
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CÍCERO AUGUSTO DE LARA PAHINS

Real-Time Exploration
and Analysis of Big Data

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. PhD. João Comba

Porto Alegre
June 2018

CIP — CATALOGING-IN-PUBLICATION

Pahins, Cícero Augusto de Lara

Real-Time Exploration
and Analysis of Big Data / Cícero Augusto de Lara Pahins. –
Porto Alegre: PPGC da UFRGS, 2018.

174 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor: João Comba.

1. Data structures. 2. Big data. 3. Real-time. 4. Spatiotempo-
ral. I. Comba, João. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Dedicated to my family and wife.”

ACKNOWLEDGEMENT

I thank my family for believing in me during the long years of my academic for-

mation, always giving me support to continue the studies and fulfill my dreams. A very

special and warm thank you to my parents. I owe it all to you.

I am grateful to my wife Fernanda, which has a very important role in the conclu-

sion of this thesis, as well as in all aspects of my life. Thank you for always being by my

side, no matter what situation.

Last but not the least, I also would like to express my gratitude to my advisor Prof.

João Comba for the support during the entire period of my PhD, either through technical

guidance or in the writing of the papers, as well as for the valuable words of advice to my

life in general.

Thank you all.

ABSTRACT

This thesis consists of developing methods to enable the real-time exploration and anal-

ysis of big data. The solutions must be both memory and run-time efficient, as well

as take into consideration the (i) scale of data, (ii) different forms of data, (iii) analysis

of streaming data and (iv) uncertainty of data. Relational databases, or statistical pack-

ages, have difficulty to handle large multidimensional datasets. Naive solutions can take

prohibitively large amounts of memory or time to answer as the number of dimensions

increases. The interactive visualization of large datasets follows two main strategies:

sampling and pre-computation. One limitation of the sampling strategy is the non-trivial

extraction of random samples of large datasets, and naïve sampling strategies can generate

biased results. This research mainly focuses on pre-computation strategies, which relies

on the idea of computing aggregations over several dimensions. The core bottleneck of

this strategy is the large memory footprint that is common to data structures used to ac-

celerate data queries, e.g., data cube methods. Nevertheless, the real-time exploration and

analysis of big data are one of the primary desires of visualization practitioners and data

scientists. This thesis discusses the problem and presents the author’s contributions.

Keywords: Data structures. big data. real-time. spatiotemporal.

Exploração e Análise de Big Data em Tempo Real

RESUMO

Esta tese consiste em desenvolver métodos para permitir a exploração e análise em tempo

real de big data. As soluções devem ser eficientes em termos de memória e de tempo de

execução, bem como levar em consideração a (i) escala de dados, (ii) diferentes formas

de dados, (iii) análise de dados de streaming e (iv) incerteza de dados. Bancos de da-

dos relacionais, ou pacotes estatísticos, têm dificuldade em lidar com grandes conjuntos

de dados multidimensionais. As soluções ingênuas podem consumir quantidades proi-

bitivamente grandes de memória ou tempo para responder à medida que o número de

dimensões aumenta. A visualização interativa de grandes conjuntos de dados segue duas

estratégias principais: amostragem e pré-computação. Uma limitação da estratégia de

amostragem é a extração não trivial de amostras aleatórias de grandes conjuntos de da-

dos, e estratégias de amostragem ingênuas podem gerar resultados tendenciosos. Esta

pesquisa foca principalmente em estratégias de pré-computação, as quais se baseiam na

idéia de pré-computar agregações. O principal gargalo dessa estratégia é a grande quanti-

dade de memória comum às estruturas de dados usadas para acelerar consultas de dados,

por exemplo, métodos de cubo de dados. Mesmo assim, a exploração e a análise em

tempo real de big data são um dos principais desejos. de praticantes de visualização e

cientistas de dados. Esta tese discute o problema e apresenta as contribuições do autor.

Palavras-chave: Estrutura de dados, big data, tempo real, spatiotemporal.

LIST OF ABBREVIATIONS AND ACRONYMS

HC Hashedcubes

PMQ Packed-Memory Quadtree

QDS Quantile Data Structure

SC SimilarityCubes

qnt Quantile

KS Kolmogorov-Smirnov

LIST OF FIGURES

Figure 2.1 HashedCube building steps for ten points [o0, ..., o9]. The process is
described in Section 2.3. ..31

Figure 2.2 An illustration of how to interpret pivot hierarchy. HashedCubes re-
assembles tree hierarchy...33

Figure 2.3 Spatial dimension indexing scheme. A period of time is represented by
a timestamped list of pivots..35

Figure 2.4 HashedCubes enables real-time exploratory interactive systems using a
wide range of visual encodings, such as heat maps and choropleth maps, his-
tograms, binned scatter plots, parallel sets, and others. They support brushing
& linking across any dimension. The images show the heatmap and charts
associated with two given queries. ...37

Figure 2.5 HashedCubes temporal and spatial indexing schemes allow the explo-
ration and analysis of check-ins as global trends, as well as geographically
restrict events. In October 2008 Brightkite Iphone app goes live. In October
2009 Brightkite 2.0 was released. ..38

Figure 2.6 By indexing Day of Week and Hour of Day as categorical dimensions
of the Brightkite dataset, HashedCubes enables to highlight user interactions
across specific geographical regions. There is a significant usage difference
between US and Japan..38

Figure 2.7 (a) Growth of the number of pivots when inserting objects into Hashed-
Cubes. Notice the key saturation effect. (b) HashedCubes memory usage is
directly proportional to the number of pivots. From top to bottom: Flights,
Brightkite and Gowalla datasets...39

Figure 3.1 Hashedcubes accelerates queries used in a wide range of interactive ex-
ploratory visualizations, such as heatmaps, time series plots, histograms and
binned scatterplots, and supports brushing and linking across spatial, cat-
egorical and temporal dimensions. In this figure, we show some example
visualizations backed by Hashedcubes. The left image shows 210.6 million
tweets from November 2011 to June 2012, highlighting the activity during
Superbowl XLVI. The central image shows 24.5 million pick-up locations
of NYC green taxis rides from January 2014 to June 2015. On the right, the
visualizations show different aspects of 4.5 million Brightkite check-ins, a so-
cial network. Hashedcubes balances low memory usage, fast running times,
and simple implementation; it allows interactive exploration of datasets that
previously either required a prohibitive amount of memory or uncomfortably
large latencies. ..44

Figure 3.2 Overall summary for building Hashedcubes. (a) Input dataset of points
[p0,...,p9] under a spatial-categorical-temporal schema. The complete process
is described in Section 3.4. (b) Step-by-step illustration of the process for
building arrays of sorted partitions, as explained in Section 3.4.2. (c) Data is
loaded (in any order) into a sequential memory and each record is associated
with an index (rectangle in orange). ..46

Figure 3.3 A comparison between the computation of Nanocubes and Hashed-
cubes. Note that Nanocubes pre-compute more aggregations, which tends
to lead to lower query times but larger memory consumption. Hashedcubes,
in contrast, uses a sparser set of preaggregations in its query execution engine....50

Figure 3.4 Multiple spatial dimensions. In this example one quadtree is created
for each of the two spatial dimensions, red and blue. The quadtrees are used
alternately in Hashedcubes to partition the data...52

Figure 3.5 Temporal dimension indexing. A period of time is represented by a
dense list of timestamped pivots. Each black circle represents a record that
has been tagged to a specific bin. ...53

Figure 3.6 Visual exploration of the twitter dataset during Super Bowl 2012. In
addition to enabling real-time exploration using a wide range of visual en-
codings, with support to brushing & linking in any dimension, Hashedcubes
allows the access to the text of tweets from an external SQL server.55

Figure 3.7 (a) Hashedcubes memory usage growth while inserting SPLOM dataset
elements. Notice the key saturation effect. (b) and (c) compare Hashedcubes
construction time and memory usage to Nanocubes..60

Figure 3.8 Cumulative percentages of query latency from real-world scenarios.
The vast majority of queries are answered within the real-time budget (<40ms
or >25fps) for different schemas and datasets...62

Figure 3.9 Hashedcubes supports recovering the original data by using a linking
structure. Pivots represent the values from the SQL index, which allows to
efficiently match all rows of a given query. Hashedcubes can be built directly
from a SQL database or from an intermediary format. ..64

Figure 3.10 Hashedcubes different heatmap visualizations showcase. Notice the
leaf size variation from 32 to 8 by looking into the highlighted regions. It
impacts running time, memory usage and visual accuracy. (a) allows to iden-
tify truncated pivot occurrences by representing them as rectangles. Color is
a factor of area and occupancy. (b) and (c) use circles to represent the center
of an aggregated region (i.e., quadtree bounding box)...65

Figure 3.11 Los Angeles (United States) city view of detailed Brightkite heatmaps
from recent data cube visualization proposals. Apart from the use of differ-
ent colormaps across Hashedcubes, Nanocubes and imMens, what produces
a slightly dissimilar visual appearance, Hashedcubes pivot concept enables
a high visual accuracy along with reduced memory consumption when com-
pared against other data cube visualization proposals. Notice that Hashed-
cubes matches Nanocubes visual representation, even though the latter does
not experience leaf-size trade-offs. ..65

Figure 4.1 Analyzing the distribution of flight arrival delays for U.S. airports using
QDS. We observe two maps showing the probability of flights being late for
January and December 2014. Airports are colored using a divergent color
scale representing the cumulative distribution function of the arrival delays
at the value 0. We assign red color shades to airports with a higher prob-
ability of having late arriving flights and blue shades for airports in which
flights are more likely to be early. Notice how the trend changes from more
likely delayed flights on the Northeastern airports in January to Southwestern
ones (particularly in California) in December. The pattern of delay in Jan-
uary 2014 is due to the snowstorms that pounded the Northeast of the U.S.
in January. The Western delay pattern in December is due to the so-called
“California’s storm of the decade" that affected the region in the middle of
December 2014. The temporal band plots on the bottom show the evolution
of the arrival delay quantiles (0.1,0.25,0.5,0.75,0.9) for both the JFK (left)
and SFO airport (right). Dates with a substantial increase in the median ar-
rival delays (black line) are the peaks of these events (e.g., January 4 on the
left and December 15 and 19 on the right). ..69

Figure 4.2 Gaussian distributions are the most common approach of modeling data
for analysis and visualization. While this method has theoretical advantages,
real-world data is rarely normally distributed. As we observe in (a)-(c) mod-
eling data with normal distributions (black curves) can introduce biases and
hide essential features such as multimodality and skewness. As illustrated by
the equi-depth histograms produced using p-digest in (d) (darker shades of
blue represent higher data density) can efficiently describe the distributions
of the other plots. ..71

Figure 4.3 The t-digest sketch: (a) construction of a t-digest t1. The cdf of the input
dataset is represented by a set of weighted centroids. (b) Different quantile
sketches t1 and t2 can be combined using the merge operation. (c) A quantile
query, qnt(value), interpolates the centroid weights compared to the fraction
of the total weight defined by the input value to compute the estimate of the
result quantile. ...73

Figure 4.4 Queries supported by QDS. Let FM be the random field formed by
merging quantile sketches of selected bins. (a) The quantile and cdf queries
receive a parameter x and returns the result of the corresponding query for
each quantile sketch. (b) The pipeline query: we use the result of a given
query as a parameter to a second one using a right join process. In case the
parameter has “missing” bins the result query can have undefined (purple X)
values. ...75

Figure 4.5 QDS indexing scheme and shared pointers. We use an example to com-
pare the indexes of HC (a) and QDS (b). The input dataset has eight records,
each with three dimensions. In HC, each dimension stores pivots in a pivot ar-
ray that refers to intervals in the input dataset. In QDS, in addition to the pivot
array for each dimension (primary pivot array), we keep a secondary pivot
array for each element. In graphical terms, the primary array is displayed
horizontally, while the secondary array is displayed vertically. Searching for
values equal to F in QDS can be simply done by following vertically the
secondary pivot array associated with F in dimension 2. The number of piv-
ots stored in the QDS is not larger than in HC. Each pivot has an additional
payload (marked with *) that can store quantile information. (c) Pivot arrays
tend to have duplicate information across dimensions. To save memory, QDS
used shared pointers to compact shared pivot and payload information.76

Figure 4.6 The QDS query algorithm demonstrated using the dataset of Fig. 4.5.
The input query has constraints in all dimensions. In the selection step, the
pivot array of each dimension is processed to check the pivots that satisfy the
query for that dimension. In the intersection step, we compute in sequence
the intersection of the results of previous steps. The aggregation step com-
pacts the results of the previous step. ...79

Figure 4.7 Quantile heatmaps of taxi trip fares in NYC during the month of Oc-
tober 2014 based on their pick-up locations. The mean based heatmap (a)
conveys high prices similar to the third quartile map(d). The median heatmap
shows lower fares (c) indicating the robustness with respect to outliers. The
first quartile map (b) indicates mostly lower values except on regions close to
the Queens–Midtown Expressway near the high traffic region of Queens—
Midtown Tunnel’s toll station (right dashed box). ..80

Figure 4.8 Box plot of flight arrival delays per carrier. The boxes are colored and
sorted according to the probability of each distribution being below 15 min-
utes (red line), which represents the proportion of on-time flights.83

Figure 4.9 Daily arrival delay outlierness in 2017 for Delta JetBlue and Southwest
airlines. Delta had an abnormal first week of April due to severe weather in
its hub city Atlanta. Similarly, weather events created abnormal arrival times
for JetBlue and Southwest in May and August respectively. January 29th is
another odd day: a computer outage grounded all Delta’s flights. The news
on the side corroborate the unexpected events found. ..84

Figure 4.10 Exploration of NYC yellow taxi trips in October 2014. (a) Outlier-
ness coefficients with respect to total fare vary widely during the month with
peaks on days 10, 12, 17, 23, 24 and 31. This last one being the highest. (b)
Analyzing how the outlierness vary over the day 31 we see that the day got
more "unusual" with the highest values on the period starting at 7 PM. (c) The
heatmap resulting from the pipeline query in this period we observe from left
to right that trips are more expensive than normal in the Greenwich Village
Region. Zooming in we see that a portion of the streets (purple) that unusu-
ally did not have any trips. This corresponds to the area where the annual
Greenwich Village Halloween parade happened. ...86

Figure 4.11 Performance comparison of QDS, HC and database alternatives com-
puting count queries. QDS novel index successfully avoid HC corner cases
and offers a query latency that typically lies below 10ms in various datasets.89

Figure 4.12 Evaluation of p-digest’s quantile estimation with respect to (a) pivot
size, (b) number of merge operations and (c) queried quantile..............................91

Figure 4.13 Comparison of qnt(0.5) computation on a synthetic dataset using QDS,
QDS without p-digest and database alternatives. As shown, QDS can provide
quantile queries at interactive rates. ...92

Figure 5.1 COVIZ architecture. ..96

Figure 5.2 An instance of QDS indexing scheme for eight records and three di-
mensions. QDS stores at each pivot (marked with an asterisk) a payload that
contains the representation of a distribution function. ...98

Figure 5.3 Tasks in COVIZ: cohort formation (A-B), cohort comparison (C-D),
sensemaking with pollution data (E-F). ...100

Figure 6.1 Overview of the author’s QDS data cube proposal. It employs a novel
data cube indexing that reduce memory usage of previous methods and intro-
duces p-digest (de Lara Pahins; Ferreira; Comba, 2019), an efficient quantile
sketch that follows the theoretical requirements that an analytical method
must implement to be integrated into the data cube infrastructure built by the
author.
..105

Figure 6.2 Overview of the process of computing the Fourier spectrum of a de-
cision tree and vice-versa. Adapted from (KARGUPTA; PARK, 2004). A
proof-of-concept implementation was proposed by the author of this thesis in
Appendix C.
..106

Figure 6.3 Illustration of the two-sample Kolmogorov–Smirnov test. The black
arrow is the KS distance between two one-dimensional probability distribu-
tions.
..107

Figure 6.4 p-digest enables the representation of a set of directions by modeling it’s
distribution into the range (0 to 2π). By using the KS distance, the cluster-
ing algorithm can measure the similarity between distributions that represent
directions. ...108

Figure 6.5 Collection of simulated scenes and datasets with varying properties. (a)
Trajectories obtained on a four lane highway with traffic in both directions.
(b) Trajectories obtained by visual tracking of vehicles from a highway. (c)
Trajectories obtained from a four traffic intersection. (d) Trajectories ob-
tained by tracking a laboratory. Adapted from (MORRIS; TRIVEDI, 2009).
..109

Figure 6.6 Visualization of 8 clusters generated by QDS using Morris et al. dataset (MOR-
RIS; TRIVEDI, 2009). ...110

Figure 6.7 Overview of the HURDAT2 dataset. The data consists of tracking infor-
mation of all known tropical and subtropical cyclones from 1851 to 2017 (LAND-
SEA; FRANKLIN, 2013).
..112

Figure 6.8 Visualization of 8 clusters generated by QDS using HURDAT2 dataset.
Each hurricane path is clustered based on location, wind and pressure features. 113

Figure A.1 Z-curve algorithm explanation..132
Figure A.2 Hilbert curve, second order example. ...132
Figure A.3 Quantifying the neighborhood preservation of four datasets performed

by Fiedler Vector (), Z Order Curve () and Hilbert Curve (), the result of
this measure is impacted by the instances distribution along the dimension.
The best method to use depends in how well the data is described by a Z
curve or how many times a long jump is avoided. ...133

Figure A.4 A summary of our proposed methodology for similarity queries in a
high dimensional space. The main idea is to pre-process the high dimensional
dataset to obtain a simplified but descriptive dataset in one-dimensional space
to enable the computation of similarity queries in real-time................................134

Figure A.5 An overview of our method. First we obtain a single value representa-
tion given by a multidimensional projection for every record in the dataset,
so that we execute a sorting step that results in an array of sorted elements by
similarity...134

Figure A.6 Concrete example of the our approaches with the same three query
points showing different results in every case..135

Figure A.7 Exploring the Brightkite checking similarity distribution using five dif-
ferent colormaps that enables a visual differentiation of the similarity over a
geographical map. ..138

Figure A.8 Visual exploration of the New York City Civilian Complaints dataset
using four different query points and range queries...139

Figure A.9 Visualizing 210 million public geolocated Twitter showing our three
approaches to retrieve the most similar elements against multiple points.140

Figure B.1 A Twitter stream is consumed in real-time, indexed and stored in the
Packed-Memory Quadtree. (a) : live heat-map displays tweets in the current
time window. (b) : alerts indicate regions with high activity of Twitter posts
at the moment. (c) : the interface allows to drill-down into any region and
query the current data. (d) : the actual data can be retrieved from the Packed-
Memory Quadtree to analyze the tweets in the region of interest.144

Figure B.2 PMQ with 4 segments: ρl and τl are the minimum and maximum den-
sities allowed at each level l of PMQ, d the actual window density. The
numbers in circles count the valid element per window and are stored in the
PMQ accounting array..148

Figure B.3 PMQ: data structure overview ..149
Figure B.4 The heatmap is updated dynamically as the stream of tweets is received.

With an average insertion rate of 1000 tweets/sec we show the heatmap
when PMQ contains 100K (left) or 10M (right) elements..................................151

Figure B.5 Heatmap zoom and range queries are used to explore the latest stream
of tweets around the New York city area. The in-memory storage of PMQ
provides fast access to the actual tweets’ content allowing real-time user in-
teraction even on large range queries (R = radius of the selected area).152

Figure B.6 Allert detection: triggers configured by the user show alerts (yellow
squares) on several cities with a high rate of tweet arrival during Super Bowl
2012. We select the Indianapolis region (where the game occurs) and filter
tweets using a top-k query to retrieve the most relevant tweets in the area.155

Figure B.7 Performance comparison of spatial data storage solutions. Top row:
standard geospatial databases can not handle real-time insertions. Bottom
row: in-memory containers based on dense or sparse (PMQ) vectors.157

Figure B.8 Scalability insertion and scan operation. ..158
Figure B.9 Steady data regime: deletions are performed periodically. For each

test, we insert a dataset of 46 million elements. The maximum number of
elements allowed is half of the dataset size (around 23 million elements), and
removals are configured with different percentages of the maximum.159

Figure B.10 PMQ performance at steady regime for different τh thresholds.159
Figure B.11 PMQ average insertion time with a window of 6h and varying rates.

Current Twitter insertion rate (6K tweets/s) can be processed under 7.5 ms.162
Figure B.12 Range queries: PMQ speedup over the B-Tree and R-Tree. Each box-

plot represents the speedup of throughput for each query instance. The av-
erage speedup is denoted by red crosses. PMQ is faster than the B-Tree in
all cases. Compared to the R-Tree, PMQ has a speedup on 97% of queries
tested. The cases where PMQ performs worst corresponds to queries return-
ing a small number of elements compared to the dataset size.163

Figure B.13 Examples of Range Queries. We define 8 different query widths. The
B-Tree and PMQ use 10 levels of quadtree refinement for range queries. We
choose this parameter experimentally to provide the best overall results.164

Figure B.14 Top-k Queries: cumulative percentages of query latency for K = 100
, R = 30 km and T = 10000 seconds. We compared the search performance
of PMQ against the Kite framework. ..165

Figure B.15 PMQ memory usage depends on density thresholds 2ρh < τh. Boost
C++ R-Tree has a bigger index overhead than stx::btree.165

LIST OF TABLES

Table 2.1 Overall summary of the relevant information for building HashedCubes.
*Not Measured...34

Table 2.2 Subset of queries supported by HashedCubes...36

Table 3.1 Subset of queries supported by Hashedcubes HTTP API.53
Table 3.2 Overall summary of the relevant information for building Hashedcubes.59

Table 4.1 Overall summary of the relevant information for building QDS.87
Table 4.2 Compression results for different p-digest configurations.93

Table A.1 Summarized differences between data structures addressed for this re-
search. ..129

Table A.2 Summary of the datasets used to evaluate Fiedler vector, Z-order and
Hilbert curve projections..132

Table A.3 Summary of the datasets considered for our results and the resource us-
age when indexing the categorical values for similarity queries.137

Table B.1 Parameter λ set for the best relation of removal RM time and average
Avg runnning time for each algorithm..161

Table B.2 Comparison using same λ optimized for the B-Tree....................................162
Table B.3 Insertion time of batches of 1K elements in a PMQ with different time-

windows λ. The number of elements in the container varies from Elts_min to
Elts_max. The Mean, 99% and Max times are in ms. ...162

Table B.4 Memory usage summary ..167

CONTENTS

1 INTRODUCTION...19
1.1 Background ...20
1.2 Collection of Papers and Contributions..26
1.2.1 Real-Time Visual Exploration of Big Data..26
1.2.2 Similarity-based Visual Exploration of Multidimensional Datasets......................27
1.2.3 Real-Time Visual Exploration and Analysis Based on Order Statistics27
1.2.4 Visual Formation and Comparison of Patient Cohorts ..27
1.2.5 Real-Time Visual Exploration of Streaming Big Data ..28
2 HASHEDCUBES: A DATA STRUCTURE FOR REAL-TIME EXPLORATION

OF LARGE MULTIDIMENSIONAL DATASETS29
2.1 Abstract..29
2.2 Introduction...29
2.3 HashedCubes Concept..31
2.4 HashedCubes Construction ...33
2.4.1 Spatial Dimensions ..34
2.4.2 Categorical Dimensions ...35
2.4.3 Temporal Dimensions ..35
2.5 HashedCubes Queries...36
2.6 Experiments and Discussion ..36
2.6.1 Result Analysis ..38
2.7 Conclusions and Future Work ...40
3 HASHEDCUBES: SIMPLE, LOW MEMORY, REAL-TIME VISUAL EX-

PLORATION OF BIG DATA ..42
3.1 Abstract..42
3.2 Introduction...42
3.3 Related Work...43
3.4 Hashedcubes ..46
3.4.1 Some Intuition..47
3.4.2 Construction Algorithm ...49
3.4.3 Spatial Dimensions ..51
3.4.4 Categorical Dimensions ...52
3.4.5 Temporal Dimensions ..53
3.4.6 Queries ...54
3.5 Implementation ...55
3.6 Datasets and Schemas...56
3.6.1 Location-Based Social Networks...56
3.6.2 Airline On-Time Performance ...57
3.6.3 SPLOM ..57
3.6.4 Twitter ..58
3.6.5 NYC Yellow and Green Taxis..58
3.7 Performance Results ...58
3.7.1 Memory Usage...59
3.7.2 Construction Time..61
3.7.3 Query Time ..61
3.8 Discussion ..62
3.9 Conclusions and Future Work ...64

4 REAL-TIME EXPLORATION OF LARGE SPATIOTEMPORAL DATASETS
BASED ON ORDER STATISTICS ...67

4.1 Abstract..67
4.2 Introduction...67
4.3 Related Work...69
4.4 Background ...71
4.5 The t-digest data sketch..72
4.6 Quantile Data Structure ...74
4.6.1 Overview and Query Types..74
4.6.2 Internal Representation ..75
4.6.2.1 Indexing Scheme...76
4.6.2.2 The p-digest data sketch..77
4.6.3 Query Algorithm..78
4.6.4 Implementation ..79
4.7 Building Visualizations with QDS ...80
4.7.1 Extending Usual Visualizations ...80
4.7.2 Easing the Reading of Uncertainty Visualizations...82
4.7.3 Uncovering the Unexpected...82
4.8 Use Cases..85
4.8.1 Analyzing Flights Delays...85
4.8.2 Exploring Outlierness in Taxi Trip Records ..87
4.9 Experimental Results..88
4.9.1 The QDS Index Experiments ...88
4.9.2 The p-digest Sketch Experiments ..89
4.10 Discussion ..92
4.11 Conclusions and Future Work ...93
5 VISUAL FORMATION AND COMPARISON OF PATIENT COHORTS94
5.1 Abstract..94
5.2 Introduction...94
5.3 System Design..96
5.3.1 Datasets ..96
5.3.2 Cohort formation..97
5.3.3 Cohort exploration ...99
5.4 Interface ...101
5.5 Demonstration Scenarios..102
6 CONCLUSIONS AND DISCUSSION ..104
6.1 A Fourier Spectrum-Based Approach to Represent the Decision Tree Clas-

sifier and Regression Method...106
6.2 A Clustering Technique ..107
REFERENCES...114
APPENDICES..126
APPENDIX A SIMILARITY-BASED VISUAL EXPLORATION OF VERY

LARGE GEOREFERENCED MULTIDIMENSIONAL DATASETS127
A.1 Abstract...127
A.2 Introduction..127
A.3 Related Work..129
A.4 Our approach ...131
A.4.1 Projecting data to 1D...131
A.4.2 Indexing data...133
A.4.3 Querying data..135
A.4.4 Implementation details..135

A.5 Results ...136
A.6 Discussion and Limitation...139
A.7 Conclusion ..141
APPENDIX B PACKED-MEMORY QUADTREE: A CACHE-OBLIVIOUS

DATA STRUCTURE FOR VISUAL EXPLORATION OF STREAM-
ING SPATIOTEMPORAL BIG DATA...142

B.1 Abstract ...142
B.2 Introduction ..142
B.3 Related Work ..144
B.4 Packed-Memory Quadtree ..147
B.4.1 The PMQ Data Structure...147
B.4.2 Data Indexing ..149
B.4.3 Dynamic Updates ..149
B.4.4 Query Types ..151
B.5 Implementation...153
B.6 Examples of Visualization Analysis using PMQ..154
B.6.1 Drill-down exploration of a Twitter stream...154
B.6.2 Allert detection of regions with high tweet rates ..154
B.7 Performance Evaluation ..155
B.7.1 Evaluating Storage Solutions for Spatial Data ..156
B.7.2 Evaluating Insertions...157
B.7.3 Evaluating Bulk Deletions ..160
B.7.4 Evaluating the Rebalancing Procedure ...161
B.7.5 Evaluating Range Queries ...162
B.7.6 Evaluating Top-k Queries..165
B.7.7 Evaluating Memory Usage..166
B.7.8 Discussion of the Evaluation Results ..167
B.8 Conclusion and Future Work..168
B.9 Proof of the PMQ Amortized Cost ...168
APPENDIX C IMPLEMENTATION OF FOURIER SPECTRUM-BASED

APPROACH TO REPRESENT DECISION TREES..................................170

19

1 INTRODUCTION

Data acquisition has never been so broad, diverse, and accessible. Nowadays, al-

most every computer-based gadget offers a broad range of options to collect multidimen-

sional data. Social networking, government data, application records, and many others

generate immense amounts of raw data.

A fundamental problem in modern visual data analysis is how to build data ex-

ploration environments that support interactive exploration of large datasets. This prob-

lem has two opposing facets. From one side, the ever-growing complexity and size of

datasets bring the need to provide complex navigation and visual summaries capabilities.

On the other hand, human perception and cognition pose a challenge on how long the

data handling and rendering loop can take. Even small delays on the scale of half a sec-

ond can have a significant negative impact on the visual data exploration process (LIU;

HEER, 2014b). Unfortunately, the ability to produce compelling visual summaries, inter-

action mechanisms and interfaces (ELMQVIST; FEKETE, 2010; FERREIRA; FISHER;

KONIG, 2014) has surpassed our capabilities to create techniques that support real-time

data processing for visualization (FEKETE et al., 2012). As a result, there are limitations

on the analysis that one can hope to perform interactively.

Traditional tools such as relational databases, or statistical packages, have diffi-

culty in handling large multidimensional datasets. Naive solutions can take prohibitively

large amounts of memory or time to answer as the number of dimensions increases. Thus,

specialized data structures to accelerate query time in these datasets are necessary.

Another aspect is that most approaches focus on large static datasets, but there is

a growing interest in analyzing and visualizing data streams upon generation. Twitter is

a typical example. The stream of tweets is continuous, and users want to be aware of the

latest trends. This need is expected to grow with the Internet of things (IoT) and the mas-

sive deployment of sensors that generate large and heterogeneous data streams. Over the

past years, several in-memory big-data management systems have appeared in academia

and industry. In-memory databases systems avoid the overheads related to traditional I/O

disk-based systems and have made it possible to perform interactive data-analysis over

large amounts of data. A vast literature of systems and research strategies deals with

different aspects, such as the limited storage size and a multi-level memory-hierarchy of

caches (ZHANG et al., 2015). Maintaining the right data layout that favors the locality of

accesses is a determinant factor for the performance of in-memory processing systems.

20

Stream processing engines commonly support the concept of window, which col-

lects the latest events without a specific data organization. It is possible to trigger the

analysis upon the occurrence of a given criterion (time, volume, specific event occur-

rence). After a window is updated, the system shifts the processing to the next batch of

events. There is a need to go one step further to keep a live window continuously updated

while having a fine grain data replacement policy to control the memory footprint. The

challenge is the design of dynamic data structures to absorb high rate data streams, stash

away the oldest data to stay in the allowed memory budget while enabling fast queries

executions to update visual representations.

One limitation of current static and streaming solutions is the fact that most of

the time they do not take into account the inherent distribution uncertainty: datasets with

equal mean and covariance, but with entirely different underlying distributions. Exam-

ples of this issue can be seen in the classical Anscombe’s Quartet datasets and the work of

Matejka et al. (MATEJKA; FITZMAURICE, 2017). The state-of-the-art method Gaus-

sian Cubes proposed by Wang et al. (Wang et al., 2017) supports interactive data model-

ing by describing the data distribution using parametric Gaussian distributions. Unfortu-

nately, this approach has two drawbacks. First, it relies on non-robust statistics (mean and

covariances), i.e., they can be easily affected by outliers. Second, and most importantly,

one can not assume real-world data to be normal. Despite visualizations based on aver-

ages (or accompanied by some visual representation of variance) such as heatmaps, line

plots and histograms are ubiquitous.

1.1 Background

In this section, we review related research on different aspects that play an impor-

tant part in this thesis.

Interactive Visualization using Datacubes. The interactive visualization of large datasets

follows two main strategies: sampling and pre-computation. The sampling strategy relies

on online aggregation, i.e., use progressively increasing samples of a population to ap-

proximate the result of a given query (FISHER et al., 2012a; MORITZ et al., 2017).

In this scenario, users face evolving visualizations that indicate current estimates and,

possibly, the uncertainty inherent to the estimation process. This estimation uncertainty

brings extra complexity to decision making. While sophisticated interaction tools have

been proposed to assist in data exploration based on sampling (FERREIRA; FISHER;

21

KONIG, 2014; MORITZ et al., 2017), the problem of dissociating estimation uncer-

tainty from data uncertainty is still unexplored in visualization. On the other hand, the

pre-computation strategy relies on the idea of computing aggregations over several di-

mensions following the datacube concept (GRAY et al., 1997a). The seminal paper of

Gray et al. laid the foundation for many other methods (LIU; JIANG; HEER, 2013; Lins;

Klosowski; Scheidegger, 2013; CAO et al., 2015). A data cube can be seen as a hierarchi-

cal aggregation of all data dimensions in an n-dimensional lattice. Its main disadvantage

is its memory consumption, which becomes impractical as the number of dimensions

increases. To address this problem, some approaches describe ways to compress data

cubes, such as Dwarf (SISMANIS et al., 2002), Immens (LIU; JIANG; HEER, 2013) and

Nanocubes (Lins; Klosowski; Scheidegger, 2013), or build on distributed databases to

cope with scale requirements (KAMAT et al., 2014).

The imMens approach combines data reduction, multivariate data tiles, and paral-

lel query processing (using a GPU) to minimize both data cube memory usage and query

latency. Its multivariate data tile methods are based on the observation that for any pair

of 1D or 2D binned plots, the maximum number of dimensions needed to support brush-

ing and linking is four. Thus, an n-dimensional data cube can be decomposed into a

collection of smaller 3- or 4-dimensional projections. Furthermore, these decomposed

data cubes are segmented into multivariate tiles, like the ones used by Google Maps. On

the other hand, imMens lacks support for compound brushing in more than four dimen-

sions. Nanocubes is a compact variation of a data cube that can handle a large number

of dimensions. It defines a search key that is used to combine aggregations of indepen-

dent dimensions at varying levels of detail and to maximize shared links across the data

structure. Recent systems such as TopKube (Miranda et al., 2018), SwiftTuna (JO et al.,

2017), Gaussian Cubes (Wang et al., 2017) and Sesame (KAMAT; NANDI, 2018) extend

ordinary datacubes to perform more complex analysis in real-time while respecting rea-

sonable memory constraints. SwiftTuna incorporates frequency histograms and dot plots

to reveal relationships among dimensions of the data. TopKube and Gaussian Cubes store

different payloads in the cells of the cubes to support tasks such as ranking and mod-

eling of data cube slices. Both Gaussian Cubes and Sesame incorporate uncertainty by

modeling the data with parametric Gaussian distributions (mean and covariances). This

approach is sensitive to outliers and may not only introduce bias but also hide the essential

features of the data.

VisReduce (IM; VILLEGAS; MCGUFFIN, 2013) is an approach to data aggre-

22

gation which computes visualization results in a distributed fashion. It uses a modified

MapReduce (DEAN; GHEMAWAT, 2004) algorithm and data compression. Its main

drawback is that interaction operations require on-demand aggregations. Thus, the fi-

nal result is obtained only after the costly transfer over the network of partial and final

aggregations. As a rule of thumb, on-demand computation is problematic for visual anal-

ysis because of latency. As Liu and Heer describe (LIU; HEER, 2014a), latencies of

as little as half a second can affect the overall quality of an analyst’s data exploration

process. A popular alternative to hide latency is to use sampling and report uncertainty

estimates as soon as they are available (FISHER et al., 2012b). Similarly, Stolper et al.

describe a general framework for a progressive approach for visual analytics (STOLPER;

PERER; GOTZ, 2014). The need for low latency in large databases is a popular theme in

the literature (ASSENT et al., 2008; SHIEH; KEOGH, 2008; CAMERRA et al., 2010).

BlinkDB (AGARWAL et al., 2013b) builds a carefully-constructed stratified sample of the

dataset, which allows interactive latencies in approximate queries over multiple terabytes

of data. In essence, BlinkDB provides infrastructure such that Hellerstein et al.’s online

aggregation has fast convergence properties (HELLERSTEIN; HAAS; WANG, 1997).

ScalarR improves performance by manipulating physical query plans and computing a

dynamic reduction of query sets based on screen resolution (BATTLE; STONEBRAKER;

CHANG, 2013); it is an early, central example of explicitly taking peculiarities of a vi-

sualization setup in a DB account. 3W is a search framework for geo-temporal stamped

documents that allows fast searches over spatial and text dimensions (NEPOMNYACHIY

et al., 2014). Forecache (BATTLE; CHANG; STON, 2015) improves performance by

predicting user actions ahead of the actual queries being issued. However, most of these

solutions are not designed with visual exploration in mind.

The most recent trend in research at the intersection of data management and vi-

sualizations is the explicit acknowledgment of the human perceptual system. Wu et al.

suggest that database engines should explicitly optimize for perceptual constraints, by for

example, including the visual specification into the physical query planning process (WU;

BATTLE; MADDEN, 2014). Jugel et al. offer a technique that is one such example: the

query algorithms described there return approximate results which nevertheless rasterize

to the same image as the exact query result would (JUGEL et al., 2014; JUGEL et al.,

2016); ScalarR (BATTLE; STONEBRAKER; CHANG, 2013) is another example.

Uncertainty in Visual Analytics. Several survey papers summarize the state-of-art of

uncertainty visualization (JOHNSON; SANDERSON, 2003; POTTER; ROSEN; JOHN-

23

SON, 2012; SACHA et al., 2016; KINKELDEY et al., 2017). Johnson and Sander-

son (JOHNSON; SANDERSON, 2003) raised the issue of having a formal framework that

incorporates errors and uncertainty information into visualization algorithms. This ques-

tioning for handling uncertainty data led to follow-up work that aimed at understanding

the issues that arise in the visualization pipeline, as well as proposing new visualization

algorithms. Several papers claim the importance of incorporating essential statistics into

visualization pipelines (POTTER; GERBER; ANDERSON, 2013; MACIEJEWSKI et

al., 2013; QUARTERONI, 2018). Statistical uncertainty can be used to identify events or

anomaly situations, which is a powerful tool for visual analytics. Maciejewski et al. (MA-

CIEJEWSKI et al., 2010) combine visual exploration with modeling strategies to find

abnormal spatiotemporal hotspots. Also, Wilkinson et al. (WILKINSON, 2018) use a

statistical algorithm for detecting multidimensional outliers. Other approaches such as

computational topology (DORAISWAMY et al., 2014) and graph wavelet theory (VAL-

DIVIA et al., 2015) have also been used in visual analytics systems.

Probability Theory and Data Sketches. We briefly discuss the background of probabil-

ity theory and data sketches, and refer to Rosenthal (ROSENTHAL, 2006) and Cormode

et al. (CORMODE et al., 2012) for a detailed description. We start with the concepts

of distribution of a random variable and quantiles. We define the cumulative distribution

function (cdf) of a random variable X by FX(t) = Pr(X ≤ t). Quantiles are landmark

values of a given cdf that define specific points where FX has accumulated a fraction of

its total probability. For example, a value t is the qth quantile of Fx if FX(t) = q. In-

tuitively, one can obtain the value of the qth quantile by F−1
X (q) by simply inverting the

cdf . In this presentation, the focus is on the intuition and overlook the fact that cdf ’s are

not necessarily invertible. We define the first (q1), second (q2) and third (q3) quartiles

as the quantiles that divide the density in four equal parts, i.e., 0.25th, 0.5th and 0.75th

respectively. We define a random field as a function FM that associates to each point in a

spatial domain (e.g., geographical coordinates) a random variable.

Unlike moment statistics, such as average and variance, quantiles are robust to

the presence of outliers (WILKINSON, 2018). However, it is not possible to combine

quantiles of different datasets (e.g., cdfs) without processing the input datasets entirely.

This limits the use of quantiles in scenarios that require hierarchical/dynamic aggrega-

tion such as datacubes. An alternative is to use approximation schemes called quantile

sketches (PHILLIPS, 2016). A data sketch is “a data structure that can be easily updated

with new or modified data and supports a set of queries whose results approximate queries

24

on the full dataset" (PHILLIPS, 2016). Quantile sketches are data sketches that sup-

port queries of quantile and cdf estimation, in particular for data streaming applications.

Methods vary in memory usage and approximation performance, leading to two groups

of methods. The first one has sketches that have proven approximation bounds such as the

proposals of Shrivastava et al. (SHRIVASTAVA et al., 2004), Agarwal et al.(AGARWAL

et al., 2013a), Karnin et al. (KARNIN; LANG; LIBERTY, 2016) and Felber and Ostro-

vsky (FELBER; OSTROVSKY, 2017). Such methods have performance requirements

which incur in complex algorithms that use large amounts of memory in practice (see

discussion in (BEN-HAIM; TOM-TOV, 2010)). The second group of methods lack rig-

orous algorithmic analysis but relies on heuristics to provide empirical results for query

accuracy and reduced memory usage. Examples of methods in this group are the GK

sketch (GREENWALD; KHANNA, 2001), the S-Hist sketch (BEN-HAIM; TOM-TOV,

2010) moreover, the t-digest by Dunning (DUNNING; ERTL, 2014).

