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Resumo

Propomos uma classe de medidas de desvio induzidas por um conjunto. Os desvios induzidos
pelo conjunto representam a quantidade mínima que uma posição deve encolher para se tornar
aceitável. Apresentamos resultados que comprovam sua continuidade e propriedades teóricas
financeiras. Mostramos que as propriedades do conjunto determinam as propriedades de nossa
classe. Quando o conjunto é radialmente ligado a não constantes, fechado para adição escalar e
convexo, os desvios induzidos pelo conjunto são medidas de desvio generalizadas. Estendemos
nossa abordagem para o caso em que o conjunto é um conjunto de aceitação com a forma
de um conjunto de sub-nível de medidas de desvio. Fornecemos resultados que mostram que
quando os desvios induzidos pelo conjunto são provenientes de um conjunto de aceitação de
uma medida de desvio generalizado, nossa classe é uma versão em escala da medida original.
Também investigamos como as operações no conjunto afetam o desvio induzido pelo conjunto e
como as operações de medidas de desvio refletem em seu conjunto de aceitação.

Palavras-chaves: Desvios induzidos por conjuntos; Medidas de desvio; Conjunto de aceitação;
Gerenciamento de riscos.



Abstract

We propose a class of deviation measures induced by a set. The set-induced deviations represent
the minimum amount that a position must shrink to become acceptable. We present results that
prove their continuity and financial theoretical properties. We show that the properties of the set
determine the properties of our class. When the set is a radially bounded at non constants, closed
for scalar addition and convex the set-induced deviations are generalized deviation measures. We
extend our approach for the case where the set is an acceptance set with the form of a sub-level
set of deviation measures. We provide results that show that when the set-induced deviations
come from an acceptance set of a generalized deviation measure, our class is a scaled version
of the original measure. We also investigate how operations on the set affect the set-induced
deviation and how operations of deviation measures reflect in its acceptance set.

Keywords: Set-induced deviations; Deviation measures; Acceptance set; Risk management.
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1 Introduction

Since the seminal work of Artzner et al. (1999), the financial risk has been investigated
from the theoretical and axiomatic viewpoint. At first, this literature focused on monetary
or losses measures. Later, Rockafellar et al. (2006a) introduced the axiomatic approach of
generalized deviation measures, as generalizations of the standard deviation and similar measures.
These measures have been proved useful in engineering and financial problems, as well other
areas. See Rockafellar et al. (2006b), Pflug (2006), Rockafellar et al. (2007), Grechuk et al.
(2009) and Krokhmal et al. (2013). Due to the importance of variability in risk measurement,
Righi and Ceretta (2016), Furman et al. (2017), Berkhouch et al. (2018), and Righi (2018), for
instance, propose risk measures (ρ) that including deviation terms. According to the results
of Righi and Borenstein (2018), loss-deviation compositions considered in their study have
better performance for optimal portfolio strategies in comparison with their counterpart without
deviation term.

Traditionally, deviation measures (D) are derived of some, not necessarily symmetric,
distance function (d) from the financial random variable (X ≥ 0 is a gain, X ≤ 0 is a loss) to its
expectation, i.e., D(X) = d(X ,E[X ]), or norm, i.e. D(X) = ||X−E[X ]|| . The use of deviations
measures obtained by distance functions gained notoriety in the financial literature to quantify
the risk after the pioneering study of Markowitz (1952) concerning portfolio theory. We refer
as the main examples of these measures the variance (σ2), standard deviation (σ ) and standard
lower and upper semi-deviations (σ− and σ+, respectively). Another possibility, discussed by
Rockafellar et al. (2006a), is the one-to-one correspondence between lower range dominated
generalized deviation measures and strictly expectation bounded coherent risk measures. We
point out as a classic example of such measures the expected shortfall deviation (ESD) proposed
by Rockafellar et al. (2006a) as a deviation measure analog to expected shortfall (ES) (see
Acerbi and Tasche (2002)).

Inspired by the acceptance set of risk measures and their associated risk measures,
we propose a new alternative to derive deviation measures. We formalize a class of deviation
measures induced by a set A . We name this class as set-induced deviations, DA . We impose
no restrictions on the A that induces DA . Thereby, given a set, the set-induced deviations
are obtained in the following way DA (X) = inf

{
m ∈ R+ : X

m ∈A
}
. Their value represent the

minimum amount necessary to shrink a position to fit the set. We assume that it is possible
to invest the excess capital resulting from shrinkage in a risk-free asset r. Note that owing to
translation insensitivity, the allocation of part of the position in r does not change deviation of
the position, i.e., D(γX +(1−γ)r) =D(γX), where γ ≥ 0 is the amount to be shirked. We prove
continuity and financial theoretical properties of set-induced deviations. We demonstrate that the
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properties of the set determine the properties of our class of deviation measures. When the set is
radially bounded at non constants, closed for scalar addition and convex, DA is a generalized
deviation measure and admits dual representation. We also demonstrate how operations on the
set affect the set-induced deviation.

As our second main contribution, we extend our approach to the case where the set
is an acceptance set that has the form of a sub-level set, i.e., A k

D = {X : D(X)≤ k}, where
k > 0 is a coefficient of aversion to deviation. Higher values of k indicate higher levels of
tolerance deviation of position. We name A k

D as acceptance set induced by deviation measures.
We show that when the set-induced deviation comes from an acceptance set of a positive
homogeneous deviation measure, it is a scaled version of the original measure, i.e., DA k

D
(X) =

D(X)
k = inf

{
m ∈ R+ : X

m ∈A k
D

}
. We identify that DA k

D
inherits the properties of the original

deviation measure. We provide examples of acceptance set induced by well-known deviation
measures, including variance, standard deviation, and semi-deviations. We investigate how
operations with deviation measures reflect in its acceptance set.

