UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA CURSO DE ENGENHARIA DE COMPUTAÇÃO

TIAGO JOSÉ REIMANN

Algoritmos de Roteamento Dirigidos a Desempenho

Trabalho de Diplomação.

Prof. Dr. Ricardo Augusto da Luz Reis Orientador

Glauco Borges Valim dos Santos Co-orientador

Porto Alegre, dezembro de 2009.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Reitor: Prof. Carlos Alexandre Netto Vice-Reitor: Prof. Rui Vicente Oppermann Pró-Reitora de Graduação: Profa. Valquiria Link Bassani Diretor do Instituto de Informática: Prof. Flávio Rech Wagner Coordenador do ECP: Prof. Gilson Inácio Wirth Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

"Seja você quem for, seja qual for à posição social que você tenha na vida, a mais alta ou a mais baixa, tenha sempre como meta muita força, muita determinação e sempre faça tudo com muito amor e com muita fé em Deus, que um dia você chega lá. De alguma maneira você chega lá."

Ayrton Senna.

AGRADECIMENTOS

Este trabalho é dedicado a todos que fizeram esta etapa da minha vida possível. Àqueles que enfrentaram de forma corajosa as dificuldades impostas pela vida e, generosa e abnegadamente, sacrificaram-se inúmeras vezes para tornar esta minha conquista possível.

Não posso deixar de citar meus pais, Ana e Edgar, cujo esforço e visão de futuro possibilitaram que, apesar de todas as dificuldades, tivessem, hoje, seus dois filhos graduados numa das mais conceituadas universidades deste país. Agradeço aos meus avós, Irineo e Beatris, pelas incontáveis lições de vida e pelo imensurável exemplo de bondade, honradez, dignidade e humanidade que sempre marcou suas vidas pessoal e profissional. À minha irmã, Cristiana, pelos momentos de diversão e companhia durante todos esses anos morando juntos. Também agradeço com carinho especial meus tios e prima, José Carlos, Eloísa e Bruna, pelo inestimável suporte, incentivo e pela forma com que acolheram seus sobrinhos e primos nessa mudança de cidade. À Ana Lúcia, pelos ótimos momentos juntos, compreensão e incentivo, muito importantes nestes momentos de dedicação extenuante necessária para a conclusão deste trabalho.

A todos os amigos, pelos grandes momentos de diversão e apoio, que fizeram possível minha sobrevivência mental nesta longa caminhada de cinco anos de curso.

Agradeço também ao doutorando Glauco Borges Valim dos Santos pela grande colaboração neste trabalho e durante estes anos de pesquisa acadêmica. Ao professor Ricardo Reis pela oportunidade de entrar na área de pesquisa acadêmica em Microeletrônica, ao professor Marcelo Johann e Gustavo Wilke pelas importantes dicas utilizadas neste trabalho.

SUMÁRIO

LISTA DE ABREVIATURAS E SIGLAS	5
LISTA DE FIGURAS	6
LISTA DE TABELAS	8
RESUMO	9
ABSTRACT	10
1 INTRODUÇÃO	11
1.1 Motivação e Objetivos	12
2 ESTRUTURAS DE ROTEAMENTO DIRIGIDAS A DESEMPENHO	15
2.1 Árvores de Steiner	15
2.2 Arborescências de Steiner	17
2.3 Árvores de Raio Restrito	19
2.4 Árvores de Roteamento de Elmore	20
2.5 Abordagem do Destino crítico	21
3 METODOLOGIA	23
3.1 Cenários Abrangentes de Experimentos	23
3.1.1 Parâmetros de Interconexão	23
3.1.2 Tamanhos de Grade	25
3.1.3 Tamanhos de Rede	27
3.1.4 Tempo de Transição de Entrada	28
3.1.5 Cenários de Interconexões	29
3.1.6 Algoritmos Utilizados	29
4 IMPLEMENTAÇÕES	30
4.1 Algoritmos de Roteamento	30
4.2 Ferramentas de Conversão de Arquivos	32
4.3 Modelos de Atraso	32
4.4 <i>Scripts</i> para linha de comando	33
5 RESULTADOS EXPERIMENTAIS	34
5.1 Comparação dos Algoritmos	34
5.1.1 Comparação de Atraso	34
5.1.2 Comparação de Características Topológicas	37
5.2 Comparação pelos Tamanhos de Rede	39
5.3 Comparação pelos Parâmetros Tecnológicos	39
5.4 Avaliação dos Modelos de Atraso	40
6 CONCLUSOES	42
REFERENCIAS	44
APENDICE - TABELAS DE RESULTADOS	47

LISTA DE ABREVIATURAS E SIGLAS

AHHK	Alpert, Hut, Huang e Kahng – autores do algoritmo
AMD	Advanced Micro Devices – empresa de semicondutores
BRBC	<i>Bounded Radius Bounded Cost (algorithm) –</i> (algoritmo) Raio Restrito Custo Restrito
BRT	Bounded Radius Tree – Árvore de Raio Restrito
CMOS	Complementary Metal-Oxide-Semiconductor
CSRT	<i>Critical Sink Routing Tree</i> – Árvore de Roteamento com Destino Crítico
ECD	Effective Capacitance Delay – Modelo de Atraso
EDM	Elmore Delay Model – Modelo de Atraso de Elmore
MST	Minimum Spanning Tree – Mínima Árvore de Expansão
MRSA	Minimum Rectilinear Steiner Arborescence – Mínima RSA (MSA retilínea)
MSA	<i>Minimum Steiner Arborescence</i> – Mínima Arborescência Steiner (SPT com nodos adicionais)
ITRS	International Technology Roadmap for Semiconductors
RC	<i>Resistence Capacitance</i> – (Modelos que consideram) Resistência (e) Capacitância
RSA	Rectilinear Steiner Arborescence – Arborescência Retilínea de Steiner
SED	Scaled Elmore Delay – Modelo de Atraso
SMT	Steiner Minimum Tree – Árvore de Steiner Mínima
SPT	Shortest Path Tree – Árvore de Caminhos Mais Curtos (Arborescências de Expansão)

LISTA DE FIGURAS

Figura 1.1: Relação do atraso SPICE/MODELO numa linha de transmissão longa (1278µm) para tecnologias de 350nm até 13nm, tanto para o nodo mais próximo ao Figura 1.2: Relação do atraso SPICE/MODELO numa árvore de roteamento relativamente pequena para tecnologias de 350nm até 13nm, tanto para o nodo mais próximo ao terminal fonte (near node) quanto para o terminal mais distante (far node). Figura 2.1: Um conjunto de três terminais (a), a MST correspondente (b), a Árvore de Figura 2.2: Um conjunto de terminais (a), nodos ortogonais selecionados (b). Estes correspondentes aos nodos de Steiner potencialmente incluídos na solução (c). Grade de Hannan (d), sobre a qual é garantido que se encontra a solução ótima (e). Solução ótima Figura 2.3: Arborescência de Expansão (a) e RSA correspondente (b) - fonte ao centro. Figura 2.4: Para um mesmo conjunto de terminais, a Arborescência de Expansão (c) e MST (b) correspondentes. E um meio-termo (a) que minimiza o raio sem custo Figura 2.5: Variando o parâmetro ɛ no algoritmo BRBC, três resultados com raio (R) e custo (cost) diferentes, que vão de uma SPT (a) a uma MST (c). (Retirada de Figura 2.6: Um dado conjunto de terminais com os terminais fonte e crítico discriminados (a), uma Arborescência de Steiner correspondente (b) garantindo os menores caminhos, e uma Árvore de Steiner (c) com um caminho maior (adaptada de Figura 2.7: Exemplo (a): Uma Arborescência e outra topologia mais adequada, por isolar o caminho da fonte (n_0) para o destino crítico (n_c) , evitando que a conexão se estenda após alcançar n_c. Exemplo (b): duas Arborescências de mesmo custo, porém a Figura 2.8: Isolamento do destino crítico e redução de custo na expansão dos demais. 22 Figura 2.9: Um conjunto de terminais (a). Uma MRSA como solução (b): bifurcações no caminho até o terminal crítico e extensão das conexões a partir do mesmo (setas) aumentam o atraso. Uma possível CSRT como solução (c): o isolamento do terminal crítico, apesar de aumentar os caminhos até outros terminais (setas) garante o menor Figura 3.1: Secção transversal de escalonamento hierárquico para MPU (direita) e ASIC

Figura 3.2: Três áreas de grade definidas em [SAN2009] para uma tecnologia de	
350nm: área típica de um SoC, área razoável para um RLB e um limite superior	
(upperbound) para redes locais	1
Figura 3.3: Percentual de distribuição dos tamanhos de rede em <i>benchmarks</i> IWLS	
[WLS2005]	1
Figura 3.4: Topologia de medição do atraso FO4.	28
Figura 3.5: Atrasos FO4 medidos (em segundos) para cada tecnologia (pontos)(nm) e	;
reta ajustada a eles.	28
Figura 4.1: Exemplo de arquivo de entrada dos algoritmos (coordenadas x,y).	30
Figura 4.2: Exemplo de arquivo Sight (coordenadas x,y e arestas).	30
Figura 4.3: Exemplo de visualização de rede gerada (adaptada para preto e branco)	31
Figura 4.4: Exemplo de arquivo SPICE gerado.	31
Figura 4.5: Exemplo de <i>script</i> usado para executar as simulações elétricas	33
Figura 5.1: Resumo (média) dos resultados para atraso do destino crítico, 50 redes	
aleatórias para cada tamanho de rede.	35
Figura 5.2: Resumo (média) dos resultados para atraso do destino crítico, redes	
aleatórias proporcionais para cada tamanho de rede.	36
Figura 5.3: Resultados de atraso do destino crítico em função do número de terminais	da da
rede, para o cenário 4	39
Figura 5.4: Atraso do destino crítico comparado pelos parâmetros tecnológicos (nm),	
para o cenário 3.	40
Figura 5.5: Atraso do destino crítico comparado pelos parâmetros tecnológicos (nm),	•
para o cenário 2.	40
1	

LISTA DE TABELAS

Tabela 1.1: Taxonomia de Santos [SAN2008a].	11
Tabela 3.1: Origem dos parâmetros de interconexões de [SAN2008b]. EPI - Inform	nação
proveniente de processos existentes; PTM - Modelos de dispositivos preditivos; IT	RS –
Informações provenientes do International Technology Roadmap for Semiconducto	ors. 1
Tabela 3.2: Parâmetros RC para camadas de metal longas/globais	1
Tabela 3.3: Parâmetros RC para camadas de metal intermediárias	1
Tabela 3.4: Áreas das três grades, em mm ² , para as tecnologias utilizadas	1
Tabela 3.5: Valores de atraso utilizados como rampa de entrada.	29
Tabela 3.6: Cenários de interconexões para os experimentos	29
Tabela 3.7: Disponibilidade dos algoritmos.	29
Tabela 5.1: Resultados resumidos (média) para maior atraso da rede, para 50 redes	
aleatórias para cada tamanho de rede	36
Tabela 5.2: Resultados resumidos (média) para maior atraso da rede, para redes	
aleatórias proporcionais para cada tamanho de rede	37
Tabela 5.3: Resultados topológicos, 50 redes aleatórias para cada tamanho de rede	37
Tabela 5.4: Resultados topológicos, redes aleatórias proporcionais para cada taman	ho de
rede	37
Tabela 5.5: Ordenamento pelas características topológicas versus ordenamento do a	itraso
SPICE do destino crítico, para 50 redes aleatórias para cada tamanho de rede	38
Tabela 5.6: Ordenamento pelas características topológicas versus ordenamento do a	itraso
SPICE do destino crítico, para redes proporcionais para cada tamanho de rede	38
Tabela 5.7: Ordenamento dos algoritmos pelo atraso do destino crítico, para o cenár	rio 3.
	41

RESUMO

Este trabalho realiza uma avaliação e comparação abrangente dos algoritmos de roteamento encontrados na literatura, através do uso de várias métricas de desempenho e topológicas, com o uso de parâmetros de resistência e capacitância de tecnologias nanométricas, em cenários de interconexões comprometidos com o estado da arte.

As avaliações e comparações de algoritmos encontradas na literatura costumam ser limitadas, tendo resultados baseados em cenários restritos, considerando aspectos limitados dos casos reais (ou mesmo tratar apenas casos abstratos, sem comprometimento com cenários de interconexões reais), com somente algumas tecnologias, grades restritas e modelos arbitrários.

Para este trabalho foi definida uma metodologia de acordo com características de tecnologias e dispositivos comprometidas com o estado da arte. Estes dados utilizados formam um conjunto de cenários de experimentos que possibilita a avaliação dos algoritmos de roteamento de uma forma abrangente e que não é encontrada na literatura.

Os resultados obtidos mostraram que os algoritmos dirigidos a desempenho do caminho crítico apresentam os melhores desempenhos para o atraso deste caminho, na média dos resultados e também mostram que o algoritmo AMAZE-share apresenta ótimo desempenho para cenários de interconexões mais curtas, que possuem grade menor e parâmetros tecnológicos relacionados às camadas mais baixas de metal (parâmetros RC para camadas de metal intermediárias). O algoritmo SERT-C apresentou, em média, os melhores resultados e também os mais consistentes, estando sempre nas duas primeiras posições do ordenamento utilizando os atrasos de caminho crítico. Já considerando-se o maior atraso da rede, os algoritmos que apresentaram os melhores resultados foram AMAZE-share, SERT, AHHK e ATREE, com destaque para os dois primeiros, que, na maioria dos casos, apresentam médias de valores de atrasos muito similares.

Tais resultados mostram claramente que qualquer avaliação e comparação de algoritmos de roteamento é afetada pelos cenários de interconexões com os quais esta é feita. Por isso, o uso de cenários adequados torna-se um dos principais pontos quando se quer realizar uma avaliação que realmente tenha significado prático.

Este trabalho também mostra que os modelos de atraso utilizados como estimativa no cálculo de atraso não apresentam resultados confiáveis para este tipo de avaliação, por mostrarem diferenças muito significativas no ordenamento dos algoritmos de roteamento quando comparadas com o ordenamento feito com os resultados de simulação elétrica.

Palavras-Chave: Algoritmos de roteamento, modelos de atraso, ferramentas de CAD.

Performance-Driven Routing Algorithms

ABSTRACT

This work makes a comprehensive evaluation and comparison of routing algorithms in the literature through the use of various performance and topologic metrics, using parameters of resistance and capacitance of nano-technologies, in scenarios of interconnections committed to the state of the art.

The evaluations and comparisons of algorithms in the literature are often limited, with results based on restricted scenarios, considering limited aspects of actual cases (or even just dealing with abstract cases, without commitment to real scenarios of interconnections), with only a few technologies, few grids and arbitrary models.

For this work a methodology was defined according to characteristics of technologies and devices committed to the state of the art. The data used are a set of experiments scenarios that allows the evaluation of routing algorithms in a comprehensive manner and that is not found in the literature.

The results showed that the Critical Sink Routing Tree algorithms are the best performers for the delay of critical path, considering the average of the results. These results also show that the algorithm AMAZE-share has great performance for smaller interconnect scenarios, which have smaller grid size and technological parameters related to the lower metal layers (RC parameters for intermediate metal layers). The SERT-C algorithm presented best average results and also the most consistent ones, always being in the first two positions of the rank using the critical path delay. Now considering the worst delay of the network, the algorithms that produced the best results were AMAZE-share, SERT, AHHK and ATREE, especially the first two, which, in most cases, have average values of delays very similar.

These results clearly show that any evaluation and comparison of routing algorithms is affected by the interconnect scenarios defined. Therefore, the use of appropriate scenarios becomes a major point when we want to make a comparison that actually has practical significance.

This study also shows that the models used to estimate delay not present reliable results for this type of evaluation, showing significant differences in the ranking of routing algorithms when compared with the ranking done with results of electrical simulation.

Keywords: Routing algorithms, delay models, CAD tools.

1 INTRODUÇÃO

Algoritmos para geração de estruturas de interconexão para Redes de Sinais (*Signal Nets*), dentro do contexto de roteamento isolado de redes (*Single Net Routing*), são o cerne de muitas ferramentas que realizam a etapa de Roteamento Global, e também estimativas de roteamento na etapa de posicionamento, durante a Síntese Física de circuitos integrados.

Em [SAN2006], foi definida uma taxonomia para classificação dos algoritmos de roteamento encontrados na literatura, cuja versão revisada [SAN2008a] pode ser vista na Tabela 1.1 onde são mostradas, para vários tipos de topologias de roteamento (SMT, MRSA, BRT, ERT, e CSRT), exemplos de algoritmos da literatura. Além disso, também são mostrados o tipo de abordagem: baseada em rede (*net-based*) ou baseada em caminho (*path-based*); o modelo da atraso menos preciso aplicável; função objetivo; classe de topologia de roteamento.

APPROACH	Proper Delay Model (the least accurate applicable)	Objective function	ТҮРЕ	Example algorithm
				BOI [YIL2002]
	Lumped capacitance	Total WL (capacitance)	SMT	BI1S [KAH1995]
	(or better)	reduction	SIVIT	AMAZE-WL [HEN2007]
				GEOSTEINER [ZAC1999]
		Sh		Rao's [RAO1992]
Net-based	Linear delay approximation (or better)	source-2-sink path lengths	MRSA	AMAZE-PL [HEN2007]
				A-TREE [CON1993]
				OPTIMAL [CON1993]
		Radius	DDT	AMAZE-share [HEN2007]
		bounding	BKI	AHHK [ALP1995]
		Sinks delay	ERT	PK's [PRA1990]
				SERT [BOE1995]
Path-based	(or better)	Critical sink delay	CSRT	AMAZE-CS [HEN2007]
	(or belier)			SERT-C [BOE1995]
				PER-Steiner [BOR1997]

Tabela 1.1: Taxonomia de Santos [SAN2008a].

Neste trabalho será realizada uma avaliação e comparação destes algoritmos segundo várias métricas de desempenho. Isso permitirá a definição das melhores alternativas para o endereçamento de desempenho para a etapa de Roteamento, e também uma avaliação dos modelos de atraso pertinentes.

Tal avaliação compreende o uso de parâmetros de resistência e capacitância de tecnologias nanométricas [SAN2008b] e *cenários de experimentos* comprometidos com o estado da arte.

1.1 Motivação e Objetivos

Com a evolução dos algoritmos de roteamento, principalmente em relação a desempenho¹, as novas propostas são justificadas através de comparações realizadas dentro de cenários restritos (apenas alguns conjuntos de parâmetros, definições de redes aleatórias com uma única grade arbitrária, e utilização de apenas um modelo de atraso).