Data Structures for Streaming Data. Data structures need to dynamically process

streams of geospatial data while enabling the fast execution of spatiotemporal queries,

such as the top-k query that ranks and returns only the k most relevant data matching

predefined spatiotemporal criteria. One approach is to store data continuously in a dense

array following the order given by a space-filling curve, which leads to desirable data

locality. Inserting an element takes on average O(n) data movements, i.e., the number

of elements to move to make room for the newly inserted element. The cost of memory

allocations can be reduced using an amortized scheme that doubles the size of the array

every time it gets full. However, elements are often inserted in batches in an already

sorted array. In that case, one approach is to use adaptive sorting algorithms to take ad-

vantage of already sorted sequences (ESTIVILL-CASTRO; WOOD, 1992; COOK; KIM,

1980; MCGLINN, 1989). Timsort (PETERS, 2002) is an example of an adaptive sort-

ing algorithm with efficient implementations. Another possibility is to rely on trees of

linked arrays. The B-tree (BAYER; MCCREIGHT, 1972) and its variations (BRODAL;

FAGERBERG, 2003) are probably the most common data structure for databases. The

UB-Tree is a B-tree for multidimensional data using space-filling curves (RAMSAK et

al., 2000). These structures are seldom used for in-memory storage with a high insertion

rate. They are competitive when data access time is large enough compared to manage-

ment overheads, often the case for on-disk storage. Such data structures are cache-aware,

i.e., to ensure cache efficiency they require a calibration according to the cache parameters

of the target architecture.

25

Sparse arrays are an alternative that lies in between dense arrays and trees of linked

arrays. Data is stored in an array larger than the actual number of elements to store, using

the extra room to make insertions and deletions more efficient. Itai et al. (ITAI; KON-

HEIM; RODEH, 1981) were probably the first to propose such data structure. Bender et

al. (BENDER; DEMAINE; FARACH-COLTON, 2005; BENDER; HU, 2007a) refined it,

leading to the Packed Memory Array (PMA). The main idea is that by maintaining a con-

trolled spread of gaps, insertions of new elements can be performed moving much fewer

than O(N) elements. The insertion of an element in the PMA only requires O(log2(N))

amortized element moves. This cost goes down to O(log(N)) for random insertion pat-

terns. Bender and Hu (BENDER; HU, 2007a) also proposed a more complex PMA,

called adaptive PMA, that keeps this O(log(N)) for specific insertion patterns like bulk

insertions. PMA is a cache-oblivious data structure (FRIGO et al., 1999), i.e. it is cache

efficient without explicitly knowing the cache parameters. Such data structures are in-

teresting today since the memory hierarchy is getting deeper and more complex with

different block sizes. Cache-oblivious data structures are seamlessly efficient in this con-

text. Bender et al. (BENDER; DEMAINE; FARACH-COLTON, 2005; BENDER et al.,

2007) also proposed to store a B-tree on a PMA using a van Emde Boas layout, leading to

a cache-oblivious B-tree. However, it leads to a complex data structure without a known

practical implementation. Still, PMA has few known applications. Mali et al. (MALI et

al., 2013) used PMA for dynamics graphs. Durand et al. (DURAND; RAFFIN; FAURE,

2012) relied on PMA to search for neighbors in particle-based numerical simulations.

They indexed particles in PMA based on the Morton index computed from their 3D coor-

dinates. They proposed an efficient scheme for batch insertion of elements, while Bender

relied on single element insertions.

Stream Processing. Stream processing engines, like GeoInsight for MS SQL StreamIn-

sight (KAZEMITABAR et al., 2010), are tailored for single-pass processing of the in-

coming data without the need to keep in memory a large window of events that require an

advanced data structure. The emergence of geospatial databases led to the development

of a specialized tree, called R-Tree (GUTTMAN, 1984), that associates a bounding box

to each tree node. Several data processing and management tools have been extended

to store geospatial data relying on R-trees or variations like the SpatiaLite (SpatiaLite,

2019) extension for SQLite or PostGis (PostGIS, 2019) for PostgreSQL. Though such

spatial libraries brought flexibility for applications in the context of traditional spatial

databases, their algorithms are not adapted to consume a continuous data stream. Magdy

26

et al. (MAGDY et al., 2014; MAGDY et al., 2016) proposed an in-memory data structure

to query and update real-time streams of tweets. Initially called Mercury, then Venus and

eventually Kite (MAGDY; MOKBEL, Mars 2017) for the latest implementation (Kite is

also benchmarked in our experiments). They rely on a pyramid structure that decomposes

the space into H levels. Periodically the pyramid is traversed to remove the oldest tweets

to keep the memory footprint below a given budget. This idea to rely on bounding volume

hierarchies is also popular in computer graphics for indexing 3D objects and accelerating

collision detection (YOON; MANOCHA, 2006). One difficulty in these data structures is

to ensure fast insertions while keeping the tree balanced. The data structure may also be-

come too fragmented in memory leading to an increase of cache misses. The partitioning

criteria are based on heuristics. There is often no theoretical performance guarantees.

1.2 Collection of Papers and Contributions

This thesis consists of the collection of papers published by the author during the

period of his Ph.D. The subsections below summarize the contributions and most relevant

points of each paper in the collection. Each paper comprises a following separate chapter.

1.2.1 Real-Time Visual Exploration of Big Data

This research started with the proposal of a novel concept to avoid the large mem-

ory footprint common to data cubes by introducing pivots (PAHINS; COMBA, 2016). It

led to a solution of representing hierarchical and flat data structures commonly used to

accelerate data queries, and that can be used to generate well-known visual encodings

such as binned scatter plots, histograms, and heat maps. This work provides algorithms

to support a collection of queries over aggregated data, such as counting events in a par-

ticular spatial region, categorical queries associated with selections, and temporal queries

of any granularity. Memory and timing measurements using a variety of synthetic and

real-world datasets are also reported. The pivot concept is described in Chapter 2.

The following work improves the capabilities of the pivot, and proposes the Hashed-

cubes (HC) (Pahins et al., 2017), a data structure that enables real-time visual exploration

of large datasets that, on the date of publication, improved the state of the art by its low

memory requirements, low query latencies, and implementation simplicity. In some in-

27

stances, HC notably requires two orders of magnitude less space than other data cube visu-

alization proposals. Algorithms to build and query HC, and how it can drive well-known

interactive visualizations such as binned scatterplots, linked histograms, and heatmaps are

presented. Hashedcubes is described in Chapter 3.

1.2.2 Similarity-based Visual Exploration of Multidimensional Datasets

Big data visualization is the main task for data analysis. Due to its complexity

regarding volume and variety, very large datasets are unable to be queried for similarities

among entries in traditional Database Management Systems. This work proposes Simi-

larityCubes (SC) (PERALTA et al., 2018), an effective approach for indexing millions of

elements with the purpose of performing single and multiple visual similarities queries on

multidimensional data associated with geographical locations. It introduces an approach

that makes use of the Z-Curve algorithm to map into 1D space considering similarities

between data. SimilarityCubes is described in Appendix A.

1.2.3 Real-Time Visual Exploration and Analysis Based on Order Statistics

This research proposed data structures to perform interactive visual exploration

of large datasets, but, while powerful, these approaches overlooked an essential aspect

of data analysis: the inherent uncertainty due to data aggregation. This work introduces

Quantile Data Structure (QDS) (de Lara Pahins; Ferreira; Comba, 2019), a data struc-

ture that bridges this gap by supporting interactive uncertainty visualization and explo-

ration based on order statistics. The idea behind this method is that while it is not possible

to exactly store order statistics in a data cube, it is indeed possible to do it approximately

To achieve this, Quantile Data Structure makes use of an efficient non-parametric distri-

bution approximation scheme called p-digest. Both QDS and p-digest are described in

Chapter 4.

1.2.4 Visual Formation and Comparison of Patient Cohorts

The increasing availability of large-scale health-care data in various sectors, med-

ical experts, need effective methods to identify patient cohorts, examine and explain their

28

health and its evolution, and compare cohorts. Medical cohort analysis exhibits the col-

lective behavior of patients, providing insights on the evolution of their health conditions

and their reaction to treatments and their environment. This work proposes COVIZ, an

interactive system that lets medical experts form cohorts, obtain their various statistics,

examine their health condition and treatments, visualize how their health evolves, and

compare cohorts. COVIZ is described in Chapter 5.

1.2.5 Real-Time Visual Exploration of Streaming Big Data

The visual analysis of large multidimensional spatiotemporal datasets poses chal-

lenging questions regarding storage requirements and query performance. This research

proposed data structures to address these problems that rely on indexes that pre-compute

different aggregations from a known-a-priori dataset. Consider now the problem of han-

dling streaming datasets, in which data arrive as one or more continuous data streams.

This work introduces Packed-Memory Quadtree (PMQ) (TOSS et al., 2018), a novel

data structure designed to support the visual exploration of streaming spatiotemporal

datasets. Packed-Memory Quadtree is cache-oblivious to perform well under different

cache configurations. This work is validated under different dynamic scenarios and com-

pared to other recent strategies. PMQ is described in Appendix B.

29

2 HASHEDCUBES: A DATA STRUCTURE FOR REAL-TIME EXPLORATION

OF LARGE MULTIDIMENSIONAL DATASETS

Published in: Proceedings of the 1st Workshop on Data Systems for Interactive Analysis,

2015.

Authors: Cícero A. L. Pahins and João L. D. Comba.

2.1 Abstract

The proliferation of statistics, application usage records, GPS and other devices,

lead to large and complex volumes of data. Visualization techniques are used to perform

analysis of this data, and the creation of different associations over this data allow to dis-

cover patterns that would hardly be recognized by individual data analysis. The analysis

of big data presents challenges which frequently requires aggregation of the data. Tradi-

tional tools like relational databases, or statistical and visualization applications, are not

appropriate to the volume of data presented, and the well-known data cube aggregation

operation can take a prohibitively large amount of space. We propose HashedCubes, a

data structure that has low memory requirements and enables interactive exploration and

analysis of complex and large multidimensional datasets. We present algorithms to build

and query HashedCubes, as well as how it can be used to generate well-known visual en-

codings such as binned scatter plots, histograms, and heat maps. We shown memory and

timing measurements using a variety of synthetic and real-world datasets ranging from

4.7M to 1B records.

2.2 Introduction

Data acquisition has never been so broad, diverse, and accessible. Nowadays, al-

most every computer-based gadget offers a broad range of options to collect multidimen-

sional data. Social networking, government data, application records and many others

generate immense amounts of raw data. The exploration and analysis through aggrega-

tion of these datasets is a valuable opportunity to researchers, that often find tools, such

as histograms and heat maps, best suited for the task.

Traditional tools such as relational databases, or statistical packages, have dif-

30

ficulty to handle large multidimensional datasets. Naive solutions can take prohibitively

large amounts of memory or time to answer as the number of dimensions increases. Thus,

specialized data structures to accelerate query time in these datasets are necessary.

Data aggregation enables the design of sophisticated visualization tools once queries

are performed on preprocessed data. In this way, a large number of recent solutions extend

the well-known data cube (GRAY et al., 1997b), a data structure that aggregates all data

dimensions in a regular n-dimensional structure. Its main disadvantage is that memory

usage becomes impractical when the number of dimensions increases.

The imMens approach described in (LIU; JIANG; HEER, 2013) combines data

reduction, multivariate data tiles, and parallel query processing, aiming to minimize the

data cube memory usage. Its multivariate data tile methods are based on the observa-

tion that for any pair of 1D or 2D binned plots, the maximum number of dimensions

needed to support brushing and linking is four. Thus, an n-dimensional data cube can be

decomposed into a collection of smaller 3- or 4-dimensional projections. Furthermore,

these decomposed data cubes are segmented into multivariate tiles, like the ones used by

Google Maps, but the approach lacks support for compound brushing of more than four

dimensions.

Nanocubes (Lins; Klosowski; Scheidegger, 2013) is a compact variation of a data

cube that can handle a large number of dimensions. It defines a search key that is used to

combine aggregations of independent dimensions at varying levels of detail, but support

only spatiotemporal datasets. HashedCubes is an alternative to Nanocubes that allows

a more compact and expressive representation through the extensive use of pivots. The

notion of pivots described in (MORA, 2011; PAHINS; POZZER, 2014) allow fast queries

through compact and linear storage.

In this work, we introduce HashedCubes, a novel data structure to accelerate

queries from interactive visualization tools that explore and analyze large multidimen-

sional, spatiotemporal, datasets. HashedCubes supports spatial queries, such as counting

events in a particular spatial region, categorical queries associated with selections, and

temporal queries of any granularity. On average, queries are performed under 30 mil-

liseconds for a single thread execution. In particular, we show how to build HashedCubes

to fit in the main memory of a personal computer configuration.

HashedCubes offers a supporting infrastructure to real-time interactive visualiza-

tions systems through binned aggregation. In summary, our main contributions are:

• a novel data structure that enables real-time exploratory visualization of large mul-

31

Figure 2.1: HashedCube building steps for ten points [o0, ..., o9]. The process is described
in Section 2.3.

Schema = [[Latitude, Longitude], [Device], [Time]]

Dimension 1 - Spatial

[0, 9]

Pivots

Sort Data Using Output Pivots

o6 o7 o8 o9 o3 o4 o5 o0 o1 o2

0 1 2 3 4 5 6 7 8 9

Data After Sorting

[0,1] [2,3] [4,9] [-,-]

[0,1] [2,3] [4,6] [-,-] [-,-][7,9] [-,-]

0,0 1,0 0,1 1,1

0,0 1,0 00,10 1,101,10 00,11 01,11

Q
u

ad
tr

ee
R

ep
re

se
n

ta
ti

o
n

Data Initializing

o0 o1 o2 o3 o4 o5 o6 o7 o8 o9

0 1 2 3 4 5 6 7 8 9

Data (in any order)

Dimension 2 - Categorical Dimension 3 - Temporal

List of Pivots from Dimension 1

Sort Data Using Output Pivots

o6 o7 o8 o9 o3 o4 o5 o1 o0 o2

0 1 2 3 4 5 6 7 8 9

Data After Sorting

List of Pivots from Dimension 2

[0,] [,] [,9][,]…
[0,1] [-,-] [-,-] [2,3]

[8,9][7,7]

W L

[4,5] [6,6]

W L

W L

W L

Output to Next Dimension
(List of Pivots)

Dimension Input
(List of Pivots)

[,] [,]

Set of Pivots (red line)

Dimension N - Type

index building

0,0 1,0

0,1 1,1
00,11 01,11

00,10 01,10

0,0 1,0

1,1

Device () = Windows
Device () = Linuxo1

o0
o2

o4

o5

o3

o6

o7
o9

o8

Root Pivot

Sort Data Using Output Pivots

Final List of Pivots

tidimensional, spatiotemporal datasets;

• a pivot schema to represent hierarchical and flat data structures commonly used to

accelerate data queries;

• experiments to measure memory usage and building time of our method on syn-

thetic and real-world datasets.

2.3 HashedCubes Concept

Hierarchical data structures can store information in a myriad of ways. One possi-

bility is to store information only at the leaves of the tree. However, to recover information

at an internal node it is necessary to aggregate information in a bottom-up fashion from

the leaves up to the given node. In the case of applications that require queries at varying

levels of the tree, this approach becomes expensive. The replication of information at

each node may become too expensive, especially if the information is complex. Finding

a balance in these alternatives is the goal of HashedCubes.

Fractional Cascading (CHAZELLE; GUIBAS, 1986) is an approach that explores

the property that information stored at a given node of the tree is a subset of the informa-

tion stored at ancestral nodes. By using this property, range queries in higher dimensions

are made more efficient. Variations of this idea appear in several works. One interesting

approach is to keep a single array containing all the information ordered by a depth-first

traversal of the tree. Such ordered array has the property that the information associated

with each node of the tree is stored in a contiguous fashion. Therefore, it suffices to keep

a pair of markers in this array to represent the information stored at each node. This pair

of markers is called a pivot, and has been used in (MORA, 2011; PAHINS; POZZER,

2014).

A pivot represents an interval [i0, i1], where i0 and i1 are the initial and final mark-

32

ers within a given array. In HashedCubes, a pivot is used to delimit a list of elements

with a common semantic value, such as the same spatial quadrant, categorical attribute

or temporal bin. The difference between the initial and final values enables the trivial

computation of the set size. We use pivots to delimit sets in a hierarchical fashion, in such

way that the size of aggregations can be pre-computed.

Given a multidimensional dataset, a linear array called Hash is associated with a

root pivot [0, n − 1] and indicates the universe of n elements. Each element of the Hash

array is an integer that points to a position in the dataset. Initially, Hash array is stored in

any order, as shown in Figure 2.1.

HashedCubes supports three distinct dimension types: spatial, categorical and

temporal, which can be build and traversed in any order. Since lower nodes in the hi-

erarchy are subsets of higher nodes in the hierarchy, the list of pivots in a given dimension

also represent subsets for that given dimension.

Let’s assume that we are building a categorical dimension that can have values A

or B. The construction algorithm processes all values delimited by a given pivot. For the

root of the tree, the categorical dimension output will be a list of pivots with two elements

that represent the separation of the categories A and B. As the pivot represents the initial

and final positions of a set of values, the entries (in fact the Hash array) must be ordered to

reflect this organization. This can be seen in Figure 2.1 - Sort Data Using Output Pivots.

Any of the dimensions can receive a list of pivots as input. Every pivot in this list

is further refined as necessary to create lists of subset pivots. A collection of all generated

lists of pivots is the output obtained after processing each dimension.

Pivot hierarchy is a core concept of HashedCubes. Consider the HashedCubes in

Figure 2.2. The illustration shows a dataset that contain eight records, distributed along

the X and Y axis, from values 0 to 2. Each record has a categorical attribute A or B

associated with the spatial information. Observe the pivot [0, 5] from dimension 1. After

the data array is sorted, all elements that are distributed along X = 0 are located between

positions 0 and 5. Moreover, dimensions 2 and 3 have pivots that are contained in this

range, and, therefore, represent subsets with the sameX value. In contrast, the pivot [6, 6]

is repeated three times across the HashedCube. It indicates a set that all elements have

the same bins for each of the dimensions.

The pivot hierarchy mimics the tree hierarchy since each pivot represents a set

that can be further divided into a variable number of subset pivots. Therefore, it allows

the query algorithm to skip dimensions with no selection or constraint. Nanocubes (Lins;

33

Figure 2.2: An illustration of how to interpret pivot hierarchy. HashedCubes reassembles
tree hierarchy.

o0[(0,0); A], o1[(0,1); A], o2[(1,0); A], o3[(2,0); A],o4[(0,2); B], o5[(0,0); A], o6[(0,0); B], o7[(0,0); B]

Dim. 1: X [0-2]

Dim. 2: Y [0-2]

Dim 3. A or B

[0,5]

0

[6,6]

1

[7,7]

2

[0,3]

0

[4,4]

1

[5,5]

2

[6,6]

0

[7,7]

1

[0,2]

A

[3,4]

B

[4,4]

A

[5,5]

B

[6,6]

A

[7,7]

A

o0 o1 o2 o3 o4 o5 o6 o7

0 1 2 3 4 5 6 7

Data Before Sorting

o0 o5 o7 o6 o1 o4 o2 o3

0 1 2 3 4 5 6 7

Data After Sorting

Klosowski; Scheidegger, 2013) has a similar approach called shared pointers, but incurs

in additional memory cost. Furthermore, the difference between initial and final values

of a pivot represents the set size. Thus, pivot hierarchy enables the interpretation of this

property as precomputed aggregation sizes in any refinement.

Note that HashedCubes reassembles tree hierarchy, but differently from these data

structures, it does not store edges between one dimension to another. Siblings pivots

(nodes) are stored as lists (red lines in Figure 2.1 and 2.2). Each dimension stores collec-

tions of pivots.

2.4 HashedCubes Construction

To build HashedCubes, firstly it is necessary to define an indexing scheme that

encodes the ordering that dimensions are processed from the dataset (e.g. first spatial,

then categorical, and finally temporal). For every dimension of the indexing scheme, the

algorithm tags the respective bin of each object. Then, a sorting algorithm is executed in

the predefined spaces delimited by a list of broader pivots. Initially, this list contains only

the root pivot, which indicates the dataset universe space. After that, narrow pivots are

generated and represent subsets. The result of processing each dimension, a list of pivots,

is the input to the next dimension (that are subsets of the above).

Note that, in contrast to data cubes (GRAY et al., 1997b) or Nanocubes (Lins;

Klosowski; Scheidegger, 2013), HashedCubes does not perform aggregations across ev-

ery possible set of dimensions. Instead, our method leverages the pivot hierarchy to com-

pute the faulty aggregations on-the-fly. Take as example the illustration on Figure 2.2.

Root pivot [0, 7] aggregates every object of the dataset universe. However, how to pro-

34

Table 2.1: Overall summary of the relevant information for building HashedCubes. *Not
Measured.

dataset objects memory time pivots schema
brightkite 4.7 M 26 MB 4 s 1.9 M lat & long, hour of day (24), day of week (7), time
gowalla 6.4 M 20 MB 5 s 1.5 M lat & long, hour of day (24), day of week (7), time
flights 121 M 208 MB 128 s 17.3 M lat & long, departure delay (9), carrier (29), time

splom-10 1 B 120 KB NM∗ 15 K d1 (10), d2 (10), d3 (10), d4 (10), d5 (10)
splom-50 1 B 66 MB NM∗ 8.2 M d1 (50), d2 (50), d3 (50), d4 (50), d5 (50)

ceed if we want to know how many objects are labeled as A or B in the categorical

dimension 3? Taking advantage of the linear storage used by HashedCubes, we can triv-

ially combine aggregates from multiple branches. Thus, with only one pass, we compute

aggregations of any dimension. This algorithm is described in Section 2.5 and it is respon-

sible for significant memory savings when compared against existent solutions, enabling

the exploration of very large datasets.

2.4.1 Spatial Dimensions

Spatial attributes usually require space partitioning data structures, which are often

hierarchical. HashedCubes represents hierarchical data structures by storing delimiting

lists of pivots for each refinement step. As a result, the output is the aggregation of all leaf

nodes or end values of the represented structure. Spatial queries broken down by latitude

and longitude are the basis for heat maps and choropleth maps.

It is helpful to think of spatial dimensions as being represent by quadtrees. Each

node is associated with a pivot that delimits the objects within that space. If a query

matches the exact region represented by a node, then the pivot represent all aggregates

that refers to that set. Otherwise, we compute the minimal disjoint set of nodes that cover

the query region. The region visible on-screen can be interpreted as spatial queries, reduc-

ing the total processing necessary. Our current implementation uses Mercator projection

for consistency with existing map tile providers, such as OpenStreetMap (HAKLAY; WE-

BER, 2008).

Typically, map tiles providers use coordinates (x, y, z). The tuple [x, y] are integer

addresses, and z represents the zoom level, that in most cases range between 0 (zoomed

out) and 18 (zoomed in). Each zoom increment doubles [x, y] resolution, and consists of

22n or 4n tiles. In this manner, our quadtree implementation is limited to a maximum of

26 levels of divisions, the maximum zoom value plus 8, which denotes how many levels

to break down tile space.

35

Figure 2.3: Spatial dimension indexing scheme. A period of time is represented by a
timestamped list of pivots.

[0,2] [3,3] [4,5] [6,7] [8,9] [10,10] [11,12]

[0,5] [6,12]

Dimension N – Attr. 0 Dimension N – Attri. 1

Temporal Dimension Temporal Dimension

time

events

2 4 9 1 2 5 8

List of Pivots from Dimension 2

2.4.2 Categorical Dimensions

Categorical attributes of multidimensional datasets are usually divided into spe-

cific values or ranges. Thus, the resulting index should be lists of pivots that represents

data grouping in regions defined for each of these bins. Categorical queries are the basis

for histograms, binned scatter plots and parallel sets (KOSARA; BENDIX; HAUSER,

2006), each of these requiring a different breakdown from HashedCube search engine

results.

To build the index, each categorical dimension has a specialized Comparator

Function. A comparator function computes, for each dataset element, a position in the

resulting list of pivots. More specifically, it compares an element against all dimension

attributes and returns a bin tag. Let’s take as example the illustration of Figure 2.2. Di-

mension 3 has a comparator function that returns, for any dataset element, either A or B.

Thus, the output is ordered based on the tags and to reflect the pivot hierarchy.

2.4.3 Temporal Dimensions

To represent temporal dimensions, we take advantage from pivots property of rep-

resenting set sizes. Time series are stored as timestamped lists of pivots. Each pivot

represents a bin. To ease the exposition, let’s take as example a HashedCube in which

time series are binned per day since epoch time. The building algorithm will compute the

bin of every dataset element. This collection of bins will represent a sparse list of sets.

From that, will be generated a dense list of timestamped bins, as illustrated in Figure 2.3.

This schema enables to store time series from any granularity without requiring a

nested data structure. Moreover, since each pivot is associated with a timestamp, it allows

to compute the number of events along any contiguous period by finding the pivot with the

least upper bound and greatest lower bound from the period of time. All three dimension

36

Table 2.2: Subset of queries supported by HashedCubes.
Query URL

count of dimension /field/<category>
count along period /tseries/<from>/<to>/<incr>
subset of dimension /where/<category>=<value0> |...|<valuen>
heatmap of region /region/<level>/<lon>/<lat>/<widht>/<height>

types has input and output as lists of pivots.

2.5 HashedCubes Queries

Initially, the query range is the dataset universe represented by the pivot [0, N].

The query result in each dimension is a delimiting list of pivots of the selected data,

thus, this lists becomes the new range query. This process is interactively repeated until

the last dimension. Note that, unlike other data structures for real-time exploration and

analysis of large datasets, such as Nanocubes (Lins; Klosowski; Scheidegger, 2013), our

method is not tree-based, so data iteration occurs in linear memory. Such approach offers

an appealing performance, since the CPU cache automatically optimizes burst memory

operations (GOODMAN, 1983; KRISHNAMOHAN; FARMWALD; WARE, 1996).

Our method optimizes query time by the clever use of pivots. Take as example

the schema in Figure 2.2. As already known, inferior dimensions represent subsets of

superior dimensions, thus, if a query value does not select any attribute from a particular

dimension, such as Dimension 1 (Figure 2.2), the query algorithm will simply skip it

until finding a valid selection. The skipping dimension process provides a significant

performance gain when queries select all or none attributes from dimensions. Selecting

all attributes has the same effect that selecting none.

Our method supports three types of query, which have different complexity in

traversing the data structure: Querying a Value, Querying a Value with a List of Pivots

(range) and Querying a List of Values with a List of Pivots (range). Each query function

must be picked according to the type of expected pivots selection. The correct choice of

the functions ensures minimal query time.

2.6 Experiments and Discussion

We use a client-server architecture for the current implementation of our method.

The server reads multidimensional data, builds HashedCubes and then waits for queries

37

Figure 2.4: HashedCubes enables real-time exploratory interactive systems using a wide
range of visual encodings, such as heat maps and choropleth maps, histograms, binned
scatter plots, parallel sets, and others. They support brushing & linking across any dimen-
sion. The images show the heatmap and charts associated with two given queries.

from the client. The server is implemented under Java EE technology, using Glassfish as

back-end. It is easy to plug in different data structures for each dimension since we use

Java generics to allow our method to operate on objects of various types. Memory usage

and query response time were optimized.

Our server exposes its API via HTTP using Jersey, an open source implementation

of JAX-RS Java API, as shown in Table 2.2. Queries can be combined to generate a

wide range of visual encodings, such as heat maps and choropleth maps [region]+[where],

histograms [field]+[region]+[where], scatter plots [field]+[field]+[region]+[where], and others.

The server is easily parallelizable since the data structure are no longer mutated

after building. In the front-end, we develop a browser-based client written in Javascript,

SVG, and HTML5. Server queries are asynchronous through the use of jQuery Ajax

API. Leaflet, Heatmap.js, jQuery UI, D3.js and other javascript libraries were combined

to generate the real-time exploration and visualization features, as shown in Figure 2.4.

For the experiments, we paid particular attention to how much memory was re-

quired to store HashedCubes, which varied considerably from one dataset to another, as

shown in Table 2.1. Our dataset selection enables a direct comparison against other state-

of-the-art solutions. Brightkite (4.7M) and Gowalla (6.4M) are two location-based social

networks that let users share their locations. Both were used by imMens andNanocubes.

Flights dataset (121M) tracks the on-time performance of domestic flights by U.S. air

carriers and was used to by Nanocubes. SPLOM (1B) is a synthetic dataset that was

designed to stress data cube technology. It was used by imMens and Nanocubes.

Since the building time was a relevant factor of HashedCubes, the construction

algorithm has been optimized for speed by avoiding repeated memory allocations and

deallocations (using techniques for avoiding automatic Java GC collections). We find that

building time is dominated by sorting time steps. To measure query time, we performed

38

Figure 2.5: HashedCubes temporal and spatial indexing schemes allow the exploration
and analysis of check-ins as global trends, as well as geographically restrict events. In
October 2008 Brightkite Iphone app goes live. In October 2009 Brightkite 2.0 was re-
leased.

Global United States of America Western Europe Japan

(a) October 2008

Global United States of America Western Europe Japan

(b) October 2009

Figure 2.6: By indexing Day of Week and Hour of Day as categorical dimensions of
the Brightkite dataset, HashedCubes enables to highlight user interactions across specific
geographical regions. There is a significant usage difference between US and Japan.

Global United States of America Western Europe Japan

(a) Day of Week

Global United States of America Western Europe Japan

(b) Hour of Day

brushing & linking across dimensions. All three real-world datasets consistently pre-

sented query times under 30ms for various rollups and drill down test combinations. The

network bandwidth between server and client interfaces were dominated by transference

of geographical tiles information.

2.6.1 Result Analysis

HashedCubes indexing scheme enables to interactively explore large multidimen-

sional datasets by supporting a collection of queries over the aggregated data, such as

39

Figure 2.7: (a) Growth of the number of pivots when inserting objects into HashedCubes.
Notice the key saturation effect. (b) HashedCubes memory usage is directly proportional
to the number of pivots. From top to bottom: Flights, Brightkite and Gowalla datasets.

0 M 100 M 200 M 300 M 400 M 500 M 600 M 700 M 800 M 900 M 1 B
Splom-10 0 14981 14931 15026 15121 23108 31094 23108 15121 15121 15121
Splom-20 0 173347 193324 194716 196108 196108 196108 196108 196108 196108 196108
Splom-30 0 835451 860162 901459 942756 942756 942756 942756 942756 942756 942756
Splom-40 0 2322618 2544157 2556609 2569061 2569061 2569061 2569061 2569061 2569061 2569061
Splom-50 0 4922822 5719436 6105894 6492352 6492352 6492352 6492352 6492352 6492352 6492352

Number of Objects Inserted

0

1

2

3

4

5

6

7

0 M 100 M 200 M 300 M 400 M

N
um

be
r o

f P
iv

ot
s (

in
 m

ill
io

ns
)

Number of Objects Inserted

Splom-10 Splom-20

Splom-30 Splom-40

Splom-50

(a)

25M (20%0M (40%4M (60%99M (80%121M (100%)
Memory Usage 0.24 0.42 0.58 0.79 1.00
Number of Pivots 0.24 0.42 0.58 0.79 1.00
Building Time 0.23 0.45 0.82 0.97 1.00

17319502 208.12
13644632 0.79 164.17 0.79

9977594 0.58 120 0.58
7318235 0.42 87.8 0.42
4151711 0.24 50 0.24

128
124 0.97
105 0.82

58 0.45
30 0.23

Number of Inserted Flights

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

25M
(20%)

50M
(40%)

74M
(60%)

99M
(80%)

121M
(100%)

Number of Inserted Flights

Fr
ac

tio
n

of
 F

in
al

 V
al

ue

Memory Usage
Number of Pivots
Building Time

949K (20%.8M (40%.8 M (60%3.7M (80% 4.7M (100%)
Memory Usage 0.16 0.36 0.53 0.84 1.00
Number of Pivots 0.16 0.36 0.54 0.84 1.00
Building Time 0.0 0.2 0.2 0.5 0.7

1990549 1 26.4
1680503 0.84 22.14 0.84
1083425 0.54 13.9 0.53

724534 0.36 9.44 0.36
326105 0.16 4.3 0.16

N. of Inserted Brightkite Checkins

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

949K
(20%)

1.8M
(40%)

2.8 M
(60%)

3.7M
(80%)

4.7M
(100%)

N. of Inserted Brightkite Checkins

Fr
ac

tio
n

of
 F

in
al

 V
al

ue

Memory Usage
Number of Pivots

M (206M (40 9M (60%.2M (80%6.4M (100%)
Memory Usage 0.16 0.30 0.51 0.69 1.00
Number of Pivots 0.16 0.30 0.52 0.70 1.00
Building Time 0.00 0.20 0.20 0.50 0.70

1528012
1068324 0.7

798598 0.52
464684 0.3
243314 0.16

20.73
14.21 0.69

10.6 0.51
6.24 0.3
3.32 0.16

N. of Inserted Gowalla Checkins

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.3M
(20%)

2.6M
(40%)

3.9M
(60%)

5.2M
(80%)

6.4M
(100%)

N. of Inserted Gowalla Checkins

Fr
ac

tio
n

of
 F

in
al

 V
al

ue

Memory Usage
Number of Pivots

(b)

counting events in a particular spatial region, categorical queries associated with selec-

tions, and temporal queries of any granularity. As showed in Section 2.6, queries can be

combined to generate a wide range of visual encodings. Based on that, researchers are

more willing to spend time exploring and analyzing complex data sets, what can lead to

discovery of hidden and interesting patterns, as shown in Figures 2.5 and 2.6.

From the performance perspective, Figure 2.7b shows curves for memory usage

and number of pivots for Flights, Brightkite, and Gowalla datasets using HashedCubes.

As additional information, Flights graph shows building time. All metrics are relative to

the final HashedCube numbers presented in Table 2.1. For each dataset, inserted records

ranged from 20% to 100% of the total.

All real datasets have records over wide periods of time. As a result, the growth

40

in the number of pivots is proportional to the growth of the temporal dimension. Records

are sorted by timestamps, which translates to a constant insertion rate of distinct temporal

values. In our experiments, we used the time resolution set to one hour, and, therefore,

two records with timestamps 15h05m and 15h55m have pivots with the same time label.

Most records will not require more memory since their pivots were already inserted into

the HashedCube index.

Memory usage is directly proportional to the number of pivots, i.e., to the number

of used bins per dimension. This is due to the fact that HashedCubes do not spend memory

to store edges (pointers) between nodes from one dimension to another, since each is

independent.

When HashedCubes memory usage is directly compared against the state-of-the-

art Nanocubes (Lins; Klosowski; Scheidegger, 2013), we find a reduction factor of up

to 61x in the best case. Building the HashedCubes for brightkite and flights real-world

datasets, requires 26MB and 208MB of memory, respectively. For the same dimension

schema, Nanocubes requires 1.6GB and 2.3GB. Keep in mind that HashedCubes does not

perform aggregations across every possible set of dimensions, it computes faulty aggrega-

tions on-the-fly. Tree hierarchy is reassembled by pivots hierarchy interpretation, actually

enabling the removal of any dimension from the index after building.

Figure 2.7a shows pivots growth for the SPLOM dataset ranging from zero to four

hundred million inserted records into HashedCubes of different bin size. Every dimension

of this dataset is collect from synthetic generators that have normal distribution, which

means that the set of high probability values are quickly sampled, making harder for new

records with an unseen bin. It highlights an effect known as key saturation. Due to the

key saturation effect, most inserted records does not require additional memory since

their pivots were already present in the HashedCube index, a phenomenon that performs

an important role to reduce memory usage.

2.7 Conclusions and Future Work

In this paper we presented HashedCubes, a fast, easy to implement and, memory

efficient data structure to answer queries from interactive visualization tools that explore

and analyzes large multidimensional datasets. The pivot approach enables traversal in any

order and allows to include multiple spatial dimensions into the index, useful so that one

could visualize, for example, datasets with two natural geographical locations, such as

41

phone calls.

Our major contributions have shown that (i) is possible to represent hierarchical

and flat data structures using an optimized pivot schema that is stored in a linear fashion

way, and (ii) demonstrated that this leads to memory savings over other solutions, as

shown in Section 2.6.

Taking advantage of the performance given by HashedCubes, researchers can de-

velop richer, more appealing and seamless interactive visualizations tools. As future work,

extension of pivots concept, as well as further query optimizations, should be performed.

42

3 HASHEDCUBES: SIMPLE, LOW MEMORY, REAL-TIME VISUAL EXPLO-

RATION OF BIG DATA

Published in: IEEE Transactions on Visualization and Computer Graphics (TVCG),

2017.

DOI: 10.1109/TVCG.2016.2598624

Qualis CAPES: A1

Authors: Cícero A. L. Pahins, Sean A. Stephens, Carlos Scheidegger and João L. D.

Comba.

3.1 Abstract

We propose Hashedcubes, a data structure that enables real-time visual explo-

ration of large datasets that improves the state of the art by virtue of its low memory

requirements, low query latencies, and implementation simplicity. In some instances,

Hashedcubes notably requires two orders of magnitude less space than recent data cube

visualization proposals. In this paper, we describe the algorithms to build and query

Hashedcubes, and how it can drive well-known interactive visualizations such as binned

scatterplots, linked histograms and heatmaps. We report memory usage, build time and

query latencies for a variety of synthetic and real-world datasets, and find that although

sometimes Hashedcubes offers slightly slower querying times to the state of the art, the

typical query is answered fast enough to easily sustain a interaction. In datasets with

hundreds of millions of elements, only about 2% of the queries take longer than 40ms.

Finally, we discuss the limitations of data structure, potential spacetime tradeoffs, and

future research directions.

3.2 Introduction

Designers of interactive visualization systems face serious challenges in the pres-

ence of large, multidimensional datasets. On one side, naive implementations of repeated

linear scans of the dataset of interest no longer offer acceptable latencies: this makes sim-

ple data structures no longer attractive. On the other side, sophisticated implementations

of precomputed indices built specifically for visualization have been proposed recently.

43

These offer attractive query times, but their implementations are not trivial to integrate

with existing systems, require GPU support, or have another similar downside. This paper

provides an affirmative answer to the following question: is there a simple data structure

that offers much of the performance of the more sophisticated indices, while maintaining

a relatively-low memory footprint and implementation simplicity?

Specifically, we present Hashedcubes, a novel data structure that enables fast

querying for interactive visualizations of large, multidimensional, spatiotemporal datasets.

Hashedcubes supports spatial queries, such as counting events in a particular spatial re-

gion; categorical queries over subsets of attribute values; and temporal queries over in-

tervals of any granularity. As we report on Section 3.7, a typical query is returned in

under 30 milliseconds in single-threaded execution. As a practical matter, Hashedcubes

was designed to target the amount of main memory of a modern desktop or laptop per-

sonal computer (on the order of 16 to 32GB of main memory). In summary, this paper

contributes:

• a simple data structure for real-time exploratory visualization of large multidimen-

sional, spatiotemporal datasets, advancing the state of the art especially with respect

to implementation simplicity and memory usage,

• an experimental validation of a prototype implementation of Hashedcubes, includ-

ing a suite of experiments to assess query time, memory usage, and build time of

the data structure on synthetic and real-world datasets, and

• an extended discussion of the trade-offs enabled by Hashedcubes, including limita-

tions and open research questions.

3.3 Related Work

In this section we will focus on work directly related to interactive visual analysis

of big data. For a more comprehensive list of papers, we refer the reader to the surveys on

big data analysis (GODFREY; GRYZ; LASEK, 2015), big data visualization (AGRAWAL

et al., 2015), geospatial big data analysis (LI et al., 2015) and challenges in big data im-

plementation (GUPTA; SIDDIQUI, 2014; MORTON et al., 2014; IDREOS; PAPAEM-

MANOUIL; CHAUDHURI, 2015).

44

Figure 3.1: Hashedcubes accelerates queries used in a wide range of interactive ex-
ploratory visualizations, such as heatmaps, time series plots, histograms and binned scat-
terplots, and supports brushing and linking across spatial, categorical and temporal dimen-
sions. In this figure, we show some example visualizations backed by Hashedcubes. The
left image shows 210.6 million tweets from November 2011 to June 2012, highlighting the
activity during Superbowl XLVI. The central image shows 24.5 million pick-up locations
of NYC green taxis rides from January 2014 to June 2015. On the right, the visualizations
show different aspects of 4.5 million Brightkite check-ins, a social network. Hashedcubes
balances low memory usage, fast running times, and simple implementation; it allows in-
teractive exploration of datasets that previously either required a prohibitive amount of
memory or uncomfortably large latencies.

Overview of USA tweets between Nov 2011 and Jun 2012 NYC Green Taxis pick-up Brightkite in Europe Brightkite temporal series

The need for low latency in large databases is a popular theme in the literature (AS-

SENT et al., 2008; SHIEH; KEOGH, 2008; CAMERRA et al., 2010). BlinkDB (AGAR-

WAL et al., 2013b) builds a carefully-constructed stratified sample of the dataset, which

allows interactive latencies in approximate queries over multiple terabytes of data. In

essence, BlinkDB provides infrastructure such that Hellerstein et al.’s online aggregation

has fast convergence properties (HELLERSTEIN; HAAS; WANG, 1997). ScalarR im-

proves performance by manipulating physical query plans and computing a dynamic re-

duction of query sets based on screen resolution (BATTLE; STONEBRAKER; CHANG,

2013); it is an early, central example of explicitly taking peculiarities of a visualiza-

tion setup in a DB account. 3W is a search framework for geo-temporal stamped doc-

uments that allows fast searches over spatial and text dimensions (NEPOMNYACHIY

et al., 2014). Forecache (BATTLE; CHANG; STON, 2015) improves performance by

predicting user actions ahead of the actual queries being issued.

The seminal paper of Gray et al. (GRAY et al., 1997b) introduced the data cube

concept, which laid the foundation for many other methods (LIU; JIANG; HEER, 2013;

Lins; Klosowski; Scheidegger, 2013; CAO et al., 2015), including our proposal. A data

cube can be seen as a hierarchical aggregation of all data dimensions in an n-dimensional

lattice. Its main disadvantage is its memory consumption, which becomes impractical

as the number of dimensions increases. To address this problem, some approaches de-

scribe ways to compress data cubes, such as Dwarf (SISMANIS et al., 2002), or build on

distributed databases to cope with scale requirements (KAMAT et al., 2014).