We contribute to existing literature because, to the best of our knowledge, there are no
similar results in the literature to those presented by us. Previous studies, such as Rockafellar et
al. (2006a) and Rockafellar and Uryasev (2013), consider the deviation measures to quantify
nonconstancy of a random variable. Our proposal brings a new interpretation to deviation
measures. Unlike previous approaches, our class allows us to choose positions with deviations
tolerance levels deemed acceptable by regulators or investors. Another advantage is our measure
represents how much an agent should shrink the position for it to be acceptable. Furthermore,
considering a set with suitable properties, one can induce any positive homogeneous deviation
measure. As a complementary result, we verify that the sub-level set of any deviation measure
generates an acceptance set for deviation measures. For these measures there is no direct
adaptation from the pre-existing acceptance sets of risk measures. These acceptance sets consider
as acceptable positions with non positive risk, i.e., Aρ = {X : ρ(X)≤ 0} (see Artzner et al.
(1999), Delbaen (2002), Frittelli and Scandolo (2006), and Artzner et al. (2009)). This lack
is mainly related to the axiomatic set of deviation measures. The classical approach requires
monetary measures, i.e., a risk measure that fulfills translation invariance and monotonicity.
However, deviation measures fulfill translation insensitivity and non-negativity. We have that
the direct replacement of ρ by D in Aρ , i.e., Aρ = {X : D(X)≤ 0}, is too restrictive due to
non-negativity. As it only considers constant positions as acceptable. In addition, by virtue
translation insensitivity the induced deviation is ∞ for any X /∈Aρ and equal 0 if X ∈Aρ .

The remainder of this work is structured in this format: Chapter 2 presents the notation,
definitions,and preliminaries from the literature. Chapter 3 defines the set-induced deviations
and exposes results regarding its continuity and financial theoretical properties. Furthermore,
it presents how operations on the set affect the set-induced deviation. Chapter 4 defines the
acceptance set induced by deviation measures, shows the relationship of properties of deviation
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measures with it and how operations with deviation measures reflect in its acceptance set. Also,
it presents examples of acceptance sets induced by deviation measures for traditional deviation
measures of financial literature. Finally, chapter 5 presents the final considerations.
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2 Preliminaries

The content of this paper is based on the following notation. Consider the random result
X of any asset, where X ≥ 0 is a gain and X ≤ 0 is a loss, that is defined in a probability space
(Ω,F ,P). We assume that financial positions represented by X are discounted by a risk-free rate.
This assumption is standard in the risk management literature. All equalities and inequalities are
considered almost surely in P. We work on the space of random variables Lp := Lp(Ω,F ,P), p∈
[1,∞], defined by the norm ‖X‖p = (E[|X |p])

1
p when p < ∞, and ‖X‖∞ = inf{w ∈ R : |X | ≤ w}

when p = ∞. Thereby, X ∈ Lp represents that ‖X‖p < ∞. E[X ] is the expected value of X under
P. {Xn} ,n ∈ N, represents a sequence. Xn→ X denotes the convergence in the norm.

We define that a sequence of sets {An}n∈N decreases to A ,An ↓A , if A ⊆An+1 ⊆
An and

⋂
n An = A . Moreover, {An}n∈N increases to A , An ↑ A , if An ⊆ An+1 ⊆ A and⋃

n An = A . A sub-level set of a functional f is denoted by A k
f ≡ {X ∈ Lp : f (X) ≤ k}. By

abuse of notation, we identify a real number with the random variable that is almost-sure
identical to it. We assume that for all families of sets {A k}k∈R, 0 ∈

⋂
{A k}k∈R. We define

A +A ′ = {X +Y : X ∈ A ,Y ∈ A ′} and for a real number λ ,λA = {λX : X ∈ A }. We
consider a deviation measure as a mapping D : Lp→ R+∪{∞}.

We begin by defining the properties of sets. There are a large number of possible
properties. We present those that are the most relevant to this study.

Definition 2.1. A set A ⊂ Lp may fulfills the following properties:

(i) Law invariance: A is law invariant if X ∈A and P(X ≤ x) = P(Y ≤ x),∀ x ∈ R, implies

that Y ∈A , ∀ X ,Y ∈ Lp.

(ii) Closedness for scalar addition: A is closed for scalar addition if ∀ X ∈A , we have that

X + c ∈A ,∀ c ∈ R.

(iii) Radial boundedness: A is radially bounded if ∀ X ∈A \{0} there is some δX ∈ (0,∞),

such that δX /∈ A , ∀ δ ∈ (δX ,∞). A is radially bounded at non constants if A \R is

radially bounded.

(iv) Radiality: A is radial at some point k ∈A if, for every X ∈A , there is some δX > 0, such

that for every t ∈ [0,δX ] results in k+ tX ∈A . When a set is radial at 0, it is absorbing.

(v) Convexity: A is convex if ∀ X ,Y ∈A we have that λX +(1−λY ) ∈A , ∀ λ ∈ [0,1].

(vi) Star shapedness: A is star shaped if λX ∈A ,∀ X ∈A , ∀ λ ∈ [0,1].

(vii) Positive homogeneity family: A family
{
A k}

k∈R is positive homogeneous if λA k =

A λk,∀ λ > 0.
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(viii) Monotonic family: A family
{
A k}

k∈R is monotone if k≤ k′ implies in A k ⊆A k′,∀ k,k′ ∈
R.

Law Invariance indicates that if two random variables have the same distribution, then
one is in the set if, and only if, the other is. Closedness for scalar addition indicates that the set
is insensible to the addition of constants. This property indicates whether a set is not empty, then
it contains all constants. Radially boundedness implies that whenever a ray passes through some
points in the set, it eventually leaves it. In our framework, it means it is impossible to infinitely
expand the position and keep its deviation acceptable. However it is possible to arbitrarily
expand a constant position and it will not leave the real line. However, as the real line is not
radially bounded, radially boundedness and closedness for scalar addition are incompatible.
Thus, we introduce radially boundedness at non constants. Radiality at k means that part of
the line segment emanating from k, to any random variable, lies in the set. When the set is
absorbing and X is a financial position, it becomes possible to shrink any position until it "fits"
the set. If a set is radially bounded at non constants and radial at its constants, then any ray that
goes through a constant and any element of Lp/R has a segment in the set and another in its
complement. Convexity indicates that any line connecting two points in the set still is in the set.
Star shapedness is a weaker form of convexity. From this property if any X is in the set, then a
scaled down X is as well. A desirable property, as it can intuitively mean that if an agent accepts
to invest a certain amount in a stock, it also finds it acceptable to invest less in the same stock.
Positive homogeneity family indicates that multiplication by a positive scalar is translated to
the family index i.e. kA 1 = A k. While monotonic family indicates that the family

{
A k}

k∈R is
crescent in k.