Com a diminuição das dimensões tecnológicas (scaling), o que implica em mudança nos parâmetros elétricos dos materiais utilizados na fabricação dos circuitos, torna-se necessária a verificação da eficiência destes algoritmos, e também da precisão dos modelos utilizados, dentro de contextos atuais. Um bom exemplo da necessidade da reavaliação em contextos atuais é mostrada num experimento recentemente realizado pelo autor desta proposta, onde foi medida a precisão de três modelos de atraso: Modelo de Capacitância Efetiva (Effective Capacitance Delay - ECD) [KAS2000], Modelo de Atraso de Elmore (Elmore Delav Model - EDM) [ELM1948] e Modelo de Elmore Escalado (Scaled Elmore Delay - SED) [PIL1998]. Quando comparados com simulação elétrica – Figura 1.1 e Figura 1.2, para uma estrutura de roteamento relativamente grande e outra relativamente pequena, respectivamente – esses experimentos mostraram que, em alguns casos, o uso de diferentes estruturas e parâmetros tecnológicos pode implicar em resultados extremamente diferentes ou semelhantes de precisão destes modelos. Por exemplo, vemos que na Figura 1.1 os modelos apresentam precisão variável ao longo do scaling, ocorrendo também mudanças de comportamento, em alguns casos subestimando o atraso (lowerbound) e passando a superestimar o atraso (upperbound) conforme a variação tecnológica. Neste caso, os modelos apresentam comportamento diferente para nodos próximos (near) e nodos afastados (far) do nodo fonte.

Já para o caso da Figura 1.2 os modelos ECD e EDM apresentam resultados muito semelhantes (sobrepostos), não sendo observada nenhuma diferença de comportamento entre eles ao longo do *scaling* e também não havendo diferença para nodos próximos ou distantes do nodo fonte.

¹Um menor consumo é facilmente obtido com uma árvore de menor custo (*minimum cost tree*), ou comprimento de interconexões (*wirelength* - WL) mínimo, que implicam na menor capacitância. Este problema de roteamento com comprimento mínimo já é bem endereçado há décadas no Projeto de Interconexões, sendo um problema em aberto a definição da estrutura de roteamento de melhor desempenho para uma determinada rede.

Figura 1.1: Relação do atraso SPICE/MODELO numa linha de transmissão longa (1278µm) para tecnologias de 350nm até 13nm, tanto para o nodo mais próximo ao terminal fonte (near node) quanto para o terminal mais distante (far node).

Figura 1.2: Relação do atraso SPICE/MODELO numa árvore de roteamento relativamente pequena para tecnologias de 350nm até 13nm, tanto para o nodo mais próximo ao terminal fonte (*near node*) quanto para o terminal mais distante (*far node*).

É comum a literatura relacionada à pesquisa em Projeto de Interconexões reportar resultados baseados em cenários restritos, considerando aspectos limitados dos casos reais (ou mesmo tratar apenas casos abstratos, sem comprometimento com cenários de interconexões reais), com somente algumas tecnologias, grades restritas e modelos arbitrários. Observando experimentos, como o descrito anteriormente, notamos a necessidade de cenários mais robustos para identificar as melhores técnicas de roteamento, bem como para avaliá-las ao longo do *scaling* tecnológico.

Assim o objetivo deste trabalho é realizar uma avaliação robusta de algoritmos de roteamento baseada na Taxonomia de Santos [SAN2006] [SAN2008a] com o uso de parâmetros elétricos (RCsets) [SAN2008b] [REI2009a], e também tamanhos de grade e tamanhos de rede definidos em [SAN2009].

Uma avaliação similar a este trabalho é encontrada em [ALP2006], entretanto, tal trabalho não apresenta nenhuma avaliação de características relacionadas a desempenho (como atraso e caminho crítico), contendo apenas uma comparação das características topológicas (comprimento de fio e raio²) das soluções geradas pelos algoritmos. Nenhuma avaliação dos atrasos das topologias geradas pelos algoritmos foi realizada. Após a avaliação topológica, somente o algoritmo proposto é avaliado em dois circuitos

² O raio de uma rede é o maior caminho do nodo de origem para um nodo de destino na estrutura de roteamento de uma determinada rede.

reais, mas utilizando apenas uma tecnologia. Poucas (ou uma única) gerações tecnológicas provêem uma janela limitada do comportamento das ao longo do *scaling*.

No capítulo 2 deste trabalho, descrevemos as principais topologias de rede da taxonomia de [SAN2006], que compreendem o objetivo dos algoritmos de roteamento aqui avaliados. No capítulo 3 descrevemos mais detalhadamente a metodologia que será utilizada neste trabalho para a avaliação dos algoritmos dirigidos a desempenho. No capítulo 4 são apresentadas as implementações realizadas para a execução deste trabalho. No capítulo 5 são descritos os resultados dos experimentos. E finalmente, as conclusões deste trabalho.

2 ESTRUTURAS DE ROTEAMENTO DIRIGIDAS A DESEMPENHO

Neste capítulo descrevemos cada uma das classes de topologias definidas na versão atualizada da taxonomia de Santos de [SAN2008a], onde não constam os tipos de estruturas não retilíneas (MST – *Minimum Spanning Tree*, SPT - *Shortest Path Tree*), e onde é adicionada a categoria ERT (*Elmore Routing Tree* – Árvore de Roteamento de Elmore). São elas:

- 1. Árvores de Steiner;
- 2. Arborescências de Steiner;
- 3. Árvores de Raio Restrito;
- 4. Árvores de Roteamento de Elmore;
- 5. Abordagem do Destino crítico.

Descrições mais detalhadas podem ser encontradas em [SAN2006]. Nas seções seguintes são reunidas as definições lá encontradas, com uma seção adicional para ERTs.

2.1 Árvores de Steiner

As Árvores de Steiner (ou Árvore de Steiner Mínima – *Steiner Minimum Tree* – SMT) são a versão "com nodos adicionais" das MSTs (Mínima Árvore de Expansão – *Minimum Spanning Tree*). Para um grafo *G* ponderado (*weighted*) correspondem ao sub-grafo onde as arestas somam o menor peso. Na Figura 2.1(b) temos a MST para os nodos da Figura 2.1(a). Ao utilizar-se um nodo adicional – ou nodo de Steiner (*steiner node*), pode-se reduzir o custo total, como mostra a Figura 2.1(c).

Figura 2.1: Um conjunto de três terminais (a), a MST correspondente (b), a Árvore de Steiner de menor custo (c), e a Árvore de Steiner Retilínea (d).

Mais formalmente temos que o problema de Arvores de Steiner é, resumidamente, um problema de interconexões mínimas. A versão mais básica é tratar o problema na forma de um grafo: dado um grafo ponderado no qual um subconjunto de vértices são identificados como terminais, encontre o menor (menos pesado) sub-grafo conexo que inclua todos os terminais.

O problema pode também ser aplicado na geometria; as duas variantes mais comuns são os problemas de árvores Euclidianas (Figura 2.1(c)) e árvores Retilíneas (Figura 2.1(d)), onde, a entrada é um conjunto de pontos no espaço compreendendo os terminais, e o objetivo é encontrar a menor árvore (de acordo com uma métrica apropriada) que conecte todos os pontos. Além das métricas euclidiana e retilínea, as métricas octogonal e hexagonal têm sido consideradas [GAN2005], sendo a métrica retilínea a de interesse neste trabalho. No caso de Árvores de Steiner Retilíneas, uma vez dadas as coordenadas dos nodos, todas as arestas devem ser obrigatoriamente ortogonais. Isso porque, durante a etapa de Síntese Física de Circuitos Integrados (CIs), na grande maioria dos casos, são utilizados leiautes estilo *manhattan* (máscaras com retângulos vertical- e horizontalmente posicionados). Logo, existe uma relação direta entre o roteamento de interconexões e o problema de árvores retilíneas. Não obstante, o problema de roteamento é, em muitos casos, mapeado para modelos de árvores retilíneas.

A busca por árvores de interconexões mínimas é um objetivo clássico da etapa de roteamento, uma vez que garante a menor capacitância a ser carregada (ou descarregada), implicando no menor consumo possível. Além disso, para uma dada rede, o produto da resistência do *driver* (resistência de saída da célula fonte de sinal para os outros terminais de uma rede) pela capacitância das portas de entrada (demais terminais da rede) costumava ser o fator dominante no atraso das conexões, na hora de determinar o atraso das interconexões. Assim, era comum assumir essas topologias como as que propiciavam o menor atraso, já que implicavam na menor capacitância para o produto RC simplificado.

Em [HAN1966] foi apresentada a Grade de Hannan (*Hannan Grid*) para permitir uma redução no espaço de busca por SMTs. Esta grade é uma grade reduzida em relação à grade de roteamento original (grafo G – Figura 2.2(a)). Ela é formada a partir dos terminais de N em conjunto com os terminais de V que compartilhem uma coordenada x com um dos terminais de N e a coordenada y com outro terminal (Figura 2.2(b)). Uma vez selecionados estes terminais (Figura 2.2(c)) temos uma grade reduzida (Figura 2.2(d)). Nas arestas desta grade (Figura 2.2(e)) encontramos a solução ótima (Figura 2.2(f)).

Figura 2.2: Um conjunto de terminais (a), nodos ortogonais selecionados (b). Estes correspondentes aos nodos de Steiner potencialmente incluídos na solução (c). Grade de Hannan (d), sobre a qual é garantido que se encontra a solução ótima (e). Solução ótima separadamente (f).

Como o problema de SMT é NP-Completo, várias heurísticas foram propostas para aproximação dos resultados ótimos em tempo hábil. Dentre os trabalhos mais importantes pode-se destacar, além do trabalho de Hannan [HAN1966], o algoritmo Iterated 1-Steiner (I1S) de [KAH1992] [KAH1994] que consegue boas aproximações da solução ótima, o algoritmo de BOI³ [BOR1994] que oferece um compromisso entre qualidade final e desempenho do algoritmo, e finalmente [ZHO2004] que apresentou uma sutil vantagem em relação ao BOI.

Uma característica importante das heurísticas pra SMT é que geralmente são baseadas em sobreposição de arestas sobre uma MST prévia, tentando reduzir o custo desta com a inclusão de nodos adicionais (nodos de Steiner). Na verdade existe uma relação de 3/2 no custo de uma MST em relação à mesma SMT para o mesmo conjunto de terminais. Logo é garantido que o custo da solução ótima não é menor do que 2/3 do que o custo gerado heuristicamente. Essa relação é conhecida como *3/2 ratio* [HWA1976] [KAH1994] e foi muito utilizada como parâmetro (um teto) de avaliação para as heurísticas desenvolvidas para o problema no início dos anos 90. Um exemplo de heurística que não é baseada em sobreposição de arestas, mas sim em pesquisa de caminhos é [HEN2007], que apresenta resultados entre apenas 0% e 6% de aumento de *wirelength* quando comparado ao algoritmo GeoSteiner [GEO1999], que gera resultados ótimos.

2.2 Arborescências de Steiner

Como o foco deste trabalho concentra-se preferencialmente nas versões retilíneas das topologias aqui abordadas, as Arborescências retilíneas de Steiner (*Rectilinear*

³ Uma falha descoberta no algoritmo de [BOR1994] foi corrigida em [YIL2002]. A implementação do algoritmo de BOI feita por [YIL2002] está disponível em http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/Madden_BOI.html>.

Steiner Arborescence – RSA [RAO1992]) são o assunto de interesse e sua definição será diretamente abordada.

A Mínima Arborescência retilínea de Steiner (*Minimum Rectilinear Steiner Arborescence* - MRSA) é uma formulação de árvores de Steiner dirigida a desempenho [LEU1997]. Em tais árvores o tamanho do caminho da fonte (*source*) até cada um dos demais terminais (*sinks*) deve ser o menor possível [CON2001]. A nomenclatura RSMA foi utilizada também em [SHI1999], onde o problema foi formalmente definido como NP-Completo.

Enquanto Arborescências de Expansão demonstram custos excessivos indesejáveis, como mostrado na Figura 2.3(a), as topologias do tipo RSA não se comportam da mesma maneira devido ao uso de nodos adicionais e compartilhamento de arestas na hora de atingir os objetivos da abordagem, Figura 2.3(b).

Uma das primeiras soluções para o problema RSA foi uma heurística de [RAO1992], de complexidade $O(n \log n)$. Porém, apesar da complexidade de tempo favorável, os resultados não eram tão satisfatórios uma vez que o pior caso poderia apresentar o dobro do custo ótimo.

Figura 2.3: Arborescência de Expansão (a) e RSA correspondente (b) - fonte ao centro.

No trabalho de [CON1992b] foi realizada a análise comparativa entre várias topologias e propriedades de topologias, de acordo com o modelo RC distribuído [RUB1983], desta forma considerando efeitos anteriormente omitidos nas modelagens de atrasos de árvores de interconexões. Modelos de atraso antigos, com aplicações em linhas de transmissão únicas (*single line transmission*), eram demasiadamente simplificados e muito imprecisos em redes de interconexões em formato de árvore.

Um algoritmo heurístico chamado A-Tree⁴ ainda descrito em [CON1992b] apresentava resultados muito próximos do ótimo, com um afastamento de 4% no pior caso.

O trabalho de [CON1992b] e [CON1993] abrangia também dimensionamento de conexões (*wiresizing*), e um relatório técnico mais conciso foi disponibilizado posteriormente [CON1994], onde somente os assuntos referentes ao problema de topologias e o algoritmo A-Tree (rebatizado para *ATREE*) são abordados, desta vez com experimentos mais extensivos e a definição formal de um algoritmo ótimo exponencial para comparação de resultados.

⁴ Topologias de rede geradas pelo algoritmo A-Tree podem ser obtidas com o "TRIO Package" ">http://cadlab.cs.ucla.edu/~trio/>

Dos mesmos autores do *ATREE* de [CON1994] são os algoritmos RSA/BnB e RSA/DP de [LEU1997] (disponível também o relatório técnico completo [LEU1996]). Como o nome do trabalho diz ("*Fast Optimal Algorithms for...*") são apresentados algoritmos "exatos rápidos". Porém, deve-se levar em consideração que o termo rápido se refere à agilidade pertinente a um algoritmo exato para um problema NP-Completo, ou seja, são simplesmente algoritmos mais eficientes do que o algoritmo exaustivo de [CON1994], mas também com alta complexidade temporal – ambos são exponenciais. O algoritmo RSA/BnB é uma variação da heurística [RAO1992] e o RSA/DP é mais eficiente (com redução do espaço de busca) e baseia-se numa variação do *ATREE* de [CON1994].

Posteriormente heurísticas bem mais eficientes (várias ordens de grandeza na frente dos algoritmos anteriores) foram publicadas em [CON1997b], pelos mesmos autores dos algoritmos exatos anteriormente citados, em conjunto com Andrew B. Kahng. Mais tarde, um apanhado dos algoritmos exatos de [LEU1997] e as heurísticas de [CON1997b] foram publicados na revista *IEEE Transactions on CAD* [CON1998] (manuscrito completo em [CON1997a]) consolidando ambos os trabalhos.

Outro exemplo é o algoritmo AMAZE [HEN2007], que pode ser parametrizado de forma a permitir ser configurado para otimização de todos os *sinks*, bem como para realizar compartilhamento de arestas (*edge sharing*), desta forma gerando arborescências de Steiner.

2.3 Árvores de Raio Restrito

O raio de uma árvore é o caminho mais longo da raiz (ou fonte) até um determinado terminal. A Arborescência da Figura 2.4(c) é a estrutura que garante o menor raio. Mesmo diminuindo o compartilhamento de interconexões, o custo total da topologia pode ser proibitivo, veja-se a MST equivalente na Figura 2.4(b) onde o custo total é muito menor, o que se torna importante para a redução do congestionamento total do roteamento final, onde todas as redes estarão compartilhando a área de roteamento, e o requisito de roteabilidade precisa ser atendido. O problema é que o raio da MST também é demasiado grande, comprometendo o atraso do terminal que fica no final deste caminho. Isso levou alguns trabalhos a considerarem um meio-termo, ou compromisso entre os dois tipos de topologias: MSTs e Arborescências de Expansão, como o exemplo da Figura 2.4(a).

Figura 2.4: Para um mesmo conjunto de terminais, a Arborescência de Expansão (c) e MST (b) correspondentes. E um meio-termo (a) que minimiza o raio sem custo excessivo. (Adaptada de [KAH1994].)

Figura 2.5: Variando o parâmetro ε no algoritmo BRBC, três resultados com raio (R) e custo (*cost*) diferentes, que vão de uma SPT (a) a uma MST (c). (Retirada de [CON1991].)

As Árvores de Raio Restrito (*Bounded Radius Trees* – BRT – ou *Shallow-Light Constructions*) são construções que permitem um controle sobre o raio da topologia. Geralmente, uma constante é usada para ser configurada de forma a definir se o resultado final tenderá mais para uma MST ou uma SPT (*Shortest Path Tree* – Arborescência de Expansão). O trabalho de [CON1991] e [CON1992a], por exemplo, apresenta um algoritmo chamado BRBC (de *Bounded Radius Bounded Cost*), onde uma constante ε pode assumir um valor inteiro entre zero e infinito. Quando este valor é zero o resultado final é uma arborescência, quando é infinito o resultado é uma MST, e quando são utilizados valores intermediários são gerados resultados que misturam características de ambos os tipos de topologia, conforme ilustra a Figura 2.5.

Um trabalho semelhante e mais recente é o algoritmo AHHK de [ALP1995] onde são apresentadas duas versões do algoritmo, ambas com complexidade n^2 (onde n é tamanho da rede, ou seja, o número de terminais, ou |V|), e que demonstraram superioridade de desempenho (atrasos menores) em relação ao BRBC de [CON1992a]. Na primeira versão do algoritmo AHHK, uma constante c, de forma similar, é configurada com um valor entre 0 e 1 definindo um compromisso (*tradeoff*) entre os objetivos de dois algoritmos clássicos que servem de base para o AHHK: o algoritmo de Prim para MSTs e o algoritmo de Dijkstra para busca de caminhos mais curtos (*shortest-paths*). Assim os autores sugerem a utilização de cinco valores para c: 0, 0,25, 0,5, 0,75 e 1, para que se escolha a topologia que resulta no menor atraso. As soluções geradas passam por um pós-processamento final de triangulação para fornecer a versão retilínea das topologias.

No algoritmo AMAZE [HEN2007] pode-se realizar a mesma geração de topologias entre árvores mínimas e arborescências variando-se o parâmetro de *edge sharing*, permitindo assim uma abordagem BRT.

2.4 Arvores de Roteamento de Elmore

Outra classe presente na literatura são as Árvores de Roteamento de Elmore. Este método consiste na construção da topologia com base no Modelo de Atraso de Elmore, que é calculado em tempo de execução e usado como métrica de atraso para os nodos da árvore de roteamento.