45

VisReduce (IM; VILLEGAS; MCGUFFIN, 2013) is an approach to data aggre-

gation which computes visualization results in a distributed fashion. It uses a modified

MapReduce (DEAN; GHEMAWAT, 2004) algorithm and data compression. Its main

drawback is that interaction operations require on-demand aggregations. Thus, the final

result is obtained only after the costly transfer over the network of partial and final aggre-

gations. As a rule of thumb, on-demand computation is problematic for visual analysis

because of latency. As Liu and Heer describe (LIU; HEER, 2014a), latencies of as little

as half a second can affect the overall quality of an analyst’s data exploration process.

A popular alternative to hide latency is to use sampling, and report uncertainty estimates

as soon as they are available (FISHER et al., 2012b). Similarly, Stolper et al. describe

a general framework for progressive approach for visual analytics (STOLPER; PERER;

GOTZ, 2014).

The most recent trend in research at the intersection of data management and vi-

sualizations is the explicit acknowledgement of the human perceptual system. Wu et al.

suggest that database engines should explicitly optimize for perceptual constraints, by for

example including the visual specification into the physical query planning process (WU;

BATTLE; MADDEN, 2014). Jugel et al. offer a technique that is one such example:

the query algorithms described there return approximate results which nevertheless ras-

terize to the same image as the exact query result would (JUGEL et al., 2014; JUGEL

et al., 2016); ScalarR (BATTLE; STONEBRAKER; CHANG, 2013) is another example,

mentioned earlier in this section.

Closest to Hashedcubes are imMens (LIU; JIANG; HEER, 2013) and Nanocubes (Lins;

Klosowski; Scheidegger, 2013). The imMens approach combines data reduction, multi-

variate data tiles, and parallel query processing(using a GPU) to minimize both data cube

memory usage and query latency. Its multivariate data tile methods are based on the ob-

servation that for any pair of 1D or 2D binned plots, the maximum number of dimensions

needed to support brushing and linking is four. Thus, an n-dimensional data cube can be

decomposed into a collection of smaller 3- or 4-dimensional projections. Furthermore,

these decomposed data cubes are segmented into multivariate tiles, like the ones used by

Google Maps. On the other hand, imMens lacks support for compound brushing in more

than four dimensions. In comparison, Hashedcubes support any number of dimensions,

even if at a potential cost in query latency. Nanocubes is a compact variation of a data

cube that can handle a large number of dimensions. It defines a search key that is used to

combine aggregations of independent dimensions at varying levels of detail and to max-

46

Figure 3.2: Overall summary for building Hashedcubes. (a) Input dataset of points
[p0,...,p9] under a spatial-categorical-temporal schema. The complete process is described
in Section 3.4. (b) Step-by-step illustration of the process for building arrays of sorted
partitions, as explained in Section 3.4.2. (c) Data is loaded (in any order) into a sequential
memory and each record is associated with an index (rectangle in orange).

Schema: [[Latitude, Longitude], [Device], [Time]]

Device = Windows
Device = Linux

p0 p1

p2
p3

p5
p6

p7
p8

p4

p9

Schema = [[Latitude, Longitude],
[Device], [Time]]

0

2

1

3 Schema = [[Latitude, Longitude],
[Device], [Time]]

00 01
02 03

2

1

3

pNpoint

Nindex

[0-0]pivot

output Dimension N - <Type>

<value>bin

(a)

[0-0] [6-7] [8-9][3-4][1-2] [5-5]
W L W L W L

[0-2] [6-7] [8-9][3-5]
00 01 2 3

[0-5] [6-7] [8-9]
0 2 3

[0-9]

Hashedcubes Data Structure

Data After N Sorting Phases – Final Result

p6 p1 p3 p4 p5 p2 p7 p0 p9 p8
0 1 2 3 4 5 6 7 8 9

p1 p2 p0 p3 p4 p5 p6 p7 p9 p8
0 1 2 3 4 5 6 7 8 9

(c)

Dimension 3 - Temporal / … / Dimension N - <Type>

p6 p1 p3 p4 p5 p2 p7 p0 p9 p8
0 1 2 3 4 5 6 7 8 9

[0-9]

Input Data

Ro
ot

 P
iv

ot Sorting Phase

Q
ua

dt
re

e
Re

pr
es

en
ta

tio
n

Sorting Phase

De
vi

ce
 R

ep
re

se
nt

at
io

n

Sorting Phase

p1 p3 p4 p5 p2 p0 p6 p7 p9 p8

[0-5] [6-7] [8-9]

Dimension 1 - Spatial

0 1 2 3 4 5 6 7 8 9

p1 p2 p0 p3 p4 p5 p6 p7 p9 p8

[0-2] [6-7] [8-9][3-5]
0 1 2 3 4 5 6 7 8 9

[5-5]

p1 p2 p0 p3 p4 p5 p6 p7 p9 p8

[0-0] [6-7] [8-9][3-4][1-2]

Dimension 2 - Categorical

0 1 2 3 4 5 6 7 8 9

3

4

2

1

(b)

Sorting Phase

Building StepsGeographical Location and Device Data Before Sorting Phases

Quadtree Level 1 Quadtree Level 2

imize shared links across the data structure. Hashedcubes is an alternative to Nanocubes

that eschews a large number of aggregations, allowing both a more compact representa-

tion and a much simpler implementation. Hashedcubes uses a partial ordering scheme

combined with the notion of pivots (MORA, 2011; PAHINS; POZZER, 2014) to allow

fast queries and a simple data structure layout.

BigVis (WICKHAM, 2013) is an R package for the visualization of large datasets

and statistical modeling that can store more sophisticated event statistics of events in its

bins. Hashedcubes can be extended to include the additional functionality of BigVis. The

support for the visualization of origin-destination (OD) data is requested in several appli-

cations that handle trajectory data. OD Taxi data visualization (JIANG et al., 2015) and

taxi trajectory data visualizations are discussed in (HUANG et al., 2016). One particu-

larly favorable use case for Hashedcubes is in fact the visual analysis of origin-destination

data. The interleaved scheme used in Hashedcubes allows sufficiently-fast queries, while

requiring significantly less memory than Nanocubes and imMens.

3.4 Hashedcubes

In this section we will describe the algorithms for building and querying a Hashed-

cubes. Before giving the full algorithms, however, we will give some intuition on how it

works. Hashedcubes combines a few different ideas, and it is easier to see how they work

together by progressively building on the properties it exploits. These include hierarchi-

47

cal array partitions, stable sorting, and commutativity of the summaries of a list under

permutations of the list.

3.4.1 Some Intuition

First, we note that the fundamental unit we want to visualize in large-scale visual-

izations such as heatmaps and histograms is a count: “how many events happened within

this region at some point in time?” “How many events happened on a Tuesday?”, and so

on. We describe below the intuition behind answering such queries from data stored in

arrays.

The following observation is trivial but important: the size of an array does not

change when we shuffle it, and so we have much freedom in choosing the order of its

elements. The second observation is that when data is stored in a contiguous array, there

is a convenient representation for some subsets of this array: we can represent a subset

S of elements from an array A by a pair of indices (b, e) such that all elements A[i] for

which b ≤ i < e are considered to belong to S. We call this pair a pivot. If we partition the

elements of an array in a certain set of non-overlapping subsets, we can always rearrange

the elements such that the chosen subsets of the partition can be represented by pivots (i.e.

the subsets are contiguous along the array). In other words, we can represent a partition

by permuting the array and storing the corresponding array of pivots. This representation

of a partition allows us to, among other things, quickly skip large runs of the data array,

while remaining simple and compact. Thirdly, this rearrangement of a partition also has

significant freedom in its choice: as long as the partition is respected, we can choose the

internal order of each subset arbitrarily. Crucially, we can think of each subset of the

partition as an array in itself —after all, its elements are all contiguously stored as well—

and so we can impose further partitions on these subsets, hierarchically. This reordering

does not invalidate the first pivot representation, as long as our sorting is stable with

respect to the first partition.

Now imagine a hypothetical network logging dataset in which we log packets that

reach a particular server, and that we are interested in three attributes: day of week (d),

hour of day (h), and network port (p) requested. In order to build a Hashedcubes data

structure, we need to decide on an ordering of these attributes with which to sort the array

hierarchically (note that we discuss performance consequences of these choices in Sec-

tion 3.8). For this example, assume we will sort in the order we just gave. As we partition

48

the array along each of the attributes, we store the array of pivots that represents the parti-

tions. Note that in dimensions other than the first, this means that the finer partitions will

respect the previous sorting: for example, even though all events on a Monday (or any

given day of week) will be laid out contiguously in an array, not all events with a given

hour of day will be: only the events with a given hour and day of week. Thus, as we

go down the list of dimensions in which we are partitioning, the array of pivots becomes

larger, and the partitions themselves become smaller. When the sorting process is finally

finished, we will have as many arrays of pivots as there are dimensions in which we are

interested in querying the dataset. In our specific case, we will have three pivot arrays:

one for the d partition, one for the (d, h) partition, and one for the (d, h, p) partition.

How does this hierarchical sorting help answer queries quickly? For example, if

we are interested in plotting a histogram of requests in which bins represent different

hours of the day, it is clear that the second pivot array is central for this query. Instead

of scanning the data array one element at a time, we can scan the array of pivots that

represent the sorting on (d, h). If we annotate the pivot arrays with information about

the range of attributes of the data they contain, we will be able to make decisions about

entire subsets of contiguous data at once. This is already somewhat useful, but imagine,

for example, a natural interactive query in which users are interested in studying the same

histogram as before, but for a particular subset of days of the week. As we have currently

described Hashedcubes, there is no connection between the different pivot arrays, and so

we cannot use information about values in one dimension to speed up queries of a different

dimension. But this is easy to fix: after sorting on a finer attribute, we annotate the “coarse

pivots” with the range of pivots that they represent in the next finer dimension. In our

example, the array of d pivots will be annotated with the boundaries they represent on the

array of (d, h) pivots; the (d, h) pivots, in turn, will be annotated with the boundaries they

represent in (d, h, p) pivots, and so on. Now consider our working queries above again.

In the same way that we exploited the query attribute values to skip entire ranges of data

values by scanning the (d, h) pivot array, we can scan the d pivot array to skip entire

ranges of the (d, h) pivot array itself. This is the central insight behind Hashedcubes. The

astute reader will have undoutedbly noticed that if we instead wanted to filter on network

ports, we could not escape a scan of a relatively large (d, h, p) pivot array. This is correct,

and we discuss this further in Section 3.4.6.

49

3.4.2 Construction Algorithm

The algorithm for building Hashedcubes requires an ordering of dataset dimen-

sions (e.g. first spatial, then categorical, and finally temporal). In what follows, we will

sometimes use terms like “above” and “below” to refer to precedence relationships in this

ordering. Once defined, a linear array called Hash is associated with a root pivot [0, n−1],

which represents the initial partition containing the universe of n elements. Each element

of the Hash array is an integer that points to a record in the dataset. The Hash array

can be stored in a random or sequential ordering. For every dimension of the indexing

scheme, each partition (here forth referred as a bin) of each object is indexed using pivots.

Bins have different interpretations for each dimension. Bins represent regions for a spatial

dimension, specific values or ranges for a categorical dimension, or time intervals for a

temporal dimension.In a input array of n elements all entries belong to the same bin, rep-

resented by a pivot [i0, i1]. Each dimension receives as input a list of pivots and outputs a

list of pivots. The first dimension receives as input the root pivot. Subsequent dimensions

receive the list of pivots created from the previous dimensions. Sorting is performed in

each bin to group elements. The bin delimited by a given pivot is further refined as nec-

essary to create subset bins, represented by a new list of pivots. After processing each

dimension a new list of pivots is generated. A hierarchy of pivot lists connects the bins

created in each dimension.

Hashedcubes supports three distinct dimension types: spatial, categorical and tem-

poral. The pivot hierarchy for these three dimension types can be built in any order. Since

a bin at a given dimension is a subset of a bin in the previous dimension, a list of pivots

represents subsets for all previously defined dimensions. This allows to remove dimen-

sions from the representation, which is useful for managing memory consumption. The

pivot hierarchy mimics a tree hierarchy since each pivot represents a set that can be further

divided into a variable number of subset pivots, but notably, it does not store edges from

one dimension to another. Sibling pivots (nodes) are stored as lists. Because each dimen-

sion stores collections of pivots, and pivot indices are always offsets into the data array,

dimensions can be treated independently of each other. This allows the algorithm which

executes queries to skip dimensions that are not referred to by in the query. Furthermore,

the cardinality of the subset represented by a pivot can be directly obtained from the pivot

indices; this way, the size of an aggregation can be directly determined by the list of pivots

themselves.

50

Figure 3.3: A comparison between the computation of Nanocubes and Hashedcubes. Note
that Nanocubes pre-compute more aggregations, which tends to lead to lower query times
but larger memory consumption. Hashedcubes, in contrast, uses a sparser set of preag-
gregations in its query execution engine.

[0-0] [4-4][2-2][1-1] [3-3]

A I I I A

[0-1] [2-3] [4-4]

0,1 1,0 1,1

[0-4]

0

[0-1] [3-3] [4-4][2-2]

01,10 10,01 11,01 10,10

(a) Hashedcubes (b) Nanocubes (adapted from (Lins; Klosowski; Scheidegger, 2013))

Query Hashedcubes Nanocubes
Count[<0,1>] or Count[<10,01>,<11,01>] Pre-computed Pre-computed
Count[all<Android>] or Count[all<iPhone>] Compute On-the-fly Pre-computed

We use the Figure 3.2 to illustrate different aspects of Hashedcubes. The input

data consists of 10 points using the schema [[Latitude, Lonngitude], [Device], [Time]].

In Figure 3.2b step 1, the array is re-ordered along the first level of the quadtree and

three partitions are created associated to quadrants 0, 2, and 3 (the quadrants that contain

points). Three pivots are created ([0-5], [6-7], [8-9]) to delimit these partitions. In step

2 the array is re-ordered along the second level of the quadtree. Note that only the first

quadrant of the quadtree is subdivided in this step, and therefore only the partition affected

(associated to the pivot [0..5])) is updated, leading to two new pivots ([0..2] and [3..5]).

In steps 3 and 4 the process is similar, but using the categorical and temporal dimensions

to create further partitions in the data. In the top of Figure 3.2c we compare the input

values of the array to the final re-ordering obtained after successive partitions of the data.

In Hashedcubes it suffices to keep the final array along the pivots created at each step

to recover the partitions created during these steps. In the bottom of Figure 3.2c we

show the list of pivots created at each step and stored by Hashedcubes. The list of pivots

correspond to partitions induced in the first and second levels of the quadtree, and the

categorical partition, in this case if device used was Windows (W) or Linux (L).

In contrast to other data cube alternatives (GRAY et al., 1997b; Lins; Klosowski;

Scheidegger, 2013; LIU; JIANG; HEER, 2013), Hashedcubes does not precompute ag-

gregations across every possible set of dimensions. Instead, it leverages the pivot hierar-

chy to compute missing pre-aggregations on-the-fly. Consider in Figure 3.3 the problem

of computing the number of all objects labeled as Android or iPhone in the categorical di-

51

mension. Hashedcubes does not pre-compute this information. Although this means that

such queries will require a scan over a potentially large portion of the array, the fact that

Hashedcubes stores these in an array (as opposed to a pointer-based data structure) means

that the aggregations can be computed relatively efficiently. In fact, allowing these worst-

case scenarios to occur is precisely what is responsible for the low memory consumption

in Hashedcubes. The query algorithm is described in Section 3.4.6.

3.4.3 Spatial Dimensions

Efficiently answering queries involving spatial attributes typically requires the use

of hierarchical spatial data structures (SAMET, 2005). In Hashedcubes the spatial di-

mension is represented as a quadtree, a hierarchical data structure often used to represent

geo-spatial data where the space is recursively divided into 4 regions (SAMET, 2005).

Each quadtree node is associated with a pivot that delimits the objects contained in that

quadrant. If a query matches the exact region represented by a node, then the pivot rep-

resents the aggregation result for that query. Otherwise, we compute the minimal disjoint

set of nodes that cover the query region. We note that during an interactive session, the

viewport region of the screen can be interpreted as a spatial query. Although Hashedcubes

can process dimensions in any given order, in our experiments we chose to use the spatial

dimension first in the ordering of dimensions to increase the speed in which geo-spatial

queries can be answered.

The algorithm for building spatial dimensions associates each record within each

pivot range to its current quadtree quadrant. Sorting is used to group records belonging to

the same region, and consequently, quadtree nodes store the pivot that delimits the records

for that specific subdivision. As we mentioned above, the schemas we use typically start

with spatial dimensions. Therefore, the input is a single pivot (root) representing the data

universe and only a unique quadtree is allocated.

Hashedcubes supports multiple spatial dimensions, but this process is different

from single spatial dimensions. Each spatial dimension is associated with a quadtree.

Instead of building each spatial dimension sequentially, Hashedcubes interleaves the con-

struction of each quadtree, refining one level of each quadtree at a time. Consider a dataset

of phone calls, with two geographical locations, one from the caller and another from the

receiver. The root of the quadtree represents all data. At each level of the quadtree the

records are subdivided according to the current spatial attribute (e.g. odd and even levels

52

Figure 3.4: Multiple spatial dimensions. In this example one quadtree is created for
each of the two spatial dimensions, red and blue. The quadtrees are used alternately in
Hashedcubes to partition the data.

can be associated to origin and destination locations respectively). By using an inter-

leaved quadtree, queries with multiple region constraints are answered by traversing a

unique data structure, since quadtree nodes stores the bounding box and the pivot that

matches precisely to all aggregates from that regions. Figure 3.4 illustrates this process.

Another important aspect of the Hashedcubes quadtree implementation is the min-

imum leaf size. Every dimension output is the input for the following dimensions, while

each pivot is subsequently refined to represent subsets of specific attributes. Smaller piv-

ots cause the creation of a greater number of subsets. Consider Figure 3.2d. For every

input of the spatial dimension, it can at most output 22n subsets, where n is the maximum

quadtree subdivision. For every input of categorical dimension it can output at most two

subsets (windows or linux). Thus, the output size is directly dependent on the input size.

The leaf size is a crucial factor for memory usage and performance of Hashedcubes, and

is discussed in Section 3.8.

3.4.4 Categorical Dimensions

Categorical attributes of multidimensional datasets are usually divided into spe-

cific values or ranges. The processing of such attributes in Hashedcubes produces a list of

pivots that groups data in bins for each categorical value or range. By varying the granu-

larity of the Hashedcubes query results, categorical queries form the basis for histograms,

binned scatterplots and time series plots.

To process a categorical dimension, each record attribute is tagged and a position

in the output list of pivots is computed. This algorithm compares an element against all

dimension attributes and returns a bin tag. Once this finishes, the sorted list of pivots is

53

Table 3.1: Subset of queries supported by Hashedcubes HTTP API.
Queries (in natural language) Spatial Categorical Temporal URL

heatmap of all check-ins in Mondays drilldown rollup rollup /tile/tile/0/0/0/0/8/where/day_of_week=Mon
hour of day histogram of check-ins in the USA rollup drilldown rollup /group/hour_of_day/region/0/USA
scatterplot of hour of day/day of week of check-ins rollup drilldown rollup /scatter/field/hour_of_day/field/day_of_week/region/0/Eu
check-ins in Fridays and between Jan and Feb of 2010 rollup rollup drilldown /tseries/tseries/0/Jan-2010/Feb-2010/where/day_of_week=Fri

Figure 3.5: Temporal dimension indexing. A period of time is represented by a dense list
of timestamped pivots. Each black circle represents a record that has been tagged to a
specific bin.

[0-1] [5-5][3-3][2-2] [4-4]

4 7 3 4 7

[0-2] [3-5] [6-6]

Dimension N+1 - Temporal

4 7

[6-6]

2

3 4 7 2
time time time

In
pu

t
Pi

vo
ts

O
ut

pu
t

Pi
vo

ts

created. For a categorical dimension of n distinct values or ranges, at most n pivots can

be created. Hashedcubes stores a structure called CategoricalNode which implements a

dense vector based on the number of unique attributes. Consider the categorical dimen-

sion in Figure 3.2d, which has as input a list of pivots of size 4. Every input creates a

CategoricalNode that has a vector with two pivots, representing either Windows or Linux.

The result of processing this dimension creates a list of pivots of size 6, with 4 Categor-

icalNode objects (object 1: [0-0],[1,2]; object 2: [3,4],[5,5]; object 3: [6-7]; object 4:

[8-9]).

Unlike the processing of multiple spatial dimensions (which are processed in an

interleaving fashion), multiple categorical dimensions are generated in sequence.

3.4.5 Temporal Dimensions

We take advantage of the fact that a pivot represents an interval to represent tempo-

ral dimensions. Consider the example of a temporal dimension that needs to be processed

to create bins for each different day. The building algorithm classifies each element of the

input in the corresponding bin. The result of this process is a sparse list of sets since a

bin is created if it has, at least, one record. From this list, a compact list of timestamped

pivots is created, as illustrated in Figure 3.5.

The algorithm for building the temporal dimension is similar to the one for cate-

gorical dimensions. It tags each record with its respective bin since epoch time. Hashed-

54

cubes supports any granularity multiple of milliseconds, and the time interval is defined

by the building schema (e.g., 15 minutes, 1 hour, 4 hours, 1 week, etc). Take as an ex-

ample a schema that aggregates time by the hour, and two records with a difference of 40

minutes. These records are tagged to the same bin, and consequently, represented by a

single pivot.

This algorithm enables temporal queries to be efficiently answered without requir-

ing a hierarchical data structure. This is accomplished with two executions of a binary

search algorithm, which finds the pivot with the smallest and greatest values from the pe-

riod of time. This is precisely the same algorithm used by Lins et al.’s Nanocubes (Lins;

Klosowski; Scheidegger, 2013).

3.4.6 Queries

A query into a Hashedcubes comprises a set of clauses. Each clause corresponds

uniquely to a dimension, and defines either constraints on values or group-by directives

(often a dimension will contain both a group-by directive and a value constraint). Con-

straint clauses specify regions of the dataset to be aggregated over, while group-by clauses

indicate partition boundaries for the result, in direct analogy to SQL’s group by clause (eg.

different bins of a monthly histogram as in a “group by month” SQL clause, or nodes of

a quadtree for a multiresolution heatmap plot).

The result of a Hashedcubes query is a list of aggregated pivots. As discussed in

Section 3.4, Hashedcubes does not store precomputed aggregations across every possible

set of dimensions. Instead, it materializes only a portion of all combinations (correspond-

ing to a strict prefix ordering of the dimensions as alluded above). The query execution

algorithm takes advantage of the pivot hierarchy to compute the missing aggregations

on-the-fly, scanning subintervals of dimensions as necessary.

Most queries contain a group-by clause. In queries broken down by latitude and

longitude (as in those which generate heatmaps), the spatial dimension is that clause. In

queries broken down by categorical attributes or timestamps, any of the multiple categor-

ical or temporal dimensions can be the group-by clause. Take as example the schema in

Figure 3.2d. Assume we are interested in the count of all objects with quadrants 0 and 1

as spatial coordinates and categorical attribute Windows. In this case, the result of the

query is exactly the contents of a single pivot in that dimension, and no aggregations are

necessary. This query is efficient because the constraint clauses form a prefix over the

55

Figure 3.6: Visual exploration of the twitter dataset during Super Bowl 2012. In addition
to enabling real-time exploration using a wide range of visual encodings, with support to
brushing & linking in any dimension, Hashedcubes allows the access to the text of tweets
from an external SQL server.

ordering of the dimensions (in fact, it’s the entire dimension set). Consider, on the other

hand, a query that requests the count of all objects with categorical attribute Windows,

regardless of spatial coordinates. In this case, there is no single pivot storing the final

result, and so it is clear that some on-the-fly aggregation will be required.

The full algorithm proceeds as follows. Initially, the query range is the dataset

universe represented by the root pivot [0, n− 1]. The query result in each dimension is a

delimiting list of pivots of the selected data, thus, these lists become the new range query,

similar to a breadth first search algorithm that uses two lists, one for expanding and one

for temporary storage. This process is iteratively repeated until the last dimension. Note

that, unlike tree-based data structures, scans happen along arrays. Such approach tend to

offer appealing performance, since the CPU cache automatically optimizes burst memory

operations (GOODMAN, 1983; KRISHNAMOHAN; FARMWALD; WARE, 1996).

3.5 Implementation

The current implementation of Hashedcubes uses a simple client-server architec-

ture. The server reads the data from a file (e.g. CSV tabular files), builds the data structure

and enters an event loop that waits for queries from the client. The server is implemented

in C++. Since Hashedcubes uses linear-based memory structures such as sorted arrays, it

preallocates chunks of memory to avoid the overhead of repeated memory allocations and

deallocations, which are common operations in tree-based data structures. Besides the

sorting of the index arrays, Hashedcubes does not require any data precomputation prior

to building its data structure. The sorting of the data array dominates the construction

time, as we discuss in Section 3.7.2.

56

For the representation of spatial values, Hashedcubes uses the spherical Mercator

projection popular with map tile providers such as OpenStreetMap (HAKLAY; WEBER,

2008). Typically, map tiles providers use coordinates (x, y, z) for each tile image. The

tuple [x, y] corresponds to integer addresses, while z represents the zoom level, in most

cases varying from 0 (maximum zoom out) to 18 (maximum zoom in). Each zoom incre-

ment doubles the [x, y] resolution, and consists of 4n tiles. We choose to limit the spatial

coordinates to a maximum of 26 levels: the maximum zoom value plus 8, corresponding

to the typical tile size of 256x256. The 26-level subdivision naturally yields a 26-bit ad-

dress for each of the x and y coordinates, and these addresses can be easily employed for

the hierarchical sorting in spatial coordinates.

The server is easily parallelizable since the data structure does not change after

building. It exposes the querying API via HTTP (as in Table 3.1) through a web service

implementation that handles concurrent requests in multiple threads. In the front-end,

the prototype client is written in Javascript, SVG, and HTML5; notable libraries include

D3 (BOSTOCK, 2015) and Leaflet (AGAFONKIN, 2014), as shown in Figure 3.6.

3.6 Datasets and Schemas

In this section, we report an evaluation of Hashedcubes using a collection of

publicly-available datasets. We collected seven datasets that range from 4.7 million to

1 billion records, including some used in other data cube visualization proposals, as well

as the schema they used. In addition, we introduced some variations on the schemata used

in previous experiments in order to properly stress the features of both Hashedcubes and

previous systems. We summarize all of the schema variations and datasets in Table 3.2.

3.6.1 Location-Based Social Networks

Brightkite and Gowalla are two former location-based social networks: users par-

ticipated by sharing their locations via check-ins events. Both datasets are publicly avail-

able in Leskovec’s Stanford Large Network Dataset Collection (LESKOVEC; KREVL,

2014). They consist of time and location information of user check-ins, collected by Cho

et al. (CHO; MYERS; LESKOVEC, 2011a). Brightkite check-ins range from April 2008

to October 2010, and Gowalla from February 2009 to October 2010. We built Hashed-

57

cubes using two different schemas for these datasets. The first one replicates the schema

used by Nanocubes and encodes latitude and longitude as spatial information, hour of

the day and day of the week as categorical variables, and check-in time as temporal vari-

ables. The second one replicates the imMens schema and encodes latitude and longitude

as spatial information, hour of the day, and day of the month as categorical information.

In Figure 3.1, we use Hashedcubes to visualize Brightkite check-ins in Europe and to

highlight Brightkite releases of its iOS app and its 2.0 platform version.

3.6.2 Airline On-Time Performance

The U.S. Department of Transportation tracks the on-time performance of domes-

tic flights by U.S. air carriers. This dataset was made publicly available in (American

Statistical Association Data Expo., 2009; WICKHAM, 2011), and covers over 121 mil-

lion flights in a 20 year period, from 1987 to 2008. Records include over 29 fields. We

used three different schemas for this dataset. The first one encodes the origin airport as

spatial information, departure delay and carrier delay as categorical information, and de-

parture delay as temporal information. This is the same schema used in Nanocubes. The

second schema is the one used by imMens, and encodes only categorical information.

The day of the week, year, carrier, arrival delay and departure delay are the categorical

information. Note that the arrival delay and departure delay are encoded as 15 minutes

interval bins, and were designed to be visualized using a scatter plot. The last schema is

designed to exploit the Hashedcubes ability to work with multiple spatial dimensions, so

we encoded origin and destination airports as spatial information.

3.6.3 SPLOM

The ScatterPlot Matrix (SPLOM) benchmark (KANDEL et al., 2012) was de-

signed to stress test the data cube technology, and has been used as validation in recent

big data visualization proposals (LIU; JIANG; HEER, 2013; Lins; Klosowski; Scheideg-

ger, 2013). It consists of a collection of synthetic elements with up to five dimensions.

The first, second and fifth dimensions are independent and normally distributed. The

third and fourth dimensions are, respectively, linearly and log-linearly dependent with the

first. As a synthetic dataset, we used five different bin sizes per dimension, from 10 to

58

50, and varied the elements from 100 million up to 1 billion to stress test Hashedcubes

(Figure 3.7a).

3.6.4 Twitter

The data consists of geolocated tweets collected from the (formerly open) Twitter

API between November 2011 and June 2012 that originated in the United States. We

used two different schemas, namely twitter-small and twitter. The first one encodes the

record origin as spatial information, device used as categorical information, and record

collection time as temporal information. The second schema adds the application and

language, respectively 4 and 15 distinct values, as categorical informations. In Figure 3.1

we present and overview of tweets in USA, and a close-up in the date and region of

Superbowl 2012.

3.6.5 NYC Yellow and Green Taxis

The NYC Taxi and Limousine Commission (TLC) collects and provides monthly

trips records from yellow and green taxis from New York City. Records include over

21 fields that capture pick-up and drop-off times, pick-up and drop-off locations, trip

distances, itemized fares, rate types, payment types, driver-reported passenger counts, and

others. While yellow taxis are able to pick-up passengers in any of the five NYC boroughs,

green taxis are only allowed to pick-up passengers in outer boroughs and in Manhattan

above East 96th and West 110th Streets. For each dataset, we used two different schemas,

both encoding pick-up and drop-off locations as spatial information. The first schema

encodes time as week bins along with categorical information: day of the week and hour

of the day. The second schema encodes time as hour bins. In Figure 3.1, we highlight the

use of Hashedcubes to analyze pick-up locations from the green taxis dataset.

3.7 Performance Results

In this Section we discuss the performance results of Hashedcubes. We com-

pare the Hashedcubes memory usage, construction and query time to recent data cube

visualization proposals, namely Nanocubes (Lins; Klosowski; Scheidegger, 2013) and

59

Table 3.2: Overall summary of the relevant information for building Hashedcubes.
dataset objects (N) leaf-size memory time pivots (P) schema

splom-101,2 1.0 B N/A 5 MB 38:32 m 26 K d1 (10), d2 (10), d3 (10), d4 (10), d5 (10)
splom-501,2 1.0 B N/A 349 MB 46:28 m 12.7 M d1 (50), d2 (50), d3 (50), d4 (50), d5 (50)
brightkite1 4.5 M 32 366 MB 7 s 6.7 M lat0, lon0, hour of day (24), day of week (7), time (week)
brightkite2 4.5 M 32 375 MB 10 s 6.8 M lat0, lon0, month of year (12), hour of day (24), day of month (31)
brightkite-alternative 4.5 M 32 468 MB 8 s 8.0 M lat0, lon0, time (week), hour of day (24), day of week (7)
gowalla1 6.4 M 32 743 MB 13 s 12.6 M lat0, lon0, hour of day (24), day of week (7), time (week)
flights 121.2 M 32 1.5 GB 06:55 m 61.0 M lat0, lon0, lat1, lon1, departure delay (9), carrier (29), time (4 hours)
flights1 121.2 M 32 457 MB 03:56 m 19.5 M lat0, lon0, departure delay (9), carrier (29), time (4 hours)
flights2 50.3 M N/A 18 MB 12 s 396 K day of week (7), year (21), carrier (29), arr_delay (174), dep_delay (174)
twitter-small1 210.6 M 64 4.9 GB 10:53 m 137 M lat0, lon0, device (5), time (4 hours)
twitter1 210.6 M 64 9.4 GB 12:04 m 203 M lat0, lon0, app (4), device (5), language (15), time (4 hours)
green-taxis-small 24.5 M 64 788 MB 01:35 m 27 M lat0, lon0, lat1, lon1, time (hour)
green taxis 24.5 M 64 3.0 GB 01:49 m 52 M lat0, lon0, lat1, lon1, day of week (7), hour of day (24), time (week)
yellow-taxis-small 224.1 M 64 7.0 GB 18:14 m 243 M lat0, lon0, lat1, lon1, time (hour)
yellow-taxis 224.1 M 64 12.6 GB 20:38 m 473 M lat0, lon0, lat1, lon1, day of week (7), hour of day (24), time (week)

1Schema used by Nanocubes. 2Schema used by imMens.

imMens (LIU; JIANG; HEER, 2013). Table 3.2 summarizes benchmark results for all

schema variations and datasets. The number of records (N) in the dataset, quadtree leaf-

size, memory usage, time to build and the accumulated number of pivots (P) across all

data structure are reported.

3.7.1 Memory Usage

Memory usage in Hashedcubes is directly proportional to the number of pivots,

i.e., the number of used bins per dimension. Figure 3.7a shows the memory growth for the

SPLOM dataset ranging from zero to one billion inserted records. We used five schema

variations that range bin size from ten to fifty in each dimension. Records from this dataset

are collected from synthetic generators that have a normal distribution, which means that

the set of high probability values are quickly sampled, making harder for new records with

an unseen bin. It highlights an effect known as key saturation. Due to the key saturation

effect, most inserted records does not require additional memory since their pivots were

already present in the Hashedcubes index, a phenomenon that performs an important role

to reduce memory requirements.

When comparing Hashedcubes to recent data cube strategies, memory usage sees

a breakthrough from current state-of-the-art data cube proposals, enabling the visualiza-

tion of a much larger set of scales and more complex schema configurations than imMens

and Nanocubes. Compared to Nanocubes, we find a reduction factor of up to 5.2x in

the best case, as shown in Figure 3.7c. Building the Hashedcubes for brightkite, flights,

twitter-small and twitter schemas, requires 366MB, 457MB, 4GB and 9.4GB of mem-

ory, respectively. For the same schemas, Nanocubes requires 1.6GB, 2.3GB, 10.2GB and

60

46.4GB, enough for present day servers, but above that of typical notebooks and worksta-

tions. imMens uses a dense indexing to speed up aggregation time and to simplify parallel

query processing, but this implies that memory usage is proportional to the cardinality of

its key space. Furthermore, it lacks support for compound brushing of more than four

dimensions, once it requires computing prohibitively large 5-dimensional data tiles for

the adopted approach.

We also evaluated Hashedcubes for schemas with multiple spatial dimensions, a

feature that was not supported by Nanocubes and imMens in their initial public releases.

For that, we introduced schema variations and two unstudied datasets, namely, the green

and yellow NYC taxis. These datasets are particularly hard because both have a very

restrict spatial region, thus pushing spatial dimensions data structures to deeper levels of

subdivision. Moreover, we tested two time resolutions, by hour and over a week along

with day of week and hour of day categorical attributes. We have attempted to create

Nanocubes for these schemas, but found them to take a prohibitively large amount of

memory. Before killing the nanocube process, we estimated the eventual memory usage of

Figure 3.7: (a) Hashedcubes memory usage growth while inserting SPLOM dataset ele-
ments. Notice the key saturation effect. (b) and (c) compare Hashedcubes construction
time and memory usage to Nanocubes.

0

50

100

150

200

250

300

350

400

0 M 200 M 400 M 600 M 800 M 1 B

H
as

h
ec

u
b

es
 S

iz
e

in
 M

B

Number of Elements

splom-10

splom-20

splom-30

splom-40

splom-50

366 457
4900

9400

1600 2400
10200

46400

0%

20%

40%

60%

80%

100%

brightkite flights twitter-small twitter

Memory Usage (in MB)

Nanocubes Hashedcubes

7 237 653 706

210 1867 4428 21132

0%

20%

40%

60%

80%

100%

brightkite flights twitter-small twitter

Time (in seconds)

Nanocubes Hashedcubes

A B

C

61

the yellow-taxis-small schema to be around 124GB for a pair of 20-bit quadtree addresses,

and 321GB for 25-bit addresses (and an estimated five hours of construction time). We

made no attempt to generate a nanocube of the full yellow taxis schema.

3.7.2 Construction Time

Construction time was a relevant factor when designing Hashedcubes. The con-

struction algorithm was optimized for speed by avoiding repeated memory allocations

and deallocations. The bottleneck of this algorithm are the sorting phases, specially when

handling spatial dimensions. The pivot hierarchy uses a sorting step for every quadtree,

which can be very demanding for datasets with restricted geographical coverage and mul-

tiple spatial dimensions, since these cases tend to generate trees next to the maximum

recursion depth supported. Compared to Nanocubes, we obtained a reduction factor of

up to 30x in the best case, as shown in Figure 3.7b. On average, the construction time is

about 10 times faster.

3.7.3 Query Time

We used a set of real-world queries graciously provided by AT&T Research to

assess query latency. Query requests were collected on the public Nanocubes (Lins;

Klosowski; Scheidegger, 2013) web site, in which users performed brushing and linking

across dimensions of Brightkite, Gowalla, Flights and Twitter datasets. This set provides

a sample of common actions when exploring real-time interactive systems using a wide

range of visual encodings. Unlike synthetic benchmarks, it allows to validate Hashed-

cubes in an uncontrolled environment. We implemented a script that translates Nanocube

queries to Hashedcubes queries and compares the results of both proposals. For that, we

used the same schema from Nanocubes.

Figure 3.8 shows the percentages when the set of queries is executed in an Intel

Core i7 4790 CPU. We report the median, mode, mean, standard deviation and maxi-

mum latency for each of the tested schemas. Typically, Hashedcubes performance level

is within the real-time budget (<40ms or >25fps); only one in fifty queries takes more

than 40ms. The most time-consuming queries are those which require a large number of

aggregations of many small pivots. These typically happen when the query constraints

62

Figure 3.8: Cumulative percentages of query latency from real-world scenarios. The
vast majority of queries are answered within the real-time budget (<40ms or >25fps) for
different schemas and datasets.

statistic/
dataset brightkite brightkite alt. gowalla flights twitter-

small

queries N 507880 507880 102430 215980 48190

median 0 ms 0 ms 0 ms 0 ms 0 ms

mode 0 ms 0 ms 0 ms 0 ms 0 ms

mean 0 ms 1 ms 1 ms 0 ms 4 ms

stdev 4.21 ms 11.02 ms 7.19 ms 1.03 ms 66.93 ms

maximum 94 ms 281 ms 114 ms 159 ms 1382 ms

96.00%

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

<=1 ms <=10 ms <=20 ms <=30 ms <=40 ms >40 ms

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge

Query Latency (ms)

brightkite brightkite-alternative gowalla flights twitter-small

are specified over a variable that has been “finely split” over a large range of indices, and

yet no filtering in previous dimension rejects has occurred. In the worst case, this might

degenerate to a linear scan over the dataset. For other schemas and datasets, Hashed-

cubes presented similar frequency distribution, consistently answering many queries un-

der 40ms for various rollups and drill down test combinations. The server to client latency

was dominated by transference of geographical tiles information.

Nanocubes have a very small worst-case value, around 12ms. imMens sustains

a 20ms update time on average. It has to be noted, however, that both solutions uses

pre-computation and a higher memory footprint in favor of faster queries. Hashedcubes,

instead, balances these two variables and allows the real-time exploration and analysis of

datasets that previously required a prohibitory amount of space. Moreover, it supports

more flexible schema configurations that enables re-ordering and multiple spatial, cate-

gorical and temporal dimensions.

3.8 Discussion

The underlying concept behind Hashedcubes, the pivot hierarchy, can be con-

structed in any given order. In addition, it allows a natural integration with an external

63

database to complement visual queries. In this Section, we discuss these two extensions

and how the quadtree leaf size impacts memory usage and visual accuracy.

Exchanging the Pivoting Order. Exchanging the order in which the variables are sorted

impacts both memory usage and running time of specific queries. In Figure 3.8 we com-

pare two schemas of the same dataset: brightkite and brightkite-alternative. The set of

real-world queries described in Section 3.7 was used to test the Hashedcubes implemen-

tation. The alternative schema, using a spatial-temporal-categorical ordering, notably

increases both standard deviation and maximum query time from 4.21ms and 94ms to,

respectively, 11.02ms and 281ms. Moreover, it increases memory consumption by 25%.

On the other hand, in this schema temporal queries answer much faster since there are

fewer pivots that need to be processed by the querying algorithm. Such tradeoffs can be

considered by a database administrator to choose one layout over another. Automatically

tuning the ordering of variables, or possibly creating redundant Hashedcubes instances to

process different queries, is a natural area for future research.

Integration with Database of Record. Large data visualization systems like imMens and

Nanocubes, along with Hashedcubes, can be considered approximate databases, which

means that they use data aggregation which might discard some information of the origi-

nal record. The underlying concept behind Hashedcubes allows a simple integration with

external databases. The retrieval of complementary information can be useful, for exam-

ple, when datasets have text attributes along with spatial, categorical and temporal values,

or when these values are not relevant for the exploratory interactive system itself. All

real-world datasets used to validate Hashedcubes contain additional information that is

ignored by the schema configurations. In Figure 3.6 we show the visual exploration of a

large dataset associated with the retrieval of complementary data from an external SQL

server.