Remark 2.2. Observe that the properties of radiality, convexity and closedness for scalar addition
are kept under closure. Besides that, if the set is solid, i.e., X ∈ A , |Y | ≤ |X | implies in Y ∈
A ,∀ X ,Y ∈ Lp, and convex, then radial boudedness is also kept under closure. For a detailed
proof see Lemma 3.2 of Koch-Medina et al. (2018). Note as well that if a set contains the origin
and is convex, then it is star shaped.

We now define properties that a deviation measures may fulfill.

Definition 2.3. A deviation measure D : Lp→ R+∪{∞} may fulfill the following properties,

valid ∀X ,Y ∈ Lp:

(i) Translation insensitivity: D(X + c) = D(X), ∀ c ∈ R.

(ii) Non-negativity: D(X)> 0 for any non constant X and D(X) = 0 for any constant X.

(iii) Positive homogeneity: D(λX) = λD(X),∀λ ≥ 0.

(iv) Convexity: D(λX +(1−λ )Y )≤ λD(X)+(1−λ )D(Y ),∀λ ∈ [0,1].
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(v) Law invariance: If P(X ≤ x) = P(Y ≤ x),∀ x ∈ R, then D(X) = D(Y ).

(vi) Lower semi-continuity: If {Xn} ∈ Lp, Xn→ X, then D(X)≤ liminfD(Xn).

(vii) Upper semi-continuity: If {Xn} ∈ Lp, Xn→ X, then D(X)≥ limsupD(Xn).

We refer as proper deviation measure a functional that respects translation insensitivity and

non-negativity. When D is a proper deviation measure and it respects convexity, it is a convex

deviation in the sense proposed by Pflug (2006). When a convex deviation measure satisfies

positive homogeneity, it is a generalized deviation measure in the sense of Rockafellar et al.

(2006a). A deviation measure is said to be positive homogeneous, law invariant, lower semi-

continuous or upper semi-continuous if it fulfills the properties of positive homogeneity, law

invariance, lower semi-continuity or upper semi-continuous, respectively.

Translation insensitivity, ensures that the deviation does not change if a constant value is
added. Non-negativity implies that no constant assets have positive deviation and constant assets
have deviation equal to 0. Positive homogeneity shows the deviation proportionally increases
with the position size. Convexity ensures that diversification reduces the risk. Law invariance,
indicates that two positions with the same distribution function have the same deviation.
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3 Set-induced deviations

In this section, we define the set-induced deviation. We relate some of their continuity
properties with the characteristics of the set. Continuity properties are important because
deviation measures are functionals that require these properties to guarantee certain mathematical
results, such as optimal values. We present the theoretical properties of set-induced deviations
related to their generating set. These properties are important in identifying the validity and
practical utility of our class in financial problems. We demonstrate how operations on the set
affect them.

Definition 3.1. Let A ⊂ Lp. The set-induced deviations are functionals DA : Lp→ R+ defined

as:

DA (X) = inf
{

m ∈ R+∪{∞} :
X
m
∈A

}
. (3.1)

DA can be understood as the amount that an agent should shrink a position for it to be
acceptable, i.e., it is in the set.

Lemma 3.2. Let A ,A ′ ⊂ Lp be star shaped sets, and DA : Lp → R+ ∪{∞}, DA ′ : Lp →
R+∪{∞} be the set-induced deviation defined as in definition 3.1. If A ⊆A ′, then DA (X)≥
DA ′(X),∀ X ∈ Lp. Furthermore, X ∈A if, and only if, DA (X) ∈ [0,1].

Proof. Consider that for each X ∈ Lp, we have a MX
A ∈R∗+ such that X

m ∈A , ∀m≥MX
A , and a

MX
A ′ ∈ R∗+ such that X

m ∈A ′, ∀ m≥MX
A ′ . Because A ⊆A ′, we get that every X

m ∈A is also
in A ′. Hence, MX

A ≥MX
A ′ . Thus,

DA (X) = inf
{

m ∈ R+ :
X
m
∈A

}
= inf[MX

A ,∞) = MX
A

holds. Moreover, if there is no such MX
A and MX

A ′ ∈ R∗+, then DA(X) = DA ′(X) = ∞. Clearly,
if there is a MX

A ∈ R, so there is a MX
A ′ ∈ R and if only MX

A ′ ∈ R exists, we have that ∞ =

DA (X)> DA ′(X).

Note that if X ∈A and A is star shaped, X
m ∈A , ∀m≥ 1, then MX

A ≤ 1. Now, perceive
that as the set is star shaped, X /∈A implies that λX /∈A , ∀λ ≥ 1. We can rewrite λX as X ′.
Thus, if X ′ ∈A we have 1

λ
X ′, which by assumption is can not be in A . Moreover, if X /∈A ,

then X
m /∈A , ∀ m≤ 1. Hence, MX

A > 1.

Proposition 3.3. Let A ⊂ Lp be star shaped and absorbing set, and DA : Lp→ R+∪{∞} be

a set-induced deviation defined as in definition 3.1. Then, we have:

(i) If A is closed, then DA is lower semi-continuous.
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(ii) If A is open, then DA is upper semi-continuous.

(iii) If
{
A k}

k∈N is a monotone sequence converging to A , then DAk(X)→DA(X),∀ X ∈ Lp.

Proof. Concerning (i), if A is closed, Xn → X ,∀ n ∈ N, then there is a MXn such that Xn
m ∈

A , ∀ m ∈ [MXn,∞),∀ n ∈ N, and a MX such that X
m ∈ A , ∀ m ∈ [MX ,∞). Because the set is

closed, we have that Xn
m ∈ A implies in X

m ∈ A . Therefore, [MXn,∞) ⊆ [MX ,∞),∀ n ∈ N and
lim(n→∞)[MXn,∞)⊆ [MX ,∞). Consequently,

DA (X) = inf
{

m ∈ R+ :
X
m
∈A k

}
= inf[MX ,∞)≤ inf

{
lim

(n→∞)
[MXn,∞)

}
= inf

{
lim

(n→∞)

{
m ∈ R+ :

Xn

m
∈A

}}
≤ liminfDA (Xn).

For (ii), if A is open, Xn→X ,∀ n∈N, then for all limit point X ∈A there is an open ball
in A that contains Xn, ∀ n≥N. By the same logic as before, when X

m ∈A and Xn
m ∈A , ∀ n ≥N,

we get [MX ,∞)⊆ lim(n→∞)[MXn ,∞) and limsupDA (Xn)≤DA (X).

Relative to (iii), we have, by Lemma 3.2, that A k ⊆ A k′ implies in DA k ≥ DA k′ .
Thereby, A k ↓A results that DA k increases up to DA , and A k ↑A implies that DA k decreases
to DA . Either way, we obtain limk→∞ DA k(X) = DA (X),∀ X ∈ Lp.

Proposition 3.4. Let A ⊂ Lp be star shaped , and DA : Lp → R+ ∪{∞} be a set-induced

functional defined as in definition 3.1. Then, we have the following:

(i) A =A 1
DA

and
X

DA (X)
∈ bd(A ),∀ 0<DA (X)<∞,∀X ∈Lp, i.e. if DA (X)∈R∗+,

X
DA (X)

is in the boundary of A .

(ii) if A is absorbing, then DA is finite,

(iii) If A is closed and absorbing, then inf
{

m ∈ R+ : X
m ∈A

}
=min

{
m ∈ R+ : X

m ∈A
}

, i.e.,

the minimum is attained, ∀ X ∈ Lp.

(iv) If A is radially bounded, then DA (X)> 0,∀ X ∈ Lp.

Proof. For (i), by Lemma 3.2, A = A 1
fA

is clear. To verify that X
DA (X) ∈ bd(A ) we must find

that every ball around X
DA (X) has at least one point in A and one in Lp\A . For such, note that

due to star shapedness, if m ≥ DA (X), X
m ∈A and due to its construction DA (X) ≥ m,∀ m :

X
m ∈ A ,m > 0. Therefore, if 0 ≤ m < DA (X), X

m /∈ A . Take a sequence {Mn} ∈ R+, such
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that Mn ↑DA (X), then, ∀ m ∈ {Mn}, X
m /∈A . And for a sequence such that Nn ↓DA (X), X

m ∈
A ,∀m ∈ {Nn}. Thus X

DA (X) ∈ bd(A ).

Regarding (ii), we have that, by the absorbing property, there is always some δX ∈
A , ∀ δ ∈ [0,δX),∀ X ∈ Lp. It is straightforward to see that

{
m ∈ R+ : X

m ∈A
}

is never empty.
Therefore, DA is finite.

Relative to (iii) Observe that for each X ∈ Lp,
{

m ∈ R+ : X
m ∈A

}
= [mX ,∞). Thus, we

have that the set is closed and bounded from below. Hence, we verify that the infimum is attained.

For (iv),if A is radially bounded then for each X there is a MX > 0 such that 1
mX /∈

A ,∀m < MX . Therefore, inf{m ∈ R+ : X
m ∈A }> 0.

For sets that do not fulfill the star shapedness and closedness for scalar addition is
possible to coerce it to respect these properties.

Remark 3.5. Let B be any set AB = {Y : Y = λX + c,X ∈B,c ∈ R,λ ∈ [0,1]} . In this ap-
proach, if we consider the set B as the set containing some desirable positions, then the set A

contains the shifted and downscaled versions of each position in B. Thus, we have that DAB
(X)

assume values in [0,1] for X ∈AB and ∞ if λX /∈AB,∀ ∈ λ ∈ R.

Lemma 3.6. For all A ⊂ Lp and all m,n ∈ R+,(m+n)A ⊆ mA +nA . If A is a convex set,

(m+n)A = mA +nA

Proof. First, note that (m+n)A = {(m+n)X : X ∈A } and

mA +nA = {mX +nY : X ,Y ∈A }

= {mX +nY : X ,Y ∈A ,X = Y}∪{mX +nY : X ,Y ∈A ,X 6= Y}

= {mX +nX : X ∈A }∪{mX +nY : X ,Y ∈A ,X 6= Y}

= {(m+n)X : X ∈A }∪{mX +nY : X ,Y ∈A ,X 6= Y}

= (m+n)A ∪{mX +nY : X ,Y ∈A ,X 6= Y}

⊇ (m+n)A .

Now, assume A is convex then, ∀ X ∈ mA +nA ,X = mY +nY ′,Y,Y ′ ∈A . Hence

X = mY +nY ′ = (m+n)
(

m
m+n

Y +
n

m+n
Y ′
)

as m
m+n +

n
m+n = 1, it is a convex combination. Then m

m+nY + n
m+nY ′ ∈A and (m+n)

( m
m+nY + n

m+nY ′
)
∈

(m+n)A .

Proposition 3.7. Let A ⊂ Lp and DA : Lp→ R+∪{∞} be the set-induced deviation defined

as in 3.1. Then, we have:

(i) DA respects positive homogeneity.
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(ii) If R⊂A and A is radially bounded at non constants, then DA is non negative.

(iii) If A is closed for scalar addition, then DA is translation insensitive.

(iv) If A is convex, then DA is convex.

(v) If
{
A k}

k∈R∗+
is a family of positive homogeneous sets, then kDA k = k′DA k′ , ∀ k,k′ ∈R∗+

and kDA k(X) = inf{m ∈ R+ : X ∈A m}.

(vi) If A is law invariant, then DA is as well.

Proof. For (i), ∀ λ ≥ 0, we have to

DA (λX) = inf
{

m ∈ R+ :
λX
m
∈A

}
= inf

{
λn ∈ R+ :

X
n
∈A

}
= λ inf

{
n ∈ R+ :

X
n
∈A

}
= λDA (X).

Thus, DA fulfills positive homogeneity.

