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Energy Dependent Source Reconstructions via Explicit
Formulations of the Adjoint Particles Flux

C. B. Pazinattoa and L. B. Barichellob

aPrograma de P�os-graduaç~ao em Matem�atica Aplicada, Universidade Federal do Rio Grande do
Sul, Porto Alegre, Rio Grande do Sul, Brazil; bInstituto de Matem�atica e Estat�ıstica, Universidade
Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

ABSTRACT
An analytical solution to the discrete ordinates approximation
of the adjoint to the multigroup transport equation in one-
dimensional slab geometry is developed in this work, in order
to be used in source estimation problems. The solution is
firstly tested in a source-detector problem, where explicit
expressions are derived to approximate the absorption rate of
particles of internal detectors. Noisy data generated from
readings of internal detectors were then used, along with the
adjoint formulation, in an iterative process to solve an energy-
dependent inverse problem of source reconstruction in the
cases of polynomials and piecewise constant sources. The
approach is shown to be fast and accurate.

KEYWORDS
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1. Introduction

The adjoint to the transport operator is an important mathematical tool
that may be very helpful in the solution of several problems in transport
theory, for instance, in nuclear reactor analysis (Duderstadt and Martin
1979), nuclear material detection (Miller and Charlton 2007;
Somasundaram and Palmer 2016), nondestructive material identification
(Gao and Zhao 2010; Dorn 2000; Kauati, Silva Neto, and Roberty 2001;
Haltmeier, Neumann, and Rabanser 2015) and oil well logging
(Badruzzaman 1991).
Some of these applications are, in fact, characterized as inverse problems,

where the solution of the adjoint transport equation is frequently part of
an iterative (optimization) process (Miller and Charlton 2007; Gao and
Zhao 2010; Bledsoe and Favorite 2007; Hykes and Azmy 2011). Such
approaches may demand relevant computational time and, in this context,
fast solutions may be very helpful. In source estimation problems either
internal or boundary information are considered known and the

CONTACT L. B. Barichello lbaric@mat.ufrgs.br Instituto de Matem�atica e Estat�ıstica, Universidade Federal
do Rio Grande do Sul, Av Bento Goncalves 9500, P.O. Box 15080, Porto Alegre 91509900, Rio Grande do
Sul, Brazil.
� 2019 Taylor & Francis Group, LLC

https://doi.org/10.1080/23324309.2018.1481432

JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT
201 , VOL. 47, NO. 1–3, 58–838

http://crossmark.crossref.org/dialog/?doi=10.1080/23324309.2018.1481432&domain=pdf
https://doi.org./10.1080/23324309.2018.1481432
http://www.tandfonline.com


reconstruction procedure may be related to the definition of some coeffi-
cients (parameters) of a proposed basis function expansion (Miller and
Charlton 2007; Gao and Zhao 2010; Kauati, Silva Neto, and Roberty 2001;
Siewert 1993a).
In this context, given that the Analytical Discrete Ordinates (ADO)

method (Barichello and Siewert 1999a) has shown to be fast, accurate, and
easily implementable for solving many problems related to transport calcu-
lations (Barichello and Siewert 1999b; Siewert 2000; Scherer, Prolo Filho,
and Barichello 2009), such a formulation was used to solve monoenergetic
adjoint transport problems (Pazinatto, Barros, and Barichello 2016), with a
successful application in source estimation (Pazinatto and Barichello 2017).
In this work, we present an extension of the monoenergetic adjoint ADO

formulation for the multigroup discrete ordinates model of the adjoint trans-
port equation in slab geometry. We consider heterogeneous media with arbi-
trary anisotropic scattering and reflective boundary conditions, natural steps
to enhance the model in order to handle more practical applications related
to inverse problems of source estimation. We first test the adjoint ADO for-
mulation in source-detector evaluations. After that, we use the adjoint solu-
tion in an iterative process of energy-dependent source estimation.
In this way, we organize this paper such that in Section 2 we present the

forward transport problem of interest, as well as the adjoint operator; in
Section 3, we develop the adjoint ADO solution for the proposed problem;
continuing, in Section 4, we test the ADO formulation using a source-
detector test problem; then, in Section 5, we present two energy-dependent
source estimation test problems, for the cases of polynomials and piecewise
constant sources; finally, in Section 6, we discuss concluding points and
ongoing projects.

2. Mathematical formulation

Let us consider a multilayer slab of thickness Z, composed of R contiguous
regions,

0;Z½ � ¼ [R
k¼1

zk�1; zk½ �: (1)

If, for a fixed k, 1 � k � R, a particle detector with absorption cross sec-
tion rd : ½0;Z� ! R

G
þ given by

rdðzÞ ¼
(
rd; z 2 ½za; zb� � ½zk�1; zk�;
0; otherwise;

(2)

is placed within region k, then, we can write the absorption rate of particles
migrating in all directions within the segment ½za; zb�, with energy spectrum
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divided into G energy groups, as

r ¼ hrd;wi; (3)

where we define the inner product (Somasundaram and Palmer 2016)

hh1; h2i ¼
XG
g¼1

ð1
�1

ðZ
0
h1;g z;lð Þh2;g z;lð Þdzdl; (4)

for h1; h2 : ½0;Z� � ½�1; 1� ! R
G. Figure 1 illustrates the location of the

detector within the slab.
In Equation (3), w : ½0;Z� � ½�1; 1� ! R

G represents the angular flux of
particles within the slab, the solution of the transport problem. This way,
we define the (forward) transport problem as (Siewert 2000)

Lw ¼ q; (5a)

for z 2 ð0;ZÞ the spatial variable and l 2 ½�1; 1� the direction cosine (as
measured from the positive z axis), subject to boundary conditions given
by

w 0; lð Þ ¼ f 1 lð Þ þ a1w 0;�lð Þ; (5b)

w Z;�lð Þ ¼ f 2 lð Þ þ a2w Z; lð Þ; (5c)

for l 2 ð0; 1�, and continuity conditions at the shared interfaces between
regions

lim
z!z�k

w z; lð Þ ¼ lim
z!zþk

w z; lð Þ; (5d)

for z 2 ½0;Z� and l 2 ½�1; 1�. Here L is the (forward) transport operator,
such that

Lw ¼ l
@

@z
w z; lð Þ þ Sw z; lð Þ� 1

2

XL
l¼0

Pl lð ÞTl

ð1
�1

Pl l
0ð Þw z; l0ð Þdl0: (5e)

In this work, for z 2 ½zk�1; zk�, we write S ¼ Sk, where Sk 2 R
G�G is a

diagonal matrix whose entries are the total macroscopic cross section of
each energy group. For a fixed integer L � 0 and 0 � l � L;Tl ¼ Tl;k,
where Tl;k 2 R

G�G is a matrix representing the transfer cross sections
between energy groups, and Pl is the l-th order Legendre polynomial.
Finally, f 1; f 2 : ½0; 1� ! R

G
þ represent the flux of incoming particles at the

Figure 1. Internal detector.
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boundaries of the slab, a1; a2 2 ½0; 1� are specular reflection coefficients,
and q ¼ qk, qk : ½zk�1; zk� � ½�1; 1� ! R

G is an internal source of particles.
When computing the absorption rate, Equation (3), of a fixed particle

detector, for each source q a new evaluation is required of the transport problem
in Equations (5a–5e). We can avoid such inconvenience if we use an alternative
expression to evaluate the absorption rate that, in fact, depends explicitly on q.
Thus, we rewrite Equation (3) in terms of the adjoint angular fluxw†,

r ¼ hw†; qi�P w;w†�
�

(6)

where w† : ½0;Z� � ½�1; 1� ! R
G is the solution of the adjoint trans-

port problem

L†w† ¼ rd; (7a)

for z 2 ð0;ZÞ � ½�1; 1�, subject to boundary conditions given by

w† 0;�lð Þ ¼ a1w
† 0; lð Þ; (7b)

w† Z; lð Þ ¼ a2w
† Z;�lð Þ; (7c)

for l 2 ð0; 1�, and interface conditions

lim
z!z�k

w† z; lð Þ ¼ lim
z!zþk

w† z;lð Þ; (7d)

for z 2 ½0;Z� and l 2 ½�1; 1�. We define L†, the adjoint (or backward)
transport operator, such that

L†w† ¼ �l
@

@z
w† z; lð Þ þ Sw† z;lð Þ� 1

2

XL
l¼0

Pl lð ÞTT
l

ð1
�1

Pl l
0ð Þw† z;l0ð Þdl0;

(7e)

where TT
l is the transpose of matrix Tl. Due to the appropriate choice of

boundary conditions, Equations (7b) and (7c), we now may write
P½w;w†� as

P½w;w†� ¼ �
XG
g¼1

ð1
0
l f1;g lð Þw†

g 0; lð Þ þ f2;g lð Þw†
g Z;�lð Þ

h i
dl: (8)

Here fi;g , i = 1, 2, and w†
g are the g-th group components of f i and w†,

respectively.
We remark that the adjoint transport operator L† defined in Equation

(7e) is quite similar to L in Equation (5e), and we refer to Prinja and
Larsen (2010) for details on its derivation, with an alternative definition of
the inner product, Equation (4).
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Now, for a fixed particle detector, if we assume we know the adjoint
flux, any given source of particles q requires only the evaluation, when pos-
sible, of Equation (6) to compute the absorption rate. Furthermore, the
dependence of Equation (6) on q is linear, a fundamental feature for the
source estimation problem, as discussed later in Section 5.
In the next section, we develop an analytical solution with respect to the

spatial variable to the discrete ordinates model of the adjoint transport
problem defined in Equation (7).

3. An ADO solution

Since the transport problem defined in Equation (7) is linear, we write its
solution as a superposition of homogeneous and particular solutions to
Equation (7a). Thus, we start by seeking a solution to the homoge-
neous equation.

3.1. Homogeneous solution

We follow our previous paper on the monoenergetic adjoint transport
equation (Pazinatto et al. 2016) and the work of Siewert (2000) for the
ADO solution of the multigroup transport equation, to derive an ADO
solution for the adjoint to the multigroup transport equation. Thus, we
start by writing the homogeneous version of Equation (7a) (rd ¼ 0) in
the form

�l
@

@z
w†
hk z;lð Þ þ Skw

†
hk z;lð Þ

¼ 1
2

XL
l¼0

Pl lð ÞTT
l;k

ð1
0
Pl l

0ð Þ w†
hk z; l0ð Þ þ �1ð Þlw†

hk z;�l0ð Þ�dl0;
h

(9)

where k ¼ 1; :::;R; z 2 ðzk�1; zkÞ and w†
hk is the restriction of w†

h over
½zk�1; zk�. As we follow the same procedure within each region k
and the following steps do not depend on k, we drop the sub-
script k in order to simplify the notation. Therefore, for an arbi-
trary choice of a quadrature scheme over the half-range ð0; 1Þ, we
rewrite Equation (9) as a system of 2NG ¼ 2� N � G ordinary dif-
ferential equations

�lj
d
dz

w†
h z;ljð Þ þ Sw†

h z; ljð Þ

¼ 1
2

XL
l¼0

Pl ljð ÞTT
l

XN
n¼1

wnPl lnð Þ w†
h z; lnð Þ þ �1ð Þlw†

h z;�lnð Þ�;
h

(10a)

and

62 C. B. PAZINATTO AND L. B. BARICHELLO



lj
d
dz

w†
h z;�ljð Þ þ Sw†

h z;�ljð Þ

¼ 1
2

XL
l¼0

Pl ljð ÞTT
l

XN
n¼1

wnPl lnð Þ w†
h z;�lnð Þ þ �1ð Þlw†

h z; lnð Þ�;
h

(10b)

for j ¼ 1; :::;N, where ln and wn are, respectively, nodes and weights of the
quadrature scheme. This way, 6ln are the discrete ordinates for the full-
range ½�1; 1�.
Proceeding, we seek for spectral solutions for Equations (10a) and (10b)

of the form (Siewert 2000)

w†
h z; lð Þ ¼ / �; lð Þe�z=�; z 2 zk�1; zk½ � (11)

for l ¼ 6ln, where /ð�;lÞ 2 R
G and � is a constant. If, we substitute

Equation (11) into Equations (10a) and (10b), we obtain, after some alge-
braic manipulations, a system of 2NG algebraic equations

Sþ lj
�
IG

� �
/ �; ljð Þ ¼ 1

2

XL
l¼0

Pl ljð ÞTT
l

�
XN
n¼1

wnPl lnð Þ / �; lnð Þ þ �1ð Þl/ �;�lnð Þ
h i

;

(12a)

and

S� lj
�
IG

� �
/ �;�ljð Þ ¼ 1

2

XL
l¼0

Pl ljð ÞTT
l

�
XN
n¼1

wnPl lnð Þ / �;�lnð Þ þ �1ð Þl/ �; lnð Þ
h i

;

(12b)
where j ¼ 1; :::;N and IG is the identity matrix in R

G. Before moving fur-
ther, we first need a few definitions, as described in Siewert (2000), we
introduce NG-dimensional vectors (NG ¼ N � G)

Uþ �ð Þ ¼ /T �; l1ð Þ � � � /T �;lNð Þ
h iT

; (13a)

and

U� �ð Þ ¼ /T �;�l1ð Þ � � � /T �;�lNð Þ
h iT

: (13b)

In addition, we set NG � NG matrices

M ¼ diag l1IG; :::; lNIGð Þ; (13c)

W ¼ diag w1IG; :::;wNIGð Þ; (13d)
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and

D ¼ diag S; :::; Sð Þ
zfflfflfflffl}|fflfflfflffl{N times

: (13e)

Finally, we define NG � G matrices

Pl ¼ Pl l1ð ÞIG � � � Pl lNð ÞIG� �T; (13f)

where l ¼ 1; :::; L.
We continue to follow Siewert (2000) and we rewrite Equations (12a)

and (12b) as

Dþ 1
�
M

� �
Uþ �ð Þ ¼ 1

2

XL
l¼0

PlT
T
l P

T
l W Uþ �ð Þ þ �1ð ÞlU� �ð Þ�;
h

(14a)

and

D� 1
�
M

� �
U� �ð Þ ¼ 1

2

XL
l¼0

PlT
T
l P

T
l W U� �ð Þ þ �1ð ÞlUþ �ð Þ�:
h

(14b)

Aiming to explore the symmetry found in Equations (14a) and (14b), we
also define NG-dimensional vectors

U �ð Þ ¼ Uþ �ð Þ þU� �ð Þ; (15a)

and

V �ð Þ ¼ Uþ �ð Þ�U� �ð Þ: (15b)

Then, we add Equations (14a) and (14b) to obtain

D� 1
2

XL
l¼0

PlT
T
l P

T
l W 1þ �1ð Þl
h i�

U �ð Þ ¼ � 1
�
MV �ð Þ; (16a)

and, similarly, we subtract Equation (14b) from Equation (14a), to obtain

D� 1
2

XL
l¼0

PlT
T
l P

T
l W 1� �1ð Þl
h i�

V �ð Þ ¼ � 1
�
MU �ð Þ: (16b)

We now introduce the NG � NG matrices

A ¼ D� 1
2

XL
l¼0

PlT
T
l P

T
l W 1þ �1ð Þl
h i�

M�1; (17a)

and

B ¼ D� 1
2

XL
l¼0

PlT
T
l P

T
l W 1� �1ð Þl
h i�

M�1; (17b)
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and NG-dimensional vectors

X �ð Þ ¼ MU �ð Þ; (17c)

and

Y �ð Þ ¼ MV �ð Þ; (17d)

to rewrite both equations in (16) as

AX �ð Þ ¼ � 1
�
Y �ð Þ (18a)

and

BY �ð Þ ¼ � 1
�
X �ð Þ; (18b)

respectively. This way, we use Equation (18b) to remove Yð�Þ from
Equation (18a), which leads us to the following NG-dimensional eigenvalue
problem

BAX �ð Þ ¼ 1
�2

X �ð Þ: (19a)

Alternatively, we could have used Equation (18a) to get rid of Xð�Þ in
Equation (18b) in order to get the following NG-dimensional eigenvalue
problem

ABY �ð Þ ¼ 1
�2

Y �ð Þ: (19b)

We might use either Equation (19a) or Equation (19b) to obtain con-
stants � and subsequently eigenfunctions /ð�; lÞ for Equation (11).
Therefore, we multiply Equation (18a) by ��, add Xð�Þ on the resulting
equation and use definitions Equations (15) and (17) to get

Uþ �ð Þ ¼ 1
2
M�1 ING � �Að ÞX �ð Þ; (20a)

where ING is the NG � NG identity matrix. In a similar way, we multiply
Equation (18a) by � and add Xð�Þ to get the result

U� �ð Þ ¼ 1
2
M�1 ING þ �Að ÞX �ð Þ: (20b)

From Equations (19a) (or (19b)), (20a) and (20b), we can easily show
that

Uþ ��ð Þ ¼ 1
2
M�1 ING þ �Að ÞX �ð Þ ¼ U� �ð Þ; (21a)

and
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U� ��ð Þ ¼ 1
2
M�1 ING � �Að ÞX �ð Þ ¼ Uþ �ð Þ; (21b)

We use that to write the homogeneous solution to the discrete ordinates
model of the adjoint equation to the multigroup transport equation. We
still note that due the similarity between the transport Equation (5a) and
its adjoint (7a), the eigenvalue problems defined by Equations (19a) and
(19b) are exactly the same as the ones found by Siewert (2000). However,
the eigenfunctions in Equations (20a) and (20b) appear with the ± signs,
before �, interchanged with respect to the ADO eigenfunctions of the for-
ward problem. Then, we can easily change our existing ADO code for the
forward transport problem to handle the adjoint transport problem.
At this point, we bring back the k subscript and assume that we obtain a

complete set of 2NGR numbers 6�i;k; i ¼ 1; :::;NG, and eigenfunction Uþ;k

and U�;k, for each region k, k ¼ 1; :::;R. Thus, for a fixed region k, we
define NG-dimensional vectors

W†
hþ;k zð Þ ¼ w†

hk
T z; l1ð Þ � � � w†

hk
T z;lNð Þ�T;

h
(22a)

and

W†
h�;k zð Þ ¼ w†

hk
T z;�l1ð Þ � � � w†

hk
T z;�lNð Þ�T;

h
(22b)

and write a homogeneous solution of the adjoint discrete ordinates equa-
tions as a linear combination of the proposed solutions (11) for each 6�i;k.
Therefore, we write

W†
hþ;k zð Þ ¼

XNG
i¼1

Ai;kUþ;k �i;kð Þe� z�zk�1ð Þ=�i;k þ Bi;kU�;k �i;kð Þe� zk�zð Þ=�i;k
i
;

�
(23a)

and

W†
h�;k zð Þ ¼

XNG
i¼1

Ai;kU�;k �i;kð Þe� z�zk�1ð Þ=�i;k þ Bi;kUþ;k �i;kð Þe� zk�zð Þ=�i;k
i
;

�
(23b)

for k ¼ 1; :::;R and z 2 ½zk�1; zk�, with shifted exponentials in order to
avoid numerical overflow.
To determine 2NGR constants Ai;k and Bi;k; i ¼ 1; :::;NG and k ¼ 1; :::;R,

we must present a particular solution to Equation (7a), as we do next.

3.2. General solution

Given the linearity of Equation (7a), we can write its general solution as a
sum of the already established homogeneous solution plus a particular solu-
tion. In this work, we consider only particle detectors with constant
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absorption within a fixed region k, k ¼ 1; :::;R. Therefore, we may seek a
G-dimensional constant vector w†

pk as a particular solution of Equation
(7a). We substitute w†

pk into (7a) and we assume rdk, the restriction of rd
to ½zk�1; zk�, as given in Equation (2), such that

Skw
†
pk ¼ TT

0;kw
†
pk þ rdk: (24)

After some algebraic manipulation, we obtain

w†
pk ¼ Sk � TT

0;k

� 	�1
rdk; z 2 zk�1; zk½ �; (25)

for k ¼ 1; :::;R, provided that Sk�TT
0;k is a nonsingular matrix.

To conclude the ADO formulation, we define NG-dimensional vectors

W†þ;k zð Þ ¼ w†
k
T z;l1ð Þ � � � w†

k
T z;lNð Þ�T;

h
(26a)

and

W†�;k zð Þ ¼ w†
k
T z;�l1ð Þ � � � w†

k
T z;�lNð Þ�T;

h
(26b)

in order to write a general solution for discrete ordinates model of the
adjoint equation as

W†þ;k zð Þ ¼
XNG

i¼1

Ai;kUþ;k �i;kð Þe� z�zk�1ð Þ=�i;k þ Bi;kU�;k �i;kð Þe� zk�zð Þ=�i;k
i
þW†

pk;

�
(27a)

and

W†�;k zð Þ ¼
XNG

i¼1

Ai;kU�;k �i;kð Þe� z�zk�1ð Þ=�i;k þ Bi;kUþ;k �i;kð Þe� zk�zð Þ=�i;k
i
þW†

pk;

�
(27b)

for k ¼ 1; :::;R; z 2 ½zk�1; zk� and the particular component W†
pk defined as

W†
pk
¼
�
w†T

pk
:::w†T

pk


zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{N times

: (28)

To establish the general solution we have to determine the unknown
constants Ai;j and Bi;j. To do that we generate and solve a 2NGR order lin-
ear system from the boundary conditions, Equations (7b) and (7c), and the
continuity requirements stated in Equation (7d).
Once we have the ADO solution to the adjoint transport Equation (7a),

we may explore its analyticity with respect to the spatial variable to derive
explicit expressions for the absorption rate of particles of an
internal detector.
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Before proceeding, we note that Siewert (2000) derived a particular solu-
tion for the multigroup forward transport problem that is useful for more
general source terms. Such formulation may be extended to deal also with
adjoint problems with source terms defined by more general functions.

3.3. Explicit formulas for the absorption rate

Since we consider a multilayer slab composed of R contiguous regions, as
indicated in Equation (1), we can rewrite the integral term in the absorp-
tion rate definition, Equation (6), as

r ¼ hw†; qi�P½w;w†� ¼
XG
g¼1

XR
k¼1

ðzk
zk�1

ð1
�1

w†
g;k z; lð Þqg;k z; lð Þdldz�P w;w†�;

�
(29)

where for each region k, qg;kðz;lÞ are the components, for each energy
group g, g ¼ 1; :::;G, of the internal source vector qk; k ¼ 1; :::;R. If we
assume qk is piecewise constant over the slab regions and f 1 and f 2 are
constant vectors (representing the incoming fluxes at the boundaries, such
that, f1;g and f2;g are also constants for each energy group g), Equation (29)
takes the form

r ¼
XG
g¼1

XR
k¼1

/g;k þ 2 zk � zk�1ð Þw†
p;g;k

� 	
qg;k þ /̂g þ

f1;g
2
w†
p;g;1 þ

f2;g
2
w†
p;g;R

" #
;

(30a)

where the terms inside the first parenthesis, in Equation (30a), represent
the contribution of the inner product defined in Equation (4) to the
absorption rate. We note that in deriving Equation (29) we used the fact
that the particular solution is given as in Equation (25), and we define

/g;k ¼
XNG

i¼1

�i;k Ai;k þ Bi;kð Þ 1�e� zk�zk�1ð Þ=�i;kð Þ/i;g;k; (30b)

and

/i;g;k ¼
XN
n¼1

wn /g �i;k;lnð Þ þ /g �i;k;�lnð Þ
� �

: (30c)

The remaining terms in Equation (30a) add the contribution of the
boundary term (8) to the absorption rate, where

/̂g ¼
XNG

i¼1

XN
n¼1

wnln /̂g;i;n;1f1;g þ /̂g;i;n;Rf2;g
h i

; (30d)
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with
/̂g;i;n;1 ¼ Ai;1/g �i;1; lnð Þ þ Bi;1/g �i;1;�lnð Þe�z1=�i;1 ; (30e)

and

/̂g;i;n;R ¼ Ai;R/g �i;R;�lnð Þe� Z�zR�1ð Þ=�i;R þ Bi;R/g �i;R;þlnð Þ: (30f)
For a more general approach, if q depends either on the spatial variable z
or on the direction l, it may be necessary to work on the evaluation of
integrals like ðb

a
qg;k z; lð Þe� z�að Þ=�dz;

ðb
a
qg;k z; lð Þe� b�zð Þ=�dz; (31)

with ½a; b� � ½a; b�, for k ¼ 1; :::;R and g ¼ 1; :::;G. However, as we will see
later on in this text, when discussing source estimation, those general inte-
gral evaluations may be avoided when the source is expanded in a conveni-
ent (piecewise constant) basis. Still, when dealing with the dependency of
f 1 and f 2 on l, special attention has to be given to the integrals defined in
Equation (8).
In the next section, we test the proposed method for solving the adjoint

transport equation. We compute absorption rates using Equation (6) and
we compare them with results obtained from Equation (3).

4. Source-detector test problem

In order to test the derived ADO solution for adjoint transport problems,
we estimate the absorption rate using Equation (6), and then we compare
with results obtained from Equation (3), by implementing the ADO
method (Siewert 2000) for solving the forward problem, Equation (5a).
Thus, we consider a two-groups problem in a four-layer slab defined for
z 2 ½0; 100�, according to Figure 2, as stated by Barros and Larsen (1991),
with reflecting boundary condition at z = 0 and vacuum at z = 100,

w 0; lð Þ ¼ w 0;�lð Þ; (32a)

w 100;�lð Þ ¼ 0; (32b)

for l 2 ð0; 1�.
Continuing, there is an internal source of particles q defined within the

slab, with qk ¼ 0 for region k, k = 2, 3, 4. For the first region, k = 1, we set
q1 as

Figure 2. Test problem.
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q1 z;lð Þ ¼ 0:5
0:5

� �
; (33)

for z 2 ½0; 20� and l 2 ½�1; 1�. In addition, total macroscopic cross sections
(cm–1) and group transfer cross sections (cm–1) are, for each region k,
k ¼ 1; 2; 3; 4, given by Barros and Larsen (1991)

S1 ¼ 1:00 0:00
0:00 1:20

� 

; T0;1 ¼ 0:90 0:05

0:20 0:80

� 

; (34a)

S2 ¼ 0:90 0:00
0:00 1:50

� 

; T0;2 ¼ 0:75 0:10

0:30 0:99

� 

; (34b)

S3 ¼ 1:10 0:00
0:00 0:85

� 

; T0;3 ¼ 0:95 0:00

0:60 0:20

� 

; (34c)

and

S4 ¼ 1:00 0:00
0:00 1:20

� 

; T0;4 ¼ 0:90 0:05

0:20 0:80

� 

; (34d)

respectively. To complete the problem, in the interior of the slab, there is a
particle detector, to which we define the absorption cross section rd as

rd z;lð Þ ¼
0:1
0:3

� �
; z 2 23; 24½ �;

0; otherwise:

8<
: (35)

We note that, with respect to the choice of a quadrature scheme for defin-
ing the discrete ordinates, we follow our previous works and choose to gen-
erate a standard Gauss-Legendre quadrature (Golub and Welsch 1969), and
then map the nodes and weights from the full-range ½�1; 1� to the half-
range ½0; 1� interval.
Before comparing our results for absorption rates computed from both

ADO solutions, the adjoint and forward equations, we checked our scalar
fluxes data with the ones listed by Barros and Larsen (1991), but we did
not find agreement. In fact, according to one of the authors (R.C. Barros,

Table 1. Absorption rates of particles migrating from all directions and energy groups within
the range [23,24].
N r r†

2 0.19672070465 0.19672070465
4 0.19618914572 0.19618914572
8 0.19618610963 0.19618610963
16 0.19618610990 0.19618610990
32 0.19618610982 0.19618610982
64 0.19618610981 0.19618610981

The estimated value computed using Equation (3) is represented by r, and the value estimated by Equation (6)
is r† .
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personal communication, 2017), the results listed in Barros and Larsen
(1991) were later corrected by an alternative implementation using the
Response Matrix method (R. Barros and O. Silva, private communication,
2017). In this way, we then found agreement, in eight to ten digits, between
our results obtained either via the ADO method or our implementation of
the Diamond Difference method (Lewis and Miller 1984) and R. Barros and
O. Silva (private communication, 2017) results.
In Table 1 we display numerical results for the absorption rate r esti-

mated from Equation (3), r† from Equation (6), using
N ¼ 2; 4; 8; 16; 32; 64. We applied the explicit formula, Equation (30a), for
the absorption rate to generate this table. As we can see, all results were
the same using the transport problem (5) and the adjoint problem (7) for
all tested values of N, with the number of displayed figures limited by
angular convergence. In fact, jr�r†j ¼ Oð10�16Þ for every N tested.
However, the same performance was not obtained when using numerical
integration in the spatial variable, when evaluating Equation (6). In such
case, our best result was jr�r†j ¼ Oð10�10Þ. Besides of that, the test using
analytical formulas took less than a second to be executed in our computer
(equipped with an Intel Core i5-4670 processor), around a hundred times
faster than when we used numerical integration in the z variable.
In the next section, we introduce an inverse problem of source estima-

tion to further test the ADO adjoint formulation.

5. Source estimation

According to Beck and Arnold (1977), parameter estimation can be seen as
a study of inverse problems. When not all parameters in a mathematical
model are known but discrete measurements related to the dependent vari-
able inside the domain are given instead, these can be used to estimate val-
ues for the unknowns. Here we consider an isotropic source q within a
physical domain, a slab, to which all physical properties are known as well
as incoming fluxes at the boundaries. We assume that we are able to
approximate this source on a given linear space once we estimate the coef-
ficients of a basis expansion. This way, we aim to estimate q using known
information that might be inaccurate due measurement errors, of the
absorption rate from a set of internal particle detectors.
To reach this goal, our first step is to find a model that relates the

absorption rate of particles with the coefficients of an approximation of the
source in a given basis. We then suppose that

i. a set of D particle detectors is placed within the slab ð0;ZÞ, each
one of them providing a reading, called ri;g , for each energy group
(Hykes and Azmy 2011);
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ii. rdi;g is the absorption cross section related to the g-th energy group
of the i-th detector. Thus, from (i) and Equation (2), the only non-
zero component of rdi;g is the g-th component of the vector;

iii. for each detector, the adjoint angular flux that solves Equation (7a),
with rdi;g in the right hand side, is available;

iv. we may approximate q by ~q ¼ ½~q1 � � � ~qG�T , with

~qg zð Þ ¼
XBg

b¼1

ab;g~qb;g zð Þ; (36)

for g ¼ 1; :::;G. Here ~qb;g; b ¼ 1; :::;Bg , correspond to a set of basis func-
tions defined for z 2 ½0;Z�, and ab;g are the targets of our estima-
tion process.
Thus, we introduce DG-dimensional vectors

r ¼ r1;1 ::: r1;G
zfflfflfflfflffl}|fflfflfflfflffl{detector 1

::: rD;1 ::: rD;G
zfflfflfflfflfflffl}|fflfflfflfflfflffl{detector D

� 
T
; (37a)

and, using Equation (8),

pg ¼ p1;g ::: pD;g
zfflfflfflfflfflffl}|fflfflfflfflfflffl{group g
� 
T

: (37b)

for g ¼ 1; :::;G, with

pi;g ¼ �
ð1
0
l w†

i;g 0;lð Þf1;g lð Þ þ w†
i;g Z;�lð Þf2;g lð Þ

h i
dl; (37c)

for i ¼ 1; :::;D. In addition, we define DG� Bg matrices Ag ¼ ½Ai;b;g�,
whose components we write as

Ag ¼
ð1
�1

ðZ
0
w†
i;g z; lð Þ~qb;gdzdl; (37d)

in order to rewrite r in Equation (37a) as

rða1; :::; aGÞ ¼
XG
g¼1

½Agag � pg�: (38)

Before proceeding, we must choose a set of basis functions to approximate
each component qg of q. In this work, we equally divide the range ½0;Z� in
contiguous intervals and consider, as basis functions, the characteristic func-
tion of each interval. This way, we define for B 2 N, basis functions

~qb;g ¼ 1; z 2 b�1ð Þhz; bhz
� �

;
0; otherwise;

�
(39)

with hz ¼ Z=B; b ¼ 1; :::;B and g ¼ 1; :::;G, to complete our model.
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We remark that, given the choice of basis function, as previous done in
Section 3, we can use Equation (30a) to write explicit formulas to
Equations (37c) and (37d), improving speed and accuracy. However, a dif-
ferent set of basis functions requires new explicit formulas to be derived.
We suppose that Equation (38) and, of course, our solution to Equation

(7a) are accurate, so all error comes from the measurement process. Thus,
if the DG-dimensional (DG ¼ D� G) vector ~r represents the physical
measurements, we assume that

~r ¼ r a1; :::; aGÞ þ �ð (40)

where � is a random vector, normally distributed, with zero mean, W
covariance matrix of dimension DG � DG, and independent of a1; :::; aG.
For short, we denote �	Nð0;WÞ. This way, we may write the probability
density function for the error distribution as (Kaipio and Somersalo 2005)

pð�Þ¼ 2pð Þ�DG=2jWj�1=2 exp � 1
2
~r � r½ �TW�1 ~r � r½ �

� �
: (41)

Since pð�Þ is centered at zero, we can estimate a1; :::; aG by searching for
the maximum value of Equation (41), which is equivalent to searching for
the minimum value of its argument

Sða1; :::; aGÞ ¼ ~r � r a1; :::; aGÞð �TW�1 ~r � r a1; :::; aGÞð �;½
h

(42)

which we can rewrite, using the linearity of Equation (38), as

SðaÞ¼ jjW�1=2 r̂ � Aa�jj2;
�

(43)

where we defined the DG-dimensional vector

r̂ ¼ ~r�
XG
g¼1

pg; (44)

the BG-dimensional vector (BG ¼ B� G)

a ¼ aT1 � � � aTG�
T
;

h
(45)

and the DG � BG matrix

A ¼ A1 � � � AG½ �: (46)

Unfortunately, we found that the minimum value of Equation (43) seems
to be quite sensitive to noisy information. Thus, we apply a known regular-
ization technique, the Tikhonov regularization, which is essentially a penal-
ized version of Equation (43) (Kaipio and Somersalo 2005)

SkðaÞ¼ jjW�1=2 r̂ � Aa�jj2 þ k2jjajj2;
�

(47)

to search for minimal norm-2 solutions.
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5.1. Test problem I

As a first test to our formulation, we consider a two-group transport prob-
lem defined in a slab, z 2 ½0; 10�, with physical properties given by
Equation (34a) and vacuum boundary conditions,

w 0; lð Þ ¼ 0; (48a)

and

w 10;�lð Þ ¼ 0; (48b)

for l 2 ½0; 1�. We aim to estimate an internal source of particles
q ¼ ½q1 q2�T , whose components are

q1 zð Þ ¼ 500
75031

z2 z2 � 14z þ 49ð Þ; (49a)

and

q2 zð Þ ¼ � 20
4000

z2 z�10ð Þ; (49b)

for z 2 ½0; 10�.
We choose an alternate method (than ADO) to simulate measurements.

In this case, we generate a vector r0, which we take as exact measurements,
using our implementation of the Diamond Difference method (Lewis and
Miller 1984), considering 128 discrete directions, 100 nodes per cm and a
tolerance of 10�12, in the iterative steps. The idea is to avoid the referred
“inverse crime” (Kaipio and Somersalo 2005). In which case, the numeric-
ally given simulated data are produced by the same model that is used to
invert the data and the discretization in the numerical simulation is the
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Figure 3. Absorption rates for each energy group. Asterisks represent exact data and circles
indicate noisy measurements computed using W1 as covariance matrix in Equation (40).
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same as the one used in the inversion. Such thing may lead to unreliable
conclusions if compared to data provided by more practical situations.
Proceeding, we introduce covariance matrices W1 and W2, such that

W1=2
1 ¼ diagð0:01� r0Þ and W1=2

2 ¼ diagð0:05� r0Þ, in order to generate
�1	Nð0;W1Þ and �2	Nð0;W2Þ, and define perturbed data ~r1 and ~r2
using Equation (40).
Moving on, A in Equation (37d) is calculated using the adjoint ADO for-

mulation, with N = 4, which is equivalent to eight discrete ordinates. We
chose such a low value of N because we did not notice any difference in
our source estimation results using a higher number of directions and,
also, to keep the method fast. The regularization parameter k was manually
set, instead of using possible automatic approaches available in the litera-
ture (Kaipio and Somersalo 2005). In Figures 3 and 4, we display, for each
energy group, the exact absorption rate and the perturbed measurements
which we considered to estimate q. Asterisks represent the exact data and
circles indicate noisy measurements.
We note that in our tests we used only a single realization of each ran-

dom vector. Thus, when comparing exact data with ~r1, we have 1.2115% of
relative error, in the vector 2-norm, as we see in Figure 3. For ~r2, as we
show in Figure 4, we have 5.1421% of relative error.
Proceeding, we set B = 10 in Equation (39) in order to define a set of

basis functions for each energy group. We remark that the space generated
by the basis functions defined in Equation (39) is too poor to represent q,
thus, we expect additional error in our source estimation. We use the L2

norm to compute absolute and relative errors between the estimated source
and the projection of the exact source into the space generated by the basis
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Figure 4. Absorption rates for each energy group. Asterisks represent exact data and circles
indicate noisy measurements computed using W2 as covariance matrix in Equation (40).
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functions. We consider the existence of two readings by energy group in
each basis function’s support. In Figures 5 and 6, we present the estimated
source for each error level, using W1 and W2, respectively. Lines are used
to represent each component of q, and asterisks to each estimated compo-
nent of ~q.
As we can see in Figure 5, using W1 to generate noisy readings, the esti-

mation process was able to recover the shape of the exact source and its
magnitude. Moreover, when we compute the error, the first energy group
displayed an absolute error of 0.1090, which implied a relative error of
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Figure 5. Components of exact and estimated sources using W1 to generate noisy measure-
ments with Equation (40) and B¼ 10 in Equation (39). Lines represent exact component and
asterisks estimated components.
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Figure 6. Components of exact and estimated sources using W2 to generate noisy measure-
ments with Equation (40) and B¼ 10 in Equation (39). Lines represent exact component and
asterisks estimated components.
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5.2611%. The second energy group presented better results, 0.0941 of abso-
lute error and 5.6370% of relative error.
However, using measurements with higher noise generated by the nor-

mal distribution with W2, we found much higher errors, as indicated in
Figure 6. In fact, the absolute error was 0.2261 and the relative error was
10.9158% for the first energy group and, respectively, 0.2149 and 12.8681%
of absolute and relative errors for the second group.
Proceeding, we keep the same physical parameters and exact source q,

however we increase the number of basis functions by setting B = 20 in
Equation (39), and we keep the same readings displayed in Figure 4 gener-
ated using W2 in Equation (40). We plot, in Figure 7, the exact compo-
nents of q, and its estimated values.
We see in Figure 7 that the estimated components of q quite accurately

approximate the exact components. In fact, we got an absolute error of
0.1585 for the first energy group, and 0.1990 for the second one, which led
us to relative errors of 7.9164% and 11.8297%, respectively. Thus, we note
that the errors (in Figure 7) were smaller than the ones obtained in Figure
6, in which case, for the same noisy reading, fewer basis functions were
considered to approximate the source.

5.2. Test problem II

To provide a more challenging test problem, we consider a modified ver-
sion of a six-group anisotropic problem related to neutron scattering in
water (Siewert 1993b). The five matrices in (50) represent total cross-sec-
tional (cm–1) and group transfer data (cm–1) of a homogeneous media
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Figure 7. Components of exact and estimated sources using W2 to generate noisy measure-
ments with Equation (40) and B¼ 20 in Equation (39). Lines represent exact component and
asterisks estimated components.
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problem defined for z 2 ½0; 30� and anisotropy degree L = 3. We remark
that, since we are considering an homogeneous media, we dropped the k
index used to refer a specific region. We also denote x� 10e as xðþeÞ, for
any integer number e. Thus, we have

S ¼ diag 1:50520; 1:57051; 3:51907; 6:26226; 14:0294; 42:14920ð Þ; (50a)

T0 ¼

8:07750 �1ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ
6:26456 �1ð Þ 9:84040 �1ð Þ 9:79447 �2ð Þ 4:70592 �2ð Þ 1:26378 �1ð Þ 3:97098 �1ð Þ
6:16969 �2ð Þ 5:22489 �1ð Þ 3:09892 þ0ð Þ 2:01540 þ0ð Þ 3:24243 þ0ð Þ 9:62747 þ0ð Þ
6:16969 �3ð Þ 5:15850 �2ð Þ 2:97524 �1ð Þ 3:88257 þ0ð Þ 8:22842 þ0ð Þ 2:42148 þ1ð Þ
6:16969 �4ð Þ 5:15850 �3ð Þ 3:48269 �3ð Þ 2:43839 �1ð Þ 2:09399 þ0ð Þ 5:46759 þ0ð Þ
6:83147 �5ð Þ 5:72919 �4ð Þ 9:81407 �5ð Þ 6:67680 �3ð Þ 1:27601 �1ð Þ 1:77484 þ0ð Þ

2
6666664

3
7777775;

(50b)

T1¼

1:73809 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ
1:00096 þ0ð Þ 2:06953 þ0ð Þ 3:65035 �2ð Þ �7:17931 �3ð Þ �6:57000 �3ð Þ �6:21269 �3ð Þ
3:23741 �2ð Þ 7:97905 �1ð Þ 1:84248 þ0ð Þ �8:37651 �1ð Þ �9:50478 �1ð Þ �8:87500 �1ð Þ
1:16883 �3ð Þ 2:58418 �2ð Þ �1:42702 �2ð Þ 1:51150 þ0ð Þ �1:42204 �1ð Þ �5:72883 �1ð Þ
8:28375 �5ð Þ 9:49379 �4ð Þ �1:60567 �3ð Þ 7:80252 �2ð Þ 1:18387 þ0ð Þ 1:21816 þ0ð Þ
2:28725 �5ð Þ 9:04254 �5ð Þ �1:63418 �5ð Þ 3:64032 �4ð Þ 2:94178 �2ð Þ 5:93333 �1ð Þ

2
6666664

3
7777775;

(50c)

T2¼

1:89361 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ
�1:16776 �2ð Þ 2:03360 þ0ð Þ �2:78866 �2ð Þ �3:66853 �3ð Þ �5:40201 �3ð Þ �1:56529 �2ð Þ
�1:38579 �1ð Þ �1:00130 �1ð Þ 4:28177 �1ð Þ �4:78174 �1ð Þ �1:90615 �1ð Þ �3:91507 �1ð Þ
�1:52290 �2ð Þ �1:16769 �1ð Þ �6:28730 �2ð Þ 5:52373 �1ð Þ �5:57599 �1ð Þ �1:08378 þ0ð Þ
�1:53296 �3ð Þ �1:27412 �2ð Þ �3:69913 �4ð Þ 4:15341 �2ð Þ 7:64138 �1ð Þ 1:96411 �1ð Þ
�1:61574 �4ð Þ �1:41761 �3ð Þ �4:41786 �6ð Þ �2:23975 �4ð Þ 3:03330 �2ð Þ 2:98538 �1ð Þ

2
6666664

3
7777775;

(50d)

and
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Figure 8. Components of the exact source and estimated source. Lines are used to represent
the exact values of qg, and markers to display the estimated values ~qg, for g ¼ 1; . . . ; 6.
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T3¼

1:28480 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ 0:00000 þ0ð Þ
�1:17471 þ0ð Þ 1:09070 þ0ð Þ �2:12993 �2ð Þ �7:43655 �4ð Þ �5:91497 �4ð Þ �5:66126 �4ð Þ
�1:05643 �1ð Þ �1:00250 þ0ð Þ 4:61562 �1ð Þ �1:88398 �1ð Þ �8:54669 �2ð Þ �7:69580 �2ð Þ
�4:05881 �3ð Þ �8:45487 �2ð Þ �2:85371 �2ð Þ 7:24719 �1ð Þ �1:03599 �2ð Þ 6:50889 �2ð Þ
�2:88894 �4ð Þ �3:29773 �3ð Þ �1:53968 �4ð Þ 5:10368 �2ð Þ 7:61976 �1ð Þ 2:89226 �1ð Þ
�7:47744 �5ð Þ �3:13307 �4ð Þ �1:46113 �6ð Þ 5:06034 �5ð Þ 3:23582 �2ð Þ 2:85246 �1ð Þ

2
6666664

3
7777775:

(50e)

In this case, we try to estimate an internal source of particles
q¼½q1q2q3q4q5q6�T , whose components are

q1 zð Þ¼
4:0; z2 5:0;6:0½ �;
6:0; z2 27:0;28:0½ �;
0:0; otherwise;

8<
: (51a)

q4 zð Þ ¼ 10:0; z 2 20:0; 22:0½ �;
0:0; otherwise;

�
(51b)

q6 zð Þ ¼ 7:0; z 2 13:0; 14:0½ �;
0:0; otherwise;

�
(51c)

and qgðzÞ ¼ 0, for z 2 ½0; 30�, with g = 2, 3, 5. As before, we consider vac-
uum boundary conditions,

w 0; lð Þ ¼ 0; (52a)
and

w 30;�lð Þ ¼ 0; (52b)
for l 2 ½0; 1�. For the estimation procedure, we use B = 30 in Equation (39)
to generate basis functions. We use again the Diamond Difference method
(Lewis and Miller 1984) to solve the transport problem (5) with N = 128,
100 nodes per cm and a tolerance of 10�12, to generate exact measurements
r0, and a covariance matrix W, such that W1=2 ¼ diagð0:01� r0Þ. For our
first test, we consider one reading in energy group for each basis function’s
support, and measurements with 0.0457 and 1.0060% of absolute and rela-
tive errors, respectively. We show, in Figure 8, graphs for the exact source
(lines) and the values estimated using Equation (47) (markers).
As Figure 8 indicates, for the majority of the energy groups, we were

able to recover the shape and magnitude of the exact source, except for a
few discrepancies in group-4 and some minor oscillatory behavior near to

Table 2. Absolute and relative errors (L2 norm) between the exact source qg and the esti-
mated ~qg, for g ¼ 1; . . . ; 6, using one reading by energy group for each basis
function’s support.
Energy group 1 2 3 4 5 6

Absolute error 0.0579 0.3319 0.9055 1.0577 0.1443 0.0166
Relative error 0.8025% – – 7.4791% – 0.2371%
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zero. Table 2 presents absolute and relative errors, in the L2 norm, between
the exact source qg and the estimated ~qg , for g ¼ 1; :::; 6.
As indicated in Figure 8, the analysis of Table 2 confirms a larger error

related to the reconstruction in the 4th energy group. We still note that we
were not able to compute relative errors for all energy groups, due to the
fact that the exact source is identically zero for g = 2, 3, 5.
Proceeding, we double the number of detectors, considering two readings

by energy group in each basis function’s support, and measurements with
an absolute error of 0.0556, and relative error of 1.1651%. As before, in
Figure 9 we plot the exact source (lines) and the values estimated using
Equation (47) (markers).
Similarly to the previous case, Figure 9 points out that we were able to

recover the shape and magnitude of the exact source, as well as have a
closer estimate for the 4th energy group component of q. However, we
noticed the increase of the oscillatory behavior near zero.
An analysis of the results in Table 3 indicates that the error, for group-4,

is now smaller. However, we see the error increased for the remaining
groups, particularly for group-6. Despite of that, the maximum relative
error among all groups has stayed below 6.8% (smaller than before).

0 5 10 15 20 25 30

z, cm

0

2

4

6

8

10

Figure 9. Components of the exact source and estimated source. Lines are used to represent
the exact values of qg, and markers to display the estimated values ~qg, for g ¼ 1; . . . ; 6. Two
readings per group in each basis functions’ support.

Table 3. Absolute and relative errors (L2 norm) between the exact source qg and the esti-
mated ~qg, for g ¼ 1; . . . ; 6, using two reading by energy group for each basis
function’s support.
Energy group 1 2 3 4 5 6

Absolute error 0.0624 0.2724 0.9957 0.9295 0.3329 0.4745
Relative error 0.8658% – – 6.5726% – 6.7790%
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We remark that we were able to perfectly estimate the exact source on
both six-group tests when using error-free measurements. In addition, the
regularization parameter used in Equation (47) was 10�7, leading to worse
estimations for either smaller or higher values.
To conclude this section, we emphasize that when calculating the matrix

A in Equation (47), which is of order 360 � 180 in this final test, we were
required to compute 64,800 inner products. Using numerical integration
for the spatial variable, this process took roughly 30 minutes. However,
using analytical expressions, as in Equation (30a), we were able to do the
same in less than a minute.

6. Concluding remarks

We developed a fast, concise and accurate solution to the discrete ordinates
approximation of the adjoint multigroup transport equation in slab geom-
etry. Using that, and assuming sectionally constant absorption cross sec-
tions and basis functions, we were able to derive an explicit formula,
Equation (30a), to evaluate the absorption rate of internal particle detectors.
We found the approach very helpful to reduce computational time.
Two and six group problems were considered to test the formulation in

source-detector problems type as well as in source estimation applications.
In both cases numerical results obtained were very good in the sense of
recovering shape and magnitude of the source from fast solutions.
For the case of source reconstruction problems, the usual sensitivity to

noise added to the measurements, was noted. Surely the analysis can be
extended to the use of different sets of basis functions, alternative regular-
ization approaches or inverse problem solution techniques. In fact, since
the search for non-negative solutions and the Tikhonov regularization used
in this work add bias to our answer, we are investigating the application of
Bayesian Inference methods.
It is also our idea, as future work, to improve the model by using nodal

techniques to develop an ADO solution to adjoint multigroup transport
problems in xy-geometry.
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