Hashedcubes allows to recover original data by associating the pivot indexes with

an external index, for instance, an SQL index. As shown in Figure 3.9, data is loaded

from our intermediary binary format (to obtain faster building times) or directly from the

SQL server, and sorted out accordingly to the external ordering. Hashedcubes answers

queries in real-time and simultaneously triggers asynchronous SQL queries based on the

pivot selection. This natural extension encourages the complement of visual queries with

external information.

Leaf-Size Trade-off vs Visual Accuracy. During the construction of Hashedcubes, the

output of every dimension serves as input for the following dimension, and each pivot is

64

Figure 3.9: Hashedcubes supports recovering the original data by using a linking struc-
ture. Pivots represent the values from the SQL index, which allows to efficiently match
all rows of a given query. Hashedcubes can be built directly from a SQL database or from
an intermediary format.

HCF
Files

21

3 4

4

5

21

SQL Response

SQL Query
Q

uery

Re
sp

on
se

SQL to
Hashedcubes

SQL to
Intermediary

Format
HCF to

Hashedcubes

subsequently refined to represent smaller data subsets. Spatial dimensions adopt a min-

imum quadtree leaf-size to balance running time, memory usage and visual accuracy, as

shown in Figure 3.10 (a), (b) and (c). The leaf-size threshold creates a phenomenon called

truncated pivot. This indicates that a given spatial region will be no longer subdivided if a

minimum leaf-size is reached. Since visual accuracy was a relevant factor when designing

Hashedcubes, we implemented a specific heatmap visualization that allows identifying

truncated pivot occurrences (Figure 3.10a).

Truncated pivots are typically found in smaller geographical regions with very low

data sampling, an arrangement which might mask outliers. As a workaround to this issue,

Hashedcubes users can integrate external databases to recover precise spatial information

of a specific region, as discussed previously. It has to be noted, however, that Hashed-

cubes supports any leaf-size threshold. The default values for the schemas in Table 3.2

were chosen to achieve a good balance between running time and memory usage while

producing a similar visual result when compared to the other data cube visualization pro-

posals (Figure 3.11).

3.9 Conclusions and Future Work

In this paper, we presented Hashedcubes, a fast, easy to implement and memory

efficient data structure to answer queries from interactive visualization tools that explore

65

Figure 3.10: Hashedcubes different heatmap visualizations showcase. Notice the leaf size
variation from 32 to 8 by looking into the highlighted regions. It impacts running time,
memory usage and visual accuracy. (a) allows to identify truncated pivot occurrences by
representing them as rectangles. Color is a factor of area and occupancy. (b) and (c) use
circles to represent the center of an aggregated region (i.e., quadtree bounding box).

leaf-size: 32 leaf-size: 16 leaf-size: 8
(a) Brightkite overview. Primitive: rectangles, Colormap: red-yellow-white, Density Aware.

leaf-size: 32 leaf-size: 16 leaf-size: 8
(b) Brightkite overview. Primitive: circles, Colormap: red-yellow-white, Density Aware.

leaf-size: 32 leaf-size: 16 leaf-size: 8
(c) Brightkite overview. Primitive: circles, Colormap: light-blue-dark, Not Density Aware.

Figure 3.11: Los Angeles (United States) city view of detailed Brightkite heatmaps from
recent data cube visualization proposals. Apart from the use of different colormaps across
Hashedcubes, Nanocubes and imMens, what produces a slightly dissimilar visual appear-
ance, Hashedcubes pivot concept enables a high visual accuracy along with reduced mem-
ory consumption when compared against other data cube visualization proposals. Notice
that Hashedcubes matches Nanocubes visual representation, even though the latter does
not experience leaf-size trade-offs.

Hashedcubes (Circles, Density Aware,

Leaf-size: 32)

Nanocubes imMens (maximum supported zoom by

public demo)

and analyzes large multidimensional datasets. Pivot hierarchy, the underlying concept

behind Hashedcubes, enables traversal in any order and allows to include multiple spa-

tial dimensions, which is useful to visualize origin-destinations datasets. Furthermore,

it supports access to the original data by integrating the data structure with an external

66

database.

Our major contributions have shown that (i) is possible to represent hierarchical

and flat data structures using an optimized pivot schema that is stored in a linear fash-

ion way, and (ii) demonstrated that this leads to memory savings over other data cube

visualization proposals, as shown in Section 3.7. Taking advantage of the performance

level given by Hashedcubes, researchers can develop richer and seamless interactive vi-

sualization tools. Moreover, it enables the visual exploration of datasets and schemas that

previously take a prohibitory amount of space or time.

As future work, we would like to expand pivot hierarchy concept to automatically

find optimal pivoting ordering by calculating a metric that balances running time and

memory usage. Since Hashedcubes building algorithms mainly require careful sorting

operations that can be adopted to current Web technologies, we also want to explore an

exclusively browser-side implementation. Hashedcubes uses a querying algorithm sim-

ilar to a breadth-first search, with two working lists, one for expanding and another for

temporary storage. We envision an alternative approach that use just one list, but that re-

quire significant enhancements to the data structure and are left for future work. Another

promising research area is the handle of dynamic datasets or streaming data. Hashed-

cubes can benefit from existing approaches like Packed-Memory Arrays (BENDER; HU,

2007b), a concept that aligns surprisingly well with Hashedcubes pivot notion and its

worth to be further investigated. Hashedcubes is available as open source software at

<https://github.com/cicerolp/hashedcubes>.

https://github.com/cicerolp/hashedcubes

67

4 REAL-TIME EXPLORATION OF LARGE SPATIOTEMPORAL DATASETS BASED

ON ORDER STATISTICS

Published in: IEEE Transactions on Visualization and Computer Graphics (TVCG),

2019.

DOI: 10.1109/TVCG.2019.2914446

Qualis CAPES: A1

Authors: Cícero A. L. Pahins, Nivan Ferreira, and João L. D. Comba.

4.1 Abstract

In recent years sophisticated data structures based on datacubes have been pro-

posed to perform interactive visual exploration of large datasets. While powerful, these

approaches overlook the important fact that aggregations used to produce datacubes do

not represent the actual distribution of the data being analyzed. As a result, these methods

might produce biased results as well as hide important features in the data. In this paper,

we introduce the Quantile Data Structure (QDS) that bridges this gap by supporting inter-

active visual exploration based on order statistics. To achieve this, QDS makes use of an

efficient non-parametric distribution approximation scheme called p-digest and employs

a novel datacube indexing scheme that reduces the memory usage of previous datacube

methods. This enables interactive slicing and dicing while accurately approximating the

distribution of quantitative variables of interest. We present two case studies that illus-

trate the ability of QDS to not only build order statistics based visualizations interactively

but also to perform event detection on very large datasets. Finally, we present extensive

experimental results that validate the effectiveness of QDS regarding memory usage and

accuracy in the approximation of order statistics for real-world datasets.

4.2 Introduction

A fundamental problem in modern visual data analysis is how to build data explo-

ration environments that support interactive exploration of large datasets.

This problem has two opposing facets. From one side, the ever-growing complex-

ity and size of datasets bring the need to provide complex navigation and visual summa-

68

rization capabilities. On the other hand, human perception and cognition pose a challenge

on how long the data handling and rendering loop can take. Even small delays on the

scale of half a second can have a significant negative impact on the visual data explo-

ration process (LIU; HEER, 2014b). Unfortunately, the ability to produce compelling

visual summaries, interaction mechanisms, and interfaces has surpassed our capabilities

to create techniques that support real-time data processing for visualization (BATTLE;

CHANG; STONEBRAKER, 2016). As a result, there are limitations on the analysis that

one can hope to perform interactively. In this paper, we are concerned with the scenario

of performing real-time analysis (i.e., virtually immediate results) of large static datasets.

Recent efforts propose sophisticated implementations of precomputed indices (LIU;

JIANG; HEER, 2013; Lins; Klosowski; Scheidegger, 2013; Pahins et al., 2017) that store

aggregations of a given dataset as solutions to this problem. One limitation of these ap-

proaches is the fact that they do not take into account the inherent distribution uncertainty

due to aggregation: datasets with equal mean and covariance, but with entirely different

underlying distributions. Examples of this issue can be seen in the classical Anscombe’s

Quartet datasets and the work of Matejka et al. (MATEJKA; FITZMAURICE, 2017). The

state-of-the-art method Gaussian Cubes (GC) (Wang et al., 2017) supports interactive data

modeling by describing the data distribution using parametric Gaussian distributions. Un-

fortunately, this approach has two drawbacks. First, it relies on non-robust statistics (mean

and covariances), i.e., they can be easily affected by outliers. Second, and most impor-

tantly, one can not assume real-world data to be normal, and assuming normality can hide

essential features of the data.

Contribuitions. To overcome these drawbacks we propose Quantile Data Structure (QDS):

a novel data structure that encodes data distributions based on robust statistics while

providing support for interactive visual exploration of large spatiotemporal datasets. To

achieve this, QDS couples a non-parametric distribution modeling technique called p-digest,

based on the t-digest quantile sketch (DUNNING; ERTL, 2014) (Sec. 4.5), with a novel

indexing structure that reduces the large memory footprint common to datacube structures

and enables real-time slicing and dicing. QDS (described in Sec. 4.6) extends the query-

ing abilities of previous approaches by supporting queries with order statistics related

aggregations such as quantiles and cumulative distribution. We used QDS in a proto-

type visual analytics system to demonstrate that these queries provide a powerful tool to

interactively build widely used visualizations (such as box plots, equi-depth histograms,

and band plots), create new ones (such as the heatmaps based on quantiles and cumulative

69

Figure 4.1: Analyzing the distribution of flight arrival delays for U.S. airports using QDS.
We observe two maps showing the probability of flights being late for January and Decem-
ber 2014. Airports are colored using a divergent color scale representing the cumulative
distribution function of the arrival delays at the value 0. We assign red color shades to
airports with a higher probability of having late arriving flights and blue shades for air-
ports in which flights are more likely to be early. Notice how the trend changes from more
likely delayed flights on the Northeastern airports in January to Southwestern ones (par-
ticularly in California) in December. The pattern of delay in January 2014 is due to the
snowstorms that pounded the Northeast of the U.S. in January. The Western delay pattern
in December is due to the so-called “California’s storm of the decade" that affected the
region in the middle of December 2014. The temporal band plots on the bottom show the
evolution of the arrival delay quantiles (0.1,0.25,0.5,0.75,0.9) for both the JFK (left) and
SFO airport (right). Dates with a substantial increase in the median arrival delays (black
line) are the peaks of these events (e.g., January 4 on the left and December 15 and 19 on
the right).

distribution) (Sec. 4.7) and to perform interactive event detection (Sec. 4.8). Fig. 4.1 illus-

trates interesting spatiotemporal patterns in the distribution of flight arrival delays for U.S.

airports found using QDS. Finally, we provide extensive experimental results (Sec. 4.9)

that show the effectiveness of our method for the analysis of real-world datasets scenarios.

4.3 Related Work

In this section, we review related research on different aspects that play an essen-

tial part in this work.

Visualization of Data Distributions. The visualization of statistical summaries is at the

core of visual data analysis and visual data communication (POTTER et al., 2010; MA-

CIEJEWSKI et al., 2013). The most common approach relies on visualizations of the

mean and standard deviation such as bar charts and error bar plots. This approach is

70

dubious, sensitive to outliers and may not only introduce bias but also hide essential fea-

tures of the data (as illustrated in Fig. 4.2). For these reasons, this approach has been

discouraged by researches in the fields of visualization (CORRELL; GLEICHER, 2014),

neuroscience (ROUSSELET; FOXE; BOLAM, 2016) and biology (WEISSGERBER et

al., 2015). Scientific publications also incentive the use of more accurate distribution

representation such as boxplots (WICKHAM; STRYJEWSKI, 2011) to summarize large

datasets (KICK. . . , 2014). Furthermore, recent studies by Kay et al. (KAY et al., 2016)

and Fernandes et al. (FERNANDES et al., 2018) showed that presenting detailed distribu-

tion information improves decision making compared to scenarios where this information

is not present. In addition, these studies showed that specialized visual summaries based

on order statistics improved decision making in an uncertainty judgment in a transit sce-

nario. Our work builds on these observations and proposes a data structure that provides

accurate distribution approximations for large spatiotemporal datasets.

Interactive Visualization of Large Datasets. The problem of providing interactive ana-

lytics and visualization for large datasets has attracted the attention of researchers both

in the visualization and databases community. Solutions to this problem follow two

main strategies: sampling and pre-computation. The sampling strategy uses progres-

sively increasing samples of a population to approximate/estimate the result of a given

query (FISHER et al., 2012a). The survey by Chaudhuri et al. (CHAUDHURI; DING;

KANDULA, 2017) describes several techniques for query estimation and data handling in

this scenario. In systems using the sampling strategy, users face evolving visualizations

that indicate current estimates and, possibly, the uncertainty inherent to the estimation

process (JO et al., 2017). While flexible compared to the precomputation strategy, the un-

derstanding of the user experience in this scenario is still incipient (MORITZ; FISHER,

2017), thus motivating new visualizations and interactions to support users in analytical

environments (FERREIRA; FISHER; KONIG, 2014; MORITZ et al., 2017).

On the other hand, the pre-computation strategy relies on computing aggrega-

tions over several dimensions following the datacube concept. Systems such as Im-

mens (LIU; JIANG; HEER, 2013), Nanocubes (NC) (Lins; Klosowski; Scheidegger,

2013) and Hashedcubes (HC) (Pahins et al., 2017) were proposed to reduce the huge

memory footprint, but are limited to provide results in counting queries. Recent systems

such as TopKube (Miranda et al., 2018) and Gaussian Cubes (GC) (Wang et al., 2017) ex-

tend ordinary datacubes to perform more complex analysis in real-time while respecting

reasonable memory constraints. QDS also follows the datacube approach. However, we

71

Figure 4.2: Gaussian distributions are the most common approach of modeling data for
analysis and visualization. While this method has theoretical advantages, real-world data
is rarely normally distributed. As we observe in (a)-(c) modeling data with normal dis-
tributions (black curves) can introduce biases and hide essential features such as mul-
timodality and skewness. As illustrated by the equi-depth histograms produced using
p-digest in (d) (darker shades of blue represent higher data density) can efficiently de-
scribe the distributions of the other plots.

(a) Uniform Distribution (b) Bimodal Distribution (c) Exponential Distribution (d) p-digest

relax the requirements of exact representation from previous systems to provide a non-

parametric approximation of the data distribution. A recent work by Peng et al. (PENG

et al., 2018) proposed a hybrid approach that mixes the sampling and precomputation

strategies. However, neither this work or the ones cited above support the quantile queries

provided by QDS.

Applications of Event Detection in Visual Analytics. Statistical techniques can be used

to identify events or anomaly situations, which has been shown to be a powerful tool for

visual anlytics (DORAISWAMY et al., 2014). Maciejewski et al. (MACIEJEWSKI et al.,

2010) couple visual exploration with modeling strategies to find abnormal spatiotemporal

hotspots. Wilkinson et al. (WILKINSON, 2018) use a statistical algorithm for detecting

multidimensional outliers. QDS provides a powerful and flexible way to find relevant and

complex events using quantiles from the distributions of large datasets.

4.4 Background

We briefly discuss the background of probability theory and data sketches, and re-

fer to Rosenthal (ROSENTHAL, 2006) and Cormode et al. (CORMODE et al., 2012) for

a detailed description. We define the cumulative distribution function (cdf) of a random

variable X by FX(t) = Pr(X ≤ t). Quantiles are landmark values of a given cdf that

define specific points where FX has accumulated a fraction of its total probability. For

example, a value t is the qth quantile of Fx if FX(t) = q. Intuitively, one can obtain the

value of the qth quantile by F−1
X (q) by simply inverting the cdf . In this presentation, we

focus on the intuition and overlook the fact that cdf ’s are not necessarily invertible. We

72

define the first (q1), second (q2) and third (q3) quartiles as the quantiles that divide the

density in four equal parts, i.e., 0.25th, 0.5th and 0.75th respectively. We define a random

field as a function FM that associates to each point in a spatial domain (e.g. geographi-

cal coordinates) a random variable. We define quantile heatmaps and outlierness queries

supported by QDS (Sec. 4.6.1) using random fields.

Unlike moment statistics, such as average and variance, quantiles are robust to

the presence of outliers (WILKINSON, 2018). However, it is not possible to combine

quantiles of different datasets (e.g. cdfs) without processing the input datasets entirely.

This limits the use of quantiles in scenarios that require hierarchical/dynamic aggrega-

tion such as datacubes. An alternative is to use approximation schemes called quantile

sketches (PHILLIPS, 2016). A data sketch is “a data structure that can be easily updated

with new or modified data and supports a set of queries whose results approximate queries

on the full dataset" (PHILLIPS, 2016). Quantile sketches are data sketches that support

queries of quantile and cdf estimation. Methods vary in memory usage and approxi-

mation performance, leading to two groups of methods. The first one has sketches that

have proven approximation bounds such as the proposals of Shrivastava et al. (SHRIVAS-

TAVA et al., 2004), Agarwal et al.(AGARWAL et al., 2013a), Karnin et al. (KARNIN;

LANG; LIBERTY, 2016) and Felber and Ostrovsky (FELBER; OSTROVSKY, 2017).

Such methods have performance requirements which incur in complex algorithms that use

large amounts of memory in practice (see discussion in (BEN-HAIM; TOM-TOV, 2010)).

The second group of methods lack rigorous algorithmic analysis but relies on heuristics

to provide empirical results for query accuracy and reduced memory usage. Examples

of methods in this group are the GK sketch (GREENWALD; KHANNA, 2001), the S-

Hist sketch (BEN-HAIM; TOM-TOV, 2010) and the t-digest by Dunning (DUNNING;

ERTL, 2014).

4.5 The t-digest data sketch

The simplicity and approximation accuracy of t-digest singles it out from other

quantile sketches. The t-digest summarizes the (empirical) cdf of an input dataset by

a set of weighted values called centroids (Fig. 4.3). To choose centroids we group ele-

ments on subsequences of varying size following an adaptive strategy. Given an input

compression parameter δ that defines the maximum number of centroids, the strategy

gives high priority to extreme quantiles (closer to 0 and 1), as defined by the function

73

Figure 4.3: The t-digest sketch: (a) construction of a t-digest t1. The cdf of the input
dataset is represented by a set of weighted centroids. (b) Different quantile sketches t1
and t2 can be combined using the merge operation. (c) A quantile query, qnt(value),
interpolates the centroid weights compared to the fraction of the total weight defined by
the input value to compute the estimate of the result quantile.

centroid 2 6

weight 2 1

centroid 1 2 4.75 5.3 6 10

weight 1 2 3 3 1 1

t1 t2

centroid 1 4.625 5.075 5.375 10

weight 0.5 0.5 1 1 1 1 1 1 0.5 0.5

(a)

(b)

(c)

{ 1, 4.5,4.75, 5,5.15, 5.25,5.5,10}

m erge(t 1,t 2)

t 1.cdf(5.075) t 1.cdf(5.18)

t 1.qnt (0.5) t 1.qnt (0.6)

kδ(q) = δ((sin−1(2q − 1) + π)/2π). The size of each subsequence is smaller (i.e., more

resolution) for centroids near the beginning or the end of the dataset, but larger towards

the middle. This strategy tries to make queries for extreme quantiles, in general, more ac-

curate than the ones closer to the median for outlier detection purposes. The construction

process of t-digest, illustrated in Fig. 4.3(a), is closely related to the process of merging

two sketches (Fig. 4.3(b)). The construction of one sketch requires merging a dataset

(the elements correspond to centroids with weights equal to 1) against an empty t-digest.

This process consists of sorting the weighted centroids and performing the grouping of

subsequences as before but considering the given weights. To perform the query for a

quantile we divide the weight of each centroid into two equal parts to the left and the right

of the centroid. The quantile query receives the desired q and loops through the ordered

list of centroids accumulating all the weights that have already been seen and comparing

it to q ∗ |D|, where |D| represents the sum of weights (size of the dataset). If the de-

sired weight ends up on a centroid, the value of that centroid is returned. This happens

in the median query qnt(0.5) in Fig. 4.3(c). On the other hand, if the weight ends up

between two centroids, the value of the quantile is derived by linearly interpolating the

values of the corresponding centroids using their weights (e.g., qnt(0.6)). The cdf query

is implemented as the inverse of the result of a quantile query. Counting queries are also

supported and return the sum of the weights of each centroid.

The publicly available implementations of t-digest were designed for applications

74

in a data streaming scenario with low memory constraints. Their large memory overhead

makes them not adequate to be used in datacube structures. We propose an optimized

method called p-digest that reduces the memory footprint of the previous implementations

and, therefore, suitable for our applications.

4.6 Quantile Data Structure

In this section, we describe the Quantile Data Structure (QDS). We present the

queries supported, its internal representation, query algorithm, and implementation de-

tails.

4.6.1 Overview and Query Types

Consider, for example, a hypothetical scenario of the analysis of flight delays in

U.S. airports. We are interested in answering questions like T1:“How likely is a flight

operated by Delta Airlines to be delayed more than 10 minutes at JFK airport?", T2:“How

does the distribution of flight delays for two airports compare to each other in the past

month?" and T3:“How unusual are the delays experienced by Delta flights on January

29th, 2017?”. To answer such queries QDS stores a quantile sketch as a payload at each

node of a datacube to allow fast data selection and accurate querying for distribution

statistics. QDS supports the following primary type of query:

select AGGR from QDS where CONSTRAINTS [group BY G]

The CONSTRAINTS part of the query represent conditions defined on any set of

the index dimensions (e.g., carrier=Delta, airport=JFK) and specify the datacube nodes

to consider. QDS groups these nodes into bins according to the group by dimension G

(or create one group for all nodes if this optional information is not given). The quantile

sketches associated with each datacube node in each group are merged to represent the

distribution of the data in each group. In case a group by dimension G is specified, we

merge sketches according to the bins of D forming a random field. For example, in our

flight’s scenario, grouping by the airport dimension will result in a collection of p-digests

associated with each airport. Similarly, grouping by a temporal dimension with a given

time granularity will result in a p-digest associated with each timestamp. The same is

valid to spatial grouping (e.g., map tiles with resolution = 8 produces a maximum 256x256

75

Figure 4.4: Queries supported by QDS. Let FM be the random field formed by merging
quantile sketches of selected bins. (a) The quantile and cdf queries receive a parameter
x and returns the result of the corresponding query for each quantile sketch. (b) The
pipeline query: we use the result of a given query as a parameter to a second one using
a right join process. In case the parameter has “missing” bins the result query can have
undefined (purple X) values.

p-digest per tile). The aggregation function (AGGR) is executed on a measure dimension

(e.g., arrival delay) and defines the quantile sketch query we execute on the random field:

quantile, cdf or count. This process is illustrated in Fig. 4.4 (a).

Quantile and cdf queries can answer questions T1 and T2 above. To answer ques-

tion T3, we use another query called pipeline (Fig. 4.4 (b)), which use the output of a

query as input to a second one. In the T3 example, we perform the first query to select all

flight delays for Delta on January 29th. Let a second query select the total distribution of

flight delays by Delta. QDS performs an operation of right join between the bins resulting

from these two queries and compute the aggregation of the second query for each value

in the output of the first query. The result is a score quantifying the cdf for January 29th

in each airport. As described in Sec. 4.7.3, pipeline queries are the base for our event

detection method.

The last query type supported by QDS is used to quantify the total deviation from

the median over a period of time. Given a start/end timestamp and a temporal resolu-

tion (e.g., days) this query performs a set of pipeline queries for each timestep. In each

timestep, the values are added up to create a score for each temporal bin. We name these

composite queries and give examples in the use cases of Sec. 4.8. A detailed descrip-

tion of the execution of the query algorithm is presented in Sec. 4.6.3 and illustrated in

Fig. 4.6.

4.6.2 Internal Representation

Datacube-inspired structures have as a common challenge the need to store data as

compressed as possible while supporting fast query response. The exploration of data with

76

Figure 4.5: QDS indexing scheme and shared pointers. We use an example to compare
the indexes of HC (a) and QDS (b). The input dataset has eight records, each with three
dimensions. In HC, each dimension stores pivots in a pivot array that refers to intervals
in the input dataset. In QDS, in addition to the pivot array for each dimension (primary
pivot array), we keep a secondary pivot array for each element. In graphical terms, the
primary array is displayed horizontally, while the secondary array is displayed vertically.
Searching for values equal to F in QDS can be simply done by following vertically the
secondary pivot array associated with F in dimension 2. The number of pivots stored in
the QDS is not larger than in HC. Each pivot has an additional payload (marked with *)
that can store quantile information. (c) Pivot arrays tend to have duplicate information
across dimensions. To save memory, QDS used shared pointers to compact shared pivot
and payload information.

order statistics creates additional challenges. We describe below the indexing scheme,

compression of shared information, and p-digest sketch that stores quantile data.

4.6.2.1 Indexing Scheme

The design of QDS is inspired by Hashedcubes (HC) because it offers the best

trade-off regarding storage and efficiency. Since both structures have similar concepts, it

is important first to review the design of Hashedcubes. To do so, we will use a simple

dataset containing eight records (labeled from 0 to 7), each containing three categorical

dimensions (location, app, and device) shown on the top of Fig. 4.5. Following a pre-

defined ordering of the dimensions of the input dataset, HC keeps a multi-level index. For

each dimension, this index stores an array of pivots that delimits a consecutive interval

77

in the sorted input array with equal values. Fig. 4.5(a) shows an example of the index

(pivot arrays) created with our sample dataset. In dimension 1 (location), one entry in

the array has a pivot [4 − 5] associated to the value E (Europe), meaning that in the

input array, entries from 4 to 5 have values E in the first dimension. Observe that at

dimension two there is more than one pivot associated with the values F (Facebook), T

(Twitter) and W (Whatsapp). As a result, a query for F in the second dimension must

find all its non-contiguous pivots. This is a simple example of pivot fragmentation which

is a consequence of the multi-key sorting of pivot arrays in each dimension. As more

dimensions are used, fragmentation increases, which causes queries that use subsequent

dimensions to examine a possibly considerable number of pivots We experienced this

corner case when implementing HC (see Sec. 4.9).

QDS’s novel pivot index (Fig. 4.5(b)) fixes the fragmentation issue as well as sup-

ports the varied set of queries described previously. Starting at the second dimension,

instead of a single pivot array, we keep an additional secondary pivot array that can be

used to recover all pivots associated with a given value. For example, searching for values

equal to F in the second dimension can be done by following the secondary pivot array

associated with values F , which return the pivots [0-0] and [4-5]. The secondary pivot

array allows keys associated with pivots to be stored only once, thus saving memory. An-

other improvement is related to the fact that pivot arrays for distinct dimensions in HC

often have duplicated entries, leading to redundant storage. QDS overcomes this prob-

lem with a shared container abstraction. For example, in Fig. 4.5(b) we have the pivot

[4-5] appearing in dimensions 1 and 2. Using a shared abstraction we create a single

payload that is shared for both pivots, as show in Fig. 4.5(c). A second, and more sophis-

ticated sharing happens when the secondary array is identical for different dimensions. In

Fig. 4.5(b), the secondary array associated with the value T in the second dimension has

pivots [1-2] and [6-6]. Similarly, the secondary array associated with the value S in the

third dimension also has pivots [1-2] and [6-6]. In such cases, we share both the payload

as well as the pivots, as shown in Fig. 4.5(c). We refer to Sec. 4.9 for experimental results

of memory saved by these optimizations.

4.6.2.2 The p-digest data sketch

The t-digest described in Sec. 4.5 was our choice for storing payload information

because it supports compressed and accurate on-line order statistics. There are, however,

limitations in the two publicly available implementations of t-digest. The main imple-

78

mentation, described in (DUNNING; ERTL, 2014), uses a balanced binary search tree

(AVL) to store centroid information, consuming 80 bytes per centroid. A secondary (and

under construction) implementation uses an array, which reduces memory usage to 40

bytes per centroid. Such memory requirements are adequate for the streaming process-

ing applications of t-digest, but in our datacube scenario, it results in prohibitive memory

usage.

We made several changes to the array implementation of t-digest to comply with

our performance requirements, For instance, we reduced the centroid memory storage by

implementing the sketch as a stream of numbers, with both centroid and weight arrays

as a single chunk of floats. The memory requirements for the centroid is at most 8 bytes,

using 4 bytes for each of the centroid and weighted arrays. Using QDS with real data, a

situation that frequently occurs is the weight array have all values equal to 1. To leverage

this property and reduce memory usage, we added a boolean field to the end of the payload

structure to indicate the storage of both centroid and weighted arrays. When this field is 0,

the weight values are all equal to 1, and weights are not stored explicitly, only the centroid

values. On average the cost for centroids is just 4 bytes. Similarly, we do not store the

weight array when all its values are equal. Such optimization is efficient for (very) small

pivots in deeper dimensions. The merge and query operations were modified to work

with this modified structure. For convenience, we call this modified structure by the name

p-digest, since in QDS it associates one such sketch to each pivot. We implemented

p-digest as a standalone library that can also be used outside QDS, which is available as

an alternate implementation of t-digest (Sec. 4.6.4).

4.6.3 Query Algorithm

While QDS’s and Hashedcubes’s indices use similar concepts, their structural dif-

ferences and the sophisticated set of queries supported by QDS makes querying our struc-

ture a very different process. QDS’s query algorithm (Fig. 4.6) is responsible for ef-

ficiently selecting nodes and satisfying a set of query constraints. This algorithm was

designed to handle a great variety of query combinations following a progressive refine-

ment approach. In a high-level description, for a given multi-dimensional query, the query

algorithm is composed of three steps executed in sequence: selection, intersection, and

aggregation. In the selection step, for each dimension specified in the query, the algo-

rithm selects the pivots from the pivot arrays that satisfies the query individually for each

79

Figure 4.6: The QDS query algorithm demonstrated using the dataset of Fig. 4.5. The
input query has constraints in all dimensions. In the selection step, the pivot array of each
dimension is processed to check the pivots that satisfy the query for that dimension. In
the intersection step, we compute in sequence the intersection of the results of previous
steps. The aggregation step compacts the results of the previous step.

dimension. The primary and secondary pivot arrays are responsible for efficiently dis-

carding queries that return empty results, thus avoiding the HC corner cases mentioned

before (see a discussion on Sec. 4.9). The intersection step is responsible for combining

the pivots, resulting from the selection step, that simultaneously satisfies the query for all

dimensions. The result of the intersection step are pivots that might not be contiguous

since the previous steps might leave similar elements distributed over distinct pivots. The

aggregation step groups pivots by compacting disjoint pivots that contiguously represent

the same value. For example, if pivots [1-2] and [3-5] refer to the same value F , we

replace by a single pivot [1-5] of value F .

4.6.4 Implementation

QDS is implemented in C++ and uses a client-server architecture. The server

consumes an input, and builds a QDS in a pre-processing step. QDS supports multiple

categorical, temporal and spatial dimensions for its indexing schemas. We discretize spa-

80

Figure 4.7: Quantile heatmaps of taxi trip fares in NYC during the month of October
2014 based on their pick-up locations. The mean based heatmap (a) conveys high prices
similar to the third quartile map(d). The median heatmap shows lower fares (c) indicating
the robustness with respect to outliers. The first quartile map (b) indicates mostly lower
values except on regions close to the Queens–Midtown Expressway near the high traffic
region of Queens—Midtown Tunnel’s toll station (right dashed box).

0 26.3+ 2.3 4.6 6.9 9.2 11.5 13.8 16.1 18.4 21.7 24.0(US$)

(a) mean (b) q1(0.25) (c) q2(0.5) (d) q3(0.75)

tial and temporal dimensions like in NC or HC: quadtree based map tile coordinates and

user-defined time bins, respectively. Unlike NC and HC, QDS can stack and interca-

late different types of dimensions without a predefined order (e.g, categorical-temporal-

spatial, or even, NC and HC ordering of spatial-categorical-temporal), since it impacts

both memory usage and running time. Note that QDS default layout is the inverse of

both NC and HC, since we find this to be a good compromise between performance

and memory usage (refer to Sec. 4.9). We also support multiple measure dimensions by

storing unique combinations (i.e., pivots) into individual primitive arrays (referenced as

payloads). Each payload uses a header to determine the beginning and end of each dimen-

sion. Other low-level QDS optimizations are accessible in its open source code available

at <https://github.com/cicerolp/qds>.

4.7 Building Visualizations with QDS

We illustrate below general scenarios of analytical tasks and visualizations enabled

by QDS to support the visual analysis of large datasets with order statistics data.

4.7.1 Extending Usual Visualizations

The query capabilities of QDS support the analysis of data distribution patterns in

spatial, temporal and categorical dimensions. For example, we define quantile heatmaps

as heatmaps obtained from QDS’s quantile queries. Fig. 4.7 compares the standard mean

https://github.com/cicerolp/qds

81

heatmap (a) against quartile queries (b,c,d) of taxi trip fares (in US dollars) in NYC based

on their pick-up locations. We notice how the quantile heatmaps convey a different mes-

sage than the mean heatmap. While the mean map (a) suggests high prices (above 16

dollars) for the region of Midtown (left dashed boxes), both maps of the first quartile

(b) and median (c) suggest that these prices are usually smaller in that region (below 14

dollars). Also, notice how the mean map is similar to the third quartile map (d). This

reflects the sensitivity of the mean to outliers. Furthermore, by performing a simple arith-

metic operation on quantile heatmaps, we visualize spatial properties of the underlying

distributions such as interquartile range (a robust alternative to variance as a measure of

spread/uncertainty) and skewness (a measure of asymmetry in the distribution) (KEN-

NEY; KEEPING, 1954). Another novel notion of heatmap enabled by QDS is called cdf

heatmaps. These maps use the cdf query to display how likely a distribution in a given

location is to be smaller than a certain value. Fig. 4.1 shows examples of this concept.

The color on the maps represent the probability of flights being late, i.e., cdf(0). These

maps make it intuitive to observe the changes in the geographical delay pattern from east

to west in 2014.

The temporal aspect of quantiles can be explored for example by constructing

band plots (Fig. 4.1 bottom). The median (black) curve gives a robust notion of centrality

and therefore the typical temporal behavior of the variable in consideration. The curves

of the first quartile (bottom curve) and third quartile (top curve) form dark red bands. The

lighter red band is formed by quantiles 0.1 (bottom) and 0.9 (top). This choice was made

to avoid minimum and maximum outlier values. Notice how the additional quantiles help

in the identification of the variability of the distribution. Finally, we also notice different

forms in the average and error bar based temporal plots (produced by GC (Wang et al.,

2017)). The bands formed are not necessarily symmetric around the median curve and

are a more faithful representation of the distribution behavior over time.

As the last example, QDS can be used to understand the distribution of quanti-

tative values related to categorical dimensions. In fact, this can be done by using the

quantile information to build the widely used box plots (Fig. 4.8) and equi-depth his-

tograms (Fig. 4.2(d)). Unlike conventional histograms, the bins in equi-depth histograms

contain a fixed fraction of the data population (equally spaced quantiles). In Fig. 4.2(d)

the bins are colored proportional to their data density to better depict the data distribution.

82

4.7.2 Easing the Reading of Uncertainty Visualizations

Interpreting uncertainty visualizations is not an easy task, even for trained individ-

uals, One issued for this difficulty is performing statistical inferences by eye to quantify

the uncertainty related to analytical tasks. An example of such scenario can be seen in

Fig. 4.8. How likely is it for each of the distributions to be smaller than the red line (which

represents the threshold of considering a flight to be late)? To simplify this problem, Fer-

reira at al. (FERREIRA; FISHER; KONIG, 2014) proposed interactive annotations that

enrich usual uncertainty visualizations by visually quantifying uncertainty. One of these

annotation allows the user to drag a line and the likelihood of the distribution to be smaller

than this line would be mapped to colors. They provide a user evaluation that indicates

the effectiveness of annotations in the sense that it improves “justified confidence”, i.e.,

the correlation between the user being correct and being confident her answer. However,

Ferreira at al. (FERREIRA; FISHER; KONIG, 2014) did not propose an efficient data

handling method to support these interactions. In fact, they used an ad-hoc sampling

scheme which neither scales with the number of distributions nor supports slicing and

dicing. Therefore it can not be used in a real visual analytics system. QDS can be used to

support the interaction described above: it suffices to use the cdf query in each box plot

with the value represented by the red line as parameter. The results of these operations

are used to color the box plots in Fig. 4.8.

4.7.3 Uncovering the Unexpected

Performing visual exploration on large amounts of spatiotemporal data can be a

time-consuming process. In fact, due to the inherent complexity of this data unusual (and

possibly interesting) patterns might occur at multiple aggregation scales and therefore

finding them requires users to inspect a large number of data slices over time and space.

Thus, these patterns might remain undiscovered even after the use of visual exploration

tools (DORAISWAMY et al., 2014). For this reason, the application of event detection

techniques is essential to find these patterns. QDS’s ability to retrieve the (approximate)

distribution to an arbitrary portion of the data interactively is a powerful tool to perform

event detection in a visual analytics system. In fact, given a value t and the distribution

function FX of a random variable X , we can define a measure of outlierness of t con-

cerning FX as (FRAIMAN; MUNIZ, 2001): φ̂(t, FX) = 2(|0.5 − FX(t)|). A low value

83

Figure 4.8: Box plot of flight arrival delays per carrier. The boxes are colored and sorted
according to the probability of each distribution being below 15 minutes (red line), which
represents the proportion of on-time flights.

𝑦
𝑙𝑖𝑚

=
−
2
0
,2
0

𝑦
𝑙𝑖𝑚

=
𝑚
𝑖𝑛
,𝑚

𝑎
𝑥

of φ̂(t, FX) means that t is a "normal" data instance, while high values mean instances

closer to extreme values of the distribution and therefore judged as "events". Fraiman

and Muniz (FRAIMAN; MUNIZ, 2001) proposed a method to extend this measure of

outlierness to higher dimensional data. To describe this extension, we use as an example

a heatmap m (analogous to t in the unidimensional case) of prices of taxi trips similar

to the example given in Fig. 4.7(a). The function m assigns, for each geographical loca-

tion p, a value m(p), corresponding to the average price of taxi trips starting from that

location. We assume to be given the random field FM of the prices of taxi trips for every

geographical location (analogous to FX). We define the outlierness of m concerning FM

as φ(m,FM) =
∫
φ̂(m(p), FM(p))dp, where the integral is taken over all points p on the

map domain, andm(p) and FM(p) denote the value of the heatmap m and the distribution

of fare values at location p respectively. We compute the value of φ(m,FM) using QDS’s

pipeline query described in Sec. 4.6.1. We choose the geographical coordinates as the

group by dimension. In this manner, we can perform a cdf query for each tile on the map.

To obtain the final result, we simply compute φ̂ on each of these values and add up all

the results. Such an approach can be used to find events in datasets with a long temporal

range (Fig. 4.9).

84

Figure 4.9: Daily arrival delay outlierness in 2017 for Delta JetBlue and Southwest air-
lines. Delta had an abnormal first week of April due to severe weather in its hub city
Atlanta. Similarly, weather events created abnormal arrival times for JetBlue and South-
west in May and August respectively. January 29th is another odd day: a computer out-
age grounded all Delta’s flights. The news on the side corroborate the unexpected events
found.

(a) Delta (b) JetBlue

(c) SouthWest

2017-05-25 https://tinyurl.com/y7torrzj

2017-12-29 https://tinyurl.com/ydbxeyjd

2017-01-29 https://tinyurl.com/jdoxs4v

2017-04-08 https://tinyurl.com/yaoq8g2y

2017-09-12 https://tinyurl.com/y8eg5pul

(1)

(2)

(3)

(4)

(5)

(d) Flight delays news

85

4.8 Use Cases

We demonstrate the capabilities of QDS in real exploration scenarios. We obtain

all analyses while exploring datasets with millions of records interactively in a prototype

visualization system using QDS, as can be seen in the demo video1. In all use cases we

used p-digest’s compression parameter δ = 50 for the QDS construction.

4.8.1 Analyzing Flights Delays

Delayed flights have a large impact on the finances of air carriers. According to

the trade group Airlines of America each minute of delay costs around $62.55 to U.S.

airlines (Airlines for America,). Such costs represent a significant loss considering that

some airlines accumulate millions of delay minutes every year. The On-time Perfor-

mance dataset made available by the U.S. Department of Transportation (US Department

of Transportation,) tracks the delays of U.S. air carriers domestic flights. This dataset has

over 178 million flights in 30 years (1987 to 2017). To analyze this data we built a QDS

structure on 9 of the 29 original columns of the dataset. As part of the index scheme, we

used the categorical dimensions canceled, diverted, carrier, departureAirport, the tempo-

ral dimensions departure time, and latitude and longitude as the spatial dimension. We

used the departure delay and arrival delay as payload dimensions.

The U.S. Bureau of Transportation Statistics (USBTS) publishes periodic reports

of carrier on-time performance. In these reports, a flight is on-time if it arrives no later

than 15 minutes of its scheduled time. Fig. 4.8 shows a box plot of flight arrival delays dis-

tributions for some U.S. airlines, obtained using the QDS, using the data from the January

2017 through October of the same year. We use the sliding line interaction described in

Sec. 4.7.2 to quantify the proportion of delayed flights according to the 15 minutes thresh-

old. The results of cdf(15) are used to color the boxes in the box plots. We also used them

to sort the boxes in ascending order, to rank the airlines according to their delays. An in-

teresting observation is a bad performance represented by the company JetBlue, for which

2017 was the worst year of flight delays in the previous decade (Fig. 4.9(d)-5). Also, we

highlight that the ranking of carriers obtained by QDS matches the one reported by the

USBTS for the period and the inferred densities are very close to the ones reported (US

Bureau of Transportation Statistics,).
1<https://youtu.be/WSzTJXIVUw4>

https://youtu.be/WSzTJXIVUw4

86

Figure 4.10: Exploration of NYC yellow taxi trips in October 2014. (a) Outlierness
coefficients with respect to total fare vary widely during the month with peaks on days 10,
12, 17, 23, 24 and 31. This last one being the highest. (b) Analyzing how the outlierness
vary over the day 31 we see that the day got more "unusual" with the highest values on the
period starting at 7 PM. (c) The heatmap resulting from the pipeline query in this period
we observe from left to right that trips are more expensive than normal in the Greenwich
Village Region. Zooming in we see that a portion of the streets (purple) that unusually
did not have any trips. This corresponds to the area where the annual Greenwich Village
Halloween parade happened.