Um exemplo deste método é o algoritmo SERT [BOE1995], onde para cada nodo a ser adicionado à árvore de roteamento é feito o cálculo do atraso de Elmore para todos os nodos ainda não adicionados, escolhendo-se assim o nodo que gera um menor atraso total à topologia. Este processo é repetido até que todos os nodos tenham sido adicionados à árvore de roteamento.

Outro exemplo de algoritmo que usa o atraso como guia para construção da topologia é o algoritmo descrito em [PRA1990], no qual valores de resistência e capacitância são usados para o cálculo do atraso.

2.5 Abordagem do Destino crítico

Fazendo uma comparação entre Árvores e Arborescências de Steiner (SMTs e MRSAs, respectivamente), temos que as Arborescências tendem a garantir um menor caminho para todos os destinos, contribuindo para que um possível destino crítico não seja prejudicado, como mostra o exemplo da Figura 2.6. O problema é que esta é uma visão *Dependente de Rede*, que endereça o atraso da rede como um todo.

Figura 2.6: Um dado conjunto de terminais com os terminais fonte e crítico discriminados (a), uma Arborescência de Steiner correspondente (b) garantindo os menores caminhos, e uma Árvore de Steiner (c) com um caminho maior (adaptada de [CON2001]).

Se considerarmos um modelo mais preciso, que calcule o atraso de cada destino separadamente, como o modelo de Elmore [ELM1948], qualquer topologia do tipo MRSA, não mais representa a garantia de um menor atraso numa abordarem Dependente de Caminho. A Figura 2.7 mostra dois exemplos em que, uma vez identificado o destino crítico, uma Arborescência não satisfaz da melhor forma possível a restrição temporal do mesmo. Isso se deve ao fato de que tanto bifurcações que precedem o destino crítico, quanto extensões da conexão que o tenha alcançado, contribuem para o aumento do atraso.

É daí que surge a Abordagem do Destino Crítico (*Critical Sink Approach*) ou então as Árvores de Roteamento com Destino Crítico (*Critical Sink Routing Trees* - CSRT [KAH1994]). A forma de abordar o problema é, sucintamente, tentar isolar o destino crítico com uma conexão dedicada e buscar uma árvore mínima para os demais – Figura 2.8.

Figura 2.7: Exemplo (a): Uma Arborescência e outra topologia mais adequada, por isolar o caminho da fonte (n₀) para o destino crítico (n_c), evitando que a conexão se estenda após alcançar n_c. Exemplo (b): duas Arborescências de mesmo custo, porém a da direita apresenta menos bifurcações no caminho até n_c.

Figura 2.8: Isolamento do destino crítico e redução de custo na expansão dos demais.

O exemplo da Figura 2.9 mostra um conjunto de terminais, uma MRSA e uma CSRT correspondentes. Os pontos apontados por setas na MRSA mostram os pontos que comprometem o atraso do destino crítico. Os terminais apontados por setas na CSRT denotam os terminais que ficaram com um caminho (e talvez atraso) maior do que na MRSA. Porém, o terminal crítico apresenta o menor atraso possível devido ao seu bom isolamento em relação ao restante da árvore.

Das heurísticas desenvolvidas até o momento temos o algoritmo SERT-C (onde "SERT" vem de *Steiner Elmore Routing Tree* – Árvore de Roteamento de Elmore/Steiner - e C remete à consideração do terminal crítico) de [BOE1995], e também a adaptação do algoritmo BOI chamado PER-Steiner [BOR1997], que utiliza o atraso de Elmore como métrica de desempenho para fazer troca de arestas (*edge replacement*) que resultem em um caminho e um atraso menor para o destino crítico. Além destes, também o AMAZE [HEN2007] pode ser parametrizado para geração de CSRTs, bastando para isto, indicar o terminal crítico e relaxar a configuração de *edge sharing* para os demais terminais.

Figura 2.9: Um conjunto de terminais (a). Uma MRSA como solução (b): bifurcações no caminho até o terminal crítico e extensão das conexões a partir do mesmo (setas) aumentam o atraso. Uma possível CSRT como solução (c): o isolamento do terminal crítico, apesar de aumentar os caminhos até outros terminais (setas) garante o menor atraso para o terminal crítico.

3 METODOLOGIA

A avaliação robusta e ampla das várias propostas reportadas na literatura dentro de cada uma das categorias de algoritmos para roteamento de redes (*Single Net Routing*) será feita com a definição de cenários adequados para as tecnologias usadas. Foram utilizados os algoritmos exemplo, da última coluna da Tabela 1.1, a exceção dos algoritmos Rao's (será desconsiderado já que o algoritmo *ATREE* apresenta resultados superiores), PER-Steiner, OPTIMAL e PK's devido a dificuldades de obtenção e/ou tempo para implementação.

3.1 Cenários Abrangentes de Experimentos

A definição dos cenários usados nos experimentos é um dos principais pontos de interesse deste trabalho. Tal definição abrange: parâmetros de interconexão (RCsets), tamanhos de grade, tamanhos de rede e tempo de transição de entrada. Os experimentos foram realizados com os valores e parâmetros definidos conforme descrito nos subitens seguintes.

3.1.1 Parâmetros de Interconexão

Num levantamento recente [SAN2008b] [REI2009a], foram definidos parâmetros tecnológicos com base em modelos de processos existentes (*existent process information* - EPI), assim como de processos preditivos (PTM – *Predictive Technology Model*⁵ e ITRS⁶), compreendendo tecnologias entre 13nm e 350nm, como pode ser visto na Tabela 3.1. Estes são os mesmos parâmetros utilizados na obtenção dos resultados da Figura 1.1 e Figura 1.2.

Os parâmetros tecnológicos formam conjuntos de resistência e capacitância (RCsets) definidos para três tipos de interconexões, seguindo a classificação de camadas de metal do ITRS (*International Technology Roadmap for Semiconductors*): longas/globais (*long/global*), intermediárias (*intermediate*) e curtas/locais (*short/local*) - Figura 3.1.

Seguindo essas definições, foram calculados os parâmetros de interconexão das tecnologias utilizadas nos experimentos deste trabalho. A Tabela 3.3 e a Tabela 3.2 mostram os valores dos parâmetros utilizados (conexões intermediarias e longas, respectivamente⁷), onde R_D representa a resistência de saída da porta lógica, R_W a

⁵ Predictive Technology Model (PTM) website. http://www.eas.asu.edu/~ptm/

⁶ International Technology Roadmap for Semiconductors (ITRS). http://www.itrs.net/

⁷ As conexões curtas compreendem apenas a camada de metal 1, ficando, portanto, fora do escopo deste trabalho, já que tal camada é usada para roteamento interno das células.

resistência de fio por unidade de comprimento, C_W a capacitância de fio por unidade de comprimento e C_L a capacitância de entrada da porta lógica.

Tabela 3.1: Origem dos parâmetros de interconexões de [SAN2008b]. EPI – Informação proveniente de processos existentes; PTM – Modelos de dispositivos preditivos; ITRS – Informações provenientes do *International Technology Roadmap for Semiconductors*.

L(nm)	R_D	R_W	C_W	C_L
350	EPI	EPI	EPI	EPI
250	EPI	EPI	EPI	EPI
180	EPI/PTM	EPI/PTM	EPI/PTM	EPI/PTM
130	PTM	-	-	PTM
120	EPI	-	EPI	EPI
90	EPI/PTM	EPI	EPI	EPI/PTM
70	PTM	PTM	PTM	PTM
65	EPI/PTM	EPI/PTM	EPI/PTM	EPI
50	PTM	PTM	PTM	PTM
45	PTM	-	-	PTM
35	PTM	ITRS/PTM	ITRS/PTM	PTM
32	PTM	-	-	PTM
25	PTM	ITRS	ITRS	PTM
18	PTM	ITRS	ITRS	PTM
13	PTM	ITRS	ITRS	PTM

Figura 3.1: Secção transversal de escalonamento hierárquico para MPU (direita) e ASIC (à esquerda) obtidos no ITRS [ITRS2007].

Lgate	$R_D(\Omega)$	$R_W(\Omega/\mu m)$	$C_W(\mathbf{fF}/\mathbf{\mu m})$	$C_L(\mathbf{fF})$
350nm	1104,931	0,117059	0,062220	14,58219
250nm	1316,672	0,121743	0,095381	10,37416
180nm	1464,891	0,155702	0,118594	7,428549
130nm	1570,762	0,286620	0,281121	5,324538
120nm	1591,936	0,344830	0,270272	4,903736
90nm	1655,459	0,668876	0,237726	3,641329
70nm	1697,807	1,112216	0,216029	2,799724
65nm	1708,394	1,270269	0,210605	2,589323
50nm	1740,155	1,911574	0,194332	1,958120
45nm	1750,742	2,196550	0,188908	1,747719
35nm	1771,917	2,909432	0,178059	1,326917
32nm	1778,269	3,167605	0,174804	1,200676
25nm	1793,091	3,866671	0,167210	0,906114
18nm	1807,913	4,725922	0,159616	0,611553
13nm	1818,500	5,457762	0,154192	0,401152

Tabela 3.3: Parâmetros RC para camadas de metal intermediárias.

Tabela 3.2: Parâmetros RC para camadas de metal longas/globais.

Lgate	$R_D(\Omega)$	$R_W(\Omega/\mu m)$	$C_W(\mathbf{fF}/\mathbf{\mu m})$	$C_L(\mathbf{fF})$
350nm	241,9885	0,082079	0,074016	66,98581
250nm	287,3843	0,107177	0,108729	47,61821
180nm	319,1614	0,168070	0,133029	34,06090
130nm	341,8594	0,273810	0,323594	24,37710
120nm	346,3990	0,306405	0,312353	22,44034
90nm	360,0177	0,439907	0,278629	16,63006
70nm	369,0969	0,569381	0,256146	12,75654
65nm	371,3667	0,608374	0,250525	11,78816
50nm	378,1761	0,744799	0,233663	8,883018
45nm	380,4459	0,797629	0,228042	7,914638
35nm	384,9854	0,916120	0,216801	5,977878
32nm	386,3473	0,955320	0,213429	5,396850
25nm	389,5250	1,054041	0,205560	4,041118
18nm	392,7027	1,163833	0,197691	2,685386
13nm	394,9725	1,249716	0,192070	1,717007

3.1.2 Tamanhos de Grade

Além dos parâmetros tecnológicos atuais coerentes com as camadas de metais e portas lógicas, também é necessário considerar-se tamanhos razoáveis de grades, assim como o uso destas com parâmetros diferenciados para conexões intermediarias e longas/globais.

Num estudo recente [REI2009b] [REI2009c] foi verificado um impacto significativo das dimensões da grade em experimentos para avaliar técnicas para o projeto de interconexões. Assim foram definidos de acordo com o tipo de roteamento (e camadas

de metal relacionadas) diferentes tamanhos de grade para a realização dos experimentos deste trabalho. Baseado em numa média das áreas de processadores Intel e AMD, fabricados em tecnologias CMOS de 90nm e 65nm [PAT2006], foi definido 200mm² como sendo uma área razoável para um SoC, valor este que foi usado para todas as tecnologias, visto que essa área pouco varia devido ao aumento da integração dos circuitos [HOH2001].

Com base em imagens de alguns processadores AMD [LUD2007] fabricados em 250nm e 350nm (com área de substrato – *die* – próxima à grade definida previamente para SoC), definiu-se aproximadamente 2,8% (1/36) dessa área como uma área típica de um bloco de lógica aleatória (*Random Logic Block* - RLB) para uma tecnologia de 350nm (esquerda da Figura 3.2) (como não é possível especificar-se qual seria o tamanho real de um RLB para um determinado processo tecnológico, este é um tamanho considerado razoável para quem tem experiência na área). E 6,25% (1/16) desta área foi definida como um limite superior (*upperbound*) razoável para redes locais, dentro de um RLB.

Após isso, foram extrapolados os valores de área de redes locais para as outras tecnologias, de acordo com o tamanho de canal correspondente. A grade RLB também escala, entretanto há um decrescimento menor para considerar-se um leve aumento de área dos elementos lógicos destes blocos. Estes conceitos são ilustrados na Figura 3.2 e os valores de grade mostrados na Tabela 3.4, à direita da Figura 3.2, de forma análoga à 350nm, são ilustradas as proporções para 13nm.

Figura 3.2: Três áreas de grade definidas em [SAN2009] para uma tecnologia de 350nm: área típica de um SoC, área razoável para um RLB e um limite superior *(upperbound)* para redes locais.

Tecnologia	SoC	RLB	Local
350nm	200	5,555556	0,340278
250nm	200	2,922615	0,173611
180nm	200	1,578405	0,090000
130nm	200	0,869776	0,046944
120nm	200	0,753202	0,040000
90nm	200	0,453784	0,022500
70nm	200	0,296092	0,013611
65nm	200	0,261909	0,011736
50nm	200	0,171936	0,006944
45nm	200	0,146138	0,005625
35nm	200	0,100828	0,003403
32nm	200	0,088870	0,002844
25nm	200	0,063902	0,001736
18nm	200	0,043042	0,000900
13nm	200	0,030658	0,000469

Tabela 3.4: Áreas das três grades, em mm², para as tecnologias utilizadas.

3.1.3 Tamanhos de Rede

Outro fator importante na avaliação dos algoritmos é o tamanho das redes a serem roteadas, ou seja, a quantidade de portas lógicas conectadas à saída da porta lógica fonte do sinal. Através de um estudo estatístico em benchmarks IWLS [WLS2005] chegou-se aos valores mostrados na Figura 3.3. Apesar de a maioria das redes em circuitos reais serem redes de dois terminais, para as quais as soluções dos diferentes algoritmos são as mesmas, essa informação é importante para a medição do real impacto de algoritmos dirigidos a desempenho, de uma forma geral.

Com mais esse parâmetro decidiu-se fazer duas avaliações diferentes: uma usando os tamanhos de rede proporcionalmente ao estudo estatístico, com um total de 500 redes aleatórias para cada tecnologia nos cenários descritos anteriormente, e outra com 50 redes aleatórias para cada tamanho de rede, nos mesmos cenários. O percentual restante (2,20%) foi dividido em redes de 17, 33 e 65 terminais.

Figura 3.3: Percentual de distribuição dos tamanhos de rede em *benchmarks* IWLS [WLS2005].

3.1.4 Tempo de Transição de Entrada

O uso de rampas de entrada adequadas influenciam nos modelos de atraso utilizados, variando sua precisão. Tendo isso em vista, é necessário também estabelecer valores adequados de rampa que serão usados nas simulações para medir o atraso das redes. Em [HOH2001] são apresentadas métricas simples para medição de atraso de portas e fios, uma delas "*fanout-of-four inverter delay*", ou FO4, trata-se de medir o atraso de um inversor ao qual conecta-se na sua entrada outro inversor quatro vezes menor, e em sua saída um inversor quatro vezes maior - Figura 3.4. Assim é possível ter uma idéia de como o atraso das portas se comporta ao longo do *scaling* tecnológico.

Figura 3.4: Topologia de medição do atraso FO4.

Tendo sendo feitas tais medidas pra cada uma das tecnologias utilizadas neste trabalho, foi então feito um ajuste linear, conforme mostra a Figura 3.5.

Figura 3.5: Atrasos FO4 medidos (em segundos) para cada tecnologia (pontos)(nm) e reta ajustada a eles.

A partir desta reta, foi então calculado o valor de cada rampa de entrada para cada uma das tecnologias envolvidas, resultando nos valores apresentados na Tabela 3.5.

Tecnologia	Atraso FO4 (ps)
350nm	179,10
250nm	130,72
180nm	96,85
130nm	72,66
120nm	67,82
90nm	53,30
70nm	43,63
65nm	41,21
50nm	33,95
45nm	31,53
35nm	26,69
32nm	25,24
25nm	21,86
18nm	18,47
13nm	16,05

Tabela 3.5: Valores de atraso utilizados como rampa de entrada.

3.1.5 Cenários de Interconexões

Com base em todos os pontos descritos anteriormente, foram definidos quatro cenários de interconexões, baseados na relação dos parâmetros da seção 3.1.1 com as grades da Figura 3.2. Estes cenários são mostrados abaixo na Tabela 3.6. Assim, temos o cenário 1 composto de grade local e parâmetros intermediários, cenário 2 com grade RLB e parâmetros intermediários, cenário 3 grade RLB e parâmetros longos/globais e cenário 4 com grade SoC e parâmetros longos/globais.

Tabela 3.6: Cenários de interconexões para os experimentos.

	Grades de Roteamento		
Camadas de Metal	Local	RLB	SoC
Intermediária	Cenário 1	Cenário 2	-
Longa/Global	-	Cenário 3	Cenário 4

3.1.6 Algoritmos Utilizados

Devido ao fato de nem todos os algoritmos expostos na Tabela 1.1 estavam disponíveis ou implementados, foram utilizados neste trabalho conforme a disponibilidade mostrada na Tabela 3.7. Assim, foram utilizados um total de onze algoritmos.

Tabela 3.7: Disponibilidade dos algoritmos.

ABORDAGEM	TIPO	Exemplo de algoritmo	Disponibilidade		
		BOI [YIL2002]	Disponível		
	SMT	BI1S [KAH1995]	Disponível		
	5111	AMAZE-WL [HEN2007]	Disponível		
		GEOSTEINER [ZAC1999]	Disponível		
		Rao's [RAO1992]	Não Disponível		
Net-based	MRSA	AMAZE-PL [HEN2007]	Disponível		
		A-TREE [CON1993]	Disponível		
		OPTIMAL [CON1993]	Não Disponível		
		AMAZE-share [HEN2007]	Disponível		
	BKI	AHHK [ALP1995]	Disponível		
	ERT	PK's [PRA1990]	Não Disponível		
		SERT [BOE1995]	Implementado		
		AMAZE-CS [HEN2007]	Disponível		
Path-based	CSRT	SERT-C [BOE1995]	Implementado		
		PER-Steiner [BOR1997]	Não Disponível		

4 IMPLEMENTAÇÕES

Dentro do escopo deste trabalho foi necessária a implementação de várias ferramentas secundárias utilizadas durante todo o processo de avaliação dos algoritmos, além da implementação de alguns algoritmos utilizados.

Tais ferramentas são fundamentais para a precisão e exatidão do projeto proposto, já que garantem que todos os algoritmos sejam avaliados da mesma forma, não havendo então discrepâncias devido a erros de obtenção nos dados.

