Tese de doutorado:

A ENZIMA 2-trans-ENOIL-ACP(COA) REDUTASE DE Mycobacterium tuberculosis: INIBIÇÃO POR UM NOVO COMPOSTO E ESTUDOS ESPECTROSCÓPICOS DO SEU MECANISMO DE RESISTÊNCIA À HIDRAZIDA DO ÁCIDO ISONICOTÍNICO

Doutorando: JAIM SIMÕES DE OLIVEIRA
Orientadores: DIÓGENES SANTIAGO SANTOS
LUIZ AUGUSTO BASSO
Banca examinadora:

Prof. Dr. Arthur Germano Fett Neto – Professor e Coordenador do Programa de Pós-Graduação em Biologia Molecular e Celular (PPGBCM) e Professor do Departamento de Botânica da Universidade Federal do Rio Grande do Sul (Porto Alegre).

Prof. Dr. Luiz Juliano – Professor do Departamento de Biofísica da Escola Paulista de Medicina, Universidade Federal de São Paulo (SãoPaulo).

Prof. Dr. João Batista Calixto – Professor e chefe do Departamento de Farmacologia da Universidade Federal de Santa Catarina (Florianópolis).

Prof. Dr. Tarso Benigno Ledur Kist (suplente) - Professor do Programa de Pós-Graduação em Biologia Molecular e Celular (PPGBCM) e Departamento de Biofísica da Universidade Federal do Rio Grande do Sul (Porto Alegre).
ÍNDICE GERAL

1. Apresentação da tese ...1

2. Introdução: “Enoyl reductase as a target for the development of anti-tubercular agents” (Manuscrito submetido para a revista “Current Drug Targets”) ...3
 Abbreviations used ..5
 Abstract ...6
 Tuberculosis: Epidemiology and chemotherapy ...7
 Mycobacterium tuberculosis fatty acid biosynthesis and enoyl reductase ..9
 Concluding remarks ..22
 References ..26

3. An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP(CoA) reductase from Mycobacterium tuberculosis (Artigo publicado na revista “Chemical Communications” em 2004) ..34
 Abstract ...35
 References ..39

 Abstract ...44
 Abbreviations ...46
1. Introduction ..47
2. Chemoterapy... 48
3. Isoniazid (INH) mechanism of action.. 49
4. INH analogs and/or INH-adducts as potential antimycobacterial agents.. 53
5. A pentacyano(isoniazid)ferrateII inorganic complex.. 54
5.1. Rationale for the design of [FeII(CN)$_5$(INH)]$^{3-}$.. 55
5.2. Chemical characterization of Na$_3$[FeII(CN)$_5$(INH)]$^{3-}$•3H$_2$O.. 56
5.3. In vitro activity of [FeII(CN)$_5$(INH)]$^{3-}$ against WT and I21V InhA enzymes... 57
5.4. Slow-binding inhibition kinetics of WT InhA by [FeII(CN)$_5$(INH)]$^{3-}$... 58
5.5. Dissociation of [FeII(CN)$_5$(INH)]$^{3-}$ from WT InhA and overall inhibition constant (K_i)... 64
5.6. Two-step mechanism of WT InhA inhibition by [FeII(CN)$_5$(INH)]$^{3-}$... 66
6. Molecular modeling of mode of interaction between [FeII(CN)$_5$(INH)]$^{3-}$ and WT InhA... 69
6.1. Docking of [FeII(CN)$_5$(INH)]$^{3-}$ to NADH bound enzyme (control experiment)... 70
6.2. Docking of [FeII(CN)$_5$(INH)]$^{3-}$ to 1ENY and 1BVR crystal structures.. 71
7. Concluding remarks.. 76
8. References.. 80

5. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP (CoA) reductase enzymes from *Mycobacterium tuberculosis* (Manuscrito publicado no “Journal of Molecular Biology” em Junho de 2006). ... 92

Abstract.. 94
Results.. 97

Differences between crystal structures of WT, I21V, I47T and S94A InhA enzymes in complex with NADH.. 97
I21V-NADH structure ..102
I47T-NADH structure ..105
S94A-NADH structure ..107

Analysis of oligomeric state and intersubunit contacts ...110

Differences between intersubunit contacts in the A axis..111
Differences between intersubunit contacts in the B axis..112
Differences between intersubunit contacts in the C axis..112

Kinetics of NADH binding ...112

NADH dissociation rate constant from WT, I21V, I47T, and S94A binary complexes122

Discussion ..126

Material and Methods ...129
Determination of oligomeric state of WT, I21V, I47T, and S94A InhA enzymes129
Crystallization, refinement and analysis ..129
Pre-steady-state kinetics of NADH binding ..132

Displacement of NADH by NAD⁺ from WT InhA-NADH, I21V InhA-NADH, I47T InhA-
NADH, and S94A InhA-NADH binary complexes ...133

References ..135

Footnotes ..143

Supplemental material ..144

Analysis of intersubunit contacts ...144

Intersubunit contacts in the A axis ..144
Intersubunit contacts in the B axis ..145
Intersubunit contacts in the C axis ..145

6. Conclusão final ..160

Referências ...166

7. Anexos - Outros artigos publicados durante o doutorado ..169

- Molecular model of shikimate kinase from Mycobacterium tuberculosis.
- Cloning, overexpression, and purification of functional human purine nucleoside phosphorylase.
- Protective immune response against methicillin resistant *Staphylococcus aureus* in a murine model using a DNA vaccine approach.
- Structural bioinformatics study of EPSP synthase from *Mycobacterium tuberculosis*.
- One-step purification of 5-enolpyruvylshikimate-3-phosphate synthase enzyme from *Mycobacterium tuberculosis*.
- Crystal structure of human purine nucleoside phosphorylase at 2.3 Å resolution.
- Molecular models for shikimate pathway enzymes of *Xylella fastidiosa*.
- Crystallographic structure of PNP from *Mycobacterium tuberculosis* at 1.9 Å resolution.
- Structure of shikimate kinase from *Mycobacterium tuberculosis* reveals the binding of shikimic acid.
- Electron transfer kinetics and mechanistic study of the thionicotinamide coordinated to the pentacyanoferate (III)/(II) complexes: a model system for the in vitro activation of thioamides anti-tuberculosis drugs.
- DAHP synthase from *Mycobacterium tuberculosis* H37Rv: cloning, expression, and purification of functional enzyme.

Table 1. Results of 100 independent docking runs for [FeII(CN)\textsubscript{5}(INH)]3- in the free NAD(H) binding pocket of the crystallographic structures of WT InhA, 1ENY and 1BVR. For 1BVR the C16 fatty acyl substrate also was removed.

5. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP (CoA) reductase enzymes from *Mycobacterium tuberculosis* (Manuscrito a ser submetido para o “Journal of Biological Chemistry”)

Table 1. Summary for data collection, structural and refinement statistics.

Table 2. Van der Walls contacts between the CD1 atom of Ile21 side-chain and NADH in the binary complex WT-NADH (1.92 Å).

Table 3. Kinetic constants estimated from the fast phase of NADH-binding to wild-type and isoniazid-resistant mutant InhA enzymes.

Table 4. Kinetic constants estimated from the slow phase of NADH-binding to wild-type and isoniazid-resistant mutant InhA enzymes.

Table 5. Direct and water-mediated hydrogen bonds occurring between NADH and protein residues in WT InHA-NADH, I21V InHA-NADH, I47T InHA-NADH, and S94A InHA-NADH binary complexes.
Table 6. Summary of direct and water-mediated hydrogen-bonding occurring in intersubunit interfaces about the three orthogonal molecular twofold axes (A, B, and C) of WT InhA homotetramer.
2. Introdução: “Enoyl reductase as a target for the development of anti-tubercular agents” (Manuscrito submetido para a revista “Current Drug Targets”)

Fig. 1. The structures of mycolic acids identified in *M. tuberculosis*.................................10

Fig. 2. Chemical structure of isoniazid and INH-NAD adduct that inhibits InhA enzyme activity...12

Fig. 3. Differences in hydrogen bond network between the crystal structures of WT and INH-resistant mutant InhA (S94A) complexed with NADH..15

Fig. 4. Chemical structures of enoyl reductase inhibitors: Triclosan(TCL) and Pentaciano(isoniazid)ferrateII..21

3. An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP(CoA) reductase from *Mycobacterium tuberculosis* (Artigo publicado na revista “Chemical Communications” em 2004)

Fig. 1. (A) Inactivation of WT InhA (3 µM) by [Fe^{II}(CN)_{5}(INH)]^{3-} (100 µM): ●, no NADH; ■, 10 µM NADH; ▲, 100 µM NADH. (B) Inactivation of I21V InhA under the same experimental conditions described in part A (except that WT InhA was replaced for I21V InhA): no NADH (●), 10 µM NADH (■), and 100 µM NADH (▲)..38

5. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP (CoA) reductase enzymes from Mycobacterium tuberculosis (Manuscrito publicado no “Journal of Molecular Biology” em Junho de 2006)

Fig. 1. WT InhA structure solved to 1.92 Å..97
Fig. 2. Surroundings of position 47 in the crystal structures of WT (a) and (c), I47T (b) and (d), I21V(e), and S94A(f).

Fig. 3. (a) Interactions of dinucleotide binding loop in the crystal structure of the binary complex I21V InhA-NADH (b) $(2F_{obs} - F_{calc})$, α_{calc} electron density map encompassing the NADH molecule, the conserved 272, 282, 271, 285 water molecules and the dinucleotide binding loop of the crystal structure of I21V InhA-NADH binary complex.

Fig. 4. Differences in hydrogen bond network between the crystal structures of WT and INH-resistant mutant InhA (S94A) complexed with NADH.

Fig. 5. Representative stopped-flow trace of NADH binding to WT InhA enzyme.

Fig. 6. Analysis of the NADH concentration dependence of the k_{obs1} values calculated from the fast phase (first) of NADH binding to WT, I21V, I47T, and S94A InhA enzymes.

Fig. 7. Scheme showing the minimum kinetic mechanism proposed for NADH binding to WT and isoniazid-resistant InhA enzymes.

Fig. 8. Analysis of NADH concentration dependence of the k_{obs2} values calculated from the slow phase (second phase) of NADH-binding to WT, I21V, I47T, and S94A InhA enzymes.

Fig. 9. Representation of the reactions that occur in the displacement experiment after mixing the pre-incubated mix of InhA (20 µM) and NADH (10µM) with excess of NAD$^+$.

Fig. 10. Relationship between the observed first-order rate constants, determined with the stopped-flow apparatus, for displacement of NADH from its complex with WT (A), I21V (B), I47T (C), and S94A InhA enzymes, and the concentration of NAD$^+$.

Fig. 11. (a) B-factor plot per protein residues. The pattern of distribution for B-factor values per protein residues is very similar in the four crystal structures of InhA. (b) Plot of the ratio between mean B-factor value for each NADH moiety and
mean B-factor value for the whole NADH molecule per NADH moiety for WT-NADH, I21V-NADH, I47T-NADH, and S94A-NADH structures.................................153

Fig. 12. Amino acid residues that are found in the disallowed region of the Ramachandram Plot from the program PROCHECK53..155

Fig. 13. (2F_{obs} – F_{calc}) Simulating annealing omit electron density maps showing the different conformations of Thr196 side-chain in the crystal structures of WT InhA-NADH (a) and S94A InhA-NADH (b) binary complexes.................................156

Fig. 14. Determination of molecular weight of wild-type and isoniazid-resistant enoyl-ACP reductase enzymes in solution...157

Fig. 15. Analysis of the NADH concentration dependence of the fluorescence amplitude values obtained in the fast phase of NADH binding to WT, I21V, I47T, and S94A InhA enzymes..158

Fig. 16. NADH concentration dependence of the algebraic sum of the signal amplitudes of the fast and slow phases (Total amplitude) of NADH binding to WT, I21V, I47T, and S94A InhA enzymes...159
1. APRESENTAÇÃO DA TESE

A presente tese de doutorado foi desenvolvida no período de abril de 2001 à agosto de 2005 sob orientação dos professores Luiz Augusto Basso e Diógenes Santiago Santos. As seções de introdução, resultados e discussão serão apresentadas na forma de quatro manuscritos que descrevem os resultados experimentais mais relevantes obtidos durante o período do doutorado. A introdução (item 2) corresponde ao manuscrito intitulado “Enoyl reductase as a target for the development of anti-tubercular agents” que foi submetido a revista “Current Drug Targets” em junho do presente ano. Na introdução, são abordados a epidemiologia e quimioterapia da tuberculose, a biossíntese de ácidos micólicos em *M. tuberculosis* salientando o papel da enzima 2-*trans*-enoil-ACP(CoA) redutase (InhA) nesta rota metabólica, e também sua importância como o principal alvo da droga utilizada no tratamento da tuberculose, a hidrazida do ácido isonicotínico (isoniazida). Além disso, são descritos os mecanismos de ação e resistência a isoniazida em *M. tuberculosis*, e os recentes esforços para o desenvolvimento de novos inibidores da enzima enoil redutase de *M. tuberculosis*.

O segundo manuscrito da presente tese (item 3), intitulado “An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-*trans*-enoil-ACP(CoA) reductase from *Mycobacterium tuberculosis*” foi publicado na revista Chemical Communications em 2004. Neste manuscrito são descritos dados de inibição da enzima InhA por um novo composto, o complexo inorgânico pentaciano(isoniazida)ferratoII. Os resultados deste artigo demonstram que este complexo inorgânico pode representar uma nova classe de compostos líderes para o desenvolvimento de agentes anti-tuberculose visando à inibição de um alvo validado.

No terceiro manuscrito são apresentados e discutidos dados que demonstram o mecanismo de inibição da enzima InhA pelo composto pentaciano(isoniazida)ferratoII como sendo do tipo “slow-binding”. No mecanismo de inibição, inicialmente ocorre a rápida formação de um complexo binário entre enzima e inibidor E-I, o qual sofre uma isomerização

No quarto e último manuscrito da tese (item 5) são descritos e discutidos os resultados de estudos cristalográficos e de cinética de ligação a NADH em estado pré-estacionário realizados com enzima InhA espécie selvagem e três enzimas mutantes resistentes a isoniazida (I21V, I47T, and S94A). Estas mutações foram identificadas em isolados clínicos de *M. tuberculosis* resistentes a isoniazida por mutação no gene estrutural *inha*. Neste artigo, as principais diferenças estruturais entre os complexos binários das enzimas mutantes e espécie selvagem com NADH são discutidas. Os estudos em estado pré-estacionário demonstram que a principal diferença entre as enzimas está na constante de velocidade limitante para a dissociação do NADH, a qual é maior nas enzimas InhA mutantes. Além disso, um mecanismo para ligação de NADH é proposto. Estes estudos são de extrema importância para uma melhor compreensão dos mecanismos de resistência a isoniazida em *M. tuberculosis*, e também para o desenvolvimento racional de novos inibidores para InhA, que possam vir a ser testados contra cepas sensíveis a isoniazida e também contra cepas resistentes a mesma por mutação no gene estrutural *inha*. Este manuscrito, intitulado “Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP (CoA) reductase enzymes from *Mycobacterium tuberculosis*” foi submetido ao “Journal of Molecular Biology”.

Por fim, em anexo no item 6, encontram-se todos os artigos publicados durante o período de doutorado, que resultaram de atividades realizadas pelo presente autor em outros projetos.
2. INTRODUÇÃO: “Enoyl reductase as a target for the development of anti-tubercular agents” (Manuscrito submetido para a revista “Current Drug Targets”)
Enoyl reductase as a target for the development of anti-tubercular agents.

J. S. Oliveira§, I. S. Moreira†, D. S. Santos§* and L. A. Basso‡*

§ Centro de Pesquisas em Biologia Molecular e Funcional, Faculdade de Farmácia, Instituto de Pesquisas Biomédicas, Pontifícia Universidade do Rio Grande do Sul, Porto Alegre, RS, Brasil.

† Departamento de Química Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil.

‡ Centro de Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.

* to whom correspondence may be addressed
LAB: phone, +55-51-33166234; fax, +55-51-33167309; e-mail, labasso@cbiot.ufrgs.br or DSS: phone, +55-51-33203629; fax, +55-51-33203629; e-mail, diogenes@pucrs.br

Key Words: tuberculosis, mycobacteria, mycolic acids, isoniazid, InhA, enoyl reductase, drugs
ABBREVIATIONS USED

ACP = acyl carrier protein
ADR = adenine ribose
BSA = bovine serum albumin
CoA = Coenzyme A
CQ = chloroquine
ENR = enoyl reductase
ETH = ethionamide
FabI = enoyl reductase
FAS-II = Type II dissociated fatty acid biosynthesis system
HPLC = High Performance Liquid Chromatography
INH = isoniazid, isonicotinic acid hydrazide
InhA = 2-trans enoyl-ACP (CoA) reductase
KAR = β-ketoacyl reductase
KatG = catalase-peroxidase
KAS = β-ketoacyl synthase
MabA = β-ketoacyl reductase
mAGP = mycolyl-arabinogalactan-peptidoglycan complex
MDG = Millennium Development Goals
MDR-TB = multidrug-resistant tuberculosis, defined as resistant to at least isoniazid and rifampicin
MIC = minimum inhibitory concentration
SI = selectivity index (SI = IC_{50}/MIC)
TB = tuberculosis
TCL = triclosan (2,4,4'-trichloro-2'-hydroxyphenyl ether)
WT = wild type
ABSTRACT

Tuberculosis (TB) is a neglected disease, which continue to be major cause of morbidity and mortality worldwide, killing together around 5 million people each year. Mycolic acids, the hallmark of mycobacteria, are high-molecular-weight α-alkyl, β-hydroxy fatty acids. Biochemical and genetic experimental data have shown that the product of the *M. tuberculosis* *inhA* structural gene (InhA) is the primary target of isoniazid mode of action, the most prescribed anti-tubercular agent. InhA was identified as an NADH-dependent enoyl-ACP(CoA) reductase specific for long-chain enoyl thioesters and is a member of the Type II fatty acid biosynthesis system, which elongates acyl fatty acid precursors of mycolic acids. *M. tuberculosis* is a target for the development of anti-tubercular agents. Here we present a brief description of the mechanism of action of, and resistance to, isoniazid. In addition, data on inhibition of mycobacterial enoyl reductase by triclosan are presented. We also describe recent efforts to develop inhibitors of *M. tuberculosis* enoyl reductase enzyme activity.
TUBERCULOSIS: EPIDEMIOLOGY AND CHEMOTHERAPY

Tuberculosis (TB) is a global health emergency that remains the leading cause of mortality due to a bacterial pathogen, *Mycobacterium tuberculosis*. The re-emergence of TB occurred, in most cases, in the late 1980s and involved the USA and some European countries due to increased poverty in urban settings and the immigration from TB high-burden countries [1]. No sustainable control of TB epidemics can thus be reached in any country without properly addressing the global epidemic. It is estimated that 8.2 million new TB cases occurred worldwide in the year 2000, with approximately 1.8 million deaths in the same year, which translates into more than 4,900 deaths per day, and more than 95% of these were in developing countries [2]. In addition, approximately 12% (226,000) of total deaths from TB was attributed to co-infection with *M. tuberculosis* and human immunodeficiency virus (TB-HIV). It has been estimated that approximately 39.4 million people are infected with HIV worldwide, and more than half of them live in sub-Saharan Africa and nearly about a fifth in South and South-East Asia [3]. Immune deficient patients with HIV are at increased risk of latent *M. tuberculosis* infections progressing to active disease, and being transmitted to others [4]. TB and HIV are intricately linked to malnutrition, unemployment, alcoholism, drug abuse, poverty and homelessness. The direct and indirect costs of illness due to TB and HIV has been estimated to be more than 30% of the annual household income in developing countries and have thus a catastrophic impact on the economy in the developing world [5].

It has been estimated that 3.2% of the world’s new cases of TB, in 2000, were multidrug-resistant tuberculosis (MDR-TB), defined as resistant to at least isoniazid and rifampicin [6]. According to the 2004 Global TB Control Report of the World Health Organization (WHO), there are 300,000 new cases per year of MDR-TB worldwide, and 79% of MDR-TB cases are “super strains”, resistant to at least three of the four main drugs used to treat TB [7]. Localized high incidence rates of MDR-TB have been found in particular regions, which have been defined as hot zones based on either areas where the prevalence of MDR-TB cases is >5% (that is, where >5% of current cases are MDR-TB) or areas where the incidence of MDR-TB cases is >5% (that is, where >5% of new cases are MDR-TB) [6]. MDR-TB is an airborne bacterium that is spread just as easily as drug-sensitive TB. An individual who is sick with any strain of TB will
infect between 10 and 20 people each year with that same strain [8], thereby making the hot zones of particular concern to public health officials. A mathematical model showed that, paradoxically, areas with programs that successfully reduced wild-type pansensitive strains (as a result of high case detection and treatment rates) often evolved into hot zones [9]. Accordingly, it has been suggested that second-line drugs be quickly introduced to disrupt the amplification of resistance. However, the bacteriostatic second-line drugs are more toxic and less effective and are given for at least three times as long and at 100 times the cost of basic short-course chemotherapy regimens [10, 11]. A mathematical model of the impact of fitness of multidrug-resistant strains of *M. tuberculosis* on the emergence MDR-TB has shown that even when the average relative fitness of MDR strains is low and a well-functioning control program is in place, a small subpopulation of a relatively fit strain may eventually outcompete both the drug-sensitive strains and the less fit MDR strains [12]. These results indicate that current epidemiological measures and short-term trends in the burden of MDR-TB do not provide evidence that MDR-TB strains can be contained in the absence of specific efforts to limit transmission and combat MDR disease. The factors that most influence the emergence of drug-resistant strains include inappropriate treatment regimens, and patient noncompliance in completing the prescribed courses of therapy due to the lengthy standard “short-course” treatment or when the side effects become unbearable [13].

Although only 5-10% of infected individuals develop the disease because the host immune response against *M. tuberculosis* is highly effective in controlling bacterial replication, *M. tuberculosis* is almost never eradicated due to its ability to establish and maintain latency, a period during which the infected person does not have clinically apparent TB. Post-primary TB, which is predominantly a pulmonary disease, develops later in life, and can be caused either by reactivation of bacteria remaining from the initial infection or by failure to control a subsequent infection. Post-primary TB involves extensive damage to the lungs and efficient aerosol transmission of bacilli. It has been pointed out that the success of *M. tuberculosis* as a pathogen is largely attributable to its ability to persist in host tissues, where drugs that are rapidly bactericidal *in vitro* require prolonged administration to achieve comparable effects [14]. Thus effective tuberculosis chemotherapy must include early bactericidal action against rapidly growing organisms and subsequent sterilization of the semidormant and dormant populations of
bacilli. The first-line drugs isoniazid, rifampicin, streptomycin, and ethambutol exhibit early bactericidal activity against actively metabolizing bacilli [15]. Pyrazinamide is active against the semidormant bacilli in acidic intracellular environments. The modern, standard “short-course” therapy for TB is based on a four-drug regimen of isoniazid, rifampicin, pyrazinamide, and ethambutol or streptomycin for two months, followed by treatment with a combination of isoniazid and rifampicin for an additional four months. This combination therapy must be strictly followed to prevent drug resistance and relapse, and direct observation of patient compliance is the most reliable way to ensure effective treatment and prevent the acquisition of resistance. The bacteriostatic second-line drugs (amikacin, kanamycin, capreomycin, cycloserine, para-aminosalicylic acid, ethionamide, and fluoroquinolones) are reserved to strengthen the treatment of drug-resistant disease or when bactericidal drugs are prohibited because of toxicity [16].

It has recently been pointed out that there is a rapidly growing capability to undertake health innovation in many developing countries that have high indigenous science and technology capacity but relatively low economic strength, including India, China, Brazil, South Africa, Thailand, Argentina, Malaysia, Mexico and Indonesia [17]. Collectively, these countries invest at least U$ 2.5 billion per year in health research and it has been proposed that they should assume a leadership position in creating health innovations that target diseases of the poor because they are closer to those that are most in need for more effective health products [18]. In addition, to achieve the Millennium Development Goals (MDG), including investments in strategies to halt and reverse the spread of TB, developing country governments should adopt bold development strategies to meet the MDG targets for 2015 [19]. In particular, more effective and less toxic anti-tubercular agents are urgently needed to shorten the duration of current treatment, improve the treatment of MDR-TB, and to provide effective treatment of latent tuberculosis infection.

Mycobacterium tuberculosis FATTY ACID BIOSYNTHESIS AND ENOYL REDUCTASE

The mycobacterial cell wall is comprised of three covalently linked macromolecules: peptidoglycan, arabinogalactan, and mycolic acid, which is often described as mycolyl-arabinogalactan-peptidoglycan complex (mAGP) [20, 21, 22]. Mycolic acids are high-molecular-
weight \(\alpha\)-alkyl, \(\beta\)-hydroxy fatty acids (Fig. 1) that appear mostly as bound esters in tetramycolypentaarabinosyl cluster in the mycobacterial cell wall. In the pyrolytic cleavage of mycolic acids the intact fatty acid released is referred to as the \(\alpha\) branch and the aldehyde released is referred to as the meroaldehyde, and the corresponding segment of the intact mycolate is thus referred to as the meromycolate branch. The meromycolate branch is functionalized at regular intervals by cyclopropyl, \(\alpha\)-methyl ketone, or \(\alpha\)-methyl methylethers groups, and, as shown more recently, by unsaturations [23].

\(\alpha\)-Mycolates

Methoxymycolates

Ketomycolates

Fig. (1). The structures of mycolic acids identified in *M. tuberculosis*. \(\alpha\)-Mycolates: its meromycolate chain contains two *cis*-cyclopropanes. Methoxymycolates: its meromycolate chain
contains an α-methyl methyl-ether moiety in the distal position and a cis-cyclopropane or an α-methyl trans-cyclopropane in the proximal position. Ketomycolates: its meromycolate chain contains an α-methyl ketone moiety in the distal position and proximal functionalities as in the methoxy series. It should be pointed out that, more recently, unsaturations have been detected in the meromycolate chain of $M.\ tuberculosis$ [23], which are not shown here.

Fatty acid elongation occurs through repetitive cycles of condensation, β-keto reduction, dehydration, and enoyl reduction which are catalyzed by, respectively, β-ketoacyl synthase (KAS, condensing enzyme), β-ketoacyl reductase (KAR; MabA in $M.\ tuberculosis$), β-hydroxyacyl dehydrase (DE), and enoyl reductase (ENR; InhA in $M.\ tuberculosis$). These chemical reactions are catalyzed by two types of fatty acid synthase systems (FAS). The FAS-I system is a multidomain polyprotein that encodes all the enzymes necessary for fatty acid synthesis in one large polypeptide and is generally present in most eukaryotes, except in plants [24]. FAS-II systems, which are present in bacteria and plants, catalyze the individual reactions by separate proteins readily purified independently of the other enzymes of the pathway and are encoded by unique genes. Mycobacteria, unlike most organisms, have both FAS-I and FAS-II systems [25]. The mycobacterial FAS-I system catalyzes the synthesis of C_{16} and C_{18} fatty acids, the normal products of de novo synthesis, and elongation to produce C_{24} and C_{26} fatty acids [26]. The mycobacterial FAS-II is analogous to other bacterial FAS-II systems, with the notable exception of primer specificity. The mycobacterial FAS-II is not capable of de novo synthesis from acetate but instead elongates the “short-chain” acyl-ACP intermediates to fatty acids ranging from 24 to 56 carbons in length [27, 28]. In summary, the mycobacterial FAS-I produces a bimodal ($C_{14:0}-C_{16:0}$ to $C_{24:0}-C_{26:0}$) distribution of acyl-CoA fatty acids. The mycobacterial FAS-I system would provide the “shorter” acyl-CoA fatty acid precursors ($C_{14:0}-C_{16:0}$) for condensation with malonyl-ACP by mtFabH enzyme activity whose products, in turn, would be elongated by the FAS-II system, yielding the long carbon chain of the meromycolate branch (50-60 carbons) of mycolic acids. The longer chain acyl-CoA products ($C_{24:0}-C_{26:0}$) of FAS-I would be excluded from chain elongation and remain available to be utilized, presumably in the CoA form, as substrates for formation of the α-alkyl branch (20-26 carbons) of mycolic acids. The
readers are referred to recent reviews describing mycolic acid biosynthesis and their processing into the final products for a more comprehensive description of these processes [22, 29, 30, 31]. Isoniazid (INH, isonicotinic acid hydrazide; Fig. 2) is one of the oldest synthetic antitubercular, and the most prescribed drug for active infection and prophylaxis. INH is highly active against *M. tuberculosis* with an MIC value in the range of 0.02 to 0.2 µg mL⁻¹, and is active against growing tubercle bacilli but not resting bacilli. Isoniazid uptake in *M. tuberculosis* has been proposed to occur by passive diffusion [32]. However, the involvement of efflux pumps in isoniazid transport has recently been reported [33]. The mechanism of action of isoniazid is complex, as mutations in a number of different genes have been found to correlate with isoniazid resistance in *M. tuberculosis* [22, 34, 35].

![Chemical structure of isoniazid and INH-NAD adduct that inhibits InhA enzyme activity.](image)

Fig. (2). Chemical structure of isoniazid and INH-NAD adduct that inhibits InhA enzyme activity.

The product of the *M. tuberculosis* inhA structural gene (InhA or ENR) has been shown to be the primary target for isoniazid [36]. InhA was identified as an NADH-dependent 2-trans enoyl-ACP (acyl carrier protein) reductase enzyme that exhibits specificity for long-chain enoyl thioester substrates [37]. InhA is a member of the mycobacterial FAS-II, which elongates acyl fatty acid precursors yielding the long carbon chain of the meromycolate branch of mycolic acids, the hallmark of mycobacteria [22]. Consistent with InhA as the primary target of INH mode of action, inactivation of *M. smegmatis* inhA-encoded enoyl reductase and INH treatment resulted in similar mycolic acid biosynthesis inhibition, and morphological changes to the mycobacterial cell wall leading to cell lysis [38]. Transformation of *M. smegmatis*, *M. bovis* BCG and three different strains of *M. tuberculosis* with multicopy plasmids expressing inhA
genes conferred a 20-fold resistance to INH and a 10-fold resistance to ethionamide (ETH) [39]. More recently, further biochemical and genetic evidence has been provided showing that InhA is the primary target of INH [40]. In agreement with these results, mutations in the \textit{inhA} structural gene and in the \textit{inhA} locus promoter region have been associated with isoniazid resistance [41]. Moreover, INH-resistant clinical isolates of \textit{M. tuberculosis} harboring \textit{inhA}-structural gene missense mutations, but lacking mutations in the \textit{inhA} promoter region, \textit{katG} gene and \textit{oxyR-ahpC} region, were shown to have higher dissociation constant values for NADH than WT InhA, whereas there were only modest differences in the steady-state parameters [41]. Consistent with these results, a comparison of the crystal structure of binary complex of WT and INH-resistant mutant InhA (S94A) in complex with NADH [42] showed that disruption of a hydrogen bond network in the mutant protein could account for higher dissociation constant value for the coenzyme. In WT InhA-NADH complex structure (2.2 Å) a well-ordered water molecule mediates two hydrogen bonds between the O2 of the \textit{P_N} phosphate of NADH and protein that are lost in the S94A mutant protein [42]. This water molecule (WAT1) hydrogen bonds to the hydroxyl group of Ser94, the main-chain oxygen of Gly14, and the main-chain nitrogen atoms of Ala22 and Ile21. In the S94A-NADH complex structure (2.7 Å) the carbonyl group of residue Gly14 rotates away from the water molecule, breaking the hydrogen bond observed in wild-type structure (Fig. 3A). A computational comparison of 102 high-resolution structures (≤ 1.90 Å) of enzyme-dinucleotide complexes revealed that the WAT1 water is structurally conserved in proteins that exhibit the classic Rosmann dinucleotide-binding fold motif [43]. The conserved water molecule links, through a conserved hydrogen-bonding pattern, the glycine-rich phosphate-binding loop with the dinucleotide pyrophosphate moiety [44]. In enoyl reductase enzymes the phosphate-binding loop consensus sequence has been proposed to be GXXXXXXXG(A) (residues Gly14-Ala22 in InhA) [43]. Typically, the WAT1 water makes four hydrogen bonds and two of them are invariant. The invariable hydrogen bonds involve the dinucleotide pyrophosphate moiety and main-chain amine of the last conserved Gly of phosphate binding loop (Ala22 in InhA). Moreover, the interaction of pyrophosphate has been shown to be stereospecific. Almost without exception, the pyrophosphate atom that interacts with the structurally conserved water is O2N in the case of NAD- or NADP-binding proteins. In structures with the sequence pattern GXXXXXXXG(A), the partners for the other two hydrogen bonds involves the carbonyl group of the first conserved Gly (Gly14 in InhA) and a C-terminal
residue of β4 strand (Ser94 in InhA) [43]. In our efforts to understand the structural basis of isoniazid resistance mechanism of InhA, we have solved the crystal structures WT InhA-NADH and S94A InhA-NADH binary complexes to a better resolution than previously reported [42], which were refined to, respectively, 1.9 Å and 2.3 Å. The NADH binding pocket analysis showed that in the S94A InhA-NADH structure there was no rotation of the carbonyl group of Gly14 and only the conserved hydrogen bond of WAT1 water molecule with hydroxyl group of Ser94 is lost owing to mutation to Ala94 (Fig 3C and D). Thus, this hydrogen bond disruption probably is the main cause of a sixty-fold reduction in affinity for NADH observed for the S94A InhA protein, which corresponds to approximately 2.5 kcal mol$^{-1}$ [41]. This is in agreement with estimates for energy hydrogen bonds which are in the range of 3 to 9 kcal mol$^{-1}$ [45]. In addition, this WAT1 water has been proposed to be an integral characteristic of dinucleotide-binding Rossmann fold domains that both contributes significantly to dinucleotide recognition and presumably provides a favorable enthalpic contribution to the free energy of binding [43]. More recently, molecular dynamics simulations of fully solvated WT and INH-resistant clinical isolates of $M. tuberculosis$ in complex with NADH showed that mutations of the glycine-rich loop residues I21V and I16T resulted in a change in the pattern of direct hydrogen bond contacts with the pyrophosphate moiety of NADH [46]. The NADH pyrophosphate moiety undergoes considerable conformational changes, reducing its interactions with InhA binding site and probably indicating the initial phase of ligand expulsion in which NADH moves apart from its binding site [46].
Fig. (3). Differences in hydrogen bond network between the crystal structures of WT and INH-resistant mutant InhA (S94A) complexed with NADH.

Top: Crystal structures of WT InhA-NADH (A) and S94A InhA-NADH (B) binary binary complexes refined to, respectively, 2.2 Å and 2.7 Å [42].

Bottom: Crystal structures of WT InhA-NADH (C) and S94A InhA-NADH (D) binary complexes solved to a better resolution than previously reported [42], which were refined to, respectively, 1.9 Å and 2.3 Å. Only the conserved hydrogen bond between the WAT1 water and hydroxyl group of residue S94 is lost owing to mutation to Ala94. Both structures were refined with X-PLOR-NIH program (47, 48). The completeness values for all data were 97.7% and
95.5% for, respectively, WT InhA and S94A InhA proteins. The final R\text{Factor} and R\text{Free} values calculated for structure of WT InhA-NADH complex were, respectively, 21.5% and 25.1%. For the structure of S94A InhA-NADH complex, the final R\text{Factor} and R\text{Free} values were, respectively, 20.8% and 27.4%. Crystals for both wild type and mutant were hexagonal, space group P6\textsubscript{2}2\textsubscript{2}, with one molecule per asymmetric unit. The figures were prepared using the program Swiss-PDBViewer v3.7 (www.expasy.org/spdbv) [49]. For clarity, only residues Val12, Ser13, Gly14, Ile21, Ala22, and WAT1 water and NADH molecules are shown. Direct and water-mediated hydrogen bonds between the protein and NADH pyrophosphate moiety are represented as broken green lines. The interactions distances are in Å. The atoms are colored white for carbon, red for oxygen, blue for nitrogen, and yellow for phosphorus. The InhA structures are represented as thin-line ribbons colored gray.

The increase in the NADH dissociation constant observed for the I21V and I16T isoniazid-resistant mutants [41] may thus be attributed to a decrease in the number of H-bond interactions between NADH and aminoacids in the binding pocket and between the cofactor molecule and water molecules that mediate interactions with the enzyme [46]. In agreement, estimates of NADH free energy of binding by molecular docking experiments showed that the WT enzyme has higher affinity for NADH than the mutant enzymes [46]. The correlation between the NADH binding properties in solution, molecular dynamics simulation and docking studies and resistance to INH inactivation of \textit{M. tuberculosis} strains harbouring \textit{inhA}-structural gene mutations provides a mechanism of resistance at molecular level for this clinically important drug. Accordingly, current experimental data point to InhA as the primary target for INH mode of action in \textit{M. tuberculosis}.

Approximately 50 % of INH-resistant clinical isolates of \textit{M. tuberculosis} harbour deletions of, or missense mutations in, the \textit{katG} gene that codes for a catalase-peroxidase enzyme [35, 50]. The S315T KatG mutant enzyme, which is one of the most commonly encountered substitutions in clinical INH-resistant strains, has been shown by isothermal titration calorimetry to have reduced affinity for INH as compared to WT KatG enzyme [51]. These authors have shown that although S315T KatG maintains reasonably good steady-state catalytic rates, poor binding of INH to the mutant enzyme would reduce INH activation and bring about drug
INH is a pro-drug that is activated by the mycobacterial katG-encoded catalase-peroxidase enzyme in the presence of manganese ions, NAD(H) and oxygen [52, 53, 54, 55]. Data from X-ray crystallography and mass spectrometry showed that the KatG-produced acylpyridine fragment of isoniazid binds covalently to the C4 of the nicotinamide ring of NADH (Fig. 2), forming a binary complex with InhA [56]. This isonicotinyl-NAD$^+$ adduct has been shown to bind to InhA with a dissociation constant value lower than 0.4 nM [57]. This adduct has recently been shown to be a slow, tight-binding competitive inhibitor of WT InhA [58]. The initial rapidly reversible weak binding of isonicotinyl-NAD$^+$ adduct to WT InhA ($K_i = 16$ nM) is followed by a slow isomerization of the enzyme-inhibitor binary complex with an overall dissociation constant (K_i^*) value of 0.75 nM. Interestingly, the kinetic and thermodynamic parameters for the interaction of isonicotinyl-NAD$^+$ adduct with INH-resistant I21V, I47T, and S94A InhA mutant enzymes were found to be similar to those of the wild-type enzyme [58]. These results prompted the authors to suggest an alternative hypothesis to explain for INH resistance mechanism in strains harboring inhA-structural gene mutations. A high molecular weight FAS-II system (fatty acid synthase system II) that catalyzes the ACP-dependent synthesis of long chain fatty acids and that contains both enoyl reductase (ENR) and β-ketoacyl reductase (KAR) activities has been purified from M. smegmatis [59]. The mabA (fabG1)-encoded β-ketoacyl-ACP (CoA) reductase (MabA or KAR) has been shown to be a member of FAS-II in mycobacteria [60]. Based on these findings, it has been proposed that mycobacterial ENR (InhA in M. tuberculosis) may interact directly with other components of the FAS-II system [58]. Accordingly, the resistance-associated mutations in the inhA structural gene would affect the susceptibility of InhA to INH inhibition only in the context of the multienzyme complex, and not when mycobacterial ENR (InhA) is tested in isolation as in in vitro assays. More recently, yeast two-hybrid and co-immunoprecipitation approaches have been employed to study protein-protein interactions between known components of FAS-II system [61]. These authors reported several types of FAS-II complexes and proposed that either these complexes might coexist or the quaternary structure of a “unique” FAS-II might change from one composition to another during the time and according to the degree of elongation of the substrate. In particular, M. tuberculosis InhA was shown to interact with KasA (β-ketoacyl synthase A) and this protein-protein interaction has been suggested as a probable explanation to occurrence of INH-resistant mutant in KasA, even if InhA is indeed the only primary target of INH [61]. However, it remains to be
shown whether \textit{inhA} structural gene mutations identified in INH-clinical isolates of \textit{M. tuberculosis} will affect the inhibition of InhA by INH in the context of, for instance, InhA-KasA multienzyme complex. In agreement with InhA as the primary target for INH mode of action, recessive mutations in \textit{M. smegmatis} and \textit{M. bovis} BCG \textit{ndh} gene, which codes for a type II NADH dehydrogenase (NdhII), have been found to increase intracellular NADH/NAD ratios [62]. Increasing NADH levels protected InhA against inhibition by the INH-NAD adduct formed upon KatG activation of INH. Hence, mutations in mycobacterial \textit{ndh} gene resulted in increased intracellular NADH concentrations, which competitively inhibits the binding of INH-NAD adduct to InhA [62], in agreement with the higher dissociation constant values for NADH found for INH-resistant clinical isolates harbouring \textit{inhA}-structural gene mutations as compared to WT InhA [41].

The INH mechanism of action requires KatG-catalyzed conversion of INH into a number of electrophilic intermediates [52]. Formation of the isonicotinyl-NAD\(^+\) adduct has been proposed to be through addition of either an isonicotinic acyl anion to NAD\(^+\) or an isonicotinic acyl radical to an NAD\(^-\) radical [56]. Using a combination of spectroscopic, biochemical and computational techniques, an enzyme-catalyzed mechanism for INH activation has recently been proposed, leading to isonicotinoyl radical formation (thought to be the activated form of INH) and production of the amide end product via a diazene intermediate [63]. In the proposed mechanism, the oxyferryl group of compound I of KatG, generated after reaction with peroxide, is reduced by INH in a single electron transfer to the heme. In concert, a proton is lost from the hydrazide moiety and could be accepted by His108. In the following step, the C-N bond of hydrazide is broken, yielding a diazene and the acyl radical. The diazene intermediate (that may be stabilized by Trp107, Asp137 or the oxyferryl group) is reduced to hydrazine and ammonia, which may involve deprotonation of His108, Asp137 or Arg104 of KatG, although Arg104 may also play a role. The peroxidase activity of KatG catalyzes the conversion of Mn\(^{2+}\) to Mn\(^{3+}\) [64]. Rapid freeze-quench electron paramagnetic resonance spectroscopy experiments have shown that hydrogen atoms abstractions may be initiated by the a KatG tyrosil radical [65]. It has been shown that the yield of isonicotinoyl-NAD adduct is about the same for oxidation of isoniazid by KatG as it is by Mn\(^{3+}\) [66]. Accordingly, oxidation by Mn\(^{3+}\)-pyrophosphate has been proposed as an alternative method for nonenzymatic INH activation for simple chemical synthesis of various
INH derivatives that mimic the isonicotinyl-NAD adduct [67]. X-ray data shows a single isonicotinoyl-NAD(H) adduct in the open form with a $4S$ configuration (Fig. 2) bound to InhA [56]. However, oxidation of isoniazid by the nonenzymatic Mn$^{3+}$-pyrophosphate method has been shown to generate a family of isomeric INH-NAD(H) adducts [68]. Proton and carbon NMR characterization showed that there are four main species of adducts: two are open diastereoisomers consisting of the covalent attachment of the isonicotinoyl radical at C4 of the nicotinamide moiety, and the other two result from cyclization of the amide group of the nicotinamide moiety of NAD(H) and the carbonyl group of the isonicotinoyl radical yielding diastereoisomeric hemiamidals. These results prompted the authors to raise the question whether there is only one active form of INH-NAD(H) adduct or there are several forms able to inhibit InhA activity. However, production of INH-NAD adduct in the active site of InhA and analysis of purified adduct by reverse-phase HPLC showed two peaks, whose production has been ascribed to the experimental conditions used for HPLC that may promote interconversions of the INH-NAD adduct into a number of different forms [58]. Moreover, molecular modeling analysis showed that the C4 (R) enantiomeric INH-NAD adduct is stereochemically forbidden due to severe van der Waals repulsion around Gly192, Pro193 and Ile194 residues of InhA [69]. In any case, the nonenzymatic synthesis of compounds that mimic the isonicotinyl-NAD adduct [67] should allow the synthesis of new InhA inhibitors with potential antitubercular activity. Interestingly, formation of isonicotinyl adducts by the Mn$^{3+}$-pyrophosphate method and InhA inhibition studies suggest that the adenylic moiety and the amide function at position 3 of the pyridinium ring may play a role in inhibitor binding [70].

The current understanding of INH mode of action has provided clues into critical and unique biosynthetic pathways in mycobacteria. Owing to the INH chemical simplicity, oral availability and favourable toxicology profile, INH analogs appear worthy of examination as antitubercular agents. The mechanism of activation for isoniazid has been proposed to occur via an electron transfer reaction [71]. More recently, a redox reversible probe metal center has been used to show the involvement of an inner sphere pathway for activation of thionamide-containing pro-drugs [72]. An approach has thus been put forward for the design of self-activating drugs for the treatment of strains of *M. tuberculosis* resistant to drugs that require activation. These drugs would be activated by electron transfer reactions before interacting with
its cellular target. Most of the INH resistance is associated with *katG* structural gene alterations resulting in catalase-peroxidase mutant enzymes with impaired ability to form activated-INH intermediates that will form the INH-NAD adduct and ensuing inhibition of InhA enzyme activity. In this context, the use of a redox reversible metal complex coordinated to the pro-drug appears as a very first system. Accordingly, we have recently shown that a pentacyano(isoniazid)ferrateII complex (Fig. 4) inhibits enzyme activity of both wild-type InhA and I21V mutant InhA identified in isoniazid-resistant clinical isolates of *M. tuberculosis* [73]. The *in vitro* kinetics of inactivation indicate that this process requires no activation by KatG, no need for the presence of NADH, and is also effective against INH-resistant mutant InhA. An MIC value of 0.2 µg mL\(^{-1}\) for this inorganic complex was determined by the radiometric BACTEC AFB system for *M. tuberculosis* H37Rv strain, and toxicity assays in HL60 leukemia and MCS-7 breast cancer cells yielded an IC\(_{50}\) value \(> 25\) µg mL\(^{-1}\); thereby indicating a good selectivity index (SI = IC\(_{50}/\)MIC \(> 125\); as suggested by the Tuberculosis Antimicrobial Acquisition & Coordinating Facility of USA, for a compound to move forward through screening programs SI should be larger than 10). More recently, we have shown that the pentacyano(isoniazid)ferrateII complex is a slow-onset inhibitor of *M. tuberculosis* InhA enzyme activity, with a true overall dissociation constant value of 70 nM [74]. In this mechanism of action an initial enzyme-inhibitor complex is rapidly formed, which then undergoes a slow isomerization reaction of to an enzyme-inhibitor binary complex in which the inhibitor is more tightly bound to enzyme. The weakness in the use of classical enzyme inhibitors as drugs for clinical conditions is that inhibition results in the upstream accumulation of the substrate for the enzyme, which may overcome the inhibition. By contrast, the build up of substrate cannot have any effect on the isomerization of enzyme-inhibitor complex typical of the slow-onset mechanism and hence reversal of the inhibition [75]. In addition, a half-time value of 630 min (10.5 hours) for the limiting step for inhibitor dissociation from the binary complex is a desirable feature since it may be expected to enhance inhibitor’s effectiveness [76]. This inorganic complex may represent a new class of lead compounds to the development of anti-tubercular agents aiming at inhibition of a validated target and that is effective against INH-resistant strains.
Fig. (4). Chemical structures of enoyl reductase inhibitors: Triclosan (TCL) and Pentacyano(isoniazid)ferrateII.

Triclosan (TCL; 2,4,4′-trichloro-2′-hydroxyphenyl ether; Fig. 4) is a chlorinated bisphenol that possesses broad spectrum antimicrobial action and has a favorable safety profile [77]. Accordingly, TCL has been used in many contemporary consumer and professional health care products, including hand soaps, shower gels, deodorant soaps, health care personnel hand washes, hand lotions and creams, toothpastes, mouth washes, underarm deodorants, surgical scrubs and drapes, and hospital over-the-bed table tops.

Strains of *Escherichia coli* that were selected for resistance to TCL harbored mutation in the enoyl-ACP reductase-encoding *fabI* gene provided evidence that TCL inhibits lipid biosynthesis [78], and the G93S enoyl reductase mutant was shown to have higher IC₅₀ values than the wild-type enzyme for TLC [79]. Triclosan increases the affinity of *E. coli* FabI for NAD⁺, leading to formation of a stable FabI-NAD⁺-TCL ternary complex through non-covalent interactions with amino acid residues in the enzyme active site [80, 81]. TCL has been shown to act as a slow-onset inhibitor of *E. coli* FabI and that TCL binds to FabI-NAD⁺ complex with a dissociation constant value of 20 - 40 pM [82]. The inhibition of *E. coli* enoyl reductase prompted studies on its mycobacterial counterpart. Genetic studies have thus shown that the enoyl-ACP reductase-encoding *inhA* gene is the target for triclosan in *M. smegmatis* [83] and *M. tuberculosis* [40]. TCL has been shown to be a submicromolar uncompetitive inhibitor of *M. tuberculosis* InhA, and that the M161V and A124V mutants have significantly higher inhibition constants for triclosan [84]. *In vitro* whole-cell assays demonstrated TCL activity against INH-
resistant and -sensitive *M. tuberculosis* strains with MIC values ranging from 20 to 60 µM, and a value of 8.5 µM for the inhibition constant of *M. tuberculosis* InhA [85]. The 2.6 Å-resolution three-dimensional structure of *M. tuberculosis* InhA, NAD⁺ and triclosan complex shows that the hydroxyl-substituted ring of triclosan (Fig. 4; the “A” ring) stacked with the nicotinamide ring of NAD⁺ and formed a conserved hydrogen-bonding pattern with the 2’-OH group of NAD⁺ and with Tyr158 in the catalytic active site [85]. The dichlorophenyl ring (Fig. 4; the “B” ring) was oriented orthogonally to the “A” ring, and the chlorine atoms were projected toward the solvent. Interestingly, two molecules of triclosan were found by X-ray crystallography to bind to *M. tuberculosis* enoyl reductase [85], such mode of binding has not been observed for any TCL-enoyl reductase complex solved to date. The first TCL molecule occupies the same site as the singly-bound enzyme, whereas the second molecule is in an inverted orientation relative to the first TCL molecule, residing in an almost entirely hydrophobic site within the binding cavity and making van der Waals interactions between themselves and the protein. The presence of two molecules of triclosan in the active site of *M. tuberculosis* enoyl reductase has been attributed to the specificity for long chain fatty acyl substrates. To accommodate long fatty acids, *M. tuberculosis* enoyl reductase possesses a hydrophobic substrate-binding loop (residues 197-226) that is approximately 10 residues longer (residues 203-212) than the corresponding loop in *E. coli* and *B. napus* FabI. These data suggest that selective targeting of *M. tuberculosis* enoyl reductase may be achieved by a dual complex between triclosan molecules. Synthesis of triclosan analogues and high-throughput screening efforts to target enoyl-ACP reductase activity may lead to the development of new anti-tubercular agents.

CONCLUDING REMARKS

M. tuberculosis and enoyl-ACP reductase is a validated target for anti-tubercular agents development and to be used in drug screening efforts. In addition, owing the TCL and INH chemical simplicity and favourable toxicology profile, analogs of TCL and INH appear worthy of examination as antitubercular agents. An analog of INH, 1-isonicotinyl-2-nonaoyl hydrazine, has recently been shown to exhibit a two-fold increase in the degree of susceptibility against *M. tuberculosis* H37Rv [86]. Enzymatic acetylation of INH by N-acetyltransferase reduces the
therapeutic activity of this drug, resulting in underdosing, decreased bioavailability and the consequent possibility of acquired INH resistance. The lipophilic Schiff base N^2-cyclohexylidenyl isonicotinic acid hydrazide, in which the hydrazine moiety is blocked toward acetylation, has shown activity against both intracellular and extracellular *M. tuberculosis* (Erdman strain) *in vitro* and excellent bioavailability [87]. However, a 25-fold increase in the MIC value of this compound for INH-susceptible *M. tuberculosis* strain (0.03 µg mL$^{-1}$) as compared to an INH-resistant strain (> 0.75 µg mL$^{-1}$) casts doubt on its usefulness for the treatment of patients infected with resistant strains. A completely new approach, which was mentioned above, to INH analog design based on inorganic atoms attached to the nitrogen atom of the heterocyclic ring of isoniazid has provided promising results [73]. Two novel inhibitors, named Genz-10850 and Genz-8575, have been identified in a high-throughput screen against *M. tuberculosis* enoyl reductase with IC$_{50}$ values in the submicromolar range [85]. The compound Genz-8575 showed good activity in whole-cell assays against several drug-susceptible and drug-resistant strains of *M. tuberculosis*, with MIC values ranging from 1.25 to 30 µM (MIC = 1.5 µm for isoniazid against *M. tuberculosis* H37Rv strain). The X-ray crystal structure of the *M. tuberculosis* enoyl reductase and Genz-10850 binary complex showed that Genz-10850 has hydrogen-bonding interactions with NAD$^+$ and the catalytic residue Tyr158 similar to the binary complex formed between the enzyme and triclosan. The crystal structure should help optimization of these compounds. However, whether or not Genz-10850 and Genz-8575 target(s) the *M. tuberculosis* enoyl reductase *in vivo* as well as any effect they may have on mycolic acid biosynthesis will have to await for further studies.

Aminopyridine-based inhibitors of *Staphylococcus aureus* and *Haemophilus influenzae* enoyl reductase (FabI) enzymes have been developed through a combination of iterative medicinal chemistry and X-ray crystal structure based design [88]. One of these compounds, 3-(6-aminopyridin-3-yl)-N-methyl-N-[(1-methyl-1H-indol-2-yl)methyl]acrylamide, was shown to be a low micromolar inhibitor of FabI from *S. aureus* (IC$_{50}$ = 2.4 µM) and *H. influenzae* (IC$_{50}$ = 4.2 µM). In addition, this compound has shown good *in vitro* antibacterial activity against *S. aureus* (MIC = 0.5 µg mL$^{-1}$). Even though the inhibitory activity of this compound, if any, against *M. tuberculosis* enoyl reductase still needs to be shown, it may represent a new lead for antitubercular agent development. A series of 1,4-disubstituted imidazoles have shown *in vitro*
inhibitory activity against *S. aureus* and *E. coli* enoyl reductase enzyme, and whole-cell antimicrobial activity against *S. aureus* determined by a broth microdilution assay [89]. Compounds based on 2,9-disubstituted 1,2,3,4-tetrahydropyrido[3,4-\textit{b}]indole have been synthesized and their inhibitory activity against *S. aureus* and *E. coli* enoyl reductase assessed \textit{in vitro} [90]. The compounds showing submicromolar IC\textsubscript{50} against enoyl reductase activity were tested for \textit{in vitro} antibacterial activity with MIC values ranging from 0.5 to 4.0 µg mL-1 against *S. aureus*. More recently, a naphthyridinone-based series of compounds were found to have inhibitory activity against *S. aureus* enoyl reductase with IC\textsubscript{50} and MIC values lower than those for triclosan [90]. The activity of these compounds could be determined against *M. tuberculosis* to evaluate their potential as mycobacterial enoyl reductase inhibitors and as lead compounds to the development of antitubercular agents. Moreover, *M. tuberculosis* enoyl reductase may represent a molecular target for immobilization on solid support in natural-product screening efforts. The determination of the complete genome sequence of *M. tuberculosis* H37Rv strain has had a striking impact on researchers in the TB field [91] and represent a valuable tool for discovery of new drug targets.
ACKNOWLEDGMENTS

Financial support for this work was provided by Millennium Initiative Program MCT-CNPq, Ministry of Health - Secretary of Health Policy (Brazil) to DSS and LAB. DSS (304051/1975-06) and LAB (520182/99-5) are research career awardeed from the National Research Council of Brazil (CNPq).
REFERENCES

3. An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans- enoyl-ACP(CoA) reductase from Mycobacterium tuberculosis (Artigo publicado na revista “Chemical Communications” em 2004)
An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP (CoA) reductase from *Mycobacterium tuberculosis*

Jaim S. Oliveira†, Eduardo H. S. Souza‡, Luiz A. Basso†∗, Moisés Palaci‡, Reynaldo Dietze‡, Icaro S. Moreira‡, and Diógenes S. Santos‡∗.

† Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Av. Bento Gonçalves 9500, Porto Alegre, RS 91501-970, Brazil; ‡ Universidade Federal do Ceará, Departamento de Química Orgânica e Inorgânica, Campus Pici, Fortaleza, CE 60455-760, Brazil; ¶ Universidade Federal do Espírito Santo, Núcleo de Doenças Infecciosas, Av. Marechal Campos 1468, Vitória, ES 29040-091, Brazil; & Faculdade de Farmácia, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, CEP 90619-900, Brazil. E-mails: labasso@dna.cbiot.ufrgs.br or diogenes@dna.cbiot.ufrgs.br

Received (in Cambridge, UK) 28th October, 2003, Accepted 24th November 2003

First published as an Advanced Article on the web 7th January 2004

The *in vitro* kinetics of inactivation of both wild-type and I21V InhA enzymes by [FeIII(CN)5(INH)]3− indicate that this process requires no activation by KatG, and no need for the presence of NADH. This inorganic complex may represent a new class of lead compounds to the development of anti-tubercular agents aiming at inhibition of a validated target.

In 1952 isoniazid (INH, isonicotinic acid hydrazide) was first reported to be effective in the treatment of tuberculosis.1 However, strains of *Mycobacterium tuberculosis*, the causative agent of the disease, resistant to INH were reported shortly after its introduction.2 The primary mechanism of multiple drug resistance in *M. tuberculosis* is the accumulation of mutations in individual drug target genes.3 The mechanism of action of INH is complex, as mutations in at least five different genes (*katG, inhA, ahpC, kasA*, and *ndh*) have been found to correlate with isoniazid resistance.4 The primary target of INH has been shown to be the product of the *inhA* structural gene.5 The *inhA* gene codes for an NADH-dependent 2-trans-enoyl-ACP (CoA) reductase that exhibits specificity for long chain (C18 > C16) enoyl thioester substrates,6 consistent with its role in mycobacterial cell wall biosynthesis.7 Missense mutations in the *inhA* structural gene, but lacking mutations in the *inhA* promoter region, *katG* gene and *oxyR-ahpC* region, were identified in INH-resistant clinical isolates of *M. tuberculosis*8 and shown to correlate with changes in the NADH binding properties of enoyl reductase.9 Moreover, deletions
of, or missense mutations in, the *katG* gene have been associated with decreased susceptibility to INH in approximately 50 % of clinical isolates of *M. tuberculosis*. The isoniazid mechanism of action involves the conversion of INH by the mycobacterial *katG*-encoded catalase-peroxidase into a number of electrophilic intermediates. Although isoniazid does not bind to the *inhA*-encoded enoyl reductase, the KatG-activated drug intermediate binds to, and inhibits the enoyl reductase activity in the presence of NAD$^+$ or NADH. The three-dimensional structure determination of WT InhA, NADH, and activated isoniazid intermediate ternary complex has shown that the acylpyridine fragment of isoniazid is covalently attached to the C4 position of NADH. This isonicotinyl-NAD$^+$ adduct binds to WT InhA with a dissociation constant value lower than 0.4 nM. Isoniazid is, therefore, a KatG-activated pro-drug, that upon formation of an isonicotinyl-NAD$^+$ adduct inhibits the *M. tuberculosis* enoyl reductase, resulting in reduction of mycolic acid synthesis.

In trying to find better alternatives to INH, we have investigated an INH analog that contains a cyanoferrate moiety (I) and tested its ability to inhibit both WT and isoniazid-resistant I21V mutant enoyl reductases from *M. tuberculosis*.

\[
\text{Incubation of WT InhA with Na}_3[\text{Fe}^{II}(\text{CN})_5(\text{INH})]\cdot4\text{H}_2\text{O}^{16} \text{ in the absence of NADH resulted in the time-dependent inactivation of the enzyme with an apparent first-order rate constant value of } 327 (\pm 34) \times 10^{-3} \text{ min}^{-1} \text{ (Figure 1A, } \downarrow \text{ inset; } t_{1/2} = 2.1 \pm 0.2 \text{ min). The rate constant values were } 65 (\pm 4) \times 10^{-3} \text{ min}^{-1} \text{ (Figure 1A, } \triangle \text{ inset; } t_{1/2} = 10.7 \pm 0.7 \text{ min) in the presence of } 10 \text{ } \mu\text{M NADH and } 15.7 (\pm 0.7) \times 10^{-3} \text{ min}^{-1} \text{ (Figure 1A, } \blacktriangle \text{ inset; } t_{1/2} = 44 \pm 2 \text{ min) in the presence of } 100 \text{ } \mu\text{M NADH. Inactivation of WT InhA by oxidized INH derivatives produced by KatG in the absence of NADH has been reported not to occur at detectable levels in the time range tested here (25 – 30 min). Moreover, a value of } 8.9 \times 10^{-3} \text{ min}^{-1} \text{ has been}
reported for the rate constant for WT InhA enzyme inactivation by KatG-activated isoniazid in the presence of 100 µM NADH.9

The results presented here clearly demonstrate that WT InhA inactivation by \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}\) requires no activation by KatG, no need for the presence of NADH, and its mechanism of action probably involves interaction with the NADH binding site of the enzyme. The *in vitro* kinetics of inactivation of the I21V mutant enzyme, under identical conditions, proceeded with apparent first-order rate constant values of 315 (± 38) \(\times 10^{-3}\) min\(^{-1}\) (Figure 1B, 1 inset; \(t_{1/2} = 2.2 \pm 0.3\) min) in the absence of NADH, 99 (± 4) \(\times 10^{-3}\) min\(^{-1}\) (Figure 1B, n inset; \(t_{1/2} = 7.0 \pm 0.3\) min) in the presence of 10 µM NADH, and 14 (± 1) \(\times 10^{-3}\) min\(^{-1}\) (Figure 1B, ▲ inset; \(t_{1/2} = 50 \pm 3\) min) in the presence of 100 µM NADH. As for the WT InhA enzyme, these results demonstrate that inactivation of I21V mutant enzyme from a INH-resistant clinical isolate of *M. tuberculosis* by \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}\) requires no activation by KatG, no need for NADH, and probably the same site of interaction. Interestingly, since the *in vivo* NADH concentration in *M. tuberculosis* H37Rv has been estimated to be < 10 µM\(^{22}\), the inorganic complex would probably display a better efficacy against isoniazid-resistant *M. tuberculosis* strains harboring inhA structural gene mutations than WT InhA strains. In order to verify if slow formation of a covalent binary compound between \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}\) and NADH could result in inactivation of WT and I21V enzymes, pre-incubation experiments\(^{23}\) were performed and the kinetics of inactivation followed for WT and I21V enzymes. Apparent first-order rate constant of inactivation values of 15 (± 1) \(\times 10^{-3}\) min\(^{-1}\) and 13 (± 2) \(\times 10^{-3}\) min\(^{-1}\) were obtained for, respectively, WT and I21V InhA enzymes (data not shown). These values are within standard error of the ones determined with no pre-incubation suggesting that there is no slow formation of an intermediate compound capable of inactivating WT and I21V enzymatic activities.
Fig. 1. (A) Inactivation of WT InhA (3 µM) by [FeII(CN)$_5$(INH)]$^{3-}$ (100 µM): l, no NADH; n, 10 µM NADH; ▲, 100 µM NADH. The inset shows a plot of the natural log of the percentage of WT InhA activity remaining (%AR) versus time in the absence (l), presence of 10 µM NADH (n), and presence of 100 µM NADH (▲). (B) Inactivation of I21V InhA under the same experimental conditions described in part A (except that WT InhA was replaced for I21V InhA): no NADH (l), 10 µM NADH (n); and 100 µM NADH (▲). The inset shows a plot of the natural log of the percentage of I21V InhA activity remaining (%AR) versus time in the absence (l), presence of 10 µM NADH (n), and presence of 100 µM NADH (▲).

An MIC value of 1.0 µg mL$^{-1}$ for the [FeII(CN)$_5$(INH)]$^{3-}$ compound was determined by the radiometric BACTEC AFB system24. This value is in agreement with an MIC value of 0.2 µg mL$^{-1}$ provided by the Tuberculosis Antimicrobial Acquisition & Coordinating Facility (TAACF) through a research and development contract with the U.S. National Institute of Allergy and Infectious Diseases. *M. tuberculosis* is susceptible to isoniazid in the range of 0.02 – 0.2 µg mL$^{-1}$. Accordingly, the [FeII(CN)$_5$(INH)]$^{3-}$ compound appears to be a promising candidate for further antitubercular drug development and may represent a new class of lead compounds. Efforts to obtain crystals of the binary complex formed between this inorganic
compound and either WT or I21V InhA are currently underway and should assist in the design of a new class of antimycobacterial agents.

ACKNOWLEDGMENT. Financial support for this work was provided by QuatroG Pesquisa e Desenvolvimento to D.S.S., L.A.B., and I.S.M. Part of this work was also supported by Millennium Initiative Program MCT-CNPq, Ministry of Health, Secretary of Health Policy (Brazil) grant awarded to D.S.S., R.D., L.A.B. and M.P.

REFERENCES.