(a) Daily Outlierness in Oct. 2014 (b) Hourly Outlierness on Oct. 31 2014

(c) Heatmaps showing composite cdf query results for 31 Oct. 2014 - 7 to 10
PM

We study the JetBlue, Southwest, and Delta airlines to understand events that af-

fect their delay patterns. For each company, we use QDS’s outlierness query (Sec. 4.7.3)

to quantify how unusual one day is if compared to the distribution of delays over the

entire year. The results of this analysis are presented in Fig. 4.9. Days colored in red,

yellow and blue have high, medium, and low measures of outlierness respectively. An

interesting case is the entire red week for Delta at the beginning of April. This odd week

for the company was caused by severe thunderstorms that happen in Delta’s hub city of

Atlanta. During this week more than 3000 Delta flights were canceled (Fig. 4.9(d)-2). At

the end of May, JetBlue had delays due to heavy rains in the Northeast of the U.S, leading

to cancellations in main airports for JetBlue in New York City and Boston (Fig. 4.9(d)-3).

Southwest experienced unusual delays in August due to Summer thunderstorms, the Hur-

ricane Harvey, and the high seasonal demand (Fig. 4.9(d)-4). While weather is the main

cause of flight delays in the U.S., we found an equipment malfunction event (a computer

outage) that grounded all Delta’s domestic flights on January 29 (Fig. 4.9(d)-1).

87

Table 4.1: Overall summary of the relevant information for building QDS.
dataset size index schema(bits) payload schema QDS Memory/Time HC Memory/Time

leaf-size = 1 leaf-size = 32 or 64 leaf-size = 32 or 64
brightkite 4.5 M dayOfWeek (3), hourOfDay (5), time (16), lat (25), lon (25) NA 455 MB/9s 276 MB/7s 366 MB/7s
gowalla 6.4 M dayOfWeek (3), hourOfDay (5), time (16), lat (25), lon (25) NA 711 MB/13s 367 MB/11s 743 MB/13s
twitter-small 210.6 M device (3), time (16), lat (17), lon (17) NA 3.1 GB/05:55m 2.7 GB/05:54m 4.9 GB/10:53m
twitter 210.6 M app (2), device (3), language (5), time (16), lat (17), lon (17) NA 4.6 GB/06:39m 4.2 GB/06:37m 9.4 GB/12:04m
flights 121.2 M dep. delay (4), carrier (11), dep. time (16), lat (25), lon (25) arrDelay, depDelay 1.4 GB/02:50m 1.4GB/02:50m 457 MB/03:56m
green-taxis-small 42 M pickupDateTime (16), lat (22), lon (22) ttlAmount, distance 1.3 GB/01:24m 1.2 GB/01:16m 788 MB/03:56m
green-taxis 42 M dayOfWeek (3), hourOfDay (5), pickupTime (16), lat (22), lon (22) ttlAmount, distance 1.3 GB/01:16m 1.2 GB/01:15m 3.0 GB/01:49m
yellow-taxis-small 706 M pickupDateTime (16), lat (22), lon (22) ttlAmount, distance 9.7 GB/27:53m 9.3 GB/28:04m 7.0 GB/18:14m
yellow-taxis 706 M dayOfWeek (3), hourOfDay (5), pickupTime (day), lat (22), lon (22) ttlAmount, distance 9.7 GB/31:37m 9.3 GB/31:33m 12.6 GB/20:38m

4.8.2 Exploring Outlierness in Taxi Trip Records

New York City (NYC) is one of the largest cities in the world. Its taxi system

is a big part of the city’s life, with more than 13 thousand cabs driving every day. The

NYC Taxi and Limousine Commission have collected and distributed monthly yellow

taxi trips records since 2009 (NYC Taxi and Limousine Commission,). We use QDS to

analyze some of the fields in this dataset. The QDS index has pickup location (latitude

and longitude) as the spatial dimension, pickup date-time as the temporal dimension and

passenger count and payment type as the categorical dimension. As payload dimensions,

we use the total fare and trip distance.

We describe interesting events that happened during October of 2014. For each

day in that month, we computed the outlierness of the total fare of trips compared to the

distribution of the entire month (Fig. 4.10). We observe that Mondays in that month (days

6, 13, 20 and 27) have the lowest outlierness (shaded red region). On the other hand, days

colored in shaded green are on top of the outlier list, corresponding to Thursdays (23, 30),

Sundays (12) and Fridays (10, 17, 24, 31). The top of the list a Friday (31). To justify

this, we notice, for example, that Sunday 12 was the day preceding the Columbus day

holiday on which some events changed the traffic on major avenues most of the day. In

fact the CBGB Music Festival blocked a portion of Broadway from 10:30 AM to 19:30

PM and the Hispanic Columbus Day Parade closed a long portion of Fifth Avenue from

noon to 5 PM (NYPD,). We explore the top candidate according to our outlierness

metric, October 31. To investigate what makes this day stand out, we performed another

outlierness time analysis now comparing each hour on this day against the distribution of

total fare of all hours in the month. The resulting time-series can be seen in Fig. 4.10(b).

We see that the outlierness attains its highest values at the end of the day starting at 7

PM. To understand what makes this hour to stand out, we use a composite cdf query to

map how the distribution of these hours (7 PM to midnight) compares to the rest of the

month. Colors in the map reflect the results of the composite cdf query: blue, yellow, red

and purple mean low, medium, high and missing quantile values respectively. Looking

at the map of the city (Fig. 4.10(c)) we see a large red region (trips more expensive than

88

normal) on the Greenwich Village. Such trips have fares 75% more expensive than fares

of the entire month. A zoom in this area shows progressively more details of this pattern,

revealing that expensive trips happened around an area where no trips happened (purple

region) during the interval from 7 PM to midnight. This area corresponds to a portion of

the 6th avenue, where the annual Greenwich Village Halloween parade happened in 2014.

4.9 Experimental Results

We evaluate our method in two sets of experiments. The first one evaluates the

QDS index. We begin by performing a direct comparison to HC regarding construction

time and memory usage for several datasets and schemas. Later we compare the response

time of count queries in QDS as well as to the three commonly used databases SQLite,

PostgreSQL and MonetDB. The second set of experiments evaluates the p-digest payload

performance concerning approximation accuracy, memory usage, and computational per-

formance. We compare against the quantile query capabilities present in the database

solutions previously mentioned. The experiments were performed in a Linux-based ma-

chine, with an Intel Core i7 4790 with 32GB of main memory. We used the default options

of the databases and the SQLite in-memory configuration. Benchmark data and code are

available at the QDS’s code repository.

4.9.1 The QDS Index Experiments

Memory usage. We compare the memory usage and construction time of QDS and HC

for different datasets and schemas (Table 4.2). HC adopts a minimum leaf-size in its spa-

tial dimension to improve query time and memory footprint. On the other hand, it leads to

poor visual accuracy for regions with a low number of elements and, more importantly, for

outliers. To enable a direct comparison with HC, for this benchmark, we build an exper-

imental version of QDS with a modified implementation of both construction and query

algorithms that integrate the minimum leaf-size technique. We notice that QDS’s memory

usage is comparable (and in some cases much better than) with Hashedcubes (leaf-size =

32 or 64). Regarding construction time, our method achieved better results than HC in

most of the datasets considered even if we do not modify the leaf-size (leaf-size = 1).

Query Latency. We assess the performance of QDS’s index by measuring its latency on

89

Figure 4.11: Performance comparison of QDS, HC and database alternatives computing
count queries. QDS novel index successfully avoid HC corner cases and offers a query
latency that typically lies below 10ms in various datasets.

the same 87449 spatio-temporal count queries (with spatial, categorical and temporal con-

straints) used on the HC paper. These queries were collected on the public NC site while

users explored the brightkite, gowalla, flights and twitter datasets. We compare the results

from QDS, HC and spatial extensions of SQLite, PostgreSQL and MonetDB (MonetDB

B.V.,), using their recommend approach to accelerate spatial queries. To enable the direct

comparison of data cube structures and database solutions, we translated the set of queries

mentioned above to the appropriate format of each system. As observed in Fig. 4.11, QDS

outperforms all the tested solutions with query latency typically lying below 10ms. We

highlight that it successfully avoids HC corner cases.We notice that SQLite, PostgreSQL

and MonetDB spatial indexes implementations were unable to offer efficient mechanisms

to perform spatial filtering while combining categorical and temporal constraints. We spe-

cially notice that MonetDB does not support any special accelerators for spatial objects2

and hence its poor performance. Overall, QDS’s index offers real-time (< 40ms) slicing

and dicing with ease, which we use to provide complex quantile queries at interactive

rates (e.g., pipeline queries).

4.9.2 The p-digest Sketch Experiments

We now report accuracy, performance and memory usage of p-digest through five

experiments. The first three of them evaluate the QDS’s memory/accuracy trade-off intro-

duced by p-digest’s compression parameter δ. To evaluate this trade-off, we measure the

quality of quantile estimation in different conditions of data compression, merge effective-

2https://www.monetdb.org/Documentation/Extensions/GIS.

90

ness and queried quantile, while varying δ. For this experiments, we used the green-taxis

dataset to stress p-digest worst-case scenarios. The values shown in the accuracy exper-

iments are computed by measuring the relative error of estimated quantile to the actual

empirical quantile for the input data: |qestimated − qempirical|/(|qempirical|+1).

Accuracy per Spatial Quadtree Node. This experiment gives an insight into the accu-

racy of p-digest when dealing with input data that range from 1 element to 100 million

elements. After loading the dataset into QDS, we query each region of the spatial in-

dex independently from root to leafs at height 25, measuring the accuracy during the

process. This benchmark exploits p-digest capacity to approximate different set sizes.

Fig. 4.12 (a) shows that quantile estimation is accurate for small input data and nearly

unaffected for variations on compression parameter δ. The average error is somewhat

constant for larger inputs.

Accuracy per Spatial Quadtree Level. In this experiment, we combine each quadtree

level into its respective p-digest, i.e., for every level, we execute (at most) 4Z p-digest

merge operations while keeping the same input data. Fig. 4.12 (b) shows that accuracy

increases when the input data is broken into more parts, because data is spread across more

p-digest arrays. QDS benefits from this since pivot intersections (and as a result, p-digest

merges) are commonly executed to answer the range of queries we support. Compression

parameter δ = 50 was the default value because it has the right balance between (i)

accuracy per number of elements, (ii) accuracy per number of merges and (iii) memory

usage.

Accuracy by Varying qth ∈ (0,1). To measure accuracy on extreme quantiles, we

merge each quadtree level into its respective p-digest and aggregate the estimated quan-

tiles per qth (Fig. 4.12 (c)). This experiment gives an insight into the error of a typical

real-world query and the importance of the choice of the compression parameter δ. The

relative error of compression parameter δ = 25 gets worse near q = 1. This behavior

reflects a poor choice of this parameter for the distributions that we are trying to approxi-

mate. Notice how the performance improves for larger values of δ.

Performance. We now compare the latency of QDS quantile queries against similar

queries provided by SQLite, PostgreSQL and MonetDB. As a baseline for evaluation of

p-digest, we also implemented an experimental variaion QDS, here referenced as QDS

(w/o p-digest), that performs exact quantile computation. To do so we use QDS index

and store at each pivot a sorted array containing the corresponding payload t values. This

baseline give us an insight about the performance of QDS index when using a naive ap-

91

Figure 4.12: Evaluation of p-digest’s quantile estimation with respect to (a) pivot size, (b)
number of merge operations and (c) queried quantile.

proach to calculate quantiles.

For this experiment we use a synthetic dataset composed of 50 million points

(x, y, t), where the spatial dimensions x, y are independent and uniformly distributed in

the interval [0, 10]. The payload dimension t is generated by sampling the standard nor-

mal distribution. The goal is to compute the median of payload values over the points

contained in randomly generated spatial regions of varying size that covers from 10% up

to 90% of the dataset domain. As shown in Fig. 4.13, SQLite and PostgreSQL employ

different acceleration strategies but are unable to provide queries at interactive rates. As

already stated, MonetDB lacks any sort of index to accelerate spatial queries, translat-

ing to a constant latency, no matter the number of filtered points. We highlight that all

database solutions perform exact quantile computations, which makes necessary to scan

all elements filtered by the spatial query. The regular build of QDS (with p-digest) was

the only method able to provide quantile queries at interactive rates. QDS qnt computa-

tion time is dominated by merge operations. When measured individually, merging times

were less than one millisecond while using compression parameter δ = 50.

Memory usage. Memory usage was a relevant factor when designing p-digest. The

92

Figure 4.13: Comparison of qnt(0.5) computation on a synthetic dataset using QDS, QDS
without p-digest and database alternatives. As shown, QDS can provide quantile queries
at interactive rates.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

100
101
102
103
104
105

10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of Synthetic Dataset (50M)

T
im

e
(m

s)
Bench ● ● ● ● ●QDS QDS (w/o p−digest) SQLite PostgreSQL MonetDB

ability to share pivots and payload data, as well as memory saving strategies, prevent

QDS size to be directly proportional to the p-digest compression (δ) parameter. While the

average number of data items per p-digest is small, it is necessary to use a quantile sketch

algorithm to enable quantile computation in large datasets, as shown in Fig. 4.13. As

datasets become larger, allocating a buffer to store temporary data from the naïve approach

becomes worse, since its size is proportional to the number of elements to compute the

quantile. As observed in Table 4.2, the variation of compression (δ) parameter values has

little impact on memory usage. Compression ratio ranges from 1.16x up to 1.34x when

compared with the naïve solution.

4.10 Discussion

In this section, we further discuss issues related to QDS performance, applicabil-

ity, and limitations. We first highlight that QDS improves on NC, Immens and Hashed-

cubes with respect to both capabilities, since these systems only support count queries

and performance as described in Sec. 4.9. We also notice that having an (approximate)

description of the distribution of a dataset is more powerful than using a parametric dis-

tribution, such as the Gaussians (used by GC). In fact, using p-digest we can retrieve

the (approximate) values for moment statistics. However, the quantiles of a parametric

distribution fitted to a dataset are in general far from the original ones (as illustrated in

Fig. 4.8). This makes QDS widely applicable for the analysis of large spatiotemporal

datasets. An interesting application scenario is the analysis of ensemble datasets in which

different model predictions are put together to represent the diversity of the phenomenon

under study.

A limitation of QDS compared to GC is the fact that it can only deal with univariate

93

Table 4.2: Compression results for different p-digest configurations.

dataset
p-digest compression

naïve δ = 25 δ = 50 δ = 100

memory time memory
(compression) time memory

(compression) time memory
(compression) time

flights 12.9 GB 05:35 m 9.9 GB
(1.31 x) 07:57 m 10.5 GB

(1.22 x) 08:09 m 10.9 GB
(1.18 x) 08:19 m

green-taxis 9.0 GB 01:54 m 6.7 GB
(1.34 x) 03:02 m 7.0 GB

(1.30 x) 03:05 m 7.2 GB
(1.25 x) 03:08 m

green-taxis-
small 8.4 GB 01:52 m 6.7 GB

(1.25x) 02:50 m 7.0 GB
(1.20 x) 02:54 m 7.2 GB

(1.16 x) 02:57 m

yellow-taxis-
small NA 12.7 GB

(-) 54:57 m 12.9 GB
(-) 55:59 m 13.3 GB

(-) 56:04 m

distributions (due to a limitation of p-digest) and, therefore, treats its payload dimensions

as independent variables. Finally, while we have shown that QDS achieves a good approx-

imation, it does not provide error bounds. We intend to investigate how to quantify and

communicate the uncertainty in the approximation to the user. Also, we want to perform

a formal user study to evaluate the use of QDS and the supported visualizations.

4.11 Conclusions and Future Work

In this paper, we presented QDS, a fast and memory efficient data structure that

supports real-time (virtually immediate feedback) data exploration based on order statis-

tics on large multidimensional datasets. We believe that these capabilities open a large

number of opportunities to design novel visual encodings and interaction techniques. In

fact, other visualizations (matrix heatmaps, attributed network and etc) based on averages

could be adapted to use their robust counterparts. Furthermore, we want to explore the

possible use of QDS to speed-up computations in machine learning techniques for non-

Gaussian distributions such as quantile regression and quantile based clustering. We see

the coupling of cutting edge data sketching techniques with powerful precomputed in-

dices to support interactive visual analytics as a promising future research direction. For

example, we would like to explore how we can use of matrix and tensor sketching tech-

niques to support the execution of complex analytical algorithms interactively. Another

research direction is to define a data sketch to represent multivariate distributions with

features similar to how t-digest can represent univariate distributions. To the best of our

knowledge we are not aware of a solution to this problem. We believe the queries provided

by QDS provide changes in the mindset during the analysis, allowing users to reason on

the likelyhood of a hypothetical scenario like in Fig. 4.1. We intend to investigate these

ideas in the future.

94

5 VISUAL FORMATION AND COMPARISON OF PATIENT COHORTS

Published in: The Proceedings of the VLDB Endowment (PVLDB), 2019.

Qualis CAPES: A1

Authors: Cícero A. L. Pahins, Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, Valérie

Siroux, Jean-Louis Pepin, Jean-Christian Borel and João L. D. Comba.

5.1 Abstract

We demonstrate COVIZ, an interactive system to visually form and explore patient

cohorts. COVIZ seamlessly integrates visual cohort formation and exploration, making it

a single destination for hypothesis generation. COVIZ is easy to use by medical experts

and offers many features: (1) It provides the ability to isolate patient demographics (e.g.,

their age group and location), health markers (e.g., their body mass index), and treatments

(e.g., Ventilation for respiratory problems), and hence facilitates cohort formation; (2) It

summarizes the evolution of treatments of a cohort into health trajectories, and lets medi-

cal experts explore those trajectories; (3) It guides them in examining different facets of a

cohort and generating hypotheses for future analysis; (4) Finally, it provides the ability to

compare the statistics and health trajectories of multiple cohorts at once. COVIZ relies on

QDS, a novel data structure that encodes and indexes various data distributions to enable

their efficient retrieval. Additionally, COVIZ visualizes air quality data in the regions

where patients live to help with data interpretations. We demonstrate two key scenarios.

In the ecological scenario, we show how COVIZ can be used to explore patient data to

generate hypotheses on the health evolution of cohorts. In the case cross-over scenario,

we show how COVIZ can be used to generate hypotheses on cohort health and pollution

data. A video demonstration of COVIZ is accessible via <http://bit.ly/coviz-video>.

5.2 Introduction

With the increasing availability of large-scale health-care data in various sectors

(e.g., prognoses, treatments, hospitalizations and compliances), medical experts need ef-

fective data-driven methods to identify patient cohorts, examine and explain their health

and its evolution, and compare cohorts. Medical cohort analysis exhibits the collective be-

http://bit.ly/coviz-video

95

havior of patients, providing insights on the evolution of their health conditions and their

reaction to treatments and to their environment (OMIDVAR-TEHRANI; AMER-YAHIA;

LAKSHMANAN, 2018). Cohort analysis serves various goals such as augmenting treat-

ment effectiveness, defining health campaigns and public policies, understanding patient

satisfaction, and optimizing health-care spending and revenue (MUNSHI; SHARMA;

SHARMA, 2017). The many facets that affect patients’ health require to adopt an ex-

ploratory and holistic approach to its analysis. Medical experts do not necessarily know

what to look for in the data, which cohorts are most insightful, and how to make sense

of some observations. Cohort analysis can greatly benefit from a visual tool that helps

them walk through their data to identify cohorts of interest and generate hypotheses. An

essential aspect of that process is the ability to enrich observations with exogenous data

that can be used to make sense of some phenomenon. For instance, analyzing data about

patients suffering from respiratory problems would benefit from visualizing air quality

data in the regions where those patients live.

We propose to demonstrate COVIZ, a system that acts as a visual enabler for

cohort formation and exploration. COVIZ lets medical experts form cohorts, obtain their

various statistics, examine their health condition and treatments, visualize how their health

evolves over time, and compare cohorts. To do that, COVIZ relies on two principles: ag-

gregated analytics and interactivity. Aggregated analytics refers to forming groups of

patients (aka cohorts) in an exploratory fashion and observe their collective behavior. Co-

horts can be formed with common demographics, health markers, and treatments. The

visual interface helps medical experts examine different possibilities of forming cohorts,

verifying members of cohorts, and examining differences in their health status. Interac-

tivity requires fast iterations so that the train of thought of the analyst is not lost during

the formation and exploration of cohorts. To ensure that, COVIZ relies on QDS (de Lara

Pahins; Ferreira; Comba, 2019), a novel data cube structure that encodes various distri-

butions of health-care data and indexes them to enable their efficient retrieval. To the best

of our knowledge, COVIZ is the first mixed-initiative visual analytics system that enables

medical experts to form and explore cohorts.

Visual analytics has been recently applied to enrich different data analysis tasks.

Zenvisage (SIDDIQUI et al., 2016) enables visual querying of data, where experts need

to express their needs in a SQL-like language which operates on top of a visual algebra to

show results. Vexus (AMER-YAHIA et al., 2018) provides native support for visualizing

and exploring groups of users. Vizdom (CROTTY et al., 2015) enables an interactive

96

Figure 5.1: COVIZ architecture.

Visual cohort
forma/on

Exogenous data

QDS index
construc/on

Health-care data Visual cohort
explora/on

whiteboard to compose complex workflows of data analysis and statistics. It exploits ap-

proximation and partial refinement techniques to deliver visualizations interactively. Also

SeeDB (VARTAK et al., 2015) and Voyager (WONGSUPHASAWAT et al., 2016) are

visualization recommendation tools that explore the space of visualizations, and recom-

mend interesting ones. While interactivity has been the focus of these systems, there has

been less attention towards aggregated analytics (i.e., analysis of cohorts). COVIZ is a

single destination system that visually enables the formation and exploration of medical

cohorts without the burden of formalizing queries. As such, it can easily be used by medi-

cal experts to identify cohorts of interest and generate hypotheses on their health evolution

and the impact of the environment.

5.3 System Design

The overall architecture of COVIZ is illustrated in Figure 5.1. Initially an index

is built offline to boost online cohort formation and exploration. COVIZ displays health-

care data and other exogenous data sources as separate layers over a geographical map. A

set of filters is provided in the visual interface to facilitate the visual formation of cohorts.

Once a cohort is formed, COVIZ provides a succinct representation of the cohort’s health

trajectory which helps analysts comprehend the health evolution of cohort’s members

and compare cohorts (i.e., cohort exploration). COVIZ is a web service whose front-end

is implemented in the Angular framework and back-end in C++ (the index) and Python

(cohort exploration). The implementation of COVIZ is publicly available under GPL-3.0

license: <http://bit.ly/coviz-code>.

5.3.1 Datasets

Health-care data. We use a dataset from our medical partner which contains events

of 56, 284 patients with respiratory problems between the years 2000 and 2017. Pa-

http://bit.ly/coviz-code

97

tient events are: treatment, compliance, etiology, fatigue marker, BMI marker, sleepiness

marker, and hospitalization. The dataset has 1, 536, 516 records in the following schema

〈patient_id , lat , lon, date, marker , value, treatment_ durations〉. Each record reports

the value of a marker (fatigue, BMI, and sleepiness) for a specific patient identified by

patient_id. Also treatment_durations reports the duration of treatments (with a month-

level precision) which co-occurred with the marker for the patient patient_id. Examples

of treatments are Aerosoltherapy (AERO) and Oxygenotherapy (OXY). Each patient is

also associated with a set of demographics such as gender, age, and life status. Fig-

ure 5.3-A illustrates a visualization of health-care data where colors are mapped to the

number of patients.

Pollution data. High air pollution levels can cause serious respiratory problems. We con-

sider a dataset of air pollution as an exogenous resource to enable potential explanations

of observations in the health status of the formed cohorts. The dataset contains values of

different air pollutants (NO2, Ozone, PM2.5, and PM10) for all of France in the period

of 2009 to 2013. The exposure models, developed in the context of a European project

EU-FP7 SYSCLAD (AL, 2016), have a fine spatial resolution (1km× 1km) and tempo-

ral resolution (on a daily basis). The dataset has 2,671,128,000 records in the following

schema 〈lat , lon, date, pollutant , value〉.

5.3.2 Cohort formation

A cohort denotes a set of patients with common predicates (i.e., demographics,

health markers, and treatments). For instance in our data, the cohort of female patients in

Grenoble contains 1, 531 members whose predicates are defined on “gender” and “city”

dimensions. To form cohorts, experts should be able to add/remove filters on predicates

and the visual interface should provide immediate insights on the changes. The final set

of filters will constitute the cohort. Cohort formation is not a straight-forward task for

medical experts as they often have a partial understanding of their data and their needs.

Hence they need to iterate over several exploration steps to reach their cohort of inter-

est. This requires interactive performance to ensure a latency under 100ms (FEKETE;

PRIMET, 2016). To achieve that, different indexing schemes have been proposed, all of

which pre-compute statistics for some pre-defined aggregations, such as count and aver-

age (GANI et al., 2016). However most indexes store simple aggregations over individual

data records. Hence they do not provide native support for cohorts and their detailed

98

Figure 5.2: An instance of QDS indexing scheme for eight records and three dimensions.
QDS stores at each pivot (marked with an asterisk) a payload that contains the represen-
tation of a distribution function.

G Grenoble

[6-6]* [7-7]*

[1-2]* [3-3]*

B C

[7-7]*[0-0]* [1-2]*

F U

[3-3]* [6-6]*[4-5]*

[0-0]*

A M

[4-5]*

Lyon

Paris

L

P

0

G A M

1

G B F

2

G B F

3

G C M

4

L A M

5

L A M

6

P B F

7

P C U

M Male

Female

Unknown

F

U

A 55-61

62-66

67-70

B

C

Dimension 1: City Dimension 2: Age Dimension 3: Gender

[4-5]* [6-7]*[0-3]*

G L P

Dimension 1: City Dimension 2: Age Dimension 3: Gender

QDS index

Data

statistics. Moreover, the index structure should be adapted to the spatial aggregation of

records.

COVIZ benefits from a new generation of data cube structures designed to support

visual and interactive cohort formation by supporting count queries used in heatmaps and

histograms, e.g., “how many events occurred in a given region on a given date?” (LIU;

JIANG; HEER, 2013; Lins; Klosowski; Scheidegger, 2013; Pahins et al., 2017; Wang

et al., 2017). COVIZ integrates a new data cube structure called Quantile Data Struc-

ture (QDS) (de Lara Pahins; Ferreira; Comba, 2019) which is an extension of Hashed-

cubes (Pahins et al., 2017) to improve efficiency and support a variety of aggregation

queries, such as variance and quantile aggregations. Unlike count queries, such aggre-

gation queries incorporate the inherent data distribution to provide more flexibility for

cohort formation. At a high-level, QDS stores multi-dimensional data (spatial, temporal,

and categorical) in an array ordered by a nested sorting in each dimension. The ordering

allows the construction of a multi-level index that keeps, for each dimension, a list of

intervals (called pivots) that delimit a consecutive region in the array. An illustration of

QDS is provided in Figure 5.2.

We implement count queries and on-the-fly aggregations (which are materialized

only at the execution time to save memory) by query algorithms that operate directly on

the pivot lists. To enable quantile queries, QDS augments each entry in the pivot lists

99

with a compressed representation of a distribution function based on a non-parametric

distribution modeling technique called t-digest (DUNNING; ERTL,). We store such

representation as a payload of numeric dimensions, which also support on-the-fly aggre-

gations and merging of distribution functions. QDS supports the selection of predicates

for cohort formation. On-the-fly aggregations build a data view which constitutes a co-

hort. Hence cohorts are directly indexed in QDS.

In COVIZ, aggregated values of cohorts are not limited to averages but distribu-

tions within different quantiles. For instance, instead of indexing a single average value

of BMI marker for the cohort of females under AERO treatment in Grenoble, QDS stores

its quantiles. As a result, all aggregations can be computed on-the-fly, such as average,

quantile, max, and min. Our experiments in (Pahins et al., 2017) shows that spatial exten-

sions of PostgreSQL, SQLite, and MonetDB fail to render an interactive performance

for filtering and combining spatial, temporal, and categorical dimensions. QDS renders

all kinds of filters with an average delay of 40ms, enabling exploratory cohort formation.

5.3.3 Cohort exploration

Once a cohort is formed, the medical expert expects to examine “what happened

to its members” by exploring the cohort. This question relates to finding and conveying

the health trajectory of a cohort in a human-understandable way. The cohort trajectory

helps medical experts to generate hypotheses on the health evolution of the cohort’s mem-

bers. Obtaining a readable and succinct trajectory is challenging because cohorts often

consist of hundreds of patients whose medical events are of various types and occur at

different points in time. An ideal health trajectory should describe a single end-to-end

storyline for the cohort and be limited to what matters the most in the cohort (i.e., be

succinct). In (OMIDVAR-TEHRANI; AMER-YAHIA; LAKSHMANAN, 2018), we de-

veloped an algorithm which iterates over all pairs of patients in the cohort to verify if

there is a common match between their health trajectories. Given the sequential nature of

medical events, matches are identified using Needleman-Wunsch sequence matching al-

gorithm (POLYANOVSKY; ROYTBERG; TUMANYAN, 2011). Highly frequent events

will then be reported in the cohort trajectory. In our user study with medical experts,

the representativity, usefulness, and novelty of cohort trajectories were evaluated, where

average scores of 4.2, 4.5, and 3.7 (out of 5) were obtained, respectively (OMIDVAR-

TEHRANI; AMER-YAHIA; LAKSHMANAN, 2018).

100

Figure 5.3: Tasks in COVIZ: cohort formation (A-B), cohort comparison (C-D), sense-
making with pollution data (E-F).

Whole France

Centre-Val de Loire

Cohort information

Cohort predicates

Number of events in the cohort

Number of patients in the cohort

gender:female city:Grenoble AERO

336

104

female cohort female cohort
females males

females males

A B C D

E F G H

FE

fatigue vs
death

EPWORTH
progression

female cohort

Cohort predicates

gender:female city:Grenoble AERO

The cohort contains 104 patients and 336 actions.

FC D

females under
AERO treatment
in Grenoble

males under
AERO treatment
in Grenoble

Moreover, cohorts can be compared using their trajectories. For instance, compar-

ing the cohorts of patients in urban and rural regions of France reveals similarities and

differences between their health evolution. In our user study, we also asked the medical

experts to evaluate the representativity, usefulness, and novelty of cohort comparisons us-

101

ing their trajectories, and we obtained average scores of 4.03, 4.67, and 4.35, respectively.

5.4 Interface

We present different features of the COVIZ interface using a visualiz-ation-driven

scenario1 (see Figure 5.3). We consider a medical expert who is interested to obtain

insights by visual inspection of the health-care data. Typically, she needs first to acquire an

overall understanding of the data. Then she seeks to form interesting cohorts and explore

them. Last, she seeks to make sense of her observations by leveraging the pollution data.

Observing the big picture. QDS enables an immediate materialization of the big picture

to depict general trends in the health-care data. This helps experts make more informed

decisions when forming cohorts. Figure 5.3-A visualizes this big picture for 41, 740 pa-

tients and 674, 632 of their events. One can easily notice that the geographical distribution

of the data is biased towards the Auvergne-Rhône-Alpes region, where the headquarters

of our medical partner are located. A mouse-hover on this region reveals that it contains

31, 084 patients. Beyond the big picture, COVIZ provides histograms to examine distri-

butions of different dimensions of patients’ health. Figure 5.3-B shows that while 90% of

patients are male in all of France (in our data), 80% of the sub-population in the region of

Centre-Val de Loire is female. Histograms in COVIZ are inter-connected, i.e., a filter on

one histogram updates all other statistics instantaneously.

Cohort formation. Visual filters can be used to form a cohort, e.g., “females under

AERO treatment in Grenoble” (Figure 5.3-F). This example cohort contains 104 patients

with 336 events. The system will then show a series of statistics for the selected cohort in

an efficient manner. For instance, we observe that the higher values of the fatigue marker

in the cohort relates to death. We also observe that the progression of the sleepiness

marker decreased until late 2015 and then it increased again.

Cohort exploration. Experts can examine the health evolution of cohort’s members us-

ing cohort trajectories. Figure 5.3-F shows the cohort trajectory of females under AERO

treatment in Grenoble. The trajectory shows that the cohort’s members started their treat-

ment with AERO and OXY. Then they had a series of OXY treatments in four consecutive

months. Additionally, multiple cohorts can be formed and compared visually. Figure 5.3-

1The examples in Section 5.4 are meant to show various functionalities and potentials of COVIZ and are
not necessarily significant clinical-wise. An in-depth medical analysis is needed to turn those observations
into actionable insights.

102

H shows the cohort trajectory of males under AERO treatment in Grenoble. We observe

that while the female cohort systematically received AERO right after their admission to

the hospital, the male cohort started receiving it only months later.

Sensemaking with pollution data. COVIZ uses another instance of QDS for pollution

data to enable an interactive exploration of that data over different regions and in differ-

ent granularities. In Figure 5.3-I top, we set the time window (i.e., filtering the temporal

dimension) to 2010-2011 and we immediately observe that the north-eastern region of

France (région Grand-Est), was highly polluted during that time (with the NO2 pollutant).

However, we can also observe that this effect is temporary, as is shown in Figure 5.3-I bot-

tom, where the volume of NO2 is noticeably lower in the period of 2011-2012. Pollution

data can also be used to interpret some observations in the health data. For instance, Fig-

ure 5.3-J top shows that the variance of the sleepiness marker in the province of Vienne

(south-east of France) is higher than usual in the year 2010. Figure 5.3-J bottom shows

the pollution data layer on the same region and shows that Vienne was highly polluted

then, potentially justifying heterogeneous values of the sleepiness marker. This process

identifies a novel hypothesis (e.g. impact of air pollution on sleepiness) that is worth a

future in-depth investigation.

5.5 Demonstration Scenarios

We describe two scenarios that the demo attendees can perform on COVIZ during

the demo session.

Ecological scenario. In ecological studies, the unit of observation is a cohort and the

aim is to analyze the collective behavior of cohort’s members. Measurements such as

disease rates and exposures are taken for a series of cohorts and then their relation is

examined (COGGON; BARKER; ROSE, 2003). A common practice is to compare a pair

of cohorts which differ only in one dimension, referred to as contrast cohorts (ELM et

al., 2007). This enables medical experts to focus on that dimension and ignore the effect

of confounding factors. Demo attendees will be able to test this feature and generate

hypotheses on differences between cohorts. For instance, they can verify the adoption of

a specific treatment, e.g., OXY, for different genders. They form cohorts of males and

females and filter treatments to keep only OXY. Then they can verify the distribution and

variability of different markers for those two cohorts using different aggregation modes

(average, variance, quantile). They can also compare their trajectories to check if there

103

is a significant difference between the times when the two cohorts received a treatment.

Moreover, they can check other treatments which are administered by one cohort but not

the other. These observations will enable them to generate hypotheses on the difference

in treatment administration for contrast cohorts of interest.

Case cross-over scenario. In environmental epidemiology, a cohort is often compared

with its past (usually 2 to 5 previous days) to determine its health evolution, called case

cross-over study (FUNG et al., 2003). Demo attendees can form their cohort and investi-

gate its health trajectory in different time windows. For each time window, they can also

verify the amount of air pollution for different pollutants. Attendees will be able to gen-

erate various hypotheses on the relationship between pollution and the health evolution of

their cohort.

104

6 CONCLUSIONS AND DISCUSSION

This thesis introduces three (Chapters 3, 4 and Appendix A) run-time and memory

efficient data cube solutions to answer queries from interactive visualization tools that ex-

plore and analyzes large multidimensional datasets by exploiting the pivot concept prosed

by the author (see Chapter 2). The pivot concept showed that (i) is possible to represent

hierarchical and flat data structures using an optimized schema that is stored in a linear

fashion way, and (ii) demonstrated that this leads to memory savings over other data cube

visualization proposals, enabling researchers to develop richer and seamless interactive

visualization tools.

Throughout the publication of the papers of this thesis, the proposed data cubes

became more complex and powerful by supporting, at first, counting queries (see Chap-

ter 3), to the representation of approximated values for moment statistic (see Chapter 4).

This improvement makes data cubes widely applicable for the analysis of large spatiotem-

poral datasets. These capabilities open a large number of opportunities to design novel

visual encodings and techniques and that the ones explored by the author are just the be-

ginning of a large path to follow. Based on that, it is possible to define two theoretical

requirements that an analytical method must implement to be integrated into the data cube

infrastructure built by the author: (i) serializable representation and (ii) mergeable disjoint

results.

(i) Serializable Representation. Serialization is the ability to convert an object into a

stream of bytes to store it to memory. QDS took advantage of this technique and pro-

posed payload storing along with pivot representation, as in Figure 6.1. As discussed

in Appendix C, a pivot represents an interval [i0, i1], where i0 and i1 are the initial and

final markers within a given array, and express a list of elements with a common seman-

tic value, such as the same spatial region, categorical or temporal attributes. It can be

interpreted as a subset of elements. Along with pivots, QDS stores payloads, which are

objects converted into streams of bytes that represent results of analytical methods over

a subset of elements. Any serializable object can be stored by QDS’s indexing schema,

which employs an aggressive method of identifying pivots and payloads of redundant data

over the data cube, effectively reducing memory usage of serializable analytical methods

representation.

(ii) Mergeable Disjoint Results. There are two main technical requirements of QDS that

demand mergeable disjoint results. The first requirement originates from its data cube

105

approach. QDS stores only the minimum space of precomputed hierarchical aggregations

to be able to recover the combinations of all data dimensions in an n-dimensional lattice,

which proves to be effective in reducing the memory usage when compared against com-

peting datacube methods. The used data cube approach leads to singular query algorithm.

The general idea of QDS’s query algorithm is to select pivots across dimensions, find

the intersection and, then, summarize or group the result. The algorithm is composed of

three steps executed in sequence: selection, intersection and aggregation (see Chapter 3

for the definition of each step). The second technical requirement to mergeable disjoint

results originates from the last step of the algorithm, aggregation, which perform a se-

ries of merge operations of intermediate pivots and payloads to then group elements by

similarity and produce a compact representation of the result.

There are various interesting research paths to improve the analytical capabilities

of the author’s data cube proposals. QDS’s theoretical requirements to integrate novel

analytical capabilities are vastly satisfied by methods in the context of streaming and

mobile data analysis. The following sections discuss two novel solutions to integrate

previously unrelated methods to the data cubes context.

Figure 6.1: Overview of the author’s QDS data cube proposal. It employs a novel
data cube indexing that reduce memory usage of previous methods and introduces
p-digest (de Lara Pahins; Ferreira; Comba, 2019), an efficient quantile sketch that follows
the theoretical requirements that an analytical method must implement to be integrated
into the data cube infrastructure built by the author.

Z = 1

Object Diverted Dep. Time Dep. Delay

𝑂1 Y 12/20/17 15

𝑂2 N 12/20/17 5

𝑂3 N 12/25/17 3

𝑂4 Y 12/20/27 20

𝑂5 N 12/22/17 4

𝑂6 N 12/22/17 30

0,0,0

[0,4] [4,6]

[0,1] [4,6] [1,3] [3,4]

𝐷 = { 𝑂2, 𝑂3, 𝑂5, 𝑂6, 𝑂1, 𝑂4}

𝐷 = {𝑂2, 𝑂5, 𝑂6, 𝑂3, 𝑂1, 𝑂4}

𝐷 = {𝑂2, 𝑂5, 𝑂6, 𝑂3, 𝑂1, 𝑂4}

N Y

12/20/17 12/22/17 12/25/17

[0,1] [4,6][1,3] [3,4]

[3,4][0,1] [4,6]

0,0,1 0,1,1 1,0,1

[1,3]

𝑂1

𝑂2

𝑂4

𝑂3

𝑂5

𝑂6

proper payload

shared payload

referenced payload

proper pivots

referenced pivots

payloads

pivots

𝐷 = {𝑂2, 𝑂5, 𝑂6, 𝑂3, 𝑂1, 𝑂4}

𝐷 = {𝑂1, 𝑂2, 𝑂3, 𝑂4, 𝑂5, 𝑂6}

initial order

final order

106

6.1 A Fourier Spectrum-Based Approach to Represent the Decision Tree Classifier

and Regression Method

The analytical capabilities of QDS can be improved by integrating the weel well-

known decision tree classifier and regression method. The typical complexity of most

used decision tree learning algorithms, e.g., ID3, C4.5 or CART (SINGH; GUPTA, 2014),

is O(nfeaturesn
2
samples log(nsamples)) (WITTEN; FRANK; HALL, 2011), which is not ap-

propriated to real-time analysis scenarios. The precomputation of decision trees for the

hierarchical aggregation of all data dimensions in a n-dimensional lattice, following the

data cube concept, can be a solution for that.

Implementation. Kargupta and Park proposed a Fourier spectrum-based representation

of decision trees in the context of mining a data stream in mobile environments (KAR-

GUPTA; PARK, 2004) that is capable of merging incrementally modifying decision trees,

as well as aggregation of multiple trees frequently generated by ensemble-based methods.

They provide the theory to compute the Fourier spectrum of a decision tree and the de-

cision tree from its Fourier spectrum, which is a valuable source to design algorithms

suitable to data cubes, as observed in Figure 6.2. A proof-of-concept implementation was

proposed by the author of this thesis in Appendix C, and demonstrates that is feasible to

achieve a Fourier spectrum-based representation of decision trees that is well suited to the

quantile sketches of QDS.

