
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

NICOLAS SILVEIRA KAGAMI

CAPEST: Network Capacity and Available
Bandwidth Estimation in the Data-Plane

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Luciano Paschoal Gaspary

Porto Alegre
Setembro 2018

CIP — CATALOGING-IN-PUBLICATION

Kagami, Nicolas Silveira

CAPEST: Network Capacity and Available Bandwidth Esti-
mation in the Data-Plane / Nicolas Silveira Kagami. – Porto Ale-
gre: PPGC da UFRGS, 2018.

64 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor: Luciano Paschoal Gaspary.

1. Data plane programmability. 2. Network measurement.
3. Available bandwidth estimation. 4. P4. 5. Packet dispersion.
6. Capacity estimation. I. Gaspary, Luciano Paschoal. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“An original idea. That can’t be too hard. The library must be full of them”

— STEPHEN FRY

ACKNOWLEDGEMENT

I would like to thank my family for their love and support throughout my life.

I owe Marina Rey and her family my utmost gratitude, for lovingly welcoming me

into their lives.

I thank all my coworkers at Netmetric throughout the years, for treading a long

path with me.

I thank my colleague Roberto Costa Filho, for all the help I received throughout

my master’s degree.

I would like to thank my advisor, Luciano Paschoal Gaspary, for sharing a bit of

his wisdom with me.

ABSTRACT

The measurement of available bandwidth and capacity represents an essential requirement

for a multitude of network applications spanning from traffic engineering and admission

control to network security. Measurement techniques frequently presume to know ca-

pacity a priori, but this constitutes a weak premise in a number of modern scenarios due

to conditions such as abstractions in infrastructure virtualization, dynamic demands in

resource sharing and fluctuations in interference, all of which can affect capacity in short

time spans. Despite consistent efforts, currently employed techniques struggle to balance

accuracy, intrusion and freshness, depending on either substantial intrusion, onerous pro-

cessing or unfeasible deployment. Recent developments on data plane programmability

have breathed new life into this undertaking, allowing observation points to be more

efficiently distributed and programmable packet methods to be executed in-situ. This

dissertation describes CAPEST, a passive capacity and available bandwidth measurement

method for the data plane, employing packet dispersion and autocorrelation. The method

is evaluated regarding its parametrization sensitivity, its intrusion and freshness in com-

parison to state-of-the-art techniques and its performance in the real-world application

of video routing. CAPEST was found to incur substantially (80%) less intrusion and

achieve 10% better accuracy, all the while providing an order of magnitude improvement

in freshness.

Keywords: Data plane programmability. network measurement. available bandwidth

estimation. P4. packet dispersion. capacity estimation.

Estimando Capacidade e Banda Residual no Plano de Dados

RESUMO

A medição de banda disponível e capacidade representa um requisito essencial para uma

multitude de aplicações de rede, abrangendo desde engenharia de tráfego e controle de

admissão até segurança de rede. Nesse quesito, técnicas de medição frequentemente pre-

sumem conhecer a capacidade a priori, mas essa pode ser considerada uma premissa

fraca considerando diversos cenários modernos devido a condições como abstrações na

virtualização de infraestrutura, demandas dinâmicas no compartilhamento de recursos e

flutuações em interferência, todas as quais podem afetar a capacidade em curtos espaços

de tempo. Apesar de esforços recorrentes, as técnicas de medição atualmente emprega-

das ainda encontram dificuldade para balancear acurácia, intrusão e frescor, recaindo em

intrusão substancial, processamento oneroso ou implantação inviável. Desenvolvimen-

tos recentes em programabilidade no plano de dados tem dado nova vida a esse esforço,

permitindo que pontos de observação sejam mais eficientemente distribuídos e metódos

programáveis de pacotes sejam executados in-situ. Neste documento apresentamos CA-

PEST, um método passivo de medição de capacidade e available bandwidth no plano de

dados, empregando dispersão de pacotes e autocorrelação. O método é avaliado a respeito

da sensibilidade de parametrização, sua intrusão e frescor em comparação a técnicas do

estado-da-arte e seu desempenho em uma aplicação realística de roteamento de vídeo.

CAPEST permitiu uma redução de 80% em intrusão e um aumento em 10% em acurácia,

ao mesmo tempo aprimorando frescor em uma ordem de magnitude.

Palavras-chave: Programabilidade no Plano de Dados, Medição de Rede, Estimativa de

Capacidade, Estimativa de Banda Residual.

LIST OF ABBREVIATIONS AND ACRONYMS

ABW Available Bandwidth

ASIC Application-Specific Integrated Circuit

BTC Bulk Transfer Capacity

CM Capacity Mode

CT Cross Traffic

DARPA Defense Advanced Research Projects Agency

DoS Denial of Service

DSL Domain Specific Language

FPGA Field Programmable Gate Array

IDS Intrusion Detection System

IETF Internet Engineering Task Force

INT In-Band Network Telemetry

IP Internet Protocol

NIC Network Interface Controller

NSH Network Service Header

ONF Open Networking Foundation

OP Observation Point

PRM Probe Rate Model

PGM Probe Gap Model

QoS Quality-of-Service

QoE Quality-of-Experience

SDN Software-Defined Networking

SNMP Simple Network Management Protocol

SNR Signal-to-Noise Ratio

TCP Transmission Control Protocol

TE Traffic Engineering

LIST OF FIGURES

Figure 2.1 The software-defined networking architecture defines three planes with
different attributions..19

Figure 2.2 A comparison between the traditional SDN switch and the programmable
switch. ...21

Figure 2.3 The P4 program and architecture and their mapping to the P4 abstract
forwarding model.
...22

Figure 3.1 INT introduces metadata to packets through header manipulation.33
Figure 3.2 CAPEST collects statistical information from live packets............................33
Figure 3.3 CAPEST’s probe packets trigger the measurement procedure and carry

the information along..34
Figure 3.4 CAPEST combines an Estimate Histogram with the autocorrelation from

a Reverse Estimate Histogram in order to obtain a reinforced capacity measure-
ment. This estimate is subsequently integrated with utilization information to
obtain the available bandwidth measurement. ..36

Figure 4.1 The flow of information between CAPEST structures, procedures and
domains.
...39

Figure 5.1 The number of bins (color-coded) mapped according to timeliness and
convergence...46

Figure 5.2 Average accuracy of the different bin length heuristic factors (color-
coded) as they converge.
...48

Figure 5.3 The cross traffic scenarios relative to the measured traffic and the Ob-
servation Point. ...49

Figure 5.4 Logarithmic levels of overhead reported by different capacity and/or
ABW estimation techniques. ..51

Figure 5.5 Logarithmic degrees of timeliness reported by the considered techniques. ..52
Figure 5.6 Cumulative relative accuracy of CAPEST and BTC.54
Figure 5.7 Cumulative average stall length per video of CAPEST and BTC.55

LIST OF TABLES

Table 2.1 State-of-the-art approaches for available bandwidth and capacity estimation.25

Table 5.1 Cross Traffic Factors and Influence on Accuracy..50

CONTENTS

1 INTRODUCTION...13
2 BACKGROUND AND STATE OF THE ART ...16
2.1 Network Programmability ...16
2.1.1 Active Networks ..16
2.1.2 Control Plane Separation ...17
2.1.3 Software-Defined Networking ...18
2.2 Data Plane Programmability ...20
2.2.1 P4 ...21
2.2.2 In-Band Network Telemetry ..23
2.3 Network Measurement Methods ...24
2.3.1 Active vs Passive Approaches..26
2.3.2 End-to-End vs Hop-by-Hop Approaches...27
2.3.3 Software-Defined Networking Approaches ...28
3 CONCEPTUAL FRAMEWORK ..29
3.1 Target Metrics ...29
3.1.1 Capacity ...29
3.1.2 Available Bandwidth..29
3.2 Design Objectives ..30
3.2.1 Accuracy ..30
3.2.2 Freshness..31
3.2.3 intrusiveness...31
3.2.4 Scope..31
3.3 Overall Architecture ...32
3.4 Measurement Method...35
3.4.1 Histograms ...37
3.4.2 Autocorrelation ..37
3.4.3 Utilization ..38
4 CAPACITY ESTIMATION IN P4 ..39
4.1 Live Packet Procedures ..40
4.2 Data Structures ...40
4.2.1 Estimate Circular Array ...40
4.2.2 Utilization Group Circular Array...41
4.3 Probe Packet Procedures..41
4.3.1 Histogram Generation..41
4.3.2 Autocorrelation ..42
4.3.3 Compensated Bin Histogram ...42
4.3.4 Bin Length Heuristic..43
4.3.5 Recent Utilization ..44
5 EXPERIMENTAL SETUP ..45
5.1 Experimental Methodology and Setup ...45
5.2 Sensitivity Analysis ...46
5.2.1 Number of Bins Factorization..46
5.2.2 Bin Length Heuristic Factorization..47
5.2.3 Cross-Traffic Sensitivity ..48
5.3 Comparative Evaluation - intrusiveness, Freshness And Deployability50
5.4 Real World Scenario - Video Streaming ...53
6 DISCUSSION ..56
6.1 Introducing Complex Arithmetic Operations ..56

6.2 Dealing with loops ...56
6.3 Applying Heuristics ..57
6.4 Improving Resource Utilization...58
7 CONCLUSION ...59
REFERENCES...60

13

1 INTRODUCTION

Measuring available bandwidth and capacity is vital for several types of net-

work applications. Activities such as traffic engineering, Quality-of-Service (QoS)

management (PAUL; TACHIBANA; HASEGAWA, 2016), admission control (CAVU-

SOGLU; ORAL, 2014), resource provisioning and even network security (GUERRERO;

LABRADOR, 2010) depend on the knowledge of either or both available bandwidth and

capacity. Link capacity is sometimes considered to be static and known a priori, but this

premise cannot be guaranteed in an ever increasing number of scenarios. Currently, ca-

pacities fluctuate on mobile (MICHELINAKIS et al., 2016) and radio networks as a con-

sequence of variations in range, interference, fading and load (PAKZAD; PORTMANN;

HAYWARD, 2015). Also, it has recently been suggested that optical links should adapt

their capacities according to Signal-to-Noise-Ratio (SNR) (SINGH et al., 2017). Finally,

recent trends of infrastructure virtualization can present dynamic capacities on account

of resource sharing and conceal this underlying property due to abstraction. Thus, it is

imperative to have a timely and reliable way of gauging capacity-related metrics without

exhausting the network resources.

In order to obtain these valuable indicators dynamically, network providers have

been relying on active methods (PAUL; TACHIBANA; HASEGAWA, 2016; PAKZAD;

PORTMANN; HAYWARD, 2015; KIM; LEE, 2014), which consist of disturbing the

network in a specific way and observing its behavior (MORTON, 2016). One of the

main advantages of this method is the ease of deployment, especially when combined

with an end-to-end measurement strategy. In such case, it is possible to cover an entire

path, regardless of its size, merely by positioning Observation Points (OPs) at the end-

points (FILHO et al., 2016). However, technologies such as Content Delivery Networks

(CDNs), Fog Computing, and 5G device-to-device communications introduce a multi-

tude of possible paths between a given source and destination. The context of ultra-dense

networks requires the use of hop-by-hop techniques, which have the ability to infer the

performance of a path based on the composition of its links (FILHO et al., 2018). Al-

though this approach solves the problem of scalability, a major problem persists: active

methods consume the very resources they are trying to measure.

14

In order to solve the overhead problem, network operators can rely on passive

methods, which derive the same metrics from preexisting packets (JULURI; TAMARA-

PALLI; MEDHI, 2016; MEGYESI et al., 2017; MICHELINAKIS et al., 2016; KATTI

et al., 2004). This approach mitigates the problem of overhead as they measure live traf-

fic. However, they demand a more significant effort in filtering and analysis to be fresh

and accurate. Several passive methods require the gathering of traces from the network

and relegate this burden to the control plane. In addition, current implementations of

such approaches have a complex deployment since they either require the installation of

dedicated equipment at each OP or risk degrading the performance of the live traffic by

burdening the network devices with CPU intensive tasks.

Despite current efforts, network measurement applications still struggle to balance

accuracy, intrusiveness and freshness for optimal management. This is the very problem

we tackle in this dissertation. Current strategies either introduce a substantial amount of

intrusiveness or lack freshness or require cumbersome deployment to work well in large-

scale networks. Fortunately, recent developments on data plane programmability have

brought about new possibilities of navigating the solution space of network measurement.

Generic switch programmability allows packet methods to be executed in-situ, which

has the potential to alleviate intrusiveness and provide fresh information. Furthermore,

the ability to strategically distribute measurement vantage points can also contribute to

attaining a complete picture of the network without resorting to detereorating accuracy,

freshness or overhead.