Regarding (ii), let R⊂A , we have that
{

m ∈ R+ : c
m ∈A

}
= R+,∀ c ∈ R. Therefore,

for any c ∈ R, we obtain inf
{

m ∈ R+ : c
m ∈A

}
= 0. As we have that set is radially bounded at

non constants, for any non constant X ∈A there is some m > 0 such that 1/m < ∞ and 1
mX /∈A .

From this, it follows that inf
{

m ∈ R+ : X
m ∈A

}
> 0. Hence, DA respects non-negativity.

In (iii), let c ∈ R and X ∈ Lp. Since A is closed for scalar addition, we have that

DA (X + c) = inf
{

m ∈ R+ :
X + c

m
∈A

}
= inf

{
m ∈ R+ :

X
m
+

c
m
∈A

}
= inf

{
m ∈ R+ :

X
m
∈A

}
= DA (X).

Thereby, DA is translation insensitive.

Regarding (iv), let AD be a convex set, therefore, (m+n)A = mA +nA , then,
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DA (X)+DA (Y ) = inf
{

m ∈ R+ :
X
m
∈A

}
+ inf

{
m ∈ R+ :

Y
m
∈A

}
= inf

{
mX +mY ∈ R+ :

X
mX
∈A ,

Y
mX
∈A

}
= inf{mX +mY ∈ R+ : X ∈A mX ,Y ∈A mY}

≥ inf{mX +mY ∈ R+ : X +Y ∈A mX +A mY}

= inf{mX +mY ∈ R+ : X +Y ∈A (mX +mY )}

= inf{m ∈ R+ : X +Y ∈A m}

= inf
{

m ∈ R+ :
X +Y

m
∈A

}
= DA (X +Y ).

Hence, as DA is positive homogeneous, it is convex.

For (v), ∀ k,k′ ∈ R∗+, we have, due to it being a positive homogeneous family, that
k′
k A k = A k′ . Therefore,

kDA k(X) = k inf
{

m ∈ R+ :
X
m
∈A k

}
= k′ inf

{
k
k′

m ∈ R+ :
X
m
∈A k

}
= k′ inf

{
m ∈ R+ :

k
k′

X
m
∈A k

}
= k′ inf

{
m ∈ R+ :

X
m
∈ k′

k
A k
}

= k′ inf
{

m ∈ R+ :
X
m
∈A k′

}
= k′DA k′ (X).

Because k and k′ are arbitrarily chosen the assertion holds. To rewrite the set-induced deviation
kDA k as DA (X) = inf{m ∈ R+ : X ∈A m} we have:

kDA k = inf
{

km ∈ R+ :
X
m
∈A k

}
= inf

{
m ∈ R+ :

kX
m
∈A k

}
= inf

{
m ∈ R+ : X ∈A

mk
k

}
= inf{m ∈ R+ : X ∈A m} .

For (vi), let X ∈ Lp and Y ∈ Lp have the same distribution and m ∈ R+. From this, we
have to X

m also follows the same distribution of Y
m . This leads to

DA (X) = inf
{

m ∈ R+ :
X
m
∈A

}
= inf

{
m ∈ R+ :

Y
m
∈A

}
= DA (Y ).
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Remark 3.8. (Theorem 1 of Rockafellar et al. (2006a)). If A is a radially bounded at non
constants, closed for scalar addition, convex and closed, then DA is a lower-semi-continuous
generalized deviation measure and admits the following representation:

DA (X) = E[X ]− inf
Q∈Q

E[XQ],

where Q ⊂ Lq is the risk envelop uniquely determined by DA :

Q = {Q ∈ Lq : DA (X)≥ E[X ]−E[XQ],∀ X ∈ Lp} .

Where when p < ∞, q = p
p−1 , and Lq is the dual space of Lp and when p = ∞,q = 1. Q is non

empty, closed and convex. For every non constant X ∈ Lp, ∃Q ∈Q, such that E[XQ]< E[X ],
and E[Q] = 1,∀Q ∈Q.

We now show how some operations on the sets affect the set-induced deviation.

Proposition 3.9. Let A ⊂ Lp and B ⊂ Lp be star shaped and absorbing sets, DA : Lp →
R+∪{∞} and DB : Lp→ R+∪{∞} be set-induced deviations defined as in 3.1 and a,b ∈ Lp

Then, we have the following ∀ X ,Y ∈ Lp:

(i) DA ∪B(X) = min(DA (X),DB(X)).

(ii) DA ∩B(X) = max(DA (X),DB(X)).

(iii) DA \B(X) =

DA (X), if DA (X)< DB(X).

∞, otherwise.

(iv) DA ∆B(X) =

∞, if DA (X) = DB(X).

min(DA (X),DB(X)), otherwise.

(v) DA +B(X) = inf{m ∈ R+ : X = m(a+b),DA (a)≤ 1,DB(b)≤ 1}.

(vi) DλA (X) =
DA (X)

λ
,∀ λ ∈ R∗+.

Proof. By Proposition 3.3 we have that A = A 1
DA

and by Lemma 3.2 we that that if X ∈A ,
then DA(X)≤ 1.

For (i), we get

DA ∪B(X) = inf
{

m ∈ R+ :
X
m
∈A ∪B

}
= min

(
inf
{

m ∈ R+ :
X
m
∈A

}
, inf

{
m ∈ R+ :

X
m
∈B

})
= min(DA (X),DB(X)).
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For (ii), we have that

DA ∩B(X) = inf
{

m ∈ R+ :
X
m
∈A ∩B

}
= max

(
inf
{

m ∈ R+ :
X
m
∈A

}
, inf

{
m ∈ R+ :

X
m
∈B

})
= max(DA (X),DB(X)) .

In (iii) as by Proposition 3.7, DA and DB are positive homogeneous, we have to

DA \B(X) = inf
{

m ∈ R+ :
X
m
∈A \B

}
= inf

{
m ∈ R+ :

DA (X)

m
≤ 1 <

DB(X)

m

}
= inf{m ∈ R+ : DA (X)≤ m < DB(X)}

= DA (X), if DA (X)< DB(X).

Otherwise,
{

m ∈ R+ : X
m ∈A \B

}
is empty and DA \B(X) = ∞.

Concerning (iv), the symmetric difference can be written as (A ∪B)\(A ∩B), which
by (i) and (iii) allow us to write as

DA ∆B(X) = D(A ∪B)\(A ∩B)(X)

=

min(DA (X),DB(X)), if min(DA (X),DB(X)< max(DA (X),DB(X)).

∞, otherwise.

The min(DA (X),DB(X)) ≥ max(DA (X),DB(X)) only is fulfilled when DA (X) = DB(X).
Therefore, the assertion holds.

For (v), we have the following

DA +B(X) = inf
{

m ∈ R+ :
X
m
∈A +B

}
= inf

{
m ∈ R+ :

X
m

= a+b,a ∈A ,b ∈B

}
= inf{m ∈ R+ : X = m(a+b),a ∈A ,b ∈B}

= inf{m ∈ R+ : X = m(a+b),DA (a)≤ 1,DB(b)≤ 1} .



Chapter 3. Set-induced deviations 21

In regard to (vi), we get ∀ λ ∈ R∗+

DλA (X) = inf
{

m ∈ R+ :
X
m
∈ λA

}
= inf

{
m ∈ R+ :

X
λm
∈A

}
= inf

{
m
λ
∈ R+ :

X
m
∈A

}
=

DA (X)

λ
.

Remark 3.10. With the product vector space in mind we can define the set-induced deviation from
the product space Lp×Lq, where q≥ 1, into the extended real line, DA×B : Lp×Lq→R+∪{∞}
as similarly as the set-induced deviations from Lp as possible, in the following form:

DA×B(X ,Y ) = inf
{

m ∈ R+ :
(X ,Y )

m
∈A ×B

}
,∀ (X ,Y ) ∈ Lp×Lq,∀A ×B ⊂ Lp×Lq.

Then, if we have that A ⊂ Lp and B ⊂ Lq are star shaped and absorbing sets, we get that,

DA×B(X ,Y ) = max(DA(X),DB(Y )),∀ X ∈ Lp,∀ Y ∈ Lq.

To see it, note that it following chain holds:

DA×B(X ,Y ) = inf
{

m ∈ R+ :
(X ,Y )

m
∈A ×B

}
= inf

{
m ∈ R+ :

X
m
∈A ,

Y
m
∈B

}
= max

(
inf
{

m ∈ R+ :
X
m
∈A

}
, inf

{
m ∈ R+ :

Y
m
∈B

})
= max(DA(X),DB(Y )).
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4 Acceptance set induced by deviation mea-
sures

The sub-level set of any deviation measure generate a valid acceptance set for deviations
measures. When a deviation measure is positive homogeneous, the set-induced deviation is a
scaled version of the original measure. The set-induced deviations when the chosen set is the
acceptance set induced by deviation measures are a special case of the approach proposed in the
previous section. In this section, we define the acceptance set induced by deviation measures.
We relate relevant properties of deviation measures with its acceptance set. We show how some
operations of deviation measures reflect in the acceptance set induced by deviation measures. We
also provide examples of acceptance sets induced by traditional deviation measures to illustrate
the importance of the proposed approach.

Definition 4.1. Let D : Lp→ R+∪{∞} be a deviation measure and k ∈ R∗+. The acceptance

set induced by deviation measures at level k are defined as:

A k
D = {X ∈ Lp : D(X)≤ k} . (4.1)

A k
D defines the set of financial positions viewed as acceptable, given a coefficient of

aversion to deviation k. Higher values of k indicate a higher risk tolerance, i.e., a greater tolerance
to the deviation. For the agent to determine the minimum amount that must reduce the position,
for the position to be contained in the set, one should employ the set-induced deviation. When
set-induced deviations are induced by A k

D we refer to as DA k
D

.

Remark 4.2. We require that k greater than 0 because otherwise we have a set that contains only
constants, possibly being empty. It is interesting to note that the acceptance sets are a monotone
family. For a finite sequence N of real numbers, if max{n ∈ N} = n∗ and min{n ∈ N} = n∗,
then

⋃
n∈N A n

D = A n∗
D and

⋂
n∈N A n

D = A n∗
D . Therefore, for two different positions X ,Y ∈ Lp

for which D(X) < D(Y ), we have m,n, where n < m, such that Y ∈ A m
D and Y /∈ A n

D . Thus,
X ∈A n

D ⊂A m
D . Furthermore, as A k

D is a sub-level set, if the measure is lower semi-continuous,
then the set is closed.

Proposition 4.3. Let D : Lp→ R+∪{∞} be a positive homogeneous deviation measure and

A k
D be an acceptance set induced by deviation measure defined as in 4.1. Then, we have the

following ∀ k,k′ ∈ R∗+:

(i) A k
D is star shaped,

{
A k

D

}
k∈R+

is a positive homogeneous family and D can be recovered

from A k
D as follows:

D(X) = k inf
{

m ∈ R+ :
X
m
∈A k

D

}
= inf

{
k ∈ R+ : X ∈A k

D

}
= kDA k

D
(X),∀ X ∈ Lp.
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(ii) If D is finite, then A k
D is absorbing.

(iii) If D is translation insensitive and finite, then A k
D is radial in R and closed for scalar

addition.

(iv) If D is non-negative, then A k
D is radially bounded at non-constants and R ∈A k.

(v) If D is a convex functional, then A k
D is a convex set.

(vi) If D is law invariant, then A k
D is as well.

Proof. We begin in (i). The star shapedness is clear as if D(X)≤ k, then λD(X)≤ k, ∀ λ ∈ [0,1].
Also, note that

λA k
D = {λX ∈ Lp : D(X)≤ k}= {X ∈ Lp : D(X)≤ λk}= A λk

D

establishes the positive homogeneity for the generated family. Since we assume that D satisfies
positive homogeneity and k ∈ R∗+, we get that

kDA k
D
(X) = k inf

{
m ∈ R+ :

X
m
∈A k

D

}
= k inf

{
m ∈ R+ : D

(
X
m

)
≤ k
}

= k inf
{

m ∈ R+ :
D(X)

k
≤ m

}
= D(X).

For the second equality, we have that

inf
{

k ∈ R+ : X ∈A k
}
= inf{k ∈ R+ : D(X)≤ k}= D(X).

Note that if D(X) = ∞, then X
m /∈A k, ∀ k ∈ R∗+,∀ m ∈ R+ and inf{ /0}= ∞. This ensures that

the previous equalities holds even in such case.

For (ii), due to finitedness and positive homogeneity, it is clear that for any X and k,
there is a δ k

X such that δD(X)≤ k, ∀ δ ∈ [0,δ k
X ].

Regarding (iii), we have that if D respects translation insensitivity and positive homo-
geneity, then D(c) = 0,∀c ∈R, and c ∈A k

D ,∀c ∈R. To prove that A k
D is radial at any constant,

it is enough to show there is some δ > 0 such that c+ tX ∈ A k
D whenever 0 < t ≤ δ . Let

δ = k
D(X) . Then, we have that

D(c+ tX) = tD(X)≤ k
D(X)

D(X) = k.

Referring to closedness for scalar addition, let X ∈A k
D , we have that D(X +c) =D(X)≤ k. This

evidences that X+c∈A k
D ,∀c∈R. Besides that, let X /∈A k

D , we have that k<D(X)=D(X+c).
This implies in X + c /∈A k,∀ c ∈ R .
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For (iv), it is straightforward to see that if D respects non-negativity, then for all non-
constant X , there is some λX > 0 such that λD(X) > k > 0 for all λ ∈ (λX ,∞). And as non-
negativity implies that D(c) = 0,∀ c ∈ R and k > 0 it is clear that c ∈A k

D ∀ c ∈ R.

Regarding (v), let D be convex, X ,Y ∈A k
D and λ ∈ [0,1]. Therefore, we get

D(λX +(1−λ )Y )≤ λD(X)+(1−λ )D(Y )≤ k.

This implies in λX +(1−λ )Y ∈A k
D .

For (vi), if P(X ≤ x) = P(Y ≤ x), then D(X) = D(Y ). We get X ∈A k
D if, and only if,

Y ∈A k
D .

Remark 4.4. Note that when a acceptance set is closed to scalar addition, we have that
inf{m ∈ R : m ∈A }=−∞. Therefore, this property is incompatible with the traditional mon-
etary acceptance set. Thus, a set that respects it can not induce a monetary risk measure. We
suggest Artzner et al. (2009) and Chapter 4 of Föllmer and Schied (2016) for details about
induced monetary risk measure.

Remark 4.5. When we want greater protection in our position, a viable way is to penalize by
a monetary amount c ∈ R+ the acceptance set associated to some risk measure, i.e., Aρ − c =

{X : ρ(X)≤ 0}− c = {X : ρ(X)≤−c}, where ρ is a coherent risk measure1. We denote this
set by A c

ρ . However, this set considers only the risk from the viewpoint of loss, that is, the
possibility of a negative outcome. To take variability in account, we consider A c

ρ ∩A k
D . One

can extract a measure of this set as follows:

inf
{

m ∈ R :
X +m

m2
∈A c

ρ ∩A k
D ,m2 ∈ R∗+

}
= ρ(X)+

c
k
D(X).

Using of Proposition 4.7 of Righi (2018), if c
k ≤ inf

{
− infX−ρ(X)

D(X) : X ∈ Lp,D(X)> 0
}

, then the
composition is also coherent.

Now, we analyze how some operation on deviation measures reflect in its acceptance set.

Proposition 4.6. Let D : Lp→ R+∪{∞} and D ′ : Lp→ R+∪{∞} be positive homogeneous

deviation measures and k,k′ ∈ R∗+. Then:

(i) A k
min(D ,D ′) = A k

D ∪A k
D ′ .

(ii) A k
max(D ,D ′) = A k

D ∩A k
D ′ .

(iii) A k+k′
D+D ′ ⊇A k

D ∩A k′
D ′ .

(iv) A k
λD = λA k

D .
1 A coherent risk measure fulfills translation invariance, monotonicity, convexity and positive homogeneity. See

Artzner et al. (1999).
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Proof. For (i), if X ∈A k
min(D ,D ′), then D(X)≤ k or D ′(X)≤ k. This implies that X is in either

A k
D or in A k

D ′ . Therefore, it is in the union. In addition, since X ∈ A k
D ∪A k

D ′ , so we have
D(X)≤ k or D ′(X)≤ k. This indicates that min(D(X),D ′(X))≤ k.

For (ii), if X ∈A k
max(D ,D ′), then D(X)≤ k and D ′(X)≤ k. This implies that X is in A k

D

and in A k
D ′ . Therefore, it is in the intersection. If X ∈A k

D ∩A k
D ′ , then D(X)≤ k and D ′(X)≤ k,

which results that max(D(X),D ′(X))≤ k.

Regarding (iii), if X ∈ A k
D ∩A k′

D ′ , then D(X) ≤ k and D ′(X) ≤ k′. Hence, D(X) +

D ′(X)≤ k+ k′, which implies in A k+k′
D+D ′ .

Concerning (iv), if X ∈A k
λD , then λD(X)≤ k which, due to positive homogeneity, im-

plies in λ−1X ∈A k
D and X ∈ λA k

D . Finally, X ∈ λA k
D represents that D(Xλ−1)≤ k. Therefore,

X ∈A k
λD .

Example 4.7. We provide examples of possible choices of A k
D , which are induced by well-

known deviation measures. Let X ∈ Lp and k ∈ R∗+.

(i) Variance (σ2): One of the most classical deviation measures. It is defined as

σ
2(X) =

∥∥X−E[X ]‖2
2

Its acceptance set induced is defined as

A k
σ2 =

{
X ∈ Lp : σ

2(X)≤ k
}
.

As the only deviation measure that does not respect positive homogeneity, its set-induced
deviation is not a scaled version of the variance itself. It is given by

DA k
σ2
(X) =

‖X−E[X ]‖2√
k

.

(ii) Standard deviation (σ ): This measure is the inspiration for the whole class of generalized
deviation measures. One can define it by

σ(X) = ‖X−E[X ]‖2.

Its acceptance set induced is represented by

A k
σ =

{
X ∈ Lp : σ

2(X)≤ (k)2} .
(iii) Standard lower semi-deviation (σ−): It is a generalized deviation measure that considers

only the underpart of the deviation. This measure is defined by

σ−(X) = ‖(X−E[X ])−‖2.
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Its acceptance set induced is defined as follows

A k
σ− =

{
X ∈ Lp : σ

2(X |E[X ]≥ X)≤ k2

P(E[X ]≥ X)

}
,

where σ2(X |E[X ]≥X) =E[(X−E[X |E[X ]≥X ])2 |E[X ]≥X ] is the conditional variance.
This set also contains every random variables whose variance is bounded by (k)2, but as
P(E[X ]≥ X) ∈ [0,1] the conditional variance is always smaller than the full variance. We
have that A k

σ ⊆A k
σ− . Hence, this one is less restrictive than the one above.

(iv) Standard upper semi-deviation (σ+): This measure is similar to’ the standard lower semi-
deviation by changing the negative for the positive part. It is defined as

σ+(X) = ‖(X−E[X ])+‖2.

Its acceptance set induced is defined conform

A k
σ+

=

{
X ∈ Lp : σ

2(X |E[X ]≤ X)≤ k2

P(E[X ]≤ X)

}
.

(v) Lower range deviation (LRD): It is the most conservative lower range dominated general-
ized deviation measure. This measure is defined by

LRD(X) = E[X− infX ].

Its acceptance set induced is represented by

A k
LRD = {X ∈ Lp : E[X ]− infX ≤ k} .

(vi) Upper range deviation (URD): Similar to the measure above, however this measure only
takes in account the positive part. It is defined conform

URD(X) = E[supX−X ],

and its acceptance set induced is given by

A k
URD = {X ∈ Lp : supX−E[X ]≤ k} .

(vii) Full range deviation (FRD): A very conservative measure that considers the full range of
the position. It can be defined as

FRD(X) = supX− infX ,

and its acceptance set induced is

A k
FRD = {X ∈ Lp : supX ≤ k+ infX} .
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(viii) Value at risk deviation (VaRD): This measure is a deviation measure induced by value at
risk (VaR). It is defined, ∀ α ∈ [0,1], as

VaRDα(X) =VaRα(X−E[X ]) = inf{x ∈ R : P(X ≥ E[X + x])< α}.

Its acceptance set induced is given by

A k
VaRDα

= {X ∈ Lp : P(X < E[X− k])≤ α} .

(ix) Expected shortfall deviation (ESD): This measure is a generalized deviation measure
induced by the expected shortfall (ES), being defined, ∀ α ∈ [0,1], as

ESDα(X) = ESα(X−E[X ]) = E[−(X−E[X ]) | X ≤−VaRα(X)].

Its acceptance set induced is defined as

A k
ESDα

=

{
X ∈ Lp : E[X |X ≥−VaRα(X)]≤ αk

1−α

}
.
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5 Conclusion

In this work we proposed a class of deviations measures induced by some set. This class
have the novel interpretation of being the amount that should be shrunk for the position to be
acceptable. We analyzed how properties and operations reflect on the set-induced deviation.
As a by-result we have the acceptance sets for deviation measures. Any positive homogeneous
deviation measure can be fitted in our approach. When the set that generates the set-induced
deviation is an acceptance set of some positive homogeneous deviation measure, the set-induced
deviation is a scaled version of it. The acceptance set of the set-induced deviation measure
is equal to the set that generate it. It is worth highlighting that our measure only is a proper
deviation measure when the set is closed for scalar addition and radially bounded at non-
constants. Therefore, the approach of our set-induced deviation has no real need be bounded to
deviation measures. It could represent the amount to be shrunk for a position to be acceptable
in any financial aspect, be it, risk, liquidity, cost, deviation, or even finitely many altogether. It
could be done be taking A as being a sub-level set of a risk, liquidity, cost or deviation measure
or its intersection.
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KOCH-MEDINA, P.; MUNARI, C.; ŠIKIĆ, M. A simple characterization of tightness for
convex solid sets of positive random variables. Positivity, Springer, v. 22, n. 4, p. 1015–1022,
2018.

KROKHMAL, P.; ZABARANKIN, M.; URYASEV, S. Modeling and optimization of risk.
Surveys in Operations Research and Management Science, v. 16, n. 2, p. 49–66, 2013.

MARKOWITZ, H. Portfolio selection. The Journal of Finance, v. 7, n. 1, p. 77–91, 1952.

PFLUG, G. C. Subdifferential representations of risk measures. Mathematical
Programming, v. 108, n. 2-3, p. 339–354, 2006.

RIGHI, M. B. A composition between risk and deviation measures. Annals of Operations
Research, Springer, 2018.

RIGHI, M. B.; BORENSTEIN, D. A simulation comparison of risk measures for portfolio
optimization. Finance Research Letters, Elsevier, v. 24, p. 105–112, 2018.

RIGHI, M. B.; CERETTA, P. S. Shortfall deviation risk: An alternative for risk measurement.
Journal of Risk, v. 9, p. 81–116, 2016.



Bibliography 30

ROCKAFELLAR, R. T.; URYASEV, S. The fundamental risk quadrangle in risk management,
optimization and statistical estimation. Surveys in Operations Research and Management
Science, Elsevier, v. 18, n. 1-2, p. 33–53, 2013.

ROCKAFELLAR, R. T.; URYASEV, S.; ZABARANKIN, M. Generalized deviations in risk
analysis. Finance and Stochastics, Springer, v. 10, n. 1, p. 51–74, 2006.

ROCKAFELLAR, R. T.; URYASEV, S.; ZABARANKIN, M. Master funds in portfolio
analysis with general deviation measures. Journal of Banking & Finance, Elsevier, v. 30,
n. 2, p. 743–778, 2006.

ROCKAFELLAR, R. T.; URYASEV, S.; ZABARANKIN, M. Equilibrium with investors
using a diversity of deviation measures. Journal of Banking & Finance, Elsevier, v. 31,
n. 11, p. 3251–3268, 2007.


	Title page
	Title page
	Approval
	Acknowledgements
	Resumo
	Abstract
	Introduction
	 Preliminaries
	Set-induced deviations
	Acceptance set induced by deviation measures
	Conclusion
	Bibliography