Figure 6.2: Overview of the process of computing the Fourier spectrum of a decision
tree and vice-versa. Adapted from (KARGUPTA; PARK, 2004). A proof-of-concept
implementation was proposed by the author of this thesis in Appendix C.

107

6.2 A Clustering Technique

QDS is a data structure that integrates quantile sketches (data sketches that sup-

port queries of quantile and cdf estimation) into a data cube method. Based on that, a dis-

tance between two quantile sketches can be calculated using the two-sample Kolmogorov-

Smirnov (KS) test (LOPES, 2011). The two-sample KS test measures the difference

between two one-dimensional probability distributions, as observed in Figure 6.3. Fol-

lowing the ideas from the classical K-means algorithm, it’s possible to design a clustering

algorithm that uses the KS distance as metric to compare features distributions.

Figure 6.3: Illustration of the two-sample Kolmogorov–Smirnov test. The black arrow is
the KS distance between two one-dimensional probability distributions.

As well as the classic K-means algorithm, the QDS clustering algorithm starts by

choosing a centroid value for each cluster. In this initialization step, the QDS algorithm

randomly choose an initial cluster. The centroids of the following initial clusters are cho-

sen so as to maximize the KS distance of the features distributions. For example, if the

algorithm is executed with K = 3, the centroid of the cluster C1 will be chosen randomly

in the dataset. The cluster C2 will be chosen so as to maximize the KS distance from the

centroid C1. The last centroid C3, will be chosen in order to maximize the KS distance

for all previously selected centroids, that is, {C1, C2}. After that, the algorithm iteratively

performs three steps: (i) Find the KS distances for all p-digest modeled features distri-

butions between each data instance and centroids of all the clusters; (ii) Assign the data

instances to the cluster of the centroid with nearest KS distance; (iii) Calculate new cen-

troid values based on the mean values of the features distributions of all the data instances

from the corresponding cluster.

The modeling capabilities of p-digest were discussed in Chapter 4, but the clus-

tering algorithm of QDS can also use p-digest as a way to represent a set of directions.

108

Based on the polar coordinate system, where a point is represented by a radial distance ρ

and an angle φ, it is possible to use p-digest to model the distribution of a set of directions

{φ1, φ2, ..., φn−1, φn}, as shown in Figure 6.4. To perform the clustering, the QDS algo-

rithm compares the KS distances of multiple features distributions, each stored in its own

p-digest. To find the optimal degree of relevance for each feature in this linear combina-

tion {Feature1 ∗Weight1, Feature2 ∗Weight2, ..., Featurek ∗Weightk}, one can use,

for instance, the well known Stochastic Gradient Descent (SGD) method to optimize the

objective function defined as the convergence score.

Figure 6.4: p-digest enables the representation of a set of directions by modeling it’s
distribution into the range (0 to 2π). By using the KS distance, the clustering algorithm
can measure the similarity between distributions that represent directions.

The convergence of the clustering algorithm is dictated by two thresholds: (i)

number of iterations, and (ii) tolerance value (tol). The number of iterations is a hard limit

to stop the algorithm from running when it reach N iterations. This hard threshold can be

very useful for experiments, such as in cases where it is necessary to study the behavior

of clustering to assist in the feature engineering, however, when used individually, it is

inefficient to detect convergence. The second threshold, the tolerance value tol, stops the

clustering algorithm if the score or cumulative error does not improve by at least tol for

N consecutive iterations. The cumulative error for the QDS clustering algorithm is the

squared sum of KS distances of all elements in their corresponding clusters. Note that tol

does not guarantee that the clustering algorithm will find the optimal centroids, neither

stops the algorithm from finding a local optimum, since this also depends on the initial

choice made in the initialization step of the algorithm, which is random.

Experiments. Initial experiments were conducted with the dataset provided by Morris

and Trivedi (MORRIS; TRIVEDI, 2009), as observed in Figure 6.5. This dataset is com-

109

posed of a series of trajectories with distinct properties, direction and velocity, and helps

to understand the behavior of the clustering algorithm in simplified situations, as in cases

of parallel trajectories (Figures 6.5-a and 6.5-b), since it is expected that the algorithm

will be able to easily discover clusters.

Figure 6.5: Collection of simulated scenes and datasets with varying properties. (a) Tra-
jectories obtained on a four lane highway with traffic in both directions. (b) Trajectories
obtained by visual tracking of vehicles from a highway. (c) Trajectories obtained from
a four traffic intersection. (d) Trajectories obtained by tracking a laboratory. Adapted
from (MORRIS; TRIVEDI, 2009).

In the first experiment, we used the trajectories observed in Figures 6.5-a. For this,

all points of the trajectories are indexed using the special index of the QDS, with the as-

sociation of speed values. Note that in Figure 6.6-a and 6.6-b, the upper set of trajectories

have right-to-left sense, while the lower set of trajectories has the opposite direction. The

clustering algorithm is able to detect this characteristic by modeling the distribution of

the direction of these trajectories, as observed in Figure 6.4. To differentiate upper and

lower sets of trajectories, the clustering algorithm takes into account the spatial index of

QDS. For each trajectory, the between the path and the center of all clusters is measured,

associating it to the cluster of smaller distance. This process is performed for all points of

110

Figure 6.6: Visualization of 8 clusters generated by QDS using Morris et al.
dataset (MORRIS; TRIVEDI, 2009).

(a) Overview of the data. (b) Visualization of the trajectories
using a blue (begin) to orange (end)

color scale.

(c) Initial k = 8 clusters. (d) After N = 2 iterations.

111

a trajectory, averaging the final result. Due to the simplicity of the problem, the clustering

algorithm discovered the correct clusters after only two iterations (Figure 6.6-d).

The second experiment was conducted with the HURDAT2 dataset (LANDSEA;

FRANKLIN, 2013), which combines the trajectories of all known tropical and subtropical

cyclones from 1851 to 2017. Each trajectory has a six-hourly information on the location,

maximum winds, central pressure, and size of the cyclone. The main objective of this

experiment is to test if the clustering algorithm is able to use the combination of more

complex features to produce meaningful clusters. As in the previous experiment, all points

of the trajectories were indexed in the spatial dimension of the QDS, as well as their

location, wind and pressure features were modeled by p-digest, as observed in the bottom

of Figure 6.7-a. Through the linear combination of the KS distances of each feature

modeled by p-digest (location, wind, and pressure), the QDS clustering algorithm was

able to correctly form different sets of cyclones with similar characteristics, with results

very close to the work of Singh et al. (SINGH; GUPTA, 2014), even though they are

not necessarily spacially close. This experiment helps to demonstrate that is feasible to

achieve an accurate clustering method that is based on the quantile sketches of QDS.

Conclusion. The real-time exploration and analysis of big data are one of the primary

desires of visualization practitioners and data scientists. This thesis proposed five contri-

butions to this area. A technique to avoid the large memory footprint commonly used to

accelerate data queries (Chapter 2), three data cubes solutions that take advantage of the

proposed memory footprint reduction technique in the context of static datasets (Chap-

ters 3, 4, and Appendix A), and a solution designed to support exploration and analysis of

streaming data (Appendix B).

The opportunities for improvement of the current analytical capabilities of the

solutions proposed in this thesis are identified and were discussed in Sections 6.1 and 6.2.

The discussed improvements help to highlight the relevance of the collection of papers

presented in this thesis, since, in majority, these papers involve state-of-the-art analytical

methods of big data in the context of data cubes, data structures that typically lead to

the exponential memory problem, and introduce methods that achieve low latency and

memory usage by taking advantage of the infrastructure built around the author’s work.

112

Figure 6.7: Overview of the HURDAT2 dataset. The data consists of tracking infor-
mation of all known tropical and subtropical cyclones from 1851 to 2017 (LANDSEA;
FRANKLIN, 2013).

(a) Review: [placeholder]

(b) Visualization of the hurricanes paths using a blue (begin) to orange (end) color
scale.

(c) Initial k = 8 clusters of QDS Clustering method.

113

Figure 6.8: Visualization of 8 clusters generated by QDS using HURDAT2 dataset. Each
hurricane path is clustered based on location, wind and pressure features.

(a) Collection of all clusters.

(b) Cluster 1. (c) Cluster 2.

(d) Cluster 3. (e) Cluster 4.

(f) Cluster 5. (g) Cluster 6.

(h) Cluster 7. (i) Cluster 8.

114

REFERENCES

AGAFONKIN, V. Leaflet - a JavaScript Library for Mobile-Friendly Interactive
Maps. 2014. <http://leafletjs.com/>.

AGARWAL, P. K. et al. Mergeable Summaries. ACM Transactions on Database
Systems, ACM, v. 38, n. 4, p. 26, 2013.

AGARWAL, S. et al. Blinkdb: Queries with bounded errors and bounded response
times on very large data. In: Proceedings of the 8th ACM European Conference
on Computer Systems. [S.l.]: ACM, 2013. (EuroSys ’13), p. 29–42. ISBN
978-1-4503-1994-2.

AGRAWAL, R. et al. Challenges and opportunities with big data visualization. In:
Proc. of the 7th International Conference on Management of Computational and
Collective intelligence in Digital EcoSystems. [S.l.]: ACM, 2015. (MEDES ’15), p.
169–173. ISBN 978-1-4503-3480-8.

Airlines for America. U.S. Passenger Carrier Delay Costs. <https://tinyurl.com/
ycmxgcoy>. Accessed: 2018-07-18.

AL, M. B. et. Chronic effects of air pollution on lung function after lung transplantation
in the systems prediction of chronic lung allograft dysfunction (sysclad) study. In:
EUROPEAN RESPIRATORY JOURNAL. [S.l.], 2016.

AMATO, F. et al. Semtree: An index for supporting semantic retrieval of documents.
In: IEEE. Data Engineering Workshops (ICDEW), 2015 31st IEEE International
Conference on. [S.l.], 2015. p. 62–67.

AMER-YAHIA, S. et al. Exploration of user groups in vexus. ICDE demo, 2018.

American Statistical Association Data Expo. Airline on-time performance dataset.
2009. Disponível em: <http://stat-computing.org/dataexpo/2009/>.

APACHE Flink. 2017. <https://flink.apache.org>.

ASSENT, I. et al. The ts-tree: Efficient time series search and retrieval. In: Proceedings
of the 11th International Conference on Extending Database Technology: Advances
in Database Technology. [S.l.]: ACM, 2008. p. 252–263. ISBN 978-1-59593-926-5.

BATTLE, G.; CHANG, R.; STON, M. Dynamic Prefetching of Data Tiles for
Interactive Visualization. [S.l.], 2015.

BATTLE, L.; CHANG, R.; STONEBRAKER, M. Dynamic Prefetching of Data Tiles for
Interactive Visualization. In: ACM. Proceedings of the 2016 International Conference
on Management of Data. [S.l.], 2016. p. 1363–1375.

BATTLE, L.; STONEBRAKER, M.; CHANG, R. Dynamic reduction of query result
sets for interactive visualizaton. In: Big Data, 2013 IEEE International Conference
on. [S.l.: s.n.], 2013. p. 1–8.

BAYER, R.; MCCREIGHT, E. Organization and maintenance of large ordered indexes.
Acta Informatica, v. 1, p. 173–189, 1972.

http://leafletjs.com/
https://tinyurl.com/ycmxgcoy
https://tinyurl.com/ycmxgcoy
http://stat-computing.org/dataexpo/2009/
https://flink.apache.org

115

BEN-HAIM, Y.; TOM-TOV, E. A Streaming Parallel Decision Tree Algorithm. Journal
of Machine Learning Research, v. 11, n. Feb, p. 849–872, 2010.

BENDER, M. A.; DEMAINE, E. D.; FARACH-COLTON, M. Cache-oblivious b-trees.
SIAM J. Comput., v. 35, n. 2, p. 341–358, 2005.

BENDER, M. A. et al. Cache-Oblivious Streaming B-trees. San Diego, CA, USA:
[s.n.], 2007. 81–92 p.

BENDER, M. A.; HU, H. An adaptive packed-memory array. ACM Trans. Database
Syst., ACM, New York, NY, USA, v. 32, n. 4, nov. 2007. ISSN 0362-5915.

BENDER, M. A.; HU, H. An adaptive packed-memory array. ACM Trans. Database
Syst., ACM, New York, NY, USA, v. 32, n. 4, nov. 2007. ISSN 0362-5915. Disponível
em: <http://doi.acm.org/10.1145/1292609.1292616>.

BENDER, M. A. M.; DEMAINE, E. D. E. E. D. E.; FARACH-COLTON, M.
Cache-Oblivious B-Trees. SIAM Journal on Computing, IEEE Comput. Soc, v. 35,
n. 2, p. 341–358, jan 2005.

BERN, M.; EPPSTEIN, D.; TENG, S.-H. Parallel construction of quadtrees and quality
triangulations. In: . Algorithms and Data Structures: Third Workshop, WADS
’93 Montréal, Canada, August 11–13, 1993 Proc. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1993. p. 188–199.

BINGMANN, T. STX B+ Tree C++ Template Classes v0.9. 2013. <https:
//github.com/bingmann/stx-btree>.

BOOST. Geometry Index. 2017. <http://www.boost.org/>.

BOSTOCK, M. D3.js - Data-Driven Documents. 2015. <https://d3js.org/>.

BRODAL, G. S.; FAGERBERG, R. Lower Bounds for External Memory
Dictionaries. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2003. 546–554 p.

CAMERRA, A. et al. isax 2.0: Indexing and mining one billion time series. In:
Proceedings of the 2010 IEEE International Conference on Data Mining. [S.l.]:
IEEE Computer Society, 2010. p. 58–67. ISBN 978-0-7695-4256-0.

CAO, G. et al. A scalable framework for spatiotemporal analysis of location-based social
media data. Computers, Environment and Urban Systems, v. 51, p. 70 – 82, 2015.
ISSN 0198-9715.

CARPENTER, J.; HEWITT, E. Cassandra: The Definitive Guide: Distributed Data
at Web Scale. [S.l.]: " O’Reilly Media, Inc.", 2016.

CHAUDHURI, S.; DING, B.; KANDULA, S. Approximate Query Processing: No
Silver Bullet. In: ACM. Proceedings of the 2017 ACM International Conference on
Management of Data. [S.l.], 2017. p. 511–519.

CHAZELLE, B.; GUIBAS, L. Fractional cascading: I. a data structuring technique.
Algorithmica, Springer-Verlag, v. 1, n. 1-4, p. 133–162, 1986. ISSN 0178-4617.

http://doi.acm.org/10.1145/1292609.1292616
https://github.com/bingmann/stx-btree
https://github.com/bingmann/stx-btree
http://www.boost.org/
https://d3js.org/

116

CHO, E.; MYERS, S. A.; LESKOVEC, J. Friendship and mobility: User movement
in location-based social networks. In: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. [S.l.]: ACM,
2011. p. 1082–1090. ISBN 978-1-4503-0813-7.

CHO, E.; MYERS, S. A.; LESKOVEC, J. Friendship and mobility: User movement
in location-based social networks. In: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. New York, NY,
USA: ACM, 2011. (KDD ’11), p. 1082–1090. ISBN 978-1-4503-0813-7. Disponível em:
<http://doi.acm.org/10.1145/2020408.2020579>.

COGGON, D.; BARKER, D.; ROSE, G. Epidemiology for the uninitiated. 5. ed.
London: BMJ Books, 2003. 73 p.

COOK, C. R.; KIM, D. J. Best sorting algorithm for nearly sorted lists. Commun. ACM,
ACM, New York, NY, USA, v. 23, n. 11, p. 620–624, nov. 1980. ISSN 0001-0782.

CORMODE, G. et al. Synopses for Massive Data: Samples, Histograms, Wavelets,
Sketches. Foundations and Trends in Databases, Now Publishers Inc., v. 4, n. 1–3, p.
1–294, 2012.

CORRELL, M.; GLEICHER, M. Error bars Considered Harmful: Exploring Alternate
Encodings for Mean and Error. IEEE transactions on Visualization and Computer
Graphics, IEEE, v. 20, n. 12, p. 2142–2151, 2014.

CROTTY, A. et al. Vizdom: interactive analytics through pen and touch. VLDB, 2015.

de Lara Pahins, C. A.; Ferreira, N.; Comba, J. Real-time exploration of large
spatiotemporal datasets based on order statistics. IEEE Transactions on Visualization
and Computer Graphics, p. 1–1, 2019. ISSN 1077-2626.

DEAN, J.; GHEMAWAT, S. Mapreduce: Simplified data processing on large clusters.
In: OSDI’04: Proceedings Of The 6th Conference On Symposium On Operating
Systems Design And Implementation. [S.l.]: USENIX Association, 2004.

DORAISWAMY, H. et al. Using Topological Analysis to Support Event-guided
Exploration in Urban Data. IEEE Transactions on Visualization and Computer
Graphics, IEEE, v. 20, n. 12, p. 2634–2643, 2014.

DORAISWAMY, H. et al. A gpu-based index to support interactive spatio-temporal
queries over historical data. In: 2016 IEEE 32nd International Conference on Data
Engineering (ICDE). [S.l.: s.n.], 2016. p. 1086–1097.

DUNNING, T.; ERTL, O. Computing Extremely Accurate Quantiles Using t-Digests.
<https://github.com/tdunning/t-digest>. Accessed: 2018-07-18.

DUNNING, T.; ERTL, O. Computing Extremely Accurate Quantiles Using t-Digests.
2014. <https://github.com/tdunning/t-digest>. Accessed: 2018-07-18.

DURAND, M.; RAFFIN, B.; FAURE, F. A Packed Memory Array to Keep Moving
Particles Sorted. 2012.

http://doi.acm.org/10.1145/2020408.2020579
https://github.com/tdunning/t-digest
https://github.com/tdunning/t-digest

117

ELM, E. V. et al. The strengthening the reporting of observational studies in epidemiology
(strobe) statement: guidelines for reporting observational studies. PLoS medicine,
Public Library of Science, v. 4, n. 10, p. e296, 2007.

ELMQVIST, N.; FEKETE, J.-D. Hierarchical Aggregation for Information Visualization:
Overview, Techniques, and Design Guidelines. IEEE Transactions on Visualization
and Computer Graphics, IEEE, v. 16, n. 3, p. 439–454, 2010.

ESTIVILL-CASTRO, V.; WOOD, D. A survey of adaptive sorting algorithms. ACM
Comput. Surv., v. 24, n. 4, p. 441–476, 1992.

FEKETE, J.-D.; PRIMET, R. Progressive analytics: A computation paradigm for
exploratory data analysis. arXiv preprint arXiv:1607.05162, 2016.

FEKETE, J.-D. et al. Managing Data for Visual Analytics: Opportunities and Challenges.
IEEE Data Eng. Bull., v. 35, n. 3, p. 27–36, 2012.

FELBER, D.; OSTROVSKY, R. A randomized online quantile summary in
O((1/ε) log(1/ε)) words. Theory of Computing, Theory of Computing, v. 13, n. 14, p.
1–17, 2017.

FENG, W. et al. Streamcube: Hierarchical spatio-temporal hashtag clustering for event
exploration over the twitter stream. In: 2015 IEEE 31st International Conference on
Data Engineering, ICDE 2015. [S.l.: s.n.], 2015. p. 1561–1572.

FERNANDES, M. et al. Uncertainty Displays Using Quantile Dotplots or CDFs Improve
Transit Decision-Making. In: ACM. Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. [S.l.], 2018. p. 144.

FERREIRA, N.; FISHER, D.; KONIG, A. C. Sample-oriented Task-driven
Visualizations: Allowing Users to Make Better, More Confident Decisions. In: ACM.
Proc. Conference on Human Factors in Computing Systems (CHI). [S.l.], 2014. p.
571–580.

FISHER, D. et al. Trust me, I’m Partially Right: Incremental Visualization Lets Analysts
Explore Large Datasets Faster. In: ACM. Proc. Conference on Human Factors in
Computing Systems (CHI). [S.l.], 2012. p. 1673–1682.

FISHER, D. et al. Trust me, i’m partially right: Incremental visualization lets analysts
explore large datasets faster. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. [S.l.]: ACM, 2012. (CHI ’12), p. 1673–1682. ISBN
978-1-4503-1015-4.

FOX, A. et al. Spatio-temporal indexing in non-relational distributed databases.
2013. 291-299 p.

FRAIMAN, R.; MUNIZ, G. Trimmed Means for Functional Data. Test, Springer, v. 10,
n. 2, p. 419–440, 2001.

FRIGO, M. et al. Cache-Oblivious Algorithms. Washington, DC, USA: IEEE Computer
Society, 1999. 285– p. (FOCS ’99).

118

FUNG, K. Y. et al. Comparison of time series and case-crossover analyses of air pollution
and hospital admission data. International journal of epidemiology, Oxford University
Press, 2003.

GANI, A. et al. A survey on indexing techniques for big data: taxonomy and performance
evaluation. Knowledge and information systems, Springer, v. 46, n. 2, p. 241–284,
2016.

GARGANTINI, I. An effective way to represent quadtrees. Commun. ACM, ACM,
New York, NY, USA, v. 25, n. 12, p. 905–910, dez. 1982. ISSN 0001-0782.

GODFREY, P.; GRYZ, J.; LASEK, P. Interactive Visualization of Large Data Sets.
[S.l.], 2015.

GOODMAN, J. R. Using cache memory to reduce processor-memory traffic.
In: Proceedings of the 10th Annual International Symposium on Computer
Architecture. [S.l.]: ACM, 1983. p. 124–131. ISBN 0-89791-101-6.

GORO, F. Timsort. 2016. <https://github.com/gfx/cpp-TimSort>.

GRAY, J. et al. Data Cube: A Relational Aggregation Operator Generalizing Group-by,
Cross-tab, and Sub-totals. Data Mining and Knowledge Discovery, Springer, v. 1, n. 1,
p. 29–53, 1997.

GRAY, J. et al. Data cube: A relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and Knowledge Discovery, Kluwer Academic
Publishers, v. 1, n. 1, p. 29–53, jan. 1997. ISSN 1384-5810.

GREENWALD, M.; KHANNA, S. Space-efficient online computation of quantile
summaries. SIGMOD Records, ACM, New York, NY, USA, v. 30, n. 2, p. 58–66, maio
2001. ISSN 0163-5808.

GUPTA, D.; SIDDIQUI, S. Big data implementation and visualization. In: Advances in
Engineering and Technology Research (ICAETR), 2014 International Conference
on. [S.l.: s.n.], 2014. p. 1–10. ISSN 2347-9337.

GUTTMAN, A. R-trees: a dynamic index structure for spatial searching. [S.l.]:
ACM, 1984. v. 14.

HAKLAY, M. M.; WEBER, P. Openstreetmap: User-generated street maps. IEEE
Pervasive Computing, IEEE Educational Activities Department, v. 7, n. 4, p. 12–18,
out. 2008. ISSN 1536-1268.

HELLERSTEIN, J. M.; HAAS, P. J.; WANG, H. J. Online aggregation. ACM SIGMOD
Record, ACM, v. 26, n. 2, p. 171–182, jun. 1997. ISSN 0163-5808.

HUANG, X. et al. Trajgraph: A graph-based visual analytics approach to studying urban
network centralities using taxi trajectory data. IEEE Transactions on Visualization and
Computer Graphics, v. 22, n. 1, p. 160–169, Jan 2016. ISSN 1077-2626.

IDREOS, S.; PAPAEMMANOUIL, O.; CHAUDHURI, S. Overview of data exploration
techniques. In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. [S.l.]: ACM, 2015. (SIGMOD ’15), p. 277–281. ISBN
978-1-4503-2758-9.

https://github.com/gfx/cpp-TimSort

119

IM, J.-F.; VILLEGAS, F. G.; MCGUFFIN, M. J. Visreduce: Fast and responsive
incremental information visualization of large datasets. In: 2013 IEEE International
Conference on Big Data. [S.l.]: IEEE, 2013. p. 25–32.

ITAI, A.; KONHEIM, A. G.; RODEH, M. A Sparse Table Implementation of Priority
Queues. 1981. 417–431 p.

JIANG, X. et al. Large-scale taxi o/d visual analytics for understanding metropolitan
human movement patterns. J. Vis., Springer-Verlag New York, Inc., v. 18, n. 2, p.
185–200, maio 2015. ISSN 1343-8875.

JO, J. et al. Swifttuna: Responsive and incremental visual exploration of large-scale
multidimensional data. In: Proc. Pacific Visualization Symposium (PacificVis). [S.l.:
s.n.], 2017. p. 131–140.

JOHNSON, C. R.; SANDERSON, A. R. A Next Step: Visualizing Errors and
Uncertainty. IEEE Computer Graphics and Applications, v. 23, n. 5, p. 6–10, Sept
2003. ISSN 0272-1716.

JUGEL, U. et al. M4: A visualization-oriented time series data aggregation. Proc. VLDB
Endow., VLDB Endowment, v. 7, n. 10, p. 797–808, jun. 2014. ISSN 2150-8097.

JUGEL, U. et al. Vdda: Automatic visualization-driven data aggregation in relational
databases. The VLDB Journal, Springer-Verlag New York, Inc., v. 25, n. 1, p. 53–77,
fev. 2016. ISSN 1066-8888.

KAMAT, N. et al. Distributed and interactive cube exploration. In: Data Engineering
(ICDE), 2014 IEEE 30th International Conference on. [S.l.: s.n.], 2014. p. 472–483.

KAMAT, N.; NANDI, A. A Session-Based Approach to Fast-But-Approximate
Interactive Data Cube Exploration. ACM Transactions on Knowledge Discovery from
Data, ACM, New York, NY, USA, v. 12, n. 1, p. 9:1–9:26, fev. 2018. ISSN 1556-4681.

KANDEL, S. et al. Profiler: Integrated statistical analysis and visualization for data
quality assessment. In: Proceedings of the International Working Conference on
Advanced Visual Interfaces. [S.l.]: ACM, 2012. p. 547–554. ISBN 978-1-4503-1287-5.

KARGUPTA, H.; PARK, B. . A fourier spectrum-based approach to represent
decision trees for mining data streams in mobile environments. IEEE Transactions on
Knowledge and Data Engineering, v. 16, n. 2, p. 216–229, Feb 2004. ISSN 1041-4347.

KARNIN, Z.; LANG, K.; LIBERTY, E. Optimal Quantile Approximation in Streams.
In: Symp. on Foundations of Computer Science (FOCS). [S.l.: s.n.], 2016. p. 71–78.
ISSN 0272-5428.

KAY, M. et al. When (ish) is my bus?: User-centered visualizations of uncertainty
in everyday, mobile predictive systems. In: ACM. Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. [S.l.], 2016. p. 5092–5103.

KAZEMITABAR, S. et al. Geospatial stream query processing using Microsoft SQL
Server StreamInsight. Proc. of the VLDB Endowment, v. 3, n. 1-2, p. 1537–1540, 2010.
ISSN 21508097.

120

KENNEY, J.; KEEPING, E. Mathematics of Statistics. Van Nostrand company, 1954.
(Mathematics of Statistics, v. 1). Disponível em: <https://tinyurl.com/ybpyupad>.

KICK the bar chart habit. Nature Methods, Nature Publishing Group, a division of
Macmillan Publishers Limited. All Rights Reserved. SN -, v. 11, p. 113 EP –, 01 2014.
Disponível em: <https://doi.org/10.1038/nmeth.2837>.

KINKELDEY, C. et al. Evaluating the effect of visually represented geodata uncertainty
on decision-making: systematic review, lessons learned, and recommendations.
Cartography and Geographic Information Science, Taylor and Francis, v. 44, n. 1, p.
1–21, 2017.

KOSARA, R.; BENDIX, F.; HAUSER, H. Parallel sets: Interactive exploration and
visual analysis of categorical data. IEEE Transactions on Visualization and Computer
Graphics, IEEE Educational Activities Department, v. 12, n. 4, p. 558–568, jul. 2006.
ISSN 1077-2626.

KRISHNAMOHAN, K.; FARMWALD, P.; WARE, F. Prefetching into a cache to
minimize main memory access time and cache size in a computer system. Google
Patents, 1996. US Patent 5,499,355. Disponível em: <http://www.google.com/patents/
US5499355>.

LANDSEA, C. W. H. R.; FRANKLIN, J. L. Atlantic Hurricane Database Uncertainty
and Presentation of a New Database Format. 2013. Mon. Wea. Rev., 141, 3576-3592.

LESKOVEC, J.; KREVL, A. SNAP Datasets: Stanford Large Network Dataset
Collection. 2014. <http://snap.stanford.edu/data>.

LESKOVEC, J.; KREVL, A. SNAP Datasets: Stanford large network dataset
collection. Mars 2017.

LI, S. et al. Geospatial big data handling theory and methods: A review and research
challenges. {ISPRS} Journal of Photogrammetry and Remote Sensing, p. –, 2015.
ISSN 0924-2716. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0924271615002439>.

Lins, L.; Klosowski, J. T.; Scheidegger, C. Nanocubes for real-time exploration
of spatiotemporal datasets. IEEE Transactions on Visualization and Computer
Graphics, v. 19, n. 12, p. 2456–2465, Dec 2013. ISSN 1077-2626.

LIU, Z.; HEER, J. The effects of interactive latency on exploratory visual analysis. IEEE
Transactions on Visualization and Computer Graphics, v. 20, n. 12, p. 2122–2131,
Dec 2014. ISSN 1077-2626.

LIU, Z.; HEER, J. The Effects of Interactive Latency on Exploratory Visual Analysis.
IEEE Transactions on Visualization and Computer Graphics, IEEE, v. 20, n. 12, p.
2122–2131, 2014.

LIU, Z.; JIANG, B.; HEER, J. immens: Real-time visual querying of big data. In:
Proceedings of the 15th Eurographics Conference on Visualization. Chichester, UK:
The Eurographs Association & John Wiley & Sons, Ltd., 2013. (EuroVis ’13),
p. 421–430. Disponível em: <http://dx.doi.org/10.1111/cgf.12129>.

https://tinyurl.com/ybpyupad
https://doi.org/10.1038/nmeth.2837
http://www.google.com/patents/US5499355
http://www.google.com/patents/US5499355
http://snap.stanford.edu/data
http://www.sciencedirect.com/science/article/pii/S0924271615002439
http://www.sciencedirect.com/science/article/pii/S0924271615002439
http://dx.doi.org/10.1111/cgf.12129

121

LOPES, R. H. C. Kolmogorov-smirnov test. In: . International Encyclopedia
of Statistical Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. p.
718–720. ISBN 978-3-642-04898-2. Disponível em: <https://doi.org/10.1007/
978-3-642-04898-2_326>.

MACIEJEWSKI, R. et al. Automated box-cox transformations for improved visual
encoding. IEEE transactions on visualization and computer graphics, IEEE, v. 19,
n. 1, p. 130–140, 2013.

MACIEJEWSKI, R. et al. A visual analytics approach to understanding spatiotemporal
hotspots. IEEE Transactions on Visualization and Computer Graphics, IEEE, v. 16,
n. 2, p. 205–220, 2010.

MAGDY, A.; MOKBEL, M. Kite. Mars 2017. <http://kite.cs.umn.edu>.

MAGDY, A. et al. Mercury: A memory-constrained spatio-temporal real-time search on
microblogs. Proc. - International Conference on Data Engineering, p. 172–183, 2014.
ISSN 10844627.

MAGDY, A. et al. Venus: Scalable Real-Time Spatial Queries on Microblogs with
Adaptive Load Shedding. IEEE Transactions on Knowledge and Data Engineering,
v. 28, n. 2, 2016. ISSN 10414347.

MALI, G. et al. A new dynamic graph structure for large-scale transportation networks.
In: . Algorithms and Complexity: 8th International Conference, CIAC 2013,
Barcelona, Spain, May 22-24, 2013. Proc. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013. p. 312–323.

MARCUS, A. et al. Twitinfo. New York, New York, USA: ACM Press, 2011. 227 p.

MARTINS, R. M.; MINGHIM, R.; TELEA, A. Explaining neighborhood preservation
for multidimensional projections. In: CGVC. [S.l.: s.n.], 2015.

MATEJKA, J.; FITZMAURICE, G. Same Stats, Different Graphs: Generating Datasets
with Varied Appearance and Identical Statistics Through Simulated Annealing. In: ACM.
Proc. Conference on Human Factors in Computing Systems (CHI). [S.l.], 2017. p.
1290–1294.

MCGLINN, R. J. A parallel version of cook and kim’s algorithm for presorted lists.
Softw. Pract. Exper., John Wiley & Sons, Inc., New York, NY, USA, v. 19, n. 10, p.
917–930, set. 1989. ISSN 0038-0644.

Miranda, F. et al. Topkube: A rank-aware data cube for real-time exploration of
spatiotemporal data. IEEE Transactions on Visualization and Computer Graphics,
v. 24, n. 3, p. 1394–1407, March 2018. ISSN 1077-2626.

MonetDB B.V. GeoSpatial | MonetDB. <https://tinyurl.com/yal5gwev>. Accessed:
2019-01-19.

MORA, B. Naive ray-tracing: A divide-and-conquer approach. ACM Trans. Graph.,
ACM, v. 30, n. 5, p. 117:1–117:12, out. 2011. ISSN 0730-0301.

https://doi.org/10.1007/978-3-642-04898-2_326
https://doi.org/10.1007/978-3-642-04898-2_326
http://kite.cs.umn.edu
https://tinyurl.com/yal5gwev

122

MORITZ, D.; FISHER, D. What Users Don’t Expect about Exploratory Data Analysis on
Approximate Query Processing Systems. In: ACM. Proceedings of the 2nd Workshop
on Human-In-the-Loop Data Analytics. [S.l.], 2017. p. 9.

MORITZ, D. et al. Trust, but Verify: Optimistic Visualizations of Approximate Queries
for Exploring Big Data. In: ACM. Proc. Conference on Human Factors in Computing
Systems (CHI). [S.l.], 2017. p. 2904–2915.

MORRIS, B.; TRIVEDI, M. Learning trajectory patterns by clustering: Experimental
studies and comparative evaluation. In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition. [S.l.: s.n.], 2009. p. 312–319. ISSN 1063-6919.

MORTON, G. M. A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company New York, 1966.

MORTON, K. et al. Support the data enthusiast: Challenges for next-generation
data-analysis systems. Proc. VLDB Endow., VLDB Endowment, v. 7, n. 6, p. 453–456,
fev. 2014. ISSN 2150-8097.

MUNSHI, A.; SHARMA, V.; SHARMA, S. Lessons learned from cohort studies, and
hospital-based studies and their implications in precision medicine. In: Progress and
Challenges in Precision Medicine. [S.l.]: Elsevier, 2017.

NEPOMNYACHIY, S. et al. What, where, and when: Keyword search with spatio-
temporal ranges. In: Proceedings of the 8th Workshop on Geographic Information
Retrieval. [S.l.]: ACM, 2014. (GIR ’14), p. 2:1–2:8. ISBN 978-1-4503-3135-7.

NYC Taxi and Limousine Commission. Taxi Trip Records. <https://tinyurl.com/
q66cby3>. Accessed: 2018-07-18.

NYPD. NYC Police Department announces street closures and expected traffic
delays for October 11-12th 2014. <https://tinyurl.com/ybyooj4w>. Accessed:
2018-07-18.

OMIDVAR-TEHRANI, B.; AMER-YAHIA, S.; LAKSHMANAN, L. Cohort
representation and exploration. In: IEEE. DSAA. [S.l.], 2018.

PAHINS, C.; POZZER, C. Improving divide-and-conquer ray-tracing using a
parallel approach. In: Proceedings of the 2014 27th SIBGRAPI Conference on
Graphics, Patterns and Images. [S.l.]: IEEE Computer Society, 2014. p. 9–16. ISBN
978-1-4799-4260-2.

PAHINS, C. A. L.; COMBA, J. L. D. Similarity-Based Visual Exploration of Very Large
Georeferenced Multidimensional Datasets. In: IEEE. Workshop on Data Systems for
Interactive Analysis (DSIA). [S.l.], 2016.

Pahins, C. A. L. et al. Hashedcubes: Simple, low memory, real-time visual exploration of
big data. IEEE Transactions on Visualization and Computer Graphics, v. 23, n. 1, p.
671–680, Jan 2017. ISSN 1077-2626.

PENG, J. et al. Aqp++: Connecting approximate query processing with aggregate
precomputation for interactive analytics. In: ACM. Proceedings of the 2018
International Conference on Management of Data. [S.l.], 2018. p. 1477–1492.

https://tinyurl.com/q66cby3
https://tinyurl.com/q66cby3
https://tinyurl.com/ybyooj4w

123

PERALTA, R. et al. Similarity-Based Visual Exploration of Very Large Georeferenced
Multidimensional Datasets. In: ACM. Symposium On Applied Computing (SAC).
[S.l.], 2018.

PETERS, T. TimSort. 2002. <http://svn.python.org/projects/python/trunk/Objects/
listsort.txt>.

PHILLIPS, J. M. Coresets and sketches. arXiv preprint arXiv:1601.00617, 2016.

POLYANOVSKY, V. O.; ROYTBERG, M. A.; TUMANYAN, V. G. Comparative
analysis of the quality of a global algorithm and a local algorithm for alignment of two
sequences. Algorithms for molecular biology, BioMed Central, 2011.

PostGIS. Spatial and Geographic Objects for PostgreSQL. 2019. <https:
//tinyurl.com/ycptpbsv>. Accessed: 2019-01-19.

POTTER, K.; GERBER, S.; ANDERSON, E. W. Visualization of Uncertainty without
a Mean. IEEE Computer Graphics and Applications, v. 33, n. 1, p. 75–79, Jan 2013.
ISSN 0272-1716.

POTTER, K. et al. Visualizing Summary Statistics and Uncertainty. In: WILEY
ONLINE LIBRARY. Computer Graphics Forum. [S.l.], 2010. v. 29, n. 3, p. 823–832.

POTTER, K.; ROSEN, P.; JOHNSON, C. R. From Quantification to Visualization:
A Taxonomy of Uncertainty Visualization Approaches. In: DIENSTFREY, A. M.;
BOISVERT, R. F. (Ed.). Proc. IFIP Working Conference on Uncertainty
Quantification. [S.l.]: Springer Berlin Heidelberg, 2012. p. 226–249. ISBN
978-3-642-32677-6.

QUARTERONI, A. The Role of Statistics in the Era of Big Data: A Computational
Scientist’ Perspective. Statistics & Probability Letters, 2018. ISSN 0167-7152.

RAMSAK, F. et al. Integrating the UB-tree into a database system kernel. 2000.
263–272 p.

ROSENTHAL, J. S. A First Look at Rigorous Probability Theory. Second. [S.l.]:
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. xvi+219 p. ISBN
978-981-270-371-2; 981-270-371-3.

ROUSSELET, G. A.; FOXE, J. J.; BOLAM, J. P. A Few Simple Steps to Improve the
Description of Group Results in Neuroscience. European Journal of Neuroscience,
Wiley Online Library, v. 44, n. 9, p. 2647–2651, 2016.

SACHA, D. et al. The Role of Uncertainty, Awareness, and Trust in Visual Analytics.
IEEE Transactions on Visualization and Computer Graphics, v. 22, n. 1, p. 240–249,
Jan 2016. ISSN 1077-2626.

SAMET, H. Foundations of Multidimensional and Metric Data Structures (The
Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). [S.l.]:
Morgan Kaufmann Publishers Inc., 2005. ISBN 0123694469.

SHIEH, J.; KEOGH, E. isax: Indexing and mining terabyte sized time series. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. [S.l.]: ACM, 2008. p. 623–631. ISBN 978-1-60558-193-4.

http://svn.python.org/projects/python/trunk/Objects/listsort.txt
http://svn.python.org/projects/python/trunk/Objects/listsort.txt
https://tinyurl.com/ycptpbsv
https://tinyurl.com/ycptpbsv

124

SHRIVASTAVA, N. et al. Medians and Beyond: New Aggregation Techniques for Sensor
Networks. In: Proc. International Conference on Embedded Networked Sensor
Systems (SenSys). [S.l.: s.n.], 2004. p. 239–249.

SIDDIQUI, T. et al. Effortless data exploration with zenvisage: an expressive and
interactive visual analytics system. VLDB, 2016.

SINGH, S.; GUPTA, P. Comparative study id3, cart and c4. 5 decision tree algorithm:
a survey. International Journal of Advanced Information Science and Technology
(IJAIST), v. 27, n. 27, p. 97–103, 2014.

SISMANIS, Y. et al. Dwarf: Shrinking the petacube. In: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data. [S.l.]: ACM, 2002.
(SIGMOD ’02), p. 464–475. ISBN 1-58113-497-5.

SpatiaLite. SpatiaLite. 2019. <https://tinyurl.com/d9re6ss>. Accessed: 2019-01-19.

STATS, I. L. Twitter Usage Statistics. Mars 2017. <http://www.internetlivestats.com/
twitter-statistics>.

STOLPER, C. D.; PERER, A.; GOTZ, D. Progressive visual analytics: User-driven
visual exploration of in-progress analytics. IEEE Transactions on Visualization and
Computer Graphics, v. 20, n. 12, p. 1653–1662, Dec 2014. ISSN 1077-2626.

TOSS, J. et al. Packed-memory quadtree: A cache-oblivious data structure
for visual exploration of streaming spatiotemporal big data. Computers and
Graphics, v. 76, p. 117 – 128, 2018. ISSN 0097-8493. Disponível em: <http:
//www.sciencedirect.com/science/article/pii/S0097849318301390>.

US Bureau of Transportation Statistics. Air Travel Consumer Report. <https:
//tinyurl.com/yde9nwo4>. Accessed: 2018-07-18.