(16) The complex was prepared by the direct reaction of Na₃[Fe(CN₅)(NH₃)]·3H₂O with INH, in aqueous solution, at room temperature, following the same procedure as reported elsewhere for similar iron cyanoferrate complexes.¹⁷

(18) Reactions of time-dependent inactivation of the enoyl reductases were carried out in 100 mM Na₂HPO₄, pH 7.5 at 25 °C, either 3 µM WT InhA or 3 µM I21V. Aliquots were taken at times specified on the x-axis of Figure 1, and steady-state enzyme activities were determined from rates of decrease in absorbance at 340 nm using 2-trans-dodecenoyl-CoA (100 µM) and NADH (200 µM). The substrate 2-trans-dodecenoyl-CoA was synthesized from 2-trans-dodecenoic acid and CoA by the mixed anhydride method¹⁹ and purified by reverse-phase high-performance liquid chromatography using a 19 X 300 mm C₁₈ µBondapak column (Waters Associates, Milford, MA) as previously described. The ratio of absorbance of purified 2-trans-dodecenoyl-CoA at 232 nm and 260 nm was 0.62, a value that meets the established criterion for pure thioesters (A₂₃₂/A₂₆₀ ≥ 0.52).²⁰ WT InhA and I21V mutant enzymes were expressed and purified to homogeneity as described elsewhere. The specific activity of WT InhA and I21V mutant with 2-trans-dodecenoyl-CoA (100 µM) and NADH
(200 μM) were, respectively, 13.5 ± 0.4 and 8.1 ± 0.3 U mg⁻¹. Activity measurements for both WT and I21V InhA proteins were performed up to 2 hours in 100 mM Na₂HPO₄, pH 7.5 at 25 °C, showing that no loss of enzyme activity could be observed in the time range studied.

(23) [Fe²⁺(CN)₅(INH)]³⁻ (200 μM) was pre-incubated with NADH (100 μM) for 2 hours in 100 mM Na₂HPO₄, pH 7.5 at 25 °C (solution A). An equal volume of this solution was added to a solution containing 6 μM of either WT InhA or I21V InhA mutant and 100 μM NADH, pre-incubated under the same conditions, and the kinetics of inactivation followed as described previously.¹⁸

(24) The Minimum Inhibitory Concentration (MIC) of [Fe²⁺(CN)₅(INH)]³⁻ was determined radiometrically for *M. tuberculosis* H₃₇Rv ATCC 27294 strain (American Type Culture Collection, Rockville, Md.) by the method described by Heifets²⁵ in a BACTEC 460 instrument (Becton Dickinson).

SLOW-ONSET INHIBITION OF 2-trans-ENOYL-ACP (CoA) REDUCTASE FROM *Mycobacterium tuberculosis* BY AN INORGANIC COMPLEX

Jaim S. Oliveira§†, Eduardo H. S. de Sousa¥, Osmar N. de Souza§π, Ícaro S. Moreira¥, Diógenes S. Santos§*, Luiz A. Basso§†*

§ Centro de Pesquisas em Biologia Molecular e Funcional, Instituto de Pesquisas Biomédicas, Pontifícia Universidade do Rio Grande do Sul, Porto Alegre, RS, Brazil
† Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
¥ Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus Pici, Fortaleza, Brazil.
π Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas – LABIO, Faculdade de Informática, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.

* to whom correspondence may be addressed:
LAB: phone, +55-51-33166234; fax, +55-51-33167309; e-mail, labasso@cbiot.ufrgs.br; or DSS: phone, +55-51-33203513; fax, +55-51-33202515; e-mail, diogenes@pucrs.br

Key Words: tuberculosis, mycolic acids, enoyl reductase, InhA, isoniazid, inhibitors, inorganic complex, molecular modeling
Abstract

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, *Mycobacterium tuberculosis*. The reemergence of tuberculosis as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, and the proliferation of multi-drug-resistant strains have created a need for the development of new antimycobacterial agents. Mycolic acids, the hallmark of mycobacteria, are high-molecular-weight α-alkyl, β-hydroxy fatty acids, which appear mostly as bound esters in the mycobacterial cell wall. The product of the *M. tuberculosis* *inhA* structural gene (InhA) has been shown to be the primary target for isoniazid (INH), the most prescribed drug for active TB and prophylaxis. InhA was identified as an NADH-dependent enoyl-ACP reductase specific for long-chain enoyl thioesters. InhA is a member of the mycobacterial Type II fatty acid biosynthesis system, which elongates acyl fatty acid precursors of mycolic acids. Although the history of chemotherapeutic agent development demonstrates the remarkably successful tinkering of a few structural scaffolds, it also emphasizes the ongoing, cyclical need for innovation. The main focus of our contribution is on new data describing the rationale for the design of a pentacyano(isoniazid)ferrate II compound that requires no KatG-activation, its chemical characterization, *in vitro* activity studies against WT and INH-resistant I21V *M. tuberculosis* enoyl reductases, the slow-onset inhibition mechanism of WT InhA by the inorganic complex, and molecular modeling of its interaction with WT InhA. This inorganic complex represents a new class of lead compounds to the development of anti-tubercular agents aiming at inhibition of a validated target.
1. Introduction
2. Chemotherapy
3. Isoniazid (INH) mechanism of action
4. INH analogs and/or INH-adducts as antimycobacterial agents
5. A pentacyano(isoniazid)ferrateII inorganic complex
 5.1. Rationale for the design of [FeII\{(CN)$_3$(INH)$]^{3-}$
 5.2. Chemical characterizaton of Na$_3$[FeII\{(CN)$_3$(INH)$]^{3-}$•3H$_2$O
 5.3. \textit{In vitro} activity of [FeII\{(CN)$_3$(INH)$]^{3-}$ against WT and I21V InhA enzymes
 5.4. Slow-binding inhibition kinetics of WT InhA by [FeII\{(CN)$_3$(INH)$]^{3-}$
 5.5. Dissociation of [FeII\{(CN)$_3$(INH)$]^{3-}$ from WT InhA and overall inhibition constant (K_i^*)
 5.6. Two-step mechanism of WT InhA inhibition by FeII\{(CN)$_3$(INH)$]^{3-}$
6. Molecular modeling of mode of interaction between [FeII\{(CN)$_3$(INH)$]^{3-}$ and WT InhA
 6.1. Docking of [FeII\{(CN)$_3$(INH)$]^{3-}$ to NADH bound enzyme (control experiment)
 6.2. Docking of [FeII\{(CN)$_3$(INH)$]^{3-}$ to the 1ENY and 1BVR crystal structures.
7. Concluding remarks
Abbreviations

ACP = acyl carrier protein
ADR = adenine ribose
BSA = bovine serum albumin
CQ = chloroquine
DD-CoA = 2-trans-dodecenoyl-CoA
ENR = enoyl reductase
ETH = ethionamide
FASII = Type II dissociated fatty acid biosynthesis system
INH = isoniazid, isonicotinic acid hydrazide
InhA = 2-trans enoyl-ACP (CoA) reductase
LGA = Lamarckian Genetic Algorithm
MabA = β-ketoacyl reductase
MDR-TB = multidrug-resistant tuberculosis, defined as resistant to at least isoniazid and rifampicin
MLCT = metal-to-ligand charge transfer transition
NA = nicotinamide
PP = pyrophosphate
RMSD = root-mean-square deviation
TB = tuberculosis
WT = wild type
1. Introduction

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, *Mycobacterium tuberculosis*. The interruption of centuries of decline in case rates of TB occurred, in most cases, in the late 1980s and involved the USA and some European countries due to increased poverty in urban settings and the immigration from TB high-burden countries [1]. Thus, no sustainable control of TB epidemics can be reached in any country without properly addressing the global epidemic. It is estimated that 8.2 million new TB cases occurred worldwide in the year 2000, with approximately 1.8 million deaths in the same year, and more than 95% of these were in developing countries [2]. In addition, approximately 12% (226,000) of total deaths from TB was attributed to co-infection with *M. tuberculosis* and human immunodeficiency virus (TB-HIV). Immune deficient patients with HIV are at increased risk of latent *M. tuberculosis* infections progressing to active disease, and being transmitted to others [3]. Approximately 2 billion individuals are believed to harbor latent TB based on tuberculin skin test surveys [4], which represents a considerable reservoir of bacilli. It has been estimated that 3.2% of the world’s new cases of TB, in 2000, were multidrug-resistant tuberculosis (MDR-TB), defined as resistant to at least isoniazid and rifampicin [5]. According to the 2004 Global TB Control Report of the World Health Organization (WHO), there are 300,000 new cases per year of MDR-TB worldwide, and 79% of MDR-TB cases are now “super strains”, resistant to at least three of the four main drugs used to treat TB [6]. Localized high incidence rates of MDR-TB have been found in particular regions, which have been defined as hot zones based on either areas where the prevalence of MDR-TB cases is >5% (that is, where >5% of current cases are MDR-TB) or areas where the incidence of MDR-TB cases is >5% (that is, where >5% of new cases are MDR-TB) [5]. MDR-TB is an airborne bacterium that is spread just as easily as drug-sensitive TB. An individual who is sick with any strain of TB will infect between 10 and 20 people each year with that same strain [7], thereby making the hot zones of particular concern to public health officials. More recently, a mathematical model using Monte Carlo sampling methods has been employed to determine the key causal factors on generating the hot zones [8]. Paradoxically, areas with programs that successfully reduced wild-type pansensitive strains (as a result of high case detection and treatment rates) often evolved into hot zones. It has therefore been suggested that second-line drugs be quickly introduced to disrupt the amplification of
resistance. However, the bacteriostatic second-line drugs (amikacin, kanamycin, capreomycin, cycloserine, *para*-aminosalicylic acid, ethionamide, and fluoroquinolones) are more toxic and less effective and are given for at least three times as long and at 100 times the cost of basic short-course chemotherapy regimens [9, 10]. The factors that most influence the emergence of drug-resistant strains include inappropriate treatment regimens, and patient noncompliance in completing the prescribed courses of therapy due to the lengthy standard “short-course” treatment or when the side effects become unbearable [11]. Hence more effective and less toxic anti-tubercular agents are urgently needed to shorten the duration of current treatment, improve the treatment of MDR-TB, and to provide effective treatment of latent tuberculosis infection.

2. Chemotherapy

M. tuberculosis has been considered the world’s most successful pathogen and this is largely due to the ability of the bacillum to persist in host tissues, where drugs that are rapidly bactericidal *in vitro* require prolonged administration to achieve comparable effects [12, 13]. TB is transmitted by *M. tuberculosis*-containing aerosolized droplets generated by the cough of a person infected with bacilli. The primary infection involves replication of *M. tuberculosis* within alveolar macrophages of the terminal air spaces of the lung, spread to local lymph nodes within the lung, and eventual dissemination of infection to remote sites in the body within 1 or 2 years after an initial infection. Only 5-10% of infected individuals develop the disease because the host immune response against *M. tuberculosis* is highly effective in controlling bacterial replication. However, *M. tuberculosis* is almost never eradicated due to its ability to establish and maintain latency, a period during which the infected person does not have clinically apparent TB. Post-primary TB, which is predominantly a pulmonary disease, develops later in life, and can be caused either by reactivation of bacteria remaining from the initial infection or by failure to control a subsequent infection. Post-primary TB involves extensive damage to the lungs and efficient aerosol transmission of bacilli.

Effective chemotherapies that decreased TB mortality rate worldwide was led by the discovery of the antibacterial and antitubercular properties of streptomycin in 1944 [14], and
both isoniazid and pyrazinamide in 1952 [15, 16]. The later introduction of ethionamide, rifampicin, ethambutol and ciprofloxacin to the arsenal used to treat tuberculosis seemed to provide an adequate number of effective antimicrobial agents [17]. Effective tuberculosis chemotherapy must include early bactericidal action against rapidly growing organisms and subsequent sterilization of the semidormant and dormant populations of bacilli [18]. The first-line drugs isoniazid, rifampicin, streptomycin, and ethambutol exhibit early bactericidal activity against actively metabolizing bacilli [19]. Pyrazinamide is active against the semidormant bacilli in acidic intracellular environments. The modern, standard “short-course” therapy [18] for TB is based on a four-drug regimen of isoniazid, rifampicin, pyrazinamide, and ethambutol or streptomycin for two months, followed by treatment with a combination of isoniazid and rifampicin for an additional four months. This combination therapy must be strictly followed to prevent drug resistance and relapse, and direct observation of patient compliance is the most reliable way to ensure effective treatment and prevent the acquisition of resistance. The DNA mutations identified in drug-resistant strains of *M. tuberculosis* have been reviewed [17, 20, 21, 22]. The bacteriostatic second-line drugs ethionamide, cycloserine and para-aminosalicylic acid (PAS) are reserved to strengthen the treatment of drug-resistant disease or when bactericidal drugs are prohibited because of toxicity [23].

3. Isoniazid (INH) mechanism of action

Isoniazid (INH, isonicotinic acid hydrazide; Fig. 1) is one of the oldest synthetic antitubercular, and the most prescribed drug for active infection and prophylaxis [24]. The product of the *M. tuberculosis* inhA structural gene (InhA or ENR), which is located downstream of an ORF coding for a β-ketoacyl reductase (MabA) in the inhA operon, has been shown to be a major target for isoniazid [25]. InhA was identified as an NADH-dependent enoyl-ACP (acyl carrier protein) reductase enzyme, which exhibits specificity for long-chain (C\textsubscript{18} > C\textsubscript{16}) enoyl thioester substrates [26]. InhA is a member of the mycobacterial Type II dissociated fatty acid biosynthesis system (FASII), which elongates acyl fatty acid precursors yielding the long carbon chain of the meromycolate branch of mycolic acids, the hallmark of mycobacteria [22]. The mycobacterial cell wall is comprised of three covalently linked macromolecules: peptidoglycan,
arabinogalactan, and mycolic acid, which is often described as mycolyl-arabinogalactan-peptidoglycan complex (mAGP). Mycolic acids have become one of the defining taxonomic characteristics of many species in genera such as *Mycobacterium*, *Corynebacterium*, *Dietzia*, *Nocardia*, *Rhodococcus*, and *Tsukamurella*. Mycolic acids are high-molecular-weight α-alkyl, β-hydroxy fatty acids, which appear mostly as bound esters in tetramycolylpentaarabinosyl cluster in the mycobacterial cell wall. Consistent with InhA as the major target of INH mode of action, inactivation of the *M. smegmatis* *inhA*-encoded enoyl reductase and INH treatment resulted in similar morphological changes to the mycobacterial cell wall leading to cell lysis [27].

Overexpression of *inhA* has been shown to confer resistance to INH and ethionamide (ETH) in *M. smegmatis*, *M. bovis* BCG, and *M. tuberculosis* [28]. Further biochemical and genetic evidence has been given likewise showing that InhA is the primary target of INH [29]. Consistent with these results, mutations in the *inhA* structural gene and in the *inhA* locus promoter region have been associated with isoniazid resistance [30]. Moreover, INH-resistant clinical isolates of *M. tuberculosis* harboring *inhA*-structural gene missense mutations, but lacking mutations in the *inhA* promoter region, *katG* gene and *oxyR-ahpC* region, were shown to have higher dissociation constant values for NADH than wild-type (WT) InhA, whereas there were only modest differences in the steady-state kinetic parameters [30]. Consistent with these results, a comparison of the crystal structure of binary complex of WT and INH-resistant mutant enoyl reductases with NADH [31] showed that disruption of a hydrogen bond network in the mutant protein could account for higher dissociation constant value for the coenzyme.

More recently, molecular dynamics simulations of WT and INH-resistant clinical isolates of *M. tuberculosis* showed that mutations of the glycine-rich loop residues I21V and I16T resulted in a change in the pattern of direct hydrogen bond contacts with the pyrophosphate moiety of NADH, in which the pyrophosphate moiety of NADH moves apart from its binding site [32]. The increase in the NADH dissociation constant observed for the I21V and I16T isoniazid-resistant mutants [30] can be attributed to a decrease in the number of direct hydrogen bond interactions between the cofactor and aminoacids in the binding pocket of the enzyme and to a decrease in water-mediated interactions between cofactor and enzyme [32]. The correlation between the NADH binding properties in solution, molecular dynamics simulation studies and resistance to INH inactivation of *M. tuberculosis* InhA mutants provides a mechanism of
resistance at molecular level for this clinically important drug. The mechanism of action of isoniazid is complex, as mutations in at least five different genes (\textit{katG, inhA, ahpC, kasA,} and \textit{ndh}) have been found to correlate with isoniazid resistance [22]. However, a drug target for a bactericidal drug has been suggested to be an enzyme of the bacterium (i) that binds the drug, (ii) that is inhibited by the drug, and (iii) whose inhibition induces the death of the bacterium [27]. Accordingly, based on these criteria, genetic and biochemical results point to InhA as the bona fide target for INH in \textit{M. tuberculosis}.

Deletions of, or missense mutations in, the \textit{katG} gene have been associated with decreased susceptibility to INH in approximately 50\% of clinical isolates of \textit{M. tuberculosis} [33, 34]. It has recently been shown that the S315T KatG mutant, which is one of the most commonly encountered substitutions in clinical INH-resistant strains, has reduced affinity for INH, which would result in decreased drug activation and ensuing INH resistance [35]. INH is a pro-drug that is activated by the mycobacterial \textit{katG}-encoded catalase-peroxidase enzyme in the presence of manganese ions, NAD(H) and oxygen [36-39]. The KatG-produced acylpyridine fragment of isoniazid is covalently attached to the C4 position of NADH (Fig. 1), and forms a binary complex with the wild-type enoyl reductase of \textit{M. tuberculosis} [40]. This isonicotinyl-NAD\(^+\) adduct has been characterized spectroscopically and shown to bind to InhA with a dissociation constant value lower than 0.4 nM [41]. The isonicotinyl-NAD\(^+\) adduct has recently been shown to be a slow, tight-binding competitive inhibitor of WT InhA [42]. The initial rapidly reversible weak binding (\(K_i = 16\) nM) is followed by a slow isomerization leading to a tighter enzyme-inhibitor complex with an overall dissociation constant (\(K_i^*\)) value of 0.75 nM.

![Chemical structure of isoniazid and INH-NAD adduct](image)

\textbf{Fig. (1).} Chemical structure of isoniazid and INH-NAD adduct that inhibits InhA enzyme activity.
The isoniazid mechanism of action requires the conversion of INH by mycobacterial KatG into a number of electrophilic intermediates [36]. It has been proposed that formation of the isonicotinyl-NAD\(^+\) adduct may be through addition of either an isonicotinic acyl anion to NAD\(^+\) or an isonicotinic acyl radical to an NAD\(^-\) radical [40]. The mycobacterial heme-containing KatG has been shown to function as a highly active catalase as well as a broad specificity peroxidase [43]. The catalase-peroxidase KatG enzyme is classified as Class I peroxidase whose catalytic cycle includes a classical Compound I (oxyferryl [Fe(IV)=O] porphyrin \(\pi\)-cation radical) that is catalytically competent, and that is reduced by a number of substrates including INH without evidence for stabilization of Compound II [44]. Rapid freeze-quench electron paramagnetic resonance spectroscopy experiments have shown that a KatG tyrosyl radical doublet signal was rapidly quenched by addition of isoniazid, suggesting that oxidations or, more likely, hydrogen atoms abstractions may be initiated by the tyrosyl radical [45]. Tyrosine-353 residue has been proposed to be the principal site for tyrosyl radical formation in mycobacterial KatG [46]. However, tyrosine-353 appears to be an unlikely candidate for the tyrosyl radical based on the crystal structure of \(M.\) \textit{tuberculosis} KatG refined to 2.4 Å [47]. The KatG crystal structure and computational studies allow to predict that the binding site for isoniazid is located near the \(\delta\)-\textit{meso} heme edge rather than in a surface loop structure as previously proposed, and offer a rational interpretation of the association between a number of mutations in the \(katG\) gene and INH resistance [47]. An enzyme-catalyzed mechanism for INH activation has recently been proposed, leading to isonicotinoyl radical formation (thought to be the activated form of INH) and production of the amide end product via a diazene intermediate [48]. In the proposed mechanism, the oxyferryl group of compound I of KatG, generated after reaction with peroxide, is reduced by INH in a single electron transfer to the heme with concomitant transfer of a proton from the hydrazide moiety to His-108. The C-N bond of hydrazide is broken, yielding a diazene and the acyl radical. The diazene intermediate (that may be stabilized by Trp107, Asp137 or the oxyferryl group) is reduced to hydrazine and ammonia, which may involve deprotonation of His108, Asp137 or Arg104 of KatG.
4. INH analogs and/or INH-adducts as potential antimycobacterial agents

The serendipitous discovery of isoniazid has now provided clues into critical and unique biosynthetic pathways in mycobacteria. The chemical simplicity of this molecule, and decades of synthetic endeavors after the initial discovery of INH, suggest that more potent analogs, prepared by classic organic synthesis or novel combinatorial synthetic methods, would appear to be hard to find. However, given the oral availability and favorable toxicology profile, INH analogs appear to be worthy of examination as antitubercular agents.

The peroxidase activity of mycobacterial KatG catalyzes the conversion of Mn$^{2+}$ to Mn$^{3+}$ [49]. It has been shown that the yield of isonicotinoyl-NAD adduct is about the same after oxidation of isoniazid by KatG or Mn$^{3+}$ [50]. Accordingly, Mn$^{3+}$-pyrophosphate has been proposed as an alternative oxidant that mimics the activity of KatG, thus providing a nonenzymatic isoniazid activation method for simple chemical synthesis of various INH derivatives that mimic the isonicotinyl-NAD adduct [51]. A single isonicotinoyl-NAD(H) adduct in the open form with a 4S configuration (Fig. 1) has been detected in the active site of *M. tuberculosis* InhA by X-ray crystallography [40]. In agreement with this configuration for the adduct, a molecular model of the C4 (R) enantiomeric INH-NAD adduct indicates that this form is stereochemically forbidden due to van der Waals contacts [52]. The nonenzymatic synthesis of compounds that mimic the isonicotinyl-NAD adduct [51] should allow the synthesis of new InhA inhibitors with potential antimycobacterial activity.

An analog of INH, 1-isonicotinyl-2-nonaoyl hydrazine, has recently been shown to exhibit a two-fold increase in the degree of susceptibility against *M. tuberculosis* H37Rv [53]. However, no data have been presented on INH-resistant strains of *M. tuberculosis*, thereby making this analog of limited therapeutic value if not proven to be effective against INH-resistant strains of *M. tuberculosis*. Enzymatic acetylation of INH by N-acetyltransferase reduces the therapeutic activity of this drug, resulting in underdosing, decreased bioavailability and the consequent possibility of acquired INH resistance. The lipophilic Schiff base N2-cyclohexylidenyl isonicotinic acid hydrazide, in which the hydrazine moiety is blocked toward acetylation, has shown activity against both intracellular and extracellular *M. tuberculosis*.
(Erdman strain) \textit{in vitro} and excellent bioavailability [54]. However, this INH Schiff base analog showed no antitubercular activity against INH-resistant strain (>0.75 µg mL\(^{-1}\)) that obviously casts doubt on its usefulness for the treatment of patients infected with resistant strains.

5. A pentacyano(isoniazid)ferrateII inorganic complex

Although the history of chemotherapeutic agent development demonstrates the remarkably successful tinkering of a few structural scaffolds by generations of medicinal chemists to meet the challenges of evolution of drug resistance, it also emphasizes the ongoing, cyclical need for innovation [55]. A brief account of a completely new approach to INH analog design based on inorganic atoms attached to the nitrogen atom of the heterocyclic ring of isoniazid has recently been given [56]. Here we describe the rationale for the design of a pentacyano(isoniazid)ferrateII compound \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^3-\) (Fig. 2), its chemical characterization, \textit{in vitro} activity studies of this inorganic complex against WT and INH-resistant I21V \textit{M. tuberculosis} enoyl reductase enzymes (InhA), the slow-onset inhibition mechanism of WT InhA by the inorganic complex, and molecular modeling of its interaction with WT InhA. This inorganic complex represents a new class of lead compounds to the development of antitubercular agents aiming at inhibition of a validated target.

![Fig. (2). Structural formula of pentacyano(isoniazid)ferrateII complex: \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^3-\)](image-url)
5.1. Rationale for the design of $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$

It has been proposed that free radicals generated during the oxidation of INH by catalase-peroxidase of *M. tuberculosis* are responsible for the toxicity of this drug [36]. Various oxidizing products including isonicotinic acid, isonicotinamide, and isonicotinaldehyde are formed from the *in vitro* activation of the INH by KatG enzyme. A widely accepted pathway for the *in vivo* INH activation is that it is metabolized by oxidation to acyl diimide, then to diazonium ion or isonicotinyl radical that binds to enoyl reductase, and inhibits its activity in the presence of NAD$^+$ or NADH [37]. Isoniazid is, therefore, a KatG-activated pro-drug, that upon formation of an isonicotinyl-NAD$^+$ adduct inhibits the *M. tuberculosis* enoyl reductase, resulting in reduction of mycolic acid synthesis. Based on the mechanism of activation propose for isoniazid, via electron transfer reaction [57], an alternative self-activation route can be proposed for designing new drugs for the treatment of WT and INH-resistant tuberculosis. These drugs would be activated by electron transfer reactions before interacting with its cellular target. Most of the INH resistance is associated with *katG* structural gene alterations resulting in catalase-peroxidase mutant enzymes with impaired ability to form activated-INH intermediates. One approach to overcome this drug resistance is based on the synthesis of a new molecule capable to promote an inner-sphere electron transfer reaction. In this context, the use of a redox reversible metal complex coordinated to the prodrugs appears as a very first system. For this purpose, we have found that the pentacyanoferrate(II) metal center and isoniazid ligand is a suitable model system on the perspective of a new approach to drug design for the treatment of WT and INH-resistant tuberculosis by proposing a self-activation mechanism as illustrated in Fig. 3. Upon oxidation of $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ complex ($E_{1/2} = 549$ mV vs. NHE) by oxygen and/or cellular oxidants, it is postulated that the thermodynamically unstable iron(III) complex would undergo a rapid intramolecular electron transfer reaction forming the $[\text{Fe}^{II}(\text{CN})_5(\text{isonicotinyl})]^{3-}$ intermediate species which could decay to the $[\text{Fe}^{II}(\text{CN})_5(L)]^{3-}$ complex ($L =$ isonicotinic acid, isonicotinamide, or isonicotinaldehyde) and bind to enoyl reductase resulting in inhibition of mycolic acid synthesis without the interference of KatG enzyme.
5.2. Chemical characterization of Na₃[Feᴵᴵ(CN)₅(INH)₃]•3H₂O

The Na₃[Feᴵᴵ(CN)₅(INH)₃]•3H₂O complex was prepared by the direct reaction of Na₃[Fe(CN₅)(NH₃)]•3H₂O with isoniazid, in aqueous solution, at room temperature, following the same procedure reported elsewhere for similar pentacyanoferrate(II) complexes [58]. Results of microanalysis of Na₃[Feᴵᴵ(CN)₅(INH)₃]•3H₂O compound yielded the following results: %C(exp)=28.2 (theor=28.4), %H(exp)=3.3 (theor=3.2), %N(exp)=23.8 (theor=24.0). Chemical shifts (δ) of 500 MHz ¹H NMR spectrum are consistent with INH coordinated to the [Feᴵᴵ(CN)₅]³⁻ ion complex. The ¹H NMR spectrum for isoniazid shows a downfield chemical shift of the doublet at δ 8.66 ppm with coupling constants (J) values of 1.65 Hz and 4.58 Hz, which were assigned to the deshielded ortho hydrogens to nitrogen 1 of the pyridine ring. The upfield chemical shifts of the doublet at δ 7.67 ppm with J values of 1.67 Hz and 4.58 Hz were attributed to the shielded meta hydrogens of isoniazid. Interestingly, no signal could be observed for the hydrogen atoms of the hydrazine substituent of the pyridine ring due to rapid exchange with solvent. The ¹H NMR spectrum of Na₃[Feᴵᴵ(CN)₅(INH)₃]•3H₂O showed the signals characteristic of the hydrogens of the pyridine ring (δ 9.11 ppm for the ortho and δ 7.41 ppm for the meta...
hydrogens). These results are consistent with coordination of the metal center with the pyridine ring nitrogen resulting in deshielding of the ortho hydrogens and shielding of meta hydrogens due to the cyanide anisotropy and the \((\text{INH})\pi^* \leftarrow \text{d}\pi(\text{Fe}^{II})\) back-bonding. The Mössbauer parameters values \((\delta = 0.219 \pm 0.001 \text{ mms}^{-1}, \Delta = 0.219 \pm 0.002 \text{ mms}^{-1}, \text{referred to SNP})\) for the \(\text{Na}_3[\text{Fe}^{II}(\text{CN})_5(\text{INH})]\cdot3\text{H}_2\text{O}\) complex strongly suggest the presence of an unique \(^{57}\)Fe(II) Mössbauer nucleus, consistent with the proposed chemical composition [59]. The most prominent feature of the electronic spectrum of the \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]\)^{3-} complex is the band at 436nm \((\varepsilon = 4.0 \times 10^3 \text{ M}^{-1}\text{cm}^{-1})\) assigned to the \([(\text{INH})\pi^* \leftarrow \text{d}\pi(\text{Fe}^{II})]\) metal-to-ligand charge transfer (MLCT) transition, suggesting a strong interaction between the metal ion and the nitrogen atom of the pyridine ring of INH. The infrared (IR) vibrational spectrum of \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]\)^{3-} displays bands at wavenumbers \((\text{cm}^{-1})\) associated with stretching frequencies of \(\nu\text{C}≡\text{N}\) groups \((2044 \text{ cm}^{-1})\), \(\nu\text{Fe}^{II}\text{−C}\) \((563 \text{ cm}^{-1})\), \(\text{C}−\text{H}\) bonds involving \(sp^2\)-hybridized carbons of the pyridine ring \((3300 \text{ cm}^{-1})\), and \(\text{C}=\text{O}\) stretching \((1668 \text{ cm}^{-1})\). The pentacyano(isoniazid)ferrateII compound is stable at pH 2.0 (acid-base equilibrium of CN groups with a \(pK_a = 2.3\)). The stability of the inorganic complex at acidic pH indicates that it has favourable characteristics to be administered orally, since it would not be degraded by the acidic pH of human digestive system.

5.3. \textit{In vitro} activity of \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]\)^{3-} against WT and I21V InhA enzymes

The I21V enoyl reductase (InhA) mutant enzyme, which was identified in INH-resistant clinical isolates of \textit{M. tuberculosis} harboring \textit{inhA}-structural gene mutations, has been shown by binding studies to exhibit increased dissociation constant value for NADH (13.9 \(\mu\text{M}\)) as compared to WT InhA enzyme (0.57 \(\mu\text{M}\)) [30]. A comparison of the \textit{in vitro} kinetics of inactivation by KatG-activated INH, which was carried out in the presence of NADH (10\(\mu\text{M}\)), KatG (2\(\mu\text{M}\)) and INH (200\(\mu\text{M}\)), showed a decreased value for the apparent first-order rate constant \((k)\) of inactivation for the I21V mutant enzyme \((3.3 \times 10^{-3} \text{ min}^{-1}; t_{1/2} = 209 \text{ min})\) as compared to the WT enzyme \((4.87 \times 10^{-3} \text{ min}^{-1}; t_{1/2} = 142 \text{ min})\) [30]. The \(k\) values of inactivation by \([\text{Fe}^{II}(\text{CN})_3\text{INH}]^{3-}\) (100 \(\mu\text{M}\)), in the absence of NADH, for WT InhA \((327 \times 10^{-3} \text{ min}^{-1}; t_{1/2} = 2.1 \text{ min})\) and I21V mutant \((315 \times 10^{-3} \text{ min}^{-1}; t_{1/2} = 2.2 \text{ min})\) were within experimental error [56].
The values for inhibition in the presence of NADH (10 µM), and absence of both KatG and INH, were determined to be 99 x 10^-3 min^-1 (t1/2 = 7.0 min) and 65 x 10^-3 min^-1 (t1/2 = 10.7 min) for, respectively, I21V and WT enzymes [56]; whereas no inactivation could be detected for KatG-activated INH in the same time range [30]. In addition, pre-incubation studies showed that no slow formation of a covalent binary compound between [Fe^{II}(CN)_{5}(INH)]^{3-} and NADH capable of inactivating WT and mutant enzyme activities was detected [56]. These studies indicate that the mode of action of [Fe^{II}(CN)_{5}(INH)]^{3-} compound requires no activation by KatG, no need for the presence of NADH, and is also effective against INH-resistant mutant InhA [56].

5.4. Slow-binding inhibition kinetics of WT InhA by [Fe^{II}(CN)_{5}(INH)]^{3-}

In order to try to elucidate the kinetic mechanism of time-dependent inhibition observed for InhA, typical slow-binding inhibition experiments [60] were carried out for WT InhA in the presence of various concentrations of [Fe^{II}(CN)_{5}(INH)]^{3-}. The progress curves for enzyme activity indicate that the inorganic iron complex is a slow-binding inhibitor of WT InhA (Fig. 4). In this mechanism of action an initial complex EI is rapidly formed, which then undergoes a slow isomerization reaction to EI*, where the inhibitor is more tightly bound to enzyme (Fig. 5, mechanism B).

For slow-binding inhibitors the binding, which is the establishment of the equilibrium between enzyme, inhibitor, and enzyme-inhibitor complexes, occurs slowly on the steady-state time scale of seconds to minutes [60]. The slow-binding experiments were performed under conditions where the concentration of inhibitor was significantly greater than that of the enzyme (I_i>>E_i) and measurements made within a time range over which there was no significant substrate depletion (<10%). Thus, apparent pseudo first-order rate constants could be calculated by fitting the progress curves for time-dependent inactivation of WT InhA (Fig. 4) to the following integrated equation for slow binding inhibition [42, 60-61],

\[
A_t = A_0 - v_s t - (v_i - v_s)(1 - \exp(-k_{obs}t))/k_{obs}
\]

[1]
where A_t and A_0 are the 340-nm absorbance at time t and time 0, v_i, v_s, and k_{obs} represent, respectively, the initial velocity, the final steady-state velocity and the apparent first-order rate constant for the establishment of the equilibrium between EI and EI* complexes (the observed rate constant for formation of EI* or the apparent isomerization rate constant).

Fig. (4). Time-dependent inactivation of WT InhA by 0-10 µM [FeII (CN)$_5$ (INH)]$^{3-}$. The solid curves represent the best fit of the data to equation 1 for slow-binding inhibition. The assay mixtures were kept at 25°C and contained 100 mM phosphate (pH 7.5), 85 µM 2-trans-dodecenoyl-CoA (DD-CoA), 250 µM NADH, 8% (vol/vol) glycerol, 0.1 mg mL$^{-1}$ BSA, and 0-10 µM [FeII (CN)$_5$ (INH)]$^{3-}$. The reactions were initiated by adding enzyme (0.1-0.25 nM) to assay mixture and were monitored by following the decrease in NADH absorbance at 340 nm for 6 hours.

Glycerol and BSA were added to stabilize WT InhA activity since the enzyme was inactive in the absence of these reagents when used in concentrations of 3 nM or lower. The same assay conditions have been used previously in experiments of slow, tight-binding inhibition of WT InhA by the isoniazid-NAD adduct [42], thereby allowing a comparison to be made between the results described here and for the INH-NAD adduct.
Fig. (5). Mechanisms that describe reversible slow-binding inhibition of enzyme-catalyzed reactions.

Higher concentrations of inhibitor caused the steady-state to be reached more quickly but yielded lower \(v_s \) values. Accordingly, values for \(v_s \) could only be estimated from progress curves for assay mixtures containing up to 10 \(\mu \)M of \([\text{Fe}^\text{II}(\text{CN})_5(\text{INH})]^3\). However, this inhibitor concentration was not sufficient to differentiate between the two basic slow-binding mechanisms that have been described by Morrison and Walsh as mechanism A and mechanism B [Fig. 5, 60]. In mechanism A, it is assumed that the time-dependent enzyme inactivation observed is due to a slow bimolecular interaction between inhibitor and enzyme, because the inhibitor concentration is low and/or because of barriers that the inhibitor encounters in its binding at the active site of the enzyme. For mechanism B, it is assumed that there is an initial rapid interaction between enzyme and inhibitor to form EI which then undergoes a slow isomerization (conformational change) to EI* [62]. In an inhibition that conforms to this mechanism, the overall dissociation constant (\(K_i^* \)) must be lower than the dissociation constant for initially formed complex EI (\(K_i \)), a condition that can be satisfied only when \(k_6 < k_5 \) (\(K_i^* = K_i k_6 / (k_5 + k_6) \)) and when \(k_5 \) and \(k_6 \) are slower than all other steps [60].

According to mechanism B, in the presence of a fixed concentration of substrate (A), the value of \(k_{obs} \) increases hyperbolically as a function of inhibitor concentration with limiting values of \(k_6 \) and \(k_5 + k_6 \) at, respectively, zero and infinite concentrations of inhibitor. In mechanism A, \(k_{obs} \) varies as a linear function of the inhibitor concentration [60, 62]. The \(k_{obs} \) values obtained from progress curves of inhibitor concentrations up to 10 \(\mu \)M displayed a linear dependence on inhibitor concentration. However, when the \(K_i \) is much higher than \(K_{i^*} \) and inhibitor
concentrations used in the assays are lower than the $K_i (1 + A/K_a)$, k_{obs} values display a linear dependence on inhibitor concentration. Under these circumstances, the steady-state concentration of EI would be insignificant and it can be considered that E is converted directly to EI* [60]. Accordingly, inactivation assays to differentiate between the two mechanisms were carried out in the presence of higher concentrations of $[\text{Fe}^{II} (\text{CN})_5 (\text{INH})]^{3-}$. When the concentration of inhibitor is much larger than its apparent overall inhibition constant (K_i^{*}), v_s will be negligible and equation 1 simplifies to [63]:

$$A_t = A_0 - (v_i/k_{obs})(1 - \exp(-k_{obs}t))$$ \[2\]

Thus, data from progress curves obtained for $[\text{Fe}^{II} (\text{CN})_5 (\text{INH})]^{3-}$ in the concentration range of 15-1500 µM were fitted by nonlinear regression to equation 2. The k_{obs} values obtained from equations 1 and 2 at, respectively, low and high inhibitor concentrations are consistent with mechanism B, since the k_{obs} values display, at fixed concentration of substrates, a hyperbolic dependence on $[\text{Fe}^{II} (\text{CN})_5 (\text{INH})]^{3-}$ concentration (Fig. 6), which can be described by the following equation [42]:

$$k_{obs} = k_6 + k_5(I/K_i(1 + A/K_a + B/K_b)+ I))$$ \[3\]

where K_i is the dissociation constant for the initial enzyme-inhibitor binary complex (EI), k_5 is the forward isomerization rate constant for conversion of EI to EI*, k_6 is the reverse isomerization rate constant (conversion of EI* to EI), I is the concentration of inhibitor ([FeII(CN)$_5$(INH)]$^{3-}$), A and B are the concentration of the two competitive substrates (NADH and 2-trans-dodecenoyl-CoA), and K_a and K_b are the Michaelis-Menten constants for A and B, i.e. K_m for NADH and K_m for DD-CoA, respectively. In a previous report, the mechanism of action of WT InhA inactivation by $[\text{Fe}^{II} (\text{CN})_5 (\text{INH})]^{3-}$ has been suggested to involve an interaction with the NADH binding site of the enzyme, since it has been demonstrated that both high concentrations of NADH protects WT InhA from inactivation by $[\text{Fe}^{II} (\text{CN})_5 (\text{INH})]^{3-}$ and the apparent first-order rate constant obtained for the inactivation process is dependent on NADH concentration [56]. Thus, these results indicate that InhA enzyme inhibition by $[\text{Fe}^{II} (\text{CN})_5 (\text{INH})]^{3-}$ appears to be competitive with NADH. To test if the DD-CoA substrate
protects against enzyme inactivation by [FeII(CN)$_{5}$(INH)]$^{3-}$, time-dependent inactivation experiments were performed, where WT InhA was preincubated with the inorganic complex either in the absence or in the presence of DD-CoA. All reactions were carried out at 25 °C in mixtures containing 100 mM Na$_2$HPO$_4$, pH 7.5, 3 µM WT InhA, 100 µM [FeII(CN)$_{5}$(INH)]$^{3-}$, in the absence of DD-CoA or in the presence of either 85 µM or 150 µM of DD-CoA. Higher concentrations of DD-CoA could not be used because of a decrease in the enzyme activity at concentrations of enoyl-CoA substrate above ~150 µM, possibly due to substrate inhibition or the formation of micelles at high concentrations of DD-CoA [30]. Control experiments contained no inhibitor. The residual enzyme activity in preincubation mixtures was determined by diluting an aliquot (10 µL) of the reaction mixture into the assay solution (1000 µL), which contained 100 mM Na$_2$HPO$_4$ (pH 7.5), 200 µM NADH, and 100 µM DD-CoA. Thus, the residual enzyme activity in preincubation studies could be assessed at appropriate intervals by measurements of initial velocity at 340 nm for 1 min. The apparent first-order rate constants for WT InhA inactivation (k_{inact}) could be calculated from a plot of residual enzyme activity against time (data not shown). Values of 0.25 ± 0.02 min$^{-1}$, 0.129 ± 0.009 min$^{-1}$, and 0.031 ± 0.001 min$^{-1}$, for DD-CoA concentrations of 0, 85, and 150 µM, respectively, were determined for k_{inact}. Since the apparent first-order rate constant values obtained for the enzyme inactivation decreased as a function of increasing DD-CoA concentration in the preincubation mixtures, the protection afforded by DD-CoA against enzyme inactivation suggests that the inhibition mechanism probably involves interaction with both NADH and DD-CoA binding sites. Accordingly, the WT InhA inhibition by [FeII(CN)$_{5}$(INH)]$^{3-}$ appears to be competitive with respect to both DD-CoA and NADH substrates. Michaelis-Menten constant values (K_m) of 66 µM and 46 µM for, respectively, NADH and DD-CoA have previously been determined for WT InhA in the same experimental conditions used in the slow-binding inhibition studies described here (42). Accordingly, these K_m values were used in the present work for K_i and K_i^* calculations. Values of 32 ± 3 µM and 0.41 ± 0.01 min$^{-1}$ for, respectively, the rapidly reversible dissociation constant for the WT InhA-[FeII(CN)$_{5}$(INH)]$^{3-}$ binary complex (K_i) and for the forward rate constant (k_5) were determined from fitting the k_{obs} values to equation 3 (Fig. 6).
Fig. (6). Determination of dissociation constant (K_i) for the rapidly reversible EI complex and forward rate constant (k_5). The values of K_i and k_5 were obtained from plotting apparent pseudo-first order rate constants (k_{obs}) as a function of $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ and fitting the data to equation 3. The experimental values for k_{obs} were determined from fits of progress curves to equations 1 and 2.

A third mechanism (mechanism C) has also been described to account for slow-binding inhibition of enzyme catalyzed reactions (Fig. 5). The mechanism C involves a slow initial isomerization of two forms of free enzyme in solution (E and E^*), followed by a rapid binding of inhibitor to form E^*I complex. The k_f and k_r stand for the forward and reverse rate constants for the conversion of free enzyme (E) to a form of free enzyme (E^*) to which the inhibitor binds. The three slow-binding mechanisms presented in Fig. (5) can be differentiated by the relationship between k_{obs}, and inhibitor concentration [64-65]. The k_{obs} predicted by mechanism C is given by equation 4, where $K_i = k_6/k_5$.

$$k_{obs} = k_f/[1 + [A]/K_a] + k_iK_i/[I + K_i]$$ \[4\]

The equation 4 predicts a decrease in k_{obs} with increasing inhibitor concentration. Therefore, in the present case, mechanism C was immediately ruled out since k_{obs} increases, rather than decreases, as a function of increasing $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ concentration.
5.5. Dissociation of [FeII(CN)\textsubscript{5}(INH)]3- from WT InhA and overall inhibition constant (K\textsubscript{i*}).

To demonstrate reversible binding and to obtain a reliable estimate for k_6 value, the reverse rate constant for the conversion of EI* to EI, WT InhA*-inhibitor complex (EI*) was formed by incubation of 25 µM WT InhA (concentration of active sites) with 25, 75 and 125 µM of [FeII(CN)\textsubscript{5}(INH)]3- in 100 mM phosphate, pH 7.5 for 5 hours at 25°C. We have observed that, in the absence of NADH, this preincubation time is sufficient to allow the system reach equilibrium. After preincubation, samples were diluted by factors of 1:100 000 or 1:250 000 into assay mixtures containing 100 mM phosphate buffer (pH 7.5), 85 µM DD-CoA, 250 µM NADH, 8 % (vol/vol) glycerol and 0.1 mg mL-1 BSA, and absorbance at 340 nm monitored for 6 hours. The rate of activity regain of WT InhA was calculated by fitting the values of absorbance at 340 nm versus time to the equation 1 [60]. Control experiments contained no inhibitor. Dilution into a relatively large volume of assay mix containing near-saturating concentrations of one of the competitive substrate (NADH) causes inhibitor dissociation and regain of activity. Under these conditions the final inhibitor concentration in the assay mixtures and/or its effect are negligible and the rate of activity regain will provide k_6 [60]. Values of 1.1 (± 0.1) x 10-3 min-1, 1.18 (± 0.09) x 10-3 min-1, and 1.01 (± 0.03) x 10-3 min-1, for inhibitor concentrations of 25, 75, and 125 µM, respectively, were determined for k_6. The similar values calculated for k_6 corroborate that both the inhibitor rebinding was insignificant and that the true reverse isomerization rate constant was estimated. Furthermore, as required, the k_6 value is independent of WT InhA concentration since enzyme dilutions of 1:100 000 or 1:250 000 yielded similar estimates. A typical activity regain experiment is presented in Fig. (7). A value of 630 ± 28 min was estimated for the half-time of the limiting step for inhibitor dissociation ($t_{1/2} = \ln2/k_6$) from E*-\textsuperscript{[FeII(CN)\textsubscript{5}(INH)]}3- binary complex. A slow rate of dissociation is desirable, as it may be expected to enhance an inhibitor’s effectiveness [66]. In addition, a value of 373 can be estimated for the equilibrium constant for the E-[FeII(CN)\textsubscript{5}(INH)]3- to E*-\textsuperscript{[FeII(CN)\textsubscript{5}(INH)]}3- isomerization process ($k_5/k_6 = 0.41 \text{ min}^{-1}/1.1 \times 10^{-3} \text{ min}^{-1}$). The ratio, k_5/k_6, can be taken as an index of the accumulation of EI* and the energetics of its formation. The higher the value of the k_5/k_6 ratio, the longer lived is EI* and more likely the inhibitor is to have a useful \textit{in vivo} lifetime. The weakness in the use of classical enzyme inhibitors as drugs for clinical conditions is that inhibition results in the upstream accumulation of the substrate for the enzyme, which may overcome the inhibition. By
contrast, the buildup of substrate cannot have any effect on the isomerization of EI* to EI and hence reversal of the inhibition [60].

The overall dissociation constant (K_{i}^*) is a function of the relative magnitudes of the forward (k_5) and reverse (k_6) rates for WT InhA*-[FellI(CN)$_5$(INH)]$^{3-}$ isomerization process (Fig. 5). A K_{i}^* value of 86 ± 11 nM was estimated from the relationship $K_{i}^* = K_i k_6/(k_5+k_6)$ using an average k_6 value (1.1 x 10$^{-3}$ min$^{-1}$) determined from the activity regain experiments. Alternatively, the K_{i}^* was determined by analysis of final steady-state velocities (v_s) versus inhibitor concentration (Fig. 8) using the relationship $v_s = v_0/(1+I/K_{i}^{app})$, where v_0 is the initial rate in absence of inhibitor, I is the inhibitor concentration, and K_{i}^{app} is the apparent overall dissociation constant value obtained in the presence of 250 µM NADH and 85 µM DD-CoA [62-63]. A true overall dissociation constant (K_{i}^*) value of 70 ± 10 nM was calculated by using the relationship $K_{i}^* = K_{i}^{app}/(1+A/K_a+ B/K_b)$, where A is the NADH concentration, B is the DD-CoA concentration, and K_a and K_b are the Michaelis-Menten constants previously determined for, respectively, NADH (66 µM) and DD-CoA (46 µM) [42] in the same experimental conditions used in the assays described here. The K_{i}^* value estimated from regain of activity experiment (86 ± 11 nM) is within the standard error of the value determined from v_s versus inhibitor concentration plot (70 ± 10 nM), hence supporting the robustness of the data and the validity of the method used for analysis. A comparison between the inhibitor dissociation constant value for the rapidly reversible EI complex formation ($K_i = 32$ µM) and the overall dissociation constant value ($K_{i}^* = 70$ nM) indicates that the E*- [FellI(CN)$_5$(INH)]$^{3-}$ is –3.6 kcal mol$^{-1}$ more stable than the initially formed E-[FellI(CN)$_5$(INH)]$^{3-}$-complex.
Fig. (7). Dissociation of [Fe^{II}(CN)_{5}(INH)]^{3-} from WT InhA*. Enzyme (25 µM) was incubated with 75 µM and 125 µM of [Fe^{II}(CN)_{5}(INH)]^{3-} for 5 h at 25 °C. Control experiment contained no inhibitor. Samples were diluted by a factor of 1:250 000, as exemplified here, into assay mixtures containing 100 mM phosphate buffer (pH 7.5), 85 µM DD-CoA, 250 µM NADH, 8% (vol/vol) glycerol, and 0.1 mg ml^{-1} BSA. WT InhA activity regain was continuously monitored at 340 nm for 6 h.

Fig. (8). Determination of the overall dissociation constant. K_i^* was determined from a replot of the final steady-state velocity (v_s) as a function of [Fe^{II}(CN)_{5}(INH)]^{3-} concentration.

5.6. Two-step mechanism of WT InhA inhibition by Fe^{II}(CN)_{5}(INH)]^{3-}

The two-step mechanism of WT InhA inhibition by [Fe^{II}(CN)_{5}(INH)]^{3-} was confirmed in an experiment where the enzyme was preincubated in the presence of various concentrations of
inhibitor and the decrease of WT InhA activity was assessed by withdrawing aliquots of enzyme from preincubation mixtures at appropriate intervals, followed by rapid measurement of initial velocity. Reactions of time-dependent inactivation of WT InhA were carried out at 25 °C in mixtures containing 100 mM Na₂HPO₄, pH 7.5, 3 μM WT InhA, and various concentrations of [Fe^{II}(CN)₅(INH)]³⁻. Control experiments contained no inhibitor. At various times, the residual enzyme activity was determined by diluting an aliquot (5 μL) of the reaction mixture into the assay solution (500 μL), which contained 100 mM Na₂HPO₄ buffer (pH 7.5), 200 μM NADH, and 100 μM DD-CoA. Since the value of K_i is much larger than K_i* and the inhibitor concentration in the assay solution is lower than the K_i value ([I]<K_i) and there is a large excess of the competitive substrates NADH and DD-CoA over [Fe^{II}(CN)₅(INH)]³⁻, the steady-state concentration of EI in the assay solution is kinetically insignificant. In addition, the low reverse isomerization rate constant (k_6) value ($t_{1/2} = 630 ± 28$ min) would result in a slow formation of EI from EI* in a time range that is far removed from the time taken to make enzyme activity measurements, so that the EI* concentration could be regarded as constant in the activity assay time range. Thus, the residual enzyme activity in preincubation studies could be assessed by measurements of initial velocity at 340 nm for 1 min. The apparent first-order rate constants for WT InhA inactivation (k_{inact}) could be calculated from a plot of residual enzyme activity against time for each inhibitor concentration. A plot of k_{inact} values versus inhibitor concentration shows that the k_{inact} values increase hyperbolically as a function of inhibitor concentration (Fig. 9). These data were fitted to equation 5, which is derived from equation 3 setting the concentration of substrates to zero ([NADH] = 0 and [DD-CoA] = 0). Equation 5 describes the slow-binding inhibition for mechanism B. Values of $0.51 ± 0.03$ min⁻¹ and $73 ± 14$ μM were calculated for, respectively, the forward isomerization rate constant (k_5), and dissociation constant for formation of EI (K_i). These values are in reasonably good agreement with the ones obtained in slow-binding inhibition experiments, reinforcing a two-step mechanism for WT InhA inactivation by [Fe^{II}(CN)₅(INH)]³⁻.

\[k_{obs} = k_6 + k_5(I/(K_i+I)) \] \[5\]
Fig. (9). Two-step inactivation of WT InhA by $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$. The values for apparent first-order rate constant of inactivation (k_{inact}) were obtained from a plot of residual enzyme activity versus time (not shown). The k_{inact} values were plotted against $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ concentration in the preincubation mixture. The data were fitted to equation 5.

The two-step mechanism followed by $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ inactivation of WT InhA involves an enzyme-inhibitor isomerization step. The enzyme isomerization could involve, for instance, a protein conformational change or alteration of water structure at the active site. For the inhibitor the change could be hydration/dehydration of a carbonyl, change in ionization state, or a conformational change. These alterations could take place in the enzyme inhibitor complex or in solution [66]. The slow-binding inhibition of WT InhA described here cannot be due to a slow isomerization of the inhibitor to a more potent species in solution, since we have previously shown that apparent first-order rate constant values obtained when $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ was pre-incubated for 2 hours before adding to a solution containing WT InhA was within the standard error of the one determined with no pre-incubation [56]. However, the results described above cannot distinguish between the various possible conformational changes of enzyme and/or inhibitor, changes in ionization states, or hydration/dehydration steps. Molecular modeling studies described below suggests though that $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ inhibitor molecule may undergo small conformational changes after initial docking in the active site of WT InhA enzyme.
6. Molecular modeling of mode of interaction between $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ and WT InhA

Complementary to the experimental studies on slow-binding inhibition kinetics presented and discussed above, the interaction of $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ ligand with WT InhA was modeled using computational docking, since no crystal structure of the inorganic compound-enzyme binary complex is available. The aim of computational docking is to evaluate the interaction energy between the ligand and a protein, giving an estimate of the free energy of binding, and predict the binding mode of the interacting molecules [67]. With the recent advances in search algorithms [68] and scoring functions [69], fast automated docking methods have become a valuable tool to explore the interaction between an enzyme and its inhibitors [70]. In the lack of experimental data, it contributes significantly to the understanding of the structural and energetic basis of protein-ligand interactions [71].

All docking simulations were performed using a force-field based free energy scoring function with the Lamarckian Genetic Algorithm (LGA) in the version 3.05 of the software AutoDock [72]. AutoDock rapidly evaluates the interaction energy by precalculating atomic affinity potentials for each atom type in the ligand, combined with fast search algorithms, to find possible binding positions on the protein. The structures were generated as follows:

Ligand: The structure of $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ was generated with the Molecular Builder module of Insight II (version 2000.1, Accelrys Inc.). In order to calculate AMBER force field charges, the geometry of $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ was optimized at the ab initio HF/6-31G* level. The optimized geometry was used to calculate the electrostatic potentials at the HF/6-31G* level. Gaussian98 program [73] was used for these calculations. The calculated electrostatic potentials were used to determine the charges by using the RESP [74] module of AMBER5 [75]. Then, the inorganic complex was processed with AutoTors to incorporate the apolar hydrogens to their respective heavy atoms and define the rotatable bonds when applicable. In this study $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ was kept rigid.

Proteins: The coordinates of WT InhA in complex with NADH (PDB 1ENY) (31) and with NAD$^+$ and a substrate analog (PDB 1BVR) [76] were taken from the Protein Data Bank [77].
Polar hydrogen atoms and partial charges were added in the EDIT module AMBER4.1 [78]. After adding solvation parameters with AddSol, the active site was defined by AutoGrid using default parameters. The number of grid points, spaced at 0.375 Å, was set to 61 x 61 x 61 generating a grid with approximate dimensions 23 x 23 x 23 Å³, centered at the initial position of the ligand in the active site of the enzyme. This grid is large enough to include the NAD(H), as well as the C16 fatty acyl substrate binding pocket in 1BVR.

Each docking simulation was composed of 100 independent runs, for which a maximum number of 27,000 LGA was generated on the initial population of 50 individuals, a maximum number of 1.5 x 10⁶ energy evaluations, with an elitism value of 1, a mutation rate of 0.02, and a cross-over rate of 0.8. For the local search the pseudo-Solis and Wets method was applied using default parameters. Each run provides one predicted binding mode. At the end of the docking experiment binding modes with root-mean-square deviation (RMSD) of 3.0 Å within each other were placed in the same cluster. The docking results are described separately for each crystal structure.

6.1. Docking of [Fe²⁺(CN)₅(INH)]³⁻ to NADH bound enzyme (control experiment)

The 100 independent docking simulations for [Fe²⁺(CN)₅(INH)]³⁻ in the NADH binding pocket, in the crystal structure (PDB code: 1ENY), resulted in 31 clusters with estimated average free energies of binding (ΔG_{bind}) ranging from -9.6 to -3.4 kcal/mol. Despite these differences, all 31 clusters showed a similar binding mode as depicted for the top ranked cluster in Fig. 10. This docking simulation was performed as a control experiment to show, as expected, that [Fe²⁺(CN)₅(INH)]³⁻ and the extended conformation of NADH cannot be simultaneously located in the crystallographic structure of the cofactor binding pocket.
Fig. (10). A molecular surface representation of the NADH binding pocket in the WT InhA enzyme (PDB 1ENY) for all residues at least 5 Å from NADH (magenta). Left - the initial position of $[\text{Fe}^\text{II}(\text{CN})_5(\text{INH})]^3^-$ (green) for all docking experiments in this work. Right - the binding mode of $[\text{Fe}^\text{II}(\text{CN})_5(\text{INH})]^3^-$ for the lowest free energy of binding run in the top ranked cluster. The pentaferrocyanate portion of $[\text{Fe}^\text{II}(\text{CN})_5(\text{INH})]^3^-$ is strongly repelled by the pyrophosphate moiety of NADH, which drives it outwards the crevice entrance.

6.2. Docking of $[\text{Fe}^\text{II}(\text{CN})_5(\text{INH})]^3^-$ to 1ENY and 1BVR crystal structures.

The NAD(H) molecules make 25 residues contacts in 1ENY whilst 27 contacts are observed in 1BVR. The presence of the C16 fatty acyl substrate in the latter structure has resulted in a small conformational change that accounts for the difference in the contact numbers. A structural consequence of this change is a more compact NAD$^+$ binding pocket in 1BVR. Hence, by using these structures in the docking of $[\text{Fe}^\text{II}(\text{CN})_5(\text{INH})]^3^-$ we are also implicitly considering the flexibility of the macromolecule. The docking simulation for $[\text{Fe}^\text{II}(\text{CN})_5(\text{INH})]^3^-$ in the free cofactor binding pocket resulted in 11 and 10 clusters for the 1ENY and 1BVR crystal structures, respectively. Six clusters from each experiment were discarded for their binding mode did not take place in the active site and had higher energies. Only five distinct clusters were identified, each corresponding to one particular binding mode and ranked according to the lowest ΔG_{bind} as summarized in Table 1 and depicted in Figures 10 and 11. It is important to note, however, that because there is yet no structural information about the inhibitor binding to InhA, a direct structural comparison is not possible. Instead, we focus on
analyzing the possible binding modes of $\text{[Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ in InhA. In both structures the $\text{[Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ inhibitor preferentially occupies the pyrophosphate and nicotinamide sites in the NAD(H) binding pockets (Table 1). The $\text{[Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ complex is bulky and the kinetic studies indicate that it can also occupy the NADH binding pocket, it is though not surprising that $\text{[Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ makes approximately half of the number of contacts between protein and NADH. Furthermore, for the top 2 clusters in both targets the observed difference in pocket geometry and dimensions between 1ENY and 1BVR is reflected in the number of $\text{[Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$-protein contacts.

1ENY: The pentacyanoferrate portion of cluster 1 and cluster 2 occupies the nicotinamide (NA) binding site, with the isoniazid moiety pointing towards the pyrophosphate (PP) in cluster 1 and upwards in cluster 2 (Figures 11b and c), reducing cluster 2 contacts with the enzyme (Table 1). Clusters 3, 4, and 7 (Figures 11d, e and f) all have their pentacyanoferrate placed on top of PP. While in cluster 3 the isoniazid moiety points upwards, in cluster 4 and 7 it points in opposite directions, towards adenine ribose (ADR) and NA, respectively. Cluster 1 and 2 represent the best docking results, or the preferred binding modes of $\text{[Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$, as shown by their estimated free energy of binding and corresponding dissociation constant K_d (Table 1).

1BVR: This structure is interesting for it comprises the conformations of the NAD$^+$ binding pocket and the active site of a complexed state. As mentioned above, it represents a distinct conformational state of InhA, thus implicitly accounting for some flexibility in the docking model. Consequently, different docking results for $\text{[Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ were expected. In fact, because the entrance to the active site is slightly tighter than in 1ENY, the pentacyanoferrate portion cannot bind to the NA site as observed for clusters 1 and 2 of 1ENY. Instead, all binding modes are shifted away from the NA site resulting in an overall reduction of the inhibitor contacts with the protein, and a corresponding decrease in the fee energy of binding and affinity for the enzyme (Table 1). A ubiquitous feature of these docking results is that the top ranking binding mode in 1ENY is similar to the bottom ranking binding mode in 1BVR, with the latter shifted away from the NA site. Conversely, the top ranking binding mode of 1BVR is similar to the bottom ranking binding mode in 1ENY. Clearly, this indicates that the flexibility of both protein and inhibitor must be considered for proper account of their interactions. Thus, the exact
position of $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ in the NAD(H) binding pocket of InhA cannot be assigned unambiguously. Nonetheless, these studies provide a rough description of its position and contacts. The position of $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ observed in the clusters of 1BVR docking overlap with the position occupied by the trans double bond of C16 fatty acyl substrate in the 1BVR crystal structure, which is adjacent to the nicotinamide ring of NAD$^+$ [76]. These results are consistent with the lower apparent first-order rate constant values for InhA inactivation observed in the presence of either NADH or DD-CoA.

Table 1. Results of 100 independent docking runs for $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ in the free NAD(H) binding pocket of the crystallographic structures of WT InhA, 1ENY and 1BVR. For 1BVR the C16 fatty acyl substrate also was removed.

<table>
<thead>
<tr>
<th>Target</th>
<th>N_{tot}</th>
<th>Cluster</th>
<th>N</th>
<th>(ΔG_{bind}) kcal/mol</th>
<th>K_d (nM)</th>
<th>Number of contacts</th>
<th>NAD(H) Sites</th>
<th>NA</th>
<th>PP</th>
<th>ADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ENY</td>
<td>11</td>
<td>1</td>
<td>6</td>
<td>-13.4</td>
<td>0.2</td>
<td>14</td>
<td>$[\text{Fe}^{III}(\text{CN})_5]^{3-}$ (INH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>-12.0</td>
<td>1.5</td>
<td>12</td>
<td>$[\text{Fe}^{III}(\text{CN})_5]^{3-}$ -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>-10.4</td>
<td>24.3</td>
<td>11</td>
<td>$[\text{Fe}^{III}(\text{CN})_5]^{3-}$ -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>-9.7</td>
<td>75.8</td>
<td>11</td>
<td>$[\text{Fe}^{III}(\text{CN})_5]^{3-}$ (INH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>5</td>
<td>-8.7</td>
<td>455.0</td>
<td>10</td>
<td>(INH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1BVR</td>
<td>10</td>
<td>1</td>
<td>12</td>
<td>-10.0</td>
<td>46.7</td>
<td>13</td>
<td>(INH)</td>
<td>$[\text{Fe}^{III}(\text{CN})_5]^{3-}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>14</td>
<td>-9.9</td>
<td>57.2</td>
<td>10</td>
<td>$[\text{Fe}^{III}(\text{CN})_5]^{3-}$ (INH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>-9.4</td>
<td>129.0</td>
<td>11</td>
<td>(INH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>-9.3</td>
<td>144.0</td>
<td>11</td>
<td>(INH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
<td>-8.8</td>
<td>371.0</td>
<td>12</td>
<td>$[\text{Fe}^{III}(\text{CN})_5]^{3-}$ (INH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a N_{tot} is the total number of clusters; N is the number of results for each cluster; ΔG_{bind} is the estimated lowest free energy of binding for each cluster. K_d is the estimated inhibition or dissociation constant. The seventh column shows the number of contacting residues for each binding mode. Columns 8, 9, and 10 show where the pentaferrocyanate and isoniazid parts of the $[\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}$ ligand sit in the free NADH (NAD$^+$) binding pocket (NA = nicotinamide; PP = pyrophosphate; ADR = adenine ribose).
Fig. (11). The 5 top-ranked binding modes for \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^{3-}\) in the NADH binding pocket, which are represented as molecular surfaces, of the 1ENY crystal structure. The atoms are colored as follows: carbon and hydrogen (grey), nitrogen (blue), oxygen (red), phosphorus (magenta). (a) NADH in its pocket from the 1ENY crystal structure, (b) cluster 1, (c) cluster 2, (d) cluster 3, (e) cluster 4, and (f) cluster 5.
Fig. (12). The 5 top-ranked binding modes for $[\text{Fe}^{II}(\text{CN})_3(\text{INH})]^{3-}$ in the NAD$^+$ binding pocket, which are represented as molecular surfaces, of the 1BVR crystal structure. The atoms are colored as in Fig. 10. (a) NAD$^+$ in its pocket from the 1BVR crystal structure, (b) cluster 1, (c) cluster 2, (d) cluster 3, (e) cluster 4, and (f) cluster 5.
7. Concluding remarks

The determination of the complete genome sequence of \textit{M. tuberculosis} [79] has had a striking impact on researchers in the TB field. Comparison of the complete genome sequence of \textit{M. tuberculosis} H37Rv and the clinical isolate CDC1551, which is highly infectious in humans, revealed a number of polymorphisms with potential relevance to disease pathogenesis, immunity and evolution [80]. The \textit{M. leprae} genome represents the minimal mycobacterial genome as it contains a large number of pseudo-genes, the remnants of genes which were once functional [81]. Intact gene family members found in the \textit{M. leprae} genome may point to the genes that are essential for survival of other mycobacteria. More recently, the complete genome sequence of \textit{M. bovis} has shown that it is >99.95 % identical to \textit{M. tuberculosis} and that there are no genes unique to \textit{M. bovis} [82], thereby implying that differential gene expression may be the key to the host tropisms of human and bovine bacilli. One of the expected benefits of genome analysis of pathogenic bacteria is in the area of human health, particularly in the design of more rapid diagnostic reagents and development of new vaccines and antimicrobial agents. New approaches are being sought including comparative genomics using bioinformatics, functional genomics, proteomics, transcriptomics, and structural genomics. It is hoped that a better understanding of the complex biology of this pathogen will yield new drug targets for the drug development process. In addition, studies being conducted by the TB Structural Genomics consortium will make available the structures of many potential target proteins and should provide important information such as the biological function of proteins harboring no homology to any known protein [83]. A number of these proteins must be selected for further analysis and computational chemistry techniques applied to identify leads.