4.1 Algoritmos de Roteamento

Os algoritmos implementados e utilizados pelo autor desta proposta foram: ERT (não utilizado neste trabalho⁸), SERT e SERT-C [BOE1995]. Esses algoritmos recebem como dados de entrada um arquivo contendo as coordenadas de grade (x,y) dos pontos a serem conectados. Como saída, é salvo um arquivo com as coordenadas dos pontos e das arestas que os conectam, no formato da ferramenta de visualização Sight⁹. Abaixo vemos um exemplo de arquivo de entrada (dependendo do algoritmo, a primeira linha pode conter o número de nodos da rede), arquivo de saída, a visualização do resultado no Sight e o arquivo SPICE gerado no formato 3π [RAB2003] - Figura 4.1, Figura 4.2, Figura 4.3 e Figura 4.4, respectivamente.

9	
55	17
43	30
39	45
35	57
66	25
97	49
93	68
68	55
54	74

Figura 4.1: Exemplo de arquivo de entrada dos algoritmos (coordenadas x,y).

1 0 1 95 25 3 3 blue 1 1 0 1 40 96 3 3 red 1 1 0 1 12 52 3 3 black 1 1 0 1 0 98 3 3 black 1 2 0 0 95 25 40 52 blue 2 0 0 40 52 40 96 blue 2 0 0 40 52 12 52 blue 2 0 0 40 96 0 98 blue 2 0 0 40 96 40 96 blue

Figura 4.2: Exemplo de arquivo Sight (coordenadas x,y e arestas).

⁸ O algoritmo ERT gera topologias do tipo "expansão" (setas euclidianas) enquanto estamos interessados na versão retilínea (providas pelo SERT).

⁹ O Sight é uma ferramenta de visualização desenvolvida no Grupo de Microeletrônica - GME.

Figura 4.3: Exemplo de visualização de rede gerada (adaptada para preto e branco).

.param slope = 146.69p .param s_time = slope*50 V1 vdd 0 dc 5 V2 gnd 0 dc 0 V3 ns 0 pulse(0 5 0 slope slope s_time s_time) C52 n4 gnd 1.123227e-15 R52 n4 n50 1.354954e+01 C51 n50 gnd 2.246453e-15 R51 n50 n51 1.354954e+01 C53 n51 gnd 2.246453e-15 R53 n51 nc 1.354954e+01 C54 nc gnd 1.123227e-15 C56 n5 gnd 1.755042e-16 R56 n5 n54 2.117115e+00 R56 n5 n54 2.11/15e+00 C55 n54 gnd 3.510083e-16 R55 n54 n55 2.117115e+00 C57 n55 gnd 3.510083e-16 R57 n55 n4 2.117115e+00 C58 n4 gnd 1.755042e-16 C60 nsa gnd 9.126217e-16 R60 nsa n58 1.100900e+01 R50 n58 gnd 1.925042e-15 C59 n58 gnd 1.825243e-15 R59 n58 n59 1.100900e+01 C61 n59 gnd 1.825243e-15 R61 n59 n5 1.100900e+01 C62 n5 gnd 9.126217e-16 C64 n6 gnd 2.106050e-15 R64 n6 n62 2.540538e+01 C63 n62 gnd 4.212100e-15 R63 n62 n63 2.540538e+01 C65 n63 gnd 4.212100e-15 R65 n63 n3 2.540538e+01 C66 n3 gnd 2.106050e-15 C68 nsa gnd 1.755042e-16 R68 nsa n66 2.117115e+00 C67 n66 gnd 3.510083e-16 R67 n66 n67 2.117115e+00 C69 n67 gnd 3.510083e-16 R69 n67 n6 2.117115e+00 C70 n6 gnd 1.755042e-16 C71 n3 gnd 2.589323e-15 C72 nc gnd 2.589323e-15 R73 ns ñsa 1.708394e+03 .tran 's_time/2000' s_time .meas tran val50 when v(nc)=2.5 .MEAS delay50 PARAM='val50 - slope/2' . end

Figura 4.4: Exemplo de arquivo SPICE gerado.

4.2 Ferramentas de Conversão de Arquivos

Devido ao fato dos algoritmos apresentarem formatos diferentes de arquivos de entrada e de saída. Como a geração das redes aleatórias é no formato utilizado pelos algoritmos implementados pelo autor, estas devem ser convertidas para os formatos de entrada dos demais algoritmos. Por isso, foram implementadas ferramentas que convertem essas redes para o formato dos demais algoritmos avaliados.

Outra etapa que necessita de conversão é na obtenção dos dados após as redes serem roteadas pelos algoritmos. Estas precisam ser convertidas para o formato utilizado para leitura e visualização, não só para a obtenção das características topológicas, mas também para a posterior avaliação pelos modelos de atraso e simulação elétrica.

Como os experimentos envolvem o uso da ferramenta SPICE, também é necessário converter-se os arquivos gerados pelos algoritmos para este ambiente e, após isso, obter os resultados das simulações, para essas etapas foram implementadas ferramentas adequadas. As arestas das topologias são geradas no formato 3π de [RAB2003] como mostrado na Figura 4.4.

4.3 Modelos de Atraso

Os modelos de atraso implementados foram o modelo de Elmore [ELM1948] e o modelo Twopole [ZHO1992].

O modelo de atraso de Elmore representa o primeiro momento da função de transferência que modela um circuito RC. Sua equação é um simples produto da resistência entre os dois pontos de interesse pela soma das capacitâncias da sub-árvore neste ponto. O atraso de Elmore é calculado conforme a equação abaixo.

$$t_{\rm ED}(n_i) = r_d C_{n_0} + \sum_{e_v \in \text{path}(n_0, n_i)} r_{e_v} \left(\frac{c_{e_v}}{2} + C_v \right)$$

Onde r_d é a resistência de saída da porta fonte de sinal, C_{no} a capacitância total da rede, r_{ev} a resistência de uma aresta, c_{ev} a resistência de uma aresta e C_v a capacitância sub-árvore na extremidade desta aresta. Já o modelo de atraso Twopole representa o primeiro e o segundo momento da equação de transferência que modela o atraso num circuito RLC. Como neste trabalho não são usados parâmetros de indutância¹⁰, os termos da equação que contem o termo indutivo são desconsiderados na implementação do modelo (nos trabalhos anteriores [BOE1995] um valor desprezível era utilizado no parâmetro de indutância). Abaixo temos a definição do modelo de atraso Twopole.

¹⁰ Apesar da influencia da indutância estar se tornando cada vez mais importante, a forma comumente usada para comparação de Algoritmos de Roteamento é a análise de atraso de estruturas RC. Apesar de este trabalho diferir dos trabalhos atuais, ao utilizar parâmetros RC atuais e não antigos como em [ALP1995] [BOE1995] [CON1993], temse como objetivo futuro a definição de valores de indutância para as tecnologias utilizadas.

$$= K_r \cdot \frac{(M_1 + \sqrt{4M_2 - 3M_1^2})}{2} , \text{ para pólos reias}$$
$$T_{ND}(i) = K_c \cdot \frac{2(M_1^2 - M_2)}{\sqrt{3M_1^2 - 4M_2}} , \text{ para pólos complexos}$$
$$= K_d \cdot \frac{M_1}{2} , \text{ para pólos duplos}$$

Onde,

$$M_1 = b_1$$
$$M_2 = b_1^2 - b_2$$
$$BC$$

$$b_1^{IT} = R_I C + R_I C_T + \frac{R_C}{2} + RC_T$$

$$b_2^{IT} = \frac{R_I R C^2}{6} + \frac{R_I R C C_T}{2} + \frac{(RC)^2}{24} + \frac{R^2 C C_T}{6} + L_I C + L_I C_T + \frac{LC}{2} + LC_T$$

Onde R_I representa a resistência de saída da porta fonte de sinal, R a resistência da aresta, C a capacitância da aresta, C_T a capacitância total da sub-árvore num determinado ponto da estrutura, $K_r = 2,36$, $K_c = 1,66$ e $K_d = 3,9$. Ambos os modelos implementados recebem o arquivo de entrada no mesmo formato de arquivo usado para visualização na ferramenta Sight. A partir deste arquivo é calculado o atraso e este é impresso na tela.

4.4 Scripts para linha de comando

Um dos principais desafios deste trabalho é tratar de centenas de milhares de arquivos de forma eficiente e sem erros. Para isso foram geradas dezenas de scripts que padronizam a execução dos algoritmos, dos conversores, dos modelos de atraso e das simulações SPICE. Na Figura 4.5 vemos um exemplo de uma parte de *script* utilizado para a execução automatizada das simulações elétricas.

done

Figura 4.5: Exemplo de *script* usado para executar as simulações elétricas.

5 RESULTADOS EXPERIMENTAIS

Os dados experimentais compreendem várias métricas, tanto de desempenho quanto características topológicas das redes roteadas pelos algoritmos. Como tais resultados compreendem uma enorme gama de informações, é necessário que estas sejam organizadas de forma a permitir que seja feita uma avaliação dos critérios estabelecidos, tanto comparando os algoritmos entre si, quanto suas variações dentro dos cenários definidos, sob os critérios expostos anteriormente: tamanho de grade, tamanho de rede, parâmetros tecnológicos. Os resultados completos, relacionados de diversas formas, são mostrados nas tabelas do APÊNDICE.

Como o foco deste trabalho está nos algoritmos de roteamento dirigidos a desempenho, a medição do atraso feita na ferramenta SPICE é apenas do destino crítico, enquanto nos modelos de atraso utilizados também é feita a medição do maior atraso da rede.

Devido a problemas na execução de alguns algoritmos, o tamanho de rede com 65 terminais não está presente nos resultados abaixo.

5.1 Comparação dos Algoritmos

Esta comparação é o principal foco deste trabalho, pois mostra as diferenças nas soluções geradas pelos algoritmos. Através destes resultados vemos o impacto da definição completa dos cenários nos resultados obtidos, já que esses experimentos mostram o comportamento dos algoritmos em cenários completos e comprometidos com as tecnologias atuais.

5.1.1 Comparação de Atraso

A Figura 5.1 e a Figura 5.2 mostram um resumo dos resultados dos algoritmos para o atraso de caminho crítico, para tamanhos de redes igualmente distribuídos e proporcionalmente distribuídos (conforme definido no item 3.1.3), respectivamente.

Os resultados nos mostram que, como esperado, os algoritmos que tem sua heurística para otimização do caminho crítico são os que apresentam o menor atraso médio para o destino crítico, entretanto, em muitos casos, como pode ser visto nas tabelas do apêndice, outros algoritmos também apresentam resultados similares e algumas vezes melhores que esses algoritmos, dependendo do cenário considerado, destacando-se os algoritmos AMAZE-share e SERT.

A análise dos resultados mostra um comportamento mais uniforme do algoritmo SERT-C dentro dos vários cenários definidos, isso resulta no melhor resultado médio deste algoritmo, estando sempre nas duas primeiras posições do ordenamento utilizando os atrasos de caminho crítico. Entretanto, o comprometimento do atraso dos demais terminais da rede acaba deixando-o, em média, na sexta posição quando o critério é o maior atraso da rede. Mas a diferença percentual deste maior atraso da rede é muito pequena (em torno de 4% de acréscimo no atraso) comparando-se com o algoritmo melhor ordenado. Isto também pode ser resultado do impacto da imprecisão dos modelos de atraso, como é discutido no item 5.4.

Apesar do SERT-C possuir a melhor média nos resultados, o algoritmo AMAZEshare apresenta resultados consistentemente melhores para os cenários 1 e 2, mostrando ser a melhor opção para roteamento em redes locais. Entretanto, tal algoritmo é executado cinco vezes para cada rede (variando-se o parâmetro de *edge sharing*, e escolhendo-se a melhor topologia resultante, pelo maior atraso de Elmore da topologia), o que pode representar um custo excessivo em tempo de execução.

Quando se considera o maior atraso da rede, os algoritmos que apresentaram os melhores resultados foram AMAZE-share, SERT-C, AHHK e ATREE, destacando-se os dois primeiros, que, na maioria dos casos, apresentam médias de valores de atrasos muito similares.

Figura 5.1: Resumo (média) dos resultados para atraso do destino crítico, 50 redes aleatórias para cada tamanho de rede.

Figura 5.2: Resumo (média) dos resultados para atraso do destino crítico, redes aleatórias proporcionais para cada tamanho de rede.

Um resultado que deve ser destacado é do algoritmo AMAZE-CS, que gera soluções com maior isolamento do caminho crítico. Os resultados mostram que esta abordagem tem mais aplicação para os cenários 3 e 4, que possuem grades maiores. Isso reflete a penalização do atraso pelo aumento do comprimento total de fio da rede, que nos cenários 1 e 2 não é compensado pelo isolamento do caminho crítico.

Por outro lado, outra conclusão que pode ser tirada destes resultados refere-se ao comprometimento do atraso do destino crítico nos algoritmos cujo objetivo é a redução do comprimento de fio (capacitância) total da rede. Como pode ser visto, tais algoritmos tiveram atrasos, em média, 30% maiores que os algoritmos de otimização do destino crítico. Isso demonstra que esta abordagem não é adequada para redes onde o destino crítico precisa ser otimizado.

Outro dado obtido dos resultados é o maior atraso da rede. Este atraso foi calculado usando os modelos de atraso implementados. Na Tabela 5.1 e na Tabela 5.2 vemos o resumo desses resultados para 50 redes aleatórias para cada tamanho de rede e para redes aleatórias proporcionais para cada tamanho de rede, respectivamente.

Média	E Hr	nore - Máxii	mo	Iw	opole - Máx	imo	Ordena	amento
Algoritmo	mín.	máx.	média	mín.	máx.	média	Elmore	Twopole
BOI	3,264E-11	8,907E-08	1,027E-08	7,703E-11	2,102E-07	2,424E-08	11	11
BI1S	3,264E-11	8,905E-08	9,887E-09	7,703E-11	2,102E-07	2,333E-08	9	9
AMAZE-WL	3,264E-11	7,896E-08	9,389E-09	7,703E-11	1,864E-07	2,216E-08	8	8
GEOSTEINER	3,264E-11	8,974E-08	9,942E-09	7,703E-11	2,118E-07	2,346E-08	10	10
AMAZE-PL	3,264E-11	4,329E-08	7,327E-09	7,703E-11	1,022E-07	1,729E-08	5	5
A-TREE	3,264E-11	3,480E-08	7,032E-09	7,703E-11	8,212E-08	1,660E-08	4	4
AMAZE-share	3,264E-11	3,612E-08	6,740E-09	7,703E-11	8,525E-08	1,591E-08	2	2
AHHK	3,264E-11	3,480E-08	6,857E-09	7,703E-11	8,213E-08	1,618E-08	3	3
SERT	3,264E-11	2,311E-08	5,715E-09	7,703E-11	5,454E-08	1,349E-08	1	1
AMAZE-CS	3,716E-11	8,731E-08	9,298E-09	8,771E-11	2,060E-07	2,194E-08	7	7
SERT-C	3,264E-11	8,097E-08	9,188E-09	7,703E-11	1,911E-07	2,168E-08	6	6

Tabela 5.1: Resultados resumidos (média) para maior atraso da rede, para 50 redes aleatórias para cada tamanho de rede.

Média	Br	nore - Máxii	no	Tw	opole - Máx	mo	Ordenamento	
Algoritmo	mín.	máx.	média	mín.	máx.	média	Elmore	Twopole
BOI	1,711E-07	7,305E-03	5,254E-04	7,703E-11	1,754E-07	1,384E-08	11	11
BI1S	1,711E-07	7,324E-03	5,116E-04	7,703E-11	1,758E-07	1,353E-08	10	9
AMAZE-WL	1,711E-07	7,358E-03	4,897E-04	7,703E-11	1,766E-07	1,302E-08	8	8
GEOSTEINER	1,469E-07	5,551 E-03	5,087E-04	7,703E-11	1,342E-07	1,361E-08	9	10
AMAZE-PL	2,210E-07	4,172E-03	4,459E-04	7,703E-11	1,016E-07	1,190E-08	5	5
A-TREE	2,210E-07	2,866E-03	4,439E-04	7,703E-11	7,262E-08	1,159E-08	4	4
AMAZE-share	3,264E-11	3,608E-08	4,842E-09	7,703E-11	8,516E-08	1,143E-08	1	2
AHHK	2,210E-07	2,866E-03	4,325E-04	7,703E-11	7,265E-08	1,146E-08	3	3
SERT	2,210E-07	2,190E-03	3,781E-04	7,703E-11	5,436E-08	1,009E-08	2	1
AMAZE-CS	2,210E-07	5,725E-03	4,604E-04	8,771E-11	1,385E-07	1,242E-08	6	7
SERT-C	2,210E-07	5,673E-03	4,610E-04	7,703E-11	1,369E-07	1,229E-08	7	6

Tabela 5.2: Resultados resumidos (média) para maior atraso da rede, para redes aleatórias proporcionais para cada tamanho de rede.

5.1.2 Comparação de Características Topológicas

Outro fator importante na avaliação dos algoritmos de roteamento é a comparação das características topológicas das soluções geradas. Os valores médios estão na Tabela 5.3 e na Tabela 5.4, para 50 redes aleatórias para cada tamanho de rede e redes aleatórias proporcionais para cada tamanho de rede, respectivamente.

Os resultados mostram claramente que, para proporcionar um maior isolamento do destino crítico, os algoritmos AMAZE-CS e SERT-C geram soluções com maior comprimento de fio total (*Wirelength* Total).

Média		Raio		Wirelength Total			Distância Fonte-Crítico		
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	631,75	14830,75	5178,20	631,75	23619,75	8525,48	64,75	12806,25	3106,39
BI1S	631,75	15718,25	5095,75	631,75	23001,00	8388,54	64,75	13970,25	3074,04
AMAZE-WL	631,75	14312,25	4922,74	631,75	24613,25	8595,29	64,75	8366,50	2609,86
GEOSTEINER	631,75	15906,75	5052,71	631,75	22909,75	8360,30	64,75	14158,75	3071,81
AMAZE-PL	631,75	8624,75	4267,71	631,75	41603,00	10186,44	64,75	8366,50	2609,86
A-TREE	631,75	8624,75	4267,71	631,75	27317,75	8896,25	64,75	8366,50	2609,86
AMAZE-share	631,75	8987,00	4302,79	624,25	25407,00	8430,71	64,75	8453,50	2636,32
AHHK	631,75	8624,75	4288,06	631,75	27317,75	9000,05	64,75	8366,50	2623,77
SERT	631,75	9147,00	4304,94	631,75	57846,75	14092,64	64,75	8718,00	2633,61
AMAZE-CS	632,75	15921,50	4979,24	890,50	29283,25	10385,67	64,75	8366,50	2609,86
SERT-C	631,75	14880,50	4947,68	631,75	28521,50	10203,23	64,75	8366,50	2609,86

Tabela 5.3: Resultados topológicos, 50 redes aleatórias para cada tamanho de rede.