US Department of Transportation. On-Time Performance Dataset. <https:
//tinyurl.com/y7tngze8>. Accessed: 2018-07-18.

VALDIVIA, P. et al. Wavelet-based Visualization of Time-varying Data on Graphs. In:
IEEE. Proc. Conference on Visual Analytics Science and Technology (VAST). [S.l.],
2015. p. 1–8.

VARTAK, M. et al. Seedb: efficient data-driven visualization recommendations to
support visual analytics. VLDB, 2015.

Wang, Z. et al. Gaussian cubes: Real-time modeling for visual exploration of large
multidimensional datasets. IEEE Transactions on Visualization and Computer
Graphics, v. 23, n. 1, p. 681–690, Jan 2017. ISSN 1077-2626.

WEISSGERBER, T. L. et al. Beyond Bar and Line Graphs: Time for a New Data
Presentation Paradigm. PLoS Biology, Public Library of Science, v. 13, n. 4, p.
e1002128, 2015.

WICKHAM, H. Asa 2009 data expo. Journal of Computational and Graphical
Statistics, v. 20, n. 2, p. 281—-283, 2011.

https://tinyurl.com/d9re6ss
http://www.internetlivestats.com/twitter-statistics
http://www.internetlivestats.com/twitter-statistics
http://www.sciencedirect.com/science/article/pii/S0097849318301390
http://www.sciencedirect.com/science/article/pii/S0097849318301390
https://tinyurl.com/yde9nwo4
https://tinyurl.com/yde9nwo4
https://tinyurl.com/y7tngze8
https://tinyurl.com/y7tngze8

125

WICKHAM, H. Bin-summarise-smooth: a framework for visualising large data.
[S.l.], 2013.

WICKHAM, H.; STRYJEWSKI, L. 40 Years of Boxplots. Am. Statistician, 2011.

WILKINSON, L. Visualizing Big Data Outliers Through Distributed Aggregation. IEEE
Transactions on Visualization and Computer Graphics, v. 24, n. 1, p. 256–266, Jan
2018. ISSN 1077-2626.

WITTEN, I. H.; FRANK, E.; HALL, M. A. Data Mining: Practical Machine Learning
Tools and Techniques. 3rd. ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2011. ISBN 0123748569, 9780123748560.

WONGSUPHASAWAT, K. et al. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. TVCG, IEEE, 2016.

WU, E.; BATTLE, L.; MADDEN, S. R. The case for data visualization management
systems: Vision paper. Proc. VLDB Endow., VLDB Endowment, v. 7, n. 10, p. 903–906,
jun. 2014. ISSN 2150-8097.

YOON, S.-E.; MANOCHA, D. Cache-Efficient Layouts of Bounding Volume
Hierarchies. 2006. 507–516 p.

ZAHARIA, M. et al. Spark: Cluster Computing with Working Sets. 2010.

ZHANG, H. et al. In-Memory Big Data Management and Processing: A Survey. IEEE
Transactions on Knowledge and Data Engineering, v. 27, n. 7, p. 1920–1948, 2015.
ISSN 10414347.

ZHOU, W. et al. Large scale nearest neighbors search based on neighborhood graph. In:
2013 International Conference on Advanced Cloud and Big Data. [S.l.: s.n.], 2013.
p. 181–186.

126

Appendices

127

Appendix A SIMILARITY-BASED VISUAL EXPLORATION OF VERY LARGE

GEOREFERENCED MULTIDIMENSIONAL DATASETS

Published in: ACM/SIGAPP Symposium On Applied Computing, 2019.

DOI: 10.1145/3297280.3297556

Qualis CAPES: A1

Authors: Roger Peralta-Aranibar, Cícero A. L. Pahins, João L. D. Comba and Erick

Gomez-Nieto.

A.1 Abstract

Big data visualization is a main task for data analysis. Due to its complexity in

terms of volume and variety, very large datasets are unable to be queried for similarities

among entries in traditional Database Management Systems. In this paper, we propose

an effective approach for indexing millions of elements with the purpose of performing

single and multiple visual similarity queries on multidimensional data associated with

geographical locations. Our approach makes use of Z-Curve algorithm to map into 1D

space considering similarities between data. We support our proposal by comparisons

with state-of-the-art methods in the literature. Additionally, we present a set of results us-

ing real data of different sources and we analyze the insights obtained from the interactive

exploration.

A.2 Introduction

Along the years, scalability has been one of the main concerns for Database Man-

agement Systems (DBMS). This requirement has been addressed in order to support the

increasing data volume produced by emerging technologies for data collection as GPS in

mobile devices or Internet of Things (IoT). Due to its simplicity for usage and popularity,

most of the massive applications – e.g. social networks, e-market or geographical infor-

mation systems – index a very large number of entries into a DBMS where Relational (as

PostgreSQL, MySQL), NoSQL (as MongoDB, Cassandra) and Graph-based (as Neo4j,

OrientDB) types. However, critical information retrieval operators, as similarity queries.

are not supported into these traditional systems, forcing the analyst to employ additional

128

tools or implement his/her own operators for obtaining similar instances.

Querying for similarities into big databases is a challenging task for data analy-

sis, in general, due to the expensive calculation of similarities among a high number of

entries. In this context, the complexity of calculation is totally dependent of two crucial

features: distance measure and data dimensionality. The first aspect is essential to be

considered since depending on the type of data, a suitable distance measure will be cho-

sen, for instance, Euclidean and Manhattan distances for numerical data, Jaccard distance

for categorical data and Gower distance for mixed data. Logically, all of the measures

mentioned above differ on their formulation, whereas complex data type, complexity in-

creases. Second, modern applications make use with a very high number of attributes in

order to describe accurately objects, impacting dramatically the cost of similarity calcula-

tion. These significant drawbacks impair the addition of similarity querying into DBMS

context.

However, some strategies have been proposed to mitigate these difficulties. For

instance, dimensionality reduction methods allow us to alleviate the distance calculation

into high-dimensional space through mapping data into a lower dimensional space pre-

serving as much as possible the original distances. In addition, some recent data structures

overcome data volume drawbacks through preprocessing (Miranda et al., 2018; Wang

et al., 2017), distributed storage (CARPENTER; HEWITT, 2016) and parallel process-

ing (DORAISWAMY et al., 2016).

In this work, we propose a data structure to support interactive similarity queries

in real time over millions of georeferenced multidimensional entries for visualization. It

relies on the combination of dimensionality reduction methods and spatiotemporal data

structures. Additionally, our method provides a visual exploration in real-time of similar

data by querying one or more entries simultaneously into a geographic map. This main

feature opens a wide range of applications for analysis tasks as the search for similar

events, behaviors and even reactions in social networks on different geographic locations.

The main contributions of this work can be summarized as follows:

• A new data structure based on dimensionality reduction to index Big Data by simi-

larity, allowing real-time querying.

• A methodology for visually exploring similarities among massive multidimensional

datasets associated with geographic locations.

As far as we known, no other techniques are devoted to performing similarity

129

Table A.1: Summarized differences between data structures addressed for this research.
Features ImMens NanoCubes HashedCubes Gaussian Cubes STIG TOPKUBES SemTree Neighborhood Graph
Multi-Spacial 3 7 3 7 3 7 7 3

Multi-Temporal 3 7 3 7 3 3 7 3

Categorical 3 3 3 3 7 3 7 7

Incremental 7 7 7 7 7 7 3 7

Key Saturation 7 3 3 3 7 3 7 7

Paralelism 3 7 7 7 3 7 3 7

Repeated mem (de)alloc 7 7 3 7 - 3 - -
Database Integration 7 7 3 7 7 7 3 3

Truncate Pivots 7 7 3 7 7 7 7 7

Source Code 3 3 3 7 3 7 7 7

queries on multidimensional data associated with geographic locations in real-time for

visual exploration tasks.

A.3 Related Work

Data cubes based structures use aggregations that are performed over a dataset to sum-

marize the data and plot it on a geographic map. An aggregation is a typical operation for

extracting features and patterns in addition to provide several types of visualizations such

us heatmaps, histograms, bar charts, etc. Data cubes is a data structure adopted by many

relational databases, it stores the result of performing every aggregation to avoid repeated

calculation each time it is executed. It pre-computes every possible aggregation over the

dimensions resulting in a massive memory consumption. Nanocubes (Lins; Klosowski;

Scheidegger, 2013) makes use of shared links to reduce the space taken by a Data cubes

identifying repeated aggregations across the data structure so that every parent node has

the information of its children nodes. Nanocubes uses a quadtree for the spatial dimen-

sion, a flat tree for categorial dimensions and a sparse summed-area table, making not

possible to use multiple spatial dimensions nor multiple temporal dimensions. Another

disadvantage is that Nanocubes does not allow updates to the data.

Hashedcubes (Pahins et al., 2017) as an alternative to Nanocubes is a simpler data

structure which uses only a linear type array called Hash to store delimiter pivots to con-

taining the partially sorted data on every dimension. An advantage of Hashedcubes is the

capability of allowing multiple spatial and temporal dimensions interleaves the construc-

tion of each dimension. Also, it requires less memory than a Nanocubes but a worst-case

for query speed is slower. All the methods mentioned above provide visualization based

on the summaries given by the computed aggregations; however, Gaussian Cubes (Wang

et al., 2017) also pre-computes the best multivariate Gaussian distribution for a given set

to fit models over the data such as linear least squares and principal components analysis

130

(PCA). Gaussian Cubes requires an extra space to store the multivariate Gaussian distri-

butions which are to be queried in order to reduce the latency. Another data structure

based on Nanocubes is TopKubes (Miranda et al., 2018), which identifies what are the

most top-k objects in a dataset encoding a measure in a new special dimension including

ranking information.

Even though all these emerged data structures had reduced the memory require-

ment of the classical data cube, the total size keeps growing exponentially as the number

of dimensions increases.

GPU optimized methods improves the performance of a data structure carrying the ex-

ecution of processes concurrently among several cores. STIG (DORAISWAMY et al.,

2016) is a data structure that makes use of parallelism in both CPU and GPU. The first

part of the search is made in a KD-tree to split the data into buckets of an equal number of

elements so that the use of cores in GPU with an NVIDIA board is optimized. The data in

each bucket must be stored contiguously and the Kd-tree must be balanced not allowing

new inserts. STIG also has several strategies to query the data structure including the use

of hybrid CPU and GPU, GPU-only, and GPU with dynamic parallelism. Due to STIG

primarily uses a KD-tree, it only allows to index data which can calculate an average.

Semantic-aware approaches includes semantic information that adds an essential mean-

ing to the data and the relationships that lie between them. As an example we have

SemTree (AMATO et al., 2015) that is a distributed version of a KD-tree to handling se-

mantic documents, it stores a representation for each document with a set three attributes:

<subject, predicate, object>. SemTree finds a partition where the node is to be inserted

and splitting if necessary resulting with two types of partitions, for searching and storing

data. Another interesting approach is based on graphs (ZHOU et al., 2013). It divides the

dataset into groups, having on each group a pivot to represent the cluster in order to query

only the pivots instead of the entire dataset.

Table A.1 summarizes the above-mentioned methods where we can conclude ini-

tially that HashedCubes have the most features due to its simplicity and the possibility of

representing many attributes spatial and temporal dimensions. Instead of not supporting

many temporal dimensions such as the TOPKUBES method, the latter maintains the lim-

itations that NanoCubes presents, it does not have the capacity to support many spatial

dimensions and it can not be updated if a record is deleted. Similarly, Gaussian Cubes

presents the same characteristics of NanoCubes but allows modeling of the dataset.

131

A.4 Our approach

We are given a large, spatio-temporal, multidimensional dataset defined by loca-

tion and some other attributes. Then, we are looking for the elements of a set that is close

to a given query element under some similarity criterion. Due to the use ofN -dimensional

datasets the complexity to compute the distance between elements is proportional to the

number of N . Hence, our key idea is to transform the elements from N -dimensional into

1-dimension space using a projection technique in order to take advantage of range search

over 1-dimensional methods.

A.4.1 Projecting data to 1D

In this section, we discuss three projecting methods called Fiedler Vector, Z-Order

Curve (MORTON, 1966), and Hilbert Curve. Then we compare them using neighbor-

hood preservation (MARTINS; MINGHIM; TELEA, 2015), a well-known technique to

measure how well the relationship of the data is kept compare the projected space against

the original in high-dimension.

The Fiedler vector is obtained calculating the eigenvector corresponding to the

second smallest eigenvalue of the Laplacian matrix of a graph G which represents the

given dataset. The graph is defined by connecting the data to its closest neighbors that

lies inside a threshold, and the Laplacian matrix is defined as:

L = D − A (A.1)

Where D is the degree matrix and A is the adjacency matrix of the graph. The

resulting vector is the projected data to 1-dimension.

The other projection method considered is called Z-Order Curve, one of its main

advantages over other space-filling curves is the simplicity of its calculation. The z-value

of a point in a N -dimensional space is obtained by the simple process of bit-shuffling. In

Figure A.1 is shown an example of a 2D Z-curve and bit shuffling process.

Finally, our last method is the Hilbert curve, an alternative to the Z-Order Curve in

which the main advantage is to avoid long jumps when describing the curve. In Figure A.2

we show the Hilbert curve map between 1 and 2 dimension that reasonably well preserves

locality.

132

Figure A.1: Z-curve algorithm explanation.
Winter Spring Summer Autumn
000 011010001

L
o
w

M
ed
iu
m

H
ig
h

0
0
0

0
1
0

0
0
1

Autumn Low

000011

000101 = 5

000000 000001 000100 000101

000010 000011 000110 000111

001000 001001 001100 001101

Figure A.2: Hilbert curve, second order example.

To determine which of the previously described methods works best when pre-

serving the locality, we collected four datasets to be tested by our metric measure neigh-

borhood preservation. Each dataset contains an array of numbers ranged in size up to

13000 entries and domain-specific values with up to six distinct values. We summarize

all of the schema variations and datasets in Table A.2.

The balance dataset contains 625 total entries with four dimensions, each of these

having five different values. Every possible point is instanced and appears only once in

the dataset, so they are fully described by both projection curves; Z-order and Hilbert. In

this case, the Hilbert curve projection has the best accuracy due to all the jumps that could

have occurred in the dataset are minimized (Figure A.4.1).

Table A.2: Summary of the datasets used to evaluate Fiedler vector, Z-order and Hilbert
curve projections.

dataset objects dimensions
balance 625 4
car 1728 6
solar 1389 10
nursery 12960 8

133

Figure A.3: Quantifying the neighborhood preservation of four datasets performed by
Fiedler Vector (), Z Order Curve () and Hilbert Curve (), the result of this measure
is impacted by the instances distribution along the dimension. The best method to use
depends in how well the data is described by a Z curve or how many times a long jump is
avoided.

A similar case takes place in the car dataset that contains 1728 entries with a

square-like structure having six dimensions of a range between three and four distinct

values. As we can see in Figure A.4.1 the best accuracy is also obtained by Hilbert

Curve projection because of the almost full square-like structure in the dataset mentioned

before. Nevertheless, our next solar dataset has a more irregular definition because it

holds a total of 1389 entries, ten dimensions, and an unbalanced range of values from two

to six variations. We can observe in Figure A.4.1 that the Z-order curve acquire the best

performance, as a result of not having the long jumps that the Hilbert curve is outstanding.

In our last example with the nursery dataset (Figure A.4.1), the Z-order keeps

better the relationship of the dataset, this is explained by the fact that the dataset of 12960

of 8 dimensions is better described by a Z-curve since its possible values are ranged from

two to five possible values.

Now, we will explain how to build and query our method. We will explain why we

use specific techniques and why they work well together as shown in Figure A.4. First,

we deal with the complexity of working in a high dimensional space even after having to

make queries in this reduced space improving the memory and speed latency.

A.4.2 Indexing data

At this stage, data must be projected onto a 1-dimensional. To accomplish this

task we could use either the Z-Order or Hilbert Curve projection. Because of its discrete

values, the aggregation function can be easily used to put closer similar values together.

With this new data representation in 1-dimension, we can take the concept of the Hashed-

Cubes and use it to index in a single hashed array due to its simplicity and benefits over

the others methods.

134

Figure A.4: A summary of our proposed methodology for similarity queries in a high
dimensional space. The main idea is to pre-process the high dimensional dataset to obtain
a simplified but descriptive dataset in one-dimensional space to enable the computation
of similarity queries in real-time

...

...

...

Multidimensional
Projection

Indexing
1-Dimensional

Data

Querying similarity

Multidimensional
space

Figure A.5: An overview of our method. First we obtain a single value representation
given by a multidimensional projection for every record in the dataset, so that we execute
a sorting step that results in an array of sorted elements by similarity.

O0

O1
O2

O3
O5
O6

O7
O9

O10

O11

00 01

02 03

10 11

12 13

O8

O4

20

22

21

23

30 31

32 33

O0=[Summer,High]
O1=[Summer,Med]
O2=[Spring,Med]
O3=[Autumn,Med]
O4=[Winter,Low]
O5=[Summer,High]
O6=[Summer,High]
O7=[Autumn,Low]
O8=[Autumn,High]
O9=[Winter,High]
O10=[Spring,Med]
O11=[Spring,Low]

Schema: [[Latitude,Longitude],[Season],[Number of deaths]]

02 03 21 31

3210

0-0 3-32-21-1 4-4 5-6 7-7 9-98-8 10-1011-11
O2 O1 O0 O4 O5 O6 O9 O8 O11O7O3 O10

 3 6 12 0 7 12 4 5 13 3 1

Data structure

Z
-O

rd
er sort

Q
u
ad

-Tree

12

We are interested to know where the most similar elements are placed on a geo-

graphical map given a group of points, following the idea of HashedCubes we sorted the

data by the spatial attributes. We keep using the Quadtree data structure, therefore for

each note, we obtain a pair of pivots delimiting the data. The goal is to split the location

of the most similar elements given a threshold value. For that reason we now sort the data

inside each pivot using its similarity value, that is, the projection into 1D space described

above. We illustrate how we build our data structure in Figure A.5.

It is important to note that besides we only show how to index by geographical

position and similarity, our method also supports categorical, and temporal attributes as

its predecessor.

135

Figure A.6: Concrete example of the our approaches with the same three query points
showing different results in every case.

A.4.3 Querying data

As HashedCubes approach we traverse from root until the area we want to plot.

Then, we obtain only the pivots which values are under some range criteria. The most

natural similarity query for a specific area happens when a single point is queried. How-

ever, in the multiple points case, we propose three approaches: Union, Intersection and

Mean value.

The first and straightforward way is to return all the items that are close to the

query points. To carry out this task we iterate for all the pivots that contain the most

similar data and then plot them following its spatial attributes.

The second strategy is to retrieve the common points that are inside the range

query of all the query points since the HashedCubes structure already sorts the indexed

values this approach does not impact drastically in the performance of our data structure.

Our last approach generates an artificial point by computing the mean value for

all attributes of the entire set of query points. Once this point is processed, we perform a

range query using our threshold parameter and retrieving all points contained.

We illustrate the already explained approaches to retrieve data in Figure A.6

A.4.4 Implementation details

The client-server architecture is also used in our implementation. After pre-computing

the multidimensional projection, this new particular 1-dimensional attribute is store along

with the other data to be read by an event loop. The server is a C++ implementation to

exploit the operation of a pre-allocated chunk of memory to avoid and to re-use existing

data structures provided by STL among other libraries.

136

We have built a front-end visualization to query the data that is inserted using

Javascript, HTML5, SVG, and D3.js. Consider Figure A.5 that visualizes the similarity

distribution of Brightkite datasets, which consist of 4.5 millions of check-ins that range

from April 2008 to October 2010, on a geographical map. We use a total of five heatmaps

with different palette colors where each heatmap covers progressively the area containing

most similar elements.

In order to not disrupt the fluent interaction, we added three widgets in which the

user is able to update the similarity parameters that are wanted to be shown by our method,

we describe them as follows:

Points selection

adds an unlimited number of points with many selection boxes depending on the

number of attributes. These points are sent to the server to perform the query operation.

The user can also change the multi-query operation dynamically.

Range query input

takes five integer numbers sorted from least to highest. These five elements rep-

resent the range query values shown on the map with a heatmap of the color, next to the

entered range query value. We also include a checkbox to enable the density of data for

each heatmap plotted.

Similarity histogram

are located at the bottom of the interface. This widget perceptively displays the

similarity distribution of our explored dataset. Additionally, we show a highlight bar with

the purpose of indicating where the point queries lay down along with a blue area. It

represents the amount of data covered that will be shown on the geographical map.

A.5 Results

In this section, we evaluate our method against three publicity-available datasets.

In addition, we show the difference between using the three of our methods to merge the

multi-query operation. In Table A.3, we summarize the relevant information for project-

137

Table A.3: Summary of the datasets considered for our results and the resource usage
when indexing the categorical values for similarity queries.

dataset entries(E) Z-order hilbert pivots schema

brightkite 4.5M 317 299 168

lat, lon,
hour of

the day(24),
day of month(31)

NYPD incident 415901 427 508 197

lat, lon,
jurisdiction

for incident(18),
classification

code(16)

twitter 210.6M 751 695 131

lat, lon,
app(4),

device(5),
language(15)

ing and indexing the dataset on the previously described datasets. The total number of

records E, the maximum value that a Z-order, and Hilbert curve projection would have,

are expressed in the next two columns. The following column represents the number of

“pivots” created when indexing the projected values, and finally a short description of the

schema of each dataset.

Our first result is using a set of four million users check-ins on Brightkite (CHO;

MYERS; LESKOVEC, 2011b) dataset. The raw data consists of five dimensions: User,

Date, Time, Latitude and Longitude. In Figure A.7 we can visualize the similarity dis-

tribution of indexing the Date and Time over the location (i.e. Lat and Lon). Using the

point query of hour of day (value of 9) and day of week (value of Tuesday) the most

similarity elements are on the sides of United States (East and West sides), most of data

are located on Europe, specifically in United Kingdom, Netherlands, and Germany (from

a color palette from red to blue as shown at the top-right corner). Additionally, we can

observe a uniform distribution of the data in the similarity histogram at the bottom of the

interface with two well-separated clusters. As a result, the most of the heatmap colors

range are present on the map.

Our next dataset also has four million entries of New York City Civilian Com-

plaints. The input data, which was made available as csv files, has 415901 entries. In this

example, we show four different query points (Figure A.8) in which we can see the clus-

ter distribution of similarity depending on where the point query lies down as we can see

in the histogram above each image moreover the similarity clusters are more separated

resulting in interesting color patterns. For example, given the color palette at the top-right

corner of each image, the query point is right in the mayor similarity cluster of the dataset.

138

Figure A.7: Exploring the Brightkite checking similarity distribution using five different
colormaps that enables a visual differentiation of the similarity over a geographical map.

We can see this in the similarity histogram at the bottom of the interface hence the color

of the plotted heatmap is mostly the closest ranges colors meaning the most similar ele-

ments (Figure A.5). In the next case of Figure A.5 the query point is in the middle of two

similarity groups, that is why the green of the color palette has appeared at the around the

corners. The same criteria happen in Figure A.5 because the point is now further from a

cluster, so the green part of the heatmap appears in more regions. However, in our last

example (Figure A.5) the heatmap of the less similar elements is more relevant since the

point query is more isolated.

Our last dataset has tweets collected from the United States during the dates of

November of 2011 to June of 2012. The total amount of geolocated tweets is about 210

million and each tweet consists of a spatial information; device, application, and language

used as categorical information, respectively 5, 4 and 15 distinct values.

In this example, we use the index to show the difference in applying our three

implemented methods, i.e. Union, Intersection and Mean value (Figure A.6. In Figure

A.9, there are three different color maps with different retrieval methods but with the same

three query points. The first query point refers to a “None” value for Language, Device,

and Application. The next query point has a language value of “Italian”, “android” for the

device, and “Instagram” value for the application. The final query point has a “russian”

value for language, the device is an “iPad” and send through the “twitter” application.

The Union plot example has a majority of red color showing that all the points are inside

139

Figure A.8: Visual exploration of the New York City Civilian Complaints dataset using
four different query points and range queries.

the union set of the three query points. However, in the case of intersection, we appreciate

a purple dominance since all the attributes are far from the specific intersect set. Using a

mean point to query against, we have two sections showing that all the points are closer to

the obtained query point and that in the East part of United States are the closest values.

A.6 Discussion and Limitation

To the best of our knowledge, none of the methods in the state-of-the-art in ex-

ploratory model visualization offers a similarity visualization over a large, multidimen-

sional, spatiotemporal datasets. Our proposed method is able to plot a similarity distri-

bution of a dataset giving a set of querying points over a geographical map as seen in

Section A.5. We also have demonstrated its value showing three different cases with an

evaluation of our retrieval techniques with public datasets. However, there are still many

140

Figure A.9: Visualizing 210 million public geolocated Twitter showing our three ap-
proaches to retrieve the most similar elements against multiple points.

limitations and opportunities for improvement.

Projecting data to a one-dimensional space reduces the complexity of dealing with

a high dimensional dataset. Additionally, we only make use of the Z-order and Hilbert

curve projections to project categorical attributes dismissing other dimension types, such

as temporal or spatial attributes. Even though we can use categorical attributes it is only

possible to the ones with ordinal nature due to we need to establish the distance measure

between any pair of elements.

Furthermore, obtaining the resulting projected value for each element in the dataset

results in an integer value ranging from zero to a number that is proportional to the number

of categorical attributes and the possible values of each of this attributes. For instance, if

the explored dataset contains many categorical attributes and each one of these attributes

can take a high number of possible values, the resulting projection will spread the entire

projected dataset. Also, it will increase the number of pivots generated by a HashedCubes,

141

impacting negatively in both memory usage and running time.

Finally, the choice between the Z-order and Hilbert curve to be used by our method

depends on the overall distribution of values of our dataset. If all the instances of the

dataset are well described inside a square described precisely by a Z description then the

Z-order curve is our best option; otherwise, as longer jumps occur in continuous instances

of the dataset the more accuracy the Hilbert Curve projection will have. This selection

relies on the analyst preference to decide which projecting method to use.

A.7 Conclusion

In this paper, we present a novel data structure that combines HashedCubes and

dimensionality reduction methods in order to provide a set of similarity queries to perform

on very large datasets. Resulting of the above-mentioned combination, our method also

shares its features. Such as scalability with a high number of dimensions, performance in

terms of querying time, and the impossibility of updating the data structure once is built.

However, we include an essential feature to increase the range of queries to be performed.

Currently, to determine the color transfer function of each similarity heatmaps we

provide a panel that shows the color palette that is used for each query, and a color scale

values that are hidden to the user. With the purpose of providing a more perceptive inter-

action, we believe that a widget to set this values dynamically would impact positively on

our implemented framework.

142

Appendix B PACKED-MEMORY QUADTREE: A CACHE-OBLIVIOUS DATA STRUC-

TURE FOR VISUAL EXPLORATION OF STREAMING SPATIOTEMPORAL BIG

DATA

Published in: Elsevier Computers & Graphics Journal (CG), 2018.

DOI: 10.1016/j.cag.2018.09.005

Qualis CAPES: A2

Authors: Júlio Toss, Cícero A. L. Pahins, Bruno Raffin and João L. D. Comba.

B.1 Abstract

The visual analysis of large multidimensional spatiotemporal datasets poses chal-

lenging questions regarding storage requirements and query performance. Several data

structures have recently been proposed to address these problems that rely on indexes

that pre-compute different aggregations from a known-a-priori dataset. Consider now the

problem of handling streaming datasets, in which data arrive as one or more continuous

data streams. Such datasets introduce challenges to the data structure, which now has

to support dynamic updates (insertions/deletions) and rebalancing operations to perform

self-reorganizations. In this work, we present the Packed-Memory Quadtree (PMQ), a

novel data structure designed to support visual exploration of streaming spatiotemporal

datasets. PMQ is cache-oblivious to perform well under different cache configurations.

We store streaming data in an internal index that keeps a spatiotemporal ordering over the

data following a quadtree representation, with support for real-time insertions and dele-

tions. We validate our data structure under different dynamic scenarios and compare to

competing strategies. We demonstrate how PMQ could be used to answer different types

of visual spatiotemporal range queries of streaming datasets.

B.2 Introduction

Advanced visualization tools are essential for big data analysis. Most approaches

focus on large static datasets, but there is a growing interest in analyzing and visualizing

data streams upon generation. Twitter is a typical example. The stream of tweets is con-

tinuous, and users want to be aware of the latest trends. This need is expected to grow with

143

the Internet of things (IoT) and massive deployment of sensors that generate large and het-

erogeneous data streams. Over the past years, several in-memory big-data management

systems have appeared in academia and industry. In-memory databases systems avoid the

overheads related to traditional I/O disk-based systems and have made possible to per-

form interactive data-analysis over large amounts of data. A vast literature of systems

and research strategies deals with different aspects, such as the limited storage size and

a multi-level memory-hierarchy of caches (ZHANG et al., 2015). Maintaining the right

data layout that favors locality of accesses is a determinant factor for the performance of

in-memory processing systems.

Stream processing engines like Spark (ZAHARIA et al., 2010) or Flink (APACHE. . . ,

2017) support the concept of window, which collects the latest events without a specific

data organization. It is possible to trigger the analysis upon the occurrence of a given cri-

terion (time, volume, specific event occurrence). After a window is updated, the system

shifts the processing to the next batch of events. There is a need to go one step further

to keep a live window continuously updated while having a fine grain data replacement

policy to control the memory footprint. The challenge is the design of dynamic data struc-

tures to absorb high rate data streams, stash away the oldest data to stay in the allowed

memory budget while enabling fast queries executions to update visual representations. A

possible solution is the extension of database structures like R-trees (GUTTMAN, 1984)

used in SpatiaLite (SpatiaLite, 2019) or PostGis (PostGIS, 2019), or to develop dedi-

cated frameworks like Kite (MAGDY; MOKBEL, Mars 2017) based on a pyramid struc-

ture (MAGDY et al., 2014; MAGDY et al., 2016).

In this paper, we propose a novel self-organized cache-oblivious data structure,

called Packed-Memory Quadtree (PMQ), for in-memory storage and indexing of fixed

length records tagged with a spatiotemporal index. We store the data in an array with

a controlled density of gaps (i.e., empty slots) that benefits from the properties of the

Packed Memory Arrays (BENDER; DEMAINE; FARACH-COLTON, 2005). The empty

slots guarantee that insertions can be performed with a low amortized number of data

movements (O(log2(N))) while enabling efficient spatiotemporal queries. During inser-

tions, we rebalance parts of the array when required to respect density constraints, and the

oldest data is stashed away when reaching the memory budget. To spatially subdivide the

data, we sort the records according to their Morton index (GARGANTINI, 1982), thus

ensuring spatial locality in the array while defining an implicit, recursive quadtree, which

leads to efficient spatiotemporal queries. We validate PMQ for consuming a stream of

144

Figure B.1: A Twitter stream is consumed in real-time, indexed and stored in the Packed-
Memory Quadtree. (a) : live heat-map displays tweets in the current time window. (b) :
alerts indicate regions with high activity of Twitter posts at the moment. (c) : the interface
allows to drill-down into any region and query the current data. (d) : the actual data can
be retrieved from the Packed-Memory Quadtree to analyze the tweets in the region of
interest.

tweets to answer visual and range queries. Figure B.1 shows the user interface proto-

type built to support the data analysis process. PMQ significantly outperforms the widely

adopted spatial indexing data structure R-tree, typically used by relational databases, as

well as the conjunction of Geohash and B+-tree, typically used by NoSQL databases (FOX

et al., 2013). In summary, we contribute (1) a self-organized cache-oblivious data struc-

ture for storing and indexing large streaming spatiotemporal datasets; (2) algorithms to

support real-time visual and range queries over streaming data; (3) performance compari-

son against tried and trusted indexing data structures used by relational and non-relational

databases.

B.3 Related Work

In building an efficient system to enable interactive exploration of data streams, we

must deal with challenges common to areas like in-memory big-data, stream processing,

geospatial processing, and information visualization.

Data Structures.. Data structures need to dynamically process streams of geospatial data

while enabling the fast execution of spatiotemporal queries, such as the top-k query that

ranks and returns only the k most relevant data matching predefined spatiotemporal cri-

teria. One approach is to store data continuously in a dense array following the order

given by a space-filling curve, which leads to desirable data locality. Inserting an ele-

145

ment takes on average O(n) data movements, i.e., the number of elements to move to

make room for the newly inserted element. The cost of memory allocations can be re-

duced using an amortized scheme that doubles the size of the array every time it gets full.

However, elements are often inserted in batches in an already sorted array. In that case,

one approach is to use adaptive sorting algorithms to take advantage of already sorted se-

quences (ESTIVILL-CASTRO; WOOD, 1992; COOK; KIM, 1980; MCGLINN, 1989).

Timsort (PETERS, 2002) is an example of an adaptive sorting algorithm with efficient im-

plementations. We show experiments that compare our data structure to Timsort. Another

possibility is to rely on trees of linked arrays. The B-tree (BAYER; MCCREIGHT, 1972)

and its variations (BRODAL; FAGERBERG, 2003) are probably the most common data

structure for databases. The UB-Tree is a B-tree for multidimensional data using space-

filling curves (RAMSAK et al., 2000). These structures are seldom used for in-memory

storage with a high insertion rate. They are competitive when data access time is large

enough compared to management overheads, often the case for on-disk storage. Such

data structures are cache-aware, i.e., to ensure cache efficiency they require a calibration

according to the cache parameters of the target architecture.

Sparse arrays are an alternative that lies in between dense arrays and trees of linked

arrays. Data is stored in an array larger than the actual number of elements to store, using

the extra room to make insertions and deletions more efficient. Itai et al. (ITAI; KON-

HEIM; RODEH, 1981) were probably the first to propose such data structure. Bender et

al. (BENDER; DEMAINE; FARACH-COLTON, 2005; BENDER; HU, 2007a) refined it,

leading to the Packed Memory Array (PMA). The main idea is that by maintaining a con-

trolled spread of gaps, insertions of new elements can be performed moving much fewer

than O(N) elements. The insertion of an element in the PMA only requires O(log2(N))

amortized element moves. This cost goes down to O(log(N)) for random insertion pat-

terns. Bender and Hu (BENDER; HU, 2007a) also proposed a more complex PMA,

called adaptive PMA, that keeps this O(log(N)) for specific insertion patterns like bulk

insertions. PMA is a cache-oblivious data structure (FRIGO et al., 1999), i.e. it is cache

efficient without explicitly knowing the cache parameters. Such data structures are in-

teresting today since the memory hierarchy is getting deeper and more complex with

different block sizes. Cache-oblivious data structures are seamlessly efficient in this con-

text. Bender et al. (BENDER; DEMAINE; FARACH-COLTON, 2005; BENDER et al.,

2007) also proposed to store a B-tree on a PMA using a van Emde Boas layout, leading to

a cache-oblivious B-tree. However, it leads to a complex data structure without a known

146

practical implementation. Still, PMA has few known applications. Mali et al. (MALI et

al., 2013) used PMA for dynamics graphs. Durand et al. (DURAND; RAFFIN; FAURE,

2012) relied on PMA to search for neighbors in particle-based numerical simulations.

They indexed particles in PMA based on the Morton index computed from their 3D coor-

dinates. They proposed an efficient scheme for batch insertion of elements, while Bender

relied on single element insertions. In this paper, we propose to extend PMA for in-

memory storage of streamed geospatial data.

Stream Processing and Datacubes Structures.. Stream processing engines, like GeoIn-

sight for MS SQL StreamInsight (KAZEMITABAR et al., 2010), are tailored for single-

pass processing of the incoming data without the need to keep in memory a large window

of events that require an advanced data structure. The emergence of geospatial databases

led to the development of a specialized tree, called R-Tree (GUTTMAN, 1984), that as-

sociates a bounding box to each tree node. Several data processing and management

tools have been extended to store geospatial data relying on R-trees or variations like the

SpatiaLite (SpatiaLite, 2019) extension for SQLite or PostGis (PostGIS, 2019) for Post-

greSQL. Our experiments include comparisons with both. Though such spatial libraries

brought flexibility for applications in the context of traditional spatial databases, their al-

gorithms are not adapted to consume a continuous data stream. Magdy et al. (MAGDY

et al., 2014; MAGDY et al., 2016) proposed an in-memory data structure to query and

update real-time streams of tweets. Initially called Mercury, then Venus and eventually

Kite (MAGDY; MOKBEL, Mars 2017) for the latest implementation (Kite is also bench-

marked in our experiments). They rely on a pyramid structure that decomposes the space

into H levels. Periodically the pyramid is traversed to remove the oldest tweets to keep the

memory footprint below a given budget. This idea to rely on bounding volume hierarchies

is also popular in computer graphics for indexing 3D objects and accelerating collision

detection (YOON; MANOCHA, 2006). One difficulty in these data structures is to ensure

fast insertions while keeping the tree balanced. The data structure may also become too

fragmented in memory leading to an increase of cache misses. The partitioning criteria

are based on heuristics. There is often no theoretical performance guarantees.

Finally, we point out that several data structures were proposed recently for the

visual analysis of big data. A common theme is the idea of pre-computing aggregations

in datacubes proposed by Gray et al. (GRAY et al., 1997b). Representative work include

imMens (LIU; JIANG; HEER, 2013), Nanocubes (Lins; Klosowski; Scheidegger, 2013),

Hashedcubes (Pahins et al., 2017) and Gaussian Cubes (Wang et al., 2017), all designed

147

for processing static data. Streamcube (FENG et al., 2015) combines an explicit spatio-

temporal quadtree with datacubes for on-pass hashtag clustering. The PMQ proposes a

dynamic data structure supporting the main visual queries described in these works.

B.4 Packed-Memory Quadtree

In this section, we explain the PMQ internal organization, update methods, and

query types to support stream data analysis. In our description, we used as motivation

dataset a stream of tweets, each with spatial location and associated satellite data. Our

PMQ builds upon a PMA data structure but departs from the original one on different

aspects:

• Data are indexed and sorted according to their Morton index to enforce data locality

for efficient spatial queries;

• Data insertions are performed by batches in a top-down scheme to factor rebalance

operations, while the PMA inserts elements one by one using a bottom-up scheme;

• The PMQ has a limited memory budget. Once we reach the maximum size and

density, we stash the oldest data through a customized process;

• Support for answering geospatial visual queries to allow interactive analysis of

streaming datasets.

B.4.1 The PMQ Data Structure

We present here the PMQ data structure that strongly relies on the Packed-Memory

Array (ITAI; KONHEIM; RODEH, 1981; BENDER; HU, 2007a). A PMQ is an array

with extra space to maintain a given density of (empty) gaps between the (valid) elements.

An array of sizeN (counting the gaps) is divided into O(N/log(N)) consecutive segments

of size O(log(N)). For convenience, the number of segments is chosen to be a power of

2. PMQ is stored in memory and keeps, for each element, an indexing key and associated

value. Segments are paired hierarchically by windows following a tree structure. A level

0 window corresponds to a single segment, while the h level window encompasses the

full array. The density of a window is the ratio between the number of (valid) elements in

148

Figure B.2: PMQ with 4 segments: ρl and τl are the minimum and maximum densities
allowed at each level l of PMQ, d the actual window density. The numbers in circles count
the valid element per window and are stored in the PMQ accounting array.

d=3/4=0.75 d=2/4=0.5

4

9

PMA to store tweets

ρ2 = 0.3
τ2 = 0.7

ρ1 = 0.19
τ1 = 0.81

ρ0 = 0.08
τ0 = 0.92

2 5 7
d=2/4=0.5 d=2/4=0.5

8 9 10 11 15 35

d= 9/16 = 0.5625

d=5/8=0.625

5

3 2 2 2

d=4/8=0.5

Level 2

Level 1

Level 0

Segment 0 Segment 1 Segment 2 Segment 3

he
ig

ht

root window

the window and its size. As we will see, the PMQ goal is to control the window densities

to ensure insertion or removal of elements can be performed at low cost.

The minimum and maximum density bounds for a window at level l are respec-

tively ρl and τl. We define density bounds such that:

ρ0 < · · · < ρh < τh < · · · < τ0. (B.1)

Thus, the larger a window, the more constraining its density bounds. The mini-

mum and maximum densities of windows at intermediate levels are linearly interpolated

between the [ρ0, ρh] and [τh, τ0] thresholds as defined below:

τl = τh + (τ0 − τh)
(h− l)
h

, (B.2)

ρl = ρh − (ρ0 − ρh)
(h− l)
h

, (B.3)

and 2ρh < τh. The upper (resp. lower) density threshold decreases (resp. in-

creases) by O(1/log(N)). This O(1/log(N)) interval is fundamental to guarantee that an

insertion or deletion requires O(log2(N)) amortized data movements. A valid PMQ is the

one that satisfies density values for all windows. To compute a window density in con-

stant time without having to scan its content, we associate an auxiliary accounting array

to store the number of valid elements per window. This array requires an extra O(2 N
log(N)

)

of memory space. Figure B.2 illustrates a PMQ for 9 elements. The density thresholds

are: ρ0 = 0.08, ρ2 = 0.3, τ2 = 0.7, τ0 = 0.92, and the values for ρ1 and τ1 are defined

according to Equation B.2 and Equation B.3.

149

Figure B.3: PMQ storage of 9 z-indexed elements from a 2D domain (right). Z-indices
correspond to a quadtree actually never built as z-index are directly computed by inter-
leaving their x-y bits (Right).

