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We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic
liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently devel-
oped approach based on periodic Green’s functions. The method also allows us to easily calculate the
induced charge on the electrodes permitting an efficient implementation of simulations in a constant
electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lat-
tice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice
model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter
characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling).
We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic
liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases
substantially the capacitance maximum, when all other parameters are kept fixed. Published by AIP
Publishing. https://doi.org/10.1063/1.5013337

INTRODUCTION

Room Temperature Ionic Liquids (RTILs) have attracted
a lot of attention due to many potential applications.1 RTILs
present high capacitance and fast charging,2 substituting
dielectric materials in supercapacitors.3–6 They are stable
under a large voltage window, sometimes reaching 0-6 V,
which makes them ideal for energy storage. They have been
investigated for possible applications in microreactors,7 in
solar cells,8,9 and other renewable energy devices,10–12 mak-
ing the understanding of these complex fluids of paramount
importance.

Ionic liquids have inherently strong electrostatic interac-
tions between the ions and very high packing fractions. These
characteristics make them very difficult to describe using exist-
ing theoretical methods. However, these same features make
these systems particularly interesting on purely fundamental
grounds13 as they stand at the frontier of statistical mechanics14

demanding the development of more sophisticated theoretical
methods.15–21

The most widely used theoretical approach to study ionic
liquids is based on the modified Poisson-Boltzmann equation
(mPB).22–26 The mPB equation approximately accounts for
the finite size of both ions and solvent and has been used to
calculate differential capacitance of RTILs. However it has
been shown27–29 that the mPB equation does not accurately
predict the double layer structure of electrified interfaces.
Therefore more sophisticated approaches based on the Density
Functional Theory (DFT)30–34 must be used. Unfortunately,
such theories are numerically very demanding and it is also

a)Electronic addresses: matheus.girotto@ufrgs.br; rodrigo.malossi@ufrgs.br;
and alexandre.pereira@ufrgs.br

b)Author to whom correspondence should be addressed: levin@if.ufrgs.br

very difficult to account for strong electrostatic correlations
within the DFT formalism.35 An alternative approach to
study strongly correlated Coulomb systems is to use com-
puter simulation. However, even in bulk, the long range nature
of Coulomb interactions makes numerical simulations very
demanding.36–38 The fundamental problem is that because of
the long range interaction, one cannot use standard periodic
boundary conditions. To properly explore the thermodynamic
limit, one needs to periodically replicate the simulation box
so that the ions in the main simulation cell also interact with
the ions in an infinite set of replicas. To efficiently sum over
replicas, Ewald summation techniques39–44 have been devel-
oped. Confinement of Coulomb systems presents additional
difficulties,45 requiring more specialized techniques.46–53 The
computational cost of summation over replicas increases dra-
matically due to appearance of special functions and slow
convergence in quasi two-dimensional systems.54 In various
applications, the simulation box must be made sufficiently
large to achieve a bulk-like regime in between the surfaces,23

requiring a large number of particles, which further slows
down simulations.29 If the confining surfaces are polariz-
able, there are additional complications connected with the
induced surface charge.55–57 The usual methods for simulat-
ing metallic surfaces of electrodes are computationally very
expensive, relying on a minimization procedure to calculate
the induced surface charge at every simulation time step.58–61

Alternatively, there are electrostatic layer correction methods
(ELC) or methods that explicitly sum infinite series of image
charges.62–64

Recently, we introduced a new simulation method
which allows us to easily calculate sums over replicas.65

The formalism is based on periodic Green’s functions
and was applied to a lattice model of a symmetric RTIL
liquid; see Fig. 1. The algorithm allows one to rapidly calculate
the induced surface charge, permitting efficient simulations
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FIG. 1. Lattice model of an ionic liquid between two electrodes. Ions are
spherical, restricted to move on a lattice. Cations and anions have diameter
equal to the lattice spacing.

in a constant electrostatic potential ensemble.66 Here we pur-
sue further this approach to calculate the differential capaci-
tance curves for ionic liquids both symmetric and asymmetric
in ionic size and charge. The great advantage of the lattice
model simulations is that ionic interactions can be precalcu-
lated at the beginning of simulations, making such simulations
substantially faster.