Tabela 5.4:	Resultados	topológicos,	redes ale	atórias pr	oporcionais	s para cada	tamanho d	le
rede.				-	-	-		

Média		Raio		W	irelength To	tal	Distânci a Fonte-Orítico		
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	631,75	12834,50	4037,73	631,75	23106,25	5403,39	64,75	9384,50	2870,94
BI1S	631,75	12834,50	4009,25	631,75	22637,75	5363,89	64,75	9151,75	2815,26
AMAZE-WL	631,75	12834,50	3935,19	631,75	23576,50	5422,80	64,75	8063,50	2630,47
GEOSTEINER	631,75	11468,25	3989,20	631,75	22620,75	5357,67	64,75	9429,75	2845,83
AMAZE-PL	631,75	8624,75	3752,32	631,75	30346,50	5752,85	64,75	8063,50	2630,47
A-TREE	631,75	8624,75	3752,32	631,75	26058,00	5483,56	64,75	8063,50	2630,47
AMAZE-share	631,75	8724,25	3768,04	631,75	27123,50	5567,79	64,75	8196,00	2635,88
AHHK	631,75	8624,75	3754,33	631,75	26978,50	5550,64	64,75	8063,50	2632,66
SERT	631,75	8863,75	3762,13	631,75	51143,75	7621,67	64,75	8196,00	2637,78
AMAZE-CS	632,75	11276,75	3945,67	890,50	27371,50	7044,57	64,75	8063,50	2630,47
SERT-C	631,75	11434,75	3918,68	631,75	26498,75	6873,37	64,75	8063,50	2630,47

A Tabela 5.5 e a Tabela 5.6 mostram os ordenamentos pelas características topológicas e pelo atraso SPICE do destino crítico. Fica evidente que o comprimento de fio total não é o fator determinante para o atraso do destino crítico. Observando os resultados de ordenamento pelo pior atraso da rede calculado pelos modelos, estes também sugerem que o atraso da rede não é diretamente ligado ao comprimento total de fio.

Esses resultados mostram que a avaliação de algoritmos de roteamento apenas por características topológicas, como encontrada em [ALP2006], não é uma forma completa e adequada de comparação, principalmente quando o objetivo é entender qual algoritmo possui melhores resultados para o atraso das redes.

Média		Ordenan	nento	
Algoritmo	Raio	WL Total	F-C	HSPICE
BOI	11	4	11	10
BI1S	10	2	10	11
AMAZE-WL	6	5	1	8
GEOSTEINER	9	1	9	9
AMAZE-PL	1	8	1	5
A-TREE	1	6	1	6
AMAZE-share	4	3	8	3
АННК	3	7	6	7
SERT	5	11	7	4
AMAZE-CS	8	10	1	2
SERT-C	7	9	1	1

Tabela 5.5: Ordenamento pelas características topológicas versus ordenamento do atraso SPICE do destino crítico, para 50 redes aleatórias para cada tamanho de rede.

Tabela 5.6: Ordenamento pelas características topológicas versus ordenamento do atraso SPICE do destino crítico, para redes proporcionais para cada tamanho de rede.

Média		Ordenan	nento		
Algoritmo	Raio	WL Total	F-C	HSPICE	
BOI	11	3	11	11	
BI1S	10	2	9	10	
AMAZE-WL	7	4	1	9	
GEOSTEINER	9	1	10	5	
AMAZE-PL	1	8	1	8	
A-TREE	1	5	1	6	
AMAZE-share	5	7	7	3	
AHHK	3	6	6	7	
SERT	4	11	8	4	
AMAZE-CS	8	10	1	2	
SERT-C	6	9	1	1	

5.2 Comparação pelos Tamanhos de Rede

Outra comparação que este trabalho permite que seja feita é a avaliação do comportamento dos algoritmos quando se varia o tamanho da rede. Neste contexto destacam-se os resultados obtidos no cenário 4, mostrados no gráfico da Figura 5.3

Figura 5.3: Resultados de atraso do destino crítico em função do número de terminais da rede, para o cenário 4.

Este gráfico mostra claramente que o comportamento dos algoritmos não é uniforme para os diferentes tamanhos de rede. É evidente também que o desempenho dos algoritmos muda significativamente quando comparados entre si neste contexto. Isso é mais um ponto que mostra como a definição dos cenários adequados é importante para uma comparação justa, e posterior escolha adequada, dos algoritmos.

5.3 Comparação pelos Parâmetros Tecnológicos

A avaliação dos algoritmos dentro de cada tecnologia utilizada é um aspecto muito importante, já que mostra o desempenho destes algoritmos com o *scaling* tecnológico, sendo uma das informações mais importantes dentro do objetivo deste trabalho de avaliar os algoritmos em cenários comprometidos com o estado da arte.

Nos gráficos da Figura 5.4 e da Figura 5.5 vemos dois casos de comportamento do atraso do destino crítico para um mesmo tamanho de grade e camadas de metal diferentes (cenário 3 e cenário 2, respectivamente).

Mais uma vez fica evidente como a definição dos cenários influencia nos resultados obtidos. Vemos que, apesar dos algoritmos apresentarem, de uma forma geral, resultados muito similares, o desempenho deles comparados entre si é diferente para os dois cenários.

Este é, portanto, mais um fator que mostra a importância na definição de cenários coerentes e comprometidos com o estado da arte para este tipo de avaliação.

Figura 5.4: Atraso do destino crítico comparado pelos parâmetros tecnológicos (nm), para o cenário 3.

Figura 5.5: Atraso do destino crítico comparado pelos parâmetros tecnológicos (nm), para o cenário 2.

5.4 Avaliação dos Modelos de Atraso

Outra avaliação que pode ser obtida com os resultados deste trabalho é a comparação dos modelos de atraso com a simulação elétrica. A robustez e abrangência deste trabalho permitem que seja avaliado não só o comportamento da precisão dos modelos, mas também sua fidelidade na medição de atraso. Isso pode ser feito comparando o a classificação dos algoritmos por seu atraso SPICE e a classificação pelo atraso dos modelos.

Esse ponto é, como dito anteriormente, uma das principais motivações deste trabalho, já que as comparações disponíveis na literatura muitas vezes apresentam comparações baseadas em modelos de atraso.

Como podemos ver, os resultados resumidos apresentados na Figura 5.1 e na Figura 5.2 já indicam que os modelos de atraso não possuem uma fidelidade adequada para este tipo de avaliação.

Isso pode ser comprovado quando fazemos um ordenamento dos algoritmos pelo seu atraso calculado pelos modelos e por simulação elétrica. A

Tabela 5.7 mostra um exemplo dessa ordenação para um dos cenários definidos neste trabalho. Pelos resultados fica clara a grande diferença de posições do ordenamento.

Essa diferença mostra o aspecto da falta de fidelidade dos modelos de atraso no cálculo do atraso, invalidando seu uso para comparações de desempenho entre algoritmos, já que estes modelos não são capazes de fazer uma avaliação fidedigna para o atraso de um determinado terminal na rede de roteamento.

Cenário 3	(Ordenamento)
Algoritmo	Elmore	Twopole	HSPICE
BOI	9	9	8
BI1S	8	8	9
AMAZE-WL	7	7	3
GEOSTEINER	11	11	11
AMAZE-PL	10	10	10
A-TREE	4	4	4
AMAZE-share	1	1	2
АННК	5	5	6
SERT	6	6	7
AMAZE-CS	2	2	5
SERT-C	3	3	1

Tabela 5.7: Ordenamento dos algoritmos pelo atraso do destino crítico, para o cenário 3.

6 CONCLUSÕES

O objetivo deste trabalho foi realizar uma avaliação e comparação dos algoritmos de roteamento encontrados na literatura, segundo várias métricas de desempenho, com experimentos mais abrangentes no que diz respeito aos parâmetros de resistência e capacitância de tecnologias nanométricas [SAN2008b] e *cenários de interconexões* comprometidos com o estado da arte, permitindo também uma avaliação dos modelos pertinentes utilizados.

A metodologia usada neste trabalho foi definida de acordo com características de tecnologias e dispositivos comprometidas com o estado da arte. Estes dados utilizados formam um conjunto de cenários de experimentos que possibilita a avaliação dos algoritmos de roteamento de uma forma abrangente e que não é encontrada na literatura.

Os resultados obtidos mostraram que os algoritmos dirigidos a desempenho do caminho crítico apresentam os melhores desempenhos para o atraso deste caminho, na média dos resultados. Mas os resultados também mostram que o algoritmo AMAZE-share apresenta ótimo desempenho para os cenários 1 e 2, que possuem grade menor e parâmetros tecnológicos relacionados às camadas mais baixas de metal (parâmetros RC para camadas de metal intermediárias).

O algoritmo SERT-C apresentou, em média, os melhores resultados e também os mais consistentes, estando sempre nas duas primeiras posições do ordenamento utilizando os atrasos de caminho crítico. Entretanto, o comprometimento do atraso dos demais terminais da rede acaba deixando-o, em média, na sexta posição quando o critério é o maior atraso da rede, mas com uma diferença percentual muito pequena (atraso em torno de 4% maior) para o algoritmo melhor ordenado.

Considerando-se o maior atraso da rede, os algoritmos que apresentaram os melhores resultados foram AMAZE-share, SERT, AHHK e ATREE, com destaque para os dois primeiros, que, na maioria dos casos, apresentam médias de valores de atrasos muito similares.

Além disso, vimos que a avaliação anterior, de [ALP2006], não compreendia características de desempenho, constando apenas de uma avaliação de características topológicas das soluções geradas pelos algoritmos.

Com os resultados obtidos neste trabalho, fica claro e evidente que qualquer avaliação e comparação de algoritmos de roteamento é fundamentalmente afetada pelos cenários de interconexões sob os quais esta é feita. Por isso, o uso de cenários adequados, realistas e comprometidos com o estado da arte torna-se um dos principais pontos quando se quer realizar uma avaliação que realmente tenha significado prático.

Este trabalho também mostra que os modelos de atraso utilizados como estimativa no cálculo de atraso, e muito usados em comparações de desempenho entre algoritmos na literatura, não apresentam resultados confiáveis para este tipo de avaliação. Tais modelos apresentam diferenças muito significativas no ordenamento dos algoritmos de roteamento quando comparadas com o ordenamento feito com os resultados de simulação elétrica SPICE e, portanto, não podem ser utilizados como uma métrica confiável de comparação em cenários de interconexões comprometidos com o estado da arte.

REFERÊNCIAS

[ALP1995] Alpert; Hu; Huang; Kahng; Karger. **Prim-Dijkstra tradeoffs for improved performance-driven routing tree design**. IEEE Transactions on Computer-Aided Design, 1995.

[ALP2006] C. J. Alpert, A. B. Kahng, C. N. Sze, Q. Wang, Timing-driven Steiner trees are (practically) free, *Proc. DAC*, pp 389 - 392, July, 2006.

[BOE1995] K. D. Boese, A. B. Kahng, Mccoy; G. Robina. Near-optimal critical sink routing tree constructions. IEEE Trans. on CAD, 1995.

[BOR1994] BORAH; OWENS; IRWIN. An Edge-Based Heuristic for Steiner Routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1994.

[BOR1997] M. Borah; Owens; M. J. Irwin. A fast algorithm for minimizing the Elmore delay. IEEE Trans. on CAD, 1997.

[CON1991] Cong, J.; Kahng, A.B.; Robins, G.; Sarrafzadeh, M.; Wong, C. K. **Performance-driven global routing for cell based ICs**. In International Conference on Computer Design, 1991. **Proceedings...** 1991.

[CON1992a] Cong, J.; Kahng, A.B.; Robins, G.; Sarrafzadeh, M.; Wong, C. K. Provably Good Performance-Driven Global Routing. **IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems**, 1992.

[CON1992b] Cong, J.; Leung, K.S.; Zhou, D. **Performance-Driven Interconnect Design Based on Distributed RC Delay Model**. 1992. Tech. Report CSD-9200043 – UCLA Computer Science, Los Angeles, CA.

[CON1993] Cong, J.; Leung, K.S.;Zhou, D. Performance-Driven Interconnect Design Based on Distributed RC Delay Model. In: ACM/IEEE Design Automation Conference, 1993. Proceedings... 1993. p. 606-611, 1993.

[CON1994] Cong, J.; Leung, K.S. On The Construction of Optimal or Near-Optimal Steiner Arborescence. 1994. Tech. Report CSD-960033 – UCLA Computer Science, Los Angeles, CA.

[CON1997a] Cong; Kahng; Leung. Efficient algorithms for the minimum shortest path Steiner arborescence problem with applications to VLSI physical design. Manuscrito, 1997.

[CON1997b] Cong; Kahng; Leung. Efficient heuristics for the minimum shortest path Steiner arborescence problem with applications to VLSI physical design. In: IEEE/ACM International Symposium on Physical Design. Proceedings... 1997.

[CON1998] Cong; Kahng; Leung. Efficient algorithms for the minimum shortest path Steiner arborescence problem with applications to VLSI physical design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1998.

[CON2001] Cong, J.; Koh, C. K.; Madden, P. H. Interconnect Layout Optimization Under Higher Order RLC Model for MCM Designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 20, n. 12, Dez. 2001.

[ELM1948] W. C. Elmore, **The Transient Response Of Damped Linear Networks** with Particular Regard to Wideband Amplifiers, Journal of Applied Physics, 1948.

[GAN2005] Ganley, J. The Steiner Tree Page. http://ganley.org/steiner/intro.html. Acessado em junho de 2009.

[GEO1999] Zachariasen, M. Rectilinear Full Steiner Tree Generation. Networks 33, 125-143, 1999.

[HAN1966] Hannan; M.. On Steiner's Problem with Rectilinear Distance. J. SIAM Appl. Math, 1966.

[HEN2007] Hentschke; Narasimhan; Johann, Reis. Maze Routing Steiner Trees with Effective Critical Sink Optimization. ISPD, 2007.

[HOH2001] R. Ho; K. Mai; M. A. Horowitzs. **The Future of Wires**. Proceedings of the IEEE, Vol. 89, No. 4, Abril 2001.

[HWA1976] Hwang, F. K. On Steiner Minimal Trees with Rectilinear Distance. SIAM J. Appl. Path., 1976.

[ITRS2007] International Technology Roadmap for Semiconductors. http://www.itrs.net/

[KAH1992] Kahng; Robins. A New Class of Iterative Steiner Tree Heuristics with Good Performance. TCAD, 1992.

[KAH1994] Kahng, Robins. On Optimal Interconnects for VLSI. Kluwer, 1994.

[KAH1995] Kahng, Robins. On Optimal Interconnects for VLSI. Kluwer, 1995.

[KAS2000] C. V. Kashyap, C. J. Alpert, A. Devgan. An "effective" capacitance based delay metric for RC interconnect. ICCAD, San Jose, CA, 2000.

[LEU1996] Leung, Kwok-Shing; Cong, Jason. Fast Optimal Algorithms for the Minimum Rectilinear Steiner Arborescence problem. UCLA Computer Science Tech. Report CSD-9200043, Los Angeles, CA 90024, 1996 (Extended abstract published in, 1997).

[LEU1997] Leung, Kwok-Shing; Cong, Jason. Fast Optimal Algorithms for the Minimum Rectilinear Steiner Arborescence problem. In Proc. IEEE Int. Symp. Circuits Syst, 1997.

[LUD2007] Patrick Schmid, **IA-32 implementation - AMD K6 (K6, K6-2, and K6-III)**. February, 2007. <u>http://www.sandpile.org/impl/k6.htm</u>.

[PAT2006] Patrick Schmid, Game Over? Core 2 Duo Knocks Out Athlon 64: Core 2 Duo Is The New King. July, 2006. <u>http://www.tomshardware.com/reviews/core2-duo-knocks-Athlon-64,1282.html</u>.

[PIL1998] L. Pileggi. Timing metrics for physical design of deep submicron technologies. ISPD, Monterey, CA, p. 28 - 33, 1998.

[PRA1990] S. Prasitjutrakul, W.J. Kubitz. A timing-driven global router for custom chip design. ICCAD, 1990.

[RAB2003] J. M. Rabaey, A. Chandrakasan, B. Nikolic. **Digital Integrated Circuits - A Design Perspective**. Pearson Education, 2nd ed., 2003.

[RAO1992] S. K. Rao, P. Sadayappan, F. K. Hwang, P. W. Shor. **The Rectilinear Steiner Arborescence Problem**. In Algoritmica 7 1992.

[REI2009a] T. J. Reimann, G. B. V. Santos, R. A. L. Reis. An Analysis of Predictive Parameters for RC Interconnect Networks. Iberchip XV Workshop, 2009.

[REI2009b] T. J. Reimann, G. B. V. Santos, R. A. L. Reis. **EL-FI – On the Elmore** "Fidelity" under Nanoscale Technologies. XXIV SIM - 24th South Symposium on Microelectronics - Proceedings, 2009.

[REI2009c] T. J. Reimann, G. B. V. Santos, R. A. L. Reis. **On the Elmore "Fidelity" under Nanoscale Technologies**. 9th Microelectronics Students Forum - Chip on the Dunes, 2009.

[RUB1983] Rubinstein, J.; Penfield, P.; Horowitz, M.A.. Signal Delay in RC Tree Networks. IEEE Trans. on CAD 1983.

[SAN2006] G. B. V. Santos, M. O. Johann, R. A. L. Reis. Area Routing in Digital Integrated Circuits. Dissertação de Mestrado, UFRGS 2006.

[SAN2008a] G. B. V. Santos, M. O. Johann, R. A. L. Reis. Tight Integration in Physical Synthesis. PhD Forum, VLSISoC, 2008.

[SAN2008b] G. B. V. Santos. A Collection of Resistance and Capacitance Parameters' Sets towards RC Delay Modeling of Nanoscale Signal Networks. Technical Report/Trabalho Individual, Porto Alegre, Universidade Federal do Rio Grande do Sul, 2008.

[SAN2009] G. B. V. Santos, T. J. Reimann, M. O. Johann, R. A. L. Reis. On the Accuracy of Elmore-based Delay Models. ICECS, 2009

[SHI1999] Shi, Weiping; Su, Chen. The Rectilinear Steiner Arborescence is NP-Complete. University of Texas Tech. Report #N-99-001, July, 1999.

[WLS2005] 14th International Workshop on Logic & Synthesis Benchmarks, 2005. http://iwls.org/iwls2005/benchmarks.html.

[YIL2002] M. Yildiz, P. H. Madden. **Preferred Direction Steiner Trees**. IEEE Trans. Computer-Aided Design, vol. 21, Nov. 2002.

[ZAC1999] M. Zachariasen. Rectilinear full steiner tree generation. Networks, 33:125--133, 1999

[ZHO1992] Zhou D., Su S., Tsui F., Gao D. S., Cong J. Analysis of Trees of Transmission Lines, technical report UCLA CSD-920010, 1992.

[ZHO2004] Zhou. Efficient Steiner tree construction based on spanning graphs. TCAD, 2004.

APÊNDICE - TABELAS DE RESULTADOS

Resultados de atraso do destino crítico (em segundos) para 50 redes aleatórias para cada tamanho de rede.

Cenário 1	В	more - Criti	00	Тм	vopole - Orit	ico	H	SPICE - Críti	CO
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	2,307E-12	9,507E-10	1,555E-10	5,442E-12	2,243E-09	3,667E-10	2,152E-12	6,079E-10	1,129E-10
BI1S	2,307E-12	9,721E-10	1,539E-10	5,442E-12	2,294E-09	3,630E-10	2,152E-12	7,327E-10	1,119E-10
AMAZE-WL	2,307E-12	7,916E-10	1,551E-10	5,442E-12	1,868E-09	3,659E-10	2,152E-12	5,627E-10	1,120E-10
GEOSTEINER	2,307E-12	1,042E-09	1,776E-10	5,442E-12	2,458E-09	4,188E-10	2,286E-12	7,585E-10	1,352E-10
AMAZE-PL	2,307E-12	1,079E-09	1,710E-10	5,442E-12	2,547E-09	4,034E-10	2,152E-12	7,501E-10	1,240E-10
A-TREE	2,307E-12	8,153E-10	1,572E-10	5,442E-12	1,924E-09	3,707E-10	2,152E-12	5,945E-10	1,142E-10
AMAZE-share	2,307E-12	7,634E-10	1,538E-10	5,442E-12	1,802E-09	3,627E-10	2,152E-12	5,595E-10	1,111E-10
AHHK	2,307E-12	8,153E-10	1,584E-10	5,442E-12	1,924E-09	3,737E-10	2,152E-12	5,988E-10	1,152E-10
SERT	2,307E-12	8,590E-10	1,544E-10	5,442E-12	2,027E-09	3,642E-10	2,152E-12	5,836E-10	1,124E-10
AMAZE-CS	2,583E-12	9,699E-10	1,714E-10	6,096E-12	2,289E-09	4,043E-10	2,393E-12	6,185E-10	1,245E-10
SERT-C	2,307E-12	7,561 E-10	1,540E-10	5,442E-12	1,784E-09	3,633E-10	2,152E-12	5,582E-10	1,116E-10
Cenário 2	В	more - Criti	00	Τw	opole - Orit	ico	HSPICE-Or		CO
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	1,018E-11	2,697E-09	4,914E-10	2,402E-11	6,365E-09	1,160E-09	7,742E-12	1,938E-09	3,533E-10
BI1S	1,018E-11	2,745E-09	4,843E-10	2,402E-11	6,477E-09	1,143E-09	7,742E-12	2,076E-09	3,488E-10
AMAZE-WL	1,018E-11	2,596E-09	4,857E-10	2,402E-11	6,127E-09	1,146E-09	7,742E-12	1,845E-09	3,468E-10
GEOSTEINER	1,018E-11	2,894E-09	5,103E-10	2,402E-11	6,829E-09	1,204E-09	8,103E-12	2,071E-09	3,602E-10
AMAZE-PL	1,018E-11	3,755E-09	5,467E-10	2,402E-11	8,862E-09	1,290E-09	7,742E-12	2,636E-09	3,935E-10
A-TREE	1,018E-11	2,703E-09	4,887E-10	2,402E-11	6,378E-09	1,153E-09	7,742E-12	1,994E-09	3,547E-10
AMAZE-share	1,018E-11	2,624E-09	4,788E-10	2,402E-11	6,192E-09	1,130E-09	7,742E-12	1,848E-09	3,432E-10
AHHK	1,018E-11	2,703E-09	4,933E-10	2,402E-11	6,378E-09	1,164E-09	7,742E-12	1,974E-09	3,569E-10
SERT	1,018E-11	2,720E-09	4,834E-10	2,402E-11	6,419E-09	1,141E-09	7,742E-12	1,918E-09	3,491E-10
AMAZE-CS	1,418E-11	2,822E-09	5,376E-10	3,346E-11	6,659E-09	1,269E-09	1,046E-11	2,099E-09	3,901 E-10
SERT-C	1,018E-11	2,515E-09	4,801E-10	2,402E-11	5,935E-09	1,133E-09	7,742E-12	1,894E-09	3,423E-10
Cenário 3	В	more - Criti	00	Τw	/opole - Orit	ico	Н	SPICE - Críti	CO
Algoritmo	mín.	máx.	média	mín.	, máx.	média	mín.	máx.	média
BOI	3,761E-12	1,519E-09	2,002E-10	8,859E-12	3,582E-09	4,721E-10	3,397E-12	9,322E-10	1,388E-10
BI1S	3,761E-12	1,615E-09	1,980E-10	8,859E-12	3,808E-09	4,667E-10	3,397E-12	1,244E-09	1,389E-10
AMAZE-WL	3,761E-12	1,278E-09	1,925E-10	8,859E-12	3,017E-09	4,541E-10	3,397E-12	6,752E-10	1,306E-10
GEOSTEINER	3,761E-12	2,157E-09	2,299E-10	8,859E-12	5,088E-09	5,422E-10	3,594E-12	1,608E-09	1,685E-10
AMAZE-PL	3,761E-12	1,278E-09	2,003E-10	8,859E-12	3,015E-09	4,725E-10	3,397E-12	7,779E-10	1,393E-10
A-TREE	3,761E-12	1,066E-09	1,860E-10	8,859E-12	2,516E-09	4,387E-10	3,397E-12	6,377E-10	1,307E-10
AMAZE-share	3,761E-12	1,081E-09	1,851E-10	8,859E-12	2,551E-09	4,367E-10	3,397E-12	6,263E-10	1,285E-10
AHHK	3,761E-12	1,066E-09	1,870E-10	8,859E-12	2,516E-09	4,412E-10	3,397E-12	7,651E-10	1,322E-10
SERT	3,761E-12	1,202E-09	1,889E-10	8,859E-12	2,837E-09	4,455E-10	3,397E-12	8,783E-10	1,351E-10
AMAZE-CS	4,818E-12	9,750E-10	1,851E-10	1,137E-11	2,301E-09	4,369E-10	4,235E-12	6,548E-10	1,317E-10
SERT-C	3,761E-12	1,320E-09	1,853E-10	8,859E-12	3,093E-09	4,370E-10	3,397E-12	8,923E-10	1,247E-10

Cenário 4	E	lmore - aritio	00	Tw	opole - crit	iω	HSPICE - Crítico		
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	9,956E-11	3,111E-07	2,790E-08	2,316E-10	7,335E-07	6,562E-08	7,774E-11	1,624E-07	1,740E-08
BI1S	9,956E-11	3,476E-07	2,724E-08	2,316E-10	8,197E-07	6,401E-08	7,774E-11	2,606E-07	1,801E-08
AMAZE-WL	9,956E-11	1,981E-07	2,369E-08	2,316E-10	4,672E-07	5,574E-08	7,774E-11	1,150E-07	1,237E-08
GEOSTEINER	9,956E-11	3,496E-07	2,770E-08	2,316E-10	8,243E-07	6,516E-08	9,604E-11	1,135E-07	1,280E-08
AMAZE-PL	9,956E-11	1,398E-07	1,931E-08	2,316E-10	3,300E-07	4,551E-08	7,774E-11	7,046E-08	1,041E-08
A-TREE	9,956E-11	1,281E-07	1,871E-08	2,316E-10	3,023E-07	4,411E-08	7,774E-11	7,783E-08	1,138E-08
AMAZE-share	9,956E-11	1,163E-07	1,775E-08	2,316E-10	2,743E-07	4,184E-08	7,774E-11	7,046E-08	1,013E-08
AHHK	9,956E-11	1,124E-07	1,863E-08	2,316E-10	2,639E-07	4,389E-08	7,774E-11	8,709E-08	1,195E-08
SERT	9,956E-11	7,975E-08	1,428E-08	2,316E-10	1,882E-07	3,361E-08	7,774E-11	6,204E-08	1,013E-08
AMAZE-CS	1,031E-10	7,683E-08	1,070E-08	2,434E-10	1,813E-07	2,525E-08	7,821E-11	5,108E-08	7,936E-09
SERT-C	9,956E-11	7,698E-08	1,069E-08	2,316E-10	1,817E-07	2,522E-08	7,774E-11	6,670E-08	7,389E-09

Resultados de atraso do destino crítico (em segundos) para redes aleatórias distribuídas proporcionalmente para cada tamanho de rede.

Cenário 1	8	more - Criti	œ	Τw	/opole-Orit	ico	H	SPICE - Críti	CO
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	2,307E-12	8,096E-10	8,857E-11	5,442E-12	1,911E-09	2,088E-10	2,152E-12	6,079E-10	6,517E-11
BI1S	2,307E-12	7,974E-10	8,802E-11	5,442E-12	1,882E-09	2,075E-10	2,152E-12	6,000E-10	6,474E-11
AMAZE-WL	2,307E-12	7,478E-10	8,828E-11	5,442E-12	1,765E-09	2,081E-10	2,152E-12	5,512E-10	6,474E-11
GEOSTEINER	2,307E-12	1,020E-09	9,758E-11	5,442E-12	2,406E-09	2,300E-10	2,286E-12	7,306E-10	8,055E-11
AMAZE-PL	2,307E-12	8,996E-10	9,151E-11	5,442E-12	2,123E-09	2,157E-10	2,152E-12	6,475E-10	6,729E-11
A-TREE	2,307E-12	7,909E-10	8,857E-11	5,442E-12	1,866E-09	2,088E-10	2,152E-12	5,801E-10	6,513E-11
AMAZE-share	2,307E-12	7,541E-10	8,786E-11	5,442E-12	1,780E-09	2,071E-10	2,152E-12	5,462E-10	6,432E-11
AHHK	2,307E-12	8,072E-10	8,935E-11	5,442E-12	1,905E-09	2,106E-10	2,152E-12	5,954E-10	6,566E-11
SERT	2,307E-12	7,505E-10	8,800E-11	5,442E-12	1,771E-09	2,075E-10	2,152E-12	5,749E-10	6,481E-11
AMAZE-CS	2,583E-12	9,699E-10	1,047E-10	6,096E-12	2,289E-09	2,469E-10	2,393E-12	5,947E-10	7,643E-11
SERT-C	2,307E-12	7,561 E-10	8,787E-11	5,442E-12	1,784E-09	2,071E-10	2,152E-12	5,480E-10	6,448E-11
Cenário 2	В	more - Criti	00	Τw	opole - Orit	ico	H	SPICE - Críti	CO
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	1,018E-11	2,551 E-09	3,014E-10	2,402E-11	6,020E-09	7,111E-10	7,742E-12	1,938E-09	2,177E-10
BI1S	1,018E-11	2,521 E-09	2,987E-10	2,402E-11	5,951E-09	7,048E-10	7,742E-12	1,917E-09	2,155E-10
AMAZE-WL	1,018E-11	2,446E-09	2,979E-10	2,402E-11	5,772E-09	7,030E-10	7,742E-12	1,790E-09	2,139E-10
GEOSTEINER	1,018E-11	2,641 E-09	3,103E-10	2,402E-11	6,234E-09	7,322E-10	8,103E-12	1,859E-09	2,258E-10
AMAZE-PL	1,018E-11	2,976E-09	3,106E-10	2,402E-11	7,024E-09	7,329E-10	7,742E-12	2,178E-09	2,241E-10
A-TREE	1,018E-11	2,618E-09	2,979E-10	2,402E-11	6,179E-09	7,031E-10	7,742E-12	1,931E-09	2,152E-10
AMAZE-share	1,018E-11	2,419E-09	2,960E-10	2,402E-11	5,708E-09	6,985E-10	7,742E-12	1,746E-09	2,119E-10
AHHK	1,018E-11	2,618E-09	3,009E-10	2,402E-11	6,179E-09	7,100E-10	7,742E-12	1,927E-09	2,165E-10
SERT	1,018E-11	2,460E-09	2,979E-10	2,402E-11	5,807E-09	7,028E-10	7,742E-12	1,810E-09	2,154E-10
AMAZE-CS	1,418E-11	2,618E-09	3,578E-10	3,346E-11	6,177E-09	8,445E-10	1,046E-11	1,992E-09	2,565E-10
SERT-C	1,018E-11	2,412E-09	2,960E-10	2,402E-11	5,692E-09	6,984E-10	7,742E-12	1,856E-09	2,120E-10
Cenário 3	В	more - Criti	œ	Τw	opole - Orit	ico	H	SPICE - Críti	0
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	3,761E-12	1,265E-09	1,153E-10	8,859E-12	2,985E-09	2,719E-10	3,397E-12	9,322E-10	8,322E-11
BI1S	3,761E-12	1,279E-09	1,142E-10	8,859E-12	3,018E-09	2,692E-10	3,397E-12	9,153E-10	8,228E-11
AMAZE-WL	3,761E-12	1,173E-09	1,115E-10	8,859E-12	2,767E-09	2,629E-10	3,397E-12	5,806E-10	7,921E-11
GEOSTEINER	3,761E-12	1,663E-09	1,281E-10	8,859E-12	3,925E-09	3,021E-10	3,594E-12	1,189E-09	1,021E-10
AMAZE-PL	3,761E-12	1,132E-09	1,127E-10	8,859E-12	2,672E-09	2,659E-10	3,397E-12	6,693E-10	8,117E-11
A-TREE	3,761E-12	1,038E-09	1,095E-10	8,859E-12	2,449E-09	2,584E-10	3,397E-12	6,199E-10	7,871E-11
AMAZE-share	3,761E-12	9,695E-10	1,092E-10	8,859E-12	2,288E-09	2,576E-10	3,397E-12	5,701E-10	7,794E-11
AHHK	3,761E-12	1,038E-09	1,101E-10	8,859E-12	2,449E-09	2,598E-10	3,397E-12	6,689E-10	7,906E-11
SERT	3,761E-12	1,202E-09	1,115E-10	8,859E-12	2,837E-09	2,630E-10	3,397E-12	8,783E-10	8,074E-11
AMAZE-CS	4,818E-12	8,842E-10	1,176E-10	1,137E-11	2,087E-09	2,776E-10	4,235E-12	6,225E-10	8,485E-11
SERT-C	3,761E-12	1,320E-09	1,109E-10	8,859E-12	3,093E-09	2,615E-10	3,397E-12	8,923E-10	7,807E-11

Cenário 4	В	Emore - Critico			vopole - Orit	ico	HSPICE - Crítico			
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média	
BOI	9,956E-11	2,132E-07	1,788E-08	2,316E-10	5,031E-07	4,213E-08	7,774E-11	1,602E-07	1,244E-08	
BI1S	9,956E-11	2,074E-07	1,734E-08	2,316E-10	4,894E-07	4,081E-08	7,774E-11	1,541E-07	1,183E-08	
AMAZE-WL	9,956E-11	1,722E-07	1,577E-08	2,316E-10	4,063E-07	3,714E-08	7,774E-11	7,164E-08	9,985E-09	
GEOSTEINER	9,956E-11	2,055E-07	1,796E-08	2,316E-10	4,851E-07	4,231E-08	9,891E-11	8,987E-08	9,405E-09	
AMAZE-PL	9,956E-11	1,066E-07	1,481E-08	2,316E-10	2,515E-07	3,491E-08	7,774E-11	5,145E-08	9,680E-09	
A-TREE	9,956E-11	9,341 E-08	1,451E-08	2,316E-10	2,205E-07	3,421E-08	7,774E-11	5,145E-08	9,544E-09	
AMAZE-share	9,956E-11	6,795E-08	1,413E-08	2,316E-10	1,604E-07	3,330E-08	7,774E-11	4,943E-08	7,934E-09	
AHHK	9,956E-11	9,341 E-08	1,443E-08	2,316E-10	2,205E-07	3,401E-08	7,774E-11	5,129E-08	9,599E-09	
SERT	9,956E-11	6,795E-08	1,176E-08	2,316E-10	1,604E-07	2,768E-08	7,774E-11	5,129E-08	8,455E-09	
AMAZE-CS	1,031E-10	6,929E-08	9,957E-09	2,434E-10	1,635E-07	2,350E-08	7,845E-11	5,274E-08	7,456E-09	
SERT-C	9,956E-11	6,929E-08	9,950E-09	2,316E-10	1,635E-07	2,348E-08	7,774E-11	5,258E-08	7,163E-09	

Características topológicas (em μ m) para 50 redes aleatórias para cada tamanho de rede.

Cenário 1		Raio		W	irelength To	tal	Distâ	nciaFonte-0	Crítico
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	3	1794	237,52	3	2853	390,91	1	1537	142,78
BI1S	3	1909	234,05	3	2754	384,88	1	1699	140,52
AMAZE-WL	3	1716	225,47	3	2952	394,17	1	1004	119,82
GEOSTEINER	3	1909	231,85	3	2747	383,58	1	1699	140,70
AMAZE-PL	3	1034	195,84	3	4883	465,03	1	1004	119,82
A-TREE	3	1034	195,84	3	3279	408,08	1	1004	119,82
AMAZE-share	3	1351	216,62	3	3156	391,35	1	1126	130,15
AHHK	3	1034	196,69	3	3279	413,21	1	1004	120,43
SERT	3	1683	223,99	3	2885	390,78	1	1492	135,23
AMAZE-CS	3	1912	228,75	4	3513	476,05	1	1004	119,82
SERT-C	3	1750	225,98	3	2926	391,43	1	1004	119,82
Cenário 2		Raio		W	irelength To	tal	Distâ	nciaFonte-0	Crítico
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	30	7172	953,31	30	11453	1570,69	3	6211	571,77
BI1S	30	7621	938,83	30	11155	1545,80	3	6773	565,14
AMAZE-WL	30	6944	906,76	30	11939	1583,42	3	4057	480,92
GEOSTEINER	30	7715	930,48	30	11112	1540,56	3	6867	565,37
AMAZE-PL	30	4183	786,41	30	20195	1875,34	3	4057	480,92
A-TREE	30	4183	786,41	30	13251	1639,23	3	4057	480,92
AMAZE-share	30	5315	836,52	30	12505	1583,69	3	4283	506,83
AHHK	30	4183	789,97	30	13251	1658,68	3	4057	483,43
SERT	30	5315	874,08	30	12195	1576,80	3	4911	531,46
AMAZE-CS	32	7720	917,62	45	14203	1912,94	3	4057	480,92
SERT-C	30	7084	906,42	30	11998	1575,82	3	4057	480,92
Cenário 3		Raio		W	irelength To	tal	Distâ	nciaFonte-0	Crítico
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	30	7172	953,31	30	11453	1570,69	3	6211	571,77
BI1S	30	7621	938,83	30	11155	1545,80	3	6773	565,14
AMAZE-WL	30	6944	906,76	30	11939	1583,42	3	4057	480,92
GEOSTEINER	30	7715	930,48	30	11112	1540,56	3	6867	565,37
AMAZE-PL	30	4183	786,41	30	20195	1875,34	3	4057	480,92
A-TREE	30	4183	786,41	30	13251	1639,23	3	4057	480,92
AMAZE-share	30	4183	799,47	30	14328	1641,13	3	4057	489,61
AHHK	30	4183	789,97	30	13251	1658,68	3	4057	483,43
SERT	30	4491	817,80	30	15327	1674,03	3	4121	502,65
AMAZE-CS	32	7720	917,62	45	14203	1912,94	3	4057	480,92
SERT-C	30	7240	897,38	30	14167	1713,92	3	4057	480,92

Cenário 4		Raio		W	/irelength To	otal	Distâ	nciaFonte-0	Crítico
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	2464	43185	18568,66	2464	68720	30569,63	252	37266	11139,25
BI1S	2464	45722	18271,30	2464	66940	30077,70	252	40636	11025,38
AMAZE-WL	2464	41645	17651,95	2464	71623	30820,16	252	24348	9357,78
GEOSTEINER	2464	46288	18118,04	2464	66668	29976,50	252	41202	11015,81
AMAZE-PL	2464	25099	15302,19	2464	121139	36530,03	252	24348	9357,78
A-TREE	2464	25099	15302,19	2464	79490	31898,47	252	24348	9357,78
AMAZE-share	2464	25099	15358,56	2464	105766	33498,52	252	24348	9418,69
AHHK	2464	25099	15375,60	2464	79490	32269,63	252	24348	9407,80
SERT	2464	25099	15303,89	2464	200980	52728,96	252	24348	9365,09
AMAZE-CS	2464	46334	17852,97	3468	85214	37240,75	252	24348	9357,78
SERT-C	2464	43448	17760,94	2464	84995	37131,74	252	24348	9357,78

Características topológicas (em μ m) para 50 redes aleatórias distribuídas proporcionalmente para cada tamanho de rede.

Cenário 1	Raio			W	irelength To	tal	Distância Fonte-Orítico		
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	3	1539	185,27	3	2772	247,95	1	1126	131,91
BI1S	3	1539	183,93	3	2727	246,11	1	1163	129,35
AMAZE-WL	3	1539	180,70	3	2846	248,85	1	968	120,82
GEOSTEINER	3	1377	183,14	3	2714	245,82	1	1131	130,67
AMAZE-PL	3	1034	172,15	3	3706	263,67	1	968	120,82
A-TREE	3	1034	172,15	3	3126	251,59	1	968	120,82
AMAZE-share	3	1163	178,84	3	2856	247,56	1	1126	125,32
AHHK	3	1034	172,25	3	3238	254,81	1	968	120,91
SERT	3	1211	179,35	3	2885	247,23	1	1126	125,51
AMAZE-CS	3	1353	181,59	4	3285	323,21	1	968	120,82
SERT-C	3	1455	180,49	3	2733	247,69	1	968	120,82
Cenário 2		Raio		W	irelength To	tal	Distâ	nciaFonte-0	Drítico
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	30	6224	743,71	30	11207	995,71	3	4551	528,27
BI1S	30	6224	739,24	30	10970	988,42	3	4431	518,89
AMAZE-WL	30	6224	724,93	30	11498	999,10	3	3911	484,71
GEOSTEINER	30	5562	735,21	30	10970	987,27	3	4574	524,41
AMAZE-PL	30	4183	691,44	30	14990	1060,50	3	3911	484,71
A-TREE	30	4183	691,44	30	12638	1010,47	3	3911	484,71
AMAZE-share	30	4452	706,56	30	11951	997,27	3	4283	496,89
AHHK	30	4183	691,81	30	13083	1022,99	3	3911	485,08
SERT	30	4898	712,25	30	11714	995,35	3	4283	501,21
AMAZE-CS	32	5470	727,50	45	13274	1297,77	3	3911	484,71
SERT-C	30	5880	725,14	30	11248	995,53	3	3911	484,71
Cenário 3		Raio		W	irelength To	tal	Distâ	nciaFonte-0	Drítico
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	30	6224	743,71	30	11207	995,71	3	4551	528,27
BI1S	30	6224	739,24	30	10970	988,42	3	4431	518,89
AMAZE-WL	30	6224	724,93	30	11498	999,10	3	3911	484,71
GEOSTEINER	30	5562	735,21	30	10970	987,27	3	4574	524,41
AMAZE-PL	30	4183	691,44	30	14990	1060,50	3	3911	484,71
A-TREE	30	4183	691,44	30	12638	1010,47	3	3911	484,71
AMAZE-share	30	4183	695,18	30	13383	1015,16	3	3911	487,66
AHHK	30	4183	691,81	30	13083	1022,99	3	3911	485,08
SERT	30	4247	702,30	30	13842	1031,32	3	3911	492,36
AMAZE-CS	32	5470	727,50	45	13274	1297,77	3	3911	484,71
SERT-C	30	5590	722,89	30	13144	1082,95	3	3911	484,71

Cenário 4		Raio		W	irelength To	tal	Distâ	nciaFonte-0	Crítico
Algoritmo	mín.	máx.	média	mín.	máx.	média	mín.	máx.	média
BOI	2464	37351	14478,23	2464	67239	19374,18	252	27310	10295,31
BI1S	2464	37351	14374,59	2464	65884	19232,61	252	26582	10093,90
AMAZE-WL	2464	37351	14110,20	2464	68464	19444,15	252	23464	9431,63
GEOSTEINER	2464	33372	14303,24	2464	65829	19210,32	252	27440	10203,84
AMAZE-PL	2464	25099	13454,26	2464	87700	20626,73	252	23464	9431,63
A-TREE	2464	25099	13454,26	2464	75830	19661,71	252	23464	9431,63
AMAZE-share	2464	25099	13491,58	2464	80304	20011,18	252	23464	9433,67
AHHK	2464	25099	13461,48	2464	78510	19901,78	252	23464	9439,55
SERT	2464	25099	13454,60	2464	176134	28212,78	252	23464	9432,02
AMAZE-CS	2464	32814	14146,06	3468	79653	25259,53	252	23464	9431,63
SERT-C	2464	32814	14046,19	2464	78870	25167,29	252	23464	9431,63

Resultados de maior atraso da rede (em segundos) e ordenamento para 50 redes aleatórias para cada tamanho de rede.

Emore - Máximo			Iwo	opole - Máxi	mo	Ordenamento	
mín.	máx.	média	mín.	máx.	média	Elmore	Twopole
2,313E-12	9,958E-10	1,587E-10	5,458E-12	2,350E-09	3,745E-10	6	6
2,313E-12	9,765E-10	1,569E-10	5,458E-12	2,304E-09	3,704E-10	3	3
2,313E-12	9,057E-10	1,586E-10	5,458E-12	2,138E-09	3,742E-10	5	5
2,313E-12	1,059E-09	1,808E-10	5,458E-12	2,499E-09	4,267E-10	11	11
2,313E-12	1,082E-09	1,733E-10	5,458E-12	2,554E-09	4,090E-10	9	9
2,313E-12	8,170E-10	1,593E-10	5,458E-12	1,928E-09	3,760E-10	7	7
2,313E-12	7,639E-10	1,563E-10	5,458E-12	1,803E-09	3,688E-10	1	1
2,313E-12	8,170E-10	1,604E-10	5,458E-12	1,928E-09	3,787E-10	8	8
2,313E-12	8,710E-10	1,569E-10	5,458E-12	2,055E-09	3,703E-10	2	2
2,591E-12	1,487E-09	1,784E-10	6,115E-12	3,508E-09	4,209E-10	10	10
2,313E-12	9,013E-10	1,577E-10	5,458E-12	2,127E-09	3,721E-10	4	4
	mín. 313E-12 313E-12 313E-12 313E-12 313E-12 313E-12 313E-12 313E-12 313E-12 313E-12 313E-12 313E-12 313E-12 313E-12	mín. máx ,313E12 9,958E10 ,313E12 9,765E10 ,313E12 9,057E10 ,313E12 1,059E09 ,313E12 1,082E09 ,313E12 8,170E10 ,313E12 8,013E10 ,313E12 8,013E10	mín. máx média ,313E12 9,958E10 1,587E-10 ,313E12 9,765E10 1,569E-10 ,313E12 9,057E10 1,586E-10 ,313E12 1,059E-09 1,808E-10 ,313E12 1,059E-09 1,733E-10 ,313E12 1,082E-09 1,733E-10 ,313E12 8,170E-10 1,563E-10 ,313E12 8,170E-10 1,563E-10 ,313E12 8,170E-10 1,563E-10 ,313E12 8,170E-10 1,563E-10 ,313E12 8,170E-10 1,569E-10 ,313E12 8,170E-10 1,569E-10 ,313E12 8,710E-10 1,569E-10 ,313E12 8,710E-10 1,569E-10 ,313E12 9,013E-10 1,577E-10	mín. máx média mín. ,313E12 9,958E10 1,587E10 5,458E12 ,313E12 9,765E10 1,569E10 5,458E12 ,313E12 9,057E10 1,586E10 5,458E12 ,313E12 9,057E10 1,586E10 5,458E12 ,313E12 1,059E09 1,808E10 5,458E12 ,313E12 1,082E09 1,733E10 5,458E12 ,313E12 8,170E10 1,593E10 5,458E12 ,313E12 8,170E10 1,563E10 5,458E12 ,313E12 8,170E10 1,604E10 5,458E12 ,313E12 8,170E10 1,604E10 5,458E12 ,313E12 8,170E10 1,604E10 5,458E12 ,313E12 8,710E10 1,569E10 5,458E12 ,313E12 8,710E10 1,569E10 5,458E12 ,313E12 9,013E10 1,577E10 5,458E12 ,313E12 9,013E10 1,577E-10 5,458E12	mín. máx média mín. máx. ,313E12 9,958E10 1,587E-10 5,458E-12 2,350E-09 ,313E12 9,765E10 1,569E-10 5,458E-12 2,304E-09 ,313E12 9,057E-10 1,569E-10 5,458E-12 2,304E-09 ,313E12 9,057E-10 1,586E-10 5,458E-12 2,138E-09 ,313E12 1,059E-09 1,808E-10 5,458E-12 2,499E-09 ,313E12 1,082E-09 1,733E-10 5,458E-12 2,554E-09 ,313E12 8,170E-10 1,563E-10 5,458E-12 1,928E-09 ,313E12 8,170E-10 1,563E-10 5,458E-12 1,928E-09 ,313E12 8,170E-10 1,563E-10 5,458E-12 1,928E-09 ,313E-12 8,170E-10 1,569E-10 5,458E-12 1,928E-09 ,313E-12 8,710E-10 1,569E-10 5,458E-12 2,055E-09 ,313E-12 8,710E-10 1,784E-10 6,115E-12 3,508E-09 ,313E-12 9,013E-10 1,577E-10	mín.máxmédiamín.máx.média313E129,958E101,587E-105,458E122,350E-093,745E10313E129,765E101,569E-105,458E122,304E-093,704E10313E129,057E101,586E-105,458E122,138E-093,742E10313E121,059E-091,808E-105,458E122,499E-094,267E10313E121,082E-091,733E-105,458E122,554E-094,090E10313E128,170E101,593E-105,458E121,928E-093,760E10313E128,170E101,563E-105,458E121,928E-093,787E10313E128,170E101,604E-105,458E121,928E-093,787E10313E128,170E101,604E-105,458E122,055E-093,703E10313E128,170E101,604E-105,458E122,055E-093,703E10313E128,170E101,569E-105,458E122,055E-093,703E10313E128,170E101,569E-105,458E122,055E-093,703E10313E129,013E101,577E-105,458E122,127E-093,721E10	mín. máx média mín. máx. média Elmore 313E12 9,958E10 1,587E-10 5,458E-12 2,350E-09 3,745E-10 6 313E12 9,958E10 1,587E-10 5,458E-12 2,304E-09 3,704E-10 3 313E12 9,057E-10 1,569E-10 5,458E-12 2,304E-09 3,704E-10 3 313E12 9,057E-10 1,586E-10 5,458E-12 2,499E-09 3,742E-10 5 313E12 1,059E-09 1,808E-10 5,458E-12 2,554E-09 4,090E-10 9 313E12 1,082E-09 1,733E-10 5,458E-12 1,928E-09 3,760E-10 7 313E12 8,170E-10 1,563E-10 5,458E-12 1,928E-09 3,760E-10 7 313E12 8,170E-10 1,563E-10 5,458E-12 1,928E-09 3,787E-10 8 313E12 8,170E-10 1,604E-10 5,458E-12 2,055E-09 3,703E-10 2 313E12 8,710E-10 1,569E-10 <t< td=""></t<>

Cenário 2	Br	nore - Máxiı	no	Tw	opole - Máxi	imo	Ordena	amento
Algoritmo	mín.	máx.	média	mín.	máx.	média	Elmore	Twopole
BOI	1,034E-11	2,839E-09	5,173E-10	2,441E-11	6,699E-09	1,221E-09	8	8
BI1S	1,034E-11	2,750E-09	5,087E-10	2,441E-11	6,491E-09	1,200E-09	4	4
AMAZE-WL	1,034E-11	2,732E-09	5,132E-10	2,441E-11	6,446E-09	1,211E-09	7	7
GEOSTEINER	1,034E-11	2,900E-09	5,350E-10	2,441E-11	6,843E-09	1,263E-09	9	9
AMAZE-PL	1,034E-11	3,808E-09	5,655E-10	2,441E-11	8,987E-09	1,335E-09	10	10
A-TREE	1,034E-11	2,725E-09	5,066E-10	2,441E-11	6,431E-09	1,196E-09	3	3
AMAZE-share	1,034E-11	2,641E-09	4,983E-10	2,441E-11	6,234E-09	1,176E-09	1	1
AHHK	1,034E-11	2,729E-09	5,100E-10	2,441E-11	6,440E-09	1,204E-09	6	6
SERT	1,034E-11	2,725E-09	5,027E-10	2,441E-11	6,430E-09	1,186E-09	2	2
AMAZE-CS	1,458E-11	3,162E-09	5,919E-10	3,440E-11	7,462E-09	1,397E-09	11	11
SERT-C	1,034E-11	2,715E-09	5,092E-10	2,441E-11	6,408E-09	1,202E-09	5	5

Cenário 3	Βr	nore - Máxiı	no	Two	opole - Máx	imo	Ordena	amento
Algoritmo	mín.	máx.	média	mín.	máx.	média	Elmore	Twopole
BOI	3,833E-12	1,629E-09	2,247E-10	9,045E-12	3,844E-09	5,303E-10	9	9
BI1S	3,833E-12	1,626E-09	2,210E-10	9,045E-12	3,837E-09	5,216E-10	8	8
AMAZE-WL	3,833E-12	1,553E-09	2,185E-10	9,045E-12	3,665E-09	5,156E-10	6	6
GEOSTEINER	3,833E-12	2,172E-09	2,556E-10	9,045E-12	5,127E-09	6,031E-10	11	11
AMAZE-PL	3,833E-12	1,378E-09	2,172E-10	9,045E-12	3,252E-09	5,125E-10	5	5
A-TREE	3,833E-12	1,134E-09	2,022E-10	9,045E-12	2,676E-09	4,773E-10	2	2
AMAZE-share	3,833E-12	1,145E-09	2,018E-10	9,045E-12	2,702E-09	4,763E-10	1	1
AHHK	3,833E-12	1,134E-09	2,023E-10	9,045E-12	2,676E-09	4,774E-10	3	3
SERT	3,833E-12	1,237E-09	2,038E-10	9,045E-12	2,919E-09	4,809E-10	4	4
AMAZE-CS	4,962E-12	1,707E-09	2,367E-10	1,171E-11	4,028E-09	5,585E-10	10	10
SERT-C	3,833E-12	1,630E-09	2,195E-10	9,045E-12	3,847E-09	5,180E-10	7	7
Cenário 4	Br	nore - Máxir	no	Two	opole - Máx	imo	Ordena	amento
Cenário 4 Algoritmo	日r min	nore - Máxiı max	mo média	Two min	opole - Máx max	imo média	Ordena Elmore	amento Twopole
Cenário 4 Algoritmo BOI	日r min 1,141臣10	nore - Máxir max 3,508E-07	no média 4,019E-08	Two min 2,692E-10	opole - Máx max 8,280E-07	imo média 9,484E-08	Ordena Elmore 11	amento Twopole 11
Cenário 4 Algoritmo BOI BI1S	日r min 1,141E-10 1,141E-10	nore - Máxir max 3,508E-07 3,509E-07	mo média 4,019E-08 3,866E-08	Two min 2,692E-10 2,692E-10	opole - Máx max 8,280E-07 8,280E-07	mo média 9,484E-08 9,124E-08	Ordena Elmore 11 9	amento Twopole 11 9
Cenário 4 Algoritmo BOI BI1S AMAZE-WL	Br min 1,141E10 1,141E10 1,141E10	nore - Máxir max 3,508E-07 3,509E-07 3,107E-07	mo média 4,019E-08 3,866E-08 3,667E-08	Two min 2,692E-10 2,692E-10 2,692E-10	opole - Máx max 8,280E-07 8,280E-07 7,332E-07	mo média 9,484E-08 9,124E-08 8,653E-08	Ordena Elmore 11 9 8	amento Twopole 11 9 8
Cenário 4 Algoritmo BOI BI1S AMAZE-WL GEOSTEINER	Br min 1,141E10 1,141E10 1,141E10 1,141E10	nore - Máxii max 3,508E-07 3,509E-07 3,107E-07 3,528E-07	mo média 4,019E-08 3,866E-08 3,667E-08 3,880E-08	Two min 2,692E-10 2,692E-10 2,692E-10 2,692E-10	pole - Máx max 8,280E-07 8,280E-07 7,332E-07 8,327E-07	mo média 9,484E-08 9,124E-08 8,653E-08 9,156E-08	Ordena Elmore 11 9 8 10	Twopole 11 9 8 10
Cenário 4 Algoritmo BOI BI1S AMAZE-WL GEOSTEINER AMAZE-FL	Br min 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10	nore - Máxii max 3,508E-07 3,509E-07 3,107E-07 3,528E-07 1,669E-07	no média 4,019E-08 3,866E-08 3,667E-08 3,880E-08 2,835E-08	Two min 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10	pole - Máx max 8,280E-07 8,280E-07 7,332E-07 8,327E-07 3,939E-07	mo média 9,484E-08 9,124E-08 8,653E-08 9,156E-08 6,691E-08	Ordena Elmore 11 9 8 10 5	Twopole 11 9 8 10 5
Cenário 4 Algoritmo BOI BI1S AMAZE-WL GEOSTEINER AMAZE-RL A-TREE	Br min 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10	nore - Máxir max 3,508E-07 3,509E-07 3,107E-07 3,528E-07 1,669E-07 1,345E-07	mo média 4,019E-08 3,866E-08 3,667E-08 3,880E-08 2,835E-08 2,726E-08	Two min 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10	pole - Máx max 8,280E-07 8,280E-07 7,332E-07 8,327E-07 3,939E-07 3,175E-07	mo média 9,484E-08 9,124E-08 8,653E-08 9,156E-08 6,691E-08 6,433E-08	Ordena Elmore 11 9 8 10 5 4	Twopole 11 9 8 10 5 4
Cenário 4 Algoritmo BOI BI1S AMAZE-WL GEOSTEINER AMAZE-FL A-TREE AMAZE-share	Br min 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10	nore - Máxir max 3,508E-07 3,509E-07 3,528E-07 1,669E-07 1,345E-07 1,399E-07	mo média 4,019E-08 3,866E-08 3,667E-08 3,880E-08 2,835E-08 2,726E-08 2,610E-08	Two min 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10	pole - Máx max 8,280E-07 8,280E-07 7,332E-07 8,327E-07 3,939E-07 3,175E-07 3,303E-07	mo média 9,484E08 9,124E08 8,653E08 9,156E08 6,691E08 6,433E08 6,161E08	Ordena Elmore 11 9 8 10 5 4 2	Twopole 11 9 8 10 5 4 2
Cenário 4 Algoritmo BOI BI1S AMAZE-WL GEOSTEINER AMAZE-RL A-TREE AMAZE-share AHHK	Br min 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10	nore - Máxii max 3,508E-07 3,509E-07 3,528E-07 1,669E-07 1,345E-07 1,345E-07 1,345E-07	mo média 4,019E-08 3,866E-08 3,860E-08 3,880E-08 2,835E-08 2,726E-08 2,610E-08 2,655E-08	Two min 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10	pole - Máx max 8,280E-07 8,280E-07 7,332E-07 8,327E-07 3,939E-07 3,175E-07 3,175E-07	mo média 9,484E-08 9,124E-08 8,653E-08 9,156E-08 6,691E-08 6,433E-08 6,161E-08 6,267E-08	Ordena Elmore 11 9 8 10 5 4 2 3	amento Twopole 11 9 8 10 5 4 2 3
Cenário 4 Algoritmo BOI BI1S AMAZE-WL GEOSTEINER AMAZE-FL A-TREE AMAZE-share AHHK SERT	Br min 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10	nore - Máxii max 3,508E-07 3,509E-07 3,528E-07 1,669E-07 1,345E-07 1,345E-07 1,345E-07 8,761E-08	mo média 4,019E-08 3,866E-08 3,667E-08 3,880E-08 2,835E-08 2,726E-08 2,610E-08 2,655E-08 2,200E-08	Two min 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10	pole - Máx max 8,280E-07 8,280E-07 7,332E-07 8,327E-07 3,939E-07 3,175E-07 3,303E-07 3,175E-07 2,068E-07	mo média 9,484E-08 9,124E-08 8,653E-08 9,156E-08 6,691E-08 6,433E-08 6,161E-08 6,267E-08 5,191E-08	Ordena Elmore 11 9 8 10 5 4 2 3 1	amento Twopole 11 9 8 10 5 4 2 3 1
Cenário 4 Algoritmo BOI BI1S AMAZE-WL GEOSTEINER AMAZE-RL A-TREE AMAZE-share AHHK SERT AMAZE-CS	Br min 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,141E10 1,265E10	nore - Máxii max 3,508E-07 3,509E-07 3,528E-07 1,669E-07 1,345E-07 1,345E-07 1,345E-07 8,761E-08 3,429E-07	no média 4,019E-08 3,866E-08 3,667E-08 3,880E-08 2,835E-08 2,726E-08 2,610E-08 2,655E-08 2,200E-08 3,619E-08	Two min 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10 2,692E-10	pole - Máx max 8,280E-07 8,280E-07 7,332E-07 8,327E-07 3,939E-07 3,175E-07 3,175E-07 3,175E-07 8,092E-07	mo média 9,484E-08 9,124E-08 8,653E-08 8,653E-08 6,691E-08 6,433E-08 6,433E-08 6,161E-08 6,267E-08 5,191E-08 8,540E-08	Ordena Elmore 11 9 8 10 5 4 2 3 1 2 3 1 7	amento Twopole 11 9 8 10 5 4 2 3 1 7

Resultados de maior atraso da rede (em segundos) e ordenamento para redes aleatórias distribuídas proporcionalmente para cada tamanho de rede.

Cenário 1	Βr	nore - Máxii	no	Two	opole - Máxi	mo	Ordena	amento
Algoritmo	mín.	máx.	média	mín.	máx.	média	Elmore	Twopole
BOI	2,313E-12	8,914E-10	8,976E-11	5,458E-12	2,104E-09	2,118E-10	7	7
BI1S	2,313E-12	8,807E-10	8,922E-11	5,458E-12	2,078E-09	2,106E-10	3	3
AMAZE-WL	2,313E-12	8,984E-10	8,967E-11	5,458E-12	2,120E-09	2,116E-10	6	6
GEOSTEINER	2,313E-12	1,028E-09	9,871E-11	5,458E-12	2,425E-09	2,330E-10	10	10
AMAZE-PL	2,313E-12	9,086E-10	9,267E-11	5,458E-12	2,144E-09	2,187E-10	9	9
A-TREE	2,313E-12	7,935E-10	8,966E-11	5,458E-12	1,873E-09	2,116E-10	5	5
AMAZE-share	2,313E-12	7,565E-10	8,897E-11	5,458E-12	1,785E-09	2,100E-10	1	1
AHHK	2,313E-12	8,092E-10	9,039E-11	5,458E-12	1,910E-09	2,133E-10	8	8
SERT	2,313E-12	7,712E-10	8,900E-11	5,458E-12	1,820E-09	2,101E-10	2	2
AMAZE-CS	2,591E-12	1,487E-09	1,075E-10	6,115E-12	3,508E-09	2,537E-10	11	11
SERT-C	2,313E-12	8,781E-10	8,933E-11	5,458E-12	2,072E-09	2,108E10	4	4

Cenário 2	Br	nore - Máxiı	mo	Tw	opole - Máx	imo	Ordena	amento
Algoritmo	mín.	máx.	média	mín.	máx.	média	Elmore	Twopole
BOI	1,034E-11	2,586E-09	3,117E-10	2,441E-11	6,102E-09	7,356E-10	8	8
BI1S	1,034E-11	2,560E-09	3,091E-10	2,441E-11	6,041E-09	7,294E-10	5	5
AMAZE-WL	1,034E-11	2,613E-09	3,096E-10	2,441E-11	6,166E-09	7,307E-10	6	6
GEOSTEINER	1,034E-11	2,670E-09	3,199E-10	2,441E-11	6,301E-09	7,549E-10	9	9
AMAZE-PL	1,034E-11	3,074E-09	3,205E-10	2,441E-11	7,255E-09	7,565E-10	10	10
A-TREE	1,034E-11	2,653E-09	3,074E-10	2,441E-11	6,262E-09	7,256E-10	3	3
AMAZE-share	1,034E-11	2,485E-09	3,057E-10	2,441E-11	5,864E-09	7,214E-10	1	1
AHHK	1,034E-11	2,697E-09	3,100E-10	2,441E-11	6,364E-09	7,316E-10	7	7
SERT	1,034E-11	2,520E-09	3,065E-10	2,441E-11	5,947E-09	7,233E-10	2	2
AMAZE-CS	1,458E-11	2,955E-09	3,800E-10	3,440E-11	6,974E-09	8,967E-10	11	11
SERT-C	1,034E-11	2,570E-09	3,085E-10	2,441E-11	6,066E-09	7,281E-10	4	4
Cenário 3	Br	nore - Máxiı	mo	Tw	opole - Máx	imo	Ordena	amento
Algoritmo	mín.	máx.	média	mín.	máx.	média	Elmore	Twopole
BOI	3,833E-12	1,525E-09	1,245E-10	9,045E-12	3,599E-09	2,938E-10	9	9
BI1S	3,833E-12	1,536E-09	1,234E-10	9,045E-12	3,625E-09	2,912E-10	7	7
AMAZE-WL	3,833E-12	1,527E-09	1,220E-10	9,045E-12	3,604E-09	2,879E-10	6	6
GEOSTEINER	3,833E-12	1,744E-09	1,370E-10	9,045E-12	4,116E-09	3,233E-10	10	10
AMAZE-PL	3,833E-12	1,293E-09	1,215E-10	9,045E-12	3,052E-09	2,867E-10	5	5
A-TREE	3,833E-12	1,091E-09	1,179E-10	9,045E-12	2,574E-09	2,782E-10	2	2
AMAZE-share	3,833E-12	1,145E-09	1,178E-10	9,045E-12	2,702E-09	2,780E-10	1	1
AHHK	3,833E-12	1,091E-09	1,181E-10	9,045E-12	2,574E-09	2,788E-10	3	3
SERT	3,833E-12	1,237E-09	1,188E-10	9,045E-12	2,919E-09	2,804E-10	4	4
AMAZE-CS	4,962E-12	1,387E-09	1,372E-10	1,171E-11	3,274E-09	3,239E-10	11	11
SERT-C	3,833E-12	1,630E-09	1,244E-10	9,045E-12	3,847E-09	2,935E-10	8	8
Cenário 4	Br	nore - Máxir	mo	Tw	opole - Máx	imo	Ordena	amento
Algoritmo	mín.	máx.	média	mín.	máx.	média	Elmore	Twopole
BOI	6,845E-07	2,922E-02	2,102E-03	2,692E-10	6,896E-07	5,411E-08	11	11
BI1S	6,845E-07	2,930E-02	2,046E-03	2,692E-10	6,914E-07	5,290E-08	10	9
AMAZE-WL	6,845E-07	2,943E-02	1,959E-03	2,692E-10	6,946E-07	5,086E-08	8	8
GEOSTEINER	5,877E-07	2,220E-02	2,035E-03	2,692E-10	5,240E-07	5,312E-08	9	10
AMAZE-PL	8,838E-07	1,669E-02	1,783E-03	2,692E-10	3,939E-07	4,635E-08	5	5
A-TREE	8,838E-07	1,147E-02	1,775E-03	2,692E-10	2,798E-07	4,516E-08	4	4
AMAZE-share	1,141E-10	1,399E-07	1,885E-08	2,692E-10	3,303E-07	4,450E-08	1	2
AHHK	8,838E-07	1,147E-02	1,730E-03	2,692E-10	2,798E-07	4,461E-08	3	3
SERT	8,838E-07	8,761E-03	1,512E-03	2,692E-10	2,068E-07	3,913E-08	2	1
AMAZE-CS	8,838E-07	2,290E-02	1,842E-03	2,986E-10	5,404E-07	4,821E-08	6	7
SERT-C	8,838E-07	2,269E-02	1,844E-03	2,692E-10	5,355E-07	4,793E-08	7	6

Cenário 1	(Ordenamento)	Cenário 2	(Ordenament	0
Algoritmo	Raio	WL Total	F-C	Algoritmo	Raio	WL Total	F-C
BOI	11	4	11	BOI	11	3	11
BI1S	10	2	9	BI1S	10	2	9
AMAZE-WL	6	7	1	AMAZE-WL	7	6	1
GEOSTEINER	9	1	10	GEOSTEINER	9	1	10
AMAZE-PL	1	10	1	AMAZE-PL	1	10	1
A-TREE	1	8	1	A-TREE	1	8	1
AMAZE-share	4	5	7	AMAZE-share	4	7	7
АННК	3	9	6	AHHK	3	9	6
SERT	5	3	8	SERT	5	5	8
AMAZE-CS	8	11	1	AMAZE-CS	8	11	1
SERT-C	7	6	1	SERT-C	6	4	1
Cenário 3	(Ordenamento)	Cenário 4	(Ordenamento)
Cenário 3 Algoritmo	Raio (Ordenamento WL Total	F-C	Cenário 4 Algoritmo	(Raio	Ordenamento WL Total	F-C
Cenário 3 Algoritmo BOI	Raio	Ordenamento WL Total 3	F-C	Cenário 4 Algoritmo BOI	Raio	Ordenamento WL Total 4	F-C 11
Cenário 3 Algoritmo BOI BIIS	Raio 11 10	Ordenamento WL Total 3 2	F-C 11 9	Cenário 4 Algoritmo BOI BII S	Raio 11 10	Ordenamento WL Total 4 3	F-C 11 10
Cenário 3 Algoritmo BOI BIIS AMAZE-WL	Raio 11 10 7	Ordenamento WL Total 3 2 4	F-C 11 9 1	Cenário 4 Algoritmo BOI BII S AMAZE-WL	Raio 11 10 6	Ordenamento WL Total 4 3 5	F-C 11 10 1
Cenário 3 Algoritmo BOI BI1S AMAZE-WL GEOSTEINER	Raio 11 10 7 9	Ordenamento WL Total 3 2 4 1	F-C 11 9 1 10	Cenário 4 Algoritmo BOI BII S AMAZE-WL GEOSTEINER	Raio 11 10 6 9	Ordenamento WL Total 4 3 5 2	F-C 11 10 1 9
Cenário 3 Algoritmo BOI BII S AMAZE-WL GEOSTEINER AMAZE-PL	Raio 11 10 7 9 1	Ordenamento WL Total 3 2 4 1 9	F-C 11 9 1 10 1	Cenário 4 Algoritmo BOI BIIS AMAZE-WL GEOSTEINER AMAZE-PL	Raio 11 10 6 9 1	Ordenament WL Total 4 3 5 2 8	F-C 11 10 1 9 1
Cenário 3 Algoritmo BOI BII S AMAZE-WL GEOSTEINER AMAZE-PL A-TREE	Raio 11 10 7 9 1 1	Ordenamento WL Total 3 2 4 1 9 5	F-C 11 9 1 10 1 1	Cenário 4 Algoritmo BOI BIIS AMAZE-WL GEOSTEINER AMAZE-PL A-TREE	Raio 11 10 6 9 1 1	Ordenamento WL Total 4 3 5 2 8 6	F-C 11 10 1 9 1 1 1
Cenário 3 Algoritmo BOI BIIS AMAZE-WL GEOSTEINER AMAZE-PL A-TREE AMAZE-share	Raio 11 10 7 9 1 1 1 4	Ordenamento WL Total 3 2 4 1 9 5 11	F-C 11 9 1 10 1 1 1 7	Cenário 4 Algoritmo BOI BIIS AMAZE-WL GEOSTEINER AMAZE-PL A-TREE AMAZE-share	Raio 11 10 6 9 1 1 4	Ordenamento WL Total 4 3 5 2 8 6 1	F-C 11 10 1 9 1 1 8
Cenário 3 Algoritmo BOI BIIS AMAZE-WL GEOSTEINER AMAZE-PL A-TREE AMAZE-share AHHK	Raio 11 10 7 9 1 1 4 3	Ordenamento WL Total 3 2 4 1 9 5 11 6	F-C 11 9 1 10 1 1 7 6	Cenário 4 Algoritmo BOI BII S AMAZE-WL GEOSTEINER AMAZE-PL A-TREE AMAZE-share AHHK	Raio 11 10 6 9 1 1 4 5	Ordenamento WL Total 4 3 5 2 8 6 1 7	F-C 11 10 1 9 1 8 7
Cenário 3 Algoritmo BOI BII S AMAZE-WL GEOSTEINER AMAZE-PL A-TREE AMAZE-share AHHK SERT	Raio 11 10 7 9 1 1 4 3 5	Ordenamento WL Total 3 2 4 1 9 5 11 6 7	F-C 11 9 1 10 1 7 6 8	Cenário 4 Algoritmo BOI BII S AMAZE-WL GEOSTEINER AMAZE-PL A-TREE AMAZE-share AHHK SER T	Raio 11 10 6 9 1 4 5 3	Ordenamento WL Total 4 3 5 2 8 6 1 7 11	F-C 11 10 1 9 1 8 7 6
Cenário 3 Algoritmo BOI BII S AMAZE-WL GEOSTEINER AMAZE-PL A-TREE AMAZE-share AHHK SERT AMAZE-CS	Raio 11 10 7 9 1 1 4 3 5 8	Ordenamento WL Total 3 2 4 1 9 5 11 6 7 10	F-C 11 9 1 10 1 7 6 8 1	Cenário 4 Algoritmo BOI BII S AMAZE-WL GEOSTEINER AMAZE-PL A-TREE AMAZE-share AHHK SER T AMAZE-CS	Raio 11 10 6 9 1 4 5 3 8	Ordenamento WL Total 4 3 5 2 8 6 1 7 11 10	F-C 11 10 1 9 1 8 7 6 1

Ordenamento dos algoritmos pelos modelos de atraso e por simulação elétrica para 50 redes aleatórias para cada tamanho de rede.

Ordenamento dos algoritmos pelos modelos de atraso e por simulação elétrica para redes aleatórias distribuídas proporcionalmente para cada tamanho de rede.

Cenário 1	(Ordenamento)	Cenário 2	(Ordenamento	
Algoritmo	Raio	WL Total	F-C	Algoritmo	Raio	WL Total	F-C
BOI	11	6	11	BOI	11	5	11
BI1S	10	2	9	BI1S	10	2	9
AMAZE-WL	7	7	1	AMAZE-WL	6	7	1
GEOSTEINER	9	1	10	GEOSTEINER	9	1	10
AMAZE-PL	1	10	1	AMAZE-PL	1	10	1
A-TREE	1	8	1	A-TREE	1	8	1
AMAZE-share	4	4	7	AMAZE-share	4	6	7
AHHK	3	9	6	AHHK	3	9	6
SERT	5	3	8	SERT	5	3	8
AMAZE-CS	8	11	1	AMAZE-CS	8	11	1
SERT-C	6	5	1	SERT-C	7	4	1
Cenário 3	(Ordenamento)	Cenário 4		Ordenamento)
Algoritmo	Raio	WL Total	F-C	Algoritmo	Raio	WL Total	F-C
BOI	11	3	11	BOI	11	3	11
BI1S	10	2	9	BI1S	10	2	9
AMAZE-WL	7	4	1	AMAZE-WL	7	4	1
GEOSTEINER	9	1	10	GEOSTEINER	9	1	10
AMAZE-PL	1	9	1	AMAZE-PL	1	8	1
A-TREE	1	5	1	A-TREE	1	5	1
AMAZE-share	4	6	7	AMAZE-share	5	7	7
АННК	3	7	6	AHHK	4	6	8
SERT	5	8	8	SERT	3	11	6
AMAZE-CS	8	11	1	AMAZE-CS	8	10	1
SERT-C	6	10	1	SFR T-C	6	9	1