As pointed out above, there is an urgent need for more effective and less toxic antitubercular agents to shorten the duration of current treatment, improve the treatment of MDR-TB, and to provide effective treatment of latent tuberculosis infection. It thus appears reasonable to examine the potential antitubercular activity of INH analogs due to oral availability and favorable toxicology profile of INH. Moreover, InhA is a validated target and inhibitors of its activity could provide a faster route towards the development of anti-TB agents, while new targets are yet to be unveiled and validated. In addition, there is a cyclical need for innovation to
provide new structural scaffolds (lead compounds) to undergo chemical iteration aiming at optimization before reaching candidate drug status. Here we describe a new approach to the rational design of an INH analog based on an inorganic atom attached to the nitrogen atom of the heterocyclic ring of isoniazid that inhibits a validated target (InhA). The pentacyano(isoniazid)ferrateII compound appears to be a promising candidate for further antitubercular drug development and may represent a new class of lead compounds. Efforts to determined the three-dimensional structure of [FeII(CN)5INH]•WT InhA binary complex are currently underway to confirm the binding mode and to assess the molecular interactions made with the protein active site residues. In addition, evaluation of the ability of this inorganic complex to kill *M. tuberculosis* in mouse bone marrow macrophages and to inhibit mycobacterial growth in animal models are essential steps currently underway to establish the pentacyano(isoniazid)ferrateII complex as a potential drug candidate.

Screening threshold is typically set in the range of 1-10 µM for ligands to produce hits to undergo chemical modifications to construct a synthetic library to provide a population of molecules that have a chance of moderate- to high-affinity recognition by specific regions of target macromolecules [55]. Architectural diversity or functional group density are desirable features to foster an increase in new structural leads to provide quality not quantity. In this respect, the inorganic complex here described represents a step towards this goal, since different metal centers and functional groups may be introduced to improve its efficacy, if needed. In addition the overall dissociation constant value of 86 nM for inhibition of InhA by the pentacyano(isoniazid)ferrateII compound represents an excellent starting point from which to improve efficacy.

Both *M. tuberculosis* and *M. bovis* BCG are susceptible to isoniazid in the range of 0.02-0.2 µg mL⁻¹ [Heifets, 1994]. An MIC value of 0.2 µg mL⁻¹ for the pentacyano(isoniazid)ferrate was determined by the radiometric BACTEC system [56]. Preliminary *in vitro* cytotoxicity results in HL60 leukemia and MCS-7 breast cancer cells indicate an IC₅₀ > 25 µg mL⁻¹, which yields a favorable selectivity index (SI = IC₅₀/MIC > 125). The molecular mass of most of the orally active drugs is less than 500 daltons, and biologically relevant structural features would have to be achieved within this size constraint if oral activity of a new chemotherapeutic agent is
to be routinely achieved [84]. The Na₃[Fe⁷⁺(CN)₅INH]•3H₂O compound is stable at acidic pH and its molecular mass is 446 daltons, thus imparting favorable characteristics to this compound as a potential oral drug.

Metal-based chemotherapeutic compounds have been investigated for potential medicinal application; for instance, the platinum-based cisplatin is widely used in the treatment of cancer [85]. Metal complexes have also been described as alternative chemotherapeutic agents to treat tropical diseases as malaria, trypanosomiasis, and leishmaniasis [86]. The most successful examples of metal-based antimalarials are derived from modifying the most widely used drug chloroquine (CQ) through coordination to metal-containing fragments. The in vitro and in vivo tests of CQ complexes of transition metals (Rh, Ru) against Plasmodium berghei showed that the incorporation of the metal fragments generally produce an enhancement of the efficacy of chloroquine [87]. More recently, gold-chloroquine complexes were shown to be active against CQ-resistant and CQ-sensitive strains of Plasmodium falciparum [88-89]. The highest activity for this series was obtained for [(CQ)Au(PPh₃)][PF₆], which was found to be 9 times more active than chloroquine diphosphate against the CQ-resistant FcB1 strain of P. falciparum, 5 times more active for the more aggressive strain FcB2 strain and 22 times more active against the rodent malaria parasite P. berghei [86]. In particular, metal complexes of carboxamidrazone analogs resulted in an enhancement in their in vitro antitubercular activity against M. tuberculosis H37Rv strain [90]. However, the target(s) of these metal complexes are unknown and this approach could hardly be considered as a rational design of a drug.

As pointed out by Gerard Jaouen (chemistry professor at Ecole Nationale Superieure de Chimie de Paris), the bio-inorganic chemistry discipline “needs to prove it can create something useful for society” [91]. There is little doubt that other new- metal-containing drugs will be developed in a variety of therapeutic areas, including the treatment of parasitic diseases, as the field of inorganic medicinal chemistry continues to grow. We hope that the approach described here will bear fruit and help the development of new antitubercular agents.
Acknowledgments

Financial support for this work was provided by The Department of Science and Technology (DECIT)/ Ministry of Health and UNESCO and Millennium Initiative Program MCT-CNPq to DSS and LAB. DSS (304051/1975-06) and LAB (520182/99-5) are research career awardees from the National Research Council of Brazil (CNPq). ONS acknowledges a PROADI grant from FAPERGS (01/0554.9) and CAPES (PI 18-23/2001). We, the authors, would like to acknowledge Chang-Guo Zhan for providing charge parameters of the pentacyano(isoniazid)ferrateII inorganic complex needed for the molecular modeling studies.
References

[32] Schroeder EK, Basso LA, Santos DS, de Souza ON. Molecular dynamics simulation studies of the wild-type, I21V and I16T mutants of isoniazid resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: towards the understanding of NADH-InhA different affinities. Biophys J 2005 (accepted for publication, Epud ahead of print, PMID:15908576).

Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP (CoA) reductase enzymes from *Mycobacterium tuberculosis* (Manuscrito publicado no “Journal of Molecular Biology” em Junho de 2006)
Running title: WT and isoniazid-resistant enoyl reductases

Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from *Mycobacterium tuberculosis*.

Jaim S. Oliveira§, José H. Pereira†, Fernanda Canduri†, Nathália C. Rodrigues‡, Osmar N. de Souza¶, Walter F. de Azevedo Jr§, Luiz. A. Basso§*, and Diógenes. S. Santos§*

From the §Centro de Pesquisas em Biologia Molecular e Funcional, Faculdade de Farmácia e Faculdade de Biociências, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brasil, † Departamento de Física, UNESP, São José do Rio Preto, Brazil, ¶ Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas, Faculdade de Informática, PUCRS, Porto Alegre, RS, Brasil,

* to whom correspondence may be addressed
LAB: phone, +55-51-33203629; fax, +55-51-33203629; e-mail, luiz.basso@pucrs.br or DSS: phone, +55-51-33203629; fax, +55-51-33203629; e-mail, diogenes@pucrs.br
An understanding of isoniazid (INH) drug resistance mechanism in *Mycobacterium tuberculosis* should provide significant insight for the development of newer anti-tubercular agents able to control the INH-resistant tuberculosis (TB). The *inhA*-encoded 2-*trans* enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the *inhA* structural gene have been found in INH-resistant clinical isolates of *M. tuberculosis*, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3 Å, 2.2 Å, 2.0 Å, and 1.9 Å. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (*k*_{off}) were 11-, 5-, and 10-fold higher for, respectively, I21V, I47T, and S94A INH-resistant mutants of InhA as compared to INH-sensitive wild-type InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes.

Keywords: enoyl-ACP reductase, isoniazid resistance, *Mycobacterium tuberculosis*, pre-steady-state kinetics, NADH binding
Tuberculosis (TB) is a curable, yet widespread disease that infects one-third of the world’s population. It is estimated that 8.2 million new TB cases occurred worldwide in the year 2000, with approximately 1.8 million deaths in the same year, which translates into more than 4,900 deaths per day, and more than 95% of these were in developing countries.\(^1\) In addition, it has been estimated that 3.2% of the world’s new cases of TB, in 2000, were multidrug-resistant tuberculosis (MDR-TB), defined as resistant to at least isoniazid and rifampicin.\(^2\) According to the World Health Organization (WHO), there are 300,000 new cases per year of MDR-TB worldwide, and 79% of MDR-TB cases are “super strains”, resistant to at least three of the four main drugs used to treat TB.\(^3\) Thus, despite the availability of effective chemotherapy and a moderately protective vaccine, newer agents are urgently needed to decrease the global incidence of TB. Accordingly, an understanding of drug resistance mechanisms in this pathogen should provide significant insight into the development of newer anti-tubercular agents able to combat the MDR-TB strains. Isoniazid (INH) was introduced as an antituberculosis drug in 1952\(^4\),\(^5\) and, soon after, the first INH-resistant \textit{M. tuberculosis} strains were isolated.\(^6\) The \textit{inhA}-encoded protein has been shown through a number of biochemical and genetic studies to be the primary target for isoniazid.\(^7\)\(^-\)\(^11\) InhA was identified as an NADH-dependent 2\textit{-trans} enoyl-ACP (acyl carrier protein) reductase enzyme that exhibits specificity for long-chain enoyl thioester substrates.\(^8\) InhA is a member of the mycobacterial Type II fatty acid synthase system (FAS-II), which elongates acyl fatty acid precursors yielding the long carbon chain of the meromycolate branch of mycolic acids, the hallmark of mycobacteria.\(^12\) To inhibit InhA, INH needs to be activated by the catalase/peroxidase KatG and the isoniazid-activated intermediate forms an isonicotinyl-NAD adduct (INH-NAD), through addition of either an isonicotinic acyl anion to NAD\(^+\) or an isonicotinic acyl radical to an NAD\(^-\) radical.\(^13\) The INH-NAD adduct has been shown to bind to InhA active site\(^13\) with an equilibrium dissociation constant value of 0.4 nM.\(^14\) More recently, this adduct has been shown to be a slow, tight binding competitive inhibitor, which inhibits the InhA activity with an overall inhibition constant (K_i^\ast) value of 0.75 ± 0.08 nM.\(^15\) Consistent with InhA as the primary target of INH mode of action, INH-resistant clinical isolates of \textit{M. tuberculosis} harboring \textit{inhA}-structural gene missense mutations, but lacking mutations in the \textit{inhA} promoter region, \textit{katG} gene and \textit{oxyR-ahpC} region, were shown to have higher dissociation constant (K_d) values for NADH than INH-sensitive wild-type (WT) InhA, whereas there were only modest differences in the steady-state parameters.\(^16\) In this study,
K_d values of 0.57, 13.9, 85.1, and 36.4 µM were determined for NADH binding to, respectively, WT InhA, I21V, I47T and S94A mutant InhA enzymes. The S94A mutant enzyme has been initially identified in an isoniazid resistant strain of *Mycobacterium smegmatis* generated in laboratory. More recently, however, the Ser94→Ala mutation in the *inha* structural gene was identified in clinical isolates of *M. tuberculosis* strains with coresistance to INH and ethionamide.

In order to gain insight into the structural basis that could account for the lower NADH affinity observed for INH-resistant InhA mutants identified in clinical isolates of *M. tuberculosis* as compared to WT enzyme, we have purified, crystallized, and solved for the first time the crystal structures of INH-resistant I47T and I21V InhA mutant proteins in complex with NADH to resolutions of, respectively, 2.2 Å, and 2.0 Å. Furthermore, we also report the crystal structures of INH-sensitive WT InhA and INH-resistant S94A mutant enzymes to a better resolution than previously described. Altogether, these structures provide a description of the enzyme-NADH interactions that are lost due to the mutations in the NADH binding site of InhA. In addition, we have carried out pre-steady-state kinetics to assess the NADH binding kinetic mechanism and to investigate which rate constant(s) is(are), if any, changed in INH-resistant InhA mutant enzymes as compared to WT InhA. The data presented here provide structural and mechanistic insights into the differences between INH-sensitive WT InhA and INH-resistant mutants that can account for the INH resistance in clinical isolates of *M. tuberculosis* strains harboring inhA structural gene mutations. These data should aid in the rational design of compounds able to efficiently inhibit both INH-resistant and -sensitive InhA enzymes with potential antitubercular activity.
RESULTS

Differences between crystal structures of WT, I21V, I47T and S94A InhA enzymes in complex with NADH.

The InhA structures display an α/β folding with a Rossmann-fold pattern, consisting of a central β-sheet composed of parallel strands and flanked by α-helices (Fig. 1), typical and common to other enzymes from short-chain dehydrogenase/reductase (SDR) superfamily. The SDR enzymes have been classified in five SDR families, which were designated classical, extended, intermediate, divergent, and complex. The InhA enzyme is part of the divergent family, which includes NADH-dependent enoyl reductases from bacteria and plants.

Fig. 1. WT InhA structure solved to 1.92 Å. Left: Ribbon representation of one InhA subunit. The strands are colored blue and the helices are colored green. The loops and turns are colored gray. The strands and helices are labeled α1 to α8 and β1 to β7, respectively. The NADH molecule bound to active site is colored by atom (green for carbon, blue for nitrogen, red for oxygen, and yellow for phosphorus). The residues Ile21, Ile47, and Ser94 that are mutated in the isoniazid-resistant InhA enzymes of the present study are shown in red. Right: InhA tetramer viewed along one of three molecular twofold axes (the C axis). Subunits are numbered 1 (blue), 2 (green), 3 (yellow), and 4 (red) with secondary structure elements represented as ribbons. The NADH bound to active site of the fours subunits is shown in all-atom representation and is
colored by atom type (green for carbon, blue for nitrogen, red for oxygen, and yellow for phosphorus). The figure has been produced using the program DeepView/Swiss-PdbViewer 3.7 (SP4).61

In trying to identify differences between the structures of WT and INH-resistant InhA enzymes reported here, the backbone C-α carbons of I21V, I47T, and S94A mutant InhAs were superimposed on WT InhA. No significant differences in secondary structure and backbone conformations have been observed between these structures. Furthermore, the pattern of distribution for B-factor values per protein residues is very similar in the four crystal structures of InhA (Supplementary Material). One of the more flexible regions is the stretch of residues 42-46 located in the loop connecting strand β2 to helix α2 and in the N-terminal of helix α2. The main-chain carbonyl group of Arg43 hydrogen bonds to the backbone NH of Ile47 and appears to help stabilize the helix α2 in the InhA structures. However, in the crystal structure of I47T InhA the first six residues (Leu44-Arg49) of helix α2 appear to be more flexible than in the other three InhA structures, probably owing to two hydrogen bonds between main-chain carbonyl group of Arg43 with water321 and OG1 atom of Thr47 that are absent in the WT structure (Fig. 2). Thus, we suggest that in the I47T structure the acceptor O atom of Arg43 has less occupancy in hydrogen bonding to the helix residue Thr47 than in the WT structure. The electron density for NADH is very clear in WT and in the three isoniazid-resistant InhA proteins. The mean B-factor values for bound NADH molecule are very similar in all structures of the binary complexes (Table 1).

A summary of all direct and water-mediated hydrogen bond interactions between NADH and protein residues in the crystal structures of binary complexes of WT-NADH, I21V-NADH, I47T-NADH, and S94A-NADH shows that the interactions are conserved between the four InhA enzymes and 54% of hydrogen bonds are mediated by 10 water molecules in WT InhA (Table 5 of the Supplementary Material). It should be pointed out that a water-mediated interaction was regarded as a hydrogen bond between an NADH atom and the protein that is mediated by only one water molecule. In addition, two interactions between O3 and AO1 atoms of pyrophosphate moiety of NADH and backbone oxygen atom of Gly96 are mediated by two water molecules in the binary complex WT InhA-NADH. These interactions are also conserved in the three isoniazid-resistant InhA proteins. Bottoms et al. have pointed out the importance of bridging
water molecules in the dinucleotide-binding interface in proteins with classic Rossmann fold structures.19

Fig. 2. Surroundings of position 47 in the crystal structures of WT (a) and (c), I47T (b) and (d), I21V(e), and S94A(f). For clarity only NADH, dinucleotide binding loop (Gly14-Ala22)
residues, strand β2 residues Thr39 and Gly40, residues from the turn between strand β2 and helix α2 (Phe41-Arg43), Leu63, Ile47 (a) or Thr47 (b), and water molecules near the position 47 that are involved in hydrogen bond network. The atoms are colored green for carbon, blue for nitrogen, red for oxygen, and magenta for phosphorus. The water molecules are numbered 1, 2, 3 and 4 and corresponds to waters 272, 282, and 281 in both WT InhA and I47T InhA structures and to water 321 in I47T InhA structure, respectively. The most relevant hydrogen bonding differences between the structures of WT-NADH and I47T-NADH binary complexes are shown in the parts (a) and (b), respectively. The \(2F_{\text{obs}} - F_{\text{calc}}\) electron density maps encompassing the residue 47 and the surrounding atoms of the structures of WT-NADH, I47T-NADH, I21V-NADH, and S94A-NADH binary complexes are shown in the parts (c), (d), (e), and (f), respectively. The \(2F_{\text{obs}} - F_{\text{calc}}, \alpha_{\text{calc}}\) maps were calculated in the REFMAC 5.2 program\(^{48}\) using all unique reflections and are countoured at a level of 1.2σ above the mean. The figure was prepared with CCP4 Molecular Graphics 0.12 program.\(^{62}\)

They found that on average, FAD-, NADP-, and NAD-binding proteins accommodate about, respectively, 12, 11, and 9 interfacial water molecules per dinucleotide binding site (within 3.75Å of the protein and dinucleotide). Actually, the major differences on NADH interaction between the WT and INH-resistant InhA proteins, which could account for the lower NADH affinity observed for the mutant proteins, have been identified in the surroundings of each mutated residue and will be described below. Notwithstanding, a water-mediated hydrogen bond between NADH and the Thr196 OG1 atom of WT InhA protein, which don’t make any contact with residues from the mutation points in the NADH binding site, is likely weaker in the mutant proteins reported here. The analysis of simulating annealing omit electron density maps has shown that in the isoniazid-resistant InhA mutants the Thr196 side-chain has rotated ~180° in relation to WT InhA structure, resulting in hydrogen bond distances between the OG1 atom of Thr196 and the bridging water (Water380) that are significantly larger (3.3 – 3.4 Å) than the 2.5 Å distance observed in WT enzyme (supplementary material). Although this finding could be a consequence of the lower NADH affinity of INH-resistant InhA proteins since some polar interactions with NADH are expected to be less stable in I21V, I47T, and S94A InhA mutant proteins than in WT enzyme, there are no structural constraints or interactions that could restrict the rotation of the Thr196 side-chain in both wild-type or isoniazid-resistant InhA structures.
presented here. Accordingly, the Thr196 conformation observed in I21V, I47T, and S94A InhA mutant proteins has also been observed in the previously solved structure of WT InhA-NADH binary complex (1ENY)27. This finding suggests that this interaction cannot account for the lower NADH affinity observed for the isoniazid-resistant InhA proteins.

Table 1. Summary for data collection, structural and refinement statistics.

<table>
<thead>
<tr>
<th></th>
<th>WT InhA</th>
<th>S94A InhA</th>
<th>I21V InhA</th>
<th>I47T InhA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit cell dimensions a, c (Å)</td>
<td>96.02, 138.16</td>
<td>96.25, 138.05</td>
<td>95.95, 138.24</td>
<td>95.440, 138.71</td>
</tr>
<tr>
<td>Space group</td>
<td>P6\textsubscript{2}22</td>
<td>P6\textsubscript{2}22</td>
<td>P6\textsubscript{2}22</td>
<td>P6\textsubscript{2}22</td>
</tr>
<tr>
<td>Number of unique reflections</td>
<td>27,062</td>
<td>15,559</td>
<td>23,889</td>
<td>17,898</td>
</tr>
<tr>
<td>Refinement resolution range (Å)</td>
<td>35.62 ~ 1.92</td>
<td>40.29 ~ 2.30</td>
<td>41.56 ~ 2.01</td>
<td>40.36 ~ 2.20</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>97.2 (90.1)</td>
<td>94.1 (90.5)</td>
<td>97.8 (89.4)</td>
<td>96.2 (98.5)</td>
</tr>
<tr>
<td>I/σ(I)</td>
<td>11.1 (1.2)</td>
<td>10.7 (3.8)</td>
<td>10.1 (3.9)</td>
<td>6.2 (3.2)</td>
</tr>
<tr>
<td>R\textsubscript{sym}</td>
<td>0.046 (0.391)</td>
<td>0.049 (0.177)</td>
<td>0.059 (0.193)</td>
<td>0.076 (0.210)</td>
</tr>
<tr>
<td>R\textsubscript{full}</td>
<td>0.035 (0.363)</td>
<td>0.042 (0.166)</td>
<td>0.050 (0.138)</td>
<td>0.062 (0.157)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>2.8 (2.7)</td>
<td>2.4 (2.5)</td>
<td>9.1 (9.3)</td>
<td>4.9 (4.6)</td>
</tr>
<tr>
<td>R-factorb</td>
<td>0.187 (0.306)</td>
<td>0.189 (0.226)</td>
<td>0.194 (0.262)</td>
<td>0.186 (0.216)</td>
</tr>
<tr>
<td>R-free</td>
<td>0.213 (0.326)</td>
<td>0.242 (0.316)</td>
<td>0.227 (0.314)</td>
<td>0.213 (0.219)</td>
</tr>
<tr>
<td>Estimated Overall coordinate error based on Maximum Likelihood (Å)</td>
<td>0.08</td>
<td>0.15</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>RMSD from ideality</td>
<td>0.015</td>
<td>0.022</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>1.750</td>
<td>2.136</td>
<td>1.957</td>
<td>1.956</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>267 (Gly3-Leu269)</td>
<td>268 (Ala2-Leu269)</td>
<td>268 (Ala2-Leu269)</td>
<td>268 (Ala2-Leu269)</td>
</tr>
<tr>
<td>Total protein residues</td>
<td>1 (NADH)</td>
<td>1 (NADH)</td>
<td>1 (NADH)</td>
<td>1 (NADH)</td>
</tr>
<tr>
<td>Heteroatoms</td>
<td>176</td>
<td>134</td>
<td>152</td>
<td>147</td>
</tr>
<tr>
<td>Average B-factors (Å2)</td>
<td>Protein residues</td>
<td>23.9</td>
<td>27.4</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>Protein main chain</td>
<td>23.1</td>
<td>26.7</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>Protein side chain</td>
<td>24.9</td>
<td>28.1</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>NADH</td>
<td>20.3</td>
<td>22.9</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>31.3</td>
<td>30.5</td>
<td>29.5</td>
</tr>
<tr>
<td>Ramachandran Plot in PROCHECK50</td>
<td>Most favorable region</td>
<td>91.6%</td>
<td>90.7%</td>
<td>91.6%</td>
</tr>
<tr>
<td></td>
<td>Additional allowed region</td>
<td>7.1%</td>
<td>8.4%</td>
<td>7.6%</td>
</tr>
<tr>
<td></td>
<td>Generously allowed region</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Disallowed region 1.3% 0.9% 0.9% 0.9%
Favorable regions 96.6% 97.0% 96.2% 95.5%
Allowed regions 100% 100% 100% 100%
Disallowed regions 0% 0% 0% 0%

*In parenthesis are the data obtained for the highest resolution shell.

b R-factor = $\sum |F_o - F_c|/\sum F_o$, where F_o and F_c are the observed and calculated structure-factor amplitudes for the reflection with Miller indices $h = (h,k,l)$. The free R-factor is calculated for a test set of reflections (5 %) which are not included in atomic refinement.

I21V-NADH structure — Alpha-carbon superposition between the crystal structures of WT InhA (1.92 Å) and I21V InhA enzymes showed an RMSD of 0.09 Å. Moreover, the direct hydrogen bonds and most water-mediated hydrogen bonds between NADH and protein residues are conserved in both crystal structures. A study reporting a systematic analysis of 21 crystal structures of NAD(H)-bound SDR enzymes has identified conserved interactions between a protein fragment of six to seven residues (positions S1 to S7) nearly parallel to diphosphate moiety of NAD(H) and the NAD(H) molecule. The amino acid in position S6 was recognized to be always hydrophobic probably because its side chain is directed toward the nicotinamide ring of NAD with its conserved apolar environment. In addition, the S6 residue always makes a hydrogen bond with a phosphate oxygen atom through its main-chain N atom. In fact, this protein fragment corresponds to the classical glycine-rich diphosphate binding loop (Gly14-Ala22 in InhA) connecting the first β-strand with the first α-helix in dinucleotide binding proteins that have the Rossmann fold motif. Accordingly, the apolar side-chain of the amino acid in position S6 corresponds to Ile21 residue in InhA. In the previously solved WT InhA structures (1ENY, 1BVR) and in our WT and I21V InhA structures the main-chain NH atom of residue 21 makes a hydrogen bond with the phosphate oxygen NO2, and two interactions mediated by the conserved water271 with NO2 and AO5* oxygen atoms of NADH (Fig. 3). In WT InhA, the CD1 atom of Ile21 apolar side-chain makes van der Waals contacts with the nicotinamide ring, and nicotinamide ribose, and phosphate oxygen atoms. The distances between the atoms of nicotinamide, nicotinamide ribose, and phosphate oxygens and CD1 atom of Ile121 are given in Table 2. In the INH-resistant I21V InhA enzyme these van der Walls contacts are lost owing to the mutation of Ile\rightarrowVal, since the Val side-chain does not have the CD1 atom and its carbon atoms superpose very well with the equivalent carbon atoms of Ile21 residue in the WT InhA.
crystal structure (Fig. 3). Moreover, the van der Waals contacts between Ile21 side-chain and nicotinamide moiety of NADH are structurally conserved in the crystal structures of enoyl-ACP reductases in complex with NAD$^+$ from other sources. In *Escherichia coli* 21 and *Helicobacter pylori* 22 structures (PDB codes: 1QSG and 1JW7, respectively) the van der Waals contacts are made by Ile20 residue, whereas in *Brassica napus* 23 (PDB code: 1D7O) and *Plasmodium falciparum* 24 (PDB codes: 1V35 and 1UH5) structures these contacts are made by, respectively, Tyr32 and Tyr111. Thus, since the interaction between Ile21 side-chain and nicotinamide appears to be conserved in enoyl-ACP reductases and in other SDR enzymes, we propose that this residue makes a contribution in stabilizing the bound NAD(H) in the InhA active site. Accordingly, the loss of contacts between the side-chain of amino acid 21 with the nicotinamide could account for the higher equilibrium dissociation constant value for Ile21V mutant as compared to the WT InhA enzyme. 16 A lower stabilization of NADH bound to I21V InhA compared to WT InhA is consistent with the recently reported results of molecular dynamic simulation with I21V and WT InhA enzymes in complex with NADH. 25 It was observed a higher flexibility of pyrophosphate moiety of NADH and a lower occupancy of conserved direct bonds between the coenzyme and protein residues in I21V than in WT InhA, during the last 2 ns of the molecular dynamic simulation. In addition, the in silico-mutated enzyme showed a decreased total number of direct and water-mediated hydrogen bonds between cofactor and protein residues as compared to WT InhA. 25 It thus appears that the loss of van der Waals contacts between the nicotinamide moiety and the apolar side chain of Ile21 observed in the crystal structure of I21V InhA would lead to a destabilization of NADH bound to I21V InhA active site, thereby accounting for the reduced number and occupancy of hydrogen bonds and the higher flexibility of NADH observed in the molecular dynamic simulation with I21V InhA. 25
Fig. 3. a) Interactions of dinucleotide binding loop in the crystal structure of the binary complex I21V InhA-NADH. For clarity only the NADH molecule, dinucleotide binding loop residues (Gly14 to Ala22), and the conserved bridging waters are shown. The direct and water-mediated hydrogen bond interactions between NADH and the loop are represented by black dashed lines. The waters that are numbered 1, 2, 3, and 4 correspond to waters 272, 282, 271, 285 in both I21V InhA-NADH and WT InhA-NADH crystal structures. The atoms are colored green for carbon, blue for nitrogen, red for oxygen, and magenta for phosphorus. The atoms of Ile21 side-chain of WT InhA-NADH structure superimposed on the structure I21V InhA-NADH are shown in purple. The CD1 atom of Ile21 side-chain (WT InhA) makes several contacts with the nicotinamide moiety that are lost due to the mutation to valine.

b) $(2F_{\text{obs}} - F_{\text{calc}})$, α_{calc} electron density map encompassing the NADH molecule, the conserved 272, 282, 271, 285 water molecules and the dinucleotide binding loop of the crystal structure of I21V InhA-NADH binary complex. The $(2F_{\text{obs}} - F_{\text{calc}})$, α_{calc} electron density map was calculated in the REFMAC 5.2 program48 using all unique reflections and is countoured at a level of 2.3σ above the mean. The figure was prepared with CCP4 Molecular Graphics 0.12 program.62
Table 2. Van der Walls contacts between the CD1 atom of Ile21 side-chain and NADH in the binary complex WT-NADH (1.92 Å).

<table>
<thead>
<tr>
<th>NADH moiety</th>
<th>NADH atom</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrophosphate</td>
<td>NO1</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td>4.0</td>
</tr>
<tr>
<td>Nicotinamide ribose</td>
<td>NO4*</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>NN1</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>NC2</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>NC3</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>NC4</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>NC7</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>NN7</td>
<td>4.1</td>
</tr>
</tbody>
</table>

I47T-NADH structure — In the I47T mutant enzyme, the apolar residue isoleucine is replaced by the slightly polar threonine residue. A structural alignment with all atoms between I47T InhA and WT InhA structures reported here resulted in RMSD deviations of 0.20 Å and 0.64 Å for, respectively, backbone atoms and all atoms. Hence, there are no significant differences in I47T backbone conformation in relation to WT enzyme. In fact, the structural differences are limited to the surroundings of the mutation site (Fig. 2). In the present WT InhA crystal structure, a water molecule (Water272) mediates hydrogen-bonding interactions between the carbonyl group of Ile15 with 2'- and 3'-OH groups of adenine ribose moiety of NADH, and makes hydrogen bonds with the main-chain N atom of Phe41 residue, and with Water282 molecule. The Water282, in turn, mediates an interaction between the backbone nitrogen atom of Gly14 with N3 atom of adenine and hydrogen bonds to Water281, which is hydrogen bonded to OG atom of Thr39 (C-end of strand β2), main-chain N atom of Gly40, and main-chain oxygen atom of Leu63 (C-terminal of strand β3). This network of water-mediated interactions causes the formation of a chair-type conformation on which the adenine sits. A superimposition of WT InhA structure with crystal structures of complexes between NAD⁺ and enoyl reductases from other sources showed that the a water-mediated hydrogen bond between the second residue of the dinucleotide binding loop (Ile15 in InhA) with the first residue from the turn connecting strand β2 with helix α2 (Phe41 in InhA) is conserved in enoyl reductase enzymes from Helicobacter pylori²² (PDB ID: 1JW7, subunit 2), Plasmodium falciparum²⁴ (IUH5, subunit 1), Brassica napus²³ (1D7O), and Escherichia coli²⁶ (1QG6, subunit 1). Furthermore, as observed in InhA, the conserved bridging
water (Water272 in InhA) makes two additional hydrogen bonds with 2'-OH and 3'-OH groups of adenine ribose moiety in all of these crystal structures. Thus, we propose that these water interactions are important to the correct geometry of the dinucleotide-binding loop for the optimal nucleotide binding in InhA and in other enoyl reductases.

In I47T InhA structure some new interactions are observed close to the waters that mediate the interactions discussed above. The slightly polar side-chain of Thr47 allowed the entrance of an additional water molecule (Water321) to the NADH binding site. The Water321 makes hydrogen-bond contacts with Thr47 (OG atom), Phe41 (main-chain N atom), Arg43 (main-chain O and N atoms), and the conserved Water272. In addition, the OG atom of Thr47 makes a hydrogen bond with the carbonyl group of Ile15 residue from the dinucleotide binding loop, which, in turn, interacts with 2'-OH and 3'-OH groups of adenine ribose moiety through Water272. Hence, the new polar interactions promoted by the presence of Water321 and the direct hydrogen bond of Thr47 side-chain with dinucleotide binding loop residue Ile15 led to a new hydrogen bond pattern in the NADH binding site of InhA that probably affects the binding of NADH. This is borne out by the significantly larger hydrogen bond distances observed in I47T as compared to WT InhA structure for the interactions between the carbonyl group of Ile15 with Water 272, and Water272 with 2'-OH atom of adenine ribose (Fig. 2a and 2b), considering the estimated overall coordinate error values of 0.08 and 0.11 Å that were calculated by REFMAC 5.2 program for, respectively, the structures of WT-NADH and I47T-NADH binary complexes (Table 1). The Water272 also appears to be less ordered in the I47T-NADH than in the WT-NADH structure as indicated by a higher B-Factor value for the mutant enzyme (33.2 Å²) as compared to the WT enzyme (22.9 Å²). Thus, the Ile15 carbonyl group- and Water272-mediated hydrogen bonds are expected to be weaker and of lower occupancy than the equivalent interactions in WT enzyme, since in the structure of I47T-NADH binary complex, Ile15 and Water272 are partially occupied in hydrogen bonding to Water321 (Fig. 2b). These features could account for the higher equilibrium dissociation constant value for NADH of this mutant enzyme. The Water272 that mediates interactions between protein residues with hydroxyl groups of adenine ribose appears to be stabilized by the hydrophobic Ile47 side-chain in the WT-NADH binary complex. However, in the structure of I47T-NADH binary complex the presence of a second water molecule (Water321) appears to be necessary to maintain the Water272 interacting with the 2'- and 3'-OH groups of adenine ribose, since in the absence of Water321, the Water272
could instead interact with OG atom of slightly polar Thr47 side-chain. It is thus tempting to suggest that the presence of Water321 in the active site of I47T-NADH would maintain a weak interaction between Water272 and the 2′- and 3′-OH groups of adenine ribose, thereby avoiding a complete lack of interaction between these groups that could be deleterious to the enzyme activity and ensuing survival of the bacilli. Electron density maps calculated for the WT and isoniazid-resistant InhA structures (shown in Fig. 2b, 2c, 2d, and 2e) give evidence that the Water 321 is absent in the structures of WT-NADH, I21V-NADH, and S94A-NADH binary complexes. Actually, in the I47T InhA-NADH structure superimposed on WT InhA-NADH structure the Water 321 oxygen atom is at a distance of only 1.4 Å from the Ile47 CD1 atom. Thus, in these structures, the steric hindrance promoted by the CD1 atom of Ile47 residue side-chain and the hydrophobic character of its side-chain probably impair the presence of an additional water molecule in this region.

S94A-NADH structure — A previous study compared the crystal structure of binary complex of WT and INH-resistant S94A mutant InhA in complex with NADH and proposed that disruption of a hydrogen bond network in the mutant protein due to rotation of Gly14 residue could account for the higher coenzyme dissociation constant value.\(^{27}\) In WT-NADH crystal structure (2.2 Å) a well-ordered water molecule was shown to mediate two hydrogen bonds between the O2 of the PN phosphate of NADH and protein (shown in Fig. 4a) that are lost in the S94A mutant protein.\(^{27}\) This water molecule (WAT1) hydrogen bonded to the hydroxyl group of Ser94, the main-chain oxygen of Gly14, and the main-chain nitrogen atoms of Ala22 and Ile21. In the S94A-NADH complex structure (2.7 Å), the carbonyl group of residue Gly14 was shown to rotate away from the water molecule, breaking the hydrogen bond observed in the WT protein structure (shown in Fig. 4b). However, in the S94A\(^{27}\) the main-chain oxygen atom is at a distance of only 2.16 Å from the 3′-OH oxygen of adenine ribose that is shorter than the lower limit distance (2.29 Å) expected to a hydrogen bond.\(^{28}\) In fact, this interaction appears to be unfavorable, since the van der Waals radii for a hydroxyl oxygen atom and for a carbonyl oxygen is 1.72 Å and 1.66 Å, respectively.\(^{29}\) Thus, it should be expected a high van der Waals repulsion energy between two oxygens separated by 2.16 Å. Accordingly, the rotation of Gly14 residue in the S94A mutant appears to play no role in reducing NADH affinity and ensuing INH resistance mechanism as previously suggested.
A computational comparison of 102 high-resolution structures (≤ 1.90 Å) of enzyme-dinucleotide complexes revealed that the WAT1 water molecule is structurally conserved in proteins that exhibit the classic Rossmann dinucleotide-binding fold motif. This conserved water molecule links, through a conserved hydrogen-bonding pattern, the glycine-rich phosphate-binding loop with the dinucleotide pyrophosphate moiety. In enoyl reductase enzymes the phosphate-binding loop consensus sequence has been proposed to be GXXXXXXXG(A) (residues Gly14- Ala22 in InhA). Typically, the WAT1 molecule makes four hydrogen bonds and two of them are invariant. The invariable hydrogen bonds involve the dinucleotide pyrophosphate moiety and main-chain amine of the last conserved Gly of phosphate binding loop (Ala22 in InhA). Moreover, the interaction of pyrophosphate has been shown to be stereospecific. Almost without exception, the pyrophosphate atom that interacts with the structurally conserved water is NO2 (O2N) in the case of NAD- or NADP-binding proteins. In structures with the sequence pattern GXXXXXXXG(A), the partners for the other two hydrogen bonds are the carbonyl group of the first conserved Gly (Gly14 in InhA) and a C-terminal residue of β4 strand (Ser94 in InhA). In our efforts to understand the structural basis of isoniazid resistance mechanism of InhA, we have solved the crystal structures WT-NADH and S94A-NADH binary complexes to a better resolution (refined to, respectively, 1.92 Å and 2.3 Å) than previously reported (refined to, respectively, 2.2 Å and 2.7 Å). Analysis of the NADH binding pocket showed that there was no rotation of the carbonyl group of Gly14 in the S94A-NADH structure reported here (Fig 4c, 4d, 4e, and 4f). In addition, only a hydrogen bond between the conserved WAT1 molecule (Water 271 in the present structures) and the hydroxyl group of Ser94 is lost owing to Ser94→Ala mutation (Fig 4c and 4d). It thus appears that this hydrogen bond disruption is likely the main reason for a sixty-fold reduction in affinity for NADH observed for the S94A InhA protein, which corresponds to approximately 2.5 kcal mol⁻¹. This is in good agreement with estimates for the energies of hydrogen bonds which are in the range of 3 to 9 kcal mol⁻¹. In addition, this WAT1 molecule has been proposed to be an integral characteristic of dinucleotide-binding Rossmann fold domains that both contributes significantly to dinucleotide recognition and presumably provides a favorable enthalpic contribution to the free energy of binding.
Fig. 4. Differences in hydrogen bond network between the crystal structures of WT and INH-resistant mutant InhA (S94A) complexed with NADH. Top: Crystal structures of WT InhA-NADH (a) and S94A InhA-NADH (b) binary binary complexes refined to, respectively, 2.2 Å and 2.7 Å.27 Middle: Crystal structures of WT InhA-NADH (C) and S94A InhA-NADH (D) binary complexes refined to, respectively, 1.9 Å and 2.3 Å (present work). Only the conserved hydrogen bond between the conserved Water271water (1) and hydroxyl group of residue S94 is lost owing to mutation to Ala94. Bottom: \((2F_{\text{obs}} - F_{\text{calc}}), \alpha_{\text{calc}}\) electron density map encompassing the active site residues from crystal structures of WT InhA-NADH (e) and S94A InhA-NADH (f) binary complexes. The map clearly shows the position of Gly14carbonyl group in both structures. For clarity, only residues Val12, Ser13, Gly14, Ile21, Ala22, and 1 (WAT1 water in 1ENY and 1ENZ and Water271 in the present InhA structures) and NADH molecules are shown. Direct and water-mediated hydrogen bonds between the protein and NADH pyrophosphate moiety are represented as dashed black lines. The interactions distances are in Å. The atoms are colored green for carbon, red for oxygen, blue for nitrogen, and magenta for phosphorus. The \((2F_{\text{obs}} - F_{\text{calc}}), \alpha_{\text{calc}}\) electron density map were calculated in the REFMAC 5.2 program48 using all reflections and are contoured at a level of 2.1σ above the mean. The figures were prepared using the program CCP4 Molecular Graphics 0.12.62

Analysis of oligomeric state and intersubunit contacts.

Molecular weight values of 115,930 Da, 104,890 Da, 118,080 Da, and 108,720 Da were estimated by gel-permeation chromatography for, respectively, WT, I21V, I47T, and S94A homogeneous InhA proteins (Supplementary material). The subunit molecular weight (MW) of WT InhA is 28,368 Da, so a MW value of 113,472 Da would be expected for an InhA homotetramer. Thus, these results suggest that WT InhA and the three INH-resistant mutants are homotetramers in solution, and that the mutations in NADH binding site do not alter the oligomeric state of InhA. The gel filtration results are supported by the packing in P6_22 crystals of WT and INH-resistant mutant InhA enzymes in which a tetramer occurs with approximate dimensions 80 Å x 70 Å x 60 Å (Fig. 1). The tetramer has 222 symmetry and consequently there are three distinguishable intersubunit interfaces about three orthogonal molecular twofold axes, which are designated here as A, B, and C. In this case, each monomer in the tetramer makes contacts with all three symmetry-related partners (Fig. 1). Contacts between subunits 1 and 2 (3
and 4) are about the A axis, 1 and 3 (2 and 4) about the B axis, and 1 and 4 (2 and 3) about the C axis (Fig. 1).

It has been reported that mutations in the inhA-structural gene identified in INH-resistant strains of M. tuberculosis not only decreased the affinity of NADH for the enzyme but also resulted in appearance of cooperativity in cofactor binding. Moreover, it has been suggested that homotypic interactions within the InhA tetramer could modulate, or be modulated by, ligand binding and that this allosteric response to ligand binding would be affected by InhA mutations that occur in INH-resistant mycobacterial strains. Indeed, our analysis of the crystal structures of three INH-resistant InhA complexed with NADH showed that although almost all the direct intersubunit contacts are conserved in all the four InhA structures, some water mediated interactions are lost in the three orthogonal twofold axes (A, B, and C) in INH-resistant InhA enzymes. Although the lack of waters could be due to the poorer resolution of the structures of InhA mutant proteins (2.0 - 2.3 Å) compared to wild-type enzyme (1.9), these differences can be correlated with the slight cooperativity observed for isoniazid-resistant mutants. In addition, it can be reconciled with our stopped-flow studies on the slow phase of NADH binding (described below), since the association between protein monomers in the homotetramers are expected to be less stable in the mutant enzymes than in the WT enzyme. It should be pointed out that as the InhA homotetramer has three twofold axes of symmetry, the association between the protein monomers is isologous, i.e. any group that contributes to the binding in one subunit furnishes precisely the same contribution in the other subunit. Hence, any bonded group-pair is represented four times within the InhA homotetramer, and in the same way any interaction that is lost in InhA mutant enzymes is lost four times in the context of the tetramer. A summary of all direct and water-mediated hydrogen bonding occurring in the intersubunit interfaces about the three orthogonal molecular twofold axes (A, B, and C) of WT InhA homotetramer is given in the Supplementary Material (Table 6).

Differences between intersubunit contacts in the A axis — In WT InhA, the OG1 atom of Thr241 (subunit 1) residue interacts with Leu250, Pro251, Ala262, Thr253 residues from subunit 2 through a well-ordered water molecule (WAT385, B-Factor = 21.3 Å²), and the main-chain oxygen of Arg177 makes a water-mediated interaction with main-chain oxygen of Pro227. These interactions are lost in I47T and S94A mutant enzymes, since those water
molecules in equivalent positions are not present in these structures. In I21V InhA, only the Water385-mediated interaction between OG1 atoms from Thr241 and Thr253 residues is lost due to a rotation of side-chain dihedral angle χ_1 of Thr253.

Differences between intersubunit contacts in the B axis — In the I21V InhA homotetramer, the water356 molecule, which in WT InhA mediates the interaction between Glu68 OE2 and Tyr125 OH atoms with Tyr113 N atom, is not present and thus these interactions are lost. In the I47T InhA, only the water-mediated-interaction between the side-chains of Ser166 and Arg173 residues is lost since the Water283 molecule is not present. Finally, in the S94A InhA structure, there are no water molecules in equivalent positions to Water283 (B-Factor = 21.27) and water304 (B-Factor = 26.87) molecules, which in WT InhA mediate, respectively, the interactions of nitrogen backbone atoms of Phe108 and Phe109 residues with OE1 atom of Glu178 residue, and of Ser166 side-chain with Arg173 side-chain. In addition, the NZ atom of Lys132 has moved away from the backbone oxygen of Phe109, breaking the hydrogen bond between these residues.

Differences between intersubunit contacts in the C axis — In the C axis, most of the contacts involve Arg153 residue that makes one direct hydrogen bond with His265 residue and water-mediated hydrogen bonds with Asp150, Ser152, Arg153, Arg225, Ala264, and Gln267 residues from the symmetry equivalent subunit. In I21V structure, the Arg153 interacts with the same residues as observed in WT InhA structure, but the hydrogen bonding pattern is somewhat different owing to small conformational changes of Arg153 side-chain occurring in this mutant enzyme. More noticeable differences in intersubunit interactions involving Arg153 are observed for the S94A enzyme. In this enzyme, a conformational change of Arg153 side-chain led to a loss of all water-mediated hydrogen bonds that have been observed in WT InhA.

Kinetics of NADH binding

The kinetics of NADH binding was determined by stopped-flow spectroscopy, monitoring the nucleotide fluorescence. The binding process was characterized by an initial fast phase followed by a second slow phase in WT and INH-resistant InhA mutant enzymes. Moreover, the two phases remain well separated from each other over the whole range of NADH
concentrations tested. Accordingly, all data sets were best fitted to a double exponential function (Fig. 5).

Fig. 5. Representative stopped-flow trace of NADH binding to WT InhA enzyme. This typical trace shows the biphasic enhancement in nucleotide fluorescence ($\lambda_{ex} = 370$ nm, band pass =4.65 nm), $\lambda_{em} \geq 420$ nm) upon the binding of NADH (5 µM) to WT InhA (2 µM) enzyme (concentrations after mixing). The curve through the experimental trace shows the best fit to a double exponential function, which yielded values of 80.5 ± 2.3 and 6.9 ± 0.3 s$^{-1}$ for the apparent rate constants of the fast phase (k_{obs1}) and slow phase (k_{obs2}), respectively. The trace above is an average of twelve individual traces. The control trace (at the bottom) was obtained by mixing 10 µM NADH solution with an equal volume of Pipes 100 mM, pH 7.0 buffer. This trace shows that there is no loss of nucleotide fluorescence enhancement signal owing to any process occurring in the dead time (1.36 ms) of the stopped-flow instrument.

The values obtained for the apparent rate constant of the first phase (k_{obs1}) were plotted against the final NADH concentrations and appeared to increase linearly for WT, I21V and I47T mutant enzymes, whereas for S94A enzyme the rate constant values appeared to have a hyperbolic dependence on NADH concentration (Fig. 6). Hence, the fast phase rate constants obtained for WT, I21V and I47T InhA enzymes were tentatively fitted to the following equation for a single-step reversible bimolecular association,
\[k_{\text{obs1}} = k_2 [L] + k_{-2} \]

where \(k_2 \) is the bimolecular association rate constant, \(k_{-2} \) is the rate constant for NADH dissociation from InhA-NADH binary complex, and \([L]\) is the final NADH concentration (see scheme in Fig 7). The calculated rate constants values are given in Table 3. From these analysis equilibrium dissociation constant values (\(K_{d2} \)) of 0.3 ± 0.3, 5.9 ± 0.3, and 6.5 ± 0.3 \(\mu \text{M} \) could be estimated for WT-NADH, I21V-NADH, and I47T-NADH binary complexes by the following relationship: \(K_{d2} = k_{-2}/k_2 \).

Fig. 6. Analysis of the NADH concentration dependence of the \(k_{\text{obs1}} \) values calculated from the fast phase (first) of NADH binding to WT, I21V, I47T, and S94A InhA enzymes. For WT, I21V, and I47T InhA enzymes the data were fitted to the equation 1, which describes a single bimolecular association, whereas for S94A InhA the curve was fitted to equation 2, which describes a rapid bimolecular association process followed for a unimolecular isomerization process.
Table 3. Kinetic constants estimated from the fast phase of NADH-binding to wild-type and isoniazid-resistant mutant InhA enzymes.

<table>
<thead>
<tr>
<th>Kinetic constant</th>
<th>WT InhA</th>
<th>I21V InhA</th>
<th>I47T InhA</th>
<th>S94A InhA</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_2 (M$^{-1}$ s$^{-1}$)</td>
<td>15.5 ± 0.2 (x10^6)</td>
<td>14.3 ± 0.1 (x10^6)</td>
<td>8.17 ± 0.08 (x10^6)</td>
<td>≥ 15 (x10^6)</td>
</tr>
<tr>
<td>k_{-2} (s$^{-1}$)</td>
<td>5 ± 5</td>
<td>85 ± 4</td>
<td>53 ± 2</td>
<td>-</td>
</tr>
<tr>
<td>K_{d2} (µM)</td>
<td>0.3 ± 0.1^a</td>
<td>7.6 ± 0.4^a</td>
<td>6.9 ± 0.8^a</td>
<td></td>
</tr>
<tr>
<td>0.39 ± 0.03^b</td>
<td>4.76 ± 0.08^b</td>
<td>3.7 ± 0.3^b</td>
<td>67 ± 9^c</td>
<td></td>
</tr>
<tr>
<td>0.3 ± 0.3^c</td>
<td>5.9 ± 0.3^c</td>
<td>6.5 ± 0.3^c</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>mean K_{d2} (µM)f</td>
<td>0.33 ± 0.1</td>
<td>6.1 ± 0.3</td>
<td>5.7 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>k_3 (s$^{-1}$)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1014 ± 84</td>
</tr>
<tr>
<td>k_{-3} (s$^{-1}$)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>65 ± 6</td>
</tr>
<tr>
<td>K_{d2}^* (µM)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.7 ± 0.2^a</td>
</tr>
<tr>
<td>mean K_{d2}^* (µM)f</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.9 ± 0.5^b</td>
</tr>
<tr>
<td>k_{off}^e (s$^{-1}$)</td>
<td>6.1 ± 0.4</td>
<td>68 ± 1</td>
<td>30 ± 2</td>
<td>62 ± 1</td>
</tr>
</tbody>
</table>

$K_{d2}^* = K_{d2}$ overall, calculate with equation 3.

a Calculated from analysis of the fast-phase amplitude values with equation 1.

b Calculated with the k_{off} value obtained from the displacement experiment by using either the relationship $K_{d2}=k_{-2}/k_2$ or, particularly to S94A InhA, the equation 5.

c Calculated from the relation $K_{d2} = k_{-2}/k_2$, or particularly to S94A InhA, by fitting the data to equation 4.

d Calculated for S94A InhA with K_{d2}, k_3, and k_{-3} values by using equation 5.

e Limiting rate constant for NADH dissociation estimated from the displacement of NADH from InhA-NADH complexes by high NAD$^+$ concentrations.

f Mean value calculated from the three K_{d2}(WT, I21V, and I47T) or K_{d2}^* (S94A) values yielded both from analysis of fast phase of NADH-binding and by using the k_{off} estimated in the displacement experiment.

The fast phase rate constants obtained for S94A InhA were best interpreted as a two-step mechanism, described by equation 2, where a rapid bimolecular association between NADH and the mutant enzyme would be followed by a unimolecular isomerization of the binary complex,

$$k_{obs1} = (k_3[NADH]/([NADH]+K_{d2})) + k_{-3}$$

[2]
where K_{d2} is the NADH dissociation constant, k_2/k_2, and k_3 and k_3 are, respectively, the forward and reverse rate constants for binary complex isomerization (see scheme in Fig. 7). This analysis yielded values of $67 \pm 9 \ \mu$M, $1014 \pm 84 \ \text{s}^{-1}$, and $65 \pm 6 \ \text{s}^{-1}$ for K_{d2}, k_3, and k_3, respectively. Hence, a minimum value for the second-order rate constant for the binding of NADH to S94A InhA enzyme was calculated to be $15 \times 10^6 \ \text{M}^{-1} \ \text{s}^{-1}$ (k_3/K_{d2}), which is of similar magnitude to the k_2 values calculated for WT, I21V and I47T enzymes (see Table 3). A value of $4.0 \pm 0.5 \ \mu$M for the overall dissociation constant (K_{d2^*}), which takes into account the bimolecular association between NADH and the E form of InhA enzyme and the following isomerization of E-NADH complex to E-NADH* complex, can be estimated from equation 3.

$$K_{d2^*} = K_{d2} k_3/(k_3 + k_3) \quad [3]$$

The K_{d2} values estimated for WT, I21V, and I47T enzymes and K_{d2^*} value estimated for S94A are in good agreement with the respective K_{d2} values calculated by using k_{off} values obtained independently in the displacement experiment with high NAD$^+$ concentrations described below (see Table 3).

Fast phase

$$E^* \xrightleftharpoons[k_1]{k_1} E + NADH \xrightleftharpoons[k_2]{k_2} E-NADH$$

S94A InhA

$$E-NADH \xrightleftharpoons[k_3]{k_3} E-NADH^*$$

Fig. 7. Scheme showing the minimum kinetic mechanism proposed for NADH binding to WT and isoniazid-resistant InhA enzymes. The fast phase corresponds to a bimolecular association between InhA (E form) and NADH. In case of NADH binding to S94A the fast phase also includes a further isomerization of E-NADH complex to E-NADH*. The rate of slow phase is limited by the slow isomerization of E* form of InhA to the E form, where only the E form binds NADH.
The amplitude values for the fast phase, which were corrected for the dead time of the instrument by the method of Hiromi33, were plotted versus NADH concentration and fitted to a quadratic equation (Eq. 7) for a second-order binding process34,35 as described in the Material and Methods section. This analysis yielded values of 0.3 ± 0.1, 7.6 ± 0.4, and 6.9 ± 0.8 µM for the equilibrium dissociation constant of WT InhA, I21V, and I47T, and also a value of 2.7 ± 0.2 µM for the overall K\textsubscript{d} (K\textsubscript{d}*2) for S94A InhA. These values are consistent with the K\textsubscript{d}2 values estimated for the WT, I21V, and to I47T InhA enzymes and also to the K\textsubscript{d}2* (overall) estimated for the two-step NADH binding to S94A InhA from analysis of the fast phase rate constant values, supporting the validity of the method used for data analysis of the fast phase.

For the slow phase of NADH-binding to WT enzyme, the apparent first-order constant (k\textsubscript{obs2}) values appeared to be independent of NADH concentration, whereas the I21V, I47T, and S94A mutant enzymes showed a striking concentration dependence (Fig. 8). There is a decrease in the slow phase rate constant values with increasing NADH concentration for the InhA mutant enzymes. This inverse dependence is characteristic of mechanisms in which the enzyme itself, not the enzyme-substrate complex, undergoes rate-limiting isomerization (most probably a conformational change of the free enzyme).33
Fig. 8. Analysis of NADH concentration dependence of the \(k_{\text{obs}2} \) values calculated from the slow phase (second phase) of NADH-binding to WT, I21V, I47T, and S94A InhA enzymes. The I21V, I47T, and S94A InhA data were fitted to equation 4, which describes a bimolecular reaction including two interconvertible forms of the enzyme (InhA), \(E \) and \(E^* \), of which only one form (E) can bind the ligand (NADH) (see scheme depicted in Fig. 7).

Accordingly, the slow phase data obtained for the three INH-resistant InhA enzymes were tentatively fitted to an equation that describes a system in which the enzyme exists in two interconvertible forms, \(E \) and \(E^* \), and the substrate \(S \) can only bind to \(E \) (see Fig. 7):

\[
k_{\text{obs}2} = \left(k_1 K_{d2}/([\text{NADH}] + K_{d2}) \right) + k_{-1}
\]

where \(K_{d2} \) is the equilibrium dissociation constant of InhA-NADH to InhA and NADH, and \(k_1 \) and \(k_{-1} \) are, respectively, the forward and reverse rate constants for the isomerization of free
enzyme form E (InhA that binds NADH) and E* (InhA* that does not bind NADH). Analysis of the data yielded values for \(k_1 \), \(k_1^- \), and \(K_{d2} \) constants that are given in Table 4.

Table 4. Kinetic constants estimated from the slow phase of NADH-binding to wild-type and isoniazid-resistant mutant InhA enzymes.

<table>
<thead>
<tr>
<th>Kinetic constant</th>
<th>WT InhA</th>
<th>I21V InhA</th>
<th>I47T InhA</th>
<th>S94A InhA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1 (s^{-1})^a)</td>
<td>n.d.</td>
<td>37 ± 4</td>
<td>11.2 ± 0.2</td>
<td>14 ± 4</td>
</tr>
<tr>
<td>(k_1^- (s^{-1})^a)</td>
<td>7.0 ± 0.2</td>
<td>9.7 ± 1.5</td>
<td>6.6 ± 0.2</td>
<td>5.2 ± 0.2</td>
</tr>
<tr>
<td>(K_1^b)</td>
<td>3.8 ± 0.6</td>
<td>1.70 ± 0.05</td>
<td>2.7 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>(K_{d2}^c (\mu M))</td>
<td>3 ± 1</td>
<td>11 ± 1</td>
<td>3.3 ± 1.6(^c)</td>
<td></td>
</tr>
<tr>
<td>(K_D(overall) (\mu M))</td>
<td>14 ±5(^d)</td>
<td>30 ± 3(^d)</td>
<td>12 ± 6(^d)</td>
<td></td>
</tr>
<tr>
<td>(K_D(overall))</td>
<td>29 ± 5(^e)</td>
<td>15 ± 2(^e)</td>
<td>13 ± 4(^e)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Calculated by fitting the slow phase data (\(K_{obs2} \) versus [NADH]) to equation 6
\(^b\) Equilibrium constant for isomerization of E to E* calculated with the relation, \(K_1 = k_1^/-k_1^- = [E^*]/[E] \).
\(^c\) Calculated by fitting the slow phase data to equation 6, however in specific to S94A InhA enzyme the \(K_{d2} \) term in equation 6 corresponds to the \(K_{d2}^* \) (\(K_{d2} \) overall).
\(^d\) Calculated by applying the \(K_{d2} \) and \(K_1 \) values, which were estimated by fitting the slow phase data to equation 6, to the relationship \(K_D(overall) = (K_1 + 1)K_{d2} \) (eq. 7), where \(K_d2 = k_2^-/k_2 \) for I21V and I47T enzymes. In particular to S94A InhA, the \(K_{d2} \) term corresponds to the \(K_{d2}^* \) value.
\(^e\) Calculated by using the equation 7 and the mean values for \(K_{d2} \) (I21V, and I47T) and \(K_{d2}^* \) (S94A) yielded from analysis of fast phase data.
\(^f\) Overall dissociation constant obtained from the NADH concentration dependence of the algebraic sum of the amplitudes of the fast and slow phases (Amp total = Amp1 + Amp2). The \(K_D \) (overall) value was estimated by fitting the data to equation 1.

It is noteworthy that the \(K_{d2} \) values of 3 ± 1, 11 ± 1, and 3.3 ± 1.6 (Table 4) estimated from the slow phase analysis for, respectively, I21V, I47T, and S94A InhA enzymes are consistent with the \(K_{d2} \) and \(K_{d2}^* \) values estimated from the fast phase data analysis (Table 3). This suggests that the equilibrium constants (\(K_{d2} \) and \(K_{d2}^* \)) estimated from both phases are probably describing the same process, a single bimolecular association between InhA and NADH for WT, I21V and I47T enzymes, and a bimolecular association followed by a unimolecular isomerization of the binary complex (E-NADH) to a more tightly bound complex (E-NADH*) for the S94A mutant enzyme. In a situation where the bimolecular process (E+S⇄ES) is sufficiently faster than the unimolecular isomerization process (E⇄E*), or, more
strictly, when the inequality \(k_2[NADH] + k_2 \gg k_1 + k_1 \) holds, two phases, one fast and other slow can be observed in the stopped-flow. In this case, the dependence of the fast phase \(k_{obs1} \) on ligand concentration can be described by equation 1, whereas the dependence of the slow phase \(k_{obs2} \) on ligand binding is described by equation 4.

The pre-steady-state kinetics data on NADH binding to WT and INH-resistant InhA enzymes are consistent with the whole mechanism depicted in Fig. 7, where the observed fast phase corresponds to a rapid association between NADH and the E form of InhA enzyme that can bind NADH. The slow phase is rate-limited by the slow conversion of E* form of InhA into the E form that then binds NADH. For the S94A enzyme, in addition to a bimolecular association, the fast phase includes a unimolecular isomerization of E-NADH complex to E-NADH* (Fig. 7).

The hyperbolic decreasing value of \(k_{obs2} \) (slow) as a function of increasing NADH concentration that has been observed for INH-resistant I21V, I47T and S94A mutants could not be observed for INH-sensitive WT InhA. It may be because the equilibrium between E* and E is shifted to the latter or because the NADH \(K_{d2} \) \((k_2/k_2)\) value calculated for WT InhA (0.3 µM) is lower than the \(K_{d2} \) values for I21V (5.9 µM) and I47T (6.5 µM), and the \(K_{d2}^* \) value for S94A (4.0 µM). The \(k_{obs2} \) values (slow phase) could not be accurately measured when NADH concentrations lower than either 5 µM (I47T, S94A) or 1 µM (I21V) were used in the assays, probably because the amplitude values for the second phase were very small for these low NADH concentrations to confidently obtain estimates for \(k_{obs2} \) values. Accordingly, the \(k_{obs2} \) values obtained for WT InhA enzyme showed no dependence on the NADH concentration range used in the assays. Moreover, the average \(k_{obs2} \) value obtained for WT InhA corresponds to the isomerization rate constant for conversion of E to E* form of InhA enzyme \((k_1)\), as depicted in Fig. 7.

The overall \(K_D \) for NADH-binding mechanism depicted in Fig. 7 is given by the following relationship:

\[
K_D(overall) = (K_1 + 1)K_{d2}, \tag{5}
\]

where \(K_1 \) is the equilibrium isomerization constant to the E* from E form of InhA \((K_1 = E^*/E = k_1/k_1)\), and \(K_{d2} \) is the equilibrium dissociation constant of NADH from E-NADH complex given
by $K_{d2} = k_2/k_2$ for WT, I21V and I47T enzymes, whereas the K_{d2} (equation 5) for S94A mutant corresponds to K_{d2}^* calculated from equation 3 ($K_{d2}^* = K_{d2}k_3/(k_3+k_3)$). Thus, using the K_1 and K_{d2} values (Table 4) estimated from an analysis of the slow phase data, K_D(overall) values of 14 ± 5, 30 ± 3, and 12 ± 6 µM for, respectively, I21V, I47T, and S94A mutant enzymes could be readily determined from equation 5. These estimates are also consistent with the K_D(overall) values calculated by using mean values for K_{d2} (I21V and I47T) and K_{d2}^* (S94A) constants obtained from the analysis of both fast phase data and NADH displacement data (Tables 3 and 4).

The total amplitude changes derived from the biphasic enhancement in nucleotide fluorescence upon NADH binding to InhA enzymes are given as the algebraic sum of the amplitudes of the fast (Amp1) and slow (Amp2) phases (Total amplitude = Amp1 + Amp2). The NADH concentration dependence of Amp1 (fast phase) appears to corresponds to a bimolecular association between E form of InhA and NADH (followed by an isomerization in S94A InhA), which would be determined either by K_{d2} for WT, I21V and I47T enzymes or by K_{d2}^* for S94A InhA enzyme. In this case, the amplitude of the observed slow phase (Amp2) could include to some extent a contribution of the fast process, in addition to the characteristic change of the slow process.33 Accordingly, the overall dissociation constant, K_D, could be determined from the NADH concentration dependence of total signal amplitude.33 Indeed, as shown in Table 4, the K_D values obtained by fitting the total amplitude values as a function of NADH concentration to equation 7 (Material and Methods section) are in excellent agreement with the K_D(overall) values obtained from the analysis of rate constants, supporting the mechanism proposed here for NADH binding to WT and INH-resistant enoyl reductase enzymes from *M. tuberculosis* (Fig. 7). In addition, from this analysis we verified a 6-, 13-, and 9-fold reduction in NADH affinity for I21V, I47T, and S94A mutant enzymes as compared to WT enzyme (Table 4). Contrary to what was observed for WT InhA, the slow-phase amplitude values plotted against NADH concentration were best fitted to the Hill equation (eq. 8) for isoniazid-resistant InhA mutant enzymes, yielding Hill coefficients of and 1.24 ± 0.05, 1.31 ± 0.03, and 1.26 ± 0.03 for I21V, I47T, and S94A InhA, respectively (data not shown). A slight cooperativity has also been observed in static fluorescence measurements of NADH binding to I21V, I47T, and S94A mutant enzymes, where the Hill coefficient values obtained were 1.4 ± 0.1, 1.50 ± 0.04, and 1.64 ± 0.06, respectively.16 These data indicate that the mutations in the NADH binding site of InhA...
affected the intersubunit contacts within the homotetramer, leading to the slight cooperativity observed in the slow phase of NADH binding to the enzyme, which is rate limited by the interconversion of E* form (that does not bind NADH) to the E form (that binds NADH) of InhA. This hypothesis is supported by the crystal structures of WT, I21V, I47T, and S94A InhA in complex with NADH, in which several water-mediated intersubunit contacts are lost in the mutant enzymes. The loss of these intersubunit contacts could be an explanation to the weak cooperativity observed in the here described stopped-flow data on NADH binding to I21V, I47T, and S94A InhA mutant enzymes. In accordance with the mechanism depicted in Fig. 7, the InhA subunit conformation observed in the InhA crystal structures presented here are equivalent to the E form of InhA enzyme, since the four InhA structures are in complex with NADH and only this enzyme form is able to bind NADH. Thus, the loss of the water-bridged hydrogen bonds between the protein subunits of the homotetramer that was observed in the crystal structures of InhA mutant enzymes should lead to destabilization of the observed conformation of the InhA with NADH bound, and appearance of a weak NADH-binding dependent cooperativity in the isomerization of the E* to E form of InhA. The conformation of each enzyme subunit in an oligomer is constrained and stabilized by the quaternary bonds, i.e. its conformation is dependent upon its quaternary structure.32

The conformation equivalent to the E* form described above may be observed in a substrate-free structure of InhA. In fact, we have crystallized and collected X-ray diffraction data of the S94A InhA enzyme in its apo-form in two distinct space groups, P1 and C2 (unpublished data), which can correspond to two different forms of InhA in solution (E and E*), in agreement with the pre-steady-state data reported here. The refinement of the WT and S94A crystal structures in their apo-form is currently underway in our laboratory.

NADH dissociation rate constant from WT, I21V, I47T, and S94A binary complexes.

The dissociation rate constants of NADH from its complex with the InhA enzymes were studied in a stopped-flow apparatus by observing the decrease in fluorescence intensity of the InhA-NADH complexes due to displacement of NADH by NAD+. The loss in nucleotide fluorescence accompanying dissociation of NADH from the InhA-NADH binary complexes was monophasic for all NAD+ concentrations tested and the k_{obs} values were thus fitted to a single-exponential equation. The experimental conditions of our experiments and data analysis were as
described by Fatania et al. and Chock and Gutfreund. The NAD\(^+\) concentration range (0.75-20 mM) is larger than the NADH and InhA concentrations, which were present at very much lower concentrations (5 µM and 10 µM, respectively, mixing chamber concentrations). Under these conditions, there is no general solution to the rate equations describing the competition reaction (Fig. 9), which can only be solved analytically when steady-state assumptions can be made.

![Figure 9](image)

Fig. 9. Representation of the reactions that occur in the displacement experiment after mixing the pre-incubated mix of InhA (20 µM) and NADH (10 µM) with excess of NAD\(^+\).

As the concentration of NAD\(^+\) approaches infinity, the concentration of unliganded enzyme can be assumed to be in a steady-state and the relationship between the observed first-order rate constants (k\(_{\text{obs}}\)) and the NAD\(^+\) concentration can be interpreted by the following equation with the assumption that \(d[\text{free enzyme}]/dt = 0\),

\[
k_{\text{obs}} = k_{\text{on 1}} [\text{InhA}] + k_{\text{off 1}} \tag{6}
\]

where [InhA] is the concentration of free InhA enzyme, \(k_{\text{on 1}}\) is the association rate constant for formation of [InhA-NADH] binary complex, and \(k_{\text{off 1}}\) is the dissociation rate constant of NADH from the binary complex. The concentration of the free InhA enzyme is dependent on the relative affinity and concentration of the two ligands, NADH and NAD\(^+\). As previously observed for displacement of NADH from the [GPDH-NADH] complex by NAD\(^+\), our \(k_{\text{obs}}\) values decreased hyperbolically with increasing concentration of NAD\(^+\), probably due to a decrease in free InhA concentration. Thus, the experimental values of \(k_{\text{obs}}\) obtained for the displacement of NADH from InhA-NADH complex, could be fitted to a rectangular hyperbola that extrapolates to the true value for the rate constant (\(k_{\text{off 1}}\)) describing the dissociation of NADH (Fig. 10). Computer simulation studies on displacement reactions have demonstrated that this behavior can be observed when the displacing ligand (NAD\(^+\)) has a lower affinity than the one being displaced.
(NADH) if the magnitude of the rate constant for bimolecular association between enzyme and NAD\(^+\) \((k_{\text{on}2})\) in relation to the other constants is high enough (see scheme in Fig. 9).

Fig. 10. Relationship between the observed first-order rate constants, determined with the stopped-flow apparatus, for displacement of NADH from its complex with WT (A), I21V (B), I47T (C), and S94A InhA enzymes, and the concentration of NAD\(^+\). The data were obtained by mixing NAD\(^+\) solutions (of twice the indicated concentration) with a mixture of 20 µM of each InhA enzyme and 10 µM NADH at 25°C. The curves were fitted to rectangular hyperbolas that extrapolate to the true value for the rate constant that describes the dissociation of NADH from InhA. Values of 6.1 (± 0.4), 68 (± 1), 30 (± 2) s\(^{-1}\), and 62 (± 1) were calculated for WT, I21V, I47T, and S94A InhA, respectively.
It would thus imply that the combination of NAD$^+$ with free enzyme is fast enough to decrease the concentration of the latter to its equilibrium value in the very early stages of the reaction. It has been shown for displacement of NADPH by NADP$^+$ from isocitrate dehydrogenase-NADPH binary complex that only a fraction of NADPH is displaced at equilibrium for relatively low NADP$^+$ concentrations and therefore the half-time for approaching this equilibrium is smaller than that for complete ligand displacement.36 In our experiments, the k_{obs} values for the displacement reaction are greater than the intrinsic rate constant for NADH dissociation. True rate constant values of 6.1 ± 0.4, 68 ± 1, 30 ± 2, $62 \pm 1 \text{ s}^{-1}$ (Fig. 10) were estimated for the dissociation of NADH from, respectively, WT-NADH, I21V-NADH, I47T-NADH, and S94A binary complexes (Table 3). These values are in good agreement with the values of 5 ± 5, 85 ± 4, 53 ± 2, and $65 \pm 6 \text{ s}^{-1}$ that were estimated for either k_2 (WT, I21V, and I47T) or k_3 (S94A) from the plot of k_{obs1} values against NADH concentration (Fig. 6), suggesting that the rate constant values estimated from the displacement experiment corresponds to either the true dissociation rate constant value k_2 or to the reverse isomerization rate constant k_3, which appears to limit the rate of NADH dissociation from the E*-NADH in S94A InhA (see scheme in Fig. 7). It should be pointed out that NADH displacement was monophasic for both WT and INH-resistant mutant enzymes with all NAD$^+$ concentrations tested. Furthermore, the fluorescence amplitude values estimated from the NADH displacement curves obtained when 20 µM of each InhA enzyme pre-incubated with 10 µM NADH was mixed with an equal volume of 40 mM NAD$^+$ are approximately equal to the total fluorescence amplitude (i.e. the sum of amplitudes of fast and slow phases) estimated from double exponential NADH-binding curves obtained when 20 µM of each InhA enzyme was mixed with a equal volume 10 µM NADH in the stopped flow apparatus (data not shown). These results are consistent with the mechanism depicted in Fig. 7, since the fluorescence amplitude of the slow phase would correspond to equivalent InhA-NADH complex formed in the fast phase of NADH-binding to the InhA enzymes. Accordingly, the displacement of NADH from InhA by NAD$^+$ appears to be monophasic and the fluorescence amplitude value of the process is equivalent to the amplitude value of the fast and slow phases of NADH-binding to InhA.
DISCUSSION

The more prominent difference observed between WT InhA and the INH-resistant InhA mutant enzymes in our pre-steady-state studies on NADH binding is in the value of the limiting rate constant to the dissociation of NADH from the InhA-NADH binary complexes (k_{off}). The k_{off} values found for I21V, I47T, and S94A are, respectively, 11-, 5-, and 10-fold larger than the k_{off} value estimated for WT InhA. There are nearly no differences between the values for bimolecular association rate constants (k_2) of WT enzyme, and I21V and S94A mutant enzymes. The k_2 value of 8.17 ± 0.08 (x106) M$^{-1}$ s$^{-1}$ for I47T enzyme is only 1.8-fold lower than the k_2 value of 15.5 ± 0.2 (x 106) M$^{-1}$ s$^{-1}$ for WT enzyme. Hence, the reduction in affinity for NADH previously observed16 and thoroughly described here for I21V, I47T, and S94A proteins can be attributed to the larger k_{off} values observed for the INH-resistant mutant InhA enzymes. This rate constant appears to be equivalent to the k_{-2} constant for WT, I21V, and I47T InhA enzymes, whereas for S94A InhA the NADH dissociation appears to be limited by the reverse isomerization rate constant k_3. In addition, the stopped-flow data on NADH binding suggest a mechanism where there are two forms of InhA in equilibrium (E and E*), and only the E form can bind NADH. The INH-NAD adduct has been proposed to be formed either in solution15 or on the InhA active site through the binding of KatG-activated INH to the NADH-bound enzyme.13 Based on our results, $M.\ tuberculosi$s strains harbouring the mutant InhA enzymes described here would have a higher E*/E intracellular ratio than would the WT InhA enzyme, which would imply that a larger amount of mutant enzyme should be present in the E* form as compared to WT InhA. Since NADH molecule is part of the INH-NAD adduct that inhibits the InhA enzyme, it is tempting to suggest that this adduct can only bind to the E form of InhA. Under physiological NADH concentration (<10 µM),38 the larger E*/E ratio for the INH-resistant mutant enzymes would result in an increase in the concentration of the enzyme form that does not binds NADH (E*) and ensuing reduction in enzyme inhibition by INH-NAD.

The three mutations studied here either are located on or appear to indirectly affect the dinucleotide binding loop structure. The S94A mutation result in a break of hydrogen bond of Ser94 residue with a conserved water molecule, which is also present in the crystal structures of apo-SDR enzymes and that helps maintain the Gly-rich loop conformation.19 In the conservative substitution of Val for Ile in the penultimate position of the dinucleotide binding loop only van
der Waals interactions between nicotinamide moiety and CD1 atom of Ile21 are lost. Finally, in the I47T mutant protein only a perturbation in the hydrogen bond network involving a conserved water, the second residue of dinucleotide binding loop (Ile15), the 2’- and 3’-hydroxyl groups of adenine ribose, and Phe41 residue are observed owing to the presence of the slightly polar Thr15 side chain and of a new water molecule which hydrogen bonds to OG1 atom of Thr47 residue in the crystal structure of the binary complex I47T-NADH. It should be pointed out that mutations in conserved residues of the loop have been correlated with attenuation or elimination of enzyme activity39-41 and it is thus not surprising that the mutations reported here result in only very small changes in the backbone conformation of the dinucleotide binding loop, since this could result in an inactive enzyme that would be lethal to M. tuberculosis. These small structural differences probably result in a decreased stability of the NADH bound to InhA, and thus are implicated in the higher k_{off} values observed for isoniazid-resistant enzymes in the pre-steady-state kinetics studies on NADH binding reported here. As NADH molecule is part of the INH-NAD adduct that inhibits the InhA enzyme, in which only the 4S hydrogen of niconinamide ring is replaced by the isonicotinic acyl moiety of isoniazid, it appears plausible that the lower affinity for the NAD moiety of INH-NAD adduct should contribute to INH resistance. Consistent with this proposal, the in vitro kinetics inactivation of the I21V and I95P mutant enzymes has been compared with that of the WT enzyme, and both mutations resulted in increased values for the NADH equilibrium dissociation constant and decreased values for the apparent first-order rate constant for enzyme inactivation.16 Contrary to our proposal, the kinetic and thermodynamic parameters for the interaction of isonicotinyl-NAD with INH-resistant I21V, I47T, and S94A InhA mutant enzymes were found to be similar to those of the WT enzyme in slow-onset inhibition experiments.15 These results prompted the authors to suggest that INH resistance of M. tuberculosis strains harboring inhA-structural gene mutations may be explained by an alteration of protein-protein interactions between InhA and other components of the FAS-II system. However, it remains to be shown whether inhA-structural gene mutations identified in INH-resistant clinical isolates of M. tuberculosis will affect the sensitivity of InhA to INH in the context of multienzyme complex. Moreover, increasing NADH levels have been shown to protect InhA against inhibition by the INH-NAD adduct formed upon KatG activation of INH, and mutations in mycobacterial ndh gene have been proposed to result in increased intracellular NADH concentrations, which competitively inhibits the binding of INH-NAD adduct to InhA.42
The crystal structures of INH-resistant I21V, I47T, and S94A InhA mutant enzymes complexed with NADH presented here showed that a few water-mediated interactions are lost in the three orthogonal twofold axes. These differences can be correlated with the slight cooperativity observed for isoniazid-resistant mutants.16 In addition, it can be reconciled with our stopped-flow studies on the slow phase of NADH binding since the INH-resistant mutant InhA homotetramers are likely less stable the WT enzyme.

Since the results of pre-steady-state kinetics on NADH binding reported here suggest the presence of two forms of InhA enzyme in solution, it would be interesting to carry out similar pre-steady-state kinetic experiments on binding of INH-NAD adduct to WT and INH-resistant InhA enzymes to assess the binding mechanism and affinity of INH-NAD adduct and compare with reported data on slow-onset inhibition experiments.15 The results presented here provide both a mechanism for NADH binding to \textit{M. tuberculosis} enoyl-ACP reductase and compelling evidence for the effects of \textit{inhA}-structural gene mutations, identified in clinical isolates of \textit{M. tuberculosis} strains resistant to isoniazid, on structural and kinetic features of these enzymes. It is hoped that the results reported here will assist the development of new anti-tubercular agents that can overcome isoniazid-resistance. Moreover, our results highlight the importance of regarding water molecules when analyzing protein crystal structures. This issue is critical for future docking calculations and structure-based drug design and optimization studies of lead inhibitors against both wild-type and isoniazid resistant enoyl-ACP reductases from \textit{M. tuberculosis}.

128
MATERIAL AND METHODS

Determination of oligomeric state of WT, I21V, I47T, and S94A InhA enzymes — The oligomeric state of wild-type and isoniazid-resistant enoyl-ACP reductase homogenous proteins was estimated by gel-permeation chromatography on a Superdex™ 200 HR column (1.0 cm × 30 cm) (Amersham Biosciences). The column was eluted with 20 mM Pipes containing 0.2 M NaCl, pH 7.3 at a flow rate of 0.4 mL min⁻¹. The eluate was monitored at 215 and 280 nm and the column was calibrated with the following protein standards (Amersham Biosciences): Ribonuclease A (13,700 Da) from bovine pancreas, Chymotrypsinogen (25,000 Da) from bovine pancreas, Ovalbumin (43,000 Da) from hen egg, Albumin (67,000 Da) from bovine serum, Purine nucleoside phosphorylase from M. tuberculosis (82,720 Da), Aldolase (158, 000 Da), Catalase (232,000 Da), and Ferritin (440,000 Da). Blue Dextran 2000 was used to determine the void volume (V₀). The Kav value was calculated for each protein using the equation Ve-V₀/Vt-V₀, where Vₑ is the elution volume for the protein and Vₜ is the total bed volume, and Kav was plotted against the logarithm of standard molecular weights.

Crystallization, refinement and analysis — WT, I21V, I47T and S94A InhA enzymes were expressed and purified to homogeneity as described elsewhere.8,16 The binary complexes of InhA-NADH were crystallized by hanging drop vapor diffusion method under similar conditions as described by Dessen et al.27 A 3 µL drop of reservoir solution containing 50 mM Hepes pH 7.2, 8 to 12% methylpentanediol (MPD), and 50 mM sodium citrate (pH 6.5) was mixed with an equal volume of 13 mg.mL⁻¹ protein solution (containing a 1:2 ratio of enzyme and NADH) on a silanized cover slit that was inverted and sealed above the precipitant solution. Crystals were cryoprotected by transfer to crystallization solution with 20% glicerol and flash-frozen at 104K in a cold nitrogen stream generated and maintained with an Oxford Cryosystem. All data sets were collected at 1.4310 Å wavelength on a CCD detector (MAR CCD) using synchrotron radiation source (Station PCr, LNLS, Campinas, Brazil).43 The data sets were processed using MOSFLM program and scaled with SCALA program.44 All protein-NADH complexes have crystallized in the hexagonal space group P6₂2₂, with one subunit per asymmetric unit. Initially, a crystal structure of the binary complex WT InhA-NADH has been solved at 2.2 Å by molecular replacement with the coordinates of the previously solved WT InhA structure without
NADH and water molecules27 (PDB code: 1ENY) as a search model, using data collected by cryocrystallography. This WT InhA structure without NADH and water molecules has been used as starting model in standard molecular-replacement methods using the program AMoRe45 to solve the crystal structures of WT InhA, I21V, I47T, and S94A InhA mutant enzymes in complex with NADH, which have been refined to, respectively, 1.92 Å, 2.0 Å, 2.2 Å, and 2.3 Å (Table 1) with X-PLOR-NIH46,47 and REFMAC 5.248 programs. The structures have initially been refined with the X-PLOR-NIH46,47 program, where only reflections between 6.0 Å and the high resolution cutoff were used in refinement. Subsequently, the structures were further refined with the maximum likelihood based program REFMAC 5.2, using a solvent mask option, which allow inclusion of low resolution data in refinement. No sigma cutoff has been applied to select the unique reflections that have been used in the refinement process. A test set of 5.1% reflections, which were used for free R value calculations through the cross-validation method, have been randomly selected and omitted from the refinement process. Since both all diffraction data sets are isomorphous to and the structures have similar unit cell dimensions to the WT InhA starting model, there will be correlations between the different data sets of test reflections and the working data set used in the refinement of the WT InhA starting model. Thus, the test data sets could not provide an independent check of the quality of the building models.49 To minimize this problem, high temperature simulated annealing (starting temperature between 2000-4000K) has been performed in the beginning of the refinement for WT InhA, I21V, I47T, and S94A InhA mutant proteins to uncouple the working and free R values, i.e., to remove remove bias toward the test set.49,50 The simulating annealing steps have been carried out throughout of refinement process with X-PLOR-NIH program.46,47 In order to minimize the model bias,51 the models were checked and rebuilt when necessary in the program XTALVIEW (Xfit tool)52 against simulating annealing electron density omit maps, in which either 10 contiguous residues or spheres encompassing no more than 10% of the total residues were omitted, or against omit maps calculated on the fly of XTALVIEW program (Xfit tool)52 together with the SHAKE option. At the final stages of the refinements, water molecules were manually added to electronic density peaks $\geq 3\sigma$ in ($|F_{\text{obs}}| - |F_{\text{calc}}|$) density maps, and the model subject to cycles of isotropic B-factor refinement. The solvent molecules were subsequently rejected from the models if their B-factors were above 60 Å2 after refinement or if they were not located within 2.2-3.5 Å from one or more possible hydrogen bonding donor(s) or acceptor(s) atom(s). The stereochemistries of the final
models were verified with the program PROCHECK[^53] and MOLPROBITY[^54] (http://molprobity.biochem.duke.edu/). In the PROCHECK evaluation, 90.2-91.6% of residues are found in the most favorable region of the classical Ramachandran plot (Table 1). Only three residues from crystal structure of WT InhA (Asp42, Ala157, and Asn159) and two residues from crystal structure of I21V, I47T, and S94A InhA mutant proteins (Ala157 and Asn159), which are located in turns, are found in the disallowed region of the Ramachandran plot from PROCHECK[^53]. However, the electron density for Asp42, Ala157, and Asn159 residues is sufficiently clear to unequivocally assign their conformations in the structures of InhA proteins (supplementary material). Actually, Asp42, Ala157, and Asn159 are not outliers when the InhA structures were evaluated with the program MOLPROBITY[^54] (Table 1), which use an updated φ,ψ plot (Ramachandran plot) for over 100,000 well-ordered non-Gly, non-Pro, non pre-Pro residues in 500 proteins at 1.8 Å resolution or better[^54]. Thus, the conformations observed for these residues are probably genuine. Final statistics for all the refined structures are summarized in Table 1. Atomic coordinates have been deposited in the RCSB Protein Data Bank[^55] with the following PDB ID codes: 2AQ8 (WT InhA), 2AQK (S94A), 2AQI (I47T), and 2AQH (I21V).

Clear electronic density was found to unambiguously position all moieties of NADH molecule in the models of the four structures at the beginning of each refinement. No clear electronic density was found for the first two residues of WT InhA structure and for the first residue of the InhA mutant enzymes. Three water molecules in special positions have been added to the final model of WT InhA-NADH structure. In the structures of I21V InhA-NADH, I47T InhA-NADH, and S94A InhA-NADH, one water, three water, and two water molecules, have, respectively, been included in special positions in the final model. The waters in special positions have been refined with an occupancy value of 0.5. The analysis of the interactions between NADH and protein residues has been made with a cut off distance of 3.5 Å for hydrogen bonding and of 4.5 Å for van der Waals and hydrophobic interactions. The molecular-surface areas were calculated using the program Swiss PDB Viewer v.3.7 (http://www.expasy.org/spdv), a probe radius of 1.4 Å and a fixed radius for all atoms. The three symmetry-related partners, which make part of a tetramer in the crystal packing, were generated in the CNS program using the input file neighbours.inp.[^56]
Pre-steady-state kinetics of NADH binding — Rapid reactions were followed using an Applied-Photophysics SX-18MV-R (Leatherhead, UK) stopped-flow spectrofluorimeter, operated at 25°C, in fluorescence mode (dead time ≤ 1.5 ms). The excitation wavelength was selected by focusing a 150-W Xenon arc lamp onto a monochromator fitted with a 250 nm holographic grating. The emitted light was selected with a WG420 Scott filter, positioned between the photomultiplier and the sample cell as previously described.57,58 Data were stored on an Acorn A5000 computer, and analyzed by non-linear regression. Data acquisition was carried out using a split time base (20 and 200 ms) with the first half of data acquired over 10% of the time period monitored for the second half of the split time base. This procedure allows for more accurate determination of the rate and amplitude of an exponentially changing signal.59 The enzyme and coenzyme concentrations are the final concentrations after mixing unless stated otherwise.

The pre-steady state kinetics of NADH binding to either 2 µM (WT InhA) or 4 µM (I21V, I47T, S94A mutant InhAs) enzyme concentrations was determined by monitoring the nucleotide fluorescence using an emission cut-off filter ≥ 420 nm. In order to minimize inner filter effects at high NADH concentrations, an excitation wavelength of 370 nm (band pass = 4.65 nm) was chosen, which is on the red edge of the longest wavelength absorption band of NADH. All measurements were performed in 100 mM PIPES pH 7.0 using a 0.5-85 µM NADH concentration range. At least five stopped flow traces were averaged prior to non-linear regression analysis. All trace curves for NADH binding were characterized by a biphasic enhancement in nucleotide fluorescence and the data were best fitted to a double exponential function. The amplitude data from the fast phase were fitted to a quadratic equation (eq. 7) relating fluorescence change to NADH concentration for a second-order binding process.34,35

\[
\frac{\Delta F}{\Delta F_{\max}} = \frac{1}{2[E]_0} \left\{ \frac{(K_d + [E]_0 + [S]_0) \pm \sqrt{(K_d + [E]_0 + [S]_0)^2 - 4[E]_0[S]_0}}{2} \right\}
\]

In equation 7, [E]_0 and [S]_0 represent the initial enzyme and substrate concentrations, respectively. \(\Delta F\) is the fluorescence amplitude estimated for each NADH concentration, \(\Delta F_{\max}\) is the maximum fluorescence amplitude at saturating NADH concentration.
The fluorescence amplitude values estimated from the slow phase of NADH-binding to WT InhA were fitted to equation 7. However, the amplitude values calculated for the slow phase of NADH-binding to I21V InhA, I47T InhA, and S94A InhA mutant enzymes were best fitted to the Hill equation (eq. 8),

\[\Delta F = \Delta F_{\text{max}} [S]^h / K_{0.5} + [S]^h \]

[8]

Where \(K_{0.5} \) is the NADH concentration in which 50% active sites are occupied, \([S]\) is the total NADH concentration, and \(h \) is the Hill coefficient.60

Displacement of NADH by \(\text{NAD}^+ \) from WT InhA-NADH, I21V InhA-NADH, I47T InhA-NADH, and S94A InhA-NADH binary complexes — The apparent NADH dissociation rate values were determined independently by measuring the quenching of nucleotide fluorescence that resulted from the displacement of NADH from the InhA-NADH binary complexes by \(\text{NAD}^+ \). In order to obtain a reliable estimate to the actual limiting value for the dissociation rate constant of NADH, \(\text{NAD}^+ \) was used at a series of increasing concentrations. In these experiments, 20 \(\mu \)M of enoyl reductase pre-incubated with 10 \(\mu \)M NADH was rapidly mixed with 0.75, 1.5, 2.5, 5, 10, 20, 30, and 40 mM NAD\(^+\) (syringe concentrations), and NADH release was measured by monitoring the fluorescence (\(\lambda_{\text{exc}} = 370 \text{ nm}, \text{band pass} = 4.65 \text{ nm}, \lambda_{\text{em}} \geq 420 \text{ nm} \)). All reactions were measured at 25°C in 100 mM Pipes, pH 7.0.
ACKNOWLEDGMENTS

Financial support for this work was provided by Millennium Initiative Program MCT-CNPq, Ministry of Health/DECIT – Secretary of Health Policy and PRONEX/FAPERGS/CNPq (Brazil) to DSS and LAB. DSS (304051/1975-06), LAB (520182/99-5), and WFAJr (300851/98-7) are research career awardees from the National Research Council of Brazil (CNPq).
REFERENCES

FOOTNOTES

The abbreviations used are: ETH, ethionamide; FAD, Flavin adenine dinucleotide; FAS, fatty acid synthase system; GPDH, glycerol-3-phosphate dehydrogenase; INH, isoniazid; INH-NAD, isonicotinoyl-NAD; InhA=ENR, enoyl acyl carrier protein reductase; KatG, catalase/peroxidase from *Mycobacterium tuberculosis*; MDR-TB, multidrug-resistant tuberculosis; NAD, nicotinamide adenine dinucleotide; RMSD, root-mean-squared deviation; SDR, short chain dehydrogenase/reductase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; WT, wild-type.
SUPPLEMENTAL MATERIAL

Analysis of intersubunit contacts

The solvent accessible surface areas of an isolated monomer and a tetramer (WT InhA) are approximately 11078 Å² and 33991 Å², respectively. Thus, around 2670 Å² of the molecular surface is buried per monomer on formation of tetramer. Interestingly, a cavity is delimited by the intersubunit contacts in the center of the tetramer with a molecular surface area of approximately 1639 Å². The molecular surface area values calculated for the crystal structures of isoniazid-resistant InhA enzymes were very similar to the values calculated for WT enzyme. The values calculated for monomer and tetramer of crystal structures of I21V, I47T, and S94A mutants were, respectively, 11053 Å² and 33805 Å², 11123 Å² and 34004 Å², and 11147 Å² and 34102 Å². A summary of all direct and water-mediated hydrogen bonding occurring in the intersubunit interfaces about the three orthogonal molecular twofold axes (A, B, and C) of WT InhA homotetramer is given in Table 6.

Intersubunit contacts in the A axis — In the A axis hydrophobic interactions and direct and water-mediated hydrogen occur between side chains of helices \(\alpha 8^1 \) and \(\alpha 8^2 \) with residues from the loops connecting helix \(\alpha 8 \) and strand \(\beta 7 \) (Ser247 - Gly255) in the subunits 1 and 2, respectively. There are hydrophobic interactions between Pro237, and Thr241 and Ala244 from helix \(\alpha 8 \) with Ala252, and Leu250, from the loop, respectively. Furthermore, a series of direct and water-mediated hydrogen bonds are observed for residues that lie in strands \(\beta 7^1 \) and \(\beta 7^2 \), which run antiparallel to each other, and which are located on the edge of the parallel β-sheets. Additional interface contacts are made by residues from the loop between helix \(\alpha 8 \) and strand \(\beta 7 \), the turn between helices \(\alpha 7 \) and \(\alpha 8 \), the C-terminus of helix \(\alpha 5^2 \), and the C-terminal stretch of residues Asp261-Leu269. Approximately 908 Å² of molecular surface area is buried per monomer in this interface.

Intersubunit contacts in the B axis — A four helix bundle is formed about B axis by helices \(\alpha 4^1 \) (Tyr113-Leu135) and \(\alpha 5^1 \) (Met161-Lys181) and their respective symmetry equivalents, \(\alpha 4^3 \) and \(\alpha 5^3 \). Helix \(\alpha 4^1 \) forms extensive hydrogen-bonding contacts with its symmetry equivalent \(\alpha 4^3 \),
which is supplemented by some hydrophobic contacts between $\alpha4^1$ and helices $\alpha4^3$, and $\alpha5^3$. Furthermore, several hydrophobic contacts are formed between Phe108 and Phe109 residues, which are located between strand $\beta4$ and helix $\alpha4$, with non-polar residues from helices $\alpha4$, and $\alpha5$, and Trp160 residue of the symmetry-related InhA subunit. The phenylalanine residues (108 and 109) also make two water-mediated hydrogen bonds with Glu178 residue (helix $\alpha5$), and the Phe109 forms a direct hydrogen bond with NZ atom of Lys132 residue (helix $\alpha4$) from the symmetry equivalent subunit. A hydrophobic-packing interface is also observed between helices $\alpha5^1$ and $\alpha5^3$ with additional hydrogen-bonding contacts. In the WT InhA structure, approximately 947 Å2 of molecular surface is buried per monomer in this interface. In addition, Pro151 and Ala154 residues, which are located in the turn between strand $\beta5$ and helix $\alpha5$, make hydrogen bond interactions with, respectively, Arg173 and Ser170 residues of helix $\alpha5$ from symmetry equivalent subunit.

Intersubunit contacts in the C axis — Contacts around the C axis are dominated by direct and water-mediated hydrogen bonds between residues from the turn connecting strand $\beta5$ and helix $\alpha5$ from subunit 1 with residues from the symmetry equivalent turn and C-terminal residues (Asp264-Leu268) in subunit 4. Additional hydrogen bonds are formed between C-terminal residues (Asp264-Leu268) from subunit 1 and residues in the turn between strand $\beta5^4$ and helix $\alpha5^4$. Approximately 271 Å2 of molecular surface is buried per monomer in this interface.

<table>
<thead>
<tr>
<th>NADH moiety</th>
<th>NADH atom</th>
<th>WT InhA atom</th>
<th>Distance (Å)</th>
<th>Atom from protein bonded to water molecule</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotinamide</td>
<td>NO7</td>
<td>Ile194 N</td>
<td>2.8</td>
<td>Tyr158 OH</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>NO7</td>
<td>Water352 O</td>
<td>2.7</td>
<td>Ile95 O</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>NN7</td>
<td>Ile194 O</td>
<td>3.2</td>
<td>Thr196 OG1</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>NN7</td>
<td>Water380</td>
<td>3.4</td>
<td>Ser123 O</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>NO2*</td>
<td>Lys165 NZ</td>
<td>2.9</td>
<td>His93 ND1</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Lys165 NZ</td>
<td>3.0</td>
<td>His93 O</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Ile95 O</td>
<td>3.1</td>
<td>Ile95 N</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Water287 O</td>
<td>3.2</td>
<td>Met147 N</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Water287 O</td>
<td>3.2</td>
<td>Met147 O</td>
<td>2.9</td>
</tr>
<tr>
<td>Nicotinamide Ribose</td>
<td>NO3*</td>
<td>Water288 O</td>
<td>2.8</td>
<td>The196 OG1</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>NO1</td>
<td>Water380 O</td>
<td>2.7</td>
<td>Gly14 O</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td>Ile21 N</td>
<td>2.8</td>
<td>Ile21 N</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td>Water271 O</td>
<td>2.8</td>
<td>Ser94 OG</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td>Water271 O</td>
<td>2.8</td>
<td>Ala22 N</td>
<td>2.8</td>
</tr>
<tr>
<td>Pyrophosphate</td>
<td>O3</td>
<td>Water380 O</td>
<td>3.1</td>
<td>Thr196 OG1</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>O3</td>
<td>Water381 O</td>
<td>3.1</td>
<td>Water400 O – Gly96 O</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>AO1</td>
<td>Water381 O</td>
<td>2.6</td>
<td>Water400 O – Gly96 O</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>AO1</td>
<td>Water378 O</td>
<td>2.6</td>
<td>Water337 O – Gly96 O</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>AO2</td>
<td>Ser20 OG1</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO2</td>
<td>Water285</td>
<td>2.7</td>
<td>Thr17 OG1</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td>Water271</td>
<td>2.7</td>
<td>Ser20 OG</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td>Water271</td>
<td>2.7</td>
<td>Gly14 O</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td>Water271</td>
<td>2.7</td>
<td>Ile21 N</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td>Water271</td>
<td>2.7</td>
<td>Ala22 N</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td>Water271</td>
<td>2.7</td>
<td>Ser94 OG</td>
<td>2.9</td>
</tr>
<tr>
<td>Adenine Ribose</td>
<td>AO4*</td>
<td>Gly96 N</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO3*</td>
<td>Gly14 O</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO3*</td>
<td>Water272 O</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO2*</td>
<td>Water272 O</td>
<td>2.8</td>
<td>Ile15 O</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>AO2*</td>
<td>Water272 O</td>
<td>2.8</td>
<td>Phe41 N</td>
<td>3.0</td>
</tr>
<tr>
<td>Adenine</td>
<td>AN3</td>
<td>Water282 O</td>
<td>3.0</td>
<td>Gly14 N</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td>Asp64 OD1</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td>Water349</td>
<td>2.8</td>
<td>Asp64 OD1</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td>Water349</td>
<td>2.8</td>
<td>Gln66 OE1</td>
<td>2.7</td>
</tr>
<tr>
<td>NADH moiety</td>
<td>NADH atom</td>
<td>I21V InhA atom</td>
<td>Distance (Å)</td>
<td>Atom from protein bonded to water molecule</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>NO7</td>
<td>Ile194 N</td>
<td>2.6</td>
<td>Tyr158 OH</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>NO7</td>
<td>Water352 O</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NN7</td>
<td>Ile194 O</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NN7</td>
<td>Water380</td>
<td>3.4</td>
<td>Thr196 OG1</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>NO2*</td>
<td>Lys165 NZ</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Lys165 NZ</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Ile95 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Water287 O</td>
<td>3.2</td>
<td>Lys165 NZ</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotinamide Ribose</td>
<td>NO3*</td>
<td>Water288 O</td>
<td>2.8</td>
<td>His93 ND1</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrophosphate</td>
<td>O3</td>
<td>Water380 O</td>
<td>2.7</td>
<td>The196 OG1</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>O3</td>
<td>Water381 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO1</td>
<td>Water381 O</td>
<td>2.6</td>
<td>Water400 O – Gly96 O</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>AO1</td>
<td>Water378 O</td>
<td>2.5</td>
<td>Water400 O – Gly96 O</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>AO2</td>
<td>Ser20 OG1</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO2*</td>
<td>Water285</td>
<td>2.7</td>
<td>Thr17 OG1</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenine Ribose</td>
<td>AO4*</td>
<td>Gly96 N</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO3*</td>
<td>Gly14 O</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO3*</td>
<td>Water272 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO2*</td>
<td>Water272 O</td>
<td>3.0</td>
<td>Ile15 O</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenine</td>
<td>AN3</td>
<td>Water282 O</td>
<td>3.0</td>
<td>Gly14 N</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td>Asp64 OD1</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td>Water349</td>
<td>2.8</td>
<td>Asp64 OD1</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gln66 OE1</td>
</tr>
<tr>
<td>NADH moiety</td>
<td>NADH atom</td>
<td>I47T InhA atom</td>
<td>Distance (Å)</td>
<td>Atom from protein bonded to water molecule</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>NO7</td>
<td>Ile194 N</td>
<td>2.6</td>
<td>Tyr158 OH</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>NO7</td>
<td>Water 352 O</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NN7</td>
<td>Ile194 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NN7</td>
<td>Water380</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO2*</td>
<td>Lys165 NZ</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Lys165 NZ</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Ile95 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Water287 O</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotinamide Ribose</td>
<td>NO3*</td>
<td>Water288 O</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO1</td>
<td>Water380 O</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td>Ile21 N</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td>Water271 O</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrophosphate</td>
<td>O3</td>
<td>Water380 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O3</td>
<td>Water381 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO1</td>
<td>Water381 O</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO1</td>
<td>Water378 O</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO2</td>
<td>Ser20 OG1</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO2</td>
<td>Water285</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td>Water271</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenine Ribose</td>
<td>AO4*</td>
<td>Gly96 N</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO3*</td>
<td>Gly14 O</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO3*</td>
<td>Water272 O</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO2*</td>
<td>Water272 O</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenine</td>
<td>AN3</td>
<td>Water282 O</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td>Asp64 OD1</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td>Water349</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

148
<table>
<thead>
<tr>
<th>NADH moiety</th>
<th>NADH atom</th>
<th>S94A InhA atom</th>
<th>Distance (Å)</th>
<th>Atom from protein bonded to water molecule</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotinamide</td>
<td>NO7</td>
<td>Ile194 N</td>
<td>2.5</td>
<td>Tyr158 OH</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>NO7</td>
<td>Water352 O</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NN7</td>
<td>Ile194 O</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NN7</td>
<td>Water380</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO2*</td>
<td>Lys165 NZ</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Lys165 NZ</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Ile95 O</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td>Water287 O</td>
<td>3.4</td>
<td>Lys165 NZ</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ile95 O</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td></td>
<td></td>
<td>Ser123 O</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td></td>
<td></td>
<td>His93 ND1</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td></td>
<td></td>
<td>His93 O</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td></td>
<td></td>
<td>Ile95 N</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td></td>
<td></td>
<td>Ile95 O</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td></td>
<td></td>
<td>Met147 N</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>NO3*</td>
<td></td>
<td></td>
<td>Met147 O</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>NO1</td>
<td>Water380 O</td>
<td>2.5</td>
<td>The196 OG1</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td>Ile21 N</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td>Water271 O</td>
<td>2.7</td>
<td>Gly14 O</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td></td>
<td></td>
<td>Ile21 N</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td></td>
<td></td>
<td>Ala94</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NO2</td>
<td></td>
<td></td>
<td>Ala22 N</td>
<td>2.7</td>
</tr>
<tr>
<td>Pyrophosphate</td>
<td>O3</td>
<td>Water380 O</td>
<td>3.1</td>
<td>Thr196 OG1</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>O3</td>
<td>Water381 O</td>
<td>2.8</td>
<td>Water400 O – Gly96 O</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>AO1</td>
<td>Water381 O</td>
<td>2.5</td>
<td>Water400 O – Gly96 O</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>AO1</td>
<td>Water378 O</td>
<td>2.7</td>
<td>Water337 O – Gly96 O</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>AO2</td>
<td>Ser20 OG1</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO2</td>
<td>Water285</td>
<td>2.7</td>
<td>Thr17 OG1</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>AO2</td>
<td></td>
<td></td>
<td>Ser20 OG</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td>Water271</td>
<td>3.4</td>
<td>Gly14 O</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td></td>
<td></td>
<td>Ile21 N</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td></td>
<td></td>
<td>Ala22 N</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>AO5*</td>
<td></td>
<td></td>
<td>Ala94</td>
<td>-</td>
</tr>
<tr>
<td>Adenine Ribose</td>
<td>AO4*</td>
<td>Gly96 N</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO3*</td>
<td>Gly14 O</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO3*</td>
<td>Water272 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO2*</td>
<td>Water272 O</td>
<td>2.6</td>
<td>Ile15 O</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>AO2*</td>
<td></td>
<td></td>
<td>Phe41 N</td>
<td>2.9</td>
</tr>
<tr>
<td>Adenine</td>
<td>AN3</td>
<td>Water282 O</td>
<td>3.0</td>
<td>Gly14 N</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td>Asp64 OD2</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td>Water349</td>
<td>2.8</td>
<td>Asp64 OD1</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>AN6</td>
<td></td>
<td></td>
<td>Gln66 OE1</td>
<td>2.8</td>
</tr>
<tr>
<td>Twofold Axis</td>
<td>Atom from subunit 1</td>
<td>Atom from symmetry-related subunit</td>
<td>Distance (Å)</td>
<td>Atom from symmetry-related subunit bonded to water molecule</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>A</td>
<td>Arg173 O</td>
<td>Gln267 NE2</td>
<td>3.0</td>
<td>Pro227 O</td>
<td>2.9</td>
</tr>
<tr>
<td>A</td>
<td>Arg177 NH1</td>
<td>Gln267 OE1</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Arg177 O</td>
<td>Wat386¹ O</td>
<td>2.6</td>
<td>Arg177 O</td>
<td>2.6</td>
</tr>
<tr>
<td>A</td>
<td>Pro227 O</td>
<td>Wat386² O</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Lys240 NZ</td>
<td>Water325¹ O</td>
<td>2.5</td>
<td>Asp248 O</td>
<td>2.9</td>
</tr>
<tr>
<td>A</td>
<td>Thr241 OG1</td>
<td>Water385² O</td>
<td>2.6</td>
<td>Pro251 N</td>
<td>3.4</td>
</tr>
<tr>
<td>A</td>
<td>Thr253 N</td>
<td>Ara52 N</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Thr253 N</td>
<td>Thr253 N</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Thr253 N</td>
<td>Thr253 OG1</td>
<td>2.7</td>
<td>Lys240 NZ</td>
<td>2.5</td>
</tr>
<tr>
<td>A</td>
<td>Asp248 O</td>
<td>Water325² O</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Ala252 O</td>
<td>Asp261 N</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Ala252 O</td>
<td>Gly262 N</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Pro251 N</td>
<td>Water385¹ O</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Ala252 N</td>
<td>Water385¹ O</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Thr253 N</td>
<td>Water385¹ O</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Thr253 OG1</td>
<td>Water385¹ O</td>
<td>2.7</td>
<td>Thr241 OG1</td>
<td>2.6</td>
</tr>
<tr>
<td>A</td>
<td>Thr254 N</td>
<td>Water280² O</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Thr254 O</td>
<td>Water280² O</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Asp256 OD2</td>
<td>Water280² O</td>
<td>2.7</td>
<td>Tyr259 O</td>
<td>3.3</td>
</tr>
<tr>
<td>A</td>
<td>Asp256 OD1</td>
<td>His265 NE2</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Asp256 OD2</td>
<td>Water317 O</td>
<td>2.9</td>
<td>Tyr259 N</td>
<td>2.9</td>
</tr>
<tr>
<td>A</td>
<td>Tyr259 N</td>
<td>Water317¹ O</td>
<td>2.9</td>
<td>Asp256 OD1</td>
<td>2.9</td>
</tr>
<tr>
<td>A</td>
<td>Tyr259 O</td>
<td>Water280¹ O</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Asp261 OD1</td>
<td>Water280¹ O</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Gly263 N</td>
<td>Water280¹ O</td>
<td>3.5</td>
<td>Thr254 N</td>
<td>3.2</td>
</tr>
<tr>
<td>A</td>
<td>Ile257 O</td>
<td>Wat402 O</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Asp261 N</td>
<td>Ala52 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Gly262 N</td>
<td>Ala252 O</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>His265 NE2</td>
<td>Asp256 OD1</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Gln267 NE2</td>
<td>Arg173 O</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Gln267 OE1</td>
<td>Arg177 NH1</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Water molecule from subunit 1, ² Water molecule from symmetry-related subunit 2, ³ Water molecule from symmetry-related subunit 3.
<table>
<thead>
<tr>
<th>Twofold Axis</th>
<th>Atom from subunit 1</th>
<th>Atom from symmetry-related subunit</th>
<th>Distance (Å)</th>
<th>Atom from symmetry-related subunit bonded to water molecule</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Glu68 OE2</td>
<td>Water356(^1) O</td>
<td>2.9</td>
<td>Tyr113 N</td>
<td>2.8</td>
</tr>
<tr>
<td>B</td>
<td>Phe108 N</td>
<td>Water303(^1) O</td>
<td>3.0</td>
<td>Glu178 OE2</td>
<td>2.7</td>
</tr>
<tr>
<td>B</td>
<td>Phe108 N</td>
<td>Water304(^1) O</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Phe109 N</td>
<td>Water304(^1) O</td>
<td>2.9</td>
<td>Glu178 OE1</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>Phe109 O</td>
<td>Lys132 NZ</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Asp110 O</td>
<td>Lys132 NZ</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ala111 O</td>
<td>Tyr125 OH</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tyr113 N</td>
<td>Tyr125 OH</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tyr113 N</td>
<td>Water356(^1) O</td>
<td>2.8</td>
<td>Glu68 OE2</td>
<td>2.9</td>
</tr>
<tr>
<td>B</td>
<td>Tyr113 OH</td>
<td>Water294 O</td>
<td>2.7</td>
<td>Tyr113 OH</td>
<td>2.5</td>
</tr>
<tr>
<td>B</td>
<td>Tyr113 OH</td>
<td>Ser117 OG</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tyr113 OH</td>
<td>Ser117 O</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tyr113 OH</td>
<td>His121 N</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ser117 OG</td>
<td>Tyr113 OH</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ser117 OG</td>
<td>Ser117 OG</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ser117 O</td>
<td>Tyr113 OH</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>His121 N</td>
<td>Tyr113 OH</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tyr125 OH</td>
<td>Ala111 O</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tyr125 OH</td>
<td>Tyr113 N</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Tyr125 OH</td>
<td>Water356(^3) O</td>
<td>3.4</td>
<td>Tyr113 N</td>
<td>2.8</td>
</tr>
<tr>
<td>B</td>
<td>Lys132 NZ</td>
<td>Phe109 O</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Lys132 NZ</td>
<td>Asp110 OD1</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Pro151 O</td>
<td>Arg173 NH1</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Pro151 O</td>
<td>Water335(^3) O</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ala154 N</td>
<td>Water335(^3) O</td>
<td>3.4</td>
<td>Arg173 NH1</td>
<td>3.5</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>Arg173 NE</td>
<td>2.8</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>Ser170 OG</td>
<td>3.0</td>
</tr>
<tr>
<td>B</td>
<td>Ser166 OG</td>
<td>Ser170 OG</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ser166 OG</td>
<td>Water283(^1) O</td>
<td>2.6</td>
<td>Arg173 NH1</td>
<td>2.9</td>
</tr>
<tr>
<td>B</td>
<td>Ser170 OG</td>
<td>Ser166 OG</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ser170 OG</td>
<td>Water335(^1) O</td>
<td>3.0</td>
<td>Pro151 O</td>
<td>2.84</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>Ala154 N</td>
<td>3.4</td>
</tr>
<tr>
<td>B</td>
<td>Arg173 NH1</td>
<td>Pro151 O</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Arg173 NH1</td>
<td>Water283(^3) O</td>
<td>2.9</td>
<td>Ser166 OG</td>
<td>2.6</td>
</tr>
<tr>
<td>B</td>
<td>Arg173 NH1</td>
<td>Water335(^1) O</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Arg173 NE</td>
<td>Water335(^1) O</td>
<td>2.8</td>
<td>Pro151 O</td>
<td>2.8</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>Ala154 N</td>
<td>3.4</td>
</tr>
<tr>
<td>B</td>
<td>Glu178 OE2</td>
<td>Water303(^1) O</td>
<td>2.7</td>
<td>Phe108 N</td>
<td>3.0</td>
</tr>
<tr>
<td>B</td>
<td>Glu178 OE1</td>
<td>Water304(^3) O</td>
<td>3.3</td>
<td>Phe108 N</td>
<td>3.0</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Water molecule from subunit 1, \(^3\) Water molecule from symmetry-related subunit 3.
Table 6 (continuation)

<table>
<thead>
<tr>
<th>Twofold Axis</th>
<th>Atom from subunit 1</th>
<th>Atom from symmetry-related subunit</th>
<th>Distance (Å)</th>
<th>Atom from symmetry-related subunit bonded to water molecule</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Asp150 OD2</td>
<td>Water308 O</td>
<td>2.6</td>
<td>Arg153 NH2</td>
<td>3.0</td>
</tr>
<tr>
<td>C</td>
<td>Ser152 OG</td>
<td>Water308 O</td>
<td>3.4</td>
<td>Arg153 NH2</td>
<td>3.0</td>
</tr>
<tr>
<td>C</td>
<td>Arg153 NH2</td>
<td>Water308 O</td>
<td>3.0</td>
<td>Asp150 OD2</td>
<td>2.6</td>
</tr>
<tr>
<td>C</td>
<td>Ser152 OG</td>
<td></td>
<td></td>
<td>Arg153 NH2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Arg153 NE</td>
<td>His265 O</td>
<td>2.7</td>
<td>Ala264 O</td>
<td>3.4</td>
</tr>
<tr>
<td>C</td>
<td>Arg153 NE</td>
<td>Water362 O</td>
<td>3.5</td>
<td>Arg225 NE</td>
<td>3.1</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>Gln267 O</td>
<td>2.7</td>
</tr>
<tr>
<td>C</td>
<td>Ala154 N</td>
<td>Thr266 O</td>
<td>2.96</td>
<td>Arg153 NE</td>
<td>3.5</td>
</tr>
<tr>
<td>C</td>
<td>Ala154 O</td>
<td>Leu268 N</td>
<td>2.7</td>
<td>Arg153 NE</td>
<td>3.5</td>
</tr>
<tr>
<td>C</td>
<td>Arg225 NE</td>
<td>Water362 O</td>
<td>3.1</td>
<td>Arg153 NE</td>
<td>3.5</td>
</tr>
<tr>
<td>C</td>
<td>Ala264 O</td>
<td>Water362 O</td>
<td>3.4</td>
<td>Arg153 NE</td>
<td>3.5</td>
</tr>
<tr>
<td>C</td>
<td>His265 O</td>
<td>Arg153 NE</td>
<td>2.7</td>
<td>Arg153 NE</td>
<td>3.5</td>
</tr>
<tr>
<td>C</td>
<td>Thr266 O</td>
<td>Ala154 N</td>
<td>2.9</td>
<td>Arg153 NE</td>
<td>3.5</td>
</tr>
<tr>
<td>C</td>
<td>Gln267 O</td>
<td>Wat362 O</td>
<td>2.7</td>
<td>Arg153 NE</td>
<td>3.5</td>
</tr>
<tr>
<td>C</td>
<td>Leu268 N</td>
<td>Ala154 O</td>
<td>2.7</td>
<td>Arg153 NE</td>
<td>3.5</td>
</tr>
</tbody>
</table>

1 Water molecule from subunit 1, 4 Water molecule from symmetry-related subunit 4.
Fig. 11. (a) B-factor plot per protein residues. The pattern of distribution for B-factor values per protein residues is very similar in the four crystal structures of InhA. The more flexible regions are the A loop (residues 100-112) that connects strand β4 with helix α4, the substrate binding loop (residues 196-219) that includes α6 and α7 helices, the stretch of residues 79-87 that
corresponds to the C-terminal part of α3 helix and the loop between α3 and β4, the stretch of residues 42-46 located in the loop connecting strand β2 to helix α2 and in the N-terminal part of helix α2, the residues 56-58 from the loop between helix α2 and strand β3, and the stretch of residues 67-70 that corresponds to N-terminal part of helix α3.

(b) Plot of the ratio between mean B-factor value for each NADH moiety and mean B-factor value for the whole NADH molecule per NADH moiety for WT-NADH, I21V-NADH, I47T-NADH, and S94A-NADH structures. The mean B-factor values for bound NADH molecule are very similar in all structures of the binary complexes. Furthermore, the plot above showed a pattern very similar for the four InhA structures, in which the pyrophosphate moiety appears to have the highest mean B-factor value, suggesting this moiety as the most flexible region of the NADH molecule.

Abbreviations: N, nicotinamide, NR, nicotinamide ribose, PP, pyrophosphate, AR, adenine ribose, and A, adenine.
Fig. 12. Amino acid residues that are found in the disallowed region of the Ramachandram Plot from the program PROCHECK53. The Ala157, Asn169 (a), and Asp 42 (b) residues are well fitted to a $(2F_{\text{obs}} - F_{\text{calc}})$, α_{calc} electron density map encompassing Ala157, Asn169 (a), and Asp 42 (b) residues from the crystal structure of WT InhA-NADH binary complex is shown. The electron density map was calculated in the REFMAC 5.2 program48 using all unique reflections and is countoured at a level of 1.3σ above the mean. The figure was prepared with CCP4 Molecular Graphics 0.12 program.62 The residues Ala157 and Asn159 are located in a turn connecting strand $\beta 5$ to helix $\alpha 5$, and Asp42 is located in a turn connecting strand $\beta 2$ to helix $\alpha 2$.
Fig. 13. $(2F_{\text{obs}} - F_{\text{calc}})$ Simulating annealing omit electron density maps showing the different conformations of Thr196 side-chain in the crystal structures of WT InhA-NADH (a) and S94A InhA-NADH (b) binary complexes. The simulating annealing omit map was calculated in the CNS program56 and the omit map was analysed in the XTALVIEW program52. The residues situated within 3.5Å from Thr196 residue were omitted from simulating annealing refinement and structure factor calculations, and the residues within 2 Å from the omitted region were harmonically restrained to their former positions throughout the refinement. The slow-cooling protocol was performed with a starting temperature of 1000K using all reflections. The maps are countoured at a level of 1.0σ (blue) and 2.0σ (red) above the mean. For clarity only S20, I21, I47, S94(a) or Ala94(b), Leu197, and Thr196 residues, Water380, and NADH molecule are shown. The electron density maps give evidence that in the structure of S94A InhA the Thr196 side-chain has rotated approximately 180° in relation to its conformation in the structure of WT InhA, resulting in hydrogen bond distances between the OG1 atom of Thr196 and the bridging water (Water380) that are significantly larger (3.3 – 3.4 Å) than the 2.5 Å distance observed in WT enzyme.
Fig 14. Determination of molecular weight of wild-type and isoniazid-resistant enoyl-ACP reductase enzymes in solution. The sample (100 µL) was loaded on an FPLC Superdex 200 HR 10/30 column, and run at a flow rate of 0.4 mL min⁻¹. Kav values were calculated as described in Material and Methods. Protein molecular weight markers (●) were Ribonuclease A (13,700 Da), Chymotrypsinogen (25,000 Da), Ovalbumin (43,000 Da), Albumin (67,000 Da), mtPNP (82,720 Da), Aldolase (158,000 Da), Catalase (232,000 Da), and Ferritin (440,000 Da). Molecular mass values of 115,930 Da, 104,890 Da, 118,080 Da, and 108,720 Da were estimated from the plot of Kav against the logarithm of standard molecular weights for WT InHA (○), I21V InhA (□), I47T InhA (△), and S94A InhA (◇) enzymes, suggesting that the four proteins are homotetramers in solution.
Fig. 15. Analysis of the NADH concentration dependence of the fluorescence amplitude values obtained in the fast phase of NADH binding to WT, I21V, I47T, and S94A InhA enzymes. Values of K_{d2} and K_{d2}^* (S94A InhA) for NADH binding were determined by fitting the four data sets to a quadratic equation (eq. 1), which describes a second-order binding process.
Fig. 16. NADH concentration dependence of the algebraic sum of the signal amplitudes of the fast and slow phases (Total amplitude) of NADH binding to WT, I21V, I47T, and S94A InhA enzymes. Estimates for the dissociation constant of the overall reaction were obtained by fitting the four data sets to the quadratic equation 1.
6. CONCLUSÃO FINAL

A Tuberculose (TB) é um problema de saúde mundial prioritário, que continua sendo a principal causa de mortalidade devido à um patógeno bacteriano, o Mycobacterium tuberculosis. A estimativa é de que no ano 2000, 3,2 % dos novos casos que ocorreram no mundo foram de Tuberculose multiresistente (MDR-TB), definida como Tuberculose resistente a pelo menos isoniazida e rifampicina. De acordo com o relatório de Controle Global da TB, publicado pela Organização Mundial da Saúde em 2004 (WHO), atualmente ocorrem 300 mil novos casos por ano de MDR-TB no mundo, e 79 % destes são causados por “super cepas”, que são resistentes à pelo menos três das quatro principais drogas utilizadas para tratar TB. A cepas de MDR-TB são transmitidas pelo ar tão fácil quanto as cepas de TB sensíveis às drogas. Os casos de MDR-TB são de difícil tratamento, sendo recomendado a introdução de drogas de segunda linha para romper a disseminação da resistência. Entretanto, este são mais tóxicas e menos eficientes. Além disso, o tratamento é pelo menos três vezes mais longo e 100 vezes mais caro que os regimes de curta-duração utilizados para o tramento de TB sensível. Assim, é imprescindível que novos agentes quimioterápicos anti-TB, mais efetivos e de baixa toxicidade sejam desenvolvidos o quanto antes para encurtar o tratamento da MDR-TB e evitar a disseminação das cepas multiresistentes.

No Capítulo 3 da presente tese, um novo composto anti-Mycobacterium tuberculosis foi apresentado, o pentaciano(isoniazida)ferrato II ([Fe^{II}(CN)_5(INH)]^3-). Este composto é um complexo inorgânico análogo à isoniazida, que contém um parte pentacianoferrato ligada ao átomo de nitrogênio do anel piridínico da isoniazida através do átomo de ferro. O composto inibe a enzima 2-trans-enoil-ACP(CoA) redutase (InhA) espécie selvagem com a mesma eficiência que inibe a enzima mutante e resistente à isoniazida I21V InhA, cuja mutação foi previamente identificada em isolados clínicos resistentes à isoniazida. Além disso, ao contrário da isoniazida, o pentaciano(isoniazida)ferrato II não necessita ativação pela catalase/peroxidase KatG, nem a
presença de NADH para inibir a InhA. Outros dados que demonstram a importância deste novo composto são os valores de concentração inibitória mínima (MIC) obtidos frente a uma cepa virulenta de *Mycobacterium tuberculosis*. O novo composto apresentou um MIC de 0.2 µg mL⁻¹, enquanto que o *M. tuberculosis* é suscetível à isonizada na faixa de 0.02 – 0.2 µg mL⁻¹. Esses dados apontam o composto [Fe²⁺(CN)₅(INH)]³⁻ como um candidato promissor à composto líder, no qual basear o desenvolvimento de novos agents anti-tuberculose. No entanto, futuros estudos estruturais do complexo binário InhA-[Fe²⁺(CN)₅(INH)]³⁻ deverão ser realizados para demonstrar as interações químicas específicas responsáveis pela inibição da InhA. Atualmente, esforços em nosso laboratório para a obtenção de cristais do complexo binário formado entre o pentaciano(isoniazida)ferrato II e a InhA espécie selvagem e também a I21V InhA resistente à isoniazida estão em andamento. Uma estrutura tridimensional destes complexos binários será crucial para auxiliar no desenho de uma nova classe de agentes antimicobacterianos que possam ser usados no tratamento da Tuberculose causada tanto por cepas sensíveis quanto resistentes à isoniazida.

Dando continuidade aos nossos estudos de caracterização do novo inibidor e também do processo de inibição do principal alvo da isoniazida em *Mycobacterium tuberculosis*, a enzima InhA, no Capítulo 4 foram descritos os fundamentos que levaram ao desenho do novo inibidor e a caracterização química deste. Além disso, foram apresentados dados cinéticos detalhados da inibição da InhA pelo pentaciano(isoniazida)ferrato II e dados de modelagem molecular e docking para avaliar a energia livre de ligação para a formação do complexo enzima-inibidor e predizer o modo de ligação entre as moléculas. A análise cinética permitiu a elucidação do mecanismo de inibição como sendo do tipo de ligação lenta (“slow binding”). No processo de inibição, inicialmente ocorre uma ligação rápida do inibidor à InhA com afinidade moderada (\(K_i = 32 \pm 3 \mu M\)) seguido por uma lento passo de isomerização do complexo inicial enzima-inibidor (complexo EI), resultando em um complexo final de mais alta afinidade (complexo EI*), onde o inibidor encontra-se mais fortemente ligado à enzima (\(K_{i*} = 70 \text{ nM}\)). O processo de dissociação do complexo EI* também é bastante lento, com uma constante de velocidade de dissociação de 1.1 \((\pm 0.1) \times 10^{-3}\) min⁻¹ e um tempo de meia vida de 630 ± 28 min. Os dados também demonstraram que a dissociação do inibidor é limitada pelo passo de isomerização reversa do complexo EI* para o complexo EI. Sendo assim, a constante de velocidade de dissociação que foi estimada representa a verdadeira constante de velocidade de isomerização reversa do
complexo EI* para o complexo EI (ver Figura 5 do Capítulo 4, mecanismo B). Estes dados indicam uma longa vida para o complexo EI* e, quanto maior a estabilidade do complexo EI* maior a probabilidade de que o inibidor apresente um longo tempo de atividade in vivo. Uma das fraquezas do uso de inibidores clássicos como drogas em ensaios clínicos é que a inibição resulta na acumulação do substrate da enzima, que eventualmente pode superar a inibição. No presente mecanismo de inibição, o aumento da concentração do substrato (NADH ou dodecenoil-ACP) não terá qualquer efeito sobre a isomerização reversa do complexo EI* para o complexo EI e assim, não afetará a inibição.

Na ausência de uma estrutura cristalina do complexo Inha-\([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^3\)-, os resultados de modelagem molecular e docking foram muito importantes para predizer a posição da ligação do inibidor no sitio ativo da InhA, e para um entendimento inicial das bases energéticas e estruturais das interações entre proteína e inibidor. Embora a posição exata de ligação do \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^3\)- no bolsão de ligação a NAD(H) da InhA não pode ser determinada sem ambiguidade, o inibidor \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^3\)- preferencialmente ocupa os sítios de ligação às partes pirofosfato e nicotinamida do bolsão de ligação do NADH na enzima InhA. Além disso, a posição de ligação observada no docking do inibidor \([\text{Fe}^{II}(\text{CN})_5(\text{INH})]^3\)- na InhA sobrepõe-se à posição ocupada pela ligação dupla trans do substrato acil C16 na estrutura cristalina da eniol redutase de Brassica napus (1BVR) (1). Estes resultados são consistentes com os valores menores das constantes de velocidade de primeira ordem aparentes, que foram estimados experimentalmente na presença de NADH ou dodecenoil-CoA.

A determinação do genoma completo do M. tuberculosis (2) teve um grande impacto no avanço das pesquisas no campo da TB. Um dos benefícios esperados das análises genômicas de bactérias patogênicas é na área da saúde, principalmente no desenvolvimento de métodos de diagnóstico mais rápidos, novas vacinas e novos agentes antimicrobianos. As novas abordagens que estão sendo exploradas incluem a comparação de genomas usando bioinformática, análise funcional de genes, proteoma, transcriptoma, e genoma estrutural. Espera-se que um melhor entendimento da biologia complexa do M. tuberculosis revele novos alvos para o processo de desenvolvimento de drogas. Além disso, os estudos estruturais sendo conduzidos pelo “TB Structural Genomics Consortium” disponibilizarão estruturas de muitos alvos protêicos potenciais e devem prover informações importantes, tais como, a função biológica de proteínas que não apresentam homologia à nenhuma proteína conhecida (3). Estas proteínas deve m ser
selecionadas para análises posteriores e para técnicas de química computacional para identificação de compostos líderes.

Como enfatizado anteriormente na presente tese, é urgente a necessidade de agents anti-TB mais efetivos e menos tóxicos. Só assim, será possível encurtar o tratamento atual para TB, melhorar o tratamento da MDR-TB, e obter um tratamento efetivo para a Tunerdulose latente. Assim, nos parece razoável examinar a potencial atividade anti-TB de análogos à isoniazida (INH) devido a sua disponibilidade oral e ao favorável perfil de toxicidade da INH. Além disso, a InhA é um alvo validado e inibidores da sua atividade podem representar um atalho no desenvolvimento de agents anti-TB. Enquanto que os alvos novos primeiro necessitam ser identificados e validados. Existe um necessidade cíclica de inovação para prover novos arcabouços estruturais (compostos líderes), que devem passar por uma iteração química com o objetivo de otimização antes de atingir o status de candidato à droga. No Capítulo 4 da presente tese n nós descrevemos uma nova abordagem para o desenho racional de um análogo à INH, que é baseada em um átomo inorgânico atacado ao átomo de nitrogênio do do anel heterocíclico da INH. Os resultados apresentados nos Capítulos 3 e 4, levaram-nos a conclusão de que o pentaciano(isoniazida)ferrato II é um candidato promissor para o futuros desenvolvimento de uma nova droga anti-TB e pode representar uma nova classe de compostos líderes. A avaliação da capacidade deste complexo inorgânico de matar o M. tuberculosis dentro de macrófagos de medula óssea de camundongo, e também de inibir o crescimento micobacteriano em modelos animais, são etapas essenciais, que estão atualmente em desenvolvimento para estabelecer o pentaciano(isoniazida)ferrato II como um potencial candidato à droga.

Compostos quimioterapêuticos baseados em metais tem sido avaliados para possível aplicação medicinal, por exemplo, a cisplatina, que é baseada em platina, é amplamente usada no tratamento do cancer (4). Complexos metálicos também tem sido considerados como agentes quimioterapêuticos alternativos para tratar doenças tropicais como Malária, Tripanossomíase e Leishmaniose (5). O exemplo de maior sucesso de antimláricos baseados em metais são compostos derivados da droga Cloroquina (CQ) por meio da coordenação à fragmentos metálicos. Os testes in vitro e in vivo de complexos de CQ com metais de transição (Rh, Ru) contra Plasmodium berghei mostraram que a incorporação de fragmentos metálicos produz geralmente uma eficácia aumentada da CQ (6). Mais recentemente, complexos de ouro-cloroquina foram ativos contra cepas de Plasmodium falciparum resistentes à CQ e também
contra cepas sensíveis à CQ (7, 8). A atividade mais alta para esta série de compostos foi obtida com [(CQ)Au(PPh₃)][PF₆], que foi 9 vezes mais ativo que a Chloroquina difosfato contra a cepa de *P. falciparum* resistente à CQ, FcB1. Além disso, o composto foi também 5 vezes mais ativo contra a cepa mais agressiva FcB2, e 22 vezes mais ativo contra o parasita da Malária em roedores, *P. berghei* (5). Outro fato interessante é que complexos metálicos de análogos a carboximidrazona apresentaram um atividade anti-TB aumentada *in vitro* contra a cepa H37Rv de *M. tuberculosis* (9). Entretanto, o(s) alvo(s) destes complexos metálicos são desconhecidos, e portanto, é difícil considerar esta abordagem como um desenho racional de drogas.

Como salientado por Gerard Jaouen (professor de química da “Ecole Nationale Superieure de Chimie de Paris”), “a área de química bio-inorgânica necessita provar que pode criar algo útil para a sociedade” (10). Como o campo da química medicinal inorgânica está em crescimento, não resta dúvida de que outras drogas contendo metais serão desenvolvidas em várias áreas terapêuticas, incluindo o tratamento de doenças parasitárias. Eu espero que a abordagem descrita aqui gere frutos e auxilie no futuro desenvolvimento de agentes anti-TB.

No capítulo 5 foram apresentados os resultados de nossos esforços em compreender as bases estruturais dos mecanismos de resistência à isoniazida da enzima InhA. Com este objetivo, nós resolvemos as estruturas cristalinas da InhA espécie selvagem e dos mutantes resistente à isoniazida S94A, I21V e I47T InhA complexados com NADH.

A análise do bolsão de ligação a NADH mostrou que na estrutura do complexo S94A InhA-NADH, ao contrário do publicado previamente (11), não ocorre a rotação do grupo carbonila da Gli14, e somente a ponte de hidrogênio conservada entre molécula de água WAT1 e o grupo hidroxila da Ser94 foi perdida devido a mutação do resíduo Ser94 para Ala94. Assim, o rompimento desta ponte de hidrogênio é provavelmente a principal causa desta enzima mutante apresentar um redução de 6 vezes na sua afinidade por NADH, que aproximadamente corresponde a 2.5 kcal mol⁻¹(12). Este valor está em acordo com estimativas de energia de pontes de hidrogênio, que se encontram na faixa de 3 a 9 kcal mol⁻¹(13). Além disso, a conservada molécula de água WAT1 foi proposta como uma característica integral de domínios de ligação a dinucleotídeos do tipo Rossmann ("Rossmannn fold"), que contribui significativamente no reconhecimento do dinucleotídeo, proporcionando uma contribuição entálpica favorável à energia livre de ligação (14).
A enzima mutante I21V InhA possui uma mutação na alça de ligação a difosfato rica em glicina (Gli14 – Ala22 na InhA). Na enzima espécie selvagem, o átomo CD1 da cadeia lateral apolar do resíduo Ile21 realiza contatos de van der Waals com o anel nicotinamida, com a ribose da nicotinamida e com os oxigênios do grupo fosfato. Já na enzima mutante e resistente à isoniazida I21V InhA, estes contatos de van der Waals foram perdidos porque a cadeia lateral do resíduo Val21 não possui o átomo CD1.

Por último, na enzima mutante I47T InhA, a cadeia lateral levemente polar do resíduo Thr47 possibilitou a entrada de uma molécula de água adicional (Water321, que é ausente nas estruturas dos complexos Inha espécie selvagem-NADH, I21V InhA-NADH e S94A InhA-NADH). Além disso, a mutação promoveu uma ponde de hidrogênio direta entre o átomo OG da Thr47 e o grupo carbonila da Ile15, resíduo este, que é parte da alça de ligação a difosfato rica em glicina (Gli14 – Ala22). Isto resultou em um enfraquecimento significativo das pontes de hidrogênio, mediadas pela água conservada WAT1, entre o grupo carbonila do resíduo Ile15 e os grupos hidroxila 2’-OH e 3’-OH da ribose da adenina.

Em comparação com a InhA espécie selvagem (sensível a isoniazida), os estudos cinéticos em estado pré-estacionário de ligação à NADH mostraram que os valores limitantes para a constante de velocidade de dissociação do NADH dos complexos binários foram 11 vezes, 5 vezes e 10 vezes mais altos para as enzimas I21V InhA, I47T InhA e S94A InhA, respectivamente. Em conclusão, os resultados descritos acima e no capítulo 5, são capazes de explicar a reduzida afinidade por NADH dos mutantes de InhA resistentes à isoniazida, e desse modo, explicam pelo menos parte dos mecanismos de resistência à isoniazida em M. tuberculosis. Em acordo com esta proposta, simulações de dinâmica molecular dos complexos binários formados entre NADH com a enzima Inha espécie selvagem, e com as enzimas InhA resistentes à isoniazida, que foram identificadas em isolados clínicos de M. tuberculosis, mostraram que as mutações na alça rica em glicina, I21V e I16T, resultaram em uma mudança no padrão de contatos por pontes de hidrogênio diretas com a parte pirofosfato do NADH (15). A parte pirofosfato apresentou mudanças de conformação consideráveis, reduzindo suas interações com o sítio ativo da InhA, o que provavelmente representa a fase inicial da expulsão do ligante, na qual o NADH se distancia do sítio de ligação (50). Assim, o aumento nas constantes de dissociação em equilíbrio para NADH, que foram estimadas para os mutantes resistentes à isoniazida I21V InHA e I16T InhA (50), pode ser atribuído a uma diminuição do número de
interações por pontes de hidrogênio entre o NADH e os aminoácidos do sítio ativo, e também
das interações mediadas por moléculas de água. Em conclusão, a correlação entre as
propriedades de ligação a NADH em solução, as estruturas cristalinas dos complexos binários
com NADH, os estudos de dinâmica molecular e docking e a resistência à isoniazida de cepas de
M. tuberculosis que possuem mutações no gene estrutural *inhA* produz uma explicação, a nível
molecular, para o mecanismo de resistência para esta droga clinicamente importante.

Eu espero que os resultados apresentados na presente tese auxiliem no desenvolvimento
de novas agentes anti-TB, que possam superar a resistência à isoniazida.

REFERÊNCIAS

1. Rozwarski DA, Vilchèze C, Sugantino M, Bittman R, Sacchettini JC. Crystal structure of the
Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD⁺ and a C16 fatty

J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream M-A, Rogers J, Rutter S,
Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence.
Nature 1998; 393: 537-44.

3. Terwilliger TC, Park MS, Waldo GS, Berendzen J, Hung L-W, Kim C-Y, Smith CV,
Sacchettini JC, Bellinzoni M, Bossi R, De Rossi E, Mattevi A, Milano A, Riccardi G, Rizzi M,
Roberts MM, Coker AR, Fossati G, Mascagni P, Coates ARM, Wood SP, Goulding CW,
Apostol MI, Anderson DH, Gill HS, Eisenberg DS, Taneja B, Mande S, Pohl E, Lamzin V,

7. ANEXOS - Outros artigos publicados durante o doutorado

Molecular model of shikimate kinase from Mycobacterium tuberculosis

Walter Filgueira de Azevedo Jr., a,b,* Fernanda Canduri, a,b Jaim Simões de Oliveira, c Luiz Augusto Basso, c Mário Sérgio Palma, b,d José Henrique Pereira, a and Diógenes Santiago Santos c

a Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000, Brazil
b Center for Applied Toxicology, Instituto Butantan, São Paulo, SP 05503-900, Brazil
c Rede Brasileira de Pesquisa de Pesquisas em Tuberculose, Departamento de Biologia Molecular e Biotecnologia, UFRGS, Porto Alegre, RS 91501-970, Brazil
d Laboratory of Structural Biology and Zoochemistry/Department of Biology, Institute of Biosciences, UNESP, Rio Claro, SP 13506-900, Brazil

Received 26 May 2002

Abstract

Tuberculosis (TB) resurged in the late 1980s and now kills approximately 3 million people a year. The reemergence of tuberculosis as a public health threat has created a need to develop new anti-mycobacterial agents. The shikimate pathway is an attractive target for herbicides and anti-microbial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the shikimate kinase I encoding gene (aroK) was proposed to be present by sequence homology. Accordingly, to pave the way for structural and functional efforts towards anti-mycobacterial agents development, here we describe the molecular modeling of M. tuberculosis shikimate kinase that should provide a structural framework on which the design of specific inhibitors may be based. © 2002 Elsevier Science (USA). All rights reserved.

Keywords: Shikimate kinase; Bioinformatics; Structure; Drug design; Mycobacterium tuberculosis

The fifth annual report on global tuberculosis (TB) control of the World Health Organization found that there were an estimated 8.4 million new cases in 1999, up from 8.0 million in 1997 [1]. It is expected that there will be 10.2 million new cases in 2005 if the present trend continues. Approximately 3 million persons die from the disease each year [2]. Ninety percent of tuberculosis cases occur in developing countries, where few resources are available to ensure proper treatment and where human immunodeficiency virus (HIV) infection may be common. The concentration of deaths due to tuberculosis in demographically developing nations and mortality rate in the range from 25 to 54 years, the most economically fruitful years of life, causes substantial losses in productivity and contributes to the impoverishment of third-world countries [3]. The reemergence of TB as a public health threat, the high susceptibility of HIV-infected persons to the disease, and the proliferation of multi-drug (MDR) strains have created much scientific interest in developing new anti-mycobacterial agents to both treat Mycobacterium tuberculosis strains resistant to existing drugs and shorten the duration of short-course treatment to improve patient compliance [4].

The shikimate pathway is an attractive target for the development of herbicides and anti-microbial agents because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals [5]. In mycobacteria, the shikimate pathway leads to the biosynthesis of precursors for the synthesis of aromatic amino acids, naphthoquinones, menaquinones, and mycobactin [6]. Homologs to enzymes in the shikimate pathway have been identified in the complete genome sequence of Mycobacterium tuberculosis H37Rv strain [7]. Among them, the shikimate kinase I (mtSK, EC 2.7.1.71) encoding gene (aroK, Rv2539c) was proposed to be present...
Shikimate kinase catalyzes a phosphate transfer from ATP to the carbon-3 hydroxyl group of shikimate resulting in the formation of shikimate-3-phosphate (S3P) and ADP.

The present paper describes the molecular model of *M. tuberculosis* shikimate kinase (mtSK) and analysis of SK and shikimate complex obtained by docking simulations. The homology modeling was performed using three crystallographic structures of SK from *Erwinia chrysanthemi*, solved to resolution better than 2.6 Å, as templates [8]. The mtSK has been cloned, sequenced, overexpressed in soluble and functional forms [9], thus allowing enzymological studies to be performed. The results presented here should provide a three-dimensional model of mtSK to both guide enzymological studies and aid the design of specific inhibitors.

Methods

Molecular modeling. For modeling of the mtSK we used restrained-based modeling implemented in the program MODELLER [10]. This program is an automated approach to comparative modeling by satisfaction of spatial restraints [11–13]. The modeling procedure begins with an alignment of the sequence to be modeled (target) with related known three-dimensional structures (templates). This alignment is usually the input to the program. The output is a three-dimensional model for the target sequence containing all main-chain and side-chain non-hydrogen atoms.

The degree of primary sequence identity between mtSK and *Erwinia chrysanthemi* shikimate SK (ecSK) indicates that the crystallographic structures of ecSK are good models to be used as templates for mtSK. The atomic coordinates of three crystallographic ecSK structures (PDB access code: 1SHK, 2SHK, and 1E6C) [8,14], with two independent structures in each asymmetric unit, solved to resolution better than 2.6 Å were used to build up an ensemble of SK structures to be used as starting models for modeling of the mtSK. The atomic coordinates of all waters and ligands were removed from the ecSK structures. Next, the spatial restraints and CHARMM energy terms enforcing proper stereochemistry [15] were combined into an objective function. Finally, the model is obtained by optimizing the objective function in Cartesian space. The optimization is carried out by the use of the variable target function method [16] employing methods of conjugate gradients and molecular dynamics with simulated annealing. Several slightly different models can be calculated by varying the initial structure. A total of 500 models were generated for mtSK, and the final model was selected based on stereochemical quality.

Docking simulations. To obtain information about the docking of shikimate to ecSK and mtSK, several rigid docking simulations were performed using the geometric recognition algorithm, which was developed to identify molecular surface complementarity. The geometric recognition algorithm was implemented in the program GRAMM [17].

The atomic coordinates of shikimate, used in the docking simulations, were obtained from structure of 5-enolpyruvylshikimate-3-phosphate synthase liganded with shikimate-3-phosphate and glyphosate (PDB access code: 1G6S) [18]. To generate the ternary complex mtSK–shikimate–ADP/Mg²⁺ we superposed the atomic coordinates of the ADP/Mg²⁺ to the binary complex of mtSK–shikimate. The optimization of the complexes was carried out by the use of the variable target function method [10] employing methods of conjugate gradients and molecular dynamics with simulated annealing. All docking simulations and optimization process were performed on SGI Octane, R12000.

Analysis of the model. The overall stereochemical quality of the final model for mtSK complex was assessed by the program PROCHECK [19]. The cutoff for hydrogen bonds and salt bridges was 3.6 Å.

Results and discussion

Primary sequence comparison

The sequence alignment of ecSK (template) and mtSK (target) is shown in Fig. 1. The secondary structural elements are indicated in the figure. The sequence mtSK shows 34% of identity with the sequence of ecSK.

Quality of the model

Figs. 2A and B show the Ramachandran diagram φ–ψ plots for the mtSK structure and for three crystallographic SK structures solved to resolution better than 2.6 Å. The Ramachandran plot for the three ecSK structures was generated to compare the overall stereochemical quality of mtSK model against SK structures solved by biocrystallography. Analysis of the Ramachandran plot of the mtSK model shows that 91.1% of the residues lie in the most favorable regions and the

Fig. 1. The sequence alignment of ecSK and mtSK indicating the secondary structural elements. The sequence mtSK shows 34% of identity with the sequence of ecSK. The alignment was performed with the program CLUSTAL V [31].
remaining 8.9% in the additional allowed regions. The same analysis for three crystallographic ecSK structures (six chains) present 93.7% of residues in the most favorable, 6.1% additional allowed regions, and 0.7% generously allowed regions. The overall rating for the mtSK model is slightly poorer than the one obtained for the three structures of SK. However, it has over 90% of the residues in the most favorable regions.

Overall description

MtSK is an \(\alpha/\beta \) protein consisting of a mixed \(\beta \) sheet surrounded by \(\alpha \) helices. A central five stranded parallel \(\beta \)-sheet (\(\beta_1–\beta_5 \)) presents the strand order 23145. The \(\beta \)-strands are flanked on either side by \(\alpha \) helices (\(\alpha_1 \) and \(\alpha_8 \) on one side, \(\alpha_4 \), \(\alpha_5 \), and \(\alpha_7 \) on the other). Fig. 3 shows a schematic diagram of the mtSK structure, with shikimate and ADP/Mg\(^{2+} \) bound to the structure.

The ordering of the strands 23145 observed the mtSK structure classifies it as belonging to the same structural family as the nucleoside monophosphate (NMP) kinases. The mtSK structure exhibits the Walker A-motif located between \(\beta_1 \) and \(\alpha_1 \) forming a canonical phosphate-binding loop (P-loop). The core of the mtSK structure forms a classical mononucleoside-binding fold [20].

It has been reported that NMP kinases undergo large conformation changes during catalysis. The regions responsible for this movement are NMP-binding site and the lid domain. The NMP-binding site is formed by a series of helices between strands 1 and 2 of the parallel \(\beta \)-sheet. The lid domain is a region of variable size and structure following the forth \(\beta \)-strand of the sheet [21,22]. The residues from 112 to 123 form the lid domain in the mtSK which has been reported to be highly dynamic and possibly flexible in solution in the ecSK structure [8].

ADP/Mg\(^{2+} \)-binding site

The molecular model for ternary complex mtSK–shikimate–ADP/Mg\(^{2+} \) indicates that ADP/Mg\(^{2+} \) is

Fig. 2. (A) Ramachandran diagram \(\phi-\psi \) plots for the mtSK structure and (B) for three crystallographic SK structures solved to resolution better than 2.6 A.

Fig. 3. Ribbon diagram of the mtSK structure with shikimate and ADP/Mg\(^{2+} \) bound to the structure generated by MOLSCRIPT [32].
tightly bound to the mtSK structure. The intermolecular hydrogen bonds are described in Table 1. Most of the intermolecular hydrogen bonds observed in the ecSK structure is conserved in the ternary complex mtSK–shikimate–ADP/Mg\(^{2+}\). Fig. 4 shows the superposition of the ATP-binding site of mtSK and ecSK. As previously described a phosphate-binding loop (P-loop) accommodates the \(\beta\)-phosphate of ADP by donating hydrogen bonds from several backbone amides [8,14]. SKs contain a conserved stretch of sequence GXXXXGKT/S known as the Walker A-motif [23]. This motif forms the P-loop in the ecSK and mtSK structures. In addition to the Walker A-motif, the mtSK structure presents a modified Walker B-motif. The Walker B-motif is present in the majority of purine-nucleotide binding proteins. This motif, Z–Z–Asp–X–X–Gly (where Z is a hydrophobic residue and X is any residue) forms a loop around the \(\gamma\)-phosphate of the nucleotide. The B-motif present in the mtSK has a different conformation from that observed in proteins with full Walker B-motif [8], the Asp is replaced by Ser77. However, the conserved Gly80 of mtSK (Fig. 1) is in an almost identical position to the conserved Gly found in proteins with the full B-motif with its amide nitrogen hydrogen-bonded to the \(\gamma\)-phosphate of a bound ATP.

Shikimate-binding site

The crystallographic structure of ecSK indicated the presence of a strong electron density peak attributed to shikimate. However, the electron density was not clear enough to include shikimate in the molecular structure [8]. The docking simulations of shikimate to ecSK and mtSK identified that shikimate binds in a position analogous to nucleotide monophosphate in NMP kinases [8]. The shikimate binding domain, which follows strand \(\beta2\), consists of helices \(\alpha2\) and \(\alpha3\) and the N-terminal region of helix \(\alpha4\). A total of four hydrogen bonds between ecSK and shikimate, in the model, involving the residues Lys15, Asp34, and Arg 136 was observed. For the mtSK model the same pattern was observed. Fig. 5A and B show the main residues involved in contact with shikimate in the complexes. Tables 2 and 3 show the intermolecular hydrogen bonds for both structures. The residues involved hydrogen

Table 1

<table>
<thead>
<tr>
<th>Hydrogen bonds between active site and inhibitor</th>
<th>Distance ((\AA))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>mtSK</td>
</tr>
<tr>
<td>O1B Leu10</td>
<td>O</td>
</tr>
<tr>
<td>O3B Gly12</td>
<td>N</td>
</tr>
<tr>
<td>O1B Ser13</td>
<td>N</td>
</tr>
<tr>
<td>O1B Ser13</td>
<td>OG</td>
</tr>
<tr>
<td>O3A Gly14</td>
<td>N</td>
</tr>
<tr>
<td>O3A Lys15</td>
<td>N</td>
</tr>
<tr>
<td>O2B Lys15</td>
<td>NZ</td>
</tr>
<tr>
<td>O3B Lys15</td>
<td>NZ</td>
</tr>
<tr>
<td>O1B Lys15</td>
<td>NZ</td>
</tr>
<tr>
<td>O2A Ser16</td>
<td>OG</td>
</tr>
<tr>
<td>O2A Ser16</td>
<td>N</td>
</tr>
<tr>
<td>O1A Ser16</td>
<td>OG</td>
</tr>
<tr>
<td>O2A Thr17</td>
<td>OG1</td>
</tr>
<tr>
<td>O2A Thr17</td>
<td>N</td>
</tr>
<tr>
<td>N1 Arg110</td>
<td>NH1</td>
</tr>
<tr>
<td>O4 Arg110</td>
<td>NE</td>
</tr>
<tr>
<td>N3 Arg110</td>
<td>NH1</td>
</tr>
<tr>
<td>N7 Arg110</td>
<td>NH1</td>
</tr>
<tr>
<td>N6 Arg152</td>
<td>O</td>
</tr>
<tr>
<td>N1 Arg152</td>
<td>O</td>
</tr>
<tr>
<td>N1 Arg153</td>
<td>O</td>
</tr>
<tr>
<td>N6 Arg153</td>
<td>O</td>
</tr>
<tr>
<td>N3 Arg153</td>
<td>NE</td>
</tr>
<tr>
<td>N3 Arg153</td>
<td>NH2</td>
</tr>
<tr>
<td>N1 Arg153</td>
<td>N</td>
</tr>
</tbody>
</table>

Fig. 4. Superimposed binding pockets of the ATP-binding site of mtSK (thick line) and ecSK (thin line).
bond identified from the docking simulation of shikimate to ecSK are in good agreement with that of crystallographic structure.

The electrostatic potential surface of the ecSK and mtSK complexed with shikimate calculated with GRASP [24] indicates the presence of some charge complementarity between shikimate and enzyme, nevertheless most of the residues in the binding pocket is hydrophobic in all structures. Figs. 6A and B show the molecular surfaces for mtSK and ecSK complexed with shikimate. The electrostatic potential surfaces of mtSK and ecSK show some striking differences. The main

![Figure 5](image_url)

Fig. 5. Main residues involved in contact with shikimate in the complexes (A) mtSK:shikimate and (B) ecSK:shikimate.

Table 2

<table>
<thead>
<tr>
<th>Hydrogen bonds between active site and inhibitor</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shikimate</td>
<td>mtSK</td>
</tr>
<tr>
<td>O1</td>
<td>Asp34</td>
</tr>
<tr>
<td>O2</td>
<td>Asp34</td>
</tr>
<tr>
<td>O3</td>
<td>Lys15</td>
</tr>
<tr>
<td>O5</td>
<td>Arg136</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Hydrogen bonds between active site and inhibitor</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shikimate</td>
<td>ecSK</td>
</tr>
<tr>
<td>O1</td>
<td>Asp34</td>
</tr>
<tr>
<td>O2</td>
<td>Asp34</td>
</tr>
<tr>
<td>O3</td>
<td>Lys15</td>
</tr>
<tr>
<td>O5</td>
<td>Arg11</td>
</tr>
<tr>
<td>O5</td>
<td>Arg136</td>
</tr>
</tbody>
</table>
difference is the presence of a positive potential patch on the surface of mtSK, which is not observed in the ecSK surface. This positive patch indicates a concentration of positive charged residues in the mtSK structure, involving residues Arg21, Arg125, Lys128, Arg130, Lys135, Arg142, Arg147, Arg153, Arg160, His161, and Arg165. These residues are changed to polar or hydrophobic or negative charged residues in the ecSK sequence. Particularly interesting is the intermolecular hydrogen bond pattern between SK and shikimate. The residues Lys15, Asp34, and Arg136, involved in intermolecular hydrogen bonds, are conserved in both structures. The model strongly indicates that the shikimate binding domain is a well-conserved motif in SK structures. Furthermore, the alignment of 37 SK sequences, figure not shown, indicates that the main residues involved in intermolecular hydrogen bonds are conserved in all sequences. Such observation suggests that competitive inhibitors with shikimate will be able to inhibit most or even all SKs, since specificity and affinity between enzyme and its inhibitor depend on directional hydrogen bonds and ionic interactions, as well as on shape complementarity of the contact surfaces of both partners [25–30]. Further inhibition experiments may confirm this prediction.

Acknowledgments

This work was supported by grants from FAPESP (SMOLBNet), CNPq, CAPES, and Instituto do Milênio (CNPq-MCT). WFA (CNPq, 300851/98-7) and MSP (CNPq, 500079/90-0) are researchers for the Brazilian Council for Scientific and Technological Development.

References

Cloning, overexpression, and purification of functional human purine nucleoside phosphorylase

Rafael G. Silva, a Luiz Pedro S. Carvalho, a Jaim S. Oliveira, a Clotilde A. Pinto, a Maria A. Mendes, b Mário S. Palma, b Luiz A. Basso, a,1 and Diógenes S. Santos a,*

a Grupo de Microbiologia Molecular e Funcional, Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre-RS 91501-970, Brazil
b Laboratório de Biologia Estrutural e Zooquímica (CEIS), Departamento de Biologia, Instituto de Biociências, Universidade do Estado de São Paulo, Rio Claro, SP 13506-900, Brazil

Received 26 June 2002, and in revised form 5 September 2002

Abstract

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for human PNP causes T-cell deficiency as the major physiological defect. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant tissue rejection, psoriasis, rheumatoid arthritis, lupus, and T-cell lymphomas. Human PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation. In addition, bacterial PNP has been used as reactant in a fast and sensitive spectrophotometric method that allows both quantitation of inorganic phosphate (Pi) and continuous assay of reactions that generate Pi, such as those catalyzed by ATPases and GTPases. Human PNP may therefore be an important biotechnological tool for Pi detection. However, low expression of human PNP in bacterial hosts, protein purification protocols involving many steps, and low protein yields represent technical obstacles to be overcome if human PNP is to be used in either high-throughput drug screening or as a reagent in an affordable Pi detection method. Here, we describe PCR amplification of human PNP from a liver cDNA library, cloning, expression in Escherichia coli host, purification, and activity measurement of homogeneous enzyme. Human PNP represented approximately 42% of total soluble cell proteins with no induction being necessary to express the target protein. Enzyme activity measurements demonstrated a 707-fold increase in specific activity of cloned human PNP as compared to control. Purification of cloned human PNP was achieved by a two-step purification protocol, yielding 48 mg homogeneous enzyme from 1 L cell culture, with a specific activity value of 80 U mg⁻¹.

© 2002 Elsevier Science (USA). All rights reserved.

Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of N-ribosidic bonds of both purine nucleosides and deoxynucleosides, except adenosine, generating purine base and ribose (or deoxyribose) 1-phosphate [1]. The major physiological substrates for mammalian PNP are inosine, guanosine, and 2’-deoxyguanosine [2]. PNP is specific for purine nucleosides in the β-configuration and exhibits a preference for ribosyl-containing nucleosides relative to the analogs containing the arabinose, xylose, and lyxose stereoisomers [3]. Moreover, PNP cleaves glycosidic bond with inversion of configuration to produce α-ribose 1-phosphate, as shown by its catalytic mechanism [4]. The human erythrocyte enzyme is active as a trimer, with each subunit presenting a molecular weight of 32,000 [5].

It has been reported that genetic deficiencies of PNP cause gradual decrease in T-cell immunity, though keeping B-cell immunity normal as well as other tissues [6]. The absence of PNP activity is thought to lead to accumulation of deoxyguanosine triphosphate, which inhibits the enzyme ribonucleotide reductase and ensuing DNA synthesis inhibition, thereby preventing cellular proliferation required for an immune response [7].
Thus, this enzyme is a potential target for drug development, which could induce immune suppression to treat, for instance, autoimmune diseases, T cell leukemia, and lymphoma and organ transplantation rejection [8]. Moreover, some PNP inhibitors have been tested in combination with nucleoside antiviral and anticancer drugs, showing the ability to potentiate the in vivo activity of these drugs [9].

In addition, a simple and rapid spectrophotometric method using 2-aminoguanidino-6-mercaptopurine ribofuranoside (MESG) and bacterial PNP has been developed to both quantitate P_i in solutions and to follow kinetics of P_i release from enzymatic reactions [10]. Although the reaction equilibrium favors the nucleoside formation with natural substrates, this synthetic substrate favors the cleavage of its own glycosidic bond [11]. Further studies have shown the possibility of using PNP as coupled enzyme in a continuous spectrophotometric assay for phosphorylase kinase [12] and protein phosphatase catalyzed reactions [13], as well as in combination with phosphodeoxyribomutase to remove P_i from solutions [14].

To pave the way for both using immobilized human PNP enzyme as a target for drug development in high-throughput drug screening and to test its viability as a tool for coupled enzymatic assay, the human PNP encoding cDNA was PCR amplified, cloned, and sequenced. The enzyme was overexpressed in soluble form in *Escherichia coli* BL21(DE3) host cells by a low-cost and simple protocol. The enzyme was purified by a two-step purification protocol, yielding cloned human PNP enzyme with the same specific activity found by other authors. This improved and simpler protocol for human PNP protein production in large quantities will contribute to current efforts towards the search for new drugs and the development of a low-cost P_i detection coupled assay.

Materials and methods

PCR amplification and cloning of human pnp cDNA

Synthetic oligonucleotide primers (First: 5’ aatggaaaaacgggatacctagt 3’, second: 5’ atcaacctgtggtcagggag 3’, third: 5’ ccataaggaaaaacgggatacctague 3’ and fourth: 5’ tgaaccttgctaactgtggtcagggag 3’) were designed based on the *pnp* cDNA sequence reported [15]. The first and third primers were complementary to the amino-terminal coding strand, and the second and fourth ones, to the carboxyl-terminal coding strand. The start and stop codons are shown in italics. The 5’ *NdeI* and 3’ *HindIII* restriction sites of the third and fourth primers are shown in bold. The first and second primers were designed to be complementary to 22 and 21 bases of, respectively, the N- and C-terminal ends of the PNP cDNA. A non-complementary A residue (deoxyadenyl-3’) at the 5’ end of each primer was added to protect the start and stop codons of primers 1 and 2, respectively, since, in our hands, occasionally a base is removed from the 5’-end of primers during PCR amplification experiments (data not shown). Removal of a nucleotide from the 3’-end of the amplification primers would have no effect on the gene product. Moreover, the extra four bases at the 3’-end of primers 1 and 2 were added to improve the likelihood of PCR amplification of the PNP cDNA. The primers (first and second) were used to amplify the *pnp* cDNA (870 bp) from a human liver cDNA expanded library in λ Triunes phage (Clontec), using standard PCR conditions with a hot start at 99 °C for 10 min, and *Pfu* DNA polymerase (Stratagene). This PCR fragment was cloned into pCR-Blunt vector (Invitrogen) to be employed as DNA template for further amplification attempts. To introduce the 5’ *NdeI* and 3’ *HindIII* restriction sites, the third and fourth primers were used to amplify, using the same PCR conditions, the PNP cDNA that was cloned into the pCR-Blunt vector in the first round of PCR amplification. The PCR product was purified by electrophoresis on low-melting agarose, cloned into pCR-Blunt vector, digested with *NdeI* and *HindIII*, and ligated into a pET-23a(+) expression vector (Novagen), which had previously been digested with the same restriction enzymes. The DNA sequence of the amplified human *pnp* cDNA was determined using the MegaBace system (Amersham Pharmacia Biotech) to confirm the identity of the cloned DNA and to ensure that no mutations were introduced by the PCR amplification step.

Overexpression of recombinant human PNP

The pET23a(+)::*pnp* recombinant plasmid was transformed into electrocompetent *E. coli* BL21(DE3) cells and selected on LB agar plates containing 50 μg/ml carbenicillin. Control experiments were performed under the same experimental conditions, except that transformed *E. coli* cells harbored the expression vector lacking the target DNA insert. Single recombinant colonies were used to inoculate 5 ml LB medium containing carbenicillin (50 μg/ml). To evaluate human PNP protein expression as a function of cell growth phase, *E. coli* BL21(DE3) cells harboring pET-23a(+)::*pnp* recombinant plasmid were grown in the absence of IPTG and samples were removed at various times for OD₆₀₀ measurements and for electrophoretic analysis. The cells were thus incubated at 180 rpm at 37 °C for 5 h to min, 5 h to min, 6 h to min, 9 h to min, 12 h to min, and 28 h without addition of IPTG, harvested by centrifugation at 20,800g for 20 min, and stored at −20°C. The stored cells were suspended in 50 mM Tris–HCl (pH 7.6), disrupted by sonication using two 10-s pulses to release the proteins, and cell debris
was separated by centrifugation at 23,500g for 30 min at 4°C. The soluble protein content was analyzed by SDS-PAGE [16]. The proportion of recombinant human PNP to total soluble proteins in SDS–PAGE gels was estimated using a GS-700 imaging densitometer (Bio-Rad).

Purification of recombinant human PNP

Single colonies of E. coli BL21(DE3) harboring the recombinant plasmid were used to inoculate 1 L LB medium containing 50 μg ml⁻¹ carbenicillin and grown for 22 h at 37°C and 180 rpm for large scale protein production. Cells (4 g) were harvested by centrifugation at 20,800g at 4°C and stored at -20°C. The cells were suspended in 15 ml of 50 mM Tris–HCl (pH 7.6) (buffer A), incubated for 30 min in the presence of lysozyme (0.2 mg ml⁻¹), disrupted by sonicating as described above, and centrifuged at 48,000g for 60 min at 4°C. The supernatant was incubated with 1% (w/v) of streptomycin sulfate and centrifuged at 48,000g for 30 min at 4°C. The supernatant was dialyzed against buffer A and centrifuged at 48,000g for 30 min at 4°C. The resulting supernatant was loaded on an FPLC Q-Sepharose Fast Flow (26 × 9.5) column (Amersham Pharmacia Biotech) pre-equilibrated with the same buffer. The column was washed with 10 volumes of the same buffer and the absorbed material was eluted with a linear gradient (0–100%) of 20 times the column volume of 50 mM Tris–HCl, 0.2 mM NaCl (pH 7.6) (buffer B). The recombinant protein eluted from the anion exchange column at 40% buffer B, the fractions were pooled (82 ml), concentrated down to 6.6 ml using an Amicon ultrafiltration cell (MWCO 10,000 Da), and applied to an FPLC Sephacryl S-200 (26 × 60) (Amersham Pharmacia Biotech) column pre-equilibrated with buffer A. The column was run with 1 volume of the same buffer. The recombinant human PNP protein eluted in a total volume of 10 ml and stored in 85% ammonium sulfate solution. The protein content was analyzed by SDS–PAGE [16].

Protein determination

Protein concentration was determined by the method of Bradford et al. [17] using the Bio-Rad protein assay kit (Bio-Rad) and bovine serum albumin as standard.

Mass spectrometry analyses

The homogeneity of protein preparation was assessed by mass spectrometry (MS), employing some adaptations made to the system described by Chassaigne and Lobinski [18]. Samples were analyzed on a triple quadrupole mass spectrometer, model QUATTRO II, equipped with a standard electrospray (ESI) probe (Micromass, Altrinchan), adjusted to ca. 250 μl min⁻¹. The source temperature (80°C) and needle voltage (3.6 kV) were maintained constant throughout the experimental data collection, applying a drying gas flow (nitrogen) of 200 L h⁻¹ and a nebulizer gas flow of 20 L h⁻¹. The mass spectrometer was calibrated with intact horse heart myoglobin and its typical cone-voltage induced fragments. The subunit molecular mass of recombinant human PNP was determined by ESI-MS, adjusting the mass spectrometer to give a peak width at half-height of 1 mass unit, and the cone sample to skimmer lens voltage controlling the ion transfer to mass analyzer was set to 38 V. About 50 pmol (10 μl) of each sample was injected into electrospray transport solvent. The ESI spectrum was obtained in the multi-channel acquisition mode, scanning from 500 to 800 m/z at scan time of 5 s. The mass spectrometer is equipped with MassLynx and Transform softwares for data acquisition and spectra handling.

N-terminal amino acid sequencing

The N-terminal amino acid residues of purified recombinant human PNP were identified by automated Edman degradation sequencing using a PPSQ 21A gas-phase sequencer (Shimadzu).

Purine nucleoside phosphorylase assay

Recombinant human PNP was assayed in the forward direction in 50 mM Tris–HCl, pH 7.6. Enzyme activity was measured by the difference in absorbance between 2-aminocytosine and 2-amino-6-mercaptopurine ribonucleoside (MESG) and the purine base product of its reaction with inorganic phosphate (Pi) catalyzed by PNP [10]. The bacterial PNP enzyme and MESG are commercially available as the Enzchek phosphate assay kit (Molecular Probes); the assay was performed by replacing the commercial PNP by the recombinant human PNP. This reaction gives an absorbance increase at 360 nm with an extinction coefficient value of 11,000 M⁻¹ cm⁻¹ at pH 7.6 [10]. Initial steady-state rates were calculated from the linear portion of the reaction curve for extracts of E. coli BL21(DE3) cells harboring pET-23a(+):pnp plasmid and all fractions of the purification protocol.

Results and discussion

The nucleotide sequence analysis using the dideoxy-chain termination method of the PCR-amplified human pnp cDNA (870 bp) confirmed the identity of the coding DNA sequence of cloned fragment and demonstrated that no mutations were introduced by the PCR amplification steps. Although the strategy used here for cloning did not involve complementation [19] and
hybridization [15] previously used for cloning *pnp* cDNA, it proved to be suitable and efficient. Probably, owing to the lack of complete sequence complementarity between primers three and four and cDNA, no PCR product of the correct size (870 bp) could be obtained using these restriction site-containing primers under a number of experimental conditions tested for amplification. Hence, the *pnp* cDNA was first cloned without restriction sites and re-amplified from this recombinant plasmid using the restriction site-containing primers (third and fourth ones).

Human PNP was overexpressed in *E. coli* BL21(DE3) cells carrying pET-23a(+):*pnp* recombinant plasmids. Analysis by SDS–PAGE with Coomassie blue staining indicated that the cell extracts contained a significant amount of protein with subunit molecular weight in agreement with the expected MW for human PNP [5] (Fig. 1). Densitometric quantification of the SDS–PAGE protein bands showed that recombinant human PNP constituted approximately 42% of total protein present in the soluble cell extract under the experimental conditions used. Enzyme activity measurements demonstrated that there was a 707-fold increase in specific activity for human PNP when *E. coli* harboring either pET-23a(+):*pnp* or pET-23a(+) crude extracts were compared (Table 1). Contrary to what was previously described for this enzyme [20], where human PNP represented about 5% of total protein present in the soluble cell extracts with addition of IPTG (1 mM final concentration), overexpression was achieved here (after 22 h of cell growth) with no addition of IPTG.

Recombinant human PNP protein expression as a function of cell growth phase in the absence of IPTG could be detected at all time intervals tested (Fig. 2). However, recombinant human PNP protein expression in *E. coli* BL21(DE3) host cells as compared to the control cells transformed with pET-23a(+) plasmid appeared to reach a maximum in the stationary phase (Fig. 2). The values for the proportion of recombinant human PNP to total soluble protein indicated in Fig. 2 are underestimates, since lower loads of protein on SDS–PAGE indicated a proportion of approximately 40% human PNP to total soluble protein after 22 h of growth (data not shown), in agreement with the results presented in Fig. 1.

Hosts for pET vectors (Novagen) harbor the highly processive T7 RNA polymerase under control of the IPTG-inducible *lacUV5* promoter. Although it is often argued that the cost of IPTG limits the usefulness of *lac* promoter to high-added-value products, it was shown here that high levels of expression of human PNP could be obtained with pET vectors as cells entered the stationary phase without addition of inducer in LB medium. Similar experimental observations were reported using the pET system [21,22]. It has been demonstrated that when λDE3 hosts are grown to stationary phase in media lacking glucose, cyclic AMP mediated derepression of both the wild type and *lacUV5* promoters occurs [23]. These authors also proposed that cyclic AMP, acetate, and low pH are required to high-level expression in the absence of IPTG induction when cells approach stationary phase in complex medium, and that derepression of the *lac* operon in the absence of IPTG may be part of a general cellular response to nutrient limitation. As described in the pET System Manual (www.novagen.com), the *E. coli* BL21(DE3) host strain is a lysogen of bacteriophage DE3, a lambda derivative that carries a DNA fragment containing the *lacI* gene, the *lacUV5* promoter, and the gene for T7 RNA polymerase. This fragment is inserted into the *int* gene, preventing DE3 from integrating into or excising from the chromosome without a helper phage. Once a DE3 lysogen is formed, the only promoter known to direct transcription of the T7 RNA polymerase gene is the *lacUV5* promoter, which is inducible by IPTG. A characteristic of the pET-23a(+) expression vector is that it contains a “plain” T7 promoter. Background expression is minimal in the absence of T7 RNA polymerase because the host RNA polymerases do not initiate from T7 promoters and the cloning sites in pET plasmids are in regions weakly transcribed (if at all) by

Table 1

<table>
<thead>
<tr>
<th>Cell extracta</th>
<th>Sp actb (SA, U·mg⁻¹)</th>
<th>SA cloned/SA control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.02</td>
<td>1.00</td>
</tr>
<tr>
<td>PNP</td>
<td>17.04</td>
<td>707.10</td>
</tr>
</tbody>
</table>

*aCell crude extract in 50 mM Tris–HCl, pH 7.6.
*bU·ml⁻¹/mg·ml⁻¹.

Fig. 1. SDS–PAGE analysis of protein-soluble crude extracts. Overexpression of human PNP after 22 h of cell growth in LB medium without addition of IPTG. Lane 1, *E. coli* BL21(DE3) [pET-23a(+)] (control); lane 2, MW markers; lane 3, *E. coli* BL21(DE3) [pET-23a(+):*pnp*].
read-through activity of bacterial RNA polymerase. The fragment of DNA cloned into the pET-23a(+) vector harbors no other piece of DNA, except the coding DNA sequence of human PNP. It seems therefore unlikely that other promoter is present that might titrate out the lac repressor.

Human PNP was purified as described in Materials and methods and analyzed by SDS–PAGE with Coomassie blue staining. The relative mobility of the polypeptide chain in SDS–PAGE indicates a homogeneous protein with molecular weight value of approximately 32 kDa (Fig. 3). The enzymatic assay and protein concentration determination showed a specific activity of 80 U/C63U mg/C01 for the homogeneous target protein with MESG as substrate, indicating that the protein purification protocol used resulted in a 3.2-fold purification (Table 2). The specific activity value for the recombinant human PNP compares favorably with the value of 55 U/C01 mg for the homogeneous human erythrocyte PNP using guanosine as substrate [5]. Approximately 48 mg of homogeneous cloned human PNP protein could be obtained from 4 g of cells or, stated otherwise, approximately 48 mg L/C01 of LB medium (Table 2). Protocols for human PNP purification have been described either using erythrocytes [1,5,24] or prokaryotic host cells expressing recombinant human PNP [20,25]. However, PNP is estimated to make up only 0.04% of the total protein in human erythrocytes and purification protocol involves a number of steps resulting in only 1.2 mg of homogeneous human PNP from 130 ml of freshly drawn blood [24]. Recombinant human PNP expressed in E. coli cells has been shown to represent approximately 5% of the soluble protein cell homogenates [20]. However, the purification protocol using a dye-matrix resin and isoelectrofocusing chromatography yielded about 2.6 mg of purified recombinant human PNP from 1.0 g of cells [20]. Therefore, to the best of our knowledge, the straightforward two-step purification protocol (ion exchange and gel filtration) associated with high expression of the target protein (42%), which results in a yield of approximately 12 mg of soluble and functional protein from 1.0 g of cells, represents a significant improvement on previous methods of expression and separation of recombinant human PNP.

The subunit molecular mass of active human PNP was determined to be 31,966 Da by electrospray ionization mass spectrometry (ESI-MS), consistent with the post-translational removal of the N-terminal methionine residue from the full length gene product (predicted mass: 32,097 Da). The ESI-MS result revealed no peak at the expected mass for E. coli expressed recombinant human PNP enzyme seems not to conform to this rule, since the
N-terminal methionine was removed, despite the penultimate amino acid residue being a charged residue (glutamate).

As previously pointed out, there are a number of potential applications for human PNP. From the viewpoint of biotechnological tools development, a bacterial enzyme has been used to follow Pi release kinetics [9] and human PNP has been studied for its application in purine nucleoside analog synthesis [25,26]. The commercially available “bacterial” protein used in continuous spectrophotometric assay for Pi detection has been shown to be about one-third PNP by weight [10] and to contain a large content of albumin [14], which may require further purification for its use in coupled assays. From the viewpoint of drug development, inappropriate activation of T-cells has been proposed or documented in several clinically relevant human conditions, such as transplant tissue rejection, psoriasis, rheumatoid arthritis, T-cell lymphomas, and lupus. Since genetic deficiency of human PNP causes T-cell deficiency as the major physiological defect, specific PNP inhibitors may provide useful agents for these disorders. Accordingly, a transition-state analog (Immucillin-H) that inhibits PNP enzyme activity has been shown to inhibit the growth of malignant T-cell leukemia cell lines with the induction of apoptosis [28].

The real-time BIA from Pharmacia Biosensor AB (BIACORE), which is a label-free technology for monitoring biomolecular interactions as they occur, was chosen for high-throughput drug screening studies. The detection principle of BIACORE equipment relies on surface plasmon resonance (SPR), an optical phenomenon that arises when light illuminates thin conducting films under specific conditions. Direct immobilization of protein ligands is possible through linkages between the N-hydroxy-succinimide (NHS) ester groups on a hydrophilic dextran matrix and amine groups on proteins. In protein molecules, NHS ester cross-linking reagents couple principally with the α-amines at the N-terminals and the ε-amines of lysine side chains [29]. Since human PNP protein has 12 lysine residues in its primary sequence, it is likely that immobilization of the recombinant protein will not present difficulties. The work presented here represents a crucial step in our efforts towards both using immobilized human PNP enzyme as a target for drug development in high-throughput drug screening and testing its suitability as a tool for coupled enzymatic assay. Moreover, since the deposited atomic coordinates of human PNP (PDB access codes: 1ULA and 1ULB) have been withdrawn due to low resolution, the work presented here also provides protein in quantities necessary for crystallographic studies. Indeed, we have recently deposited the atomic coordinates of the crystal structure of the recombinant human PNP protein solved at 2.3 Å resolution (PDB access code: 1M73).

Acknowledgments

Financial support for this work was provided by Millenium Initiative Program MCT-CNPq, Ministry of Health—Secretary of Health Policy (Brazil) to D.S.S. and L.A.B. D.S.S. and L.A.B. also acknowledge grants awarded by CNPq and FINEP. We thank Marcelo Brígido for his generous gift of human cDNA library, Denise Machado for assistance in human liver cDNA library expansion, and Deise Potrich for nucleotide sequence analysis.

References

Protective immune response against methicillin resistant *Staphylococcus aureus* in a murine model using a DNA vaccine approach

José P.M. Senna, Daniela M. Roth, Jaim S. Oliveira, Denise C. Machado, Diógenes S. Santos

Grupo de Microbiologia Molecular e Funcional, Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Cx.P Postal 15005, Av. Bento Gonçalves, 9500, Porto Alegre RS, CEP 91501-970, Brazil

Instituto de Pesquisas Biomédicas, Hospital São Lucas—Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil

Corresponding author. Tel.: +55-51-3316-6072; fax: +55-51-3316-6234. E-mail address: diogenes@dna.cbiot.ufrgs.br (D.S. Santos).

Received 17 April 2002; received in revised form 5 November 2002; accepted 18 November 2002

Abstract

Methicillin resistant *Staphylococcus aureus* (MRSA) are a major pathogen responsible for serious hospital infections worldwide. These bacteria are resistant to all beta-lactam antibiotics due to the production of an additional penicillin binding protein, the PBP2a, encoded by the *mecA* gene, which shows low affinity for this class of antibiotics. In this study, we cloned an internal region from the transpeptidase domain from the PBP2a into a mammalian expression vector, to be used as DNA vaccine in a Murine model. After three sets of DNA vaccination, the immune response represented by antibodies against a fragment of PBP2a was evaluated by enzyme linked immunosorbent assay (ELISA), showing a significant antibody response. The antibacterial effect of the DNA vaccine was evaluated by intraperitoneal immunization and challenge with a sublethal dose of MRSA for 7 days in mice. After the challenge, the number of bacteria from kidneys from immunized and non-immunized mice were determined. Kidneys from immunized mice had 1000 times less on bacteria than the positive controls (non-immunized mice). The response specificity indicates no effects against the normal PBPs from staphylococci and no effects against Gram positive rods from normal intestinal flora. Our results indicate that the immunization against the PBP2a from MRSA using a DNA vaccine approach could be used as a new strategy to efficiently fight these multiresistant bacteria.

© 2003 Published by Elsevier Science Ltd.

Keywords: MRSA; DNA vaccine; PBP2a

1. Introduction

Methicillin resistant *Staphylococcus aureus* (MRSA) is an important pathogen responsible for serious nosocomial infections worldwide. This relatively virulent opportunist bacteria which is believed to be as virulent as methicillin sensitive *S. aureus* (MSSA) [1,2] is resistant to all beta-lactam antibiotics and the resistance is due to the production of an additional penicillin-binding protein (PBP) called PBP2' or PBP2a encoded by the *mecA* gene, that shows a low affinity for beta-lactam antibiotics at concentrations that inhibit the beta-lactam-sensitive PBPs normally produced by *S. aureus* [3,4]. Despite the presence of the beta-lactam that inhibits the normal PBPs, MRSA can continue cell wall synthesis solely depending upon the uninhibited activity of PBP2a [5]. PBP2a is a multimodular class B PBP [6] with a molecular weight of 76kDa encoded by the *mecA* gene located in the chromosome of MRSA [7]. Vancomycin, is a last resource antibiotic to treat MRSA infections. However, the report of vancomycin intermediate *S. aureus* (VISA) and very recent report of the isolation of a strain fully resistant to vancomycin (VRSA) [8,9], and the possible dissemination of untreatable staphylococcal infections indicates that it is necessary to search for alternative therapies to fight this bacteria. Several vaccine strategies against *S. aureus* have been described using bacterial structures—surface polysaccharide [10,11], whole cells or surface proteins—protein A [12] and fibronectin-binding protein [13] as target, but none has been fully successful until now.

DNA vaccines are considered a new approach to induce protective immunity. Since the publication of the first demonstration of in vivo protective efficacy in 1993 [14], this strategy has been applied against various pathogens [12-16]. DNA vaccines consist of a plasmid DNA encoding the proteins of interest with a strong eukaryotic promoter system. These vaccines could be administered by direct
injection into the muscle leading to the production of protective antibodies and cellular immune responses [17,18].

In the present study, we evaluate the protective immune response in a murine model immunized with a DNA containing a fragment (249 bp) of the mecA gene and challenged with a MRSA strain. Penicillin binding proteins (PBP) are located on the outer surface of Gram-positive bacteria to build the cell wall [19], and therefore the PBPs can be exposed to the host immune system.

2. Material and methods

2.1. Bacterial isolates

A MRSA clinical isolate (HPS-03) from the Hospital de Pronto Socorro, Porto Alegre, Brazil, was used in this study. The MRSA character was confirmed by PCR detection of mecA genes [20]. A S. aureus American Type Culture Collection no. 25923, methicillin susceptible S. aureus (MSSA) was used as control.

2.2. Plasmid constructions

A 249 bp mecA fragment was amplified by PCR from HPS-03 MRSA. The forward primer, containing a restriction site for SphI and the reverse primer containing a restriction site for EcoRI were as follows: 5′-GCATTGCAAGGAGTCCACGGATGGATCAAGAAGAA-3′ and 3′-TACGAAATCTCATTGTTAAC-5′. The DNA amplification was performed using Taq DNA polymerase (Cenbiot-Brazil) at 94°C for 5 min and consisting of one cycle of 5 min at 94°C, 1 min at 52°C, 1 min at 72°C and one cycle of 5 min at 72°C. The PCR product was digested with EcoRI and SphI and cloned into a pCI-Neo Mammalian Expression Vector (Promega) to use as DNA vaccine. The PCR product was also cloned into a Smal site into pgEX-4T-2 Vector (Amersham Biosciences) to produce the recombinant peptide. The recombinant plasmids were electroporated into XL-1 blue E. coli cells and plated in Luria–Bertani agar containing ampicillin (50 μg/ml) and incubated overnight at 37°C. Colonies were screened to detect the mecA fragment by PCR according to the conditions described above. The correct position of mecA fragment was confirmed by EcoRI digestion of pgEX-4T-2-mecA. The nucleotide sequence of the cloned mecA fragment were confirmed by Sanger’s dideoxy mediated chain termination sequencing method [21] using the Thermo Sequenase Radiolabeled Terminator Cycle Sequencing kit (Amersham) of both recombinant plasmids, pCI-Neo-mecA and pgEX-4T-2-mecA fragment, showing to be identical to the reported sequence (Fig. 1).

2.3. Protein expression and purification

BL21 E. coli cells transfected with pgEX-4T-2-mecA fragment were grown in Luria–Bertani medium containing ampicillin (100 μg/ml) at 37°C until exponential phase (optical density 0.6 at 600nm), followed by induction with 0.1 mM of isopropyl-β-D-thiogalactopyranoside (IPTG), and further incubation for 3 h. Cells were harvested and resuspended in phosphate buffered solution and submitted to sonication. After centrifugation, the recombinant mecA fragment expressed as GST fusion protein was purified from supernatant by using glutathione sepharose beads. The GST fusion protein was cleaved with thrombin to obtain the recombinant peptide (approximately 7 kDa) corresponding to the mecA fragment.

2.4. Immunization procedures

The 8-week-old female BALB/c mice purchased from CEMIB (Unicamp, São Paulo, Brazil) were used in this experiment. Three days before the first immunization, bupivacain chloridrate 0.5% was injected at a dose of 2.5 μg/g of animal weight in the left quadriceps muscle. For DNA vaccination, three intramuscular injections with 10 μg of plasmid pCI-Neo-mecA or pCI-Neo only (negative control) diluted in 50 μl of sterile PBS were given at 2 weeks intervals into the left quadriceps muscle of mice. Blood was collected before (pre-immune serum) and after (immune serum) DNA vaccination (Fig. 2).

2.5. Analysis of the immune response

The levels of specific antibodies were evaluated by enzyme-linked immunosorbent assay. Plates were coated with 4.0 μg/ml of purified recombinant peptide diluted in 0.1 M carbonate/bicarbonate coating buffer (pH 9.6) and incubated overnight at 37°C. Plates were washed three times with PBS containing 0.05% Tween 20, 200 μl of blocking buffer (PBS containing 5% non-fat dried milk) was added and the plates were incubated at 37°C for 2 h. After removal of the blocking buffer, immune and control serum samples diluted 1:10 in blocking buffer were added to the plates and incubated at 37°C for 2 h. After three washes...
with PBS containing 0.05% Tween 20, 100 μl of anti-mouse polyvalent immunoglobulins peroxidase-conjugated (Dako) diluted 1:500, was added and the plates were incubated at 37 °C for 90 min. After three washes with PBS containing 0.05% Tween 20, 100 μl of substrate (0.4 mg of o-phenylenediamine hydrochloride diluted in 0.2 M citrate/phosphate buffer pH 5.0 containing 0.4 μl/ml of H₂O₂) was added and the plates were incubated at 37 °C for 15 min. Fifty microliters of a 2 M solution of sulfuric acid was added to quench the reaction. Absorbance was read at 490 nm wavelength with a microplate reader Benchmark (BioRad). A monoclonal α-GST antibody was used as positive control.

2.6. Analysis of DNA vaccine protection in mice

To assess the immune response against MRSA, mice immunized with pCI-Neo and pCI-Neo-mecA were challenged with MRSA (MRSA HPS-03). The lethal dose (5.0 × 10⁶) and the median lethal dose (LD₅₀) (1.1 × 10⁵) were calculated using the Reed and Muench method [18]. Mice received a sublethal dose of 2 × 10⁴ cfu intraperitoneally daily for 7 days. A non-immunized group receiving the same bacterial dose was included as positive control. Mice were immunized with pCI-Neo or pCI-Neo-mecA and not treated with oxacillin (Group II) was 7 × 10⁶ cfu per kidney. Mice vaccinated with pCI-Neo-mecA and treated with oxacillin (Group I) was 1 × 10⁷ cfu per kidney; mice vaccinated with pCI-Neo-mecA fragment and challenged with MRSA. Group I was treated with oxacillin (75 mg/kg) administered three times per day during the challenge period in the quadriceps muscle. Groups III–VI received plasmid containing mecA fragment. Groups IV and V were treated with the same dose of oxacillin as group I. Group V and VI were challenged with MRSA. Animals were sacrificed and the kidneys were excised, rinsed in sterile PBS and weighed.

2.7. Bacterial load

Each kidney was homogenized and diluted 1:10, 1:100 and 1:1000 in 1 μl of sterile LB broth. The 100 μl of each dilution was plated into LB agar plates containing 50 μg/ml of oxacillin and incubated at 37 °C. After 24 h the number of grown colonies was counted. DNA extraction was performed followed by PCR to detect the presence of mecA and the mecA genes as earlier described [22].

2.8. Flow cytometry

Blood cells (150 μl) were stained with Fluorescein isothiocyanate—conjugated hamster anti-mouse CD3ε monoclonal antibody (PharMingen International, catalogue no. 01084A) and R-Phycocerythrin—conjugated rat anti-mouse CD4 (Ly-2) monoclonal antibody (PharMingen International, catalogue no. 01045A) diluted 1:5 in PBS buffer pH 7.2 to quantify the subpopulation of mature T lymphocytes MHC class II restricted T cells. After immunofluorescence staining for 20 min at room temperature, whole blood were lysed with FACS lysing solution (Becton and Dickinson, catalogue no. 349202) and the stained cells were analyzed by flow cytometry on a FACS Calibur apparatus (Becton and Dickinson). Data were analyzed with Cell Quest FACS analysis software (Becton and Dickinson).

2.9. Specificity of the immune response against PBP2a

(i) Gram stain of mice faeces before and after pCI-Neo-mecA immunization were proceeded to investigate the effect of other PBPs from Gram positive rods present in the intestinal normal flora.

(ii) To evaluate the effect of the normal PBPs present in S. aureus, one mouse immunized with pCI-Neo-mecA was challenged, according to earlier described protocol, with the methicillin susceptible S. aureus (ATCC 25923), and did not receive the oxacillin treatment. This mouse was included as a control of antibody specificity. The bacterial quantitation was proceeded in LB agar plates without oxacillin as described above.

2.10. Statistics

A Student’s t-test was applied to determine the significance of the differences between vaccinated and control groups [23].

3. Results

3.1. Protection obtained in immunized mice and bacterial load

All the animals used in this study survived after the MRSA challenge. The number of bacteria in the kidneys from mice vaccinated or not were as follows: positive controls was 1.0 up to 9.3 × 10⁷ cfu per kidney; from mice vaccinated with pCI-Neo and treated with oxacillin (Group I) was 1.3 × 10⁵ up to 2.4 × 10⁶ cfu per kidney; mice vaccinated with pCI-Neo and not treated with oxacillin (Group II) was 7.0 × 10⁴ up to 2.0 × 10⁵ cfu per kidney. The bacteria in kidneys from mice vaccinated with pCI-Neo-mecA and treated with oxacillin (Group V) varied from 0 (60% did not present bacteria in the kidneys) to 7.0 × 10³ cfu per kidney. Mice vaccinated with pCI-Neo-mecA and not treated with oxacillin (Group VI) ranged from 0 (80% did not present bacteria in the kidneys) to 1.3 × 10³ cfu per kidney. The difference between
The number of bacteria/kidney by group of mice challenged

Table 1

<table>
<thead>
<tr>
<th>Control group</th>
<th>Group I</th>
<th>Group II</th>
<th>Group V</th>
<th>Group VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 x 10^8</td>
<td>1.3 x 10^8</td>
<td>7.0 x 10^7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.3 x 10^8</td>
<td>3.0 x 10^8</td>
<td>2.0 x 10^7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.9 x 10^8</td>
<td>3.7 x 10^8</td>
<td>3.0 x 10^7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.3 x 10^8</td>
<td>2.4 x 10^8</td>
<td>2.0 x 10^7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0.0)</td>
<td>0</td>
<td>0</td>
<td>1.0 x 10^6</td>
<td>0</td>
</tr>
<tr>
<td>(0.0)</td>
<td>0</td>
<td>0</td>
<td>0.0 x 10^5</td>
<td>3.0 x 10^6</td>
</tr>
<tr>
<td>(0.0)</td>
<td>0</td>
<td>0</td>
<td>7.0 x 10^3</td>
<td>1.3 x 10^5</td>
</tr>
</tbody>
</table>

Groups I: pCI-Neo + Oxa + MRSA; Group II: pCI-Neo + MRSA; Group V: pCI-Neo-mecA + Oxa + MRSA; Group VI: pCI-Neo-mecA + MRSA.

3.3. Evaluation of the anti-PBP2a antibody production

The specific antibody production, was measured by ELISA, with sera obtained before (pre-immune serum) and after challenge with MRSA from mice immunized with recombinant plasmid containing or not the mecA fragment in the presence or absence of oxacillin. The vaccinated group that received oxacillin and was challenged with MRSA (Group V) produced three times more anti-PBP2a specific antibody than the control group (Group I), and the vaccinated group that did not receive oxacillin and was challenged with MRSA (Group VI) produced an antibody response 1.9 times higher than Group I.

3.4. Evaluation of MHC classes I and II restricted T cells subpopulations by flow cytometry after vaccination

Humoral and cellular response evaluated by the presence of CD3^+/CD4^+ (MHC class II) and CD3^+/CD8^+ (MHC class I) T cells subpopulations, respectively, did not differ between vaccinated and non-vaccinated mice. Moreover, we were not able to detect activation of specific T cells subpopulations within the vaccinated groups that received different treatments.

3.5. Evaluation of the specificity of anti-PBP2a immune response

Differences on Gram stain of mice faeces from non-immunized and immunized mice were not observed. Gram-positive cocci and rods were present in both groups (data not shown). Vaccinated pCI-Neo-mecA mouse challenged with methicillin susceptible S. aureus (mecA negative strain) showed 1.2 x 10^5 cfu per kidney, meaning that the immune response obtained with pCI-Neo-mecA vaccination was specific against the PBP2a.

4. Discussion

Since the first use of antibiotics, we have observed a fight between the drugs and methicillin resistant S. aureus. Although its clinical virulence is approximately equal to MSSA [1,2], it has a surprising capability to respond to the selective pressure exerted by antimicrobial. This bacterium is suppose to become resistant to all drugs available, very soon. Recently, the US Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia, reported the isolation and characterization of a MRSA strain completely resistant to vancomycin. This particular strain was isolated from the foot ulcer and a catheter of a patient in Michigan. Accordingly, the Michigan VRSA acquired its resistance genes from Enterococcus faecalis fully vancomycin resistant [8]. The antibiotic therapy shows no signs to eradicate MRSA from nosocomial infections. In this work, we were able to develop and test in an animal model a new strategy to fight MRSA by activation of the immune system with a DNA vaccine. Different from other vaccine strategies against S. aureus, our target was the PBP2a, a protein responsible for the intrinsic resistance to all beta-lactam antibiotics in MRSA. This enzyme, is composed by a spanning region, responsible for the attachment to the cytoplasmic membrane, a non-penicillin binding domain of unknown function and a transpeptidase domain, being classified by Goffin and Ghuy sen as a multimodular class B penicillin binding protein [6]. Due to the PBP2a location, which is outside to the cytoplasmic membrane [19], the PBP2a could be accessible to serum antibodies. The DNA vaccine approach was chosen due to its characteristics such as simple to work, stable and capable to elicit immune response, as reported by others [12,13]. We used an internal PBP2a fragment containing 249bp and comprising the serino-protease domain (STQK) as antigen and our choice proved to be correct. We were able to induce anti-PBP2a specific antibody production and an effective protection, as shown by ELISA and challenging immunized mice with MRSA. The reduction of the bacterial number on kidneys from immunized mice was significant. Kidneys from 70% of the immunized mice did not show the presence of bacteria after MRSA challenge. Since the antibodies raised against a fragment of PBP2a containing the transpeptidase active site would block the final step of the transpeptidase active site would block the final step of the transpeptidase reaction.
cell wall assembly one should expect the results obtained in the present study. Kidneys from mice vaccinated with the pCI-Neo without the fragment of mecA, had a slight reduction of the bacterial number, probably due to the presence of the CpG motifs (approximately 10% of the pCI-Neo vector consists of the CpG motifs) [24]. Moreover, analysis using the ANTHEPROT software [25] predicts the antigenicity of the PBP2a fragment (Fig. 3) used in this study corroborate its use as immunogen. The specificity of immune response obtained against PBP2a was an important factor to be evaluated, since an immune response against PBPs from other then the Gram-positive rods that are present in the intestinal normal flora may cause undesirable side effects. In addition, it was not observed any difference between Gram stain of faeces from immunized and non-immunized mice. On other hand, mice immunized (pCI-Neo-mecA fragment) and challenged with a mecA negative S. aureus (MSSA) shows that the immune response obtained against MRSA is specific against PBP2a, not affecting the normal PBPs present in staphylococci that do not possess the mecA gene. The oxacillin administration (a beta-lactam antibiotic that are not affected by beta-lactamase) was used aiming to block the normal PBPs and to allow that only the PBP2a would assemble the peptidoglycan conferring a better PBP2a exposition to the antibody action. However, the protection obtained in mice that received the DNA vaccine was similar even in the absence of oxacillin. This observation led us to suggest that in MRSA, the PBP2a may have a more important role than the other PBPs to assemble the peptidoglycan cell wall. Ohwada et al. [26], using the whole mecA as antigen obtained protection in Balb/C mice infected with MRSA. Together these two observations suggest that the fragment of DNA containing the active site of the PBP2a or the entire mecA cloned sequence may be eligible as a candidate for DNA vaccination to fight MRSA.

In conclusion, we demonstrate that a fragment of PBP2a coding region, administered by DNA vaccination can elicit an immune response against MRSA as shown by the strong antibacterial protection obtained in a DNA-vaccinated murine model infected with MRSA.

Acknowledgements

J.P.M. Senna and D.M. Roth, contributed equally to this work. This study was supported in part by Grant from the Brazilian Ministry of Health, Financiadora de Estudos e Projetos (FINEP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We acknowledge the expertise of Gaby Renard in the revision of this manuscript.

References

Abstract

The shikimate pathway is an attractive target for herbicides and antimicrobial agent development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologues to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the EPSP synthase was proposed to be present by sequence homology. Accordingly, in order to pave the way for structural and functional efforts towards anti-mycobacterial agent development, here we describe the molecular modeling of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase isolated from M. tuberculosis that should provide a structural framework on which the design of specific inhibitors may be based on. Significant differences in the relative orientation of the domains in the two models result in “open” and “closed” conformations. The possible relevance of this structural transition in the ligand binding is discussed.
© 2003 Elsevier Inc. All rights reserved.

Keywords: EPSP synthase; Bioinformatics; Molecular modeling; Mycobacterium tuberculosis

Tuberculosis (TB) remains one of the most deadly infectious diseases in the world. It is estimated that approximately 1 billion individuals are infected with latent TB. Tuberculosis has made a steady global comeback in the late 1980s and now kills more than 2 million people each year worldwide, according to the World Health Organization (WHO) which in 1993 declared tuberculosis to be a global emergence [1].

Mycobacterium tuberculosis is by far the biggest killer among infectious agents, accounting for 7% of all deaths and 26% of all avoidable deaths. In impoverished third world countries where 95% of cases and 98% of deaths occur, 70–80% of TB cases are in the economically most productive 15–50 year age bracket [1,2].

The treatment of tuberculosis is a special problem in the field of chemotherapy. Many of the drugs employed to treat the disease are used only for treating infections caused by mycobacteria. Treatment of the active case of TB always includes simultaneous therapy with two or more of the frontline drugs: isoniazid, ethambutol, rifampicin, and streptomycin which are used to decrease the rate of emergence of resistant strains as well to increase the antibacterial effect [3–5].

Recent outbreaks of tuberculosis caused by multidrug-resistant (MDR) strains, mainly in individuals infected with HIV, have created a scaring element to the scenario and also created a worldwide interest in expanding current programs of development of new drugs.
different in kinds from existing ones and based on the principle of selective toxicity on enzymes or structure of the bacillus to both treat \textit{M. tuberculosis} strains resistant to existing drugs and shorten the duration of short-course treatment to improve patient compliance \[4,6\].

The shikimate pathway is an attractive target for the development of herbicides and antimicrobial agents because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals \[7\]. In mycobacteria, the shikimate pathway leads to the biosynthesis of precursors for the synthesis of aromatic amino acids, naphthoquinones, menaquinones, and mycobactin \[8\]. Homologues to enzymes in the shikimate pathway have been identified in the complete genome sequence of \textit{M. tuberculosis} H37Rv strain \[9\]. Among them, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase encoded by \textit{aroA} gene, which catalyzes the transfer of the enolpyruvyl moiety from phosphoenolpyruvate (PEP) and inorganic phosphate. A valuable lead compound in the search of new inhibitors is glyphosate, which has proven to be potent and specific inhibitor of EPSP synthase \[10\]. Glyphosate is successfully used as a herbicide, being the active ingredient of the widely used weed control agent Roundup Ready, and was recently shown to inhibit the growth of the pathogenic parasites \textit{Plasmodium falciparum}, \textit{Toxoplasma gondii}, and \textit{Cryptosporidium parvum} \[11,12\].

The present paper describes the two molecular models of \textit{M. tuberculosis} EPSP synthase, one without any ligand and another in complex with 3-phosphoshikimate (S3P) and glyphosate. The homology modeling was performed using the crystallographic structures of EPSP synthase from \textit{Escherichia coli} \[12,13\], as templates. The EPSP synthase has been cloned, sequenced, and overexpressed in soluble and functional form \[14\], thus allowing enzymological studies to be performed. The results presented here should provide a three-dimensional model of EPSP synthase to both guide enzymological studies and aid in the design of specific inhibitors.

Methods

Molecular modeling. For modeling of the EPSP synthase we used restrained-based modeling implemented in the program MODELLER \[15\]. This program is an automated approach to comparative modeling by satisfaction of spatial restraints \[16–18\]. The modeling procedure begins with an alignment of the sequence to be modeled (target) with related known three-dimensional structures (templates). This alignment is usually the input to the program. The output is a three-dimensional model for the target sequence containing all main-chain and side-chain non-hydrogen atoms.

The degree of primary sequence identity between MtEPSP synthase and EPSP synthase from \textit{E. coli} indicates that the crystallographic structures of EcEPSP are good models to be used as templates for MtEPSP synthase. The EPSP synthase isolated from \textit{E. coli} showed two conformation states, open (unliganded structure) and closed (liganded structure) \[12\]. Models in the two conformations were generated, using the α-carbon atomic coordinates from 1EPSP \[12\] to generate the open structure and the atomic coordinates from 1G6S \[12\] to generate the closed structure. The atomic coordinates of all waters were removed from the EPSP structure. The 3-phosphoshikimate and glyphosate of the template were kept in the structure for the closed

![Fig. 1. The sequence alignment of EcEPSP and MtEPSP indicating the secondary structural elements. The sequence MtEPSP shows 31% of identity with the sequence of EcEPSP. The alignment was performed with the program CLUSTAL V \[37\].](image.png)
conformation. Next, the spatial restraints and CHARMM energy terms enforcing proper stereochemistry [19] were combined into an objective function. Finally, the model is obtained by optimizing the objective function in Cartesian space. The optimization is carried out by the use of the variable target function method [20] employing methods of conjugate gradients. Several slightly different models can be calculated by varying the initial structure. A total of 1000 models were generated for each EPSP synthase conformation state, and the final models were selected based on stereochemical quality. The optimization of the complex was carried out by the use of the variable target function method [15] employing methods of conjugate gradients and molecular dynamics with simulated annealing. All modeling process was performed on a Beowulf cluster, with 16 nodes (B16/AMD Athlon 1800+; BioComp, São José do Rio Preto, SP, Brazil).

Analysis of the model.

The overall stereochemical quality of the final model for EPSP complex was assessed by the program PROCHECK [21]. The cutoff for hydrogen bonds and salt bridges was 3.6\(\AA\).

Results and discussion

Primary sequence comparison

The sequence alignment of EcEPSP (template) and MtEPSP (target) is shown in Fig. 1. The secondary structural elements are indicated in the figure. The sequence MtEPSP shows 31% identity with the sequence of EcEPSP.

Quality of the model

The Ramachandran plot for the 2 EcEPSP structures was generated in order to compare the overall stereochemical quality of MtEPSP model against EPSP.

![Fig. 2. Ribbon diagram of the MtEPSP structure in the open (A) and closed (B) conformations generated by Molscript [38].](image-url)
structures solved by biocrystallography. Analysis of the Ramachandran plot of the MtEPSP models shows that 84.8% of the residues lie in the most favorable regions and the remaining 10.9% in the additional allowed regions for the closed structure, and 91.1% lie in the allowed regions for the open structure. The same analysis for two crystallographic EcEPSP structures present 91.2% of residues in the most favorable, 8.5% additional allowed regions, and 0.3% generously allowed regions. The overall rating for the MtEPSP model is slightly poorer than the one obtained for the two structures of EcEPSP. However, it has over 90% of the residues in the most favorable regions.

Overall description

Figs. 2A and B show the secondary structure of both models of MtEPSP synthase. EPSP synthase is an \(\alpha/\beta \) protein consisting of a mixed \(\beta \)-sheet surrounded by \(\alpha \) helices. The structure folds into two similar domains, which are approximately hemispheric, each with a radius of about 21 Å. The domains are linked by two crossover chain segments with both the amino and carboxyl termini of the protein in the lower domain. The two flat surfaces of the hemispheres, which in projection form a “V,” are almost normal and accommodate the amino termini of the six helices in each domain. The helical macrodipolar effects create a potential well that facilitates the binding of glyphosate and S3P [13]. The domains are composed of three copies of a \(\beta\alpha\beta\alpha\beta\)-folding unit. The four-stranded \(\beta \)-sheet structures contain both parallel and antiparallel strands and the helices are parallel. In the closed structure the glyphosate and S3P molecules are bound in the interdomain cleft, promoting the closure of the structure.

Molecular hinge

Both crystal structures of EcEPSP synthase and the molecular models of MtEPSP synthase reveal the presence of two domains in which the domains, designated as domains A and B, undergo a translation and rotation from the open to the closed conformation. The center of mass of the two domains moves 4.6 Å from the open to the closed structure, for MtEPSP synthase. In the open and closed structures of MtEPSP synthase an angular difference at the interface of approximately 69° between the two domains results in different conformations, as illustrated in Fig. 3. Superposition of C\(\alpha \) atoms of the constituent domains of each structure results in rms differences of 0.20 and 0.39 Å for EcEPSP and MtEPSP synthases, respectively. The individual domains from both structures were superposed using the C\(\alpha \) atoms in the four major \(\alpha \)-helices (residues 240–252, 270–280, 343–355, and 385–395). The low rmsd values, observed in the superpositions, indicate that the alternative conformation of the two-domain structures is due to relative motions of structurally conserved domains. However, the difference in conformation suggests a
degree of flexibility in the interdomain contact at the interface region, which acts as a hinge between the two monomers resulting in “open” and “closed” forms of the EPSP synthase structure. Similar molecular hinge is observed in PLA₂ structures [22–24].

3-Phosphoshikimate and glyphosate binding

Fig. 4 shows the active site of MtEPSP synthase. The glyphosate and S3P are close to each other and the 5-hydroxyl group of S3P is hydrogen bonded to the nitrogen atom of glyphosate with a distance of 2.82 Å. Analysis of the molecular surface of the MtEPSP synthase indicates that both ligands are buried in between the two domains, with a contact area of 29 and 134 Å² for glyphosate and 3-phosphoshikimate, respectively. The electrostatic potential surface of the MtEPSP synthase complexed with glyphosate and S3P calculated with GRASP [25] indicates the presence of some charge complementarity between ligands and enzyme (figure not shown), nevertheless most of the residues in the binding pocket are hydrophobic in all structures (see Fig. 4).

The analysis of the MtEPSP synthase complex indicates a total of 22 and 15 hydrogen bonds between the enzyme and glyphosate and S3P, respectively. Tables 1 and 2 show the intermolecular hydrogen bonds between

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Hydrogen bonds between EPSP: glyphosate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen bonds between active site and inhibitor</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>EPSP</td>
</tr>
<tr>
<td>O₄</td>
<td>Lys23</td>
</tr>
<tr>
<td>O₁</td>
<td>Lys23</td>
</tr>
<tr>
<td>N₁</td>
<td>Lys23</td>
</tr>
<tr>
<td>O₃</td>
<td>Leu94</td>
</tr>
<tr>
<td>O₂</td>
<td>Gly96</td>
</tr>
<tr>
<td>O₃</td>
<td>Gly96</td>
</tr>
<tr>
<td>O₃</td>
<td>Arg124</td>
</tr>
<tr>
<td>O₂</td>
<td>Arg124</td>
</tr>
<tr>
<td>O₃</td>
<td>Arg124</td>
</tr>
<tr>
<td>O₂</td>
<td>Gln169</td>
</tr>
<tr>
<td>O₂</td>
<td>Gln169</td>
</tr>
<tr>
<td>O₅</td>
<td>Glu311</td>
</tr>
<tr>
<td>N₁</td>
<td>Glu341</td>
</tr>
<tr>
<td>N₁</td>
<td>Glu341</td>
</tr>
<tr>
<td>O₄</td>
<td>Glu341</td>
</tr>
<tr>
<td>O₅</td>
<td>Arg344</td>
</tr>
<tr>
<td>O₅</td>
<td>Arg344</td>
</tr>
<tr>
<td>O₄</td>
<td>His384</td>
</tr>
<tr>
<td>O₄</td>
<td>Arg385</td>
</tr>
<tr>
<td>O₅</td>
<td>Arg385</td>
</tr>
<tr>
<td>O₄</td>
<td>Arg385</td>
</tr>
<tr>
<td>O₃</td>
<td>Lys410</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Hydrogen bonds between EPSP: 3-phosphoshikimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen bonds between active site and ligand</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>Shikimate</td>
<td>EPSP</td>
</tr>
<tr>
<td>3-phosphate</td>
<td></td>
</tr>
<tr>
<td>O₃</td>
<td>Lys23</td>
</tr>
<tr>
<td>O₅</td>
<td>Ser24</td>
</tr>
<tr>
<td>O₅</td>
<td>Arg28</td>
</tr>
<tr>
<td>O₄</td>
<td>Arg28</td>
</tr>
<tr>
<td>O₅</td>
<td>Arg28</td>
</tr>
<tr>
<td>O₆</td>
<td>Ser167</td>
</tr>
<tr>
<td>O₈</td>
<td>Ser167</td>
</tr>
<tr>
<td>O₆</td>
<td>Ser168</td>
</tr>
<tr>
<td>O₆</td>
<td>Ser168</td>
</tr>
<tr>
<td>O₁</td>
<td>Gln169</td>
</tr>
<tr>
<td>O₆</td>
<td>Ser196</td>
</tr>
<tr>
<td>O₇</td>
<td>Ser196</td>
</tr>
<tr>
<td>O₂</td>
<td>Glu311</td>
</tr>
<tr>
<td>O₂</td>
<td>His340</td>
</tr>
<tr>
<td>O₁</td>
<td>His340</td>
</tr>
</tbody>
</table>

Fig. 4. Stereo view of the interdomain interface region illustrating the binding of glyphosate and S3P in the MtEPSP synthase structure.
the enzyme and the ligands. Most of the hydrogen bonds between glyphosate and EPSP synthase involve residues Lys23, Arg124, Glu341, and Arg385, the same residues involved in hydrogen bonds between EcEPSP and glyphosate. Furthermore, the alignment of 69 EPSP synthase sequences indicates that the main residues involved in intermolecular hydrogen bonds, between the glyphosate and the enzyme, are conserved in all sequences (figure not shown). Such observation suggests that inhibitors derived from glyphosate will be able to inhibit most or even all EPSP synthases, since specificity and affinity between enzyme and its inhibitor depend on directional hydrogen bonds and ionic interactions, as well as on shape complementarity of the contact surfaces of both partners [26–36]. Further inhibition experiments may confirm this prediction.

Acknowledgments

This work was supported by Grants from FAPESP (SMOLBNet, Proc. 01/07532-0), CNPq, CAPES and Instituto do Milênio (CNPq-MCT) to DSS and LAB. WFA (CNPq, 300851/98-7) and MSP (CNPq, 500079/90-0) are researchers for the National Research Council.

References

One-step purification of 5-enolpyruvylshikimate-3-phosphate synthase enzyme from *Mycobacterium tuberculosis*

Jaim S. Oliveira, María A. Mendes, Mário S. Palma, Luiz A. Basso, and Diógenes S. Santos

Grupo de Microbiologia Molecular e Funcional, Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto Alegre, RS 91501-970, Brazil

Laboratório de Biologia Estrutural e Zootópica (CEIS), Departamento de Biologia, Instituto de Biociências, Universidade do Estado de São Paulo, Rio Claro, SP 13506-900, Brazil

Received 16 September 2002, and in revised form 4 December 2002

Abstract

Currently, there are 8 million new cases and 2 million deaths annually from tuberculosis, and it is expected that a total of 225 million new cases and 79 million deaths will occur between 1998 and 2030. The reemergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons, and the proliferation of multi-drug-resistant strains have created a need to develop new antimycobacterial agents. The existence of homologues to the shikimate pathway enzymes has been predicted by the determination of the genome sequence of *Mycobacterium tuberculosis*. We have previously reported the cloning and overexpression of *M. tuberculosis* aroA-encoded EPSP synthase in both soluble and active forms, without IPTG induction. Here, we describe the purification of *M. tuberculosis* EPSP synthase (mtEPSPS) expressed in *Escherichia coli* BL21(DE3) host cells. Purification of mtEPSPS was achieved by a one-step purification protocol using an anion exchange column. The activity of the homogeneous enzyme was measured by a coupled assay using purified shikimate kinase and purine nucleoside phosphorylase proteins. A total of 53 mg of homogeneous enzyme could be obtained from 1 L of LB cell culture, with a specific activity value of approximately 18 U mg⁻¹. The results presented here provide protein in quantities necessary for structural and kinetic studies, which are currently underway in our laboratory.

Among deaths associated with infectious diseases, tuberculosis kills more adolescents and adults than any other single infection [1]. Currently, there are 8 million new cases and 2 million deaths annually from tuberculosis, and it is predicted that it will reach 225 million new cases and 79 million deaths between 1998 and 2030 [2]. The reemergence of TB as a public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, and the proliferation of multi-drug-resistant (MDR) strains have created much scientific interest in developing new antimycobacterial agents to both treat *Mycobacterium tuberculosis* strains resistant to existing drugs and shorten the duration of short-course treatment to improve patient compliance [3]. Moreover, treatment of patients infected with MDR *M. tuberculosis* must rely on second-line drugs, which are less effective and more expensive, and can cost up to $250,000 per person and take 2 years [4].

In the shikimate pathway, phosphoenolpyruvate (PEP)² and erythrose 4-phosphate (E4P) are converted to chorismate through seven enzymatic steps. This
pathway is a promising target for the development of potentially non-toxic herbicides and antimicrobial agents because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals [5]. Moreover, biochemical, genetic, and chemotherapeutic data have been presented for the existence of a functional shikimate pathway in apicomplexan parasites [6,7]. Thus, the shikimate pathway enzymes should also provide attractive targets for the development of new antiparasite agents. In mycobacteria, the branch-point compound chorismate is a precursor for the synthesis of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins [8]. Although evidence that the shikimate pathway is essential in M. tuberculosis is lacking, the disruption of the aroD gene was used successfully to generate attenuated oral vaccine strains of Salmonella typhi and other bacteria [9]. Furthermore, the salicylate-derived mycobactin siderophores were recently shown to be essential for M. tuberculosis growth in macrophages [10].

Homologues to the shikimate pathway enzymes were identified in the complete genome sequence of M. tuberculosis H37Rv strain [11]. Among them, the 5-enolpyruvylshikimate-3-phosphate synthase (mtEPSPS, EC 2.5.1.19) encoding gene (aroA, Rv3227) has been cloned and the enzyme was overexpressed in both soluble and active forms in E. coli BL21(DE3) cells [12]. EPSPS catalyzes an unusual transfer reaction of the carboxyvinyl portion of phosphoenolpyruvate (PEP) regiospecifically to the 5-OH of shikimate (Pi) [13]. This reaction is the penultimate step of the shikimate pathway. EPSPS is in fact the site of action of glyphosate [12].

To pave the way for structural and functional efforts currently underway in our laboratory, the mtEPSPS enzyme, overexpressed in E. coli BL21(DE3) host cells, was purified by liquid chromatography and assayed by a coupled assay containing purified M. tuberculosis shikimate kinase (mtSK) and purine nucleoside phosphorylase (PNP) proteins. The purification was achieved by a one-step purification protocol using an anion exchange column, which yielded homogeneous mtEPSPS enzyme in large quantities. This work will allow steady-state and pre-steady-state kinetic studies to be performed as well as crystal structure determination of mtEPSPS enzyme. These kinetic studies, in combination with structural studies of mtEPSPS in complexes with its substrates, products, or inhibitors, will contribute to elucidation of controversial enzymatic mechanism of this enzyme and, consequently, to current efforts towards the development of new drugs for tuberculosis treatment.

Materials and methods

Overexpression of SK and EPSPS

The recombinant plasmid pET-23a(+):aroA was transformed into electropotent E. coli BL21(DE3) cells and selected on LB agar plates containing 50 μg mL−1 carbenicillin. Single colonies were used to inoculate 1.5 L of LB media containing 50 μg mL−1 carbenicillin in 2-L shaking flasks. The mtEPSPS culture cells were grown without addition of isoprpyl β-D-thiogalactopyranoside (IPTG) at 180 RPM and 37°C for 23 h [12]. Cells were harvested by centrifugation at 6000 g for 20 min at 4°C and stored at −80°C.

Purification of recombinant Mycobacterium tuberculosis EPSPS

The mtEPSPS cells (3.2 g) were suspended in 25 mL of 50 mM Tris–HCl (pH 7.8) and incubated for 30 min in the presence of lysozyme (0.2 mg mL−1). Cells were disrupted by sonication using four pulses of 20 s each at 60% amplitude with a 13 mm probe (High Intensity Ultrasonic Processor, 750 Watt model, Sonics Vibra Cell). Cell debris was removed by centrifugation at 48,000 g for 60 min at 4°C. The supernatant was incubated with 1% (w/v) of streptomycin sulfate and centrifuged at 48,000 g for 30 min, at 4°C. The supernatant was dialyzed twice against 2 L of the same buffer using a dialysis tubing with a molecular weight exclusion limit of 12,000–14,000. The sample was centrifuged at 48,000 g for 30 min at 4°C and the resulting supernatant (~30 mL) was loaded onto an FPLC Q Sepharose Fast Flow (26 × 9.5) column (Amersham Pharmacia Biotech). Isocratic elution of the recombinant mtEPSPS enzyme was achieved by washing the ion exchange resin with 10 column volumes (~500 mL) of 50 mM Tris–HCl (pH 7.8) at 1 mL min−1. Protein purification was monitored by SDS-PAGE [15].

Protein determination

Protein concentration was determined by the method of Bradford [16] using the Bio-Rad Protein Assay kit (BIO-RAD) and bovine serum albumin as standard.

mtEPSPS activity assay

Recombinant mtEPSPS was assayed in the forward direction in 100 mM Tris–HCl, 50 mM KCl, and 5 mM MgCl2, pH 7.6, at 25°C. Enzyme activity was measured by estimating the rate of inorganic phosphate (P) release using a continuous spectrophotometric coupled assay with purine nucleoside phosphorylase (PNP; EC 2.4.2.1) and 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) [17]. The PNP en-
zyme and MESG are commercially available as the EnzChek Phosphate Assay kit (Molecular Probes). This assay is based on the difference in absorbance between MESG and the purine base product of its reaction with P, catalyzed by PNP. This reaction gives an absorbance increase at 360 nm with an extinction coefficient of 11,000 M⁻¹ cm⁻¹ at pH 7.6 [17]. Since SK catalyzes a phosphate transfer from ATP to the carbon-3 hydroxyl group of shikimate forming shikimate-3-phosphate (S3P), the synthesis of the mtEPSPS substrate was achieved by adding homogeneous mtSK, shikimate, and ATP to the reaction mixture in the vial. The ADP product formation to the pyruvate kinase (PK; EC 2.7.1.40) and lactate dehydrogenase (LDH; EC 1.1.1.27). Shikimate-dependent oxidation of NADH was continuously monitored at 340 nm. An extinction coefficient of NADH equal to 6.22 × 10³ M⁻¹ cm⁻¹ was used for rate calculations. All reactions were carried out at 25°C and initiated with addition of mtSK homogeneous protein. The 500 μL assay mixture contained 100 mM Tris–HCl buffer, pH 7.6, 50 mM KCl, 5 mM MgCl₂, 2.4 mM shikimic acid, 1 mM ATP, 1 mM phosphoenolpyruvate, 0.2 mM NADH, 3 UmL⁻¹ of pyruvate kinase, and 2.5 UmL⁻¹ of lactate dehydrogenase. PEP, (-)shikimate, LDH and PK enzymes, ATP, and NADH were all purchased from Sigma. The activities of LDH and PK enzymes (UmL⁻¹) were determined in the same assay buffer utilized for mtSK (100 mM Tris–HCl buffer, pH 7.6, 50 mM KCl, and 5 mM MgCl₂ at 25°C).

Shikimate kinase activity assay

Purified mtSK enzyme activity, used in mtEPSPS assay, was assayed in the forward direction by coupling the ADP product formation to the pyruvate kinase (PK; EC 2.7.1.40) and lactate dehydrogenase (LDH; EC 1.1.1.27). Shikimate-dependent oxidation of NADH was continuously monitored at 340 nm. An extinction coefficient of NADH equal to 6.22 × 10³ M⁻¹ cm⁻¹ was used for rate calculations. All reactions were carried out at 25°C and initiated with addition of mtSK homogeneous protein. The 500 μL assay mixture contained 100 mM Tris–HCl buffer, pH 7.6, 50 mM KCl, 5 mM MgCl₂, 2.4 mM shikimic acid, 1 mM ATP, 1 mM phosphoenolpyruvate, 0.2 mM NADH, 3 UmL⁻¹ of pyruvate kinase, and 2.5 UmL⁻¹ of lactate dehydrogenase. PEP, (-)shikimate, LDH and PK enzymes, ATP, and NADH were all purchased from Sigma. The activities of LDH and PK enzymes (UmL⁻¹) were determined in the same assay buffer utilized for mtSK (100 mM Tris–HCl buffer, pH 7.6, 50 mM KCl, and 5 mM MgCl₂ at 25°C).

Mass spectrometry analysis

The homogeneity of protein preparation was assessed by mass spectrometry (MS), employing some adaptations made to the system described by Chassaigne and Lobinski [20]. Samples were analyzed on a triple quadrupole mass spectrometer, model QUATTRO II, equipped with a standard electrospray (ESI) probe (Micromass, Altrincham), adjusted to ca. 250 μL min⁻¹. The source temperature (80°C) and needle voltage (3.6 kV) were maintained constant throughout the experimental data collection, applying a drying gas flow (nitrogen) of 200 L h⁻¹ and a nebulizer gas flow of 20 L h⁻¹. The mass spectrometer was calibrated with intact horse heart myoglobin and its typical cone-voltage induced fragments. The subunit molecular mass of recombinant mtEPSPS was determined by ESI-MS, adjusting the mass spectrometer to give a peak width at half-height of 1 mass unit, and the cone sample to skimmer lens voltage controlling the ion transfer to mass analyzer was set to 38 V. About 50 pmol (10 μL) of each sample was injected into electrospray transport solvent. The ESI spectrum was obtained in the multi-channel acquisition mode, scanning from 500 to 800 m/z at a scan time of 5 s. The mass spectrometer is equipped with MassLynx and Transform software for data acquisition and spectra handling.
N-Terminal amino acid sequencing

The N-terminal amino acid residues of purified recombinant mtEPSPS were identified by automated Edman degradation sequencing using a PPSQ 21A gas-phase sequencer (Shimadzu).

Results

Mycobacterium tuberculosis EPSP synthase was purified from *E. coli* BL21(DE3) cells carrying pET-23a(+)::*aroA* recombinant plasmid as described in Materials and methods and the samples of each step were analyzed by SDS–PAGE with Coomassie blue staining and assayed for enzyme activity in the forward reaction.

Purification of recombinant mtEPSPS

The mtEPSPS is a protein of 450 amino acids with 41 basic and 38 acidic residues (38 Arg plus 3 Lys and 25 Asp plus 13 Glu). In contrast to the protein purification protocol described for recombinant EPSP synthase enzyme from *E. coli* (ecEPSPS), which has 38 basic residues and 48 acidic residues [21], mtEPSPS does not adsorb to anionic exchange matrices equilibrated with buffer 50 mM Tris–HCl, pH 7.8. This is in accordance with the isoelectric point values of 9.6 and 5.18 calculated for, respectively, mtEPSPS and ecEPSPS enzymes. Hence, the mtEPSPS enzyme could be separated by a method of isocratic elution, while ecEPSP was probably adsorbed to anionic-exchange matrix Q-Sepharose Fast Flow. In purification procedures of non-adsorption in ion-exchange chromatography, one should apply a small volume of sample on column relative to volume of the column being used for better resolution [22]. Although a high sample to column volume ratio of 0.6 was used here (30 mL/50 mL), the significant retardation of mtEPSPS on anion-exchange column led to complete separation from the non-adsorbed fraction of proteins. The partition coefficient \((\alpha) \) defined as the fraction of protein adsorbed, which is the ratio between adsorbed molecules and total molecules (adsorbed + desorbed), gives values ranging from 0 to 1. For a particular protein that adsorbs partially \((0 < \alpha < 1)\), the center of the protein peak will emerge after \((1/(1 - \alpha))\) times the column volume of buffer has passed through the column [22]. Since the volume of the anion exchange column (50 mL) and the center of the mtEPSPS elution peak (150 mL) values are known, a partition coefficient value of 0.67 can be estimated (assuming that the total adsorptive capacity of the columns is much greater than the total amount of protein in the sample). This value is consistent with a significant retardation of mtEPSPS protein on the anion exchange column, leading to separation from the non-adsorbed and strongly adsorbed fractions. The mtEPSPS from the Q-Sepharose was estimated by SDS–PAGE analysis to be more than 95% pure, as seen on an overloaded Coomassie stained 10–15% polyacrylamide gel (Fig. 1).

Recombinant mtEPSPS enzyme activity assay

The samples of each purification step were assayed for EPSPS enzyme activity in the forward reaction by using a continuous spectrophotometric coupled assay with mtSK and PNP proteins. It should be pointed out that the mtSK being used in the assays has been purified to homogeneity and estimated by gels of SDS–PAGE with Coomassie blue staining to be more than 95% pure (unpublished results). To show that the observed rate values in this coupled assay are actual rate values of mtEPSPS...
expected mass for 46,425.80Da. The ESI-MS result revealed no peak at the predicted mass for the full length gene product of mass spectrometry (ESI-MS), consistent with the determined to be 46,458.10Da by electrospray ionization ESI-MS and N-terminal amino acid sequencing analyses decrease in specific activity after 4 months.

protocol.

exchange chromatography step of the purification respectively separated from the ecEPSPS enzyme by the anion also confirm the fact that mtEPSPS enzyme was effective- lysine in amino acid sequence of mtEPSPS is in accordance with the non-modification at the N-terminal methionine residue was not removed from it. The non-modification at the N-terminal amino acid sequence of mtEPSPS is in accordance with the presence of the charged amino acid residue lysine in the second position, since the methionine aminopeptidase catalyzed cleavage of the N-terminal methionine is usually removed if the second residue is small and uncharged (glycine, alanine, serine, threonine, proline, valine, and cysteine) [23,24]. The results described above also confirm the fact that mtEPSPS enzyme was effectively separated from the ecEPSPS enzyme by the anion exchange chromatography step of the purification protocol.

Discussion

Table 1 shows the results of a typical protocol employed for mtEPSPS protein purification. The enzymatic assay and protein concentration determination showed a specific activity of 18.13 U/mg for the homogeneous target protein, indicating that the one-step protocol utilized resulted in a 2.8-fold purification. This result is in accordance with an mtEPSPS overexpression of approximately 40% of total cell protein, as previously reported by Oliveira et al. [12]. An amount of 53 mg of homogeneous cloned mtEPSPS protein could be obtained from 3 g of cells or, stated otherwise, approximately 53 mg/L of LB medium. Although it is often argued that the cost of IPTG limits the usefulness of the lac promoter to high-added-value products, we showed here that large amounts of mtEPSPS can be purified from cells grown in the absence of IPTG. In another report, T7 RNA polymerase expression system has been used for overexpression and purification of ecEPSPS in quantities equal to that reported here for mtEPSPS however; it was achieved by induction of E. coli BL21(DE3) cell culture with 0.4 mM IPTG [21].

In this report, we present the purification of EPSPS from M. tuberculosis. The purification was achieved by a simple and rapid purification protocol, which yielded mtEPSPS enzyme in large quantities. To raise antibodies, Garbe et al. [25] reported the cloning of the mycobacterial aroA gene and expression of an insoluble fusion protein between 345 amino acids of mtEPSPS and glutathione S-transferase. Therefore, mtEPSPS was characterized only by immunochemical analysis and not by functional studies as described here. Thus, to the best of our knowledge, the data presented here are the first report of purification in active form of mtEPSPS enzyme. Homogeneous mtEPSPS enzyme will provide protein in quantities necessary for both X-ray crystal structure determination and studies on the enzyme mechanism of action by steady-state and pre-steady-state kinetics aiming at antimycobacterial agent development.

Acknowledgments

This work was supported by FINEP and Millenium Institute, MCT/CNPq (Brazil) grants awarded to L.A.B.
and D.S.S. We thank Prof. John S. Blanchard for generously supporting this work.

References

Crystal structure of human purine nucleoside phosphorylase at 2.3 Å resolution

Walter Filgueira de Azevedo Jr., a,b,* Fernanda Canduri, a,b Denis Marangoni dos Santos, a,b Rafael Guimarães Silva, c Jaim Simões de Oliveira, c Luiz Pedro Sório de Carvalho, c Luiz Augusto Basso, c Maria Anita Mendes, b,d Mário Sérgio Palma, b,d and Diógenes Santiago Santos, c,e,*

a Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000, Brazil
b Center for Applied Toxicology, Instituto Butantan, São Paulo, SP 05503-900, Brazil
c Rede Brasileira de Pesquisas em Tuberculose, Departamento de Biologia Molecular e Biotecnologia, UFRGS, Porto Alegre, RS 91501-970, Brazil
d Laboratory of Structural Biology and Zoochemistry-CEIS/Department Biology, Institute of Biosciences, UNESP, Rio Claro, SP 13506-900, Brazil
e Faculdade de Farmácia/Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil

Received 24 June 2003

Abstract

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxyxynucleosides. In human, PNP is the only route for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and its low resolution structure has been used for drug design. Here we report the structure of human PNP solved to 2.3 Å resolution using synchrotron radiation and cryocrystallographic techniques. This structure allowed a more precise analysis of the active site, generating a more reliable model for substrate binding. The higher resolution data allowed the identification of water molecules in the active site, which suggests binding partners for potential ligands. Furthermore, the present structure may be used in the new structure-based design of PNP inhibitors.

Keywords: PNP; Synchrotron radiation; Structure; Drug design

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of purine nucleosides to corresponding bases and sugar 1-phosphate. PNP plays a central role in purine metabolism, normally operating in the purine salvage pathway of cells. PNP is specific for purine nucleosides in the β-configuration and exhibits a preference for ribosyl-containing nucleosides relative to the analogs containing the arabinose, xylose, and lycose stereoisomers [1]. Moreover, PNP cleaves glycosidic bond with inversion of configuration to produce α-ribose 1-phosphate [2].

PNP is a potential target for drug development, which could induce immune suppression to treat, for instance, autoimmune diseases, T-cell leukemia, lymphoma and organ transplantation rejection. Furthermore, PNP inhibitors can also be used to avoid cleavage of anticancer and antiviral drugs, since many of these drugs mimic natural purine nucleosides and can thereby be cleaved by PNP before accomplishing their therapeutic role [3,4].

The crystallographic structure of human PNP (HsPNP) was first determined in 1990 at 3.2 Å resolution [3]. Further crystallographic studies improved the resolution to 2.8 Å [4]. These atomic coordinates have been extensively used for structure-based design of PNP inhibitors [5-9].

We have now obtained higher-resolution X-ray diffraction data and refined the structure of the apoenzyme to 2.3 Å, using recombinant human PNP and synchro-
tron radiation. Our analysis of the PNP structural data, hydration of residues in the binding pocket, and structural differences between the apoenzyme and PNP:guanine complex provides new insights into substrate binding, the purine-binding site, and can be used for future inhibitor design.

Materials and methods

Crystallization. Recombinant human PNP was expressed and purified as previously described [10]. HsPNP was crystallized using the experimental conditions described elsewhere [11]. In brief, a PNP solution was concentrated to 12 mg/mL against 10 mM potassium phosphate buffer (pH 7.1). Hanging drops were equilibrated by vapor diffusion at 25 °C against reservoir containing 19% saturated ammonium sulfate solution in 0.05 M citrate buffer (pH 5.3).

Data collection. Preliminary X-ray studies of HsPNP crystals showed that these crystals diffracted to 2.3 Å resolution, using synchrotron radiation, although they decayed when exposed to X-rays at room temperature [4]. In order to increase the resolution we collected data from a flash-cooled crystal at 104 K. Prior to flash cooling, glycerol was added, up to 50% by volume, to the crystallization drop solution from a flash-cooled crystal at 104K. Prior to flash cooling, phosphates were added to a solution in 0.05 M citrate buffer (pH 5.3).

The crystal structure of the HsPNP was determined by molecular replacement methods using the program AMoRe [13], using as search model the structure of HsPNP (PDB access code: 1ULA) [4]. Structure refinement was performed using X-PLOR [14]. The atomic positions obtained from molecular replacement were used to initiate the crystallographic refinement.

Root-mean-square deviation (R.m.s.d) differences from ideal geometries for bond lengths, angles, and dihedrals were calculated with the program PROCHECK [15]. Atomic models were superposed using the program LSQKAB from CCP4 [16].

Results and discussion

Molecular replacement and crystallographic refinement

The standard procedure of molecular replacement using AMoRe [13] was used to solve the structure. After translation function computation the correlation was of 75.4% and the R-factor of 33.4%. The highest magnitude of the correlation coefficient function was obtained for the Euler angles α = 113.92°, β = 57.49°, and γ = 338.28°. The fractional coordinates are Tz = 0.4971, Tb = 0.2910, and Ta = 0.2003. In the following rigid-body refinement, using XP-PLOR, the R-factor decreased from 33.3% to 30.7%, using the same resolution range. At this stage 2Fobs–Fcalk maps were calculated. These maps showed clear electron density for the PNP structure. Further refinement in X-PLOR continued with simulated annealing using the slow-cooling protocol, followed by alternate cycles of positional refinement and manual rebuilding using XtalView [17]. Finally, the positions of water and sulfate molecules were checked and corrected in Fobs–Fcalk maps. The final model has an Robs of 20.5% and an Rfree of 22.2%, with 68 water molecules and three sulfate ions. The HsPNP consists of 2251 non-hydrogen protein atoms.

Quality of the model

Analysis of the Ramachandran diagram ϕ–ψ plot for the present structure indicates that 87.7% of the residues are found to occur in the most favored regions, 11.9% in the additional allowed regions, and only one residue in the disallowed region of the plot. Analysis of the electron-density map (2Fobs–Fcalk) agrees with the Thr221 positioning. The same analysis for two previously solved crystallographic PNP structures presents 73.9% of residues in the most favorable, 23.1% in the additional allowed regions, 1.6% in the generously allowed regions, and 1.4% in the disallowed region, which shows that the present structure has better overall stereochemistry.

Ignoring low-resolution data, a Luzzati plot [18] gives the best correlation between the observed and calculated data for a predicted mean coordinate error of 0.26 Å. The average B factor for main chain atoms is 16.21 Å², whereas that for side chain atoms is 17.46 Å². B factors for water molecules range from 6.88 to 46.75 Å², with an average of 29.35 Å² (Table 1).

Quaternary structure

Analysis of the crystallographic structures of HsPNP indicates a trimeric structure. However, in a number of instances the quaternary structure observed in the crystalline state is not conserved in solution [19]. Furthermore, in the case of HsPNP the low pH used in the crystallization condition may indicate that the crystallographic structure is in an environment distant to the physiological conditions. In addition, since the active site of the PNP is located near the interface of two subunits within the trimer, the precise information about the biological unit in solution is of capital importance to guide the structure-based design of inhibitors. Unpublished results of the quaternary structure of HsPNP in solution using SAXS indicated that the structure is also trimeric in solution in physiological conditions.

Overall description

Each PNP monomer displays an α/β-fold consisting of a mixed β-sheet surrounded by α helices. The

The contact area at interface between each subunit is 1124 Å², which indicates that the subunits are strongly bound to each other in the crystalline state. Analysis of the electrostatic potential surface at the subunit interface indicates good shape complementarity and some charge complementarity (figure not shown); however, most of the contacts are hydrophobic and involve residues Tyr88, Phe141, Phe159, Phe200, and Leu209.

Comparison with other PNPs

The amino acid sequence of HsPNP is compared to those of other PNPs in Fig. 2. Table 2 shows the R.m.s.d. and of the equivalent α-carbon atoms after superposition and identity of sequences. The structural similarity correlates with the similarity in the sequences for PNP isolated from non-human sources.

Ligand-binding conformational changes

The high-resolution structure of the PNP apoenzyme provides a more reliable structural model to assess conformational changes upon ligand binding. Analysis of the superposition between the present structure and human PNP complexed with guanine (PDB access code: 1ULB) indicates that there is a conformational change in the PNP structure upon binding of guanine to the active site. The overall change is relatively small, with an r.m.s.d. in the coordinates of all Ca of 1.4 Å after superposition. The largest movement was observed for His257 side chain, which partially occupies the purine subsite in the native enzyme. The residues 241–260 act as

Table 1
Data collection and refinement statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>141.63</td>
</tr>
<tr>
<td>b (Å)</td>
<td>141.63</td>
</tr>
<tr>
<td>c (Å)</td>
<td>163.16</td>
</tr>
<tr>
<td>α (°)</td>
<td>90.00</td>
</tr>
<tr>
<td>β (°)</td>
<td>90.00</td>
</tr>
<tr>
<td>γ (°)</td>
<td>120.00</td>
</tr>
<tr>
<td>Space group</td>
<td>R32</td>
</tr>
<tr>
<td>Number of measurements with I > 2σ(I)</td>
<td>48,682</td>
</tr>
<tr>
<td>Number of independent reflections</td>
<td>26,429</td>
</tr>
<tr>
<td>Completeness in the range from 20.25 to 2.30 Å (%)</td>
<td>94.13</td>
</tr>
<tr>
<td>Rsym (%)</td>
<td>8.7</td>
</tr>
<tr>
<td>Highest resolution shell (Å)</td>
<td>2.40–2.30</td>
</tr>
<tr>
<td>Completeness in the highest resolution shell (%)</td>
<td>87.6</td>
</tr>
<tr>
<td>Rsym in the highest resolution shell (%)</td>
<td>19.7</td>
</tr>
<tr>
<td>Resolution range used in the refinement (Å)</td>
<td>8.0–2.3</td>
</tr>
<tr>
<td>Rfactor (%)</td>
<td>20.5</td>
</tr>
<tr>
<td>Rfree (%)</td>
<td>22.2</td>
</tr>
<tr>
<td>B values (Å²)</td>
<td></td>
</tr>
<tr>
<td>Main chain</td>
<td>16.21</td>
</tr>
<tr>
<td>Side chains</td>
<td>17.46</td>
</tr>
<tr>
<td>Waters</td>
<td>29.35</td>
</tr>
<tr>
<td>Sulfate groups</td>
<td>23.09</td>
</tr>
<tr>
<td>Observed r.m.s.d. from ideal geometry</td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.009</td>
</tr>
<tr>
<td>Bond angles (degrees)</td>
<td>1.48</td>
</tr>
<tr>
<td>Dihedrals (degrees)</td>
<td>25.18</td>
</tr>
<tr>
<td>No. of water molecules</td>
<td>68</td>
</tr>
<tr>
<td>No. of sulfate groups</td>
<td>3</td>
</tr>
</tbody>
</table>

aRsym = 100 Σ[I(h)− <I(h)>]/Σ[I(h)], observed intensity and <I(h)> mean intensity per b overall measurement of I(h).

bRfactor = 100 × Σ|Fobs−Fcalc|/ΣFobs, the sums being taken over all reflections with ΣFobs > 2cutoff.

cRfree = Rfactor for 10% of the data, which were not included during crystallographic refinement.

dB values = average B values for all non-hydrogen atoms.

Fig. 1. Ribbon diagrams of HsPNP generated by Molscript [34] and Raster3d [35] for (A) trimer and (B) monomer.
a gate that opens during substrate binding. This gate is anchored near the central β-sheet at one end and near the C-terminal helix at the other end and it is responsible for controlling access to the active site. The gate movement involves a helical transformation of residues 257–265 in the transition apoenzyme complex. Comparison of the PNP apoenzyme with bovine PNP (BtPNP) complexed with immucillin-H also shows the gate movement and the helical transition in the same region.

Especially interesting is the position occupied by the Lys244 in the present structure. The hydrogen bond between the Lys244NZ and O6 of the purine ring was previously predicted from molecular modeling studies [20], since electron density was not detected for the Lys244 side-chain atoms in the low-resolution PNP structures [3,4]. The higher-resolution structure of HsPNP, here described, presents clear electron density for the Lys244 region. The ε-amino group of Lys244 forms hydrogen bonds with the carbonyl groups of Phe124 (3.3 Å) and Asn121 (2.7 Å), in the present structure, indicating that the side-chain of Lys244 is firmly locked in this region. Similar positioning for Lys244 is observed in the high-resolution structures of BtPNP [21,22]. Analysis of the same region in the low-resolution structure of HsPNP complexed with guanine (PDB access code: 1ULB) indicates a large movement in the Lys244 side chain upon binding of guanine, suggesting that the ε-amino group of Lys244 in the HsPNP moves 9.1 Å upon guanine binding.

Based on the high-resolution structures of HsPNP and BtPNP we propose that the binding of guanine and inhibitors to mammalian PNP does not generate large movement of Lys244 side chain, nor allows hydrogen bonding between ε-amino group of Lys244 and substrate, as speculated in previous reports [4,20]. Furthermore, the predicted salt-bridge between Lys244 and Glu201 is also unlikely to occur, since it was not observed, neither in the present structure nor in the high-resolution structures of BtPNP.

The present work strongly indicates that all previous modeling studies that showed the participation of the side chain of Lys244 in substrate binding should be revised [4,7,20,23]. Furthermore, analysis of Lys244Ala mutant exhibited kinetic parameters similar to the wild-type enzyme [24,25], which also indicates that Lys244 has no participation in substrate binding and catalysis. The authors of this work believe that such misjudgment of hydrogen-bonding pattern between substrate and HsPNP is due mainly to the low-resolution character of the previously determined structure and the poor stereochemical quality of the models, since Lys244 is located in the disallowed region of the Ramachandran plot for HsPNP complexed with guanine.

Table 2
R.m.s. deviations after superposition of PNP's against atomic coordinates of 1M73

<table>
<thead>
<tr>
<th>PDB access code</th>
<th>Organism</th>
<th>Sequence identity with recombinant HsPNP (%)</th>
<th>R.m.s.d. (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ULA</td>
<td>Homo sapiens</td>
<td>99.7</td>
<td>0.74</td>
</tr>
<tr>
<td>1ULB</td>
<td>Homo sapiens</td>
<td>99.7</td>
<td>1.40</td>
</tr>
<tr>
<td>1B8O</td>
<td>Bos taurois</td>
<td>86.5</td>
<td>0.53</td>
</tr>
<tr>
<td>1G2O</td>
<td>Mycobacterium tuberculosis</td>
<td>37.8</td>
<td>1.21</td>
</tr>
<tr>
<td>1C3X</td>
<td>Cellulomonas sp.</td>
<td>35.0</td>
<td>3.14</td>
</tr>
<tr>
<td>1A69</td>
<td>Escherichia coli</td>
<td>14.7</td>
<td>3.38</td>
</tr>
</tbody>
</table>
Second phosphate regulatory binding site

The high-resolution structure of HsPNP shows clear electron-density peaks for three sulfate groups, which is present in high concentration in the crystallization experimental condition. Two of these sulfate groups have been previously identified in the low-resolution structure [3] and one new site was identified at subunit interface in the present structure. The first sulfate site, which is the catalytic phosphate-binding site, is positioned to form hydrogen bonds to Ser33, Arg84, His86, and S220. The second sulfate-binding site lies near Leu35 and Gly36 and is exposed to the solvent and whether it is mechanistically significant or an artifact resulting from the high sulfate concentration used to grow the crystals is not known. The third identified sulfate group makes three hydrogen bonds, involving residues Gln144 (3.21 Å) and Arg148 (2.68 and 3.22 Å) from adjacent subunit. A previous study of BtPNP activity as a function of phosphate concentration strongly indicates the presence of a second phosphate-binding site in the enzyme that may play a regulatory role [26]. Based on this
result we propose that the third phosphate-binding site identified in the present structure is the putative second regulatory phosphate-binding site.

It has also been proposed that the higher IC$_{50}$ observed in experiments in higher phosphate concentrations may be explained by direct competition of phosphate groups and inhibitor for the phosphate-binding site (e.g., acyclovir diphosphate), while in other cases the reason is not so obvious [27]. It is tempting to speculate that the presence of a phosphate group in the second regulatory phosphate-binding site may offer further hindrance to the binding of substrates, which may also contribute to the larger IC$_{50}$ observed for several inhibitors in the presence of higher phosphate concentrations.

An updated view of the active site

Analysis of the high-resolution structures HsPNP (present work) and BtPNP [21] strongly suggests that the composition of the purine-binding site needs to be updated. These structures indicate that the purine-binding site is composed of residues Ala116, Phe200, Glu201, Val217, Met219, Thr242, and Asn243. Ealick et al. [3] stated that Ala116 is located on one side of the purine ring and Phe200 on the other. The previously determined participation of Lys244 [4] in purine binding has not been identified in the present study. The ribose-binding site is mostly hydrophobic, which is composed of several aromatic amino acids, including Tyr88, Phe159 (of the adjacent subunit), Phe200, His86, His257, and Met219. Remarkably though, the 2.8 Å hydrogen bond between the 0' oxygen and the amide of Met219 seems to be the only enzymatic contact relevant to ribosyl ring migration in the reaction coordinate motion [21]. Two phosphate-binding sites are present in the structure, one located near a glycine-rich loop (residues 32–37) is composed of residues Ser33, Arg84, His86, and Ser220 and a second at subunit interface near residues Gln144 and Arg148 (of the adjacent subunit). These phosphate-binding sites correspond, respectively, to the catalytic and regulatory sites in HsPNP. Fig. 3 shows the positions of all binding sites.

Implications for PNP inhibitor design

The specificity and affinity between enzyme and its inhibitor depend on directional hydrogen bonds and ionic interactions, as well as on shape complementarity of the contact surfaces of both partners [28–31]. The description of the PNP-guanine complex structure provides a list of potentially important interactions for ligand binding. However, other information such as binding affinities of ligand analogs, conformational flexibility of the ligand, and solvation of residues in the binding pocket of the apoenzyme is needed to identify functionally essential interactions. The purine interactions with PNP are mostly of hydrophobic nature with residues that are conserved throughout the PNP family, nevertheless several hydrogen bonds, between PNP and guanine, are observed. The fact that these hydrogen bonds are formed in a hydrophobic environment, which increases the interaction energy between two dipoles, most likely contribute to their importance in the overall binding affinity. The binding pocket for the purine in the apoenzyme shows two well-defined water molecules whose density of one water molecule overlaps with the purine ring in the superimposed guanine complex. This water molecule is substituting for guanine N1 atom forming a hydrogen bond with Glu201OE2, thereby confirming the importance of a hydrogen-bonding partner for Glu201OE2. Furthermore, the high-resolution crystallographic structures of complexes between PNP and immucillin-H show intermolecular hydrogen bonds involving the side chain of residue Glu201 in the complex structure [21,32]. In addition, kinetic data of purine-binding site mutants indicated that Glu201Ala mutant proved to be a less efficient enzyme relative to the wild type with a 2800-fold decrease in k_{cat}/K_m value in the phosphorolytic direction due to changes in both k_{cat} and K_m [20]. Protonation of this group prevents the substrate binding interaction at N1 and the proton-transfer bridge responsible for O6 protonation at the transition state [21,27]. The second water is close to Phe159 and Phe200 at subunit interface. Consistent with a role for Phe200, Phe200Ala mutation was shown to result in a large decrease in catalytic efficiency due predominantly to an increase in the K_m for inosine. Phe159 has been implicated in ribose subsite recognition, since the Phe159Ala mutant showed little change in k_{cat} value and an 8-fold increase in K_m value for inosine [20]. The large contribution of the guanine to binding affinity of several PNP inhibitors is probably due to the formation of essential buried hydrogen bonds and numerous van der Waals contacts in combination with smaller entropic cost of binding the rigid purine ring, as observed in the structure of CDK2 complexes [33].

Conclusions

Analysis of the high-resolution structure of PNP apoenzyme provides important information for the structure-based design of new drugs and the improvement of already identified lead compounds.

1. The use of cryocrystallography techniques and recombinant human PNP allowed an improvement in the resolution of 0.5 Å as compared to the HsPNP structures solved using crystals that were not frozen. Furthermore, the overall stereochemical quality for the present structure is considerably superior than the one obtained for the two previously determined
structures of HsPNP, which indicates that the cryo-
genic conditions used to collect the X-ray diffraction data and the recombinant human PNP not only increased the resolution but also increased substantially the overall stereochemical quality of the structure.
2. The water structure of the active site suggests binding partners for potential ligands.
3. Ligand-induced conformational changes in the protein are difficult to predict and need to be determined experimentally. In the case of PNP, there is a large movement of residues 240–260. These residues form a gate that opens during substrate binding. Furthermore, the present structure strongly indicates that previous molecular modeling studies of PNP need to be revised, since they predicted participation of the ε-amino group of Lys244 in substrate binding, such interaction is not observed in the high-resolution structure of BtPNP in complex with immucillin-H, which presents the side-chain of Lys244 in a conformation close to that observed in the present structure.
4. The identification of a second regulatory phosphate-binding site partially explains the phosphate dependency of IC50 observed for several PNP inhibitors.

Acknowledgments

We acknowledge the expertise of Denise Cantarelli Machado for the expansion of the cDNA library and Deise Potrich for the DNA sequencing. This work was supported by grants from FAPESP (SMOLBNet, Proc. 01/07532-0), CNPq, CAPES and Instituto do Milênio (CNPq-MCT). WFA (CNPq, 300851/98-7), MSP (CNPq, 500079/90-0), and LAB (CNPq, 520182/99-5) are researchers for the Brazilian Council for Scientific and Technological Development.

References

Molecular models for shikimate pathway enzymes of Xylella fastidiosa

Helen Andrade Arcuri, a,1 Fernanda Canduri, a,d,1 José Henrique Pereira, a Nelson José Freitas da Silveira, a João Carlos Camera Jr., a Jaim Simões de Oliveira, b Luiz Augusto Basso, b Mário Sérgio Palma, c,d Diógenes Santiago Santos, e,* and Walter Filgueira de Azevedo Jr. a,d,*

a Department of Physics IBILCE/UNESP, São José do Rio Preto, SP 15054-000, Brazil
b Rede Brasileira de Pesquisas em Tuberculose, Department of Molecular Biology and Biotecnology, UFRGS, Porto Alegre, RS 91501-970, Brazil
c Laboratory of Structural Biology and Zoonchemistry, Department of Biology, Institute of Biosciences, UNESP, Rio Claro, SP 13506-900, Brazil
d Center for Applied Toxicology, Institute Butantan, São Paulo, SP 05503-900, Brazil
e Center for Research and Development in Molecular, Structural and Functional Molecular Biology, PUCRS 90619-900, Porto Alegre, RS, Brazil

Received 25 May 2004
Available online 25 June 2004

Abstract

The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes.

Keywords: Shikimate pathway; Structural bioinformatics; Drug design; Xylella fastidiosa

Xylella fastidiosa (Xf) is a fastidious and gram-negative, xylem-limited bacterium which causes the citrus variegated chlorosis (CVC), a serious disease of citrus fruit [1]. The disease spread rapidly by graft propagation with infected budwood and by sharpshooter vectors, and became widely distributed in all citrus growing regions of Brazil. CVC is one of the major concerns to the Brazilian citrus industry. Certain strains of Xf also affect other commercially important products such as coffee, nuts, and other fruits [2].

In plants and microorganisms, all the key aromatic compounds involved in primary metabolism, including the three aromatic amino acids found in proteins, are produced via shikimate pathway. The shikimate pathway is essential in algae, higher plants, bacteria, and fungi, but absent from mammals that depend on these compounds for your diet [3].

Xylella fastidiosa appears to be capable of synthesizing an extensive variety of enzyme cofactors and prosthetic groups, including biotin, folic acid, pantothenate and coenzyme A, ubiquinone, glutathione, thioredoxin, glutaredoxin, riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), pyrimidine nucleotides, thiamin, pyridoxal 5'-phosphate, and lipoate [1].

The shikimate pathway consists of seven enzymes that catalyze the sequential conversion of erythrose-4-phosphate and phosphoenolpyruvate to chorismate [4] (Fig. 1). All pathway intermediates can also be considered branch point compounds that may serve as substrates for other metabolic pathways [5].
The molecular organization and structure of the shikimate pathway enzymes varies considerably between microorganism groups. Bacteria have seven individual polypeptides, each possessing a single enzyme activity, which are encoded by separated genes. Plants have a molecular arrangement similar to bacteria, i.e., separated enzymes encoded by separated genes, with the exception of dehydroquinase and shikimate dehydrogenase, which have been shown to be present as separated domains on a bifunctional polypeptide. Plant enzymes, although nuclear encoded, are largely active in the chloroplast and accordingly possess an N-terminal transit sequence. In contrast, all fungi examined to date have monofunctional 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases and chorismate synthases and a pentafunctional polypeptide termed AROM. The AROM polypeptide has domains analogous to the bacterial enzymes: dehydroquinate synthase (DHQS), 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), shikimate kinase (SK), dehydroquinase (DHQD), and shikimate dehydrogenase (SDH) [4].

Chorismate is converted by five distinct enzymes to prephenate, anthranilate, aminodeoxychorismate, isochorismate, and p-hydroxybenzoate. These metabolites comprise the first committed intermediates in the biosynthesis of Phe, Tyr, Trp, folate, menaquinone, and the siderophore enterobactin, and ubiquinone, respectively. The synthesis of these precursors is in most cases highly regulated [6].

In monogastric animals, Phe and Trp are essential amino acids that have to come with the diet and Tyr is directly derived from Phe. Since bacteria use in excess 90% of their metabolic energy for protein biosynthesis, for most prokaryotes, the three aromatic amino acids represent nearly the entire output of aromatic biosynthesis, and regulatory mechanisms for shikimate pathway activity are triggered by the intracellular concentrations of Phe, Tyr, and Trp. This is not so in higher plants, in which the aromatic amino acids are the precursors for a large variety of secondary metabolites with aromatic ring structures that often make up a substantial amount of the total dry weight of a plant. Among the many aromatic secondary metabolites are flavonoids, many phytoalexins, indole acetate, alkaloids such as morphine, UV light protectants, and, most important, lignin [7].

In microorganisms, the shikimate pathway is regulated both by feedback inhibition and by repression of the first enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHPS). In higher plants, no physiological feedback inhibitor has been identified, suggesting that pathway regulation may occur exclusively at the genetic level. This difference between microorganisms and plants is reflected in the unusually large variation in the primary structures of the respective first enzymes [5].

Shikimate pathway enzymes are attractive targets for drug development, however any new inhibitor for shikimate pathway enzymes should have high specificity for Xf enzymes, since they are also present in the plants. Therefore, detailed structural information about the protein targets will help us to identify structural differences between enzymes of plant and Xf, which may serve as basis to design specific inhibitor against shikimate pathway enzymes of the X. fastidiosa. The seven enzymes modeled in the present work were 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS), 3-dehydroquinase synthase (DHQS), 3-dehydroquinase dehydratase (DHQD), shikimate-5-dehydrogenase (SDH), shikimate kinase (SK), 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), and chorismate synthase (CS).

Knowledge of the three-dimensional structures of the enzymes will undoubtedly aid in the design of useful inhibitors that may be used as a bactericide against X. fastidiosa.

Methods

Molecular modeling. Homology modeling is usually the method of choice when there is a clear relationship of homology between the sequence of a target protein and at least one known structure. This computational technique is based on the assumption that tertiary structures of two proteins will be similar if their sequences are related, and it is the approach most likely to give accurate results [8]. There are two main approaches to homology modeling: (1) fragment-based comparative modeling [9,10] and (2) restrained-based modeling [11]. For modeling of the shikimate pathway we used the second approach.
Model building of shikimate pathway enzymes was carried out using the program MODELLER [11]. MODELLER is an implementation of an automated approach to comparative modeling by satisfaction of spatial restraints [12–14]. The modeling procedure begins with an alignment of the sequence to be modeled (target) with related known three-dimensional structures (templates). This alignment is usually the input to the program. The output is a three-dimensional model for the target sequence containing all main-chain and sidechain non-hydrogen atoms.

Since there are no three-dimensional structures available for shikimate pathway enzymes of the X. fastidiosa (targets) the models were built based on the atomic coordinates of shikimate pathway enzymes (templates), which were solved by crystallographic methods (Table 1). The percentage of primary sequence identity (Table 1) between enzymes of Xf and of templates indicates that the crystallographic structures of enzymes (templates) are good models to be used as templates for the enzymes of X. fastidiosa (targets). The alignment of enzymes of the X. fastidiosa (targets) and of templates is shown in Figs. 2A–G.

Next, the spatial restraints and CHARMM energy terms enforcing proper stereochemistry [15] were combined into an objective function. Finally, the model is obtained by optimizing the objective function in Cartesian space. The optimization is carried out by the use of the variable target function method [16] employing method of conjugate gradients and molecular dynamics with simulated annealing. Several slightly different models can be calculated by varying the initial structure. A total of 1000 models were generated for each enzyme and the final models were selected based on stereochemical quality. All optimization process was performed on a Beowulf cluster with 16 nodes (BioComp, AMD Athlon XP 1800+).

Analysis of the models. The overall stereochemical quality of the final models for each enzyme of the shikimate pathway of the X. fastidiosa was assessed by the program PROCHECK [17]. The root mean square deviation (rmsd) between Cα atoms’ distance was superposed using the program LSQKAB from CCP4 [18]. The cutoff for hydrogen bonds and salt bridges was 3.3 Å. The contact area for the complexes was calculated using AREAIMOL and RESAREA [18]. The root mean square deviation (rmsd) differences from ideal geometries for bond lengths and bond angles were calculated with X-PLOR [19,20]. The G-factor value is essentially just log-odds score based on the observed distributions of the stereochemical parameters. It is computed for the following properties: torsion angles (the analysis provided the observed distributions of ϕ–ψ, χ1–χ2, χ2–χ1, χ3, χ4, and ω values for each of the 20 amino acid types) and covalent geometry (for the main-chain bond lengths and bond angles). These values’ average was calculated using PROCHECK [17]. The Verify-3D measures the compatibility of a protein model with its sequence, using a 3D profile [21–23].

Results and discussion

Quality of the models

The atomic coordinates of crystallographic structures (Table 1) solved to resolution better than 2.0 Å (with two exceptions) were used to build up an ensemble of structures to be used as starting models for modeling of the X. fastidiosa structures. The atomic coordinates of all waters were removed from the templates.

The analysis of the Ramachandran diagram ϕ–ψ plots for the templates (Table 2) was used to compare the overall stereochemical quality of the X. fastidiosa structures against that of templates solved by biocrystallography. They present over 89.0% of the residues in the most favorable regions.

Overall description and interactions with inhibitors

Among the seven enzymes modeled in the present work four proteins were modeled with inhibitors (DAHPS: Mn²⁺; PGL, DHQS: CRB: NAD, DHQD: FA1, and EPSPS: glyphosate: S3P), because only these templates have inhibitors in their crystallographic structure.

The structures of all molecular models were superposed with their templates (Figs. 6A–G). The rmsd for each superposition is given in Table 1. It was considered only Cα in the superposition. The rmsd value of bond lengths and bond angles is presented in Table 2.

The superpositions of the complexes are shown in Figs. 5A–E and the average G-factor and Verify 3D values are shown in Table 3.

3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase

The first step of the shikimate pathway is the condensation of phosphoenolpyruvate (PEP) with the four-carbon sugar D-erythrose-4-phosphate (E4P) to produce 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP)

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>PDB access code</th>
<th>Resolution (Å)</th>
<th>References</th>
<th>Organism</th>
<th>Sequence identity (%)</th>
<th>rmsd (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAHPSa</td>
<td>1GG1</td>
<td>2.00</td>
<td>[24]</td>
<td>Escherichia coli (Ec)</td>
<td>61.1</td>
<td>0.086</td>
</tr>
<tr>
<td>DHQSb</td>
<td>1DQS</td>
<td>1.80</td>
<td>[26]</td>
<td>Emericella nidulans (En)</td>
<td>31.8</td>
<td>0.055</td>
</tr>
<tr>
<td>DHQDc</td>
<td>1GU1</td>
<td>1.80</td>
<td>[30]</td>
<td>Streptomyces coelicolor (Sc)</td>
<td>42.5</td>
<td>0.059</td>
</tr>
<tr>
<td>SDHd</td>
<td>1NYT</td>
<td>1.50</td>
<td>[32]</td>
<td>E. coli (Ec)</td>
<td>42.3</td>
<td>—</td>
</tr>
<tr>
<td>SKe</td>
<td>1L4Y</td>
<td>2.00</td>
<td>[38]</td>
<td>Mycobacterium tuberculosis (Mt)</td>
<td>32.6</td>
<td>—</td>
</tr>
<tr>
<td>EPSPSf</td>
<td>1G6S</td>
<td>1.50</td>
<td>[46]</td>
<td>M. tuberculosis (Mt)</td>
<td>32.6</td>
<td>—</td>
</tr>
<tr>
<td>CSg</td>
<td>1QXO</td>
<td>2.00</td>
<td>[49]</td>
<td>E. coli (Ec)</td>
<td>29.9</td>
<td>1.419</td>
</tr>
</tbody>
</table>

a DAHPS, 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase; DHQS, 3-dehydroquinate synthase; DHQD, 3-dehydroquinate dehydratase; SDH, shikimate-5-dehydrogenase; SK, shikimate kinase; EPSPS, 5-enolpyruvylshikimate-3-phosphate synthase; and CS, chorismate synthase.
and inorganic phosphate [5]. This reaction is catalyzed by the enzyme DAHPS, a metal-activated enzyme, which in microorganisms is the target for negative-feedback regulation by pathway intermediates or by end products. The basic structure of DAHPS was confirmed by several different chemical syntheses [7]. Typically, the comparison of the primary amino acid sequence of plant with DAHPS shows a surprisingly low 20% pairwise identity. In fact, PRETTYBOX (GCG program package), a program used to make multiple sequence alignments, identifies only 24 invariant residues for all known DAHPS [5].

The Fig. 3A shows the secondary structure of \(\chi/\text{DAHPS} \) in the complex with manganese (II) ion (\(\text{Mn}^{2+} \)) and 2-phosphoglycolate (PGL). This model shows that the protein has 8 (\(\beta\alpha \)-barrel) with several additional secondary structure elements, including a C-terminal tail that forms a three-stranded, anti-parallel \(\beta \)-sheet with the \(\beta_6\alpha/\beta_6\beta \) strands [24]. The active site of \(\chi/\text{DAHPS} \) consists of a channel between C-terminal and N-terminal region of the 8 (\(\beta\alpha \)-barrel) with bound \(\text{Mn}^{2+} \) and PGL.

We observed a total of 12 hydrogen bonds between \(\chi/\text{DAHPS} : \text{Mn}^{2+} : \text{PGL} \), in binary model, involving the...
residues Arg92, Lys97, Ala164, Arg165, Lys186, Arg234, and His268. For the EcDAHPS:Mn$^{2+}$:PGL 12 hydrogen bonds involving the residues Arg92, Lys97, Ala164, Arg165, Lys186, Arg234, and His268 were observed. The contact areas for the complexes of Ec-DAHPS:Mn$^{2+}$:PGL and XfDAHPS:Mn$^{2+}$:PGL are 96 and 81Å2, respectively.

3-Dehydroquinate synthase

The second enzyme of the shikimate pathway, 3-dehydroquinate synthase (DHQS), requires catalytic amounts of NAD$^+$ and a divalent cation for activity. For the bacterial enzyme, Co$^{2+}$ and Zn$^{2+}$ are the most active metal ions [25].

DHQS is a NAD$^+$-dependent metalloenzyme that converts DAHP to dehydroquinate [26]. DHQS is activated by inorganic phosphate, one of the reaction products, and the enzyme also requires catalytic amounts of NAD$^+$ for activity, even though the enzyme catalyzed reaction is redox neutral. Conversion of DAHP to DHQ proceeds by way of an intramolecular exchange of the DAHP ring oxygen with carbon 7, driven by the cleavage of the phosphoester. The reaction involves an oxidation, a β-elimination of inorganic phosphate, a reduction, a ring opening, and an intramolecular aldol condensation [5].
acid (CRB) and nicotinamide-adenine-dinucleotide (NAD\(^+\)). The structure is composed of an N-terminal \(\alpha/\beta\)domain and a C-terminal \(\alpha\)-helical domain [26].

The N-terminal domain includes a Rossmann fold, but surprisingly binds NAD\(^+\) in an inverted orientation to that observed in all other classic Rossmann-fold proteins. This domain consists of a seven-stranded \(\beta\)-sheet, with strand order 1296534 (Fig. 3B). Strands \(\beta_1\) and \(\beta_2\) form a \(\beta\)-hairpin which is connected by helix \(\alpha_1\) to a five-stranded Rossmann-fold structure [27,28]. This conformation orientates the NAD\(^+\) so that the active site is on the opposite side of the sheet to that seen in all other known Rossmann type NAD\(^+\)-binding proteins [26], comprising a \(\beta\alpha\beta\) unit and a \(\beta\alpha\beta\alpha\beta\) unit. Strands \(\beta_7\)
and β8 form a separated β-hairpin. Both DHQS and the classic Rossmann-fold domains bind NAD(P)+ at the C-terminal end of the sheet [27,28].

However, uniquely among known NAD(P)+-binding protein structures, the phosphate moieties of NAD+ in DHQS are associated with the glycine-rich first turn of the second ββββββ unit, rather than the first (βαββββ) unit [26–28].

We observed a total of 16 hydrogen bonds in the binary complex X/DHQD:NAD+:CRB, involving the residues Asp143, Lys149, Asn159, Glu191, Lys194, Lys233, Arg247, Asn251, His254, His276, and Lys335. For the EnDHQS:NAD+:CRB 16 hydrogen bonds involving the residues Asp146, Lys152, Asn162, Glu194, Lys197, Lys250, Arg264, Asn268, His271, His287, and Lys356 were observed. The contact areas for the complexes of EnDHQS:NAD+:CRB and X/DHQD:NAD+:CRB are 582 and 566 A², respectively.

3-Dehydroquinate dehydratase

The third step of the shikimate pathway, dehydration of DHQ to give 3-dehydroshikimate (DHS), is catalyzed by DHQD that exists in two forms: types I and II [5]. In higher plants, the third and fourth steps of the shikimate pathway are catalyzed by a bifunctional enzyme [25]. This enzyme belongs to the superfamily of NAD(P)H-dependent oxidoreductases, which function in anabolic and catabolic enzyme pathways as well as in xenobiotic detoxification. This superfamily is usually subdivided into several families, including short chain dehydrogenases, medium chain dehydrogenases, aldo-keto reductases, iron-activated alcohol dehydrogenases, and long chain dehydrogenases [29].

The overall topology of the type I DHQD is an eight-stranded α/β barrel while the type II DHQD subunit consists of a five-stranded β-sheet core flanked by four α-helices. The type I enzymes catalyze a cis (syn)-dehydration involving loss of the 2-pro-R hydrogen via a covalent imine intermediate, while the type II enzymes catalyze a trans (anti)-dehydration which results in the loss of the 2-pro-S hydrogen, probably via an enolate intermediate [3].

Fig. 3C shows the secondary structure of X/DHQD in complex with 2,3-anhydro-quinic acid (FA1). The enzyme is an α/β protein with a central five-stranded parallel β-sheet whose observed strand order is 21345, which is a flavodoxin-like fold, as defined in the SCOP.
Fig. 3. Ribbon diagrams for: (A) XfDAHPS:PGL:Mn2+, (B) XfDHQS:CRB:NAD+, (C) XfDHQD:FA1, (D) XfSDH:NAD+, (E) XfSK:ATP:Mg2+:SHK, (F) XfEPSPS:glyphosate:S3P, and (G) XfCS:FMN:EPSP. Figures were generated by Molscript [55] and Raster3d [56].

Fig. 4. Electrostatic potential surface for the complexes: (A) XfDAHPS:PGL, (B) XfDHQS:CRB, (C) XfDHQD:FA1, (D) XfEPSPS:glyphosate, and (E) XfCS:FMN calculated with GRASP [53].
classification of protein folds. There are four main \(\alpha \)-helices in the structure, with \(\alpha_1 \) and \(\alpha_4 \) on one face of the \(\beta \)-sheet and \(\alpha_2 \) and \(\alpha_3 \) on the other face. The active site in type II DHQD is located in the cleft formed at the carboxy edge of the \(\beta \)-sheet between strands \(\beta_1 \) and \(\beta_3 \), which is common not only to enzymes with a flavodoxin-like fold but also to \(\alpha/\beta \) [30].

We observed a total of 11 hydrogen bonds between \(\lambda/\)DHQD and FA1 involving the residues Asn75, Ala78, His81, Leu102, Ser103, and Arg112. For the \(\lambda/\)DHQD:FA1 11 hydrogen bonds involving the residues Asn79, Ala82, His85, His106, Ile107, Ser108, and Arg117 were observed. The contact areas for the complexes of \(\lambda/\)DHQD:FA1 and \(\lambda/\)DHQD:FA1 are 105 and 144 \(\AA^2 \), respectively.

Shikimate-5-dehydrogenase

The shikimate dehydrogenase catalyzes the fourth reaction in the shikimate pathway, the NADP-dependent reduction of 3-dehydroshikimate to shikimate [5].

This compound, which differs from shikimic acid only by the addition of a hydroxyl group at C1, is the precursor to the ubiquitous plant secondary product chlorogenic acid. To date, two independent families of quinate/shikimate dehydrogenases have been identified. The first consists of NAD-dependent dehydrogenases, and the second consists of membrane-associated dehydrogenases that utilize pyrrolo-quinoline-quinone as a cofactor [32].

Both types of dehydrogenases are involved in the catabolic quinate pathway, which allows growth of microorganisms with quinate as the sole carbon source by its conversion into protocatechuate and subsequent metabolism by the \(\beta \)-ketoadipate pathway [32].

Fig. 3D shows that the secondary structure of \(\lambda/\)SDH in complex with nicotinamide-adenine-dinucleotide (NAD\(^+\)) displays an architecture with two \(\alpha/\beta \) domains separated by a wide cleft. The first three \(\beta \)-strands follow a regular \(\alpha/\beta \) succession, with the helices \(\alpha_1 \) and \(\alpha_2 \) parallel to the \(\beta \)-strands, flanking opposite sides of the sheet. The domain is completed by a C-terminal \(\alpha \)-helical hairpin (\(\alpha_9 \) and \(\alpha_{10} \)), which packs against the
Fig. 6. Superposition of the molecular models (thick line) with their template structures (thin line). (A) XfDAHPS, (B) XfDHQS, (C) XfDHQD, (D) XfSDH, (E) XfSHK, (F) XfEPSPS, and (G) XfCS.
β-sheet on the same side as z1 [32]. This structure reveals an enzyme with a deep cleft, which contains the active site formed at the junction of two domains. The C-terminal domain is easily recognizable as a Rossmann-fold dinucleotide-binding domain, responsible for binding the NADP cofactor. The N-terminal substrate binding and dimerization domain, an α-β-α sandwich, represents a unique topological fold [33].

Shikimate kinase

In the fifth step of the shikimate pathway, shikimate kinase catalyzes the phosphorylation of shikimate to yield shikimate 3-phosphate (S3P) [5].

Fig. 3E shows the secondary structure of Xf/SK in the complex with shikimate and ADP/Mg²⁺. It is an α/β protein consisting of a mixed β-sheet surrounded by α-helices. A central five-stranded parallel β-sheet (β1-β5) presents the strand order 23145. The β-strands are flanked on either side by α-helices (α1 and α8 on one side, α4, α5, and α7 on the other) [34]. The ordering of the strands 23145 classifies it as belonging to the same structural family as the nucleoside monophosphate (NMP) kinases. The Xf/SK structure exhibits the walker-A motif located between β1 and α1 forming a canonical phosphate-binding loop (P-loop). The core of the SK structure forms a classical mononucleoside-binding fold [35]. It has been reported that NMP kinases undergo large conformational changes during catalysis. The regions responsible for this movement are NMP-binding site and the lid domain. The NMP-binding site is formed by a series of helices between strands 1 and 2 of the parallel β-sheet. The lid domain is a region of variable size and the structure following the fourth β-strand of the sheet [36,37]. The docking simulations of shikimate to Erwinia chrysanthemi and Mycobacterium tuberculosis identified that shikimate binds in a position analogous to nucleotide monophosphate in NMP kinases [38–40]. The shikimate-binding domain, which follows strand β2, consists of helices α2 and α3, and the N-terminal region of helix α4.

5-Enolpyruvylshikimate-3-phosphate synthase

In the sixth step of the shikimate pathway, a second phosphoenolpyruvate (PEP) enters in the pathway. It is condensed with S3P to yield 5-enolpyruvylshikimate-3-phosphate (EPSP) and inorganic phosphate. EPSP synthase (EPSPS) is the only cellular target for the herbicide glyphosate. Glyphosate binding is competitive with PEP. For a long time, the ternary complex enzyme-S3P-glyphosate has been considered a transition state analog in which glyphosate takes the place of PEP [5]. Enzyme–ligand distances within the glyphosate-containing ternary complex were measured by NMR [41], and now reports from several laboratories indicate that the complex may not be a transition state analog, because PEP and glyphosate binding is apparently not identical [42,43].

The mode of action of glyphosate on EPSPS has been debated over the past two decades. While studies suggested that glyphosate is an intermediate-state analog of the EPSPS reaction it was later proposed that glyphosate might act as an allosteric inhibitor. This ambiguity was partly due to the lack of structural information about EPSPS. However, the nature of the binding site of either S3P or glyphosate remained obscure until recently, when the crystal structures of EPSPS complexed with S3P (binary complex) or complexed with S3P and glyphosate (ternary complex) were determined to atomic detail. Comparison of ligand-free EPSPS with the binary complex suggests that the two globular domains approach each other on S3P binding, such that the active site emerges in the interdomain cleft [44].

The two flat surfaces of the hemispheres, which in projection form a “V” are almost normal and accommodate the N-terminal of the six helices in each domain. The helical macrodipolar effects create a potential well that facilitates the binding of glyphosate and S3P. The domains are composed of three copies of a βαβαβαβ folding unit (Fig. 3F). The four-stranded β-sheet structures contain both parallel and antiparallel strands and the helices are parallel [45].

We observed a total of 16 hydrogen bonds in the ternary complex Xf/EPSPS:S3P:glyphosate, involving the residues Lys22, Asn93, Arg123, Gln170, Ile315, Asp316, Arg347, Glu344, and Arg388. For the Ec/EPSPS:S3P:glyphosate it was observed 15 hydrogen bonds involving the residues Lys22, Gln96, Arg124, Gln171, Asp313, Glu341, Arg344, Arg386, and Lys341. The contact areas for the complexes of Ec/EPSPS:glyphosate and Xf/EPSPS:glyphosate are 186 and 211 Å², respectively.

Chorismate synthase

The seventh and final step in the main trunk of the shikimate pathway is the trans-1,4 elimination of phosphate from EPSP. Under the influence of the enzyme CS, this enol ether undergoes loss of phosphoric acid to produce chorismate. In this reaction, the second of the three double bonds of the benzene ring is introduced. The reaction is catalyzed by CS and requires reduced flavin for activity even though the overall reaction is redox neutral [5].

In chorismate synthase catalysis, the reduced flavin is apparently directly involved in the mechanism of the reaction [5]. The CS catalyzed reaction requires reduced flavin mononucleotide (FMN) and substrate EPSP to produce chorismate, a phosphate molecule, and reduced FMN. It is an unusual reaction in that the redox state of the functional cofactor FMN remains unchanged. Another unusual feature of the CS catalyzed reaction is the
nonconcerted anti-1,4-elimination of the 3-phosphate and the C-(6-pro-R) hydrogen 4. It is expected that the three-dimensional structure of CS can significantly enhance our understanding of its enzymatic mechanism for this unusual chemistry [46,47].

Studies on CS from bacteria, fungi, and plants revealed that in these organisms the reduced FMN cofactor is made available in different ways to CS: chorismate synthases in fungi—in contrast to those in bacteria and plants—carry a second enzymatic activity which enables them to reduce FMN at the expense of NADPH [48].

The Fig. 3F shows the secondary structure of Λ/CS in the complex with EPSP and FMN. Λ/CS has been predicted to be an α–β barrel as a result, of secondary structure prediction efforts, is clearly very different from what was expected. It comprises a single large core domain, which is surrounded by loops and discrete stretches of secondary structure. The core consists of an internal two long α-helices, sandwiched between a pair of four-stranded antiparallel β-sheets [49].

We observed a total of four hydrogen bonds between the ternary complex Λ/CS:EPSP:FMN, involving the residues His106, Ala239, and Lys293. For the Sp/CS:EPSP:FMN 6 hydrogen bonds involving the residues His110, Asn251, Ala252, and Lys311 were observed. The contact areas for the complexes of Sp/CS:EPSP:FMN and Λ/CS:EPSP:FMN are 542 and 476 Å2, respectively.

Conclusions

The specificity and affinity between enzyme and its inhibitor depend on directional hydrogen bonds and ionic interactions, as well as on shape complementarity of the contact surfaces of both partners [50–52]. The electrostatic potential surface of the all models was calculated with GRASP [53] and shown in Figs. 4A–E. Analysis of these structural models indicates that inhibitors such as glyphosate for EPSPS and FA1 for DHQD are strongly bound to the enzymes. All complexes show good shape and charge complementarity and exhibit a higher number of intermolecular hydrogen bonds, which strongly indicates that these inhibitors could also inhibit Λ/fastidiosa enzymes. Especially interesting is the Λ/EPSPS:glyphosate:S3P complex that shows 16 intermolecular hydrogen bonds, more than that observed for Escherichia coli enzyme (14 bonds), and a higher contact area, which indicates that glyphosate may have higher affinity for Λ/EPSPS than that observed for EcEPSPS. Further inhibitor analysis may confirm this prediction.

Acknowledgments

This work was supported by grants from FAPESP (SMOLBNet 01/07532-0, 02/04383-7), CNPq, CAPES and Instituto do Milênio (CNPq-MCT). WFA (CNPq, 300851/98-7), and MSP (CNPq, 300337/2003-5) are researchers for the Brazilian Council for Scientific and Technological Development.

References

Crystallographic structure of PNP from Mycobacterium tuberculosis at 1.9 Å resolution

Diego O. Nolasco a,b, Fernanda Canduri a,b, José H. Pereira a,b, Janaina R. Cortedz a, Mário S. Palma c, Jaim S. Oliveira d, Luiz A. Basso d, Walter F. de Azevedo Jr. a,* Diógenes S. Santos d,*

a Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000, Brazil
b Programa de Pós-Graduação em Biofísica Molecular, UNESP, São José do Rio Preto, SP 15054-000, Brazil
c Laboratory of Structural Biology and Zoochemistry-CEIS, Department of Biology, Institute of Biosciences, UNESP, Rio Claro, SP 13506-900, Brazil
d Rede Brasileira de Pesquisa em Tuberculose, Centro de Pesquisa em Biologia Molecular e Funcional, PUCRS, Porto Alegre, RS 90619-900, Brazil

Received 1 September 2004
Available online 2 October 2004

Abstract

Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 Å resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Tuberculosis; PNP; Crystallography; Apoenzyme; Selectivity

Tuberculosis causes eight million new infections and kills two million people each year worldwide according to the World Health Organization (WHO). It is estimated that approximately two billion individuals, one-third of the world population, are infected with latent TB. Tuberculosis resurged in the late 1980s and was declared to be a global emergency by the WHO. The high susceptibility of human immunodeficiency virus-infected persons to the disease and the proliferation of multidrug-resistant (MDR) strains have created a worldwide interest in expanding current programs in tuberculosis research. New antimycobacterial agents are needed to treat Mycobacterium tuberculosis strains resistant to existing drugs and to shorten the treatment course to improve patient compliance [1].

The TB is a chronic infectious disease caused by various alcohol–acid-resistant bacterium from the Mycobacterium gender. The more frequent cyclic form of the disease is the pulmonary tuberculosis, caused by the M. tuberculosis (Koch bacillus), but can also cause cerebral lesions, skinny (lupus), and ganglionaries, some times produced by the human origin bacillus, some times produced by the bovine origin bacillus. The Koch bacillus is an extremely small and resistant bacterium, in stick shape. It can live in dry conditions for months and can also resist disinfectants of moderate action.

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of purine nucleosides to corresponding bases and ribose 1-phosphate. PNP plays a central role in purine metabolism, normally operating in the purine
salvage pathway of cells. PNP is specific for purine nucleosides in the β-configuration and exhibits a preference for ribosyl-containing nucleosides relative to the analogs containing arabinose, xylose, and lyxose stereoisomers. Moreover, PNP cleaves glycosidic bond with inversion of configuration to produce α-ribose 1-phosphate [2–4].

PNP is an enzyme of purine metabolism that functions in the salvage pathway, including even those of protozoan parasites, thus enabling the cells to utilize purine bases recovered from metabolized purine ribo- and deoxyribonucleosides to synthesize purine nucleo-
tides [5–7]. The PNPs from various sources are members of a broader class of N-ribohydrolases and transferases, the transition states for which share ribosyl oxocarbe-
sium like character, with cleavage of the C–N ribosyl bond [8,9].

A number of parasites lacking the ability to synthe-
size purine nucleotides de novo must utilize host puri-
nes, formed by PNP, for DNA synthesis. Thus, inhibition of PNP could prevent the spread of parasitic infection [10].

The human PNP is a potential target for drug develop-
ment, which could induce immune suppression to treat, for instance, autoimmune diseases, T-cell leukemia, lymphoma, and organ transplantation rejection. Furthermore, PNP inhibitors can also be used to avoid cleavage of anticancer and antiviral drugs, since many of these drugs mimic natural purine nucleosides and can thereby be cleaved by PNP before accomplishing their therapeutic role [2,3].

Homologs to enzymes in the purine salvage pathway have been identified in the genome sequence of M. tuber-
culosis. The genome of M. tuberculosis comprised of 4,411,529 bp containing 3924 potential open reading frames [11]. On the basis of sequence homology, bio-
chemical functions have been attributed to approxi-
mately 40% of the predicted proteins, while similarities to other described proteins were found for another 44% and the remaining 16% bore no resemblance to known proteins and may encode proteins with specific mycobacterial functions [11,12].

In the de novo synthesis of purine ribonucleotides, the formation of adenosine monophosphate (AMP) and guanine monophosphate (GMP) from inosine monophosphate (IMP) is irreversible, but purine bases, nucleosides, and nucleotides can be interconverted through the activities of purine nucleoside phosphorylase, adenosine deaminase, and hypoxanthine-guanine phosphoribosyl transferase. The specific inhibition of MtPNP could potentially lead to the accumulation of guanine nucleotides since a putative guanylate kinase and a nucleoside diphosphate kinase are encoded in the genome [13].

The crystallographic structure of the MtPNP was first determined in 2001 at 1.75 Å resolution with Immucil-
lin-H [14,15] and inorganic phosphate, and also solved at 2.0 Å resolution with 9-deazahipoxanthine and imi-

We have now obtained X-ray diffraction data using synchrotron radiation and refined the structure of the apoenzyme at 1.9 Å resolution, using the recombinant MtPNP with inorganic phosphate (MtPNP·PO₄). Our analysis of the MtPNP·PO₄ structural data, and structural differences between the apoenzyme and the MtPNP·Immu-
cillin-H·PO₄ complex provides new insights into substrate binding, the purine-binding site, and can be used for future inhibitors’ design.

Methods

Crystalization. Recombinant MtPNP was expressed and purified as previously described [1]. MtPNP was crystallized using the experimental conditions described elsewhere [16]. In brief, the PNP (1 μL at a concentration of 25 mg ml⁻¹) containing 5 mM NaH₂PO₄ was mixed with an equal volume of the reservoir solution containing 100 mM Tris, pH 8.0, 25% PEG 3350, and 25 mM MgCl₂, and equilibrated against 1.0 mL of the reservoir solution. Diffraction from the crystals was consistent with the space group P2₁2₁2 (a = 117.95 Å, b = 134.35 Å, and c = 44.20 Å), with a trimer in the asymmetric unit (Vₐₚ = 2.12 Å³ Da⁻¹, 48.92% solvent content).

Data collection, processing, and structure determination. Crystals were cryoprotected by transfer to crystallization solution with 20% glycerol and flash-cooled at 100 K. X-ray diffraction data were collected at 1.4270 Å wavelength on a CCD detector using synchrotron radiation at beam line CPR at the Synchrotron Radiation Source.

Table 1

<table>
<thead>
<tr>
<th>MtPNP·PO₄</th>
<th>Data collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution limits (Å)</td>
<td>40.0–1.9 (2.0–1.9)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>90.7 (87.3)</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁2₁2</td>
</tr>
<tr>
<td>a</td>
<td>117.95</td>
</tr>
<tr>
<td>b</td>
<td>134.34</td>
</tr>
<tr>
<td>c</td>
<td>44.20</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>β</td>
<td>90°</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Rsym(%)</td>
<td>6.2 (24.4)</td>
</tr>
<tr>
<td>No. of reflections</td>
<td>52717</td>
</tr>
<tr>
<td>Unique</td>
<td>524878</td>
</tr>
<tr>
<td>Structure refinement</td>
<td></td>
</tr>
<tr>
<td>Rfactor</td>
<td>19.00</td>
</tr>
<tr>
<td>Rfree</td>
<td>26.30</td>
</tr>
<tr>
<td>No. of amino acids (trimmer)</td>
<td>788</td>
</tr>
<tr>
<td>No. of waters</td>
<td>457</td>
</tr>
<tr>
<td>No. of phosphate groups</td>
<td>3</td>
</tr>
</tbody>
</table>

Values in parentheses are for the highest resolution shell.

a Rsym = 100 ∑h|I(h)−〈I(h)〉|/∑hI(h), where I(h) is the observed intensity and 〈I(h)〉 is the mean intensity of reflections h overall of I(h).
b Rfactor = 100 ∑h|Fo(h)−Fc(h)|/∑hFo(h). The sums are being taken over all reflections with F(0) > 2σ(F).
c Rfree = Rfactor for 10% of the data, which were not included during the crystallographic refinement.
Data for the MtPNP were processed at 1.9 Å resolution using the program MOSFLM and scaled with the program SCALA [17] and were 90.7% complete with R_{sym} of 6.2%. In the highest resolution shell (1.9–2.0 Å) the reflections presented R_{sym} of 24.4%. Structure determination and refinement. The structure of MtPNP\(\cdot\)PO₄ was solved by molecular replacement with AMoRe software package [18] using the trimer of *M. tuberculosis* PNP\(\cdot\)9dH-X\(\cdot\)PO₄ (PDB ID code 1I80) complex as search model, the ligands and water molecules were removed from the model. The best solution after rigid-body refinement yielded an initial R_{factor} of 34.9% and a correlation coefficient of 66.4% using data in the resolution range of 8.0–4.0 Å. The atomic positions obtained from molecular replacement were used to initiate the crystallographic refinement. Model building was performed employing the program XtalView [19] using $2F_o - F_c$ and $F_o - F_c$ electron density maps. The densities for the phosphate groups were localized, one by monomer, and these groups were added. A total of 457 water molecules were added in the model, 50 molecules by each refinement step. The structure refinement of MtPNP\(\cdot\)PO₄ was performed using Refmac5 [20]. The final model had R_{free} and R_{factor} of 26.30% and 19.00%, respectively (Table 1). The overall stereochemical quality of the final model was assessed by the programs PROCHECK [21] and Parmodel [22] (Table 2).

Quality of the model. Analysis of the Ramachandran diagram $\Phi - \Psi$ plot for the present structure indicates that 91.4% of the residues are found to occur in the most favored regions, 8.0% in the additional allowed regions, and just 4 residues (0.6%) in the disallowed regions of the plot. Analysis of the electron-density map ($2F_\text{obs} - F_\text{calc}$) agrees with the Thr209, of the three monomers, and His68, of monomer A, positioning.

The final model of the MtPNP\(\cdot\)PO₄ and theMtPNP complexes (MtPNP\(\cdot\)ImmH\(\cdot\)PO₄, MtPNP\(\cdot\)IR\(\cdot\)9dHX\(\cdot\)PO₄) were superposed. Finally, the MtPNP\(\cdot\)PO₄ and the *Homo sapiens* PNP (HsPNP\(\cdot\)SO₄) were also superposed using the program PROFIT [23].

Table 2: Assessment of the final structure

<table>
<thead>
<tr>
<th>MtPNP(\cdot)PO₄</th>
<th>PROCHECK</th>
<th></th>
<th>Parmodel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most favored regions</td>
<td>91.4%</td>
<td>3D Profile ideal score</td>
<td>121.29</td>
</tr>
<tr>
<td>Additional allowed regions</td>
<td>8.0%</td>
<td>3D Profile score</td>
<td>124.06</td>
</tr>
<tr>
<td>Disallowed regions</td>
<td>0.6%</td>
<td>Main chain B-factor (Å²)</td>
<td>18.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side chain B-factor (Å²)</td>
<td>21.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average protein B-factor (Å²)</td>
<td>20.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average water B-factor (Å²)</td>
<td>26.10</td>
</tr>
</tbody>
</table>

Fig. 1. Ribbon diagrams of the *M. tuberculosis* PNP trimer of the asymmetric unit (A) and monomer (B). The active sites are located near the trimer interfaces. These figures and the others were generated using MOLMOL [24].
Results and discussion

Overall structure of MtPNP \(\cdot \) PO\(_4\) apoenzyme

The protein is a symmetrical homotrimer with a triangular arrangement of subunits similar to the mammalian trimeric PNPs. Each monomer of the protein is folded into an \(\alpha/\beta \)-fold consisting of 11 \(\beta \) sheet surrounded by eight \(\alpha \) helices (Fig. 1). The structure of MtPNP \(\cdot \) PO\(_4\) shows clear electron-density peaks for three phosphate groups, which is present in high concentration in the crystallization experimental condition.

The three independent active sites lie near the subunit interfaces (Fig. 1A). Each active site is composed of five residues, Tyr92, Glu189, Met207, Asn231, and His243, which show a considerable different positioning in comparison with the MtPNP \(\cdot \) ImmH \(\cdot \) PO\(_4\) complex. Each one of the three active sites contains one phosphate molecule.

Comparison of the MtPNP \(\cdot \) PO\(_4\) and the MtPNP \(\cdot \) ImmH \(\cdot \) PO\(_4\) complex

A significant structural change is observed when both structures are superposed (Fig. 2), showing a kind of lid for the ligand. It is strongly believed that this change in the positions of residues from Pro62 to Gly70 is caused by the different crystallographic packing of the proteins, since the diffraction of the complex MtPNP \(\cdot \) ImmH \(\cdot \) PO\(_4\) was consistent with the space group \(P3_21 \), different from the MtPNP \(\cdot \) PO\(_4\) space group, \(P2_12_12 \).

In a superposition of both structures, using the program PROFIT, a RMS deviation of 2.381 Å was observed. Fitting just the binding sites the observed RMS deviation was of 1.370 Å, showing that the catalytic site is more compact in the MtPNP \(\cdot \) ImmH \(\cdot \) PO\(_4\) complex than in the MtPNP \(\cdot \) PO\(_4\) apoenzyme. The interaction forces of the residues Tyr92–Glu189–Met207–Asn231–His243 with the Immucillin-H molecule provide this compression.

The water molecule positions also show substantial differences and the phosphate groups are shifted because of the missing ligand, but the side chains of Arg88 and His90 continue participating in the hydrogen bond with the O1 of the phosphate, while Ser36 interacts with both O4 and O3 through side chain backbone atoms.

Fig. 2. Ribbon diagram of the superposition of the MtPNP \(\cdot \) PO\(_4\) (1) and MtPNP \(\cdot \) ImmH \(\cdot \) PO\(_4\) (2) lid region.

Fig. 3. Stereo diagram of the superposition of the MtPNP \(\cdot \) PO\(_4\) apoenzyme and the MtPNP \(\cdot \) IR \(9dHX \) \(\cdot \) PO\(_4\) complex.
Comparison of the MtPNP \(-\) PO\(_4\) apoenzyme and the MtPNP \(-\) IR \(-\) 9dHX \(-\) PO\(_4\) complex

The region of the lid, residues from Pro62 to Gly70, fits perfectly, showing that the complete Immucillin-H provides much more influence over these residues than the 9-deazahypoxantine (Fig. 3). In a superposition of both structures the observed RMS deviation was of 0.654 Å, which corroborates with the idea of non-influence of the IR \(-\) 9dHX complex over the protein structure.

Comparison of the MtPNP \(-\) PO\(_4\) and the HsPNP \(-\) SO\(_4\)

Even being from different origins, both PNPs show the mammalian trimeric structures. The active sites of the \textit{M. tuberculosis} PNP and the human PNP are formed just by the same residues and show identical folding (Fig. 4). In a superposition of the structures, the observed RMS deviation was of 2.517 Å, and the lid regions agree perfectly, even with the changes of some residues, which are Val61 to Pro57–Pro62 to Arg58–Pro63 to Ser59–Ala65 to Val61 and Ala66 to Pro62.

Conclusions

This paper establishes that conformational differences between two stages of the same protein, complexed and apoenzyme, can be used to develop studies to improve the design of new more powerful inhibitors. The significance of this knowledge is that both structures can now be explored in attempts to ascend higher studies over rational drug design. The protein structure described here is one of the most important targets for drug development to treat tuberculosis.

Acknowledgments

This work was supported by grants from FAPESP (SMOLBNet, Proc. 01/07532-0, 02/04383-7, and 04/00217-0), CNPq, CAPES, and Instituto do Milênio (CNPq-MCT). W.F.A., D.S.S., M.S.P., and L.A.B are researchers awardees from the National Research Council of Brazil–CNPq.

References

R. Koradi, Institut fuer Molekularbiologie und Biophysik, ETH Zurich Spectrospin AG, Faellanden, Switzerland, MOLMOL 2.6, 2003.
Structure of shikimate kinase from \textit{Mycobacterium tuberculosis} reveals the binding of shikimic acid

1. Introduction

The shikimate pathway is a seven-step biosynthetic route that generates chorismic acid from phosphoenol pyruvate and erythrose 4-phosphate. The shikimate pathway is an attractive target for the development of antimicrobial agents (Davies \textit{et al.}, 1994) and herbicides (Coggins, 1989) because it is essential in algae, higher plants, bacteria and fungi, Whilst being absent from mammals (Bentley, 1990). Several enzymes of this pathway have been submitted to structural study (Arcuri \textit{et al.}, 2004; Pereira \textit{et al.}, 2003) in order to propose inhibitors for these enzymes. More recently, by disruption of the \textit{aroK} gene, which codes for the shikimate kinase enzyme, the shikimate pathway has been shown to be essential for the viability of \textit{Mycobacterium tuberculosis} (Parish & Stoker, 2002). Shikimate kinase (SK; EC 2.7.1.71), the fifth enzyme of the pathway, catalyses the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a co-substrate.

Three previously solved structures of SK from \textit{Erwinia chrysanthemi} (EcSK; Krell \textit{et al.}, 1998, 2001) show that SK belongs to the same structural family as nucleoside monophosphate (NMP) kinases. The NMP kinases are composed of three domains: the CORE, LID and NMP-binding (NMPB) domains. A characteristic feature of the NMP kinases is that...
they undergo large conformational changes during catalysis (Vonrhein et al., 1995).

Three functional motifs of nucleotide-binding enzymes are recognizable in *M. tuberculosis* SK including a Walker A motif, a Walker B motif and an adenine-binding loop. The Walker A motif is located between the first \(\beta \)-strand (\(\beta_1 \)) and first \(\alpha \)-helix (\(\alpha_1 \)), containing the conserved sequence GXXXGXKTS (Walker et al., 1982), where \(X \) represents any residue. This motif forms the phosphate-binding loop (P-loop; Smith & Rayment, 1996). In addition to the Walker A motif, a second conserved sequence ZZDXXXG called the Walker B motif (Walker et al., 1982) is observed, where \(Z \) represents a hydrophobic residue. An Asp→Ser replacement exists in MtSK. The Walker B motif consensus in SKs is ZZZTGGG and the second glycine (Gly80 in MtSK) has been implicated in hydrogen bonding to the \(\gamma \)-phosphate of ATP. The adenine-binding loop motif may be described as an I/VDXXX(X)XP sequence stretch (Gu et al., 2002).

The shikimate-binding domain has previously been assigned on the basis of the difference Fourier map of EcSK and structural comparison with NMP kinases. Shikimate was included in the crystallization conditions (co-crystallization); however, the electron density was not clear enough to include shikimate in the previously solved crystallographic structure (Krell et al., 1998).

Two crystal structures of SK from *M. tuberculosis* (MtSK; Gu et al., 2002; PDB codes 1l4y and 1l4u) have revealed the dynamic role of the LID domain in catalysis, but the precise position and interactions between shikimate and MtSK were not unequivocally demonstrated as the shikimate-binding site was not occupied by the substrate. A previously reported position and interactions between shikimate and MtSK were not unequivocally demonstrated as the shikimate-binding site. A previously reported position and interactions between shikimate and MtSK were not unequivocally demonstrated as the shikimate-binding site. A previously reported position and interactions between shikimate and MtSK were not unequivocally demonstrated as the shikimate-binding site. A previously reported position and interactions between shikimate and MtSK were not unequivocally demonstrated as the shikimate-binding site. A previously reported position and interactions between shikimate and MtSK were not unequivocally demonstrated as the shikimate-binding site.

2. Results and discussion

The crystals of MtSK–MgADP–shikimate were grown in the presence of 5.0 mM MgCl\(_2\), 13.0 mM ADP and 13.0 mM shikimate. The data set of MtSK–MgADP–shikimate was determined by standard molecular-replacement methods using the program *AMoRe* (Navaza, 1994), using as a search model the structure of MtSK–MgADP (PDB code 1l4y; Gu et al., 2002). After translation-function computation the correlation was 65% and the \(R \) factor was 38.3%. The highest magnitude of the correlation coefficient function was obtained for the Euler angles \(\alpha = 54.85 \), \(\beta = 85.32 \), \(\gamma = 91.90 \). The fractional coordinates are \(T_x = 0.7336 \), \(T_y = 0.5326 \), \(T_z = 0.2768 \). The atomic positions obtained from molecular replacement were used to initiate the crystallographic refinement. Structure refinement was performed using *X-PLOR* (Brünger, 1992). During rigid-body refinement, the \(R \) factor decreased from 38.3 to 35.8%. Further refinement continued with simulated annealing using the slow-cooling protocol, followed by alternate cycles of positional refinement and manual rebuilding using *XtalView* (McRee, 1999). Finally, the positions of waters, MgADP and shikimate were checked and corrected in \(F_{obs} - F_{calc} \) maps. The final model has an \(R \) factor of 20.7% and an \(R_{free} \) of 28.7%.

Root-mean-square deviation differences from ideal geometries for bond lengths, angles and dihedrals were calculated with *X-PLOR* (Brünger, 1992). The overall stereochemical quality of the final model for MtSK–MgADP–shikimate was assessed by the program *PROCHECK* (Laskowski et al., 1994). Atomic models were superposed using the program *LSQKAB* from *CCP4* (Collaborative Computational Project, Number 4, 1994).

The molecular-surface areas were calculated using the program *Swiss PDB Viewer* v.3.7 (http://www.expasy.org/spdbv), a probe radius of 1.4 Å and a fixed radius for all atoms.
collected at 2.3 Å (Table 1) using the Synchrotron Radiation Source (Polikarpov et al., 1998) and the structure was solved by molecular replacement. There is one molecule of MtSK–MgADP–shikimate in the asymmetric unit, containing residues 2–166, Mg2+, ADP, shikimate, two Cl− ions and 144 water molecules (Fig. 1). Therefore, the enzyme crystallized as a MtSK–MgADP–shikimate dead-end ternary complex. The N-terminal methionine residue is not observed and the ten C-terminal residues (NQIIHMLESN) are disordered. Details of the refinement and the final model statistics are presented in Table 2. Analysis of the Ramachandran diagram ϕ–ψ plot shows that 93.4% of non-glycine residues lie in most favoured regions and there are no residues in the disallowed region (Fig. 2). The average B factor for main-chain atoms is 34.64 Å², whereas that for side-chain atoms is 35.68 Å² (Table 2). In order to accurately determine the position of shikimate binding in the active site of MtSK, larger final concentrations of ADP and shikimate in the drop (8 mM) were used than those used by Gu et al. (2002) to obtain the crystals (4 mM). The average B-factor value of 26.15 Å² obtained for shikimate indicates a higher order and occupancy of this substrate in the present structure than in the previously solved SK structures, where either shikimate was not

| Table 1 | Summary of data-collection statistics for MtSK–MgADP–shikimate. Values in parentheses are for the highest resolution shell. |
|---|
| Unit-cell parameters |
a = b (Å)	62.91
c (Å)	90.92
Resolution (Å)	29.74–2.30 (2.41–2.30)
Space group	P3_21
No. of measurements with I > 2σ(I)	34274
No. of independent reflections	9563
Overall redundancy	2.4
Completeness (%)	98.7 (98.7)
R_{int} (%)	3.0 (7.2)

| Table 2 | Summary of refinement statistics for MtSK–MgADP–shikimate. Values in parentheses are for the highest resolution shell. |
|---|
| Resolution range (Å) | 6.00–2.30 |
| Reflections used for refinement | 8885 |
| No. of residues | 165 |
| No. of water O atoms | 144 |
| No. of ADP molecules | 1 |
| No. of metal ions (Mg_{2+}) | 1 |
| No. of Cl− | 2 |
| No. of shikimate molecules | 1 |
| Final R factor (%) | 20.7 (31.8) |
| Final R_{free} (%), R_{free} = R factor for 10% of the data that were not included during crystallographic refinement. |
| B factors§ (Å²) |
Main chain	34.64
Side chains	35.68
Waters	39.63
ADP	21.81
Mg_{2+}	34.70
Cl−	37.65
Shikimate	26.15
Observed r.m.s.d. from ideal geometry	0.017
Bond lengths (Å)	1.905
Dihedrals (%)	22.125
Ramachandran plot	93.4
Most favoured ϕ/ψ angles (%)	0
Disallowed ϕ/ψ angles (%)	0

‡ R factor = 100 × Σ|F_{o}−F_{c}|/Σ|F_{o}|, the sums being taken over all reflections with |F_{o}| > 2σ(|F_{o}|). † R_{free} = R factor for 10% of the data that were not included during crystallographic refinement. § B values = average B values for all non-H atoms.

Figure 1
MtSK complexed with Mg_{2+}, ADP and shikimate. The LID (residues 112–124) and SB (residues 33–61) domains are responsible for large conformational changes during catalysis and are shown. The figure was prepared with MOLMOL (Koradi et al., 1996).

Figure 2
Ramachandran diagram for MtSK–MgADP–shikimate. 93.4% of non-glycine residues lie in the most favoured regions and no residues are in the disallowed region.
complexed or its electron density was too poor to accurately locate the substrate (Table 2) (Gu et al., 2002; Krell et al., 1998).

SK displays an α/β-fold and consists of five central parallel β-strands flanked by α-helices. As pointed out above, a characteristic feature of SKs is that they undergo large conformational changes during catalysis. There are two flexible regions of the structure that are responsible for movement: the SB and LID domains (Fig. 1), which in MtSK correspond to residues 33–61 and 112–124, respectively.

3.1. Interaction with ADP/Mg²⁺

The structures of MtSK complexed with MgADP (Gu et al., 2002) are highly similar, with a root-mean-square deviation of 0.19 Å for all pairs of Cα atoms. The adenine moiety of ADP is sandwiched between Arg110 and Pro155 as observed for the MtSK–MgADP structure (Gu et al., 2002). The Arg110 in MtSK represents the first residue in a conserved motif, typically RXX(R), of the LID domain observed for P-loop kinases (Leipe et al., 2003). The second conserved basic residue of this motif interacts with the γ-phosphate of ATP. In MtSK, this residue would be Arg117, which interacts with the α- and β-phosphate groups (Fig. 3), and thus the conserved motif of the LID domain for P-loop shikimate kinases would be R(X)₆₋₉R (Fig. 4). The Arg117 residue may stabilize the transition state by neutralizing the developing negative charge on the β–γ bridge O atom (Hasemann et al., 1996). The Pro155 is the last residue of the adenine-binding loop motif (residues 148–155 in MtSK), which was first recognized in AK and EcSK (Krell et al., 1998) and has been described as an I/VDXX(X)XP sequence stretch (Gu et al., 2002). This motif forms a loop that wraps around the adenine moiety of ATP, connecting the β5-strand with the C-terminal α8-helix. The second (aspartate) residue and the last (proline) residue are not conserved in the adenine-binding loops of aroK-encoded SKs from *Escherichia coli* (Romanowski & Burley, 2002) and *Campylobacter jejuni* (PDB code 1via). However, they are

Figure 3

Mg²⁺ coordination. (a) 1l4y, (b) 1l4u (Gu et al., 2002), (c) MtSK–MgADP–shikimate. For simplicity, only protein residues, atoms involved in binding of Mg²⁺ water and ADP are shown. Broken black lines represent hydrogen bonds or Mg²⁺ coordination. The distances are in Å. The following colour scheme was adopted: grey for carbon, red for oxygen, blue for nitrogen, yellow for chlorine, purple for magnesium and orange for phosphorus.
The structure of MtSK–MgADP±shikimate shows a distorted Mg2+ (Fig. 3). The Mg2+ of MtSK–MgADP and MtSK–shikimate–MgADP structures in the position of Mg2+. In the MtSK–MgADP structure (PDB code 1l4y) a typical six-coordination is observed for Mg2+ (Fig. 3a), whereas magnesium six-coordination (or, more accurately, seven-coordination) is distorted in the structure of the Pt-derivative of MtSK–MgADP (PDB code 1l4u) (Fig. 3b). The structure of MtSK–MgADP–shikimate shows a distorted six-coordinated Mg2+ (Fig. 3c). Binding distances to Mg2+ are shown in Table 3.

The Mg2+ of MtSK–MgADP–shikimate interacts with a β-phosphate oxygen of ADP, Ser16 OG of the Walker A motif and four water molecules. In EcSK, the Mg2+ is four-coordinated, interacting with a β-phosphate O atom of ADP, Thr16 OG1, Asp32 OD2 and a water molecule held in position by Asp34 (Krell et al., 1998). The Mg2+ binding in MtSK–MgADP (Gu et al., 2002) and MtSK–MgADP–shikimate structures are somewhat similar: the six-coordinated magnesium ion structural water2 is held in place by a hydrogen bond to Asp32, which is conserved in all SKs (Fig. 4). Superimposition of MtSK–MgADP on MtSK–MgADP±shikimate showed that in the latter structure water1 and water4 are in equivalent positions but that shifts of 1.32 and 2.75 Å are observed for water2 and water3, respectively (Fig. 3). Water3 has moved to back the plane formed between the magnesium ion, the O2B atom of ADP and the side chain of Asp34. Water3 is held in place by Asp32 and Asp34 (Fig. 3). Asp32 also forms a hydrogen bond to Ser16 of the Walker A motif, whereas the interaction between Asp32 and Ser16 is via a bridging water molecule (water6) in the MtSK–MgADP structure (Gu et al., 2002). A rotation of the Asp32 side-chain dihedral angles χ_1 and χ_2 leads to a direct interaction with Ser16 OG, which accounts for the exclusion of water6 from the magnesium-binding site in the ternary structure. The Mg2+–coordinated water1 interacts with a chloride ion instead of interacting with Asp34 via a bridging water molecule (Fig. 3, water5) as observed in the MtSK–MgADP structure (Gu et al., 2002). This chloride ion also interacts with the 3-hydroxyl group of shikimate and the backbone amide of Gly80. Moreover, Asp34 makes hydrogen bonds with the 2- and 3-hydroxyl groups of shikimate. Hence, the different mode of interaction observed for residue Asp34 arises from the presence of shikimate, which leads to the exclusion of water5 from the MtSK active site. In addition, the distance between ADP β-phosphate O2 and Mg2+ changes from 2.23 Å in our structure (Table 3) to 2.15 Å for the non-distorted six-coordinated magnesium ion in the MtSK–ADP structure (Gu et al., 2002), thereby accounting for the slightly distorted six-coordination of Mg2+. Interestingly, the two functions of the aspartate of the ZZDXXG Walker B motif (hydrogen bonding to Mg2+ water and to the hydroxy group of the serine or threonine of the Walker A motif) are taken over by the two conserved aspartate residues located at the last position of strand β2 (Asp32 in MtSK) and the first position of helix α2 (Asp34 in MtSK) of shikimate kinase and gluconate kinase (Kraft et al., 2002). The Walker B motif consensus sequence in shikimate kinases has been proposed to be ZZZTGGGG (residues 75–81 in MtSK; Leipe et al., 2003) and the second glycine (Gly80 in MtSK) has been implicated in hydrogen bonding the γ-phosphate of ATP. Nucleophilic attack on the γ-phosphate of ATP will be most facilitated by metal-ion binding.

Table 3 Binding of Mg2+ in MtSKs.

<table>
<thead>
<tr>
<th>Atom</th>
<th>MtSK–MgADP-shikimate (Å)</th>
<th>1l4y (Å)</th>
<th>1l4u (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser16 OG</td>
<td>2.36</td>
<td>2.15</td>
<td>2.57</td>
</tr>
<tr>
<td>ADP O2</td>
<td>2.23</td>
<td>2.15</td>
<td>2.39</td>
</tr>
<tr>
<td>Water1 O</td>
<td>2.39</td>
<td>2.24</td>
<td>2.52</td>
</tr>
<tr>
<td>Water2 O</td>
<td>2.23</td>
<td>2.04</td>
<td>2.77</td>
</tr>
<tr>
<td>Water3 O</td>
<td>2.75</td>
<td>2.25</td>
<td>2.37</td>
</tr>
<tr>
<td>Water4 O</td>
<td>2.97</td>
<td>2.05</td>
<td>2.94</td>
</tr>
<tr>
<td>Water5 O</td>
<td>n.o.</td>
<td>n.o.</td>
<td>3.06</td>
</tr>
</tbody>
</table>

Figure 4

Alignment of shikimate kinases showing that the residues identified in binding of shikimate are conserved. The secondary-structure assignment for MtSK–shikimate is shown above the sequence and the locations of linear motifs are labelled. Shaded regions in yellow are the residues involved in binding of shikimate and the shaded region in red is the residue Glu61 (MtSK). Stretches in blue and green are the shikimate-binding domain and the LID domain, respectively. AK_MYCTU, M. tuberculosis SK I; AK_CAMJE, C. jejuni SK I; AK_ECOLI, E. coli SK I; AL_ECOLI, E. coli SK II; AL_SALTY, S. typhimurium SK II; AL_ERWCH, E. chrysanthemi.
(Mg$^{2+}$) to the β- and γ-phosphate groups, whereas departure of the leaving group will be most favoured in a structure with metal binding to the α- and β-phosphate groups (Jencks, 1975a). In enzyme reactions, the enzyme may facilitate the reaction and contribute to its specificity simply by favouring the binding of metal in the most favourable possible structure for the particular reaction that is being catalyzed. Although the mechanism of action of MtSK is still unknown, the interaction between Gly80 and the chloride ion may indicate that the latter occupies the γ-phosphate position as the chemical reaction proceeds, thereby suggesting that the interaction between Gly80 and γ-phosphate of ATP may play a role in the catalytic mechanism of MtSK, as discussed below.

3.2. Shikimate binding

The shikimate-binding domain, which follows strand $\beta2$, consists of helices $\alpha2$ and $\alpha3$ and the N-terminal region of helix $\alpha4$ (residues 33–61). A peak of more than 3σ in the final $F_{\text{obs}} - F_{\text{calc}}$ difference Fourier map clearly indicates the position of bound shikimate in the electron density (Fig. 5).

The chemical structure of shikimic acid [3R-(3α,4α,5β)-3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid] is shown in Fig. 6. The guanidinium groups of Arg58 and Arg136 and the NH backbone group of Gly81 interact with the carboxyl group of shikimate. The 3-hydroxyl group of shikimate forms hydrogen bonds with the carboxyl group of Asp34, the mainchain NH group of Gly80 and a water molecule (Fig. 7). This water molecule in turn mediates interactions with the side chains of SB residues Arg58 and Glu61, Walker B residues Gly79, Gly80 and Gly81, and Ala82. The 2-hydroxyl group of shikimate hydrogen bonds to the side chain of Asp34. The distances of direct and water-mediated hydrogen bonds in the shikimate binding of MtSK are shown in Table 4.

<table>
<thead>
<tr>
<th>Shikimate Atom</th>
<th>Distances (Å)</th>
<th>MtSK atom hydrogen bonded to water molecule</th>
<th>Distances (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxyl groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1 Gly80 N</td>
<td>3.10</td>
<td>Asp34 OD1 2.82</td>
<td>Gly79 O 2.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asp34 OD2 2.57</td>
<td>Gly80 N 3.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water320 O 2.46</td>
<td>Gly81 N 2.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ala82 N 3.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arg58 NH1 3.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glu61 OE2 2.99</td>
</tr>
<tr>
<td>O2 Asp34 OD1</td>
<td>2.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asp34 OD2 2.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n.o</td>
<td></td>
</tr>
<tr>
<td>O3 Carboxyl group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4 Gly81 N</td>
<td>3.22</td>
<td>Arg136 NH2 2.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arg58 NH2 2.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gly81 N 3.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arg136 NH2 2.34</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

Direct and water-mediated hydrogen bonding of shikimate in MtSK.

All distances <3.6 Å are shown. n.o., not observed.

Figure 5

$F_{\text{obs}} - F_{\text{calc}}$ electron density contoured at 3.0σ showing the binding of shikimate. The figure was prepared with XtalView (McRee, 1999).

Figure 6

The molecular structure of shikimate shows the carboxyl group and three hydroxyl groups. C atoms are numbered in blue and O atoms in red.

Figure 7

Polar interactions involved in the binding of shikimate to the MtSK active site. Hydrogen bonds between shikimate and protein groups and interactions between protein groups are represented as broken black lines. The interaction distances are in Å.
Glu61 is conserved in both aroK- and aroL-encoded shikimate kinase enzymes and has been implicated in shikimate binding (Gu et al., 2002; Krell et al., 1998; Romanowski & Burley, 2002). Krell and coworkers proposed that Glu61 is suitably positioned to bind the 5-hydroxyl group of shikimate in EcSK (Krell et al., 1998). However, the amino-acid residues comprising the shikimate-binding domain were not clearly demonstrated because the electron density was not sufficient to position the shikimate molecule in the structure. In our structure, the Glu61 side chain forms a water-mediated interaction with the 3-hydroxyl group of shikimate. In addition, Glu61 forms a hydrogen bond and a salt bridge with the conserved Arg58 and assists in positioning the guanidinium group of Arg58 for substrate binding via interactions with the carboxylate group of shikimate. Glu61 OE2 makes a hydrogen bond with the amide N atom of Ala82. Moreover, Arg58 NH1 forms a hydrogen bond with Gly80 O. Therefore, Glu61 plays an important role in positioning a shikimate molecule, even though it is not directly involved in substrate binding. Furthermore, Glu61 is conserved in all SKs sequenced so far, which corroborates its role in anchoring Arg58 in the shikimate-binding site. The Glu54 carboxylate group also appears to anchor the guanidinium group of Arg58 for interaction with the shikimate carboxylate group, as suggested in the MtSK±MgADP-structure (Gu et al., 2002). However, Glu54 is not conserved (Fig. 4), except for aroK-encoded shikimate kinases.

3.3. Chloride ion binding

Chloride ions have been proposed to play an important role in determining the affinity of E. chrysanthemi SK for ATP and shikimate (Cerasoli et al., 2003). However, no chloride ions in the active-site cavity are found in equivalent positions when the MtSK structures are superimposed on both E. chrysanthemi SK (Krell et al., 1998) and the K15M mutant (Krell et al., 2001) SKs. We have found only two chloride ions in MtSK–MgADP–shikimate that have equivalents in the MtSK–MgADP complex structures (1l4u and 1l4y; Gu et al., 2002). One of them is bound to the active-site cavity and makes hydrogen bonds with 3-hydroxyl group of shikimate, Gly80 NH and water1 (Fig. 8), whereas the other is on the enzyme surface at a large distance from the active site. The conserved residue Arg117 in the LID domain is involved in ADP binding by forming two hydrogen bonds with the ω- and β-phosphate O atoms (Fig. 7). Lys15 forms a hydrogen bond with a β-phosphate O atom (Fig. 3) and the chloride ion in the MtSK–MgADP structures (Fig. 8). The main-chain NH of Gly80 is hydrogen bonded to the chloride ion in the binary (1l4y) and ternary complex structures (Table 5). These residues are located in the vicinity of where the chemical reaction occurs and may thus play a critical role in transition-state stabilization. Consistent with this proposal, the K15M mutant of EcSK showed no detectable enzyme activity (Krell et al., 2001), although it was in fact a K15M/P115L double mutant. Gly80 of the Walker B motif has been implicated in hydrogen bonding to the γ-phosphate of ATP (Krell et al., 1998). The

![Figure 8](image-url)

Figure 8 Chloride ions bound to the active sites of the MtSK–MgADP–shikimate and MtSK–MgADP (1l4u; Gu et al., 2002) structures. For clarity, only residues Lys15, Ser16, Asp32, Asp34 and Gly80, shikimate, the ω- and β-phosphates of ADP, Mg2+ and Cl− ions and Mg2+-coordinated waters are shown. The chloride ion hydrogen bonds are represented as broken black lines and distances are in Å. The Cl− ion and the Lys15 and Gly80 residues of the superimposed MtSK–MgADP structure 1l4u are coloured cyan.

<table>
<thead>
<tr>
<th>Chloride ion</th>
<th>Atom</th>
<th>Distance (Å)</th>
<th>MtSK–MgADP–shikimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl180</td>
<td>Shikimate hydroxyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>group O1</td>
<td>4.48†</td>
<td>3.36</td>
</tr>
<tr>
<td></td>
<td>Gly80 N</td>
<td>3.49</td>
<td>3.69</td>
</tr>
<tr>
<td></td>
<td>Lys15 NZ</td>
<td>3.17</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>Mg2+ Water1 O</td>
<td>3.87</td>
<td>3.75</td>
</tr>
</tbody>
</table>

† The distance was measured with the MtSK–MgADP structures (1l4y and 1l4u) superimposed on the MtSK–MgADP–shikimate structure.
1.52 Å in MtSK–MgADP–shikimate compared with the MtSK–MgADP 1l4u and 1l4y complexes, respectively. It is thus tempting to suggest that the chloride ion in the ternary complex occupies the phosphoryl position in the reaction coordinate to shikimate 3-phosphate formation.

3.4. Conformational changes upon substrate binding

As pointed out above, MtSK belongs to the family of nucleoside monophosphate (NMP) kinases, which are composed of three domains: the CORE, LID and NMP-binding domains. Kinases should undergo large movements during catalysis to shield their active centre from water in order to avoid ATP hydrolysis (Jencks, 1975b). The NMP and LID domains of NMP kinases have been shown to undergo large motions that are independent, in agreement with the observed random bi-bi kinetics (Vonrhein et al., 1995).

Ligand-induced changes in the secondary structure of EcSK have been detected by comparing the circular-dichroism spectra of free enzyme, EcSK–shikimate binary complex and a ternary complex of EcSK, shikimate and adenylyl imidodiphosphate, an ATP analogue (Krell et al., 1998). Alignment of C^α positions of the MtSK–MgADP–shikimate dead-end ternary complex and the MtSK–MgADP binary complex structures shows that the LID and SB domains undergo noticeable concerted movements towards each other (Fig. 9). The structural alignment included all residues and yielded r.m.s. deviation values of 0.56 and 0.54 Å for 1l4u and 1l4y, respectively. There is a shift of the LID domain, with an r.m.s. deviation of 1.33 Å for residues 112–124. The SB domain shift is somewhat smaller, with a calculated r.m.s. deviation of 0.74 Å for residues 33–61. The shikimate-binding cavity is delineated mainly by residues from the LID and SB domains, the Walker B motif and Arg136 from the $\alpha7$ helix. A close inspection of the residues involved in these movements shows that the side chains of Val116, Pro118 and Leu119 from the LID domain and Ile45, Ala46, Glu54, Phe57 and Arg58 from the SB domain shifted upon shikimate binding to the MtSK–MgADP binary complex (Fig. 9).

In MtSK with bound MgADP and shikimate, a cluster of hydrophobic contacts is formed between LID residues Val116, Pro118 and Leu119 and SB residues Ala46 and Phe49, which account for the stabilization of the partially closed shikimate-binding site cavity. The conformational changes described above result in closure of the MtSK binding site, as shown by the reduction in molecular-surface area of MtSK–shikimate–MgADP compared with MtSK–MgADP (Fig. 10). The ADP, Mg$^{2+}$, shikimate, Cl$^-$ ions and water molecules were removed prior to calculation. The calculated values are approximately 7246 Å2 for MtSK complexed with MgADP (1l4u) and 6915 Å2 for MtSK complexed with MgADP and shikimate. Thus, approximately 330 Å2 of molecular surface is buried on shikimate binding. Since both MtSK–MgADP and MtSK–MgADP–shikimate have been crystallized in the same space group with similar values for the unit-cell parameters (Gu et al., 2001) (Table 1) and residues 114–124 from the LID domain and residues 33–61 from the SB domain form no crystal contacts with symmetry-related MtSK molecules, the conformational changes observed cannot merely be a reflection of the different crystal-packing arrangements.

The MtSK–MgADP–shikimate structure should represent a partially, but not totally, closed structure, since total active-site closure upon dead-end ternary complex formation would result in locking the enzyme active site in an inactive form in which shikimate substrate binding to MtSK enzyme prior to MgADP dissociation from its active site would result in an inactive abortive complex. Consistent with these structural results, measurements of EcSK intrinsic tryptophan fluorescence (Trp54) on shikimate binding to either EcSK or the EcSK–MgADP binary complex showed a modest synergism of binding between these substrates, since the dissociation constant value for shikimate ($K_d = 0.72 \text{ mM}$) decreased to 0.3 mM in the presence of 1.5 mM ADP (Idziak et al., 1997). Measurements of the quenching of protein fluorescence of the $aroL$-encoded EcSK upon nucleotide binding demonstrated the dissociation-constant values for ADP.
and ATP to be 1.7 and 2.6 mM, respectively (Krell et al., 2001). The \(K_m \) for ATP (620 \(\mu \)M) was found to be approximately four times lower than the dissociation constant in the absence of shikimate (Krell et al., 2001). These results prompted the proposal that the conformational changes in the enzyme associated with the binding of the first substrate lead to an increase in the affinity for the second substrate. However, even if this holds for EcSK, it does not appear to hold for MtSK since the apparent dissociation-constant values for ATP (89 \(\mu \)M) and shikimate (44 \(\mu \)M) are similar to their \(K_m \) values, 83 \(\mu \)M for ATP and 41 \(\mu \)M for shikimate considering a random-order bi-bi enzyme mechanism (Gu et al., 2002). Moreover, no evidence for synergism between shikimate and ATP could be observed in substrate binding to EcSK in a chloride-free buffer system (Cerasoli et al., 2003). The K15M EcSK mutant has been crystallized in an open conformation that is proposed to presumably be equivalent to an apo-enzyme structure in which neither shikimate nor ADP (or ATP) would be bound (Krell et al., 2001). This mutant was produced to evaluate the role of the conserved Lys15 of the Walker A motif (Krell et al., 2001). However, an unwanted point mutation in the LID domain (Pro115Leu) was detected during refinement of the model and extensive contacts between LID domains of neighbouring EcSK enzymes were observed. It therefore appears unwarranted to consider the double K15M/P115L EcSK mutant a model for the apo enzyme. The incomplete LID-domain closure observed in the crystal structure presented here may suggest that the \(\gamma \)-phosphate of ATP plays a crucial role in the completion of the domain movement, as has also been proposed by others (Krell et al., 1998). The equilibrium constant for the intramolecular hydrolysis of bound ATP to bound ADP and phosphate at enzyme active sites is considerably larger than the equilibrium constant for ATP hydrolysis in solution (Jencks, 1975a). Accordingly, the loss of two water molecules (water5 and water6) described in §3.1 is consistent with the exclusion of water molecules from the active site owing to the partial closure of MtSK upon shikimate binding in order to minimize ATP hydrolysis.

4. Conclusions

The residues identified in the binding of shikimate whether directly or indirectly (Asp34, Arg58, Glu61, Gly79, Gly80, Gly81, and Arg136) are conserved in all SKs encoded by aroK and aroL genes (Fig. 4). The structures of SKs deposited in the PDB were superimposed and the positions of the residues involved in binding between shikimate and SK are highly conserved in aroK-encoded proteins (shikimate kinase from M. tuberculosis and C. jejuni) and aroL-encoded proteins (shikimate kinase from E. chrysanthemi). The conserved active site may account for the similar \(K_m \) values found for MtSK (aroK-encoded) and EcSK (aroL-encoded); however, it does not support the difference observed in the \(K_m \) value of SKI from E. coli. Romanowski & Burley (2002) proposed that the substitution of Leu83 (EcSK) for Lys86 in E. coli SKI disrupts the binding to shikimate. The loss of a stabilizing hydrophobic residue at this position may explain the significantly lower affinity of SKI from E. coli for shikimate compared with that of SKII. However, superimposition of SKI from E. coli with MtSK–shikimate indicates that Lys86 is distant from shikimate, which does not support Romanoswski and Burley’s proposition. Moreover, even though a substitution of Leu83 (EcSK) for Thr84 occurs in MtSK, which would result in the loss of a stabilizing hydrophobic residue, the \(K_m \) values for MtSK and EcSK are similar.
Superimposition of SKI from E. coli on the MtSK–MgADP–shikimate structure shows the overlap of Leu123 onto the shikimate structure; however, we cannot affirm that the binding sites are different, since the structure of SKI from E. coli was crystallized without shikimate and shikimate binding in the SKI structure may promote further conformational changes that may include a displacement of the Leu123 side chain.

Here, we describe the residues involved in shikimate binding and conformational changes upon substrate binding to the MtSK–MgADP complex, resulting in a partially closed structure. A complete active-site closure could be achieved in a complex of MtSK with shikimate, Mg$^{2+}$ and the non-hydrolysable ATP analogue adenosine $5'-(\beta,\gamma$-methylene) triphosphate (AMP-PCP). A likely drawback of ATP-binding site-based SK inhibitors would be their lack of specificity, owing to the common fold and similar ATP-binding site shared by many P-loop kinases (Leipe et al., 2003). The availability of the M. tuberculosis shikimate kinase structure complexed with shikimate should allow the molecular design of specific SK inhibitors that target either the shikimate- and ATP-binding sites or the shikimate-binding site only. Moreover, the knowledge of functional factors that lead to active-site closure could be used to design inhibitors that force MtSK into a closed conformation that would be unable to catalyze the phosphoryl transfer to shikimate.

This work was supported by grants from FAPESP (SMOLBNet, Proc. 01/07532-0, 02/05347-4, 04/00217-0), CNPq, CAPES and Instituto do Milênio (CNPq-MCT). WFA (CNPq, 300851/98-7), MSP (CNPq, 500079/90-0) and LAB (CNPq, 520182/99-5) are researchers of the Brazilian Council for Scientific and Technological Development.

References

Electron transfer kinetics and mechanistic study of the thionicotinamide coordinated to the pentacyanoferrate(III)/(II) complexes: a model system for the in vitro activation of thioamides anti-tuberculosis drugs

Eduardo H.S. Sousa a, Daniel L. Pontes a, Izaura C.N. Diógenes a, Luiz G.F. Lopes a, Jaim S. Oliveira b, Luiz A. Basso b, Diógenes S. Santos c, Icaro S. Moreira a,*

a Departamento de Química Orgânica e Inorgânica, Universidade Federal de Ceará, Cx. Postal 12200, Campus do Pici s/n, Fortaleza, CE 60455-760, Brazil
b Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
c Centro de Pesquisa e Desenvolvimento em Biologia Molecular e Funcional, Pontífícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil

Received 15 June 2004; received in revised form 24 September 2004; accepted 5 October 2004
Available online 6 November 2004

Abstract

The mechanism of activation thioamide-pyridine anti-tuberculosis prodrugs is poorly described in the literature. It has recently been shown that ethionamide, an important component of second-line therapy for the treatment of multi-drug-resistant tuberculosis, is activated through an enzymatic electron transfer (ET) reaction. In an attempt to shed light on the activation of thioamide drugs, we have mimicked a redox process involving the thionicotinamide (thio) ligand, investigating its reactivity through coordination to the redox reversible $[\text{Fe}^{\text{III}}(\text{CN})_5(\text{H}_2\text{O})]^2-/3-$ metal center. The reaction of the Fe III complex with thionicotinamide leads to the ligand conversion to the 3-cyanopyridine species coordinated to a Fe II metal center. The rate constant, $k_{et} = 10 \text{ s}^{-1}$, was determined for this intra-molecular ET reaction. A kinetic study for the cross-reaction of thionicotinamide and $[\text{Fe}(\text{CN})_6]^3-$ was also carried out. The oxidation of thionicotinamide by $[\text{Fe}(\text{CN})_6]^3-$ leads to formation of mainly 3-cyanopyridine and $[\text{Fe}(\text{CN})_6]^{4-}$ with a $k_{et} = (5.38 \pm 0.03) \text{ M}^{-1} \text{s}^{-1}$ at 25°C, pH 12.0. The rate of this reaction is strongly dependent on pH due to an acid–base equilibrium related to the deprotonation of the R-SH functional group of the imidothiol form of thionicotinamide. The kinetic results reinforced the assignment of an intra-molecular mechanism for the ET reaction of $[\text{Fe}^{\text{III}}(\text{CN})_5(\text{H}_2\text{O})]^2-$ and the thioamide ligand. These results can be valuable for the design of new thiocarbonyl-containing drugs against resistant strains of Mycobacterium tuberculosis by a self-activating mechanism.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Thionicotinamide; Reactivity; Pentacyanoferrate(III)/(II); Electron transfer; Tuberculosis

1. Introduction

The Mycobacterium tuberculosis inhA-encoded NADH-dependent enoyl reductase enzyme is a bona fide target for isoniazid (INH), the primary drug used to treat tuberculosis, in M. tuberculosis and plays an important role in cell wall biosynthesis [1–4]. INH is a pro-drug that is activated by the mycobacterial catalase-peroxidase enzyme KatG in the presence of manganese ions, NAD(H) and oxygen [5–8]. The KatG-produced acylpyridine fragment of isoniazid is
covalently attached to the C4 position of NADH, and forms a binary complex with the wild-type enoyl reductase of \textit{M. tuberculosis} \cite{9} with a dissociation constant value lower than 0.4 nM \cite{10}. Mutations in the \textit{inhA} structural gene, in the \textit{inhA} locus promoter region, and deletions of, or missense mutations in, the \textit{katG} coding sequence have been associated with resistance to isoniazid in clinical isolates of \textit{M. tuberculosis} \cite{11}. In trying to find better alternatives to isoniazid, we have tested the ability of the pentacyano(isoniazid)ferrate(II) complex to inhibit both wild-type and isoniazid-resistant I21V \textit{inhA} enzymes \cite{12}. The in vitro kinetics of inactivation of both wild-type and I21V \textit{InhA} enzymes by \[\text{Fe}^{II}(\text{CN})_5(\text{INH})\]^3\(\text{−}\) demonstrate that this process requires no activation by \textit{M. tuberculosis} KatG enzyme (a multifunctional hemeprotein catalase-peroxidase responsible for the activation of isoniazid prodrug) \cite{9,13} no need for the presence of NADH, and its mechanism of action probably involves interaction with the NADH binding site of wild-type and mutant enoyl reductases \cite{12}. This inorganic isoniazid analog may represent a new class of lead compounds to the development of anti-tubercular agents aiming at inhibition of a validated target.

Multi-drug-resistant tuberculosis (MDRTb) has been considered as an emerging epidemic that affects more that 50 million people worldwide \cite{14–17}. According to the 2004 Global TB Control Report of the World Health Organization, there are 300,000 new cases per year of MDR-TB worldwide, defined as resistant to isoniazid and rifampicin, and 79\% of MDR-TB cases are now “super strains”, resistant to at least three of the four main drugs used to treat TB \cite{18}. Resistance to front-line drugs like INH has led to the use of thioamide drugs, which are less active and more toxic, as components of second-line therapies \cite{19}. Recently, a flavoprotein monoxygenase, EtaA, was identified as the activating enzyme of thioamide anti-tuberculosis prodrugs \cite{20,21}. As postulated for most of the anti-tuberculosis prodrugs, the proposed mechanism of activation involves an electron transfer (ET) reaction as a crucial pathway \cite{9,13,22}. In spite of the important advances made in this research area, the mechanism of activation of thioamide-containing drugs is poorly understood. Since the activation of the prodrugs is postulated to occur through ET reactions, and based on the well known affinity of the nitrogen of the pyridine ring of the ligands towards the coordination to pentacyanoferrate moiety \cite{23}, we undertook a simple and suitable redox reversible \[\text{Fe(CN)}_5(\text{H}_2\text{O})\]^2\(\text{−}\)/3\(\text{−}\) probe metal center to mimic the mechanism of the prodrugs activation. The use of this system together with pyridinecarbothioamides-like prodrugs allows speculating whether the activation occurs through an inter- or intra-molecular ET process. Unfortunately, the reaction of ethionamide with pentacyanoferrate(II) moiety leads to the product complex coordinated through the thioamide group \cite{24}, which is the target for the prodrug ET investigation. To overcome this inconvenience, we have taken the thionicotinamide ligand which does not present steric hindrance around the nitrogen of the pyridine ring to carry out the experiments. Thionicotinamide shows a reducing property toward the superoxide ion, producing the 3-cyanopyridine (3-CNpy) corresponding nitrile with consequent formation of hydrogen peroxide and sulfur derivative species \cite{25}. Despite the importance of isoniazid and ethionamide ligands as prodrugs for the treatment and prophylaxis of tuberculosis, little is known about their mechanisms of action on a molecular level \cite{6,26,27}. The identities of these activated prodrugs are unknown, but details regarding the activation mechanisms are beginning to emerge \cite{28}. A comprehension of the activation mechanisms could result on the design of improved versions of the prodrugs, providing an alternative method for the treatment of the multi-drug resistant (MDR) strains of \textit{M. tuberculosis}. An understanding of the mechanism of activation may lead to the design of improved versions of the thioamide-containing prodrugs, providing an alternative method for the treatment of the MDR.

2. Experimental

2.1. Materials

All manipulations were carried out under inert atmosphere (N$_2$ or Ar) following conventional techniques. Milli-Q grade or doubly distilled water was used throughout. The thionicotinamide and 3-cyanopyridine ligands, from Aldrich, were used without further purification. The \(\text{Na}_3[\text{Fe(CN)}_5(\text{NH}_3)]\cdot3\text{H}_2\text{O}\) and \(\text{Na}_2[\text{Fe(CN)}_5(\text{NH}_3)]\cdot\text{H}_2\text{O}\) complexes were synthesized as previously described \cite{29,30} with minor modifications. Anal. Calc. for \(\text{Na}_3[\text{Fe(CN)}_5(\text{NH}_3)]\cdot3\text{H}_2\text{O}\): C, 18.42; H, 2.76; N, 25.77. Found: C, 18.38; H, 2.73; N, 25.62. Yield was better than 90\%. Anal. Calc. for \(\text{Na}_2[\text{Fe(CN)}_5(\text{NH}_3)]\cdot\text{H}_2\text{O}\): C, 22.47; H, 1.89; N, 31.47. Found: C, 22.56; H, 1.81; N, 31.22. Yield was better than 70\%. All other chemicals were analytical reagent grade.

2.1.1. \(\text{Na}_3[\text{Fe(CN)}_5(\text{thio})]\cdot3\text{H}_2\text{O}\)

A 100 mg sample of \(\text{Na}_3[\text{Fe(CN)}_5(\text{NH}_3)]\cdot3\text{H}_2\text{O}\) was dissolved in 5 mL of a 30\% dimethylformamide/water mixture, under argon flow. The thionicotinamide ligand (90 mg) dissolved in 2 mL of the same solvent mixture was added to the complex solution. Upon mixing, the resulting solution developed an orange color, and was allowed to react for 2 h, under argon, stirring, and in the absence of light. The reaction vessel was then cooled on ice bath, and a cold NaI saturated solution in ethanol
was added dropwise until complete precipitation. The red solid formed was collected by filtration, washed with ethanol and diethyl ether, dried and stored under vacuum in the absence of light. Anal. Calc. C, 29.50; H, 2.70; N, 21.90; S, 7.10%. Found: C, 29.41; H, 2.68; N, 22.00; S, 7.11. 1H NMR: δ(D2O, 300 MHz) 9.10, 9.17 (SH–NH), 9.08 (H-2), 9.02 (H-6), 7.95 (H-4) and 7.23 (H-5). Yield was better than 85%.

2.1.2. Na₃[Fe(CN)₅(3-CNpy)]·3H₂O

On the basis of the physical chemical properties, further shown on this work, the main product of the reaction of Na₃[Fe(CN)₅(NH₃)]·3H₂O complex with thionicotinamide (reaction I) is the Na₃[Fe(CN)₅(3-CNpy)]·3H₂O species. This complex was obtained by dissolving 100 mg of the Na₃[Fe(CN)₅(NH₃)]·3H₂O complex in 5 mL of a 30% dimethylformamidewater mixture, under argon flow. The thionocotinamide ligand (100 mg) dissolved in 3 mL of the same solvent mixture was added to the complex solution. The reaction was allowed to stand for 2 h under argon flow, and stirring, in the absence of light. A dark red solid precipitates by adding a cold NaI/ethanol saturated solution. The precipitate was collected by filtration, washed with ethanol and diethyl ether, dried, and stored under vacuum in the absence of light. Anal. Calc. C, 32.01; H, 2.42; N, 23.73; S, 0.00%. 1H NMR: δ(D2O, 300 MHz), 9.27 (H-2), 9.19 (H-6), 8.05 (H-4) and 7.33 (H-5). Yield was better than 80%.

For comparative purposes, the Na₃[Fe(CN)₅(thio)]·3H₂O complex was also prepared following the literature method [31] by the direct reaction of Na₃[Fe(CN)₅(NH₃)]·3H₂O with the 3-cyanopyridine ligand. Anal. Calc. C, 32.01; H, 2.42; N, 23.73. Found: C, 32.04; H, 2.40; N, 23.82. 1H NMR: δ(D2O, 300 MHz) 9.27 (H-2), 9.19 (H-6), 8.05 (H-4) and 7.33 (H-5).

2.2. Apparatus

The electronic absorption spectra were acquired with a Hewlett-Packard 8453 spectrophotometer, at 25 ± 0.1 °C. Solutions of the reactants were freshly prepared under an argon atmosphere for each run. The buffer solutions consisting of H₂KPO₄ and NaOH were used. The ionic strength of the solutions (0.5 M) was adjusted by the addition of KCl. The pH measurements were performed on a Corning 440 pH meter equipped with a Cole Parmer glass electrode. Values of kobs were calculated from a least-squares fitting to the equation ln(Aᵣ – Aᵢ) = ln(A₀ – Aᵢ) – kḥot, where Aᵣ, A₀, and Aᵢ are absorbance at time t, time zero (first point), and longer times (≥ 4 half lives), respectively. The calculations were carried out by means of the kinetic software of the Hewlett-Packard 8453 spectrophotometer. The reaction progress was followed at 420 nm, the absorbance maximum of [Fe(CN)₆]³⁻, under pseudo-first order conditions. Kinetic measurements for the intra-molecular reaction were performed on an Aminco-Morrow 126550-3 stopped-flow spectrophotometer.

3. Results and discussion

The reaction of thionicotinamide ligand with the [Fe⁴⁺(CN)₅(H₂O)]³⁻ complex generates the [Fe⁴⁺(CN)₅(thio)]³⁻ species, preserving the chemical composition of the thionicotinamide moiety [32]. However, the oxidized analogous species, [Fe⁴⁺(CN)₅(thio)]²⁻, could not be isolated from the direct reaction of [Fe⁴⁺(CN)₅(H₂O)]²⁻ ion with the same ligand. The main product of this reaction was characterized as the [Fe⁴⁺(CN)₅(3-CNpy)]³⁻ complex, 3-CNpy = 3-cyanopyridine.

\[
\text{[Fe}^{IV}(\text{H}_2\text{O})_5]^{2-} + \text{CN} \rightarrow \text{Fe}^{IV}(\text{CN})_5^{3-} + \text{H}_2\text{S} + \text{H}_2\text{O} \tag{1}
\]

The electronic spectrum of the [Fe⁴⁺(CN)₅(thio)]³⁻ complex displayed three bands. The shoulder near λmax = 230 nm (ε ≈ 10⁵ M⁻¹ cm⁻¹) is typically assigned to the π→π(CN⁻) → δ(Fe⁴⁺) metal to ligand charge transfer (MLCT) transition. The broad band at λmax = 290 nm (ε = 5.5 × 10⁴ M⁻¹ cm⁻¹) is similar in energy and intensity to those observed for the free ligand and therefore was assigned to internal ligand transitions [33], whereas the solvent sensitive band at λmax = 390 nm (ε = 1.4 × 10³ M⁻¹ cm⁻¹) was attributed to the π→π(thio) → δ(Fe⁴⁺) MLCT transition.
The most prominent feature of the electronic spectrum for the product of reaction (1) of Na₃[Fe³⁺(CN)₅(NH₃)]·H₂O complex with thioamide ligand is a solvent sensitive band at 414 nm (ε = 3.2 × 10³ M⁻¹ cm⁻¹), that is not usually observed in this spectral range for pentacyanonoferrate(III) complexes with pyridine derivative ligands [34]. The energy of this band lies in the same position as that observed for the [Fe³⁺(CN)₅(3-CNpy)]₃⁻ complex [31], which is typically observed for the [ππ*(pyridine ring) ← dπ(Fe³⁺)] MLCT transition, indicating the presence of Fe³⁺ in the composition of this complex [35].

The infrared (IR) spectrum of the Na₃[Fe³⁺(CN)₅(thio)]·3H₂O complex displayed several characteristic bands of the coordinated ligand in the imidithiol form [νSH, 2575 cm⁻¹; (δNH + νC=N + 6CH), 1301 cm⁻¹; (νC≡S + νCN), 1134 cm⁻¹; νCS, 738 cm⁻¹] [36]. The bands at 2052 and 572 cm⁻¹ are assigned to the νC≡N and νFe-CN vibrational modes, respectively [37].

The 1H NMR spectrum for the product of reaction (1) showed bands due to the νCN (2051 cm⁻¹) and νFe-CN (573 cm⁻¹) modes at very similar frequencies as those observed for pentacyanoniferrate(II) complexes [38]. An increase in the νCN stretching frequency of about 70 cm⁻¹ is expected to occur for similar Fe(III) complexes [38]. Furthermore, the characteristic bands of the thionicotinamide ligand were not observed and an additional typical band of the nitrile stretching mode (νNC) appears at 2240 cm⁻¹ [35].

The cyclic voltammetry for the [Fe³⁺(CN)₅(thio)]³⁻ complex showed waves (E₁/₂ = 240 mV, at 50 mV s⁻¹) characteristic of an irreversible oxidation process. The Eₚ values showed a small dependence on the scan rate and the plot of iₚ versus v¹/₂ was not linear over the experimental range between 10 and 150 mV s⁻¹. This is consistent with the anticipated ET reaction of thionicotinamide ligand coordinated to the Fe(III) metal center.

Upon iron(II) metal center oxidation, the Fe(III) electrochemically formed species induces the intramolecular ET reaction to generate the [Fe³⁺(CN)₅(3-CNpy)]³⁻ complex. The cyclic voltammetry for the product of the reaction (1) is identical to that for the [Fe³⁺(CN)₅(3-CNpy)]³⁻ complex synthesized by the direct reaction of Na₃[Fe³⁺(CN)₅(NH₃)]·3H₂O with 3-CNpy ligand, which exhibited one reversible Fe³⁺/II process with E₁/₂ = 283 mV.

The 1H NMR spectrum of the thioamide ligand exhibits four multiplets [δ 9.00 (H-2), 8.20 (H-4), 7.51 (H-5), 8.66 (H-6)] in an ABXY system, and two additional single signals [δ 9.87, δ 10.08] attributed to the hydrogen atoms of the imidothiol group (Chart 1) [39].

The 1H NMR spectrum of the [Fe³⁺(CN)₅(thio)]³⁻ complex shows two single signals at δ 9.10 and δ 9.17 typical of the hydrogen atoms of the imidothiol group, indicating that the preferred imidothiol tautomer [39] of the ligand is preserved upon coordination. In the interpretation of the [Fe³⁺(CN)₅(thio)]³⁻ spectrum, the effects of the cyanide ligands must also be taken into account. The anisotropy of the cyanides due to the perpendicular induced field at the C≡N bonds could deshield the H-2 and H-6 hydrogen atoms of the coordinated pyridine ring. This phenomenon is more effective for the H-2 and H-6 hydrogen atoms due to the unfavorable distance between the cyanide ligands and the H-4 and H-5 hydrogen atoms of the coordinated pyridine ring. On the basis of the preceding arguments the downfield shifted peaks centered at δ 9.08 and 9.02 were assigned to the H-2 and H-6 hydrogens. All other hydrogen signals have shown upfield shifts [δ 7.95 (H-4), 7.23 (H-5)] since the cyanide anisotropy is not expected to have a noticeable influence over the H-4 and H-5 hydrogens, the observed chemical shift variation (Δδ = 0.25 and Δδ = 0.28) compared to the free ligand spectrum could be substantially due to the [ππ*(thio) ← dπ(Fe³⁺)] backdonating effect [40].

The 1H NMR spectrum for the product of reaction (1) presents one single signal at δ 9.27, two doublets centered at δ 9.19 and δ 8.05, and one multiplet centered at δ 7.35. The spectrum does not show the NMR signals typical of the thioamide ligand. Furthermore, the chemical shift values and the sharp shapes of the signals are not characteristic of NMR spectra of the Fe(II) paramagnetic species. For example, the literature reports that the hydrogen spectrum of [Fe(III)(CN)₅imidazol]³⁻, imz = imidazole, exhibits broad signals at δ -19.1, 5.10 and 0.90, while for the Fe(III) analogous complex the corresponding hydrogen signals were observed at δ 7.74, 7.20 and 7.00 [41,42].

Both 1H NMR spectra for the [Fe(CN)₅(3-CNpy)]³⁻ complex, synthesized by the direct reaction of [Fe(CN)₅(NH₃)]³⁻ with 3-CNpy ligand, and for the product of reaction (1) are identical and were attributed to the hydrogen atoms of the 3-CNpy coordinated ligand [δ 9.27 (H-2), 9.19 (H-6), 8.50 (H-4), 7.35 (H-5)].

Although these results strongly support that the main product of the reaction (1) is the [Fe³⁺(CN)₅(3-CNpy)]³⁻ complex, Mössbauer spectroscopy was used to better investigate the electronic nature of the metal center.

![Chart 1. Structure representation of the thioamide (A) and imidothiol (B) tautomers.](image-url)
The Mössbauer spectra of pentacyanoferrate complexes are doublets due to the presence of an electronic field gradient with non-cubic symmetry in the 57Fe nucleus [43]. The non-cubic electronic configuration of the central ion comes from the asymmetric σ and π bonding involving only the axial ligand L, reflecting on the isomer shift (δ) Mössbauer parameter. The ligand σ donation mechanism increases the s electron population causing an increase of the electronic density at the metal [44]. The same effect is caused by the $p\pi^*(L) \rightarrow d\pi(M)$ back-donation that decreases the shielding effects. The σ and π bonding involving the metal and L axial ligand are responsible for the appearance of the electric field gradient (EFG) at the 57Fe nucleus. The quadrupole splitting is caused by the interaction of the nuclear quadrupole moment of the iron atom with the Z component of the EFG [44]. The $[Fe^{III}(CN)_{5}L]$ complexes have a d^{5} low-spin configuration that decreases the shielding effect of the s electrons compared to those of the d^{6} low-spin FeII species. Also, the low-spin d^{5} configuration induces a larger EFG due to the asymmetric electronic configuration. Thus, a smaller isomer shift and a larger quadrupole splitting are expected for FeIII than those for the FeII analogous pentacyanoferrate complexes.

The isomer shift and quadrupole splitting values for FeIII and FeII complexes are quite distinguishable. The δ and Δ Mössbauer parameters values for both complexes reported in this work strongly suggest the presence of an unique 57Fe(II) Mössbauer nucleus, consistent with the proposed chemical compositions [45]. These results, along with those reported here for the full characterization of the complexes, indicate that an ET reaction involving the $[Fe^{III}(CN)_{5}(H_{2}O)]^{2-}$ complex and the thioamide ligand occurs with the consequent formation of the $[Fe^{II}(CN)_{5}(3-CNpy)]^{3-}$ complex.

To provide experimental evidence on whether the ET reaction (I) occurs through an inter or intramolecular pathway, a kinetic study for the cross-reaction of thionicotinamide and $[Fe(CN)_{6}]^{3-}$ was first addressed. The oxidation of thionicotinamide by $[Fe(CN)_{6}]^{3-}$ leads to the formation of predominantly 3-cyanopyridine and $[Fe(CN)_{6}]^{4-}$ according to the following overall reaction (2):

$$C_{6}N_{2}SH_{6} + [Fe^{III}(CN)_{6}]^{3-} \rightarrow C_{6}N_{2}H_{4} + [Fe^{II}(CN)_{6}]^{4-} + H_{2}S$$

The reaction was monitored by the absorbance decrease at 420 nm, the absorbance maximum of $[Fe(CN)_{6}]^{3-}$, under pseudo-first-order conditions. The rate of this reaction is strongly dependent on pH due to an acid–base equilibrium related to the deprotonation of $-SH$ functional group ($pK_{a} = 11.84$) [33]. The pH value dependence observed for reaction (2), shown in Fig. 2, clearly demonstrates that the imidothiol tautomer is the main reactive species toward the ET processes involving the thionicotinamide ligand. A significant decrease in the rate constant is observed for pH < 11, for which the unreactive thioamide form becomes favored [25,33](Chart 1). The protonation of $[Fe(CN)_{6}]^{3-}$ does not represent an important factor in the pH range selected for this investigation [46,47].

On the basis of the kinetic results we have proposed the following overall mechanism:

$$NH_{2}SH \quad \begin{array}{c}
\text{K} \\
\quad \text{pK}_{a} = 11.84
\end{array} \quad NH_{2}S^{-}$$

$$[Fe^{III}(CN)_{4}]^{1-} + \quad \begin{array}{c}
\text{K} \\
\quad \text{pK}_{a} = 11.84
\end{array} \quad [Fe^{II}(CN)_{4}]^{3-} + [Fe^{III}(CN)_{4}]^{1-}$$
The rate law for this mechanism in (6) can, with the aid of Eq. (7), be simplified to (8) for the pH 12.0 experimental conditions.

\[
\frac{[\text{Fe(III)}]}{dt} = k[(\text{py})-\text{CSNH}][\text{Fe(III)}],
\]

\[
[(\text{py})-\text{CSNH}] = \frac{K_a[(\text{py})-\text{CSHNN}]}{[H^+]} \cong [(\text{py})-\text{CSHNN}],
\]

\[
k_{\text{obs}} = k[(\text{py})-\text{CSHNN}].
\]

Indeed, under this pH experimental condition, the first order rate constant \(k_{\text{obs}}\) depends linearly on [(py)-CSHNN] as shown in Fig. 3. The slope \(k_{\text{obs}}/[(\text{py})-\text{CSHNN}]\) gives a value of \(k = (5.38 \pm 0.03) \text{ M}^{-1} \text{s}^{-1}\) at 25 °C, pH 12.0 (Phosphate buffer), \(\mu = 0.50 \text{ M}\).

The ET reaction of \([\text{Fe}^{\text{III}}(\text{CN})_5(\text{H}_2\text{O})]^2^-\) with the thionicotinamide ligand can be envisaged to occur by the inner- or outer-sphere pathways as illustrated in Scheme 1.

In an effort to qualitatively elucidate the mechanism of the ET reaction of \([\text{Fe}^{\text{III}}(\text{CN})_5(\text{H}_2\text{O})]^2^-\) with the thionicotinamide ligand, kinetic studies were performed at 25 °C, pH 7.0. The product solution was monitored spectrophotometrically by following the absorbance increase at 414 nm, i.e., the absorbance maximum of \([\text{Fe}^{\text{II}}(\text{CN})_5(3\text{-CNpy})]^3^-\) species. Contrary to that observed for rate constant of the cross-reaction of \([\text{Fe}^{\text{III}}(\text{CN})_6]^3^-\) and thionicotinamide ligand at the same conditions \((k_{\text{obs}} = 5.0 \times 10^{-7} \text{ s}^{-1})\), a rapid ET process is observed with a rate constant \(k_{\text{et}} = 10^{-1} \text{ s}^{-1}\). The rate was observed to be concentration independent.

A attempt to determine experimentally the rate \((k_{\text{et}})\) of intemolecular ET reaction was not successful, mainly due to the absorption interference of the MLCT band of \([\text{Fe}^{\text{II}}(\text{CN})_5(3\text{-CNpy})]^3^-\) species that forms at higher rates. However, by a simple comparison with the rate value observed for the thionicotinamide ligand ET reaction with \([\text{Fe}^{\text{III}}(\text{CN})_6]^3^-\) that operates with a larger driving force \((AG \equiv 1.60 \text{ V})\), a value smaller than \(5.0 \times 10^{-7} \text{ s}^{-1}\) would be expected for \(k_{\text{et}}\) [48]. Additionally, the literature reports a rate constant \(k_2 = 413 \text{ M}^{-1} \text{s}^{-1}\) for the formation of the \([\text{Fe}^{\text{II}}(\text{CN})_5(3\text{-CNpy})]^3^-\) species [31], also suggesting that the intemolecular pathway indicated in Scheme 1 is not preferred. These observations, together with the fact that the rate constant observed \(k_{\text{et}} = 10^{-1} \text{ s}^{-1}\) is concentration independent, strongly suggest that coordination to pentacyanoferrate(III) com-

Table 1

<table>
<thead>
<tr>
<th>Complexes</th>
<th>(\delta \pm 10^{-4}) (mm s(^{-1}))</th>
<th>(\lambda \pm 10^{-3}) (mm s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Na}_3[\text{Fe}^{\text{II}}(\text{CN})_5(\text{NH}_3)_2] \cdot 3\text{H}_2\text{O})</td>
<td>0.275</td>
<td>0.686</td>
</tr>
<tr>
<td>(\text{Na}_3[\text{Fe}^{\text{III}}(\text{CN})_5(\text{NH}_3)_2] \cdot 3\text{H}_2\text{O})</td>
<td>0.203</td>
<td>1.660</td>
</tr>
<tr>
<td>(\text{Na}_3[\text{Fe}^{\text{II}}(\text{CN})_5(\text{dttdp})] \cdot 4\text{H}_2\text{O})</td>
<td>0.291</td>
<td>0.886</td>
</tr>
<tr>
<td>(\text{Na}_3[\text{Fe}^{\text{III}}(\text{CN})_5(\text{dttdp})] \cdot 4\text{H}_2\text{O})</td>
<td>0.220</td>
<td>1.709</td>
</tr>
<tr>
<td>(\text{Na}_3[\text{Fe}^{\text{II}}(\text{CN})_5(3\text{-CNpy})] \cdot 3\text{H}_2\text{O})</td>
<td>0.212</td>
<td>0.912</td>
</tr>
<tr>
<td>(\text{Na}_3[\text{Fe}^{\text{III}}(\text{CN})_5(3\text{-CNpy})] \cdot 3\text{H}_2\text{O})</td>
<td>0.219</td>
<td>0.887</td>
</tr>
</tbody>
</table>

\(^a\) dttdp = 4,4’-dithiodipyridine [32].

\(^b\) Generated from \([\text{Fe}^{\text{III}}(\text{CN})_5(\text{H}_2\text{O})]^2^-\) reaction with thionicotinamide ligand.

Fig. 2. pH dependence of \(k_{\text{obs}}\) for the oxidation of thionicotinamide by \([\text{Fe(CN)}_6]^{3-}\). \([\text{Fe}^{\text{II}}] = 1.0 \times 10^{-5} \text{ M} ; \text{[thio]} = 3.0 \times 10^{-3} \text{ M} ; \mu = 0.5 \text{ M} ; \text{temperature} = 25 \text{ °C}.

Fig. 3. Plot of \(k_{\text{obs}}\) versus [thio] for the oxidation of thionicotinamide by \([\text{Fe(CN)}_6]^{3-}\). \([\text{Fe}^{\text{III}}] = 1.0 \times 10^{-5} \text{ M} ; \text{pH} 12.0 ; \mu = 0.5 \text{ M} ; \text{temperature} = 25 \text{ °C}.

In an effort to qualitatively elucidate the mechanism of the ET reaction of \([\text{Fe}^{\text{III}}(\text{CN})_5(\text{H}_2\text{O})]^2^-\) with the thionicotinamide ligand, kinetic studies were performed at 25 °C, pH 7.0. The product solution was monitored spectrophotometrically by following the absorbance increase at 414 nm, i.e., the absorbance maximum of \([\text{Fe}^{\text{II}}(\text{CN})_5(3\text{-CNpy})]^3^-\) species. Contrary to that observed for rate constant of the cross-reaction of \([\text{Fe}^{\text{III}}(\text{CN})_6]^3^-\) and thionicotinamide ligand at the same conditions \((k_{\text{obs}} = 5.0 \times 10^{-7} \text{ s}^{-1})\), a rapid ET process is observed with a rate constant \(k_{\text{et}} = 10^{-1} \text{ s}^{-1}\). The rate was observed to be concentration independent. An attempt to determine experimentally the rate \((k_{\text{et}})\) of intemolecular ET reaction was not successful, mainly due to the absorption interference of the MLCT band of \([\text{Fe}^{\text{II}}(\text{CN})_5(3\text{-CNpy})]^3^-\) species that forms at higher rates. However, by a simple comparison with the rate value observed for the thionicotinamide ligand ET reaction with \([\text{Fe}^{\text{III}}(\text{CN})_6]^3^-\) that operates with a larger driving force \((AG \equiv 1.60 \text{ V})\), a value smaller than \(5.0 \times 10^{-7} \text{ s}^{-1}\) would be expected for \(k_{\text{et}}\) [48]. Additionally, the literature reports a rate constant \(k_2 = 413 \text{ M}^{-1} \text{s}^{-1}\) for the formation of the \([\text{Fe}^{\text{II}}(\text{CN})_5(3\text{-CNpy})]^3^-\) species [31], also suggesting that the intemolecular pathway indicated in Scheme 1 is not preferred. These observations, together with the fact that the rate constant observed \(k_{\text{et}} = 10^{-1} \text{ s}^{-1}\) is concentration independent, strongly suggest that coordination to pentacyanoferrate(III) com-

Scheme 1.
plex promotes the thioamide ligand activation through an intramolecular ET reaction.

4. Conclusions

The data collected here, along with those reported in the literature [25] concerning the redox reaction of the thionicotinamide with superoxide ion lead us to propose the reaction patterns outlined in the Scheme 1 through an inner sphere pathway.

The in vitro activation of thionicotinamide and isoniazid through an intramolecular ET reaction in [Fe\(^{III}\)(CN)\(_5\)(L)] complexes provide a suitable model system for the \textit{M. tuberculosis} Etha (or EtaA) and KatG enzyme-dependent activation mechanisms [14]. Although the thionicotinamide in the tuberculosis therapy is not as effective as isoniazid and rifampicin, resistance to these front-line drugs has led to the use of less-active thioamides for the treatment of multi-drug-resistant tuberculosis [14,19,49]. Based on the mechanisms of activation propose for ethionamide and isoniazid, both via ET reaction [21], and on the results presented here, an alternative self-activation route can be proposed for designing new drugs for the treatment of multi-drug-resistant tuberculosis. These drugs would be activated by ET reactions before interacting with its cellular target. The oxidative activation of INH and ETH (or ETA) by cells of \textit{M. tuberculosis} is mediated by the KatG and EthA (or EtaA) enzymes, respectively, that precedes inactivation of enzymes involved in mycolic acid biosynthesis that are constituents of the cell wall of the bacillus [21]. Most of the INH resistance is associated with \textit{katG} structural gene alterations resulting in catalase-peroxidase mutant enzymes with impaired ability to form activated-INH intermediates. One approach to overcome this effect is the use of low oxidation state metal complexes coordinated to the prodrugs. For this purpose, we have found that the pentacyanoferrate(II) metal center and thionicotinamide ligand is a very first approximate model system on the perspective of a new approach for drug design for the treatment of multi-drug-resistant tuberculosis by proposing a self-activation mechanism illustrated in Scheme 2.

Upon oxidation of \([\text{Fe}^{III}(\text{CN})_5(\text{thio})]^\text{3−}\) complex (\(E_{1/2} = 240\text{ mV}\)) by oxygen and/or cellular oxidants, it is postulated that the thermodynamically unstable iron(III) complex would undergo a rapid intramolecular ET reaction. The \([\text{py-CSN}H]\text{Fe}^{II}(\text{CN})_5^\text{3−}\) intermediate species decays to the \([3-\text{CNpy}]\text{Fe}^{II}(\text{CN})_5^\text{3−}\) complex. This proposed self-activation mechanism is well supported by the literature that reports the electrochemical oxidation of thioamides yielding the corresponding nitrile and polysulfide species [25]. The same oxidation is reported to occur by the action of molecular oxygen, but the process is much slower. Other studies have detected nitriles as oxidation products of thioamides [50].

As reported recently, the incubation of both wild-type (WT) and isoniazid-resistant I21V mutant enoyl reductases from \textit{M. tuberculosis} with Na\(_3\)Fe\(^{II}\)(CN)\(_5\)(IN-
H)[·4H2O in the absence of NADH resulted in the
time-dependent inactivation of the enzyme with the
apparent first-order rate constant values of 327×10^{-3}
and 315×10^{-3} min$^{-1}$, respectively [12]. The results sug-
gest that the WT and I21V mutant inhA enzymes inacti-
vation by $[\text{Fe}^{II}(\text{CN})_{5}(\text{INH})]^{3-}$ requires no activation by
KatG, no need for the presence of NADH, and its
mechanism of action probably involves interaction with the
NADH binding site of the enzyme.

Pharmacological studies as well as similar experi-
ments with isoniazid and ethionamide ligands including
other metal complexes as ruthenium ammines are cur-
cently underway in our laboratories. The results will
be soon reported in a forthcoming paper.

Acknowledgements

The authors acknowledge CNPq and CAPES, the
Brazilian financial agencies. I.S.M. (CNPq, 477610/
2003-0) L.A.B. (CNPq, 520182/99-5) and D.S.S. (CNPq,
304051/1975-06) are researcher awardees from the Na-
tional Council for Scientific and Technological Develop-
ment of Brazil.

References

8241.
4059–4067.
1751–1752.
7426.
2331–2332.
144.
299–301.
DAHP synthase from Mycobacterium tuberculosis H37Rv: cloning, expression, and purification of functional enzyme

Caroline Rizzia, Jeverson Frazzonb, Fernanda Elya, Patricia G. Webera, Isabel O. da Fonsecaa, Michelle Gallasa, Jaim S. Oliveiraa, Maria A. Mendesc, Bibiana M. de Souza, Mário S. Palmac, Diógenes S. Santosd,*, Luiz A. Bassoa,*

a Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
b Departamento de Ciência dos Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
c Departamento de Biologia/CEIS, Universidade do Estado de São Paulo, Rio Claro, SP 13506-900, Brazil
d Centro de Pesquisa e Desenvolvimento em Biologia Molecular e Funcional, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil

Received 13 April 2004, and in revised form 18 June 2004
Available online 8 December 2004

Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality due to a bacterial pathogen. According to the 2004 Global TB Control Report of the World Health Organization, there are 300,000 new cases per year of multidrug-resistant strains (MDR-TB), defined as resistant to isoniazid and rifampicin, and 79% of MDR-TB cases are now “super strains,” resistant to at least three of the four main drugs used to treat TB. Thus there is a need for the development of effective new agents to treat TB. The shikimate pathway is an attractive target for the development of antitycobacterial agents because it has been shown to be essential for the viability of M. tuberculosis, but absent from mammals. The M. tuberculosis aroG-encoded 3-deoxy-D-arabino-hexulosonate 7-phosphate synthase (mtDAHPS) catalyzes the first committed step in this pathway. Here we describe the PCR amplification, cloning, and sequencing of aroG structural gene from M. tuberculosis H37Rv. The expression of recombinant mtDAHPS protein in the soluble form was obtained in Escherichia coli Rosetta-gami (DE3) host cells without IPTG induction. An approximately threefold purification protocol yielded homogeneous enzyme with a specific activity value of 0.47 U mg⁻¹ under the experimental conditions used. Gel filtration chromatography results demonstrate that recombinant mtDAHPS is a pentamer in solution. The availability of homogeneous mtDAHPS will allow structural and kinetics studies to be performed aiming at antitycobacterial agents development.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Mycobacterium tuberculosis; Shikimate pathway; DAHP synthase; Protein expression

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. The interruption of centuries of decline in case rates of TB occurred, in most cases, in the late 1980s and involved the USA and some European countries due to increased poverty in urban settings and the immigration

1046-5928/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.pep.2004.06.040
from TB high-burden countries [1]. Thus, no sustainable control of TB epidemics can be reached in any country without properly addressing the global epidemic. It is estimated that 8.2 million new TB cases occurred worldwide in the year 2000, with approximately 1.8 million deaths in the same year, and more than 95% of those were in developing countries [2]. Approximately, 2 billion individuals are believed to harbor latent TB based on tuberculin skin test surveys [3], which represents a considerable reservoir of bacilli. Possible factors underlying the resurgence of TB worldwide include the HIV epidemic, increase in the homeless population, and decline in health care structures and national surveillance [4]. Another contributing factor is the evolution of multi-drug resistant strains (MDR-TB), defined as resistant to isoniazid and rifampicin, which are the most effective first-line drugs [5]. According to the 2004 Global TB Control Report of the World Health Organization, there are 300,000 new cases per year of MDR-TB worldwide, and 79% of MDR-TB cases are now “super strains,” resistant to at least three of the four main drugs used to treat TB [6]. The factors that most influence the emergence of drug-resistant strains include inappropriate treatment regimens, and patient noncompliance in completing the prescribed courses of therapy due to the lengthy standard “short-course” treatment or when the side effects become unbearable [7]. Hence, faster acting and effective new drugs to better combat TB, including MDR-TB, are needed.

The shikimate pathway is an attractive target for the development of herbicides and antimicrobial agents because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals [8]. In mycobacteria, the shikimate pathway leads to the biosynthesis of chorismic acid, which is a precursor for the synthesis of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins [9]. The salicylate-derived mycobactin siderophores have been shown to be essential for \(M. \) \(\text{tuberculosis} \) growth in macrophages [10]. More recently, the shikimate pathway has been shown to be disrupted by \(\text{aro}K \) gene, which codes for the shikimate kinase enzyme, to be essential for the viability of \(M. \) \(\text{tuberculosis} \) [11]. The absence from the human host and essentiality of mycobacterial shikimate pathway indicate that any of its enzymes are promising targets for the development of potentially non-toxic antimycobacterial agents.

Homologues to enzymes in the shikimate pathway have been identified in the genome sequence of \(M. \) \(\text{tuberculosis} \) [12]. The first committed step in the shikimate pathway is catalyzed by 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHPS) synthase (DAHPS; EC 4.1.2.15). DAHPS catalyzes the stereospecific condensation of phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P), forming DAHPS and inorganic phosphate [13]. Based on phylogenetic analysis, DAHPS has been divided into two classes, class I and class II [14]. *Escherichia coli* expresses three DAHPS isoenzymes that are representative of class II and require divalent metal for activity [15], which play a role in catalysis and/or structural integrity [16]. Each isoenzyme is specifically inhibited by one of the three aromatic amino acids [8]. DAHPS(Phe), a homotetramer encoded by the \text{aro}G gene, is feedback inhibited by phenylalanine; the \text{aro}H-encoding DAHPS(Trp) and \text{aro}F-encoded DAHPS(Tyr) are homodimers feedback inhibited by, respectively, tryptophan and tyrosine. In \(M. \) \(\text{tuberculosis} \) genome, however, only the \text{aro}G (Rv2178c) encoded DAHPS isoenzyme (mtDAHPS) has been proposed to be present by sequence homology.

To determine the mechanism of action of mtDAHPS by steady-state and pre-steady-state kinetics as well as for X-ray crystal structure determination aiming at the rational design of antimycobacterial agents, expression of \text{aro}G encoded mtDAHPS in functional form and in large quantity are needed. Accordingly, we here describe the PCR amplification, cloning, sequencing, expression in *E. coli* Rosetta-gami (DE3) cells, purification to homogeneity, oligomeric state determination, and assay of mtDAHPS enzyme activity. Measurements of enzyme activity confirm the correct assignment to the structural gene encoding mtDAHPS in *M. tuberculosis*. The availability of mtDAHPS will allow enzyme kinetics and structural studies to be undertaken to provide a framework on which to base the design of new agents with antitubercular activity with, hopefully, low toxicity.

Materials and methods

PCR amplification and cloning of \(M. \) \(\text{tuberculosis} \) \text{aro}G gene

The design of synthetic oligonucleotide primers used for PCR amplification of \text{aro}G gene (5′-ggacctataagctgg acctgtagactac-3′ and 5′-cggatccagctcggcagctcggcgc-3′) was based on the complete genome sequence of \(M. \) \(\text{tuberculosis} \) H37Rv [12]. These primers were complementary to, respectively, the amino-terminal coding and carboxy-terminal noncoding strands of \text{aro}G gene containing 5′\text{NdeI} and 3′\text{BamHI} restrictions sites, which are in bold. This pair of primers was used to amplify the \(M. \) \(\text{tuberculosis} \) \text{aro}G gene (1389 bp) from genomic DNA using standard PCR conditions and the enzyme \(\text{Pfu} \) DNA polymerase (Stratagene), which is a thermostable polymerase that exhibits low error rate, thus lowering the likelihood of introducing unwanted mutations. PCR amplification required the presence of 10% of dimethyl sulfoxide (DMSO) in the reaction mixture. The PCR product was purified by electrophoresis on low melting agarose, digested with \text{NdeI} and \text{BamHI} (Boehringer–Mannheim), and cloned into pET-23a(+) (Novagen).
expression vector, which had previously been digested with the same restriction enzymes. To both confirm the identity of the cloned gene and ensure that no mutations were introduced by the PCR amplification step, the DNA sequence of the amplified *M. tuberculosis* aroG structural gene was determined by dideoxy-chain termination method \[17\], using the Thermo Sequenase radio-labeled terminator cycle sequencing kit (Amersham Biosciences).

Expression of mtDAHPS

The recombinant plasmid pET-23a(+)::aroG was transformed into electrocompetent *E. coli* Rosetta-gami (DE3) cells (Novagen), and selected on LB agar plates containing 50 μg mL⁻¹ carbenicillin, 15 μg mL⁻¹ kanamycin, 34 μg mL⁻¹ chloramphenicol, and 12.5 μg mL⁻¹ tetracycline. Single colonies were used to inoculate 500 mL LB medium, containing the same antibiotics and concentrations of LB solid medium, and grown at 37 °C and 180 rpm for 24 h, without addition of isopropyl β-D-thiogalactopyranoside (IPTG). Cells were harvested by centrifugation at 48,000 g for 20 min at 4 °C, and stored at −20 °C. For protein expression analysis, 10 mg of stored cells was resuspended in 500 μL Buffer A (50 mM Tris–HCl, pH 7.8), disrupted by sonication, and cell debris was removed by centrifugation. Both soluble and insoluble fractions were analyzed by SDS–PAGE 12% [18]. Control experiments were performed under the same experimental conditions except that *E. coli* host cells were transformed with the expression vector lacking the target gene.

Purification of recombinant mtDAHPS

Approximately, 36 g of cells was collected by centrifugation (48,000g for 20 min) from 6 L of LB medium. All subsequent steps were performed on ice or at 4 °C. Frozen cells (36 g) were thawed and resuspended in Buffer A (4 mL of buffer per gram of cell paste) containing 1 mM β-mercaptoethanol (β-ME) (Sigma) and 0.2 mg mL⁻¹ of lysozyme, and the mixture was stirred for 30 min. Cells were disrupted by sonication, and cell debris was removed by centrifugation (48,000g for 30 min). The supernatant was incubated with 1% w/v of streptomycin sulfate for 15 min, and centrifuged (48,000g for 30 min). Solid ammonium sulfate was added to the supernatant fraction to a concentration of 25% saturation, incubated for 30 min, and centrifuged as above. The resultant pellet was resuspended in 70 mL Buffer A containing 1 mM β-ME and dialyzed against three changes of 2 L of the same buffer using a dialysis tubing with molecular weight cut-off of 12,000–4000 Da. The sample was clarified by centrifugation and loaded on a Q-Sepharose Fast Flow (2.6 cm × 8.2 cm) anion exchange column (Amersham Biosciences) previously equilibrated with Buffer A and fractionated using a 600 mL 0.0–0.6 M NaCl linear gradient. The fractions containing mtDAHPS (0.35–0.38 M NaCl) were pooled, concentrated to 8.0 mL using an Amicon ultrafiltration cell (MW 30,000 Da), and loaded on a Sephacryl S-200 HR (2.6 cm × 60 cm) gel filtration column (Amersham Biosciences) at 0.5 mL min⁻¹. The protein was eluted with Buffer B (Buffer A containing 200 mM NaCl) at the same flow rate. The active fractions were loaded on a Mono Q HR 16/10 anion exchange column (Amersham Biosciences) equilibrated with Buffer A and eluted with 400 mL linear 0.0–0.6 M NaCl gradient. The active fractions, which exhibited a single band on SDS–PAGE, were pooled, quickly frozen in liquid nitrogen, and stored at −80 °C.

Determination of protein concentration

Protein concentrations were determined using the Bio-Rad Laboratories protein assay kit (Bradford method) \[19\] and bovine serum albumin as standard.

Determination of mtDAHPS molecular mass

The molecular mass of native mtDAHPS homogenous protein was determined by gel filtration chromatography using a Sephacryl S-200 (HR 10/30) (Amersham Biosciences) equilibrated with Buffer B at a flow rate of 0.4 mL min⁻¹. Protein molecular mass standards were from Gel Filtration LMW and HMW Calibration Kit from Amersham Biosciences. Protein elution was monitored at 280 nm.

mtDAHPS enzyme assay

Enzyme activity of recombinant mtDAPHS protein was assayed in the forward direction by a continuous spectrophotometric method described by Shoner and Hermann \[20\], monitoring the decrease in phosphoenolpyruvate (PEP) concentration at 232 nm ($ε = 2.8 \times 10^3 \text{M}^{-1} \text{cm}^{-1}$) on a Multi-Spec 1501 photodiode array spectrophotometer (Shimadzu). All reactions were carried out at 25 °C and initiated with addition of enzyme to a reaction mixture containing: 50 mM Tris–HCl, pH 7.0, 400 μM E4P (Sigma), 1 mM β-ME, and 200 μM PEP (Acrós Organics) in a total volume of 500 μL. One unit of enzyme activity (U) is defined as the amount of enzyme catalyzing the conversion of 1 μmol PEP/min at 25 °C.

N-terminal amino acid sequencing

The N-terminal amino acid residues of homogeneous recombinant mtDAHPS were identified by automated Edman degradation sequencing using a PPSQ 21A gas-phase sequencer (Shimadzu).
Mass spectrometry analysis

The homogeneity of recombinant protein preparation was assessed by mass spectrometry (MS), employing some adaptations made to the system described by Chassaigne and Lobinski [21]. Samples were analyzed on a triple quadrupole mass spectrometer, model QUATRO II, equipped with standard electrospray (ESI) probe (Micromass, Altrincham), adjusted to ca. 250 μL min⁻¹. The source temperature (80 °C) and needle voltage (3.6 kV) were maintained constant throughout the experimental data collection, applying a drying gas flow (nitrogen) of 200 Lh⁻¹ and a nebulizer gas flow of 20 Lh⁻¹. The mass spectrometer was calibrated with intact horse heart myoglobin and its typical cone-voltage induced fragments. The subunit molecular mass of recombinant protein mtDAHPS was determined by ESI-MS, adjusting the mass spectrometer to give a peak with at half-height of 1 mass unit, and the cone sample to skimmer lens voltage controlling the ion transfer to mass analyzer was set to 38 V. About 50 pmol (10 μL) of each sample was injected into the electrospray transport solvent. The ESI spectrum was obtained in the multi-channel acquisition mode, scanning from 500 to 1800 m/z at a scan time of 7 s. The mass spectrometer is equipped with MassLynx and Transform software for data acquisition and spectra handling.

Results and discussion

The PCR amplification of aroG structural gene from M. tuberculosis H37Rv genomic DNA required the presence of 10% DMSO in the reaction mixture (data not shown). DMSO is a cosolvent that improves GC-rich DNA denaturation and helps to overcome the difficulties of polymerase extension through secondary structures, altering the structural conformation of DNA templates [22]. This result is consistent with the 65.6% G + C content of M. tuberculosis H37Rv genome [12]. PCR fragment was inserted into pET23a(+) expression vector [23] between NdeI and BamHI restriction sites. DNA sequencing of the entire aroG structural gene by the dideoxy chain termination method both confirmed the identity of the cloned PCR product and showed that no mutations were introduced by the DNA amplification step.

Recombinant plasmids were introduced into E. coli BL21(DE3) host cells by electroporation. Unfortunately, recombinant mtDAHPS remained in the insoluble fraction (Fig. 1). Since one of the goals of the present work was to confirm the correct assignment to the structural gene encoding mtDAHPS, efforts were made to express recombinant M. tuberculosis DAHPS in its soluble, active form avoiding unfolding and refolding protocols because they cannot guarantee that they will yield large amounts of biologically active product [24]. In addition, a number of protocols were tested to obtain mtDAHPS in the soluble fraction to no avail, including buffer additives (urea, deoxycholic acid, Triton X-100, and high NaCl concentrations) and reduced cultivation temperature (20, 25, and 30 °C). In practice, it is usually worthwhile to test several different vector/host combinations to obtain the best possible yield of protein in its desired form. Accordingly, a number of commercially available strains of E. coli host cells were tested in an attempt to produce mtDAHPS in the soluble fraction. Analysis of the relationship between codon preference and expression level led to the classification of E. coli genes into three main classes [25]. Class II genes, which correspond to genes highly and continuously expressed during exponential growth that is likely to resemble the tRNA population available for recombinant protein expression, have a number of avoided codons with frequencies of less than 6%. Insufficient tRNA pools can lead to premature translational termination, translation frameshifting or amino acid misincorporation that might result in expression of nonproperly folded recombinant protein [26]. Rare codons near the N-terminus of a coding sequence can have a severe effect on heterologous expression in E. coli [27]. Four rare codons for heterologous gene expression in E. coli are present near the N-terminus of M. tuberculosis aroG structural gene (1 × AUA for isoleucine, 3 × CCC for proline). To test whether these rare codons may have any effect on aroG expression, E. coli Rosetta (DE3) strain harboring tRNA genes for AGG, AGA, AUA, CUA, CCC, and
GGA rare codons on a chloramphenicol-resistant plasmid [28] was transformed with pET-23a(+)::aroG recombinant plasmid. Disappointingly, recombinant mtDAHPS remained in the insoluble fraction (data not shown), thereby discarding any effect of the mycobacterial aroG rare codons on recombinant protein expression. Although E. coli DAHPS has no disulde bridges despite possessing three cysteine residues, there is no experimental evidence for the absence of disulde bridges in mtDAHPS, which possesses five cysteine residues (Cys 87, Cys 231, Cys 365, Cys 420, and Cys 440), and a less reducing cytoplasmatic environment could improve mtDAHPS solubility. The Origami E. coli host strains (Novagen) have mutations in both the thioredoxin reductase (trxB) and glutathione reductase (gor) genes, which greatly enhances disulde bond formation in the cytoplasm [29,30]. Unfortunately, none of the protocols tested yielded soluble mtDAHPS. The Rosetta-gami (DE3) E. coli host strain (Novagen) combines the features of Rosetta and Origami strains. SDS-PAGE analysis showed that expression of recombinant mtDAHPS protein in its soluble form with the expected molecular mass (~51 kDa) could be achieved using the Rosetta-gami (DE3) cells grown at 37°C for 24 h with no IPTG induction (Fig. 1). The underlying reason for this result is unclear; however, it underscores the need for optimization of vector/host combinations to achieve soluble recombinant protein expression before attempting any unfolding/refolding protocols.

It should be pointed out that a screening of experimental conditions was carried out to obtain high yield of recombinant protein expression, including temperature of growth, culture aeration, medium type, hours of growth after IPTG induction, and hours of growth in the absence of IPTG. The best results were obtained from Rosetta-gami (DE3) E. coli cells grown for 24 h at 37°C in LB medium without IPTG induction as described above. In the pET vector system (Novagen), target genes are positioned downstream of the bacteriophage T7 late promoter. Typically, production hosts contain a prophage (λDE3) encoding the highly processive T7 RNA polymerase under control of the IPTG-inducible lacUV5 promoter that would ensure tight control of recombinant gene basal expression [31,32]. In agreement with the results presented here, leaky expression has been shown to occur in the pET system [33–37]. It has been proposed that leaky protein expression is a property of the lac-controlled system as cells approach stationary phase in complex medium and that cyclic AMP, acetate, and low pH are required to achieve high-level expression in the absence of IPTG induction, which may be part of a general cellular response to nutrient limitation [38].

Enzyme activity measurements demonstrated that there was a 92-fold increase in specific activity for mtDAHPS when Rosetta-gami (DE3) E. coli harboring either pET-23a(+)::aroG or pET-23a(+) crude extracts were compared (Table 1), indicating that mtDAHPS was expressed in its soluble and functional form. The purification protocol of recombinant mtDAHPS, protein determination, enzyme assay, and SDS-PAGE analysis were as described in Materials and methods. Recombinant mtDAHPS enzyme was purified approximately 3-fold (Table 2) to electrophoretic homogeneity (Fig. 2). The purification protocol yielded approximately 5 mg of homogeneous protein. A significant loss in protein yield occurred in the 25% ammonium sulfate precipitation step (Table 2) because some mtDAHPS remained in the supernatant. Protein precipitations by higher ammonium sulfate concentrations were also carried out, yielding larger amounts of recombinant mtDAHPS in the pellet (data not shown). However, a number of contaminants co-precipitated with mtDAHPS. In particular, a contaminant that co-eluted in subsequent chromatographic steps when larger than 25% ammonium sulfate concentrations were used. Accordingly, the 25% ammonium sulfate precipitation step was deemed more appropriate for the purification protocol because a significant amount of contaminants remained in the supernatant, while mtDAHPS with a lower protein-contaminating background remained in the pellet thus making the

Table 1

| Measurements of recombinant DAHPS enzyme activity |
|-----------------------------------|----------------------------------|
| Cell extract** Specific activity* (SA, U mg⁻¹) | AS cloned/SA control |
| Control | 0.0018 | 1 |
| DAHPS | 0.1651 | 92 |

| *Crude cell extract in 50 mM Tris–HCl, pH 7.0.
| **U mL⁻¹/mg mL⁻¹.

Table 2

<table>
<thead>
<tr>
<th>Purification step</th>
<th>Total protein (mg)</th>
<th>Total enzyme activity (U)</th>
<th>Specific activity* (U mg⁻¹)</th>
<th>Purification fold</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td>2442.38</td>
<td>403.23</td>
<td>0.17</td>
<td>1.00</td>
<td>100</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>136.78</td>
<td>44.11</td>
<td>0.32</td>
<td>1.95</td>
<td>11</td>
</tr>
<tr>
<td>Q-Sepharose Fast Flow</td>
<td>21.42</td>
<td>7.00</td>
<td>0.33</td>
<td>1.98</td>
<td>2</td>
</tr>
<tr>
<td>Sephacryl S-200 HR</td>
<td>17.83</td>
<td>4.48</td>
<td>0.25</td>
<td>1.52</td>
<td>1</td>
</tr>
<tr>
<td>Mono Q HR 16/10</td>
<td>4.77</td>
<td>2.24</td>
<td>0.47</td>
<td>2.84</td>
<td>0.6</td>
</tr>
</tbody>
</table>

*Typical purification protocol starting from 36 g wet weight cells obtained from 6 L of culture.

**U mL⁻¹/mg mL⁻¹.
subsequent purification steps less demanding. The samples of each purification step were assayed for DAHPS enzyme activity and compared to control experiments to demonstrate that the observed values are actual velocities of mtDAHPS activity. Enzyme activity of homogeneous mtDAHPS was linearly dependent on sample volume added to the reaction mixture (Fig. 3), thereby showing that the initial velocity is proportional to total enzyme concentration and that true initial velocities are being measured.

E. coli DAHPS(Phe) has been shown to be sensitive to oxidation, leading to inactivation [39]. Moreover, higher mtDAHPS enzyme activity values could be observed in the presence of β-ME (data not shown). Accordingly, β-ME was used in all steps of the mtDAHPS purification protocol. The mtDAHPS specific activity has been found to be stable for at least two months when stored at −80 °C.

The subunit molecular mass of active mtDAHPS was determined to be 50510.38 Da by electrospray ionization mass spectrometry (ESI-MS), consistent with the post-translational removal of the N-terminal methionine residue from the full length gene product (predicted mass: 50641.51 Da). The ESI-MS result also revealed no peak at the expected mass for the three isoforms of E. coli DAHPS enzymes (38804.03, 38735.18, and 38009.53 Da), thus providing evidence for both the identity and purity of the recombinant protein. The first 11 N-terminal amino acid residues of the recombinant protein were identified as NWTVDIPIDQL by the Edman degradation chemistry protocol. This result unambiguously identifies the homogeneous recombinant protein as mtDAHPS and confirms removal of the N-terminal methionine residue from it. A common type of co-/post-translational modification of proteins synthesized in prokaryotic cells is modification at their N-termini. Methionine aminopeptidase catalyzed cleavage of initiator methionine is usually directed by the penultimate amino acid residues with the smallest side chain radii of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine) [40]. The N-terminal methionine was removed from the E. coli expressed recombinant mtDAHPS enzyme, consistent with the finding that some middle-sized penultimate amino acid residues (Asn, Asp, Leu, and Ile) undergo N-terminal processing [41].

A value of 253 ± 25 kDa was determined for the molecular mass of native mtDAHPS homogeneous protein by analytical gel filtration chromatography (data not shown), suggesting that mtDAHPS is a pentamer in solution. Whereas E. coli DAHPS(Phe) is a tetramer [42] and E. coli DAHPS(Trp) is a dimer [43]. Interestingly, more recently, recombinant DAHPS from Pyrococcus furiosus has been shown to be a dimer in solution and not to be inhibited by phenylalanine, tyrosine, or tryptophan [44].

DAHPS in most, not all, microorganisms is the target for pathway regulation by negative feedback inhibition, which controls carbon flow into the shikimate pathway. The most intensively investigated microorganism DAHPS has been the E. coli enzyme, which possesses three isoenzymes, each specifically regulated by one of three aromatic amino acid end products, either Phe, Tyr, or Trp [45]. The three isoforms have a common requirement for a metal cofactor, which can be similarly satisfied by a range of divalent metal ions [46]. DAHPS enzymes from a number of microorganisms have been studied, such as Corynebacterium glutamicum [47], Thermotoga maritima [48], Bacillus subtilis [49], Saccharomyces cerevisiae [50], and P. furiosus [44]. However, to the best of our knowledge, this is the first report on cloning, expression, and purification of functional DAHPS from M. tuberculosis.

Fig. 2. SDS–PAGE analysis of pooled fractions from the purification steps of mtDAHPS. Lane 1, MW marker “High range” (Gibco-BRL); lane 2, crude extract; lane 3, ammonium sulfate precipitation; lane 4, Q-Sepharose Fast Flow ion exchange; lane 5, S-200 gel filtration; and lane 6, Mono Q ion exchange.

Fig. 3. Linear dependence of mtDAHPS activity on homogeneous protein volume. The rates of enzyme activity were performed in the forward direction by continuously monitoring the decrease of phosphoenolpyruvic acid at 232 nm.
Homogeneous mtDAHPS protein will provide protein in quantities necessary for studies on the enzyme mechanism of action by steady-state and pre-steady-state kinetics, its metal requirement, if any, and feedback inhibition by Phe, Tyr, and Trp. The expression and purification of mtDAHPS reported here will also provide protein for crystallization trials aiming at three-dimensional structure determination by X-ray diffraction. The three-dimensional structures of four forms of the Phe-regulated isoenzyme of E. coli DAHPS have been solved by X-ray crystallography [42,51–53], which should facilitate screening of experimental conditions to obtain crystals of mtDAHPS in complex with its substrates, possible metal cofactor and feedback inhibitors, if any. Expression of functional proteins in soluble form has been identified as an important bottleneck in efforts to determine biological activity and crystal structure of M. tuberculosis proteins [54]. We hope that the results reported here will contribute to efforts towards the structure determination of potential targets in M. tuberculosis. The enzymological and structural studies on mtDAHPS should help in the design of enzyme inhibitors to be tested as antmycobacterial agents.

Acknowledgments

Financial support for this work was provided by Millennium Initiative Program MCT-CNPq, Ministry of Health-Department of Science and Technology-UNESCO (Brazil) to D.S.S. and L.A.B. D.S.S. and L.A.B. also acknowledge grants awarded by PADCT, CNPq, and FINEP. L.A.B. (CNPq, 502182/99-5), D.S.S. (CNPq, 304051/1975-06), and M.S.P. (CNPq, 300337/2003-50) are researchers awardees from the National Council for Scientific and Technological Development of Brazil. M.A.M. is a post-doctoral fellow from FAPESP (01/05060-4).

References

[27] C. Rizzi et al. / Protein Expression and Purification 40 (2005) 23–30 29