In this dissertation, we propose a passive method for estimating link capacity and

available bandwidth from the data plane, henceforth refered to as CAPEST (Capacity and

Available Bandwidth Estimation method). The measurement method is based on packet

dispersion, making use of a bin histogram to quantify dispersion occurrence, filtering

outliers by a reverse estimate autocorrelation. CAPEST collects information about packet

length and timing from live packets employing in-situ packet methods developed in the

data plane via P4. The analysis is triggered by a special probe packet, which also carries

the result at line rate via In-Band Network Telemetry, improving freshness and reducing

intrusiveness. CAPEST’s per-hop measurement granularity allows efficient estimation of

path properties through link composition. Finally, this dissertation’s contributions can be

summarized as follows.

• Cost-effective data plane measurement method. We propose a capacity and

available bandwidth measurement method capable of balancing the essential de-

15

sign requirements of accuracy, intrusiveness, freshness and deployability.

• Comprehensive evaluation. We evaluate how CAPEST’s parameters influence its

performance, compare its accuracy, freshness and overhead to state-of-the-art solu-

tions and assess its applicability to video routing.

• Data plane programmability insights. We explore a novel technology within a

restrictive framework and present key insights into the challenges and opportunities

faced when applying it to a complex mechanism.

The remainder of this document is organized as follows. In Chapter 2, we in-

troduce background concepts of network programmability, data plane programmability

and the state-of-the-art regarding the network measurement techniques of available band-

width and capacity. Then, in Chapter 3, we outline the conceptual building blocks upon

which CAPEST is built, presenting metrics, design objectives, architecture and measure-

ment method. In Chapter 4, we detail how the proposed method is implemented in the

framework of data plane programmability in regards to algorithm parametrization, data

structures and packet triggers. In Chapter 5, we describe how CAPEST was evaluated,

encompassing sensitivity analysis, cost comparison and a real-world application perfor-

mance. In Chapter 6, we describe and discuss lessons learned about developing complex

applications for P4. Finally, in Chapter 7, we summarize the dissertation’s contribution,

along with a perspective for future work.

16

2 BACKGROUND AND STATE OF THE ART

In this chapter we describe the most important concepts and approaches that con-

stitute the state of the art regarding network programmability, data plane programmability

and the techniques for measuring available bandwidth and capacity.

2.1 Network Programmability

Historically, one of the most challenging activities within network management

has been the deployment and configuration of network policies. In order to implement

these policies, operators are often required to configure devices individually, frequently

involving low-level and vendor-specific commands. Effectively, this rigidity hinders the

network’s adaptability to events such as faults and load fluctuations, considering auto-

matic reconfiguration mechanisms are very difficult to be deployed under these circum-

stances (KREUTZ et al., 2015). This issue has been more generally dubbed "ossification"

by the research community and has spurred a series of efforts from both the academy and

the industry ever since.

2.1.1 Active Networks

In the late 90s, the emergence of Active Networks represented one of the earli-

est notable initiatives toward network programmability, primarily backed by the Defense

Advanced Research Projects Agency (DARPA). This endeavor focused on bringing pro-

grammability to network nodes, embracing a couple of approaches, according to the pro-

gramming model:

• Programmable Capsule model: instructions and information carried in-band via

data or dedicated packets, e.g., ANTS capsule-based system (WETHERALL; GUT-

TAG; TENNENHOUSE, 1998);

• Programmable Switch model: switch configurations (for packet methods) in-

stalled via out-of-band management, e.g., SwitchWare (SMITH et al., 1996).

Active Networks sought to replace the traditional concept of simple forwarding

nodes with abstractions to expose the node’s resources and functions, envisioning appli-

17

cations for a variety of up-and-coming network applications, such as congestion control,

reliable multicasting and active caching (TENNENHOUSE et al., 1997). Ultimately, Ac-

tive Networks failed to gain widespread adoption mainly due to the lack of a clear path of

deployment, but would serve to inspire a substantial amount of following efforts (FEAM-

STER; REXFORD; ZEGURA, 2014).

2.1.2 Control Plane Separation

In the early 2000s, network operators struggled to deal with the increase in traffic

bandwidth and volume, pushing for new approaches to traffic engineering (TE) that would

be able to manage the network with flexibility, consistency and performance. In response

to this issue, and along with improvements to servers’ memory capacity and processing

power, researchers focused on developing deployable and practical solutions, culminating

in two major trends:

• an open and standardized interface to the data plane served to abstract and

decouple design constraints, leading to the development of innovative ideas on

both the control and data plane. In this aspect, the Internet Engineering Task Force

(IETF) spearheaded the Forwarding and Control Element Separation (ForCES)

(YANG et al., 2004) and the Netlink interface to Linux Kernel (SALIM et al.,

2003);

• a logically centralized control allowed network applications to have a network-

wide view, helping to coordinate efforts more effectively, most notably exemplified

by the Routing Control Platform (RCP) (CAESAR et al., 2005). This trend brought

advantages such as more adaptability, better load balancing and more thorough se-

curity measures.

Despite a more pragmatic approach than its Active Networks predecessors, the

adoption of APIs such as ForCES remained feeble, mainly on account of the lack of back-

ward compatibility, discouraging vendors from conceding their market share (FEAM-

STER; REXFORD; ZEGURA, 2014). On the other hand, RCP reused the Border Gate-

way Protocol (BGP) (REKHTER; LI; HARES, 2005) to install forwarding tables, but its

scope left little room for innovation outside of routing management. Eventually, these dif-

ficulties would serve as learning experience and influence the specification of OpenFlow

(MCKEOWN et al., 2008).

18

2.1.3 Software-Defined Networking

Another group of approaches expanded on the concept of control plane separa-

tion, establishing entirely new architectures for network control and management. The

4D approach suggested four different planes, dividing into decision (to translate network

objectives into packet-handling states), dissemination (to install the forwarding rules),

discovery (to collect topology and measurements) and data (to enforce the forwarding

rules). Building upon this "clean slate" paradigm, the Secure Architecture for Networked

Enterprise (SANE) (CASADO et al., 2006), and its successor Ethane (CASADO et al.,

2007), developed a centralized control enterprise solution, where switches were reduced

to flow tables populated according to high-level policies.

In the wake of these contributions, by 2008, Mckeown et al. cemented the

Software-Defined Networking paradigm with the release of OpenFlow (MCKEOWN

et al., 2008). OpenFlow elaborated on the simple switch design proposed by Ethane,

defining the switches (or forwarding elements) as a pipeline of flow tables with a (1)

matching rule for the packets, (2) actions to be taken on match and (3) corresponding

counters to keep statistics on the matching rule (KREUTZ et al., 2015). Its ability to

coexist with traditional devices allowed it to be progressively adopted by switch vendors,

being comprehensive in scope and compatible in deployment. Crucially for its success,

OpenFlow trod the line between conceptual and practical, eventually becoming (along

with SDN) the first widely adopted approach in network programmability. This success

led to (1) the foundation of the Open Networking Foundation (ONF), helping to promote

open technologies in the marketplace and establishing open networking standards; and

(2) the advancement of the SDN architecture.

Currently, the SDN architecture can be described in three different planes, as can

be seen in Figure 2.1. From a bottom-up perspective, the data plane is composed of

simple forwarding devices, executing match-action rules according to a forwarding table.

The data plane communicates with the control plane via the southbound API. This layer

is critical to the concept of separation of the control plane and is where OpenFlow most

established its contribution.

19

Figure 2.1: The software-defined networking architecture defines three planes with dif-
ferent attributions.

Control
plane

Network Operating System

Data
plane

Management
plane

Network Applications

Routing

Load Balancer

Admission Control IDS

Firewall ...

...
Southbound API

Northbound API

Device Manager Topology Manager

Security Mechanisms

Source: Adapted from Software-Defined Networking: A comprehensive survey et al.
(KREUTZ et al., 2015).

The southbound API is comprised of communication standards such as the event-

based messages to inform topology changes, the collection of statistics and the packet-

in message, where the controller helps the forwarding device set up a new flow. The

OpenFlow protocol establishes the most acclaimed example of a southbound API.

At the heart of the control plane lies the Network Operating System (NOS), also

known as the controller, which serves to bridge the gap between the low-level devices

and the high-level policies. The NOS is responsible for an assortment of tasks aimed at

facilitating the network management, from providing abstractions and managing resource

utilization to device discovery and security mechanisms (KREUTZ et al., 2015).

The northbound API was conceived as a way to improve the deployment of net-

work applications by offering a controller-independent interface. Unlike the southbound

API, the northbound API has not yet established a de facto standard such as OpenFlow,

but a number of approaches have been proposed, such as RESTful APIs, multilevel pro-

gramming interfaces and ad hoc APIs. Finally, the management plane houses the applica-

tions that implement network control and functionalities via the northbound API. These

applications include services like routing, load balancing and firewalls, determining the

policies operating on the network.

20

2.2 Data Plane Programmability

With the advent of SDN, attention was turned toward the advantages of dynam-

ically programming the forwarding rules of the data plane. In this context, an issue be-

came more pronounced: switch functionality was still "ossified", being mostly defined

by inbuilt design. More specifically, the set of functions and features offered by the data

plane remained hostage to the long product cycles and the static nature of fixed-functions

ASICs. Operators found themselves incapable of programming custom packet methods

and headers, hampering the development of novel network protocols in times of change.

Starting in the late 2000s, a few researchers addressed this problem by attempting to

redesign the data plane to more adequately match the flexibility of the control plane (AN-

WER; FEAMSTER, 2009) (BOSSHART et al., 2013). By the early 2010s, these efforts

converged on the idea of data plane programmability (SONG, 2013) (BOSSHART et al.,

2014).

Following on the footsteps of general purpose computing, a new layer of abstrac-

tion was introduced, making use of the trends of network programmability and overall

growth in computing power to considerably improve flexibility and hardware support.

With data plane programmability, a programming language can be used to generically

describe forwarding functions. Switch programs can be compiled to run on multiple plat-

forms, allowing the network operator to dynamically reconfigure its behavior according to

need. Considering the market, competition is encouraged since multiple new technologies

are available to perform the functions of a switch. Additionally, the manufacturers can ab-

stract low-level architectural details from their high-level packet-processing description,

allowing the internal switch design to remain undisclosed.

As illustrated in Figure 2.2, data plane programmability represents a small but

consequential modification to the traditional SDN architecture. Backward compatibility

is maintained since the communication between the data plane and the control plane is

not required to change. In fact, protocols like OpenFlow are still necessary to populate

forwarding tables and can now benefit from faster device adaptability and dissemination

of new features.

21

Figure 2.2: A comparison between the traditional SDN switch and the programmable
switch.

Programmable switch

Control plane

Data plane

Table management

Control traffic

Live traffic

Switch program

Traditional SDN switch

Control plane

Data plane

Table management

Control traffic

Live traffic

Fixed-function devices Multiple programmable plaftorms

Source: Adapted from the P4 specification (The P4 Language Consortium, 2018).

2.2.1 P4

One of the most fruitful programming languages within this new substrate

has been P4, which stands for "Programming Protocol-independent Packet Processor"

(BOSSHART et al., 2014). The P4 language provides a high-level description of data

plane behavior, designed to be compatible with several different physical targets such as

software switches, Network Interface Cards (NICs), Field Programmable Gate Arrays

(FPGAs) and Application-Specific Integrated Circuits (ASICs). In order to achieve this

level of support, each target requires a (1) dedicated architecture definition, (2) software

implementation framework and (3) P4 compiler. After a manufacturer has provided the

aforementioned items, a P4 program can be written for that target, establishing the data

plane forwarding logic and the set of tables and objects available for management from

the control plane. The P4 language can be subdivided into four distinct components: (1)

architecture definition, (2) data declaration, (3) parsing logic and (4) control flow (The P4

Language Consortium, 2018).

The target architecture is a separate component from the P4 program which de-

fines the programmable blocks and internal structure of the packet processor. This com-

ponent is how the manufacturer exposes their switches’ features to its users. The final

target can be composed of two types of programmable blocks: parser blocks and control

blocks, which are connected within packages. The architecture may also define helpful

data types, constants, errors and other implementations (The P4 Language Consortium,

2018). The content of parser and control blocks is determined by the other components

in the P4 program, as illustrated by Figure 2.3.

22

Figure 2.3: The P4 program and architecture and their mapping to the P4 abstract for-
warding model.

Control Plane

Target Data Plane

Parser Packet
Buffer

Control API

Data Types, Packet Metadata, Registers

table properties,
forwarding rules

...
e.g., ingress pipeline

actions such as
egress selection

queuing,
redirection,
replication

header
extraction

e.g. egress pipeline
actions such as

MAC update

Packet Packet

Match-Action
Tables

P4 Program

Data Declaration

Control Flow

Parser Logic

User-supplied,
Architecture-dependent

P4 Architecture

Parser Blocks

Control Blocks

Vendor-supplied,
Target-dependent

Source: Adapted from multiple sources (BOSSHART et al., 2014) (CORDEIRO; MAR-
QUES; GASPARY, 2017) (The P4 Language Consortium, 2018).