0 1
2 3

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

Implicit Quadtree

000 030 031 032 033 103 121 303002

4

9

5

3 2 2 2

Level 2

Level 1

Level 0

PMQ

000 030002
z-ordering

031 032 033 103 121 303

z-ordering

0 1
2 3

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

Implicit Quadtree

000 030 031 032 033 103 121 303002

4

9

5

3 2 2 2

Level 2

Level 1

Level 0

PMQ

000 030002
z-ordering

031 032 033 103 121 303

B.4.2 Data Indexing

Space-filling curves define a map of multidimensional points to one dimension,

which allows to order the data in a 1D array. The PMQ relies on the Morton space-filling

curve to store the elements sorted according to their Morton index. The Morton curve

enables to linearly index data with 2D coordinates through a low cost bit-level operation,

while preserving well the data spatial locality. Data that are close in 2D tend to have close

Morton index (also called Z-index or geohash) and thus are stored nearby in the PMQ.

Elements with the same Morton index are sorted according to their timestamp (e.g., tweet

timestamp).

The Morton curve actually defines a recursive Z-shaped space partitioning that

follows a quadtree subdivision. The ordering generated by the Morton curve is equiva-

lent to the ordering produced by a depth-first traversal in a quadtree (BERN; EPPSTEIN;

TENG, 1993). The number of bits used for the Z-index defines this quadtree max depth.

For the PMQ, this number of bits is static. For each new incoming element, its Z-index is

computed from its (x, y) position coordinates by interleaving the bits of x and y, defined

according to Equation B.4 and Equation B.5 (note that both equations output integer val-

ues). Truncating by 2 bits a Z-index provides the index of the parent cell in the quadtree.

Figure B.3 illustrates a PMQ for 9 elements in a 2D domain. Elements are sorted based

on their Z-index that recursively defines an implicit quadtree subdivision (never stored).

B.4.3 Dynamic Updates

The PMQ is designed to store a stream of data inserted by batches. The insertion

starts at the topmost window of the PMQ (the full array) by checking if a violation of

150

the density bounds occurs after inserting a batch of incoming elements. Consider a valid

PMQ filled withK ordered elements. Suppose we want to insert a batch of I new elements

stored in an insertion array. The goal is to insert these new elements while keeping the

PMQ valid. The insertion algorithm follows a top-down approach.

If the density of the full PMQ array goes beyond τh counting the I new elements,

we first scan the array to count the number of elements with a timestamp older than a given

threshold λ. If removing these elements the PMQ meets its density bounds, we remove

them, rebalance evenly the remaining elements while inserting the I new elements (sorted

first). Otherwise, we perform the same operation but first doubling the PMQ array size.

The constraint 2ρh < τh guarantees that the density of this double size PMQ is above ρh.

We now describe the batch insertion. Consider the case where inserting elements

does not cause the full array density to go over τh. Let p be the key of the first element

of the right top window. We re-order the insertion array such that elements smaller than

p are on the left of the insertion array, while the others are on the right. The left elements

will go in the top left window of PMQ, the others in the top right window. We test for

both top windows their new densities against the corresponding thresholds, counting the

elements to insert. If at least one top window does not respect the density thresholds,

we rebalance the elements of the full array while including the new ones, i.e., we evenly

redistribute all elements. After the rebalance we have the guarantee that all windows

down to segments satisfy their density bounds since densities are less constraining as the

window size decreases. Otherwise, density thresholds are respected and the algorithm

proceeds recursively. In the best case, rebalances only span individual segments. We

update the accounting array after each batch insertion.

Note that when performing a rebalance we keep the elements sorted based on their

Morton index and insertion timestamp. Since the sorting during rebalancing is stable, the

only requirement is that we order the elements in the batch array by arrival time (which

is the natural order in a real-time stream). Rebalancing is automatically triggered when

needed. No heuristic is needed to decide when to split or delete a node as in (MAGDY

et al., 2014; MAGDY et al., 2016). Memory allocations are only needed when doubling

the array. We control memory consumption by setting the threshold timestamp λ based

on the arrival rate of the data stream. In practice, PMQ self-stabilizes: it doubles its

size until reaching a steady state where insertions and deletions balance themselves. The

accounting array is updated with each window rebalance.

Notice that none of these operation use the lower densities. But they are kept in

151

Figure B.4: The heatmap is updated dynamically as the stream of tweets is received. With
an average insertion rate of 1000 tweets/sec we show the heatmap when PMQ contains
100K (left) or 10M (right) elements.

the PMQ description and supported in our implementation for completeness. They can be

useful for scenarios not evaluated here. They enable to trigger window rebalances when

removing elements.

The PMQ is a cache-oblivious data structure as it does not depend on cache pa-

rameters. The worst-case amortized cost is O(log2(N)) per insertion. The proof is given

in B.9.

B.4.4 Query Types

We present three types of queries that we support in the current implementation of

PMQ: heatmap, range, and top-k queries. Other types of queries can be incorporated if

needed.

Heatmap Queries.. The visual interface of our system uses a world heatmap continu-

ously updated based on the content stored in the PMQ (see Figure B.4). An important

observation is that Z-cells do not align with the tiles of the heatmap. Also, the interface

allows zooming into specific regions of the world, thus needing to map the tiles of the

heatmap grid to Z-cells. We compute the zoom level ζ in the quadtree of Z-cells corre-

sponding to each heatmap tile. If ζ = 0, we need to aggregate the full PMQ data into

a single tile, corresponding to the full PMQ data. Heatmap construction for a single tile

consists of counting the number of data samples for each pixel drawn inside the tile. For

instance, a tile of 256x256 pixels corresponding to a quadtree node at level ζ is computed

by counting for each pixel the number of elements stored in the corresponding descendant

Z-cells at depth ζ + 8. As we only need to count the elements per tile (element values are

not necessary), we accelerate counting using the accounting array.

152

Figure B.5: Heatmap zoom and range queries are used to explore the latest stream of
tweets around the New York city area. The in-memory storage of PMQ provides fast
access to the actual tweets’ content allowing real-time user interaction even on large range
queries (R = radius of the selected area).

Range Queries.. A range query is a spatial query that requests all elements stored in a

rectangular region (Figure B.5). We define a range query by the corners of a bounding box

in the map. Given a range query, we have to access the PMQ to retrieve all records within

the rectangular region. We return the result to the application for any post-processing of

this information. In our interface, we currently display a subset of the results (e.g., a fixed

number of tweets). Unlike heatmaps, which queries the PMQ using a fixed resolution grid,

the range query can define an arbitrary region. Therefore, we need to find the coarsest Z-

cells that contain the bounding box of the range query. Since we do not store the quadtree

explicitly, we follow the Z-ordering recursively to find the Z-cells that fully enclose the

bounding box. We refine each Z-cell to locate the leaf Z-cells intersecting or included in

the bounding box. We refer to the book by Samet (SAMET, 2005) for the range query

algorithm for quadtrees. Using the Z-cell indices, we locate through binary searches in

the PMQ the ranges that contain the needed elements.

Top-k queries.. The top-k query combines the temporal ordering with the spatial dimen-

sion to find the most relevant data according to a given spatiotemporal interval. This query

is processed like the range query but filters the candidate values in a temporary priority

queue of size k. Given a 2D point p, the top-k query finds the elements with k lowest val-

ues according to a score function. The search space of the top-k queries can be reduced

using both spatial and time thresholds. The parameter R defines a radius where records

are going to be ranked by distance to p. Similarly, the parameter T limits the oldest times-

tamp to consider in the scoring function. Both scores are then normalized and combined

into a final score to balance the importance of the spatial and temporal dimensions. El-

ements in the same Z-cell (i.e., with the same Morton code) are ordered based on their

153

timestamp. The top-k search uses the same refinement algorithm as for range queries to

find the records included inside the bounding box of radius R centered at p. We insert the

returned elements into a priority queue of max-size k ordered by the spatiotemporal score

to keep only the k elements with the highest score.

B.5 Implementation

We implemented PMQ in C++. Each element has a 64-bit key representing the

spatial index plus a value for storing additional information. We rely on 50-bit length

Morton code for the spatial index, defining a quadtree with a fixed depth of 25 levels of

refinement. The Morton index is computed from the (x, y) coordinated obtained through

the EPSG:3857 projection of the longitude (lon) and latitude (lat) associated with each

element, defined as:

x =

(
lon+ 180

360
.2z
)
, (B.4)

y =

1−
ln

(
tan
(
lat. π

180

)
+ 1

cos(lat. π180)

)
π

 .2z−1, (B.5)

where both (x, y ∈ Z | 0 ≤ x, y < 4z) and Z is the maximum quadtree depth.

The choice of record content to consider depends on the application needs. If only

the metadata is required, we used a 16-byte struct to store latitude (32-bit float), longitude

(32-bit float) and insertion timestamp (64-bit unsigned integer).

Our implementation uses PMQ segments of a fixed size of eight elements as we

found no significant performance benefit in increasing the segment size with the array

size. When rebalancing a window, we always pack data at the left of each segment to

favor low-level optimizations like prefetching. Besides giving the window densities, the

accounting array is also used to get the position of the last valid element of each segment,

to avoid scanning the empty slots.

We target streaming scenarios where the PMQ is used to store the most recent

incoming data sorted in memory, keeping as much data as possible for a given memory

154

budget. Data are removed only when the PMQ is full, keeping the PMQ density high

enough to avoid reducing its size (waste of memory and time as leading to a PMQ oscil-

lating through cyclic size halving and doubling). Thus rebalances are only triggered when

the window upper density bounds are reached. In our experiment we use τ0 = 0.92 and

τh = 0.7 that give the best performance tradeoff (see Section B.7.3).

B.6 Examples of Visualization Analysis using PMQ

We present an example of the interactive exploration of tweets enabled by PMQ

and its user interface. The dataset consists of geolocated tweets collected with the Twitter

API between November 2011 and June 2012 over the United States. The dataset has a

total of 210.6 million tweets. We simulate an incoming stream of tweets by grouping

them into batches of fixed size and iteratively inserting them into a given data structure.

B.6.1 Drill-down exploration of a Twitter stream

We provide a visual interface that allows a drill-down exploration of a tweet stream

and support different queries. PMQ supports the storage in memory of the latest tweets,

thus filling the gap between stream processing engines working only on a small window

of the input stream, and classical solutions on persistent storage. The heatmap enables to

display the concentration of tweets posted over the last hours. PMQ can index one second

of tweets and keep all the elements sorted in less than 1.5 ms on average, with a maximum

at about 1s when a batch triggers a top rebalance with element removal (Table B.3). It

is more than capable of keeping up with the stream rate and support visual queries. The

interface allows the user to zoom into the heatmap or to perform range queries. We display

the tweets inside selected areas in a separate area next to the map. Figure B.5 shows the

combined use of heatmaps and range queries at different zoom levels over New York. The

user can interactively zoom until finding the desired information.

B.6.2 Allert detection of regions with high tweet rates

Systems like TwitInfo (MARCUS et al., 2011) provide an interface for visualizing

real-time Twitter data. Based on the user-given keyword search, the system fetches the

155

matching twitter stream and generates an aggregated higher-level visualization, which is

kept up-to-date with the incoming tweets. Such exploratory framework enables a better

understanding of on-going events. However, since the stream is filtered with a fixed in-

put keyword, it is not suitable when monitoring unexpected events. One example of an

unexpected event is the monitoring of the volume of tweets in a given region. We im-

plemented a simple pre-processing of batches to trigger alerts in regions with high tweet

activity. Once an alert is triggered, the user can further investigate it by interactively ex-

ploring the last received tweets. During exploration, one can also perform top-k queries

to retrieve the top-most relevant tweets at a given point. For instance, on February 5th of

2012 at 14:22 UTC, the system indicates a high tweet activity over Indianapolis. Zooming

into the alert zone and using range queries, we observe that many people are at the Lucas

Oil Stadium commenting about the Super Bowl game. We set a top-k query at the stadium

to follow the most relevant tweets nearby. The filtered feed displayed on the right panel

of the interface shows tweets with information like the teams playing (New York Giants

Vs. New England Patriots), or about the Madonna’s show during half-time (Figure B.6).

Figure B.6: Allert detection: triggers configured by the user show alerts (yellow squares)
on several cities with a high rate of tweet arrival during Super Bowl 2012. We select
the Indianapolis region (where the game occurs) and filter tweets using a top-k query to
retrieve the most relevant tweets in the area.

B.7 Performance Evaluation

We created a series of benchmarks to evaluate the performance of PMQ. When

possible, we showed comparisons against competing solutions from the industry and other

open-source libraries. The B-Tree compared in our experiments is the stx::btree, an

156

efficient open source implementation of in-memory B+Tree (BINGMANN, 2013). The

R-Tree implementation is from the Boost C++ template library (BOOST, 2017). We

conducted the experiments to allow reproducing results and exploring different parameter

configurations. We created a GitHub repository to store supplemental material and ad-

ditional benchmarks1. The benchmarks were run on a dedicated Linux machine with an

Intel i7-4790 CPU @ 3.60GHz with 32GB of main memory.

B.7.1 Evaluating Storage Solutions for Spatial Data

We conducted a set of experiments to evaluate PMQ against two different storage

solutions for spatial data. The first type of storage solution is traditional open source

relational databases (RDBMS) with geospatial library extensions, such as: (1) in-memory

SQLite + SpatiaLite and (2) PostgreSQL + PostGIS. SQLite uses in-memory storage,

while PostgreSQL uses a disk. Typically, RDBMS store entries in a table and build an

additional spatial index separately. This optional index supports efficient spatial queries

that contain geometric predicates. The second storage solution are dense vectors using

a pointer-based quadtree index on a dense C++ std::vector. Spatial ordering in the

container uses two sorting algorithms: (1) the C++ std::sort() implementation from

GNU GCC libstdc++ and (2) the C++ TimSort (GORO, 2016) adaptive sorting

algorithm.

This set of benchmarks gives an insight into the scalability of insertion and query

operations of the solutions above. The different data structures are initially empty and

increase their size as elements arrive in batches. We measured the insertion time of each

batch, including the time for updating the index (in case of RDBMS) and physically

storing the data. We also measured the time for accessing data from the storage. After

each batch insertion, we queried all elements indexed by the data structure (Figure B.7).

As can be seen, even with a small number of elements, the database solutions have poor

scalability. While PostGIS uses disk storage, it spends most of the time optimizing the

index and physically reordering elements on disk. SpatiaLite, on the other hand, seems

to have a less efficient indexing strategy than PostGIS. It spends less time on indexing

and insertion operations, but pays a significant cost to access the data, even if stored in

memory. None of the database solutions are suited to the real-time latency requirements

of update and read operations. The spikes on PMQ benchmarks correspond to doubling

1<https://github.com/pmq-authors/pmq-extras>

https://github.com/pmq-authors/pmq-extras

157

Figure B.7: Performance comparison of spatial data storage solutions. Top row: stan-
dard geospatial databases can not handle real-time insertions. Bottom row: in-memory
containers based on dense or sparse (PMQ) vectors.

Index Update

0 25 50 75 100

0

100

200

300

400

1

2

3

La
te

nc
y

(m
s)

Container Insert

0 25 50 75 100

10

20

30

40

0.0

0.1

0.2

0.3

0.4

Batch number

Global Query

0 25 50 75 100

0

10

20

30

40

50

0.000

0.025

0.050

0.075

0.100

PostgreSQL SQLite PMQ/Explicit Dense/std::sort Dense/TimSort

the array size when the structure reaches the maximum density. The sparse storage of

PMQ allows reducing the time on insertion when compared to the dense vectors. In the

next experiments, we remove the database solutions from the comparisons since they are

an order of magnitude slower than the vector-based storage approaches, and compare

against low-level structures such as B-trees and R-trees.

B.7.2 Evaluating Insertions

We evaluate the scalability of the data structures by comparing their trade-offs

between insertions and scanning operations. These two operations represent a perfor-

mance compromise of two conflicting workloads. While tree-based data structures, like

B-Tree and R-Tree, show good insertion performance (B.8(a)), they fail in maintaining in-

memory data locality, which has a significant impact on scanning operations (B.8(b)). The

solution using dense sorted vectors reveals the importance of data locality when scanning.

We derive the lower-bounds of scanning performance when we achieve the best locality.

158

Figure B.8: Scalability insertion and scan operation.

(a) Insertion of 10M elements by batches of 1000 elements.

(b) Time for a full scan of the dataset after each batch insertions.

However, its update costs for frequent insertions make it impracticable for large amounts

of data. PMQ shows a good compromise between these two operations. On insertions,

it performs similarly to the R-Tree, it is 2X times slower than the B-Tree and scales

logarithmically with the size of the data structure. At the same time, PMQ pays only a

small constant overhead relative to best possible scanning data-structure, the dense vector.

Compared to the tree-based data-structures, with 10 M elements, the scan operations on

159

Figure B.9: Steady data regime: deletions are performed periodically. For each test, we
insert a dataset of 46 million elements. The maximum number of elements allowed is
half of the dataset size (around 23 million elements), and removals are configured with
different percentages of the maximum.

0

10

20

0.1 0.2 0.4 0.78 1.57 3.13 6.25 12.5 25 50

Removal size (%)

R
un

ni
ng

 ti
m

e
(m

s)

BTree PMQ RTree

(a) Total average running time of the experiment.

0

5000

10000

15000

0.1 0.2 0.4 0.78 1.57 3.13 6.25 12.5 25 50

Removal size (%)

R
un

ni
ng

 ti
m

e
(m

s)

BTree PMQ RTree

(b) Average time of each bulk removal operation.

Figure B.10: PMQ performance at steady regime for different τh thresholds.
τh = 0.5 τh = 0.6 τh = 0.7 τh = 0.8 τh = 0.9

15000 20000 25000 15000 20000 25000 15000 20000 25000 15000 20000 25000 15000 20000 25000

1.00

1.25

1.50

1.75

2.00

Id of batch inserted

In
se

rt
io

n
T

im
e

(m
s)

PMQ are 3X times faster than B-Tree and 5X faster than R-Tree.

160

B.7.3 Evaluating Bulk Deletions

In the case of streaming data, the memory available limits the storage of infor-

mation. We used a stashing procedure to evict old data while receiving new incoming

records. Data structures are in a steady regime if they cannot grow after inserting a given

number of records. At this point, a bulk removal is triggered to remove a number of the

oldest elements in the data structure, given by the threshold parameter λ. How often re-

movals are triggered depends on the rate of the incoming stream and the threshold λ. We

keep the incoming rate constant by inserting a batch of 1000 elements at each simula-

tion step. Because the bulk removal is slower than regular insertions, the choice of λ has

an impact in two performance indicators: the average execution time of each operation

(B.9(a)) and the bulk removal execution time (B.9(b)). To evaluate the indicators and

choose the best λ, we insert in each structure a dataset of nearly 46 million elements and

set the maximum number of elements to be stored to half of this size.

Figure B.9 shows running times for λ varying from 0.1% to 50% of the maximum

capacity. For both the B-Tree and the R-Tree, the removal size has to be chosen carefully

to balance the time spend on each removal operation and the total running time. If the

removal size is large (over 3.13%), each operation deletes many elements at once causing

expensive removal operations that take over 1 second (black horizontal line in B.9(b)). If

the removal size is small (under 0.78%), each removal is fast since only a small percent-

age of elements are evicted. However, it increases the frequency of removals impairing

the total running time (B.9(a)). In opposite, the PMQ triggers element removal automati-

cally when the top density threshold is reached. As a consequence, the execution time of

removals is much less sensitive to λ. As B.9(b) shows, for any removal size, the running

time is under one second. As expected, the total running time for all structures is best

with larger and less frequent removals (B.9(a)). Therefore the choice of the parameter λ

should favor larger removal sizes.

In Table B.1, we summarize the results from B.9(a) and B.9(b). We show, for each

structure, the best tradeoff between removal and average running time. The B-Tree and

R-Tree require a small removal percentage (λ), while PMQ removes 50% of if elements

and it is 2× faster for both removal and average running time. In Table B.2, we take

the λ value that gives the best performance tradeoff for the B-Tree and set it to the other

data structures. Once again, PMQ performs best and is the only one to make removal

operations in less than a second.

161

Table B.1: Parameter λ set for the best relation of removal RM time and average Avg
runnning time for each algorithm.

Avg. Run RM
Algo. Min. Elts RM (ms) Time (ms) Interval λ

B-Tree 22.7 M 1331 2.19 735 3.13%
PMQ 11.7 M 550 1.09 11744 50%

R-Tree 23.1 M 1287 4.43 368 1.57%

In Figure B.10 we compare several values of τh threshold (with fixed τ0 = 0.92)

for the PMQ at steady regime: when the PMQ density reaches τh a bulk removal is trig-

gered keeping at least 10.8 M elements. The value τh = 0.7 gives the best average

insertion time. The PMQs with τh = 0.5 and 0.6 require twice more storage memory

compared to the ones with 0.7, 0.8 and 0.9, with a high average insertion time. High τh

values (0.8 and 0.9) leave the PMQ fill, leading to costly rebalances of large windows.

The value τh = 0.7, chosen for all our other experiments, gives the best average insertion

time with low memory footprint. A high value τ0 = 0.92 gives the best results, allowing

some local high-density spots.

B.7.4 Evaluating the Rebalancing Procedure

PMQ supports a rebalancing procedure that is only activated when necessary. In

Table B.3 we simulate a tweet insertion rate of 1000 tweets per second. We present the

average insertion time in PMQ after reaching a steady state (i.e. after the first top-level

rebalance that started removing tweets). Notice that during this steady state, elements

deletion neither leads to halving nor doubling the PMQ size. Between the top two level

rebalances, the number of elements in the container varies from Elts_min to Elts_max.

The maximum value in the table corresponds to a single insertion that triggers a top-level

rebalance. Although these periodic rebalances can take up to one second, this latency is

hidden from the user as the mean insertion time (and the 99th percentile) is much smaller

than the insertion rate.

We also evaluated how PMQ scales with varying insertion rates. We used a time

window of 6 hours and increase the insertion rate up to 8k tweets/s. Figure B.11 shows the

average insertion time and standard deviation. PMQ takes less than 8 ms to digest 6000

tweets per second, the current average number of tweets posted per second worldwide

(STATS, Mars 2017).

162

Table B.2: Comparison using same λ optimized for the B-Tree.
Avg. Run RM

Algo. Min. Elts RM (ms) Time (ms) Interval λ
B-Tree 22.7 M 1331 2.19 735 3.13%

PMQ 22.7 M 601 1.80 735 3.13%
R-Tree 22.7 M 1984 3.60 735 3.13%

Table B.3: Insertion time of batches of 1K elements in a PMQ with different time-
windows λ. The number of elements in the container varies from Elts_min to Elts_max.
The Mean, 99% and Max times are in ms.

λ Elts_min Elts_max Mean 99% Max
3h 10.8 ∗ 106 11.74 ∗ 106 1.209 1.066 265.613
6h 21.6 ∗ 106 23.48 ∗ 106 1.310 1.134 554.971
9h 32.4 ∗ 106 46.97 ∗ 106 1.278 1.587 1007.040
12h 43.2 ∗ 106 46.97 ∗ 106 1.423 1.321 1045.950

Figure B.11: PMQ average insertion time with a window of 6h and varying rates. Current
Twitter insertion rate (6K tweets/s) can be processed under 7.5 ms.

B.7.5 Evaluating Range Queries

We evaluated the range query performance of the different data structures. We

defined synthetic queries at varying sizes and different positions to simulate searches

over the world map. Queries are defined using latitude and longitude coordinates over

a rectangular map of the world using the Mercator projection. Each query is specified

by its center latitude and longitude coordinates (lat, lon), where lat ∈ <−90,+90 and

lon ∈ <−180,+180, and by its width W = {w ∈ < : w = 90
2i
∧ 0 ≤ i < 8}. For each w in

W , we randomly pick ten tweet coordinates from the dataset to generate a unique query.

We discarded queries not fully contained on the world map. As a result, the query dataset

163

Figure B.12: Range queries: PMQ speedup over the B-Tree and R-Tree. Each boxplot
represents the speedup of throughput for each query instance. The average speedup is
denoted by red crosses. PMQ is faster than the B-Tree in all cases. Compared to the R-
Tree, PMQ has a speedup on 97% of queries tested. The cases where PMQ performs worst
corresponds to queries returning a small number of elements compared to the dataset size.

+

+
+ +

+ +
+ +

+

+
+

+

+
+ + +

PMQ / RTree

PMQ / BTree

0.001 0.004 0.015 0.059 0.235 0.941 3.764 15.057

0.001 0.004 0.015 0.059 0.235 0.941 3.764 15.057
0

2

4

6

8

0

2

4

6

8

Range query coverage of the domain (%)

S
pe

ed
up

 o
f P

M
Q

we built has 80 queries. This set of queries was run over 8 different datasets at varying

sizes from 1M to 128M elements, for a total of 640 query results. The size of the dataset

is given by a parameter S defined as {1M × 2i : 0 ≤ i < 8}. We performed each query

10 times and computed the average running time. Since we fixed the number of elements

in memory, we computed the throughput of each query as the number of records returned

by the query divided by the running time (in ms).

We compared the throughput by showing the speedup of PMQ over B-Tree and

R-Tree (Figure B.12). The boxplots in Figure B.12 show the speedup grouped by w.

164

Figure B.13: Examples of Range Queries. We define 8 different query widths. The B-
Tree and PMQ use 10 levels of quadtree refinement for range queries. We choose this
parameter experimentally to provide the best overall results.

−50

0

50

−100 0 100
Lon

La
t

Query Width
0.703 1.406 2.812 5.625

11.25 22.5 45 90

2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214

2−3

2−1

21

22

23

2−3

20

23

2−3

20

23

2−6

2−3

20

20

22

2−6

2−4

2−2

20

20

22

Geohash refinement level
Q

ue
ry

 e
xe

cu
tio

n
tim

e
in

 (m
s)

Query Width
0.703125 1.40625 2.8125 5.625
11.25 22.5 45 90

2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214

2−3

2−1

21

22

23

2−3

20

23

2−3

20

23

2−6

2−3

20

20

22

2−6

2−4

2−2

20

20

22

Geohash refinement level

Q
ue

ry
 e

xe
cu

tio
n

tim
e

in
 (m

s)

Query Width
0.703125 1.40625 2.8125 5.625
11.25 22.5 45 90

The labels on the x-axis show the range query coverage relative to the total area of the

domain. PMQ and B-Tree use the same querying mechanism based on the recursive

space partitioning of a quadtree. In this case, PMQ is always better than the B-Tree, with

speedups that can achieve up to 7× on the largest range queries. The speedup over the

B-Tree is proportional to the number of elements returned by the query and is mainly due

to the memory locality of PMQ. When the number of elements scanned to answer a query

increases, the B-Tree has to access nodes scattered in memory locations, thus causing a

poor usage of the cache memories. The average speedup increases with the range query

size.

Since the R-Tree is a pointer-based data structure, its internal nodes have bounding

boxes containing the space occupied by its children, and only leaf nodes have the actual

elements. Because of its internal index, the R-Tree is efficient for point queries, with

good performance when a small amount of elements is queried. In a streaming dataset,

elements are inserted individually in the data structure, as they arrive from the stream and

without any specific ordering in memory. When the size of the range queries increases,

the cost of scanning more elements hinders the throughput. The query algorithm uses

a max depth parameter to limit the refinements done in the linear quadtree. The max

depth of 10 used in this experiments was found to give the best results (for B-Tree and

PMQ) as shown in Figure B.13. The refined quadrants that do not fall entirely inside the

queried region are scanned linearly to test the elements contained in the queried region.

As a consequence, small range queries in regions with a high density of elements suffers

from discontinuities in the Z-curve ordering. The throughput has a negative impact when

the number of valid elements returned is low compared to the number of records scanned.

Despite this, in our experiments the PMQ query algorithm outperforms the R-Tree (which

165

Figure B.14: Top-k Queries: cumulative percentages of query latency for K = 100 ,
R = 30 km and T = 10000 seconds. We compared the search performance of PMQ
against the Kite framework.

Figure B.15: PMQ memory usage depends on density thresholds 2ρh < τh. Boost C++
R-Tree has a bigger index overhead than stx::btree.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700

0.00 5.20 11.74 15.60 20.80 23.48 26.00

Millions of Elements

M
em

or
y

U
sa

ge
 (

M
B

)

BTree PMQ Dense Vector RTree

does not rely on a Z-curve) by 5.5 times in 97% of the largest range queries.

B.7.6 Evaluating Top-k Queries

We compared the performance of top-k queries implemented on top of our PMQ

against the Kite framework (MAGDY; MOKBEL, Mars 2017). We generated 10K top-

166

K queries from the check-in locations of the Brightkite social network (LESKOVEC;

KREVL, Mars 2017). Queries correspond to users, in a given location, trying to find the

most relevant tweets nearby.

At the moment of execution of the top-k queries, there were 10M tweets stored

in PMQ. For each query, we measured the latency of accessing the storage array and

computing the top-k elements. The top-k ranking function used the default parameters

values K = 100 , R = 30km and λ = 10000 seconds. Temporal and spatial scores in

PMQ were balanced with values 0.2 and 0.8 respectively. Kite does not offer a balancing

parameter for the temporal and spatial dimensions, ranking elements with radius r merely

according to the temporal dimension. Figure B.14 shows queries for different latency

values. PMQ answers 90% of the queries in less than 4 ms while Kite can only process

3% of it. Kite uses a regular grid as a spatial index. Since the grid does not change to adapt

to the complexity of the data, Kite does not perform well under scenarios of streaming

datasets.

The data being sorted first based on their Z-index and next their timestamp, a

pure time based query with no spatial constraint would need to scan all the elements of

PMQ. We have seen that the PMQ shows a good scan performance (Fig. B.8(b)). But if a

majority of requests of this type are expected it may be advantageous to index data based

on their timestamp first.

B.7.7 Evaluating Memory Usage

We measured the amount of resident set size used by each data structure indi-

vidually (e.g., the physical memory used by the process code and data). The Linux

Kernel maintains a pseudo-file system directory for each running process. By pars-

ing /proc/self/statm we have access to the current resident set size in pages. We

multiply this value by the page size from sysconf() to obtain the amount of used

memory in bytes. We set the record size to 16 bytes, the minimum space required to

store spatial and timestamp metadata. Each batch inserts 1000 records per iteration.

For every iteration, we measured the current resident set size used by the data structures.

Memory usage in a dense vector is directly proportional to the number of records, as

shown in Figure B.15, and serves as a baseline since this alternative does not have any

storage overhead. PMQ memory usage depends on the max density parameter, τh (see

subsection B.4.1). In our experiments τh is configured to 0.7, i.e., the used memory slots

167

Table B.4: Memory usage summary
Number of Elements stored

Algorithm 11.7 M Elts 23.4 M Elts
Dense Vector 275.32 MB 545.97 MB
PMQ 882.97 MB 882.97 MB
B-Tree 477.00 MB 951.63 MB
R-Tree 510.42 MB 1019.15 MB

correspond at maximum to 70% of slots allocated. As the number of elements in the

data structures increases, PMQ doubles its size when the maximum density is reached

(note the staircase-shaped curve of PMQ in Figure B.15). In the experiments of sub-

section B.7.3, the maximum number of elements presented in memory was 23.488.000,

which corresponds to the memory consumption show in Table B.4.

B.7.8 Discussion of the Evaluation Results

The design of a data structure that is at the same time efficient for insertion/removal

operations and large range queries requires careful analysis of trade-offs. Experiments

have shown that PMQ offers a good tradeoff between both types of workloads. At a

steady regime PMQ can perform efficient bulk removals, which are usually expensive in

tree-based data structure because they require a full scan of the data.

The execution of queries in PMQ is substantially different from R-Trees because

there are no index pointers to locate records. Instead the PMQ keeps data sorted based

on Z-indices, and it suffices to use a fast range searching algorithm. We used the same Z-

order in PMQ and B-Tree. However, as data is inserted and removed dynamically, a tree

structure becomes fragmented in memory. PMQ avoids this issue by keeping the locality

of its records along the Z-curve. Our experiments always verified that PMQ outperforms

the B-Tree.

Some insertions in the PMQ can lead to higher execution times when a full rebal-

ance is required: when the PMQ size needs to be doubled (Figure B.7), or, with a lesser

impact, at steady regime during bulk data removals (Figure B.10). To mitigate the impact

on query response time, one could rely on multithreading to overlap as much as possi-

ble rebalances with queries, adapting the approach proposed in (BENDER; DEMAINE;

FARACH-COLTON, 2005) for the PMA.

168

B.8 Conclusion and Future Work

We introduced PMQ, a new data structure to keep sorted a stream of data that can

fit in a controlled memory budget. PMQ reorganizes itself when needed with a low amor-

tized number of data movements per insertion (O(log2(N))). Amongst the data structure

compared, PMQ, B-Tree, and R-Tree, PMQ proved to have the best performance trade-off

between insertion and searching times. Experiments showed that PMQ enables querying a

continuously updated window with the latest arrived tweets in real-time. PMQ can main-

tain a significant amount of data in memory, filling the gap between stream processing

engines working only on small windows of received stream, and other classical persistent

storage solutions.

One direction for improvement would be to combine in-memory and persistent

storage in a multi-level PMQ. The lazy stashing protocol might not adapt to some needs,

as old data may stay a long time (up to the next top rebalancing) before being removed. We

plan to develop a more reactive protocol for such situations. The current implementation

imposes that every operation must acquire a thread lock before accessing or modifying

PMQ. All requests are thus performed sequentially, which limits the number of transac-

tions that PMQ can support.

B.9 Proof of the PMQ Amortized Cost

Let first identify an important property on windows densities after rebalance. A

j-level window wj is rebalanced when overfull (d(wj) > τj)). The rebalance occurs

at the smallest underfull upper window wl with l > j, i.e. the smaller one checking

d(wl) < τl)). In worst case this is a top level rebalance requiring to double the PMQ size.

After rebalance the density of wj checks:

d(wj) < τl < τj, (B.6)

by Equation B.1 of page 148. So wj gets a density d(wj) < τj+1.

Now let consider a window wj and let see how many insertions are necessary in

this window so that it triggers a rebalance, i.e. it requires to rebalance the parent window

wj+1. We assume wj just get rebalanced, thus d(wj) < τj+1 by Equation B.6. The next

169

rebalance triggered by wj occurs once d(wj) > τj , i.e. after the insertion of

(τj − τj+1)2
jK

elements where K = O(log(N)) is the segment size.

Such rebalance requires to move 2j+1K elements. If the rebalance occurs at the

root window (j = h), the PMQ first makes a full scan of the PMQ to identify the data to

be stashed. These data are next removed during the rebalance that is either performed on

wh = O(N) if the new density is bellow τh or on a twice larger window after doubling

the PMQ size. Thus a root rebalance cost is bounded by 2h+2K. We also need to count

the cost of updating the accounting array. Each rebalance triggered by wl leads to update

2j+2 − 1 + h− (j + 1) elements of the accounting array.

Putting all these costs together, we have a cost associated to a rebalance triggered

by wj bounded by:

2j+2 + h− j − 2 + 2j+2K < 2j+2K + 2j+2 + log(N).

This leads to the amortized cost per insertion of:

2j+2K + 2j+2 + log(N)

(τj − τj+1)2jK
<

4K + 4 + log(N)

(τj − τj+1)K
,

= O(log(N))

by Equation B.2 of page 148.

When an element is inserted into the PMQ, it actually contributes to the density of

all enclosing windows from the segment up to the root, i.e. of h = O(log(N)) windows.

The amortized rebalance cost per insertion into the PMQ is thus O(log2(N)).

Each element needs to be inserted in the right place in the PMQ. If inserted one by

one a binary sort is used with cost O(log(N)). If inserted by batches, the insertion array is

sorted with a cost per element that is also bounded by O(log(N)). Added to the amortized

rebalance cost, we get an unchanged total amortized cost per insertion of O(log2(N)).

170

Appendix C IMPLEMENTATION OF FOURIER SPECTRUM-BASED APPROACH

TO REPRESENT DECISION TREES

import math
import matplotlib.pyplot as plt
import numpy as np

def add1(t, modules):
stop = False
cnt = len(t) - 1
carry = 0
t[cnt] = t[cnt] + 1
while (not stop) and (cnt >= 0):

t[cnt] = t[cnt] + carry
if t[cnt] == modules[cnt]:

t[cnt] = 0
carry = 1
cnt = cnt - 1

else:
stop = True

return t

def product(l):
p = 1
for i in l:

p *= i
return p

def invertDict(x):
y = {}
for key in x:

y[x[key]] = key
return y

def factory(x):
def temp(y):

return x * y
return temp

def fEquals(f, g, modules):
numDimensions = len(modules)
currentTuple = [0 for i in xrange(numDimensions)]
numCoefficients = product(modules)
for i in xrange(numCoefficients):

if not (f(currentTuple) == g(currentTuple)):
return (False, currentTuple, f(currentTuple), g(currentTuple))

currentTuple = add1(currentTuple, modules)
return True

def binarizeChar(ch, sampleSpace, dimensionIndex):

171

print sampleSpace.dictDataToNumber, dimensionIndex
return sampleSpace.dictDataToNumber[dimensionIndex][ch]

def binarizeSchema(schema, sampleSpace):
result = []
for i, t in enumerate(schema):

if t == '*':
result.append('*')

else:
result.append(binarizeChar(t, sampleSpace, i))

return result

class FourierBasisFunc:
def __init__(self, signature, dimSizes, numDimensions):
self.signature = signature
self.dimSizes = dimSizes
self.numDimensions = numDimensions

def applyPartialFunc(self, schema):
numDimensions = self.numDimensions
pr = []
print schema, self.signature
for i in xrange(numDimensions):

if schema[i] == '*' and self.signature[i] > 0:
return 0

elif schema[i] == '*':
pr.append(0)

else:
pr.append(schema[i])

print 'final pr', self.signature, pr
return self.applyFunc(pr)

def applyFunc(self, pr):
totalSum = 0
numDimensions = self.numDimensions
for l in xrange(numDimensions):

totalSum = totalSum + \
((self.signature[l] * pr[l]) / (self.dimSizes[l] * 1.0))

return complex(
math.cos(

2.0 *
math.pi *
totalSum),

math.sin(
2.0 *
math.pi *
totalSum))

class SampleSpace:
def __init__(self, dictDataToNumber, dictNumberToData):
self.dimSizes = [len(t.keys()) for t in dictDataToNumber]
self.dictDataToNumber = dictDataToNumber
self.dictNumberToData = dictNumberToData

def numDimensions(self):

172

return len(self.dimSizes)

def possibleValues(self, dimIndex):
return self.dictDataToNumber[dimIndex].keys()

def size(self):
totalSize = 1
for i in self.dimSizes:

totalSize = totalSize * i
return totalSize

def fourierBasis(self, signature):
numDimensions = self.numDimensions()
return FourierBasisFunc(signature, self.dimSizes, numDimensions)

def toFourier(self, f):
numCoefficients = self.size()
numDimensions = self.numDimensions()

currentTuple = [0 for i in xrange(numDimensions)]
coefs = {}

for i in xrange(numCoefficients):
coeff = complex(0, 0)
basisFunction = self.fourierBasis(currentTuple)
xx = [0 for _id in xrange(numDimensions)]

for j in xrange(numCoefficients):
print x,basisFunction(x),f(x)
coeff = coeff + basisFunction.applyFunc(tuple(xx)) * f(xx)
xx = add1(xx, self.dimSizes)

coefs[tuple(currentTuple)] = coeff / (1.0 * numCoefficients)
currentTuple = add1(currentTuple, self.dimSizes)

return coefs

class DTree:
def __init__(self, sampleSpace, schema):

self.sampleSpace = sampleSpace
if len(schema) == 0:

self.schema = ['*' for t in xrange(sampleSpace.numDimensions())]
else:

self.schema = schema
self.decisionVarIndex = -1
self.children = {}
self.label = None

def __call__(self, pt):
return self.applyNormalizedFunc(pt)

def applyFunc(self, pt):
numChildren = len(self.children.keys())
if numChildren == 0:

return self.label
else:

valueToFollow = pt[self.decisionVariable]
return self.children[valueToFollow].applyFunc(pt)

173

def applyNormalizedFunc(self, pt):
numChildren = len(self.children.keys())
if numChildren == 0:

return self.label
else:

numDimensions = len(pt)
originalPt = []
for i in xrange(numDimensions):

originalPt.append(self.sampleSpace.dictNumberToData[i][pt[i]])
return self.applyFunc(originalPt)

def build(self, data, labels):
pass

def setSchema(self, newSchema):
self.schema = newSchema

def splitField(self, fieldIndex):
self.decisionVariable = fieldIndex
self.children = {}
numValsInDimension = self.sampleSpace.dimSizes[fieldIndex]
for i in xrange(numValsInDimension):

schema = list(self.schema)
schema[fieldIndex] = self.sampleSpace.dictNumberToData[fieldIndex][i]
child = DTree(self.sampleSpace, schema)
self.children[self.sampleSpace.dictNumberToData[fieldIndex][i]] = child

def order(self):
numStars = 0
for ch in self.schema:

if ch == '*':
numStars

return numStars

def numInstances(self):
numInstances = 1
numDimensions = len(self.schema)
for i in xrange(numDimensions):

ch = self.schema[i]
if ch == '*':

numInstances = numInstances * self.sampleSpace.dimSizes[i]
return numInstances

def numInstances(self):
numDimensions = len(self.schema)
totalSize = 1
for i in xrange(numDimensions):

if (self.schema[i] == '*'):
totalSize = totalSize * self.sampleSpace.dimSizes[i]

return totalSize

def toFourier(self):
numCoefficients = self.sampleSpace.size()
numDimensions = self.sampleSpace.numDimensions()
#
currentTuple = [0 for i in xrange(numDimensions)]

174

basisFuncs = {}
coefs = {}

for i in xrange(numCoefficients):
basisFuncs[tuple(currentTuple)] = FourierBasisFunc(

currentTuple, self.sampleSpace.dimSizes, numDimensions)
coeff = complex(0, 0)
nodesToProcess = [self]
while len(nodesToProcess) > 0:

node = nodesToProcess[0]
del nodesToProcess[0]
if currentNode is a leaf
if node.label is not None:
translatedