because (1) ECC triggers an application crash when it detects an uncorrectable
error and (2) logic resources are left unprotected, preventing the mitigation of faults af-
fecting scheduler and dispatcher. ECC reduces the DUE only for sorting algorithms. As
sorting uses a lot of data-based control flow decisions (indexes, pivot elements), protect-
ing memory is likely to reduce the DUE rate significantly. The ECC efficacy for sorting
is in accordance with fault-injection data for Kepler and KNC in Figure 7.3 that shows
a high percentage of injections in registers to produce DUE. ECC masks those faults,
reducing DUE rate.

Comparing the SDC rate of GEMM, LavaMD, and Hotspot as executed on the
Kepler with ECC disabled (CMOS) with Pascal and KNC (FinFET) demonstrates that
FinFET transistors play a significant role in reducing the probability of errors. As Kepler
and Pascal’s architectures are similar and the executed CUDA source code is exactly the
same for the two devices, they are likely to have a similar AVF and PVF. On the contrary,
as illustrated in Section 7.3, KNC has a significantly different way of propagating faults.
Thus, we limit the CMOS-FinFET comparison on Kepler with ECC disabled (Pascal does
not have ECC) and Pascal. As shown in Figures 7.3 and 7.4, even if Pascal has a higher
amount of resources (details in Section 7.1.1), both Pascal’s SDC and DUE rates are, on
the average, one order of magnitude lower than Kepler’s with ECC OFF, for all the tested

codes.
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These results represent the first proof on live hardware of claims in recent publi-
cations, showing through test chips lower error rates for FinFET transistors compared to
CMOS (NOH et al., 2015). Additionally, FinFETs are much more effective in reducing
DUEs (Figure 7.4) and the SDCs of compute-intensive codes (i.e., LavaMD and Hotspot)
versus the Kepler CMOS device, supporting the advertised benefits of FInFET technology
in terms of reducing errors in logic versus errors in memory (WANG et al., 2006).

Transistor implementation also explains why, despite the higher amount of re-
sources, Steamroller SDC and DUE FIT rates are, on the average, 50% and 40% the
Maxwell ones, respectively. Steamroller, in fact, is built with 28nm CMOS and Maxwell

with 20nm CMOS transistors. Planar devices are known to be less reliable as transistor

dimensions shrink (BAUMANN, 2005).

7.2.3 Mean Workload Between Failures

A higher number of resources increases the FIT rates. However, the additional
resources used for computation could bring higher throughput, increasing the amount of
useful data produced before experiencing a failure. To consider also resources utilization
efficiency we measure the MWBF, which indicates the amount of useful data correctly
processed before experiencing a failure. MWBF is inversely proportional to FIT and
directly proportional to the throughput (measured dividing the data produced by execution
time listed in Table 7.2).

Figure 7.5 shows the MWBF measured for all the devices and codes. Interestingly,
comparing Figures 7.3 and 7.4 with Figure 7.5, we notice that higher FIT rate does not
imply lower MWBF (and, thus, lower reliability). The fact that MWBF follows a different
trend than FIT rates means that the throughput of the tested codes is more dependent
on the device than the FIT rates. The ARM processor is an extreme case, as it shows
one order of magnitude lower FIT rate compared to the Kepler. However, Kepler shows
an MWBEF three orders of magnitude higher compared to the ARM and is, then, much
more reliable in terms of produced correct data. The benefit of the efficient use of the
additional resources available on the Kepler is higher than the increased error rate they
bring. This benefit is particularly true for computing intense algorithms, like GEMM
and Hotspot, executed on GPUs for which the additional memory available is used to
speed up executions, reducing memory latencies (and, thus, FIT) while increasing the

throughput. Comparing Figure 7.5 and Figures 7.3 and 7.4 we can conclude that, for
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the tested configurations, devices with higher FIT rates are the ones with higher MWBF
(i.e., they are the more reliable). We believe this to be a promising and generic result:
when additional resources are efficiently used, the MWBF is likely to increase. When the
device utilization is increased, the exposed area (and thus FIT rate) increases linearly. As
architectures and codes are typically designed to use the available resources efficiently, a
higher resources availability eventually improves super-linearly the throughput.

MWRBEF also underlines the benefits brought by ECC. As the throughput of the se-
lected codes is not significantly affected by ECC (but could affect codes that heavily uses
DDR, as the ECC reduces its bandwidth), the MWBF benefits from the reduced SDC
rate ECC provides, increasing the Kepler reliability significantly. A surprising result is
given by Hotspot, for which Pascal (which, we recall, does not have ECC) has the high-
est MWBE. As said, Hotspot uses less memory per operation than other codes reducing
ECC benefits. On the contrary, FinFET transistors are even more robust to radiation than
CMOS for logic elements versus memory (WANG et al., 2006), making Pascal the more

reliable device for extremely parallel and compute-bound codes.

7.3 Error Criticality Analysis

In this section, we aim at qualifying the observed SDCs regarding the difference
between the corrupted output and the expected, error-free, output. We consider how dif-
ferent the values of the corrupted elements are from the expected ones and how many
elements of the output are corrupted. The way errors manifest at the application output is
a symptom of how errors propagate inside an architecture and through the code. The pro-
posed qualifications are then used to detect code-dependent and device-dependent error
propagation behaviors.

Figures 7.6, 7.7, 7.8, and 7.9 show the FIT rate reduction for GEMM and MxM,
Hotspot, LavaMD, and FFT as a function of the accepted output value approximation.
We show how varying the acceptable approximation margin (i.e., how different from the
expected values the elements can be to accept the execution as correct) affect the SDC
FIT rate for each benchmark. In other words, increasing the acceptable error margin
(horizontal axis) the FIT rate can decrease (vertical axis) as some errors fall into the
approximation margin. It is worth noting that we remove a faulty execution from the
FIT rate count only when all its corrupted elements are inside the approximation margin.

Sorting algorithms are treated separately. As NW is executed with integer values, the
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Figure 7.6: GEMM relative error reduction.
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approximation is less interesting and not shown.

Figures 7.10, 7.11, and 7.12 show the percentage of faulty executions that are
affected by a single or multiple corrupted elements. When multiple errors occur, we plot
the portion of the output elements that are corrupted. We classify the number of corrupted
elements between 1% and 9% of the output elements. 10% or more are grouped. It is
worth noting that multiple corrupted elements are generated by the interaction of a single
neutron.

Device-Dependent Behaviors:

Figures 7.6, 7.7, 7.8, and 7.9 show that, independently on the code, KNC has
the lowest FIT rate reduction while ARM has the highest reduction. GPU architecture
has a FIT rate reduction between KNC and ARM. KNC reduction is lower because an
error generates more corrupted elements in the output, as seen in Figures 7.10, 7.11,
and 7.12. Then, a higher number of corrupted elements may lead to elements with a higher

relative error. KNC tends to spread the error to more elements in the output because of



94

Figure 7.7: HotSpot relative error reduction.
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the memory management system. The memory system treats an error localized into one
of the KNC cores as a valid update, which will propagate to the other cores and main
memory by the cache coherency protocol and automatic write-back. Since GPUs have a
less transparent memory management system, localized errors will not be automatically
propagated, restricting the number of corrupted elements. ARM executes the benchmarks
in bare-metal and sequentially, thus, ARM shows a different error propagation than KNC
and GPUs presenting a high number of single element corruption.

Kepler with ECC ON has a smaller FIT reduction compared to ECC OFF. While
the absolute number of SDC is significantly reduced (as discussed in Section 7.2.2), ECC
corrects mainly errors that have a smaller difference from the expected value. Our analysis
suggests that fault in unprotected resources are, unfortunately, the ones that most affect
the output. ECC is likely to also impacts the lower reduction for KNC.

Code-Dependent Behaviors: Figures 7.6, 7.7, 7.8, and 7.9 show that there is also

a significant code-dependent component in the FIT rate reduction. When a 5% of output
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Figure 7.8: LavaMD relative error reduction.
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approximation is tolerated, GEMM, MxM, and FFT show the smaller FIT rate reduction,
30% to 75%. LavaMD has a reduction of 50% to 90%. Finally, Hotspot benefits from a
FIT rate reduction of more than 90%. We analyze each code separately.

Figure 7.6 shows the FIT rate reduction for GEMM and MxM. Both benchmarks
present the lowest FIT rate reduction despite presenting the highest percentage of single
errors (see Figures 7.10, 7.11, and 7.12). GEMM and MxM are purely arithmetic codes,
while LavaMD and Hotspot are iterative simulations. For LavaMD and Hotspot, as ex-
plained in the following, a corrupted element during computation could be smoothed (and
spread) interacting with neighbors. As a result, a fault could, in the worst case, interact
with all the values that contribute to the calculation of all the output elements. On the con-
trary, for GEMM and MxM once a value has been corrupted during computation, it will
contribute to the evaluation of, at most, 2N output elements. The chances of spreading
are then lower than for other codes. Additionally, if matrices are dense (as the ones used

for our test), the error is likely to accumulate during computation, reducing the possibility
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Figure 7.9: FFT relative error reduction.
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of having the error smoothed.

Hotspot has the more representative FIT reduction, shown in Fig 7.7. Hotspot is
an iterative stencil algorithm. As the program output tends to reach an equilibrium, the
elements interact with each other to simulate the temperature profile of a surface. An
error that increases the temperature of a pixel (or of some pixels) significantly will cause
the temperature to be averaged with neighbors pixels. As equilibrium is reached, errors
will then dissipate and be smoothed throughout further neighbors. Figure 7.11, in fact,
shows that single corrupted elements are extremely rare for Hotspot and Fig 7.7 shows
that Hotspot leads to very low relative error. Even tolerating only 0.2% of relative error
can reduce at least 90% of the FIT, regardless of the architectures in which the code is
executed. This is a promising result for approximate computing. We can expect stencil
applications to be extremely resilient even if a small margin of output value approximation
is accepted.

LavaMD FIT rate reduction is depicted in Figure 7.8. KNC presents the lower
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Figure 7.10: DGEMM corrupted elements dispersion.
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FIT rate reduction, saturating at 50% as we increase the acceptable error margin till 10%.
Steamroller shows the highest reduction, saturating at 5%. The FIT rate reduction for
LavaMD follows the same trend as the number of corrupted elements in the output (re-
fer to Figure 7.12). For KNC, we never observed any single corrupted elements, while
Steamroller has about 50% of faulty executions affected by a single corrupted element.
NVIDIA GPUs presents a lower number of single corrupted elements than Steamroller,
leading to a slightly lower FIT rate reduction. In contrast to GEMM, LavaMD error ef-
fect depends on the error magnitude, simulation time, particle position, and neighboring
particles. Therefore, LavaMD error effect can be negligible or generate a cascade of in-
teractions that will move the result further away from the expected one.

FFT FIT rate reduction can be seen in Figure 7.9. Kepler reaches about 50% of
FIT rate reduction. Similar to GEMM and MxM, an error will likely accumulate during
the execution than being smoothed out, explaining a similar reduction. We do not show
the output corruption for FFT as all the corrupted output were affected by less than 1%
of corrupted elements. As expected from the analysis made so far, ARM shows single
corrupted elements while the Kepler shows mostly multiple corrupted elements.

CAROL-FI and SASSIFI fault-injection results are also included for Hotspot and
LavaMD (Figures 7.7, 7.11, 7.8, and 7.12 ). Fault injection correctly estimates the mag-
nitude of corrupted elements in the algorithm output for each architecture. Thus, fault
injectors proved to be a valuable tool to study approximate computing and its effect on
radiation sensitivity.

The difference between the corrupted and expected values are not useful for Quick
sort and Merge sort. We only show, in Figures 7.13 and 7.14, the portion of the output

array that is affected for Quick sort and Merge sort, respectively. We count as errors the
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Figure 7.11: HotSpot corrupted elements dispersion.
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Figure 7.12: LavaMD corrupted elements dispersion.
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number of corrupted or missing elements as well as the number of unordered elements.
Executions with multiple output elements corruption are classified by the percentage of
output corruption up to 1%, while >1% groups the ones that exceed 1%.

As depicted in Figures 7.13 and 7.14, consistently to other codes, ARM presents
the lowest percentage of output corruption, since more than 85% of SDCs produce a single
output element corruption. Unlike parallel architectures, ARM has a very limited resource
sharing during computation. In the ARM, each couple of elements is calculated separately
from others, thus reducing failure propagation through the algorithm when compared to
parallel architectures. For Quick sort, ECC reduces mostly the errors that have a lower
impact on application correctness, confirming the trend from other codes. When ECC is
enabled on the Kepler, there are no single errors and more than 50% of executions have
more than 1% of the elements affected. On the contrary, the trend with ECC ON and OFF
is very similar to Merge sort. Memory reuse, typical of divide-and-conquer algorithms,

makes errors to spread easily, even without ECC.
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Figure 7.13: Quick sort number of corrupted elements dispersion.
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Figure 7.14: Merge sort number of corrupted elements dispersion.
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It is interesting to notice that the trend for KNC and Kepler are very similar for
both Quick and Merge sort: about 70% of corrupted executions show few elements cor-
rupted. Fault-injection, on the contrary, produces a corruption that affects a higher portion

of the output array.

7.4 Discussion

We have compared the reliability of an extensive set of devices and codes mea-
sured through both beam radiation experiments and, whenever available, fault-injection.
The results data highlights both code-dependent and device-dependent behaviors. We
found that the DUE rate is mostly device-dependent and cannot be easily predicted using
fault-injection. This work also shows that an efficient use of a higher amount of resources
justifies the increase in FIT rate. Moreover, FInFET transistors are effective in reducing
both the SDC and DUE rates independently of the code, while ECC is more effective in

memory-bound codes. Softwares with long memory latencies have a higher SDC rate, es-
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pecially when ECC is not available. Moreover, additional resources, although increasing
the FIT rates, generally improve MWBF.

The main generic insights we derive from the reliability analysis can be summa-
rized as follows:

Device-dependent behaviors:
e The DUE rate is device-dependent and cannot be easily predicted using fault-injection.

e FinFET transistors are effective in reducing both the SDC and DUE rates, indepen-
dently on the code.

e Regardless the executed code SDCs are more frequent than DUEs if there is no

ECC.

e The tested configurations with higher FIT have higher MWBF than the others. Ad-

ditional resources increase throughput more than FIT rate.
Code-dependent behaviors:

e SDC rate is mainly code-dependent. Fault injection helps in identifying codes with

higher SDC rate.

e For memory-bound codes, ECC reduces the SDC rate significantly and slightly the
DUE rate. For compute-bound codes, ECC still reduces SDC but harms DUE.

e Codes with long memory latencies have a higher SDC rate, especially when ECC

1s not available.

e Compute-bound codes exacerbate the benefits, in terms of MWBF, that additional

resources bring.

We have also qualified the observed errors in terms of the difference between the
expected value and the observed one, and the percentage of the output that has been
corrupted. Stencil applications, independently of the device, could take great advantage
of approximate computing as 90% of corrupted executions could be accepted as correct
with a 0.2% of output approximation. While KNCs spread errors because of memory
coherency, GPUs corrupt fewer elements. Finally, ECC is shown to correct mainly errors

that have a lower impact on the output.
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8 HARDENING SOLUTIONS

Software-based solutions may be the only way to protect the system when using
COTS devices. COTS hardware cannot be changed, and the hardware-based hardening
solutions provided by the device may not be enough to achieve the required level of re-
silience. Then, in this chapter, software-based hardening solutions will be implemented
and evaluated alongside hardware-based hardening solutions available. Finally, this chap-
ter also presents a selective hardening approach and shows the improvements such tech-

nique can yield.

8.1 Hardware-based vs Software-based Hardening

NVIDIA GPUs provide a hardware implementation of ECC mitigation mechanism
that can be disabled. Therefore, we use this feature to evaluate the ECC against two
software-based hardening techniques without the influence of the hardware mechanism.
We use a specific and a generic technique to assess how well software techniques can
perform regarding execution time and resilience. Intel Xeon Phi also provides hardware
mitigation mechanisms, but the mechanisms cannot be disabled making it hard to measure
the impact of software techniques without the influence of the hardware ones.

For this section, we use the NVIDIA K20 device described in section 4.1.2 since
it is the same device as the authors of the specific techniques used in (RECH et al., 2013a;
PILLA et al., 2014). Thus, we can compare the ECC and the generic technique we imple-

mented in the same device.

8.1.1 Error-Correcting Code

The ECC mechanisms included in advanced GPUs can correct single bit errors
and detect double-bit errors on the main memory structures (NVIDIA, 2012). The ECC
included is the only mitigation mechanism available for HPC GPUs. When enabled, the
ECC reduces the DDR availability of about 15% (NVIDIA, 2012). The results, presented
in section 8.1.4, show that enabling ECC reduces the SDC FIT by about one order of
magnitude for all the tested algorithms. Some SDCs still occur even if ECC is enabled

as flip-flops, queues, logic resources, and schedulers are left undetected. The former



102

Figure 8.1: Algorithm-Based Fault Tolerant for matrix multiplication (HUANG; ABRA-
HAM, 1984).
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resources details are considered business-sensible, and are not available, while the latter
resources have been demonstrated to contribute significantly to the GPU SDC rate (RECH
et al., 2014).

The main issue with ECC is that even if the instruction cache and registers are
protected (NVIDIA, 2012), the GPU becomes more prone to experience a DUE, impos-
ing a higher checkpoint frequency in HPC applications. When ECC is off, an incorrigible
MBU may be masked during computation, without appearing at the output (WILKEN-
ING et al., 2014). Nevertheless, that same MBU would be detected by the ECC as an
incorrigible error, triggering the application DUE. Additionally, the ECC will not reduce

the DUE caused by scheduler corruptions as those resources are left unprotected.

8.1.2 Algorithm-Based Fault Tolerance

Since ABFT strategies are algorithm-specific, to exemplify its use two different

applications were hardened: a Matrix Multiplication and a Fast Fourier Transform.

8.1.2.1 Matrix Multiplication

The matrix multiplication application was hardened using the ABFT strategy pro-
posed by Huang and Abraham (HUANG; ABRAHAM, 1984), which is based on the
result checking approach of Freivalds (FREIVALDS, 1979). Input matrices A and B
are coded before computation, adding column and row checksum vectors (A, and B, in
Figure 8.1) by summing all the elements in the correspondent column or row.

The result of the multiplication of the expanded matrices is a fully-checksum ma-
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trix M, where the (n + 1)-th row and the (n + 1)-th column contain the column (M,) and
row (M,) checksum vectors of M, respectively (FREIVALDS, 1979). When the multi-
plication is finished, M column and row checksum vectors are re-calculated summing the
first n columns and n rows of M, resulting on M/ and M/, respectively. Output verifica-
tion is done by comparing the checksum vectors from the multiplication and the newly
computed ones.

If a mismatch is detected between M,.[i] and M/ [i], it means that at least one error
is present in the i-th row of M, and respectively for columns. If M|, j] is identified as
the only error in M, it can be corrected quickly using either the row or column checksum

vectors following Equation 8.1 or Equation 8.2 (HUANG; ABRAHAM, 1984).

Mcorrect[i7j] = M[Zvj] - (Mrl’[l] - Mr[l]) (81)

Mcorrect[i7j] = M[l,j] - (Mé[]] - MCU]) (82)

On a GPU, the operations required to compute the checksums and detect errors can
be done in O(n), while error correction takes constant time (RECH et al., 2013a). The
technique proposed by Huang and Abraham is only capable of correcting single output
errors (HUANG; ABRAHAM, 1984), which have been experimentally demonstrated to
correspond to less than 43% of the cases (RECH et al., 2013a). Thanks to radiation
experimental data, the ABFT strategy was extended to correct multiple errors on the same
row or column of M in constant time and randomly distributed errors in O(e, X e.),
where e, and e, are the number of mismatches between M row and column checksums,
respectively (details in (RECH et al., 2013a)). Please note that the ABFT implementation
and the reliability evaluation of Section 8.1.4 are neither dependent on implementation

(MxM or DGEMM) nor on input size.

8.1.2.2 Fast Fourier Transform

Fast Fourier Transform application was hardened using the ABFT strategy pro-
posed by Jou and Abraham (JOU; ABRAHAM, 1988) for fault-free N-point FFT net-
works of NV processors (PILLA et al., 2014). This strategy is based on the superposition
principle of linear systems and the circular shift property of the FFT. Its basic idea is
to detect errors arising in any processor or connection with the use of input coding and

a checksum comparison at the output. Figure 8.2 illustrates this process. The ABFT
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Figure 8.2: Algorithm-Based Fault Tolerant FFT. The 64 complex elements of the input
are coded, then the 64-point FFT is performed with the original algorithm, and its output
is decoded. Errors are detected comparing the checksum generated summing the output
values with Xy x N.
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was implemented on 512 x 512 64-point FFTs. Nevertheless, the reliability evaluation
presented in Section 8.1.4 is easily extendable to other input sizes.

A thread in the hardened algorithm starts by taking its input sequence of N com-
plex elements X and encoding it, resulting in the sequence X', as represented in Equa-
tion 8.3. The original vector X is kept unmodified for the situation where the FFT has to
be re-computed due to the detection of an internal error. After the encoding phase, vec-
tor X’ is given as input to the original FFT algorithm. After the algorithm computation
is completed, the FFT output stored in X' is decoded to vector Y following Equation 8.4,
where wx,k is the N'" root of unity. The N decoded results are then summed, generating
a checksum. As formally demonstrated by Jou and Abraham (JOU; ABRAHAM, 1988),
this encoding and decoding scheme gives each output a nontrivial weighted contribution
to the checksum such that any error will cause a detectable error syndrome, which is not
the case with the original FFT algorithm. After computation, the checksum is compared
to NV x X[0]. Any mismatches will identify the FFT as faulty and will signalize the neces-

sity of a re-computation. It is important to notice that both encoding and decoding phases
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could be processed by more than one thread for each 1D FFT, increasing parallelism.

, 2X[i] + X[i+1 0<i<N-—1
X'[i] = (8.3)
2X[i] + X[0]  i=N-1

YM:{QJVX%]O§k<N, (8.4)

In addition to encoding and decoding data, our ABFT strategy also includes two
vectors to signalize any FFT re-computations needed, and to detect any failures from
SM interruptions and scheduler failures that could prevent threads from completing their
execution. Overall, this hardening mechanism increases the GPU memory usage with the
addition of the encoded matrix X’ and these two vectors (which are much smaller than
the former). Lastly, the proposed ABFT strategy keeps the computational complexity of
the original algorithm, as the functions for input encoding, output decoding, and error
detection are linear. In addition, only the y n-point FFTs with errors are re-computed,
and their overhead ends hidden by the parallel execution of the other 512 x 512 — y
FFTs (PILLA et al., 2014).

8.1.3 Duplication With Comparison

DWC can be implemented in several ways on a GPU, such as by duplicating
blocks, threads, or by executing operations twice in a thread. It is worth noting that du-
plicated threads must be carefully distributed as the corruption of shared resources (like
caches) or critical resources (like the scheduler) may propagate to both copies, undermin-
ing DWC detection capabilities.

We designed three Duplication With Comparison strategies with different dupli-
cation and distribution philosophies: Spatial, E-O Spatial, and Time. In the spatial dupli-
cation strategies (Spatial and E-O Spatial), the number of blocks needed to compute the
solution and, thus, the number of instantiated threads is doubled. The thread blocks are
divided into two domains, each executing the unhardened code. The result of a block is
then compared to the result of the duplicated block, detecting possible mismatches. We
choose to duplicate blocks instead of threads in a block to avoid having both instances
using the same cache, as a radiation-induced failure in it would be likely to propagate to
both copies undetected.

In Spatial, a domain is formed by the first half of the blocks and the other domain
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Figure 8.3: Duplication With Comparison strategies. Each block is represented by a box
and have its identification index (i.e., block ID in CUDA) and a letter corresponding to the
task assigned to it. The apostrophe after a letter means that the task is a duplicated one.
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by the second half. The redundant blocks are not necessarily executed in parallel with
the first half of the blocks when the number of blocks instantiated in the unhardened
code already exceeds the GPU parallel capabilities. The second spatial duplication, E-
O Spatial, alternates original blocks and duplicated blocks in an even-odd fashion. In
other words, blocks ¢ and ¢ + 1 execute on the same data. Spatial and E-O Spatial are
illustrated in Figure 8.3a and Figure 8.3b.

Spatial and E-O Spatial detection capabilities may significantly differ. The redun-
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dant calculations are more likely to be processed in the same SMs in E-O Spatial, sharing
resources like caches. Even if more efficient, as data does not have to be moved in two
different regions of the GPU, E-O Spatial may experience errors in the SM caches that
propagate to both the duplicated blocks and thus remain undetected. On the other hand,
the same data is going to be duplicated in two different locations of the GPU in Spatial,
reducing performance and increasing the exposed area of the device.

In the last DWC strategy implemented, named 7ime and depicted in Figure 8.3c,
each thread performs a redundant calculation after completing the original one. In Time,
about the same amount of parallel resources (i.e., number of threads, scheduling strain,
caches) as the original implementation are employed. However, threads complexity is
increased as each thread executes twice the operations and compares results.

When an error is detected, the faulty threads are re-executed in the GPU until the
results of the execution and the redundant execution match, or a maximum number of
re-executions is reached resulting in a failed execution. In our experiments, each block or
thread will be re-executed a maximum of 5 times when an error is detected. Nevertheless,

all errors detected by our strategies were corrected in the first re-execution.

8.1.4 Evaluation

In this section, the efficiency and efficacy of software-based techniques are eval-
uated and compared to the ECC available in modern high-end GPUs. The results shown
here were obtained using the GPU device described in section 4.1.2. Results for ABFT
were obtained using 2048 x 2048 matrices for M x M and 512 x 512 64-point FFTs, while
DWOC strategies were applied to HotSpot. Nevertheless, similar error correction/detection
capabilities are expected for different input sizes and algorithms.

Table 8.1 reports the reliability obtained for the unhardened code, the ECC, and
the software-based techniques. For SDC and DUE, we present two columns for each
one; the first one is the absolute FIT and the second one present the FIT in arbitrary unit
(a.u.), which normalizes the FIT of hardened code to the unhardened version to facilitate
comparison. The last column of Table 8.1 reports the execution time of the hardened
codes normalized to their unhardened versions.

When ECC is enabled, a 55% increase in DUE FIT is observed for Mz M, 44% for
FFT, and 43% for Hotspot. SDC and DUE results for ECC were similar for the tested

algorithms, and are expected to be comparable also for other codes. Enabling ECC affects
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Table 8.1: Efficiency and resiliency of the available hardening solutions for GPUs.
SDC DUE

FIT a. u. FIT au ot

= Unhardened 5.79 x 10? 1.000 2.64 x 10> 1.000 1.00
g  ECC 5.62 x 101 0.097 4.02 x 10* 1.523 1.01
2 ABFT 1.04 x 10 0.018 2.97 x 102 1.127 1.14
. Unhardened 2.88 x 103 1.000 7.02 x 10> 1.000 1.00
~ ECC 4.14 x 102 0.144 1.01 x 103> 1.435 1.50
& ABFT 518 x 101 0.018 8.04 x 102 1.145 1.18
Unhardened 2.04 x 10° 1.000 1.12 x 10> 1.000 1.00

é ECC 1.81 x 10 0.089 1.61 x 102 1.439 1.00
..g Spatial 0.00 x 10° 0.000 1.05 x 102 0.937 2.51
7 E-O Spatial 3.26 X 10° 0.016 8.40 x 10* 0.750 2.45
Time 2.45 x 10° 0.012 8.85x 10° 0.079 1.90

the execution time of F'F'T" significantly, while it barely affects Mz M and Hotspot. This
execution time loss is explained noting that /'F'T" requires continuous accesses to the
GPU DDR. When ECC is enabled, the data transfer bandwidth from and to the DDR is
reduced as code data has to be transferred as well. If the unhardened version of the code
saturates the bandwidth, as in the F'F"T" case, the execution time is then likely to be higher
when ECC is enabled.

The ABFT F'F'T' shows an SDC FIT that is almost one order of magnitude lower
than the ECC protected version, while the ABFT Mz M has an SDC FIT which is less
than 18% the ECC protected one. The ABFT mechanisms are then more effective than
ECC in increasing the GPUs resilience, since they are designed to detect mismatches
in the output independently of their causes while, as said, ECC only corrects errors on
memory elements directly affected by radiation.

The ABFT procedures to detect or correct errors are executed directly in the GPU,
increasing the instruction caches requirements and scheduler strain. The higher number
of operations needed to implement the ABFT procedure has the drawback of increasing
the probability of having a DUE, which is in accordance with experimental results. Nev-
ertheless, the DUE increase is not remarkable, being 12% for Mx M and 14% for FF'T,
definitely lower than the 43% to 55% increment imposed by ECC.

ABFT correction capabilities were analytically calculated independently on input
size (HUANG; ABRAHAM, 1984; JOU; ABRAHAM, 1988). It is then reasonable to ex-

tend the reported resilience results to other input sizes. When implemented on GPUs, the
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complexity of ABFT procedures is linear with input data (PILLA et al., 2014; RECH et
al., 2013a). The imposed ABFT overhead, both regarding performance and DUE caused
by ABFT procedure corruption, is then expected to have a lower impact with increasing
input size.

DWOC strategies were also efficient, reducing the occurrence and even eliminating
SDCs for Hotspot. As DWC design is independent of the code, the imposed overhead
is also likely to be independent of the code, and so the detection capabilities. The results
and discussion that derive from Hotspot analysis can then be applied to other parallel
codes without significant variations. All errors were corrected with Spatial, while in E-
O Spatial few errors were left undetected as the redundant block can be executed in the
same SM and a shared resource error propagates to both copies. DWC strategies reduce
the SDC rate by one order of magnitude with respect to ECC.

The DUE rate of Spatial and E-O Spatial are comparable with the unhardened
version and almost 50% lower than ECC-protected version. Only Time succeeds in re-
ducing DUE occurrences significantly. In both, Spatial and E-O Spatial, the number of
blocks to be dispatched is duplicated, increasing significantly the scheduler strain required
for computation (which has been demonstrated to be particularly critical (RECH et al.,
2014)). On the contrary, Time instantiates exactly the same number of blocks and threads
of the unhardened version of Hotspot. Additionally, critical operations for a DUE, like
blocks/threads dispatch, are interleaved with double operations in Time. This operation
mix means that it is more likely for a neutron to generate a correctable SDC than a critical
DUE for Time.

Still, DWC comes with a non-negligible computational overhead, which ranges
from 90% for Time to 151% for Spatial. Time performs better as there is no scheduler
overhead, while in Spatial and E-O Spatial more blocks need to be created and scheduled.
DWC pays its generality and ease of implementation with poor performance. DWC offers
high detection capabilities and may be particularly suitable for a safety-critical applica-
tion. In HPC, DWC usage should be carefully engineered to avoid excessive performance
degradation.

The combination of ECC and ABFT or ECC and DWC is likely to provide an
even higher reliability. Nevertheless, the resulting error rate would be extremely low even
with the accelerated particle beams used in this evaluation, preventing the observation of

a statistically significant amount of failures.
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Table 8.2: DGEMM CAROL-FI results.
Variable Name File Name Line Number Overhead PVF Contribution

block dgemm.c 263 <0.01% 0.28%
file2 dgemm.c 220 <0.01% 0.07%
order dgemm.c 262 <0.01% 10.77%
A dgemm.c 261 <0.01% 1.48%
B dgemm.c 261 <0.01% 1.48%
file dgemm.c 220 <0.01% 0.21%
1] dgemm.c 167 <0.01% 1.04%
kk dgemm.c 167 <0.01% 3.87%
i dgemm.c 167 0.01% 5.11%
BB dgemm.c 171 0.12% 4.94%
A dgemm.c 219 0.12% 1.66%
B dgemm.c 219 0.12% 1.21%
M dgemm.c 240 0.12% 0.28%
i dgemm.c 221 0.12% 2.59%
i dgemm.c 242 0.12% 0.35%
] dgemm.c 221 0.12% 1.28%
] dgemm.c 242 0.12% 0.24%
] dgemm.c 258 0.12% 0.07%
C dgemm.c 261 0.12% 10.77%
jg dgemm.c 167 0.26% 5.11%
k dgemm.c 167 0.62% 2.90%
kg dgemm.c 167 0.62% 5.76%
C dgemm.c 165 4.54% 22.06%
] dgemm.c 167 4.78% 2.76%
AA dgemm.c 171 7.73% 0.10%
CC dgemm.c 171 15.38% 4.49%
i dgemm.c 167 32.42% 3.31%
ig dgemm.c 167 32.42% 5.83%

8.2 Selective Hardening

Selective hardening, similar to Duplication With Comparison, can be implemented
in several ways. Using redundant multithreading implemented in hardware, Mukherjee
selectively hardened only a limited sphere of replication in (MUKHERIJEE; KONTZ;
REINHARDT, 2002). Moreover, at the register-instruction level, several works evaluate
and implement selective hardening (CHIELLE et al., 2013; RESTREPO-CALLE et al.,
2013; CHIELLE et al., 2015).

Since HPC devices cannot be modified, we focus on software-based hardening

strategies. The fundamental point of selective hardening is the selection of what to harden.
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A probabilistic and statistical model can be used to analyze the code, at assembly level
for instance, and select some registers to be duplicated. The probabilistic model has the
advantage of being very fast and uses few resources, but it does not take into account the
impact of faults in the specific algorithm (i.e., faults can be masked).

Fault injection can also be used to analyze the critical portions of the code to be
hardened. Using fault injection, we can more easily capture the impact of a fault in a
specific resource. The downside is that pure fault injection does not take into account the
probability of that resource to be affected by a fault. Another disadvantage is the time
cost to evaluate all possible resources.

The approach used in this work is the fault injection one. CAROL-FI, described
in section 6.1.1, was used to select the critical portions to harden. The disadvantages of
the fault injection approach are mitigated due to the low CAROL-FI overhead and the
methodology of randomly inject a fault at each execution, which reduces the probability
to select a variable that is alive for a short period of the execution.

To evaluate the impact of selective hardening we use CAROL-FI on DGEMM,
LavaMD, HotSpot, and LUD. We injected 69, 657 faults observing 5, 956 SDCs. The ma-
chine used during tests was an Intel Xeon Phi Knights Landing (KNL), which is the next
generation of KNC described in section 5.1.2. The KNL has a total 68 physical cores, 34
MB of L2 cache and is built using 14nm technology. KNL is fully supported by CAROL-
FI and is used by three of the current top10 supercomputers: Trinity at Los Alamos Na-
tional Laboratory, Cori at Lawrence Berkeley National Laboratory, and Oakforest-PACS
at Japan.

CAROL-FI results show how many of all the observed SDCs each variable pro-
duced. Then, we compute the code’s PVF considering all SDCs, after we compute a new
PVF without the SDCs observed in a variable. Thus, the difference between those two
values is the PVF contribution of that specific variable. The PVF contribution shows us
how much the code resilience would improve if we protect such variable by selective
hardening.

To provide the best selective hardening for a code, we should take into account
the overhead when selecting variables to harden. We want, for instance, to increase as
much as possible the code resilience up to an acceptable overhead. In the HPC context,
the execution time performance is usually the overhead of choice. Then, for example,
one could accept a selective hardening with a maximum overhead of 10% the original

execution time if this selective hardening reduces at least 50% of SDCs.



112

Table 8.3: HotSpot CAROL-FI results.
Variable Name File Name Line Number Overhead PVF Contribution

1 hotspot.c 189  <0.01% 1.76%
i hotspot.c 170  <0.01% 6.12%
r hotspot.c 168 <0.01% 2.67%
t hotspot.c 169 <0.01% 2.67%
fp hotspot.c 190 <0.01% 1.37%
grid_cols hotspot.c 249 <0.01% 15.96%
grid_rows hotspot.c 249 <0.01% 22.93%
sim_time hotspot.c 249 <0.01% 7.23%
power hotspot.c 250 <0.01% 1.63%
temp hotspot.c 250 <0.01% 15.50%
num_omp_threads hotspot.c 43  <0.01% 6.84%
result hotspot.c 250 <0.01% 3.65%
j hotspot.c 189 1.29% 1.43%
val hotspot.c 214 2.58% 0.39%
vect hotspot.c 209 2.58% 4.56%
i hotspot.c 211 2.58% 1.43%
r hotspot.c 54 16.85% 0.07%
result hotspot.c 49 74.10% 3.78%

To measure the overhead a harden variable would introduce, we measure how
many instructions write into that variable. The number of writes means that every time
the variable is written, a consistency check is performed with a copy of that variable. The
overhead metric can be changed depending on the hardening technique used. The number
of writes is consistent with the Duplication With Comparison that needs to keep track of
the variable changes and perform consistency checks.

Tables 8.2, 8.3, 8.4, and 8.5 show the PVF contribution and overhead of each
variable that caused SDCs during fault injection campaign. The overhead column presents
the percentage of writes considering only the variables that caused SDCs. Thus, 100%
overhead means that we protected all critical variables only. The PVF contribution column
is also a percentage, then, the sum of all critical variables is 100% of the original PVFE.
Repeated names in the first columns are possible because a variable with the same name
can be declared and used in another scope. Thus, the second and third column show the
filename and line number the variable is declared.

Finally, after measuring, or estimating, the overhead, one can prioritize the vari-
ables to harden by dividing the PVF contribution by the overhead. Then, we can select
the variables with this prioritization up to a specific overhead limit. However, such priori-

tization does not guarantee the best variables selection for a specific limit. To get the best
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Table 8.4: LavaM D CAROL-FI results.

Variable Name File Name Line Number Overhead PVF Contribution
file main.c 112 <0.01% 2.62%
dim_cpu main.c 30 <0.01% 2.04%
j main.c 27 <0.01% 0.87%
par_cpu main.c 29 <0.01% 4.37%
fv kernel/kernelz_cpu.c 12 0.01% 9.62%
k main.c 27 0.01% 0.58%
nh main.c 36 0.01% 0.29%
m main.c 27 0.11% 0.58%
qv kernel/kernel_cpu.c 12 0.22% 17.20%
rv kernel/kernel_cpu.c 12 0.23% 14.87%
n main.c 27 0.34% 1.75%
qv_cpu main.c 33 0.94% 7.00%
box_cpu main.c 31 1.33% 0.58%
rv_cpu main.c 32 3.78% 12.24%
1 main.c 27 4.72% 4.96%
fv_cpu main.c 34 11.33% 16.03%
d kernel/kernel_cpu.c 40  76.96% 4.37%

selection we need to solve the knapsack problem, but the prioritization can give a good

approximation in a much shorter time.

8.2.1 Evaluation

Figures 8.4, 8.6, 8.5, and 8.7 present the efficiency of the selective hardening
as we increase the number of variables protected for DGEMM, HotSpot, LavaMD, and
LUD respectively. The X-axis shows the number of variables protected. The blue line
presents the PVF coverage, and thus, when all variables are protected, the PVF coverage
is 100%. The red line shows the overhead introduced ranging from 0%, without any
hardening, up to 100% when all variables are protected. Thus, the higher the blue line is,
the better. However, the red line is the opposite, and we want to keep it as low as possible.
Furthermore, the overhead line does not increase linearly with the number of variables
protected since each variable has its own cost of overhead.

DGEMM selective hardening is depicted in Figure 8.4. The C variable, which
is the output array, is responsible for 22% of the overall PVF and almost 5% overhead
(refer to Table 8.2). The C variable is the most critical one. However, we can achieve a

similar PVF protection with nine variables selected by the prioritization of PVF contribu-
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Table 8.5: LUD CAROL-FI results.

Variable Name File Name Line Number Overhead PVF Contribution
m lud_main.c 50 <0.01% 15.92%
matrix_dim lud_main.c 45 <0.01% 26.59%
chunks_in_inter_row lud_omp.c 45 <0.01% 2.20%
offset lud_omp.c 45 <0.01% 2.37%
temp lud_omp.c 75 0.01% 0.25%
1_global lud_omp.c 127 0.17% 2.79%
j_global lud_omp.c 127 0.17% 4.06%
1 lud_omp.c 127 3.48% 2.79%
temp_left lud_omp.c 129 3.52% 2.96%
temp_top lud_omp.c 128 3.52% 5.84%
k lud_omp.c 127 5.24% 1.10%
a lud_omp.c 43 39.59% 27.52%
sum lud_omp.c 130 44.31% 5.59%

tion divided by overhead. These nine variables provide a PVF coverage of 24% with an
overhead inferior to 0.1%. Therefore, protecting variables based solely on PVF criticality
can lead to a much worse PVF/overhead ratio than using the prioritization. Moreover,
DGEMM achieves a PVF protection of 86% with an overhead of 12% when protecting
25 variables. After 25 variables, the overhead grows substantially higher than the PVF
coverage.

HotSpot selective hardening efficiency is shown in Figure 8.5. HotSpot shows a
more drastic PVF coverage than DGEMM. HotSpot achieves a PVF coverage of 95% with
an overhead lower than 10%. Moreover, we can reach a PVF coverage of 90% with an
overhead lower than 1% when we protect twelve variables. This efficiency is possible
because most critical variables are scalar variables that are rarely modified. Two variables
are responsible for 90% of the overhead, but their PVF contribution is lower than 5%
(refer to Table 8.3).

The HotSpot result is in line with the radiation criticality result we showed in
section 6.2, HotSpot algorithm can naturally recover from most faults when converging
to the solution. Thus, the higher overhead variables, such as the result matrix, which is
constantly updated when converging to a solution, has a lower PVF contribution.

Figure 8.6 shows the selective hardening efficiency for LavaMD. To reach 90% of
PVF coverage for LavaMD, one needs to accept an overhead of 15%. However, we can
still achieve 60% PVF coverage with an overhead below 2% when protecting 12 variables.

LUD result is depicted in Figure 8.5. LUD shows the least promising result among
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Figure 8.4: DGEMM selective hardening.
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the four codes evaluated. However, we can still achieve 60% PVF coverage with an
overhead of 3% protecting eight variables. The overhead would increase to about 50% or
more to reach a PVF coverage higher than 65%. However, even if we limit the overhead to
only 3%, we still reach a significant PVF coverage of 60% making it worth to implement

selective hardening.

8.3 Discussion

We have compared the protection capabilities of different hardening techniques
implemented in hardware and software. We showed that ECC provides the weakest SDC
protection, but if the code is not memory-bound, like FFT, ECC provides the best over-
head. Software-techniques specific to an algorithm still provide low overhead but guaran-
tee stronger protection than ECC. A generic software-technique such as DWC provides
complete protection against SDCs, but the overhead is unacceptable to HPC application.

To improve further the SDC protection for HPC applications, without the overhead
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Figure 8.5: HotSpot selective hardening.
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of a complete DWC, we introduced and evaluated the impact of a selective hardening.
Thus, we evaluate using fault injection campaign the criticality of the code’s variables.
Then, we show that selective hardening can provide protection similar to a full DWC,
with an overhead lower than specific techniques like ABFT. In general, the four codes

tested achieved protection of 60% with an overhead below 3%.
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Figure 8.7: LUD selective hardening.
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9 CONCLUSION

This thesis presents an extensive study to evaluate, understand, and to provide
mitigation strategies for the reliability issue in HPC applications. We present in-depth
evaluation of GPU radiation sensitivity both at low-level — by accessing the raw memory
structures error rate — and at operative-level — by measuring the Silent Data Corruption
and Detectable Uncorrectable Error rate of a representative set of parallel applications.
The presented data serves as a pragmatic and precise estimation of the realistic error rate
of modern GPUs exposed to the natural neutron beam.

To understand better the issue, we go beyond the sole error rate and also evaluate
how the errors spread, and the severity of SDCs for the two most prominent HPC devices
used to accelerate performance in the supercomputers, NVIDIA GPUs and Intel Xeon
Phis. We demonstrate that output error patterns can be beneficial to evaluate the efficacy
of mitigation techniques like ABFT, which can detect and correct errors depending on the
spatial locality of the errors. We also investigate how the notion of imprecise computation
can be applied to HPC applications by accepting a certain error margin in the output.

We also show fault injection analysis to correlate SDCs and DUEs with the high-
level code, improving the understanding of applications reliability. CAROL-FI identifies
which portions of the code are more prone to be corrupted and cause an SDC or DUE.
We also observe that, for some programs, the probability of corruption to propagate sig-
nificantly depends on the time window in which the fault occurs. Additionally, we have
studied the severity of various fault type (i.e., Single, Double, Random, or Zeros).

To broaden even more our understanding of reliability issues, we have compared
the reliability of an extensive set of devices and codes measured through both beam ra-
diation experiments and, whenever available, fault-injection. The results data highlights
both code-dependent and device-dependent behaviors. We found that the DUE rate is
mostly device-dependent and cannot be easily predicted using fault-injection. This work
also shows that efficient use of a higher amount of resources justifies the increase in FIT
rate. Moreover, FInFET transistors are effective in reducing both the SDC and DUE rates
independently of the code, while ECC is more effective in memory-bound codes. Soft-
wares with long memory latencies have a higher SDC rate, especially when ECC is not
available. Furthermore, additional resources, although increasing the FIT rates, generally
improve MWBE. We have also qualified the observed errors regarding the difference be-

tween the expected value and the observed one, and the percentage of the output that has
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been corrupted. Stencil applications, independently of the device, could take great ad-
vantage of approximate computing as 90% of corrupted executions could be accepted as
correct with a 0.2% of output approximation. While KNCs spread errors because of mem-
ory coherency, GPUs corrupt fewer elements. Finally, ECC is shown to correct mainly
errors that have a lower impact on the output.

Finally, to develop mitigation strategies, the available hardening solutions, includ-
ing ECC, ABFT, and duplication with comparison, were analyzed and their efficiency and
efficacy experimentally and analytically compared. We observed that ECC has the weak-
est protection with the best overhead while duplication has the strongest protection with
the worst overhead. Then, using pragmatic information acquired using the homemade
fault injection tool CAROL-FI, we demonstrate that selective hardening achieves 60%
of the fault coverage with a low overhead similar to ECC. Thus, selective hardening can
provide the best solution for HPC merging the efficacy of duplication with the efficiency
of ECC.

9.1 Publications

In this section, we list the papers published as a result of the work performed
during this thesis. We have published five papers in journals detailing the radiation exper-

iments analysis and hardening strategies. The journal papers are listed in the following.

e FRATIN, V. et al. Energy-delay-fit product to compare processors and algorithm
implementations. Microelectronics Reliability, v. 84, p. 112-120, May 2018.
ISSN 0026-2714.

e LUNARDI, C. et al. Experimental and analytical analysis of sorting algorithms
error criticality for hpc and large servers applications. IEEE Transactions on Nu-

clear Science, v. 64, n. 8, p. 2169-2178, Aug 2017. ISSN 0018-9499.

e OLIVEIRA, D. et al. Evaluation and mitigation of radiation-induced soft errors
in graphics processing units. IEEE Transactions on Computers, v. 65, n. 3, p.
791-804, March 2016. ISSN 0018-9340.

e PILLA, L. et al. Memory access time and input size effects on parallel processors
reliability. IEEE Transactions on Nuclear Science, v. 62, n. 6, p. 2627-2634,
Dec 2015. ISSN 0018-9499.
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e OLIVEIRA, D. et al. Modern gpus radiation sensitivity evaluation and mitigation
through duplication with comparison. IEEE Transactions on Nuclear Science, v.

61,n. 6, p. 3115-3122, Dec 2014. ISSN 0018-9499.

We have also published nine papers in conferences and workshops. We published
the CAROL-FI developed in the thesis context as well as the neutron beam and fault in-

jection analysis presented in this thesis. The conference papers are listed in the following.

e FRATIN, V. et al. Code-dependent and architecture-dependent reliability behaviors.
In: to appear in 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. Luxembourg City, Luxembourg, 2018. ISSN
1530-0889.

e OLIVEIRA, D. et al. Experimental and analytical study of xeon phi reliability. In:
Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. New York, NY, USA: ACM, 2017. (SC
17), p. 28:1-28:12. ISBN 978-1-4503-5114-0.

e OLIVEIRA, D. et al. Radiation-induced error criticality in modern hpc parallel
accelerators. In: 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA). Austin, TX, USA, 2017. p. 577-588.

e OLIVEIRA, D. et al. Carol-fi: An efficient fault-injection tool for vulnerability
evaluation of modern hpc parallel accelerators. In: Proceedings of the Computing
Frontiers Conference. New York, NY, USA: ACM, 2017. (CF’17), p. 295-298.
ISBN 978-1-4503-4487-6.

e OLIVEIRA, D. et al. Input size effects on the radiation-sensitivity of modern par-
allel processors. In: 2016 IEEE Radiation Effects Data Workshop (REDW).
Portland, OR, USA, 2016. p. 1-6.

e TIWARI, D. et al. Understanding GPU Errors on Large-scale HPC Systems and
the Implications for System Design and Operation. In: 21st IEEE Symp. on High
Performance Computer Architecture. Burlingame, CA, USA, 2015. p. 331-342.

e OLIVEIRA, D. et al. The path to exascale: Code optimizations and hardening
solutions reliability. In: Proceedings of the Sth Workshop on Fault Tolerance
for HPC at eXtreme Scale. New York, NY, USA: ACM, 2015. (FTXS ’15), p.
55-62. ISBN 978-1-4503-3569-0.
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e OLIVEIRA, D. A. G. et al. Radiation Sensitivity of High Performance Computing
Applications on Kepler-Based GPGPUs. In: IEEE. International Workshop on
Fault Tolerance for HPC at eXtreme Scale (FTXS 2014), co-located with IEEE
International Conference on Dependable Systems and Networks (DSN 2014).
Atlanta, USA, 2014. p. 732-737.

e OLIVEIRA, D. et al. GPGPUs ECC Efficiency and Efficacy. In: IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems. Amsterdam, Netherlands, 2014. p. 209-215.
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