Within the P4 program, the data declaration segment can determine and instanti-

ate header formats, data types, errors and variables, which are made available throughout

the control blocks. Header formats, in particular, are defined as a set of fields and their

sizes, defining the basic building blocks for the parsing procedure.

The parsing logic defines a state machine responsible for classifying each in-

coming packet into one of two states: acceptance or rejection. Each parser state can be

composed of statements and references to other states. In this stage, packets are only

accepted if their structure (e.g., headers) conforms to a recognized pattern (e.g., Ethernet,

IP, TCP). Ultimately, the packet fields that conform to the parsing states are extracted and

made available to subsequent control blocks as metadata.

Control flows express the computations carried out using match-action tables,

attributed to the control blocks. As the name implies, this component also defines when

and how table actions are to be invoked. While the tables are populated by the control

plane, the control flows configure how the tables are exposed to the control plane (via the

control API) and how the actions affect the packet metadata and headers (e.g., determining

egress port and updating MAC addresses).

23

From its inception, P4 has attracted attention from both the industry and the

academia alike, gaining support from the ONF and the Linux Foundation. P4’s ability

to express a wide variety of packet manipulations has helped bring new network func-

tionality, previously performed by middleboxes, to the data plane. The community has

developed projects from firewalls and encapsulation to load balancing (KATTA et al.,

2016), heavy-hitter detection (SIVARAMAN et al., 2017) and in-band network telemetry

(KIM et al., 2015).

2.2.2 In-Band Network Telemetry

The trend of bringing functionality to the data plane has allowed many facets of

network management to be revisited, particularly in telemetry. Traditional network man-

agement methods often rely on the client-server model (or “pull model”), in which a main

device periodically requests and collects information from the other entities. This cen-

tralization entails substantial limitations on scalability, especially when combined with

the vigorous increase in the number of elements in the network. Additionally, traditional

telemetry solutions do not allow a precise view of how a specific packet experiences the

network.

In order to tackle these limitations, In-band Network Telemetry (INT) was sug-

gested by the P4 community as a means of extracting and exporting information directly

from the data plane (Changhoon Kim et al., 2016). This approach is not without prece-

dent. Harking back to the efforts of programmable capsules in Active Networks, Smart

Packets had expressed similar intentions in 1999 (SCHWARTZ et al., 1999), suggesting

the distribution of management decision points and the collection of specific informa-

tion locally, instead of via polling like with the Simple Network Management Protocol

(SNMP). Another contribution in the history of INT was Tiny-Packet-Programs (TPP),

which proposed simple programs carried by packets to be executed on switches, envi-

sioning applications such as congestion control, measurement and verification (JEYAKU-

MAR; ALIZADEH; GENG, 2014).

Essentially, INT proposes a framework for embedding telemetry instructions and

data into packet header fields. There is not a unique encapsulation standard, instead, the

INT specification suggests a few compatible protocols (e.g., NSH, VXLAN, Geneve),

which can present different advantages. In this framework there are three roles a network

device can perform:

24

• the source creates and inserts INT headers into its packets, determining which in-

structions are to be executed in the following hops;

• the transit hop interprets the INT instructions and adds the respective metadata to

the packet; and

• the sink extracts and consumes the INT instructions and metadata, removing the

INT header to make INT transparent to upper layers.

These INT-enabled network elements effectively code the state of the network into transit-

ing packets, allowing for high-level applications such as congestion control, routing and

verification (Changhoon Kim et al., 2016).

There are many advantages to INT, such as the placement of vantage points at

switches to empower network measurements (MOSHREF et al., 2016). In this picture,

a single packet can collect data from all compatible nodes in its path in one trip, amor-

tizing the required intrusiveness and disseminating the information at the same time. It

can also enable switch-local decisions (e.g., decisions made entirely between neighboring

switches), without having to resort to control plane intervention. Most importantly, the

capacity to locally produce diagnostic information can help network management appli-

cations to be implemented more efficiently than a centralized model.

2.3 Network Measurement Methods

Considering the potential of new programmable paradigms in computer networks,

it is interesting to revisit more traditional problems such as network measurement. In

recent years, several investigations have proposed different techniques for estimating net-

work capacity and available bandwidth (ABW). Despite significant advances, a truly ef-

ficient technique for jointly measuring these two metrics remains an open question. This

section classifies these investigations into three different axes, presented as follows. The

first axis examines how existing techniques differ according to the method used for net-

work measurement (passive or active). The second axis evaluates the related work by

analyzing the scope of measurement (end-to-end or hop-by-hop). Finally, the third axis

encompasses recent work that takes advantage of Software-Defined networks to introduce

new measurement approaches.

25

Table 2.1: State-of-the-art approaches for available bandwidth and capacity estimation.

Method

Name

Method

Type
Scope SDN DPP Base Technique ABW Capacity

CAPEST Passive Hop Yes Yes Packet Dispersion Measures Measures

Megyesi Passive Hop Yes No Utilization Monitoring Measures Requires

(MEGYESI et al., 2017)

Next-V2 Active Path No No Probe Rate Model Measures N/A

(PAUL; TACHIBANA; HASEGAWA, 2016)

Michelinakis Passive Hop No No Packet Dispersion N/A Measures

(MICHELINAKIS et al., 2016)

Pakzad Active Hop Yes No Packet Dispersion N/A Measures

(PAKZAD; PORTMANN; HAYWARD, 2015)

Zhang Active Path No No Packet Dispersion N/A Measures

(ZHANG; XU, 2015)

SigMon Active Path No No Probe Gap Model Measures Measures

(KIM; LEE, 2014)

Ohkawa Passive Path No No Packet Dispersion N/A Measures

(OHKAWA; NOMURA, 2014)

EKF-UI Passive Path No No Adaptive Kalman Filter Measures Requires

(CAVUSOGLU; ORAL, 2014)

MultiQ Passive Hop No No Equally-Spaced Mode Gaps N/A Measures

(KATTI et al., 2004)

CapProbe Passive Path No No Packet Dispersion N/A Measures

(KAPOOR et al., 2004)

PathChirp Active Path No No Probe Rate Model Measures N/A

(RIBEIRO et al., 2003)

Spruce Active Path No No Probe Gap Model Measures Requires

(STRAUSS; KATABI; KAASHOEK, 2003)

PathLoad Active Path No No Probe Rate Model Measures N/A

(JAIN; DOVROLIS, 2002)

PathRate Active Path No No Packet Dispersion N/A Measures

(DOVROLIS; RAMANATHAN; MOORE, 2001)

TOPP Active Path No No Probe Rate Model Measures N/A

(MELANDER; BJORKMAN; GUNNINGBERG, 2000)

PathChar Active Hop No No Variable Packet Size N/A Measures

(DOWNEY, 1999)

Source: The Author.

26

2.3.1 Active vs Passive Approaches

As shown in Table 2.1, measurement techniques can be categorized into active

and passive methods, which present a complementary nature in aspects such as accu-

racy and resource utilization. Active methods make use of dedicated packets streams by

injecting an artificial load into the network and accurately measuring its properties (MOR-

TON, 2016). One common active approach is known as the Probe Rate Model (PRM),

employed by techniques such as Next-V2 (PAUL; TACHIBANA; HASEGAWA, 2016),

Assolo (GOLDONI; ROSSI; TORELLI, 2009), PathChirp (RIBEIRO et al., 2003), TOPP

(MELANDER; BJORKMAN; GUNNINGBERG, 2000) and PathLoad (JAIN; DOVRO-

LIS, 2002). In this approach, packet probes are sent at ever-increasing rates, while mea-

suring the arriving rate at the end-point. ABW is detected when congestion is induced,

i.e., the arriving rate becomes lower than the sending rate. Since PRM relies on congestion

to measure ABW, it inevitably disturbs the network with overhead.

A less intrusive active approach is the Probe Gap Model (PGM), which is the ba-

sis for methods such as Sigmon (KIM; LEE, 2014) and Spruce (STRAUSS; KATABI;

KAASHOEK, 2003). This approach estimates ABW indirectly from the cross traffic

observed in the temporal dispersion between consecutive probes and requires previous

knowledge of capacity (MICHAUT; LEPAGE, 2005). Despite their relatively lower in-

trusiveness, their overhead remains orders of magnitude higher than that of passive meth-

ods. Additionally, low intrusiveness active methods present a critical problem: they are

prone to measure an artificially reduced capacity. It turns out that most wireless networks,

such as 4G and upcoming 5G networks, rely on dynamic resource allocation algorithms

(MARTÍN-SACRISTÁN et al., 2009). In such a shared and dynamic environment, the

amount of resources allocated for a given user is directly proportional to the network load

generated by this user. Therefore, a low intrusiveness method will probably measure an

artificially reduced capacity, which would be significantly higher if the method required

more resources.

On the other side of the spectrum, passive methods may be better suited to ob-

serve short-term and dynamic behaviors(CAVUSOGLU; ORAL, 2014). For example,

Ohkawa (OHKAWA; NOMURA, 2014), EKF-UI (CAVUSOGLU; ORAL, 2014), Cap-

Probe (KAPOOR et al., 2004) rely on statistical methods, such as Packet Dispersion and

Adaptive Kalman Filters, to analyze live packets and derive the desired metrics. Such

non-intrusive methods preserve and measure actual traffic, but require a greater effort in

27

filtering and analysis to achieve acceptable accuracy. Crucially, passive methods solve

one of the main issues associated with active techniques, namely overhead, since they do

not consume the very resources they are trying to measure. However, a crucial problem

remains: most of the evaluated methods do not address high-scale deployability, i.e., how

to effectively distribute the OPs (OHKAWA; NOMURA, 2014; CAVUSOGLU; ORAL,

2014; KATTI et al., 2004; KAPOOR et al., 2004). Additionally, none of the passive

methods in Table 2.1 estimates ABW without knowing capacity beforehand, usually jus-

tified by outdated assumptions about capacity. This is a major limitation because capacity

information is highly dynamic in shared access networks such as 4G/LTE, 5G and Wi-Fi.

2.3.2 End-to-End vs Hop-by-Hop Approaches

Capacity and ABW measurement techniques can be further divided according

to measurement scope. End-to-end proposals evaluate the properties of a path between

two end-points, recent examples of which include NEXT-V2 (PAUL; TACHIBANA;

HASEGAWA, 2016), Pakzad (PAKZAD; PORTMANN; HAYWARD, 2015), Zhang

(ZHANG; XU, 2015) and SigMon (KIM; LEE, 2014). These methods frequently obtain

information limited to the worst link in the path (i.e., narrow or bottleneck link). There-

fore, acquiring a detailed depiction of the network employing exclusively end-to-end

measurements can become very burdensome depending on the topology and the distribu-

tion of OPs. To that effect, Ohkawa et al. (OHKAWA; NOMURA, 2014) argue that their

path method can be used to monitor all paths, but do not specify how this deployment

can be achieved. There are a few techniques, most notably pathChar (DOWNEY, 1999)

and multiQ (KATTI et al., 2004), that attempt to extract multiple per-hop measurements

from an end-to-end perspective. These techniques pursue an ambitious concept but do

not manage to achieve the realiability required by modern network management, as they

require particular conditions to work well (such as not encountering queuing delay on a

packet probe) (DOVROLIS; RAMANATHAN; MOORE, 2001) and are not guaranteed

to acquire information about all hops.

Considering that the per-hop scope of information can be composed into path esti-

mates (FILHO et al., 2018), a more reliable approach to acquiring network information is

to deploy key OPs at the hops. Michelinakis et al. (MICHELINAKIS et al., 2016) deploy

OPs at the last hop and acquire information concerning the edge of a mobile network.

However, measuring the internal nodes is essential for a complete picture of the network.

28

A comprehensive deployment can be facilitated by SDN (as employed by the works of

Megyesi (MEGYESI et al., 2017) and Pakzad (PAKZAD; PORTMANN; HAYWARD,

2015)), which is further explained in the following subsection.

2.3.3 Software-Defined Networking Approaches

Software-Defined Networking (SDN) has introduced a more flexible and dynamic

way of programming forwarding paths in complex network environments. The availabil-

ity of a global view of the network topology through a centralized control plane allows

open problems and challenges, such as capacity and ABW estimations, to be revisited.

Megyesi et al. (MEGYESI et al., 2017) proposed a passive technique that is implemented

as an extension of the Netflow protocol. The technique consists of monitoring bandwidth

utilization along the network to calculate ABW, relying on prior knowledge of the capac-

ity of each link. Considering that prior knowledge of the link capacities is not guaranteed

in today’s networks, Pakzad et al. (PAKZAD; PORTMANN; HAYWARD, 2015) have

suggested a technique for measuring capacity in SDN networks, which makes use of the

well-known packet pair technique. However, their method does not encompass ABW

estimation. Considering that SDN represents one of the latest frontiers for its advan-

tages to deployment and scalability, we expect it to become more commonplace within

measurement techniques in the future. The application of SDN has been successful in

the monitoring of other network metrics such as round-trip time (Atary; Bremler-Barr,

2016). In this sense, current developments in data plane programmability also offer a yet

unexplored opportunity to implement the network measurement of ABW and capacity.

Given the above, CAPEST contributes a step forward in the state-of-the-art since,

unlike the related work, it introduces a novel passive technique with the ability to si-

multaneously estimate both capacity and ABW. The proposed technique leverages both

programmable data plane and in-band network telemetry to provide accurate per-link

measurements while incurring minimal overhead. Finally, we advocate this approach

is flexible, since the estimated metrics can either be transported via INT and gathered

at a centralized decision point, but are also available locally at each hop, enabling local

decisions based on the accurate and fresh information.

29

3 CONCEPTUAL FRAMEWORK

In this chapter, we outline the framework upon which CAPEST is built. We start

by formally defining the measurement metrics of interest to CAPEST. We then enumerate

and discuss the design requirements of the proposed solution. Finally, we introduce and

describe the CAPEST architecture and the associated measurement method.

3.1 Target Metrics

CAPEST’s process culminates in the estimation of two metrics: Capacity and

Available Bandwidth. In this section, we define these metrics and their relevant char-

acteristics.

3.1.1 Capacity

In concordance with Prosad et al. (PROSAD et al., 2003), capacity is defined

as the maximum possible transference rate achievable at the network layer. This rate

is mostly determined by technical factors of the underlying layers, such as link layer

protocol, the bandwidth limitations inherent to the propagation medium and SNR. Since

these properties vary from hop to hop, it is convenient to define capacity at a per-hop level

of detail. The observed capacity of a path between end-points a and b can be estimated

by a composition of its constituent link capacities, limited by the lowest singular value,

given by Equation 3.1:

Ca,b = min(Ca, ..., Cb) (3.1)

3.1.2 Available Bandwidth

Available bandwidth is defined as the unused capacity of a link or a path within a

time interval (PROSAD et al., 2003). It can also be described as the the amount of traffic

that can be introduced to a path without interfering with the traversing flows. Formally,

the available bandwidth Ai of a link i can be inferred from its capacity Ci and its average

utilization ui as seen in Equation 3.2. Similarly to capacity, the available bandwidth of a

30

path can be composed as the minimal value of its component links, as given by Equation

3.3.

Ai = Ci · (1− ui) (3.2)

Aa,b = min(Aa, ..., Ab) (3.3)

An accurate assessment of both capacity and available bandwidth is highly de-

scriptive of the network and is fundamental for a myriad of applications. For exam-

ple, these metrics have been instrumental in rate-distortion algorithms (CAVUSOGLU;

ORAL, 2014), admission control (BRESLAU et al., 2000) and QoE-aware route selec-

tion (FILHO et al., 2018). Expanding on the latter example, Costa et al. employ periodic

ABW measurements to estimate path QoE for video streaming applications (since ABW

is the most significant QoS indicator of QoE (CASAS et al., 2016; RAMAKRISHNAN

et al., 2015)), while implicitly using capacity to model congestion dynamics in route se-

lection (FILHO et al., 2018).

3.2 Design Objectives

In this section, we define the most important design objectives of a network mea-

surement technique, depicting their trade-offs and how different classes of methods excel

at these aspects.

3.2.1 Accuracy

One of the most important factors that define a measurement tool is accuracy. A

method’s accuracy is defined by the proximity of its results to the reference ground truth.

Henceforth in this paper, the accuracy of a measurement is determined by the application

of Equation 3.4, given a positive measurement value VM and a positive reference value

VR.

Accuracy(VR, VM) = 1− |VR − VM |
VR

(3.4)

31

As a design objective for a our measurement method, a percentage error rate of up

to one-digit is desired, as is typically reported by comparable state-of-the-art solutions.

However, most techniques achieve this level of accuracy at the cost of high resource con-

sumption, either by disturbing the network or laboriously analyzing packet statistics.

3.2.2 Freshness

Freshness is defined as the quality of having recently monitored data available as

soon as possible. In this context, two main contributing factors can be identified as the

availability of recent data and the timeliness of the measurement process (i.e., the time

it takes for the process to produce a measurement). This ability is particularly relevant

for network management whenever an event requires a swift response, such as traffic

engineering or denial of service (DoS) mitigation. We expect the freshness of our solution

to at least rival that of active methods, pursuing an optimal timeliness of an RTT. Yet, it

should be noted that active methods provide freshness by injecting their own statistical

fodder into the network, incurring in higher intrusiveness.

3.2.3 intrusiveness

intrusiveness can be described as the degradation of service experienced by pro-

duction packets. One of the most prevalent indicators of intrusiveness is the amount of

data that needs to be introduced by monitoring mechanisms to the network in order to

perform measurements. At its mildest, this aspect can increase latency on account of

larger queues and, at its worst, it can induce packet loss and reduction of throughput. In

the context of our solution, an acceptable amount of intrusiveness is displayed by passive

methods since they infer metrics by observing the underlying traffic instead of injecting

dedicated data streams.

3.2.4 Scope

Measurement scope refers to the spatial granularity of acquired information, e.g.,

whether a measurement pertains to a complete path or specific link. The direct measure-

ment of a path’s properties has the ability to simultaneously consider all of the contribut-

32

ing factors (e.g. medium bandwidth, resource sharing, noise) and their interactions along

the way. However, in the context of a large-scale network, in which there is a combinato-

rial amount of possible paths, it quickly becomes an exceedingly impractical endeavour to

measure each path individually. Considering that it is much more feasible to employ per-

hop measurements from which path estimations can be composed (FILHO et al., 2018),

our solution’s ideal measurement scope is hop-by-hop.

In conclusion, the ideal measurement method would approximate 90% accuracy,

the freshness of an active method and the resource consumption of a passive method,

all the while providing a per-hop scope of estimation. This is especially challenging

since most of these aspects counteract each other. However, the emergence of data plane

programming has the potential to reestablish this paradigm.

3.3 Overall Architecture

CAPEST relies on the existence of programmable switches within the network.

Even though this concept of network programmability and intelligent forwarding devices

is not a recent aspiration, current developments of generic switch programmability (e.g.

through P4 (BOSSHART et al., 2014)) have laid fertile ground for the feasible imple-

mentation of data plane methods. This approach allows procedures to be generically

programmed and dynamically instantiated in network elements, allowing complex and

adaptable behaviour to operate at line rate. In this context, methods can be triggered by

packets that respect match-action rules and can consume (stateful) information maintained

in the switch.

Considering the advantages provided by packet level telemetry (JEYAKUMAR;

ALIZADEH; GENG, 2014; ZHU et al., 2015), CAPEST makes use of Inband Network

Telemetry (Changhoon Kim et al., 2016), as a means for extracting and exporting infor-

mation directly from the data plane. Additionally, INT is employed implementing the

NSH encapsulation standard in order to export telemetry data from the programmable

switches to wherever they are needed. INT-enabled network elements selectively intro-

duce information into transiting packets, effectively coding the state of the network for

other elements to consume (e.g., the switches or an external controller), as illustrated by

Figure 3.1.

33

Figure 3.1: INT introduces metadata to packets through header manipulation.

INT INT INT INT

Payload

INT Metadata
INT Instruction

Packet

INT Metadata
Payload

INT Instruction
Packet Packet

Payload

Packet

Payload

Payload
INT Metadata

INT Instruction
Packet

Source: The Author.

Essentially, CAPEST is a loadable module to the data plane of a generically pro-

grammable switch. CAPEST makes use of trigger methods in order to collect packet

information, process it, and relay to the rest of the network its estimates of capacity and

available bandwidth. CAPEST’s mechanism differentiates between two kinds of packets,

live packets and probe packets.

Figure 3.2: CAPEST collects statistical information from live packets.

P4

Statistics are collected
from live packets

P4

P4

P4

Length

Live Packet

Live Packet

Ingress Dispersion

A

B

D

C

Source: The Author.

34

Live packets represent the user traffic coursing through the network and are the

object of measurement. These packets have external sources and targets, connecting users

to utilities and establishing services. In this context, it is imperative that they experience

a reliable and efficient traversal. With this in mind, CAPEST’s procedures for live packets

are mostly limited to collecting information regarding length and packet dispersion, as il-

lustrated by the transiting packets arriving at the “C” switch in Figure 3.2. This procedure

can be deployed on a per-packet basis or be coupled with a filter.

Probe packets are artificially inserted into the network whenever estimations are

necessary. Unlike live packets, probe packets have a Network Service Header imple-

mentation of INT where CAPEST instructions and data can be inserted. These packets

trigger the statistical analysis, wait for the result and help disseminate the information

throughout the network. An example can be seen in Figure 3.3, where empty probe pack-

ets injected at the “A” switch trigger the process at the “B” switch and carry its result to

“D”. CAPEST delegates issues of measurement scheduling and forwarding policies to the

network management system. Thus, concerns about probe packet generation and routing

are considered outside the scope of this paper.

Figure 3.3: CAPEST’s probe packets trigger the measurement procedure and carry the
information along.

Port ID
Capacity
Available Bandwidth

Probe packet triggers
statistical estimation

P4

C

Probe Packet

Results (NSH/INT)
Probe Packet

P4

P4

P4

P4

A

B

D

Source: The Author.

35

3.4 Measurement Method

The CAPEST measurement method determines how the collected statistics are pro-

cessed to output an estimation of capacity and available bandwidth. The method makes

use of dispersion techniques studied by Dovrolis and observations made by Ohkawa

and Katti to develop a low complexity capacity estimation method (DOVROLIS; RA-

MANATHAN; MOORE, 2004; OHKAWA; NOMURA, 2014; KATTI et al., 2004). This

process can be divided into three main procedures. The first procedure is the generation

of a bin histogram which enables the statistical modal analysis of packet dispersion. The

second procedure helps to alleviate common disruptions found in the histogram and con-

sequently reinforces the result, as explained next. The combination of these two functions

outputs a decently accurate estimation of capacity, even when operating under reduced

processing parameters, most importantly the histogram resolution. The third procedure is

an estimate of utilization based on the timestamps and lengths of the last transiting pack-

ets. The available bandwidth of the link is derived from utilization and capacity according

to Equation 3.2.

36

Figure 3.4: CAPEST combines an Estimate Histogram with the autocorrelation from a
Reverse Estimate Histogram in order to obtain a reinforced capacity measurement. This
estimate is subsequently integrated with utilization information to obtain the available
bandwidth measurement.

Utilization

Timestamp (s)

U
til

iz
at

io
n

(b
yt

es
)

Capacity Estimate

Available Bandwidth
Estimate

Autocorrelation

Offset 1

Reverse Estimate (s/Mb)

of

 M
ea

su
re

m
en

ts
 Offset 2

Reverse Estimate (s/Mb)

of

 M
ea

su
re

m
en

ts

Au
to

co
rre

la
tio

n

Offset

Strong Correlation

(Weak Correlation) (Strong Correlation)

Compensated Bin Histogram

Estimate (Mb/s)

Reversion

Estimate Histogram
Multiple Modes

Estimate (Mb/s)

of

 M
ea

su
re

m
en

ts

Reverse Estimate (s/Mb)

of

 M
ea

su
re

m
en

ts

Reverse Histogram
Equally Spaced

of

 M
ea

su
re

m
en

ts

Packet Statistics

Length

Live Packet Live Packet

Ingress Dispersion

... ...

Capacity Mode is Reinforced

Source: The Author.

37

3.4.1 Histograms

One of the most prevalent approaches to measuring capacity relies on the analysis

of packet dispersion, which is defined as the temporal difference between the complete

transmission of two consecutive packets. In the absence of disrupting events, the disper-

sion δ of two packets sent back-to-back follows Equation 3.5, where l is the length of

the packets and C is the effective capacity of the path (DOVROLIS; RAMANATHAN;

MOORE, 2004). These principles of packet dispersion have been applied both to end-to-

end active methods (DOVROLIS; RAMANATHAN; MOORE, 2004) as well as passive

methods (KAPOOR et al., 2004)(OHKAWA; NOMURA, 2014).

δ =
l

C
(3.5)

A common disruption of this estimate is caused by cross-traffic packets interfer-

ing in the queuing delay. Since both packets can encounter this additional delay, the

dispersion measurement can be distorted upwards or downwards. To mitigate this issue,

multiple dispersion samples are collected and statistically analyzed.

CAPEST achieves the aforementioned analysis by constructing bin histograms

from packet statistics, as can be seen in Figure 3.4. Bin histograms quantify the oc-

currences of estimates within a set of intervals, also known as bins. This step, by itself,

can yield an accurate estimation of capacity as a global mode. However, the Capacity

Mode (CM) can be overshadowed due to the disturbances and often appears only as a

local mode.

3.4.2 Autocorrelation

Considering that there are several factors which can obfuscate the capacity es-

timation taken directly from the bin histogram, such as direct and reverse cross-traffic

interference. Identifying patterns in this interference allows the development of statistical

procedures to mitigate disturbances. One such observation is that the estimate histogram

tends to present local modes at integer fractions of the CM, as can be seen in the mul-

tiple modes of the estimate histogram in Figure 3.4. This can be attributed to the fact

that cross-traffic interference manifests itself discretely, i.e. according to the incidence

of cross-traffic packets. This has been previously observed and utilized by related works

38

such as Ohkawa and Katti (OHKAWA; NOMURA, 2014) (KATTI et al., 2004). Con-

sidering that queueing delay depends on capacity under transmission time, local modes

found at integer fractions of the capacity represent combinations of packets interfering

with dispersion.

In order to compensate for this effect, CAPEST constructs a reverse estimate bin

histogram, as shown in Figure 3.4. Whereas the regular histogram presents local modes

at fractions of the CM, the reverse estimate histogram presents these modes at equally

spaced intervals. As an example, a bin histogram presenting modes at C/1 Mb/s, C/2

Mb/s, C/3 Mb/s would generate a reverse bin histogram with equally spaced modes at

1/C s/Mb, 2/C s/Mb, 3/C s/Mb. Subsequently, autocorrelation is applied in order to

determine this spacing. This procedure evaluates the correlation of a signal with itself at

differing levels of offset. Thus, consistently spaced modes contribute significantly at the

same offset, producing a spike. Lastly, this result is reversed back and combined with

the estimate histogram by multiplying their contributions at respective bin intervals. This

step is depicted as "Reversion" in Figure 3.4 and helps to reinforce the CM.

3.4.3 Utilization

CAPEST collects the timestamps and lengths of packets in order to estimate the

recent utilization, as shown on the right side of Figure 3.4. The average utilization U

can be calculated from the accumulated length of packets l withing a time interval ∆t,

following Equation 3.6.

U =
Σl

∆t
(3.6)

The average utilization is subsequently combined with the estimate of capacity, resulting

in an estimate of available bandwidth.

39

4 CAPACITY ESTIMATION IN P4

In Chapter 4, we elaborate on how the CAPEST method is implemented in the

framework of data plane programmability. More specifically, we approach how CAPEST

makes use of algorithm parametrization, data structures, packet triggers and how it over-

comes limitations contextual to P4.

Figure 4.1: The flow of information between CAPEST structures, procedures and domains.

Probe Packet Live Packet

Last Packet Info Bin Length

Estimate Circular Array

index current_packet
estimates

, , ...,e0 e1 en

Utilization Group

index current_packet
timestamp first_packet_ingress
bytes accumulated_packet_length

Utilization Circular Array

index current_utilization_group
utilization_groups , , ...,u0 u1 un

Calculate Estimate
Bin Histogram

Calculate Reverse
Estimate Histogram

Reverse Estimate
Autocorrelation

Generate
Compensated Bin

Histogram

Calculate Recent
Utilization

P4 Data Structures

Capacity

Determine Highest
Resulting Mode

Determine Next Bin
Length (Heuristic)

 Collect Packet Information

timestamp ingress
bytes length

T

L

Generate Sample Estimate

=en

L
n−1

ΔT
n

INT-Based
Data Collection

Probe Packet

Results (NSH/INT)

Probe Packet

Live Packet

Live Packet

P4

Available
Bandwidth

P4 Switch

Source: The Author.

40

4.1 Live Packet Procedures

Whenever a production packet ingresses at a switch, a few extraction procedures

are triggered. As illustrated by the left section of Figure 4.1, a function collects relevant

information from the packet, namely the ingress timestamp and the packet length. This

data is promptly used by the following procedure and is later used to update both the uti-

lization estimation structures as well as a register with information about the last packet.

The second procedure is the generation of a sample estimate as given by the Equation 4.1,

where Tn−1 and Ln−1 are the last packet’s ingress timestamp and length, and Tn is the

current packet ingress timestamp. In order for this equation to be implemented, the P4

switch needs to include division (this requirement and its satisfaction are discussed later

in Chapter 6). Afterwards, this sample estimate is stored in a dedicated circular array,

which is described in detail in the next section.

en =
Ln−1

(Tn − Tn−1)
(4.1)

Since the live packet functions merely extract information, the packet is not re-

quired to wait for them to finish. This represents another effort to ensure live packets

suffer as low intrusiveness as possible (see Figure 4.1).

4.2 Data Structures

This section focuses on the data structures used by CAPEST, describing their pur-

pose and their interaction with the other elements. These structures are depicted in the

middle portion of Figure 4.1.

4.2.1 Estimate Circular Array

The estimate generated by each live packet is stored in a circular array. This

is implemented by means of a register array and an index, which points to the oldest

estimate. Whenever a new live packet arrives, the new estimate is placed at the indexed

register array position and the index is incremented by one. If it reaches the size of

the array, the index is set to zero. Not only does this implementation minimize writes

(requiring no structural rearranging), it also guarantees that all the values in the array

41

are valid, simplifying the read procedures as well. The size of the array is equivalent to

the number of packets that are input to the algorithm and represents one of the several

parameters that can be optimally tuned for different situations.

4.2.2 Utilization Group Circular Array

In order to save utilization data, CAPEST employs a circular array similar to the

one describe above. However, this metric requires the storage of both length and time.

Additionally, the number of packets necessary for a decent and stable utilization esti-

mation is usually larger than for capacity estimation under typical operation. In light of

these observations, two extra data structures were introduced, namely utilization group

and utilization circular array.

The utilization circular array stores length and timestamps, but, instead of packet-

level information, its data regards groups of packets. The utilization group stores the

ingress timestamp of its first packet, the number of packets it has incorporated and their

accumulated length. Whenever a live packet crosses the switch, its information is inserted

into the utilization group. When the group reaches a certain number of packets, the sum-

marized information of length and time is stored in the circular array and the group is

reset. This approach presents two parameters, the number of groups and the number of

packets per group. An increase in the latter produces both a reduction in memory utiliza-

tion as well as an increase in the interval between consecutive updates. In turn, a lower

number of packets per group could benefit convergence at the cost of memory utilization

(an exhaustive analysis of these parameters is left as future work).

4.3 Probe Packet Procedures

This section relates to the measurement procedures triggered by the probe packet

and is displayed in the right part of Figure 4.1.

4.3.1 Histogram Generation

The histogram represents the statistical foundation upon which CAPEST methods

operate. Both the estimate histogram as well as the reverse estimate histogram result from

42

an iteration over the estimate circular array. In order to quantify the estimate bins, each

sample is divided by the bin length and attributed to a saturated bin index. The reverse

estimate methodology inverts the samples and the bin length. At this stage, the float con-

struct would typically be used to conveniently represent samples and their inverted values

without losing accuracy. However, there is currently no support for float in P4 (version

16). We considered that implementing floating point functionality would be onerous and

bring little benefit considering the flexibility of the histogram system. In light of this

reasoning, inverted samples are converted into a different base unit to keep resolution.

4.3.2 Autocorrelation

In the autocorrelation procedure, the reverse estimate histogram is repeatedly cor-

related with an offset version of itself. At first, the histogram mean and variance are

calculated, which are required for correlation. Then, the correlation of each bin and its

offset bin is calculated for each offset value between zero and the number of bins.

This procedure entails the use of a dynamic loop nested in a static loop. Con-

sidering that P4 does not provide loop primitives, static loops need to be unrolled into a

sequence of instructions. Additionally, since P4 methods require a constant number of

instructions, dynamic loops must be made static, which can be achieved with conditional

statements. In this context, C-Style macros were adopted to improve code readability and

parametrization. The insights into implementing this control structure in P4 are further

discussed in Chapter 6. Because of the quadratic nature of nested loops, the number of

bins represents a very influential parameter, both to performance requirements and statis-

tical granularity. As such, a more in-depth evaluation of its impact is presented in Chapter

5.

4.3.3 Compensated Bin Histogram

After the autocorrelation has taken place, its output needs to be combined with the

estimate histogram in order to produce the final capacity estimation. For this to happen,

the autocorrelation indices need to be mapped to the original histogram. In this procedure,

for each bin index fn in the frequency histogram, the corresponding autocorrelation index

43

(also known as temporal index tn) is determined according to Equation 4.2.

tn =
conversion_pivot
fn × bin_length

× 1

#t_bins
(4.2)

This translation is necessary because all bin ranges are equally spaced, and thus

the estimate ranges do not match one-to-one with the reverse ranges. In order to keep

resolution through unit conversion, a relatively large integer (also known as a pivot) is

applied. After this step, the bin value with the highest product of these factors determines

the capacity estimation.

4.3.4 Bin Length Heuristic

The bin length represents the range of estimates attributed to each bin, effectively

determining the granularity of estimation. Thus, in order to keep an accurate and scalable

estimation given a limited number of bins, the bin length is dynamically updated accord-

ing to packet dispersion. In conventional implementations of histogram-driven capacity

estimation, the bin length is determined as a percentage of the inter-quartile length of

packet estimates (DOVROLIS; RAMANATHAN; MOORE, 2004). However, this would

demand a considerably onerous addition to the algorithm, as it would require the packet

estimates to be sorted. Time complexity would increase to from O(n) to O(n log n) with

respect to number of packets, while also burdening the already restricted switch memory.

To avoid such an unaffordable overhead, our proposed mechanism adjusts the bin length

– at each probe trigger – according to the histogram count and variance. Three distinct

cases guide this adjustment, as shown in Algorithm 1 and described next.

• If the last bin has the highest count, the bin length increases slightly and propor-

tionally (by increase_factor) as it may indicate that most estimates are saturated

because they are above the current representative range.

• Else, if there is too much variance, it is decreased proportionally (by decrease_factor).

A high variance indicates that counts are poorly distributed, which occurs when

a large bin length classifies most counts together. If this happens on a low bin, it

hinders accuracy, as the resolution capability is being wasted on higher bins.

• At last, by the same principle explained above, if the first bin contains a large num-

ber of estimates (e.g., a zeroth_bin_limit of 80%), the bin length is halved to

accelerate convergence.

44

Algorithm 1 Bin Length Heuristic

1: if capacity_estimate > (#bins − 1)× bin_size

then bin_size← bin_size+ bin_size
increase_factor

2: else if (capacity_estimate < (#bins − 2)× bin_size)&& (variance > (var_limit))

then bin_size← bin_size− bin_size
decrease_factor

3: if bins[0] > zeroth_bin_limit×#packets

then bin_size← bin_size
2

This procedures presents an asymmetry in which it decreases the bin length more

efficiently than it increases it. The ideal bin length is the smallest amount capable of

representing the CM, since bin length is inversely proportional to accuracy. This effect

locates the CM preferably at the higher bins, allowing the heuristic to be less conservative

with lower bins and, thus, more effective at decreasing estimations. The heuristic presents

a number of parameters which ultimately influence the accuracy and convergence time of

CAPEST. In Chapter 5, we explore this relationship in finer detail.

4.3.5 Recent Utilization

Finally, the available bandwidth estimation requires the assessment of recent uti-

lization. This information is calculated by the sum of lengths of all entries li in the Uti-

lization Circular Array divided by the time elapsed since the oldest entry to, as given by

Equation 4.3. The circular array dispenses with control structures, allowing this procedure

to be more efficient.

U =

∑G
i=0 li

(t− to)
(4.3)

To summarize, in this Chapter we displayed how the algorithm was adapted to the

P4 environment. We detailed how to deal with dynamic and static loops in the context of a

language with constant number of instructions and without loop primitives. Additionally,

instead of implementing the traditional bin length calculation (which would be prohibitive

on account of its time complexity), we developed a heuristic that conserves accuracy using

the arithmetic and conditional constructs available in P4. We further discuss these aspects

in Chapter 6.

45

5 EXPERIMENTAL SETUP

In this chapter, we evaluate the conceptual and technical feasibility of the pro-

posed mechanism. We start by describing the experimental methodology, in Section 5.1,

elaborating on which systems, programs and methods were employed in the assessment.

We then present, in Section 5.2, a study on how CAPEST behaves under different param-

eters and conditions. In Section 5.3, we compare the proposed method to state-of-the-art

approaches, focusing on the aspects of freshness and overhead. Finally, we demonstrate a

real-world scenario, giving insight into how providers can employ CAPEST to capitalize

on video routing in Section 5.4.

5.1 Experimental Methodology and Setup

In order to simulate the behavior of a P4 switch, the CAPEST experimental

setup employed the behavioral model p4c-bmv2 version 1.7.0-8f4abeaa1 compiling for

a simple-switch architecture modified to include division as an arithmetic operation2.

Network emulation was achieved with Mininet version 2.3.0d1, providing integration

with virtual hosts and network link configuration. The network topology employed was

composed of four P4-enabled switches connected linearly and attached to a host each.

Although the topology design is simple, it is capable of capturing CAPEST’s main charac-

teristics and allows very controllable scenarios. These emulation tools were adapted from

the official P4 language repositories and represent an authentic functional rendition of the

P4 environment. Different capacities were dynamically attributed to the the links using

Traffic Control (TC). The experiments were executed on a i7-7700 CPU 3.60 GHz 16

GB RAM machine running Ubuntu 14.04.5 Trusty with kernel version 3.13.0-24-generic

x86_64. The measured traffic ran through a path with CAPEST-enabled switches and was

generated using Iperf version 3.0.7, in line with benefits previously explored by Sommers

et al. (SOMMERS; BARFORD; WILLINGER, 2006). We artificially inserted standard

ICMP packets in order to generate probe packets and extract metrics such as latency, jitter

and loss from the path taken by both probe and live packets.

1The P4 behavioral model, compiler and simple-switch can be found on the P4 language github page at
https://github.com/p4lang.

2The complete set of parameters, CAPEST’s P416 source code and the scripts utilized in the experiments
are available online at https://github.com/nicolaskagami/capest.

46

5.2 Sensitivity Analysis

The main objective of this assessment is to determine how the key CAPEST pa-

rameters and conditions influence its behavior and performance. As will be presented

henceforth, this analysis gives insight into trade-offs and sheds light on how CAPEST can

be properly tuned to different scenarios.

5.2.1 Number of Bins Factorization

As previously discussed in Section 3.4, the histogram-based capacity estimation

method depends both on the bin length, i.e., the range associated with each bin, as well

as the number of bins available to classify each estimate. The bin length is variable and is

adjusted at each execution. On the other hand, the number of bins Bn must remain fixed

in order to maintain the constant number of instructions as required by P4. This factor is

defined at compile time and does not need to be dynamic to yield accurate measurements.

Figure 5.1: The number of bins (color-coded) mapped according to timeliness and con-
vergence.

Source: The Author.

47

Figure 5.1 illustrates the average convergence3 and timeliness measured for

CAPEST with different numbers of bins. As can be observed, increasing Bn helps to

decrease the number of rounds required to converge. This can be explained by the fact

that each additional bin increases the instantaneous range of estimation without decreas-

ing the resolution. Consequently, the representation effectively reaches the CM faster

without detriment to accuracy. Another important observation is that Bn affects the time-

liness of the process in the switch, as illustrated in Figure 5.1. This aspect of timeliness is

proportional to the number of instructions executed in the packet method, which increases

with (Bn)2. Considering that the advantage observed in convergence time can encounter

diminishing returns and that the cost in timeliness increases exponentially, a sweet spot

can be identified for a given scenario.

5.2.2 Bin Length Heuristic Factorization

The bin length heuristic is strongly influenced by two factors, which determine the

upwards and downwards convergence. These are inversely proportional to the current bin

length, i.e., a factor of “1” represents an adjustment of 100% of the bin length while a

factor of “4” represents 25%. With this in mind, a few observations can be made regard-

ing the desirable relationship between these two factors. If both factors are relatively high

(such as the case of the red curve (01_02) in Figure 5.2), the adaptation may be prone to

low accuracy due to poor resolution. Conversely, if both factors are relatively low (e.g.,

close to the number of bins), the number of rounds required to converge increases con-

siderably, as illustrated by the yellow curve (16_24) in Figure 5.2. Considering that the

heuristic already presents characteristics favorable to decreasing, as mentioned in Sub-

section 4.3.4, it can be argued that its increase factor should be relatively higher than its

decrease factor.

3Convergence was defined as taking place when the no more than 10% measurement variation is ob-
served for 10 consecutive rounds.

48

Figure 5.2: Average accuracy of the different bin length heuristic factors (color-coded) as
they converge.

Source: The Author.

5.2.3 Cross-Traffic Sensitivity

Cross traffic represents one of the most important obstacles to be overcome by

dispersion-based measurement methods. Thus, it is essential to have insight into how a

method performs under strenuous conditions. CAPEST was subjected to different cross-

traffic scenarios, varying in three different aspects, as shown in Figure 5.3. The first aspect

refers to direction, concerning whether the extraneous traffic is injected in the same or

opposite direction to that of the measured traffic. As for the second aspect, the cross

traffic can traverse through the local hop (such as CTs 3 and 4) where the Observation

Point is located or through a non-local hop shared by the measured traffic. Finally, there

is the aspect of persistence, i.e., the amount of a path common to both types of traffic.

In this context, path-persistent cross-traffic is defined as traffic that shares the path of

measurement.

49

Figure 5.3: The cross traffic scenarios relative to the measured traffic and the Observation
Point.

Cross-Traffic 1

Measured Traffic

0

P4 P4 P4

Observation Point

Cross-Traffic 2

Measured Traffic

0

P4 P4 P4

Observation Point

Cross-Traffic 3

Measured Traffic

0

P4 P4 P4

Observation Point

Cross-Traffic 4

Measured Traffic

0

P4 P4 P4

Observation Point

Source: The Author.

The cross-traffic experiment setup was Full Factorial with four kinds of cross-

traffic, five levels of cross-traffic intensity (20%, 40%, 60%, 80%, 100% relative to mea-

surement traffic) and 72 repetitions. All findings are statistically significant considering a

confidence level of 95%.

In Table 5.1, we present the capacity accuracy of CAPEST under different cross-

traffic conditions, compared to the baseline (without cross traffic). It can be observed that

the most influential cross-traffic characteristic is locality regarding the measurement hop.

Cross-traffic located at a local hop was found to be nearly twice as impactful as a similar

load on a non-local hop, decreasing accuracy by 6.81% on average. Overall, the presence

of cross-traffic decreased accuracy by 5.11% on average, leaving the method with close to

90% accuracy on all cases, as is customarily reported by state-of-the-art techniques under

normal conditions.

50

Table 5.1: Cross Traffic Factors and Influence on Accuracy

Case Direction Hop Persistence Accuracy
Baseline 96.83%

1 Same Non-local Hop 93.03%
2 Opposite Non-local Hop 93.79%
3 Opposite Local Hop 88.08%
4 Opposite Local Path 91.96%

Source: The Author.

5.3 Comparative Evaluation - intrusiveness, Freshness And Deployability

In this section, we aim to compare the proposed method with established network

measurement techniques in regards to intrusiveness, freshness and deployability. It should

be noted that these techniques diverge in a number of different characteristics, as depicted

in Table 2.1. These techniques vary in scope (i.e., path or hop), method type (i.e., pas-

sive or active) and most only attempt to measure one of the two target metrics estimated

by CAPEST. Moreover, some ABW estimation techniques require prior knowledge of

capacity, essentially measuring utilization (as defined in Equation 3.2). In light of this di-

versity and intending to contrast CAPEST with as many established techniques as possible,

the data presented in this section resulted from a comprehensive investigation into self-

reported data of the respective academic publications (MEGYESI et al., 2017; PAUL;

TACHIBANA; HASEGAWA, 2016; KIM; LEE, 2014; GOLDONI; ROSSI; TORELLI,

2009; KAPOOR et al., 2004; RIBEIRO et al., 2003) and third-party simulations (SAL-

CEDO; GUERRERO; GUÉRRERO, 2017; GUERRERO; LABRADOR, 2010).

Aiming to compare the level of intrusiveness produced by each of the methods,

we focus on overhead. Overhead is defined as the amount of data introduced to the net-

work in order to perform the measurement. In this context, active techniques contribute

most significantly as they require the injection of packets into the data stream. However,

the portion of overhead incurred by passive techniques should not be disregarded. The

trace data required by most passive capacity and ABW estimators needs to be sent (at

least through the control plane). This requires raw or at least pre-processed data to be

transmitted to the collector unit, which is frequently centralized. Moreover, the amount

of pre-processing achievable on packet dispersion techniques is limited. For example, the

dynamic bin length requires the storage of individual dispersion instances, disallowing

summarizing techniques such as sketching (ALON; MATIAS; SZEGEDY, 1999).

51

Figure 5.4: Logarithmic levels of overhead reported by different capacity and/or ABW
estimation techniques.

Source: The Author.

Figure 5.4 presents the amount of overhead reported by the comprehended meth-

ods on a logarithmic scale. This context clearly illustrates the divide between active and

passive methods, conveying a gap of at least two orders of magnitude (100x). The gap

between CAPEST and the next least intrusive method is also significant, especially consid-

ering that the Megyesi method presumes to know capacity and only measures utilization.

CAPEST achieves lower overhead than other passive methods because it doesn’t require

the transfer of input data. The estimation is accomplished in-situ, sending only the result

through the network, which amounts to 12 bytes per port per round.

Among the significant contributing factors to the freshness of a measurement

method are the availability of fresh data and the timeliness of the process. In this con-

text, active techniques have the advantage of providing their own packets, which guaran-

52

Figure 5.5: Logarithmic degrees of timeliness reported by the considered techniques.

Source: The Author.

tees data freshness. However, this cuts both ways, as these techniques need time to insert

enough data to provide statistical significance comparable to having access to the network

history. In turn, the freshness of data used by any passive technique depends on the under-

lying traffic. However, measurement timeliness can be improved with a faster processing

and delivery of data. In the local scope of the switch, the result of CAPEST is available

as soon as the processing takes place, which happens at line rate. Since our method can

request a measurement and receive its result in a round-trip’s time, it offers the best time-

liness reported by any of the studied techniques by a factor of 10, as demonstrated in

Figure 5.5.

53

Regarding deployability, the gathering of data traces from the network imposes an

obstacle for most passive methods. These solutions need to either be constantly gather-

ing information, which continuously consumes resources, or actively trigger the collec-

tion, which requires time and hinders freshness. CAPEST’s in-situ processing negates this

drawback, reducing resource utilization and simplifying the estimation procedure.

5.4 Real World Scenario - Video Streaming

In this section, we showcase one of the possible applications of CAPEST for mea-

suring available bandwidth in the case of video streaming, highlighting advantages to

both accuracy and reduction of intrusiveness (i.e., the amount of degradation of network

services introduced by the measurement method). Video streaming currently comprises a

significant portion of all network traffic. Mobile video, specifically, is expected to consti-

tute 78% of all data traffic in 2021 (CISCO, 2017). As an effort to balance infrastructure

optimization and user Quality-of-Experience (QoE), network providers can resort to traf-

fic engineering such as QoE-aware path selection algorithms (FILHO et al., 2018). In

this context, it is essential to acquire an accurate ABW estimation, as it represents the

single most influential Quality-of-Service predictor of QoE (CASAS et al., 2016; RA-

MAKRISHNAN et al., 2015). In order to guarantee decent accuracy and freshness in

this measurement, active methods such as Bulk-Transfer Capacity (BTC) estimators are

typically employed (FILHO et al., 2018). This process produces two complications: (i)

the heavy amount of overhead introduced by the method can degrade QoE, as the very

target of measurement is being consumed; and (ii) accuracy is not perfect since BTC is

not exactly the same as ABW (JAIN; DOVROLIS, 2004) and the sporadic nature of video

buffering can compromise the measurement.

In the subject of streaming, one of the strongest indications of performance

degradation (and its consequent depreciation of QoE) is video stall (NAM; KIM;

SCHULZRINNE, 2016; CASAS et al., 2016), which occurs when playout is interrupted.

In order to faithfully reproduce the video playout ecosystem while evaluating ABW accu-

racy and intrusiveness, we employed a video client simulator capable of recording stalls

(FILHO et al., 2018). The client behaviour is analogous to that of a Youtube playout, with

a sixty-second buffer constantly being filled with ten-second chunks which are consumed

in real time. Whenever the buffer is depleted, a stall event and its length are registered.

54

This experiment consisted of multiple concomitant videos passing through the

observation point of CAPEST. The number of videos and capacity varied in order to con-

sider multiple levels of ABW. These levels ranged from 85.46% of capacity to a case

where total video bandwidth demand is higher than capacity, incurring in QoE degra-

dation. CAPEST’s ABW estimation is contrasted with a BTC estimator represented by

Iperf. After each iteration, the estimate is compared with the nominal capacity minus the

aggregated bitrate and the average stall length is accounted.

Figure 5.6: Cumulative relative accuracy of CAPEST and BTC.

Source: The Author.

Figure 5.6 illustrates the obtained results, in which CAPEST clearly outperforms

BTC regarding accuracy. Three quarters of CAPEST estimates achieved 90%+ accuracy,

while BTC achieves the same accuracy for only 75% of the cases. This can be partially

attributed to the fact that BTC is not equal to ABW. It, by definition, interacts with the

current traffic via congestion control. Since the video buffering rate is intermittent (i.e.,

it loads chunks periodically), the BTC estimator risks not interacting with all currently

active streams proportionally during its measurement. In order to alleviate this complica-

tion, the measurement duration is increased. It should be greater than the time taken to

consume each chunk4 to increase the chance of interacting proportionally with all streams.

However, this practice also increases intrusiveness.
4The measurement duration used for BTC in this experiment was 60s, which is greater than the chunk

consumption time of 10s.

55

Figure 5.7: Cumulative average stall length per video of CAPEST and BTC.

Source: The Author.

In the context of intrusiveness, Figure 5.7 depicts the cumulative distribution func-

tion of the average observed stall length per video of CAPEST and BTC. The use of

CAPEST for video ABW estimation achieved a reduction of 81.42% in stall length, com-

pared to measuring with BTC. BTC produced stall in 2 times as many scenarios as

CAPEST and its worst stall was 2.98 times as long. While BTC needs to inject a sub-

stantial amount of traffic, CAPEST only requires the estimate to be triggered and sent,

suggesting a much better fit to the case of video traffic ABW estimation.

56

6 DISCUSSION

As previously mentioned, P4 provides a relatively restricted set of tools to operate

in the data plane. This restraint is conscious and built-in with the honorable goal of sta-

bility and efficiency. However, in the context of a more sophisticated packet method such

as CAPEST, a few design approaches had to be developed in order to contour these limi-

tations. This chapter covers the lessons learned during the development of the proposed

method.

6.1 Introducing Complex Arithmetic Operations

Complex arithmetic operations can be incorporated. Current P4 implemen-

tations do not include multiplication, division or modulo as run-time operations. The

reason is twofold: First, such operations are not often needed for most packet process-

ing applications, as initially claimed by the P4 development community. Second, there

is a commitment to constant and efficient packet processing in the P4 language specifica-

tion, which could be hindered by the inclusion of more complex operations considering

that they generally require more cycles to complete. While early switch programmability

focused on basic operations to mostly realize forwarding procedures, present and future

implementations should seek to expand the scope of tasks deployable on the data plane,

closely followed by advancements to the switch architecture. In this context, the ability to

divide in run-time enables a number of applications (e.g. unit conversion, statistical anal-

ysis), including our own. With this in mind, we tweaked the existing implementation of

the simple switch for CAPEST, replacing an unused basic operation with division. Thus,

we conclude that the inclusion of division into the P4 specification would be beneficial,

even as an optional element, to encourage the development and study of more diverse data

plane applications.

6.2 Dealing with loops

The absence of loops can be remedied. The P4 specification does not establish

any loop primitive, in concord with the principle of constant delay. However, both dy-

namic and static loops are commonly employed by statistical methods. In order to deal

57

with this complication, static loops can be unrolled into a list of operations. The number

of operations, which needs to be constant, can represent a parameter of the P4 program. In

this context, the C-style macros adopted by P4 allow static loops to be customized through

repetition, contributing to cleaner source code. Considering the widespread adoption of

loops, the P4 specification could benefit from a dedicated construct for more practical

iterators.

Algorithms that rely on dynamic loops can also be implemented if the dynamic

loop is converted to a static loop. This conversion entails the creation of a static loop of

size equal to the maximum number of iterations, with the addition of a conditional con-

struct to neutralize the excess iterations. Under these conditions, the time complexity of

an algorithm becomes constant and equal to its worst-case scenario. These circumstances

exemplify how a low-level decision in favor of predictability results in a paradigm shift at

the developmental level, influencing the balance between performance and predictability.

6.3 Applying Heuristics

Limited space encourages the use of heuristics. One of the challenges brought

about by the space limitations imposed by switches is the use of exact algorithmic pro-

cedures. Considering the detriment of reducing operational parameters to accommodate

these procedures, it may be more suitable to apply lightweight heuristics. In the context of

CAPEST, the bin length is customarily determined by a fraction of the interquartile length

of packet estimates (DOVROLIS; RAMANATHAN; MOORE, 2004). This property can

only be acquired after these estimates are sorted, which would impose a long and complex

procedure. Even at optimal implementations with time complexity of O(n log n) (where

n is the number of analyzed packets), this would require a considerable increase to the

method, since the number of packets is the highest parameter by far. The applied heuris-

tic presents an extremely small footprint as it uses pre-calculated data for the most part,

leaving the overall algorithm with complexity O(n) with respect to number of packets.

The trade-off in convergence can be considered negligible in light of the timeliness and

overall timescale at which these procedures operate. In our case, the advantage to conver-

gence time provided by the interquartile length was deemed not to be worth the increase

in space and time complexity, especially when compared to an equivalent increase in the

base parameter (number of packets). Essentially, when working with limited resources,

heuristics can be a more cost-effective approach than exact algorithms.

58

6.4 Improving Resource Utilization

Differentiated packet methods can improve resource utilization. When first

confronted with the development of a statistical data plane application, one might be

tempted to produce a one-size-fits-all method containing the mechanism in its entirety.

However, considering current tools and circumstances, there are more efficient configura-

tions. The statistical process, albeit reduced in complexity and duration in this endeavor,

can still incur tangible resource utilization. Additionally, it may be favorable that the in-

formation collection and the statistical analysis be disassociated, which is made possible

by configurable switch internal memory. In the case of CAPEST, there is a concern that the

live packets experience the lowest degradation possible. With this in mind, our proposed

design introduces an artificial packet to trigger the heavier estimation procedure, lifting

the processing burden. The effectiveness of this approach depends on a few architectural

characteristics.

• First, if the line rate is defined by the slowest method, affecting all transiting pack-

ets, the separation of methods still reduces utilization, as live packets do not trigger

statistical analyses.

• Second, if a dedicated queue (slower than line rate) is available, live packets will

only wait for their brief collection procedures to terminate before exiting the switch.

The existence of a slow path is suggested in the INT specification as an approach to

bulkier packet procedures (Changhoon Kim et al., 2016).

• Third, if a packet is allowed to leave the switch before its method finishes, live

packets would experience even less delay. Since the live packet is not modified by

its procedure, it would be free to leave after its relevant information is extracted.This

approach could be achieved by packet copying mechanisms, also suggested in the

INT specification (Changhoon Kim et al., 2016).

In conclusion, the current P4 environment already allows the decoupling of complex

methods to reduce resource utilization. However, this approach can be further improved if

P4 embraces newly-envisioned architectural features such as dedicated queues and smart

copying mechanisms.

59

7 CONCLUSION

Current network measurement techniques face the predicament of having to com-

promise on accuracy, intrusiveness or freshness in order to achieve capacity and available

bandwidth estimation. In order to address this issue, this dissertation proposed CAPEST,

a passive estimation method leveraging data plane programmability to execute a packet

dispersion statistical analysis in-situ. To the best of our knowledge, it is the first method

to measure capacity and ABW from the data plane. The method employs reverse estimate

autocorrelation to reinforce the capacity estimation and a heuristic to calculate bin length

with linear complexity with respect to the number of packets.

The proposed method underwent a comprehensive evaluation, in which it pre-

sented less intrusiveness and an improvement of 10x to freshness compared with state-of-

the-art techniques. A sensitivity assessment was performed, illustrating how parametriza-

tion affects overall behavior and showing how CAPEST managed to measure capacity at

near 90% accuracy in the presence of four different types of cross traffic. CAPEST was

subjected to a real-world application of video traffic and measured available bandwidth

10% more accurately than its counterpart while incurring in a reduction of 81.42% ob-

served stall length per video. Finally, we detailed key insights from our exploration of

data plane programmability. In this overview, we discussed the challenges and opportuni-

ties presented by the P4 environment, concerning the interplay between technical issues

and developmental paradigms.

There are several directions to build upon the work presented in this dissertation.

The bin length heuristic can be improved by making the adjustment dynamic and relative

to the rank of the resultant bin. Furthermore, the method can be tailored to work better

depending on the architectural circumstances described in Chapter 6. For example, the

impact of the slowest packet method in the line rate can be reduced by distributing a few

calculations to live packet methods. Considering the suitability of the method for mea-

suring video traffic, it would be interesting to apply it to a QoE-aware path selector and

measure its potential in terms of accuracy and resource utilization. The proposed method

could also be combined with packet filtering to allow for the evaluation and diagnostic of

differentiated services from the data plane.

60

REFERENCES

ALON, N.; MATIAS, Y.; SZEGEDY, M. The space complexity of approximating the
frequency moments. Journal of Computer and system sciences, Elsevier, v. 58, n. 1, p.
137–147, 1999.

ANWER, M. B.; FEAMSTER, N. Building a fast, virtualized data plane with
programmable hardware. In: ACM. Proceedings of the 1st ACM workshop on
Virtualized infrastructure systems and architectures. [S.l.], 2009. p. 1–8.

Atary, A.; Bremler-Barr, A. Efficient round-trip time monitoring in openflow networks.
In: IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications. [S.l.: s.n.], 2016. p. 1–9.

BOSSHART, P. et al. Forwarding metamorphosis: Fast programmable match-
action processing in hardware for sdn. In: ACM. ACM SIGCOMM Computer
Communication Review. [S.l.], 2013. v. 43, n. 4, p. 99–110.

BOSSHART, P. et al. P4. ACM SIGCOMM Computer Communication
Review, v. 44, n. 3, p. 87–95, 2014. ISSN 01464833. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=2656877.2656890>.

BRESLAU, L. et al. Endpoint admission control: Architectural issues and performance.
ACM SIGCOMM Computer Communication Review, ACM, v. 30, n. 4, p. 57–69,
2000.

CAESAR, M. et al. Design and implementation of a routing control platform. In:
USENIX ASSOCIATION. Proceedings of the 2Nd Conference on Symposium on
Networked Systems Design & Implementation-Volume 2. [S.l.], 2005. p. 15–28.

CASADO, M. et al. Ethane: Taking control of the enterprise. In: ACM. ACM
SIGCOMM Computer Communication Review. [S.l.], 2007. v. 37, n. 4, p. 1–12.

CASADO, M. et al. Sane: A protection architecture for enterprise networks. In: USENIX
Security Symposium. [S.l.: s.n.], 2006. v. 49, p. 50.

CASAS, P. et al. An educated guess on qoe in operational networks through large-scale
measurements. In: Proceedings of the 2016 Workshop on QoE-based Analysis and
Management of Data Communication Networks. New York, NY, USA: ACM, 2016.
(Internet-QoE ’16), p. 1–6. ISBN 978-1-4503-4425-8.

CAVUSOGLU, B.; ORAL, E. A. Estimation of available bandwidth share by
tracking unknown cross-traffic with adaptive extended Kalman filter. Computer
Communications, Elsevier B.V., v. 47, p. 34–50, 2014. ISSN 01403664. Available from
Internet: <http://dx.doi.org/10.1016/j.comcom.2014.04.008>.

Changhoon Kim et al. In-band Network Telemetry (INT). [S.l.], 2016. 1–28 p. Available
from Internet: <http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf>.

CISCO. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016–2021. [S.l.], 2017.

http://dl.acm.org/citation.cfm?doid=2656877.2656890
http://dx.doi.org/10.1016/j.comcom.2014.04.008
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf

61

CORDEIRO, W. L. da C.; MARQUES, J. A.; GASPARY, L. P. Data plane
programmability beyond openflow: Opportunities and challenges for network and
service operations and management. Journal of Network and Systems Management,
Springer, v. 25, n. 4, p. 784–818, 2017.

DOVROLIS, C.; RAMANATHAN, P.; MOORE, D. What do packet dispersion
techniques measure? In: Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No.01CH37213). [S.l.: s.n.], 2001. v. 2,
p. 905–914 vol.2. ISSN 0743-166X.

DOVROLIS, C.; RAMANATHAN, P.; MOORE, D. Packet-dispersion techniques and
a capacity-estimation methodology. IEEE/ACM Transactions on Networking, v. 12,
n. 6, p. 963–977, 2004. ISSN 10636692.

DOWNEY, A. B. Using pathchar to estimate internet link characteristics. In:
Proceedings of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication. New York, NY, USA: ACM, 1999.
(SIGCOMM ’99), p. 241–250. ISBN 1-58113-135-6. Available from Internet:
<http://doi.acm.org/10.1145/316188.316228>.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The road to sdn: an intellectual history
of programmable networks. ACM SIGCOMM Computer Communication Review,
ACM, v. 44, n. 2, p. 87–98, 2014.

FILHO, R. I. T. da C. et al. Network fortune cookie: Using network measurements to
predict video streaming performance and qoe. In: 2016 IEEE Global Communications
Conference (GLOBECOM). [S.l.: s.n.], 2016. p. 1–6.

FILHO, R. I. T. da C. et al. Scalable QoE-aware path selection in SDN-based
mobile networks. In: IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications (INFOCOM 2018). Honolulu, USA: [s.n.], 2018.

GOLDONI, E.; ROSSI, G.; TORELLI, A. Assolo, a New Method for Available
Bandwidth Estimation. 2009 Fourth International Conference on Internet
Monitoring and Protection, p. 130–136, 2009. Available from Internet: <http:
//ieeexplore.ieee.org/document/5076361/>.