The paper is organized as follows: First, we briefly review
Green’s functions for ions confined by metal surfaces. Next, we
discuss Monte Carlo (MC) simulations in a constant electro-
static potential ensemble. We then present the density profiles
and the differential capacitance curves for various ionic liq-
uids. The paper will conclude with the discussion of results
and a perspective for future work.

THE THEORY

We start by briefly reviewing the calculations of elec-
trostatic potential produced by an ion of charge q confined
by parallel infinite grounded conducting surfaces located at
z = 0 and z = L; for more details, the reader is referred to
Ref. 65. The electrostatic potential can be conveniently written
in cylindrical coordinates,67

φ(ρ, z; z0) =
4q
εL

∞∑
n=1

sin(knz) sin(knz0)K0(knρ) , (1)

where (0, z0) is the coordinate of the ion, (ρ, z) is the observa-
tion point, kn = nπ/L, and K0 is the modified Bessel function of
second type. Unfortunately, this expression has convergence
difficulty when ρ → 0. In this case, we can find a different
representation of the Green’s function67

φ(ρ, z; z0) =
q
ε

∫
dkJ0(kρ)

×
ek |z−z0 |−2kL + e−k |z−z0 | − e−k(z+z0) − ek(z+z0)−2kL

1 − e−2kL
,

(2)

where J0 is the Bessel function of order zero. This equation
is well behaved when ρ → 0, as long as z , z0. The pres-
ence of an ion between the grounded conducting surfaces will
result in an induced surface charge which can be calculated
from the discontinuity of the normal component of electric
field at the surface. Integration over the surface of each elec-
trode allows us to obtain the induced total surface charge.65 We

find

Q0
l =−q

(
1 −

z0

L

)
,

Q0
r =−

qz0

L

(3)

for the left and right electrodes, respectively. If the electrodes
are not grounded, but are held at a constant potential difference
ψ0, then there is an additional contribution to the electrostatic
potential,

φs(z) =

(
z
L
−

1
2

)
ψ0. (4)

The simulations are performed in the NVT ensemble
at a fixed electrostatic potential difference ψ between the
electrodes.65,66 The partition function assumes the form

Zψ =
∫ N∏

i=1

drrri

∫
dQe−β[E(rrr1,...,rrrN ,Q)−ψQ] , (5)

where β = 1/kBT and the surface charge on the left and right
electrodes within the simulation cell is ∓Q, respectively. Since
in this ensemble the surface charge on the electrodes can fluctu-
ate, the calculation of the differential capacitance of the system
is straightforward

C =
1
A
∂ 〈Q〉
∂ψ

=
1
βA

*
,

∂2 lnZψ
∂ψ2

+
-
=
β

A

[〈
Q2

〉
− 〈Q〉2

]
, (6)

where A = LxLy is the area of the electrode in the simula-
tion cell, which has volume V = LxLyL. Note that in order to
perform simulations in the fixed surface potential ensemble,
we need to know the electrostatic energy at a fixed surface
charge, E(Q). The charge distribution will not be uniform
over the surface of the electrodes and will respond to the ionic
motion.

The simulation cell is periodically replicated in x and y
directions. The electrostatic energy65 inside the simulation cell
for a given surface charge ±Q is

E(Q) =
1
2
ψ0Q +

1
2

∑
i

qiφ(rrri)

=
1
2

N∑
i,j

qiG(rrri; rrrj) +
N∑

i=1

[
Us(rrri) +

1
2

qiφs(zi)

]
+

1
2
ψ0Q,

(7)

with the periodic Green’s function constructed using Eq. (1)

G(rrr; rrr0) =
4q
εL

∞∑
mmm=−∞

∞∑
n=1

sin(knz) sin(knz0)

×K0

(
kn

√
(x − x0 + mxLx)2 + (y − y0 + myLy)2

)
,

(8)

where m’s are integers corresponding to periodic replicas of
the system. Us(ri) is the self energy of each ion calculated
using the limiting process,
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FIG. 2. (a) The typical camel-shape curve of the electrolyte capacitance; the parameters are λB = 7.2 Å and γ = 1/20 and ion diameter equals to the lattice
spacing a = 8 Å. (b) The typical bell-shape curve of the ionic liquid capacitance; the parameters are λB = 38.4 Å and γ = 1/2, and a = 8 Å. (c) Same as (a), but
with a = 16 Å; (d) same as (b), but with a = 16 Å. The ions have charge ±q.

Us(rrri) =
qi

2
lim
ρ→0

[
G(rrri; rrri) −

qi

ε ρ

]
, (9)

which yields, with the help of Eq. (2), the following expres-
sion:65

Us(rrri) =
q2

2ε

∫
dk

2e−2kL − e−2kzi − e2kzi−2kL

1 − e−2kL

+
2q2

εL

∞∑
mmm,000

∞∑
n=1

sin2(knzi)K0

(
kn

√
m2

xL2
x + m2

yL2
y

)
.

(10)

For a fixed surface charge Q, the surface potential ∓ψ0/2 on
each electrode will fluctuate as a result of ionic motion. Since
the system is charge neutral, the surface potential65 for a given
surface charge and ionic distribution inside the simulation cell
can be easily calculated using Eqs. (3) and (4),

ψ0 =
4πL
εA

*
,
Q +

N∑
i=1

qi
zi

L
+
-

. (11)

Now we are in a position to perform MC simula-
tions in the constant electrostatic potential ensemble, in
which the surface charge Q fluctuates in accordance with
Eq. (5).

MONTE CARLO SIMULATIONS

The simulation cell has volume V = LxLyL, with
Lx = Ly = 64 Å and L = 240 Å in the case of symmetric ionic
liquids and L = 160 Å otherwise. The ionic liquid is confined

in the region �Lx/2 < x < Lx/2, �Ly/2 < y < Ly/2, and 0 < z
< L. The Bjerrum length, defined as λB = q2/εkBT, assumes
two values: λB = 7.2 Å which is appropriate for electrolytes
dissolved in pure water at room temperature and λB = 38.4 Å,
which is suitable for RTILs.68–70 The ions are constrained to
move on a lattice with lattice spacing a = 4 Å, a = 8 Å, or
a = 16 Å, depending on the system studied. We start by con-
sidering symmetric ionic fluids with spherical ions of diameter
equal to the lattice spacing and charge±q, where q is the proton
charge. The compacity factor γ is defined by the ratio between
lattice sites occupied by the particles and the total available lat-
tice sites in the simulation box; see Fig. 1. In order to properly
sample the phase space, we use both short- and long-range

FIG. 3. Phase diagram indicating transition between camel-shaped and bell-
shaped differential capacitance for size symmetric 1:1 ions of diameter
a = 8 Å.
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FIG. 4. Differential capacitance of 2:1 RTIL for γ = 4/10 contrasted with the
capacitance of 1:1 RTIL. The Bjerrum length is 38.4 Å. The circles are for 1:1
RTIL, squares correspond to 2:1 RTIL. The ions have radii 4 Å and charges
∓q for 1:1 systems and 2q and �q for 2:1 systems.

movements. The differential capacitance is calculated using
4 × 105 uncorrelated samples after equilibrium has been
achieved. Fig. 2 shows the change in the form of the differential
capacitance between strong and weak coupling regimes. Note
that the differential capacitance is symmetric with respect to ψ
→ �ψ. In the weak coupling electrolyte regime, the differen-
tial capacitance has a characteristic camel-back shape, while
in the strong coupling regime, it has a bell-shaped form. Con-
trary to the predictions of mPB theory,22 the transition between
camel-shaped and bell-shaped regimes does not occur at the
universal value γ = 1/3 but instead depends on both γ and λB,
see Fig. 3.

For ionic liquids (strong coupling regime) with charge
asymmetric 2:1 ions, Fig. 4 shows appearance of a second
peak at the intermediate applied voltages, if the system is
sufficiently dense. This is similar to what has been found in
continuum simulations.60 We see, however, that the height of
the secondary peak does not scale with the surface area of
the simulation box A = LxLy; therefore, there is no structural
phase transition in the local ordering of ions near the elec-
trode, contrary to the suggestion in Ref. 60. Figs. 5 and 6 show
that the secondary peak is correlated with the appearance of
additional structure in the ionic density profiles—the peak is
absent for γ ≤ 1/10, see Fig. 5, when profiles show less lay-
ered structure, Fig. 6. In both cases, with and without second
peak, γ = 4/10 and γ = 1/10, respectively, we find that the

FIG. 5. Differential capacitance of 2:1 RTIL, as the compacity γ changes.
The Bjerrum length is 38.4 Å. Circles are for γ = 1/10 and squares for
γ = 4/10. The ions have radii 4 Å and charges 2q and �q.

FIG. 6. Charge density profiles of 2:1 RTIL near cathode. Potential difference
between electrodes is ψ = 0.5 V. Circles are for compacity γ = 1/10, where
the peak is absent; squares are for compacity γ = 4/10.

FIG. 7. Lattice model of an ionic liquid between two electrodes. Ions are
spherical, restricted to move on a lattice. Cations have radius 2a and anions a.

FIG. 8. Capacitance curve for size asymmetric 1:1 RTIL. The compacity is
γ = 4/10 for circles and γ = 2/10 for squares. The cations have radius R = 2a
= 8 Å and anions R = a = 4 Å. The Bjerrum length is λB = 38.4 Å.

first layer overscreens the charge on the electrode—the charge
on the cathode is ≈�60q, while the contact layer has charge
of ≈+80q. Such strong correlational effects clearly cannot be
captured by mean-field theories, such as mPB. Finally we con-
sider the differential capacitance of a 1:1 ionic liquid with size
asymmetric (two-to-one) ions, see Fig. 7. Following Ref. 71,
a large ion excludes 93 vertices and a small ion 27, of the
total available in the simulation box. The compacity factor is
then γ = (93N+ + 27N

�

)/Nbox, where Nbox is the total number
of lattice sites. Fig. 8 shows that size asymmetry leads to a
reduction of the maximum differential capacitance. The mag-
nitude of this reduction is similar to the one found in symmetric
systems, with ions of radius R = 8 Å, Fig. 2(d). The capaci-
tance curve of an asymmetric RTIL has also significantly more
structure.
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CONCLUSIONS

We used MC simulations in a constant electrostatic poten-
tial ensemble to calculate differential capacitance and ionic
density profiles of a Coulomb fluid, both in the electrolyte
and ionic liquid regimes. The calculation of electrostatic
energy was performed using periodic Green’s functions. This
approach allowed us to easily calculate the induced surface
charge on the electrodes. The method requires only a small
number of replicas to achieve any desired precision. To speed
up the calculations, we precalculated the interaction potential
at the beginning of simulations. The lattice gas formalism pro-
vides us with valuable insights, while maintaining simulation
time feasible. We find that the transition between camel-shaped
and bell-shaped differential capacitance curves depends on
both the Bjerrum length and on the volume fraction of ionic
liquid. For charge asymmetric systems, we find a secondary
peak in the differential capacitance for large compacities. This
peak is related to the appearance of additional structure in the
double layer. In the strong coupling regime, the charge on the
electrodes is overscreened—the first layer has charge which
overcompensates the charge on the electrodes, resulting in a
charge reversal. Finally, we find that the capacitance of size
asymmetric ionic liquids is significantly smaller than that of
symmetric ionic liquids, if all other parameters are the same.
The great advantage of the lattice approach is that it signifi-
cantly speeds up the simulations by allowing us to precalculate
all the interactions. In the limit a→ 0, at a fixed ionic size, we
should recover the continuum limit. The crossover between
lattice and continuum simulations will be the subject of future
work.71
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