GUERRERO, C. D.; LABRADOR, M. A. On the applicability of available
bandwidth estimation techniques and tools. Computer Communications, Elsevier
B.V., v. 33, n. 1, p. 11–22, 2010. ISSN 01403664. Available from Internet:
<http://dx.doi.org/10.1016/j.comcom.2009.08.010>.

JAIN, M.; DOVROLIS, C. Pathload: A measurement tool for end-to-end available
bandwidth. In: CITESEER. In Proceedings of Passive and Active Measurements
(PAM) Workshop. [S.l.], 2002.

JAIN, M.; DOVROLIS, C. Ten Fallacies and Pitfalls on End-to-End Available Bandwidth
Estimation. The 4th ACM SIGCOMM conference on Internet measurement Key:
citeulike:1718948, n. 3, p. 272–277, 2004.

http://doi.acm.org/10.1145/316188.316228
http://ieeexplore.ieee.org/document/5076361/
http://ieeexplore.ieee.org/document/5076361/
http://dx.doi.org/10.1016/j.comcom.2009.08.010

62

JEYAKUMAR, V.; ALIZADEH, M.; GENG, Y. Millions of Little Minions: Using
Packets for Low Latency Network Programming and Visibility. Sigcomm 2014, p. 1–2,
2014. ISSN 01464833. Available from Internet: <http://arxiv.org/abs/1405.7143>.

JULURI, P.; TAMARAPALLI, V.; MEDHI, D. Measurement of quality of experience of
video-on-demand services: A survey. IEEE Communications Surveys Tutorials, v. 18,
n. 1, p. 401–418, Firstquarter 2016. ISSN 1553-877X.

KAPOOR, R. et al. CapProbe: A Simple and Accurate Capacity Estimation Technique.
ACM SIGCOMM Computer Communication Review, v. 34, n. 4, p. 67, 2004. ISSN
01464833. Available from Internet: <http://portal.acm.org/citation.cfm?doid=1030194.
1015476>.

KATTA, N. et al. Hula: Scalable load balancing using programmable data planes. In:
ACM. Proceedings of the Symposium on SDN Research. [S.l.], 2016. p. 10.

KATTI, S. et al. Multiq: Automated detection of multiple bottleneck capacities along
a path. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement. New York, NY, USA: ACM, 2004. (IMC ’04), p. 245–250. ISBN 1-
58113-821-0. Available from Internet: <http://doi.acm.org/10.1145/1028788.1028820>.

KIM, C. et al. In-band network telemetry via programmable dataplanes. In: ACM
SIGCOMM. [S.l.: s.n.], 2015.

KIM, J. C.; LEE, Y. An end-to-end measurement and monitoring technique for
the bottleneck link capacity and its available bandwidth. Computer Networks,
Elsevier B.V., v. 58, n. 1, p. 158–179, 2014. ISSN 13891286. Available from Internet:
<http://dx.doi.org/10.1016/j.comnet.2013.08.028>.

KREUTZ, D. et al. Software-defined networking: A comprehensive survey. Proceedings
of the IEEE, v. 103, n. 1, p. 14–76, 2015. ISSN 00189219. Available from Internet:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6994333>.

MARTÍN-SACRISTÁN, D. et al. On the way towards fourth-generation mobile:
3gpp lte and lte-advanced. EURASIP Journal on Wireless Communications and
Networking, v. 2009, n. 1, p. 354089, Aug 2009. ISSN 1687-1499. Available from
Internet: <https://doi.org/10.1155/2009/354089>.

MCKEOWN, N. et al. Openflow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, ACM, v. 38, n. 2, p. 69–74, 2008.

MEGYESI, P. et al. Challenges and solution for measuring available bandwidth in
software defined networks. Computer Communications, v. 99, p. 48 – 61, 2017. ISSN
0140-3664. Available from Internet: <http://www.sciencedirect.com/science/article/pii/
S014036641630648X>.

MELANDER, B.; BJORKMAN, M.; GUNNINGBERG, P. A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks. In: Global
Telecommunications Conference, 2000. GLOBECOM ’00. IEEE. [S.l.: s.n.], 2000.
v. 1, p. 415–420 vol.1.

http://arxiv.org/abs/1405.7143
http://portal.acm.org/citation.cfm?doid=1030194.1015476
http://portal.acm.org/citation.cfm?doid=1030194.1015476
http://doi.acm.org/10.1145/1028788.1028820
http://dx.doi.org/10.1016/j.comnet.2013.08.028
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6994333
https://doi.org/10.1155/2009/354089
http://www.sciencedirect.com/science/article/pii/S014036641630648X
http://www.sciencedirect.com/science/article/pii/S014036641630648X

63

MICHAUT, F.; LEPAGE, F. Application Oriented Network Metrology: Metrics and
Active Measurement Tools. IEEE Communications Surveys and Tutorials, p. 2–24,
2005.

MICHELINAKIS, F. et al. Lightweight capacity measurements for mobile networks.
Computer Communications, Elsevier, v. 84, p. 73–83, 2016.

MORTON, A. Active and Passive Metrics and Methods (with Hybrid Types
In-Between). RFC Editor, 2016. RFC 7799. (Request for Comments, 7799). Available
from Internet: <https://rfc-editor.org/rfc/rfc7799.txt>.

MOSHREF, M. et al. Trumpet. Proceedings of the 2016 conference on ACM
SIGCOMM 2016 Conference - SIGCOMM ’16, p. 129–143, 2016. Available from
Internet: <http://dl.acm.org/citation.cfm?doid=2934872.2934879>.

NAM, H.; KIM, K. H.; SCHULZRINNE, H. Qoe matters more than qos: Why people
stop watching cat videos. In: IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. [S.l.: s.n.], 2016. p. 1–9.

OHKAWA, N.; NOMURA, Y. Path capacity estimation by passive measurement for
the constant monitoring of every network path. APNOMS 2014 - 16th Asia-Pacific
Network Operations and Management Symposium, p. 2–7, 2014.

PAKZAD, F.; PORTMANN, M.; HAYWARD, J. Link Capacity Estimation in Wireless
Software Defined Networks. 2015 International Telecommunication Networks
and Applications Conference (ITNAC), p. 208–213, 2015. Available from Internet:
<http://ieeexplore.ieee.org/document/7366814/>.

PAUL, A. K.; TACHIBANA, A.; HASEGAWA, T. An enhanced available bandwidth
estimation technique for an end-to-end network path. IEEE Transactions on Network
and Service Management, v. 13, n. 4, p. 768–781, Dec 2016. ISSN 1932-4537.

PROSAD, R. et al. Bandwidth estimation: metrics, measurement techniques, and tools.
IEEE Network, v. 17, n. 6, p. 27–35, 2003. ISSN 0890-8044.

RAMAKRISHNAN, S. et al. Sdn based qoe optimization for http-based adaptive video
streaming. In: Proceedings of the IEEE International Symposium on Multimedia
(ISM). [S.l.: s.n.], 2015. p. 120–123.

REKHTER, Y.; LI, T.; HARES, S. A border gateway protocol 4 (BGP-4). [S.l.], 2005.

RIBEIRO, V. et al. pathchirp: Efficient available bandwidth estimation for network paths.
Passive and Active Measurements (PAM), 04 2003. ISSN 03676234.

SALCEDO, D.; GUERRERO, C.; GUÉRRERO, J. Overhead in available bandwidth
estimation tools: Evaluation and analysis. International Journal of Communication
Networks and Information Security (IJCNIS), v. 9, n. 3, 2017.

SALIM, J. et al. Linux netlink as an ip services protocol. [S.l.], 2003.

SCHWARTZ, B. et al. Smart packets for active networks. In: IEEE. Open Architectures
and Network Programming Proceedings, 1999. OPENARCH’99. 1999 IEEE Second
Conference on. [S.l.], 1999. p. 90–97.

https://rfc-editor.org/rfc/rfc7799.txt
http://dl.acm.org/citation.cfm?doid=2934872.2934879
http://ieeexplore.ieee.org/document/7366814/

64

SINGH, R. et al. Run, walk, crawl: Towards dynamic link capacities. In: Proceedings
of the 16th ACM Workshop on Hot Topics in Networks. New York, NY, USA: ACM,
2017. (HotNets-XVI), p. 143–149. ISBN 978-1-4503-5569-8. Available from Internet:
<http://doi.acm.org/10.1145/3152434.3152451>.

SIVARAMAN, V. et al. Heavy-hitter detection entirely in the data plane. In: ACM.
Proceedings of the Symposium on SDN Research. [S.l.], 2017. p. 164–176.

SMITH, J. M. et al. Switchware: accelerating network evolution (white paper). 1996.

SOMMERS, J.; BARFORD, P.; WILLINGER, W. A proposed framework for calibration
of available bandwidth estimation tools. Proceedings - International Symposium on
Computers and Communications, p. 709–718, 2006. ISSN 15301346.

SONG, H. Protocol-oblivious forwarding: Unleash the power of sdn through a
future-proof forwarding plane. In: ACM. Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking. [S.l.], 2013. p. 127–132.

STRAUSS, J.; KATABI, D.; KAASHOEK, F. A measurement study of available
bandwidth estimation tools. In: Proceedings of the 3rd ACM SIGCOMM
Conference on Internet Measurement. New York, NY, USA: ACM, 2003.
(IMC ’03), p. 39–44. ISBN 1-58113-773-7. Available from Internet: <http:
//doi.acm.org/10.1145/948205.948211>.

TENNENHOUSE, D. L. et al. A survey of active network research. IEEE
communications Magazine, IEEE, v. 35, n. 1, p. 80–86, 1997.

The P4 Language Consortium. P4 16 Language Specification v1.1.0. p. 129, 2018. ISSN
0279-1072. Available from Internet: <http://p4.org.>

WETHERALL, D. J.; GUTTAG, J. V.; TENNENHOUSE, D. L. Ants: A toolkit for
building and dynamically deploying network protocols. In: IEEE. Open Architectures
and Network Programming, 1998 IEEE. [S.l.], 1998. p. 117–129.

YANG, L. et al. Forwarding and control element separation (ForCES) framework.
[S.l.], 2004.

ZHANG, E.; XU, L. Capacity and token rate estimation for networks with token bucket
shapers. Computer Networks, Elsevier Ltd., v. 88, p. 1–11, 2015. ISSN 13891286.
Available from Internet: <http://dx.doi.org/10.1016/j.comnet.2015.05.013>.

ZHU, Y. et al. Packet-level telemetry in large datacenter networks. In: ACM. ACM
SIGCOMM Computer Communication Review. [S.l.], 2015. v. 45, n. 4, p. 479–491.

http://doi.acm.org/10.1145/3152434.3152451
http://doi.acm.org/10.1145/948205.948211
http://doi.acm.org/10.1145/948205.948211
http://p4.org.
http://dx.doi.org/10.1016/j.comnet.2015.05.013

	Acknowledgement
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background and State of the Art
	2.1 Network Programmability
	2.1.1 Active Networks
	2.1.2 Control Plane Separation
	2.1.3 Software-Defined Networking

	2.2 Data Plane Programmability
	2.2.1 P4
	2.2.2 In-Band Network Telemetry

	2.3 Network Measurement Methods
	2.3.1 Active vs Passive Approaches
	2.3.2 End-to-End vs Hop-by-Hop Approaches
	2.3.3 Software-Defined Networking Approaches

	3 Conceptual Framework
	3.1 Target Metrics
	3.1.1 Capacity
	3.1.2 Available Bandwidth

	3.2 Design Objectives
	3.2.1 Accuracy
	3.2.2 Freshness
	3.2.3 intrusiveness
	3.2.4 Scope

	3.3 Overall Architecture
	3.4 Measurement Method
	3.4.1 Histograms
	3.4.2 Autocorrelation
	3.4.3 Utilization

	4 Capacity Estimation in P4
	4.1 Live Packet Procedures
	4.2 Data Structures
	4.2.1 Estimate Circular Array
	4.2.2 Utilization Group Circular Array

	4.3 Probe Packet Procedures
	4.3.1 Histogram Generation
	4.3.2 Autocorrelation
	4.3.3 Compensated Bin Histogram
	4.3.4 Bin Length Heuristic
	4.3.5 Recent Utilization

	5 Experimental Setup
	5.1 Experimental Methodology and Setup
	5.2 Sensitivity Analysis
	5.2.1 Number of Bins Factorization
	5.2.2 Bin Length Heuristic Factorization
	5.2.3 Cross-Traffic Sensitivity

	5.3 Comparative Evaluation - intrusiveness, Freshness And Deployability
	5.4 Real World Scenario - Video Streaming

	6 Discussion
	6.1 Introducing Complex Arithmetic Operations
	6.2 Dealing with loops
	6.3 Applying Heuristics
	6.4 Improving Resource Utilization

	7 Conclusion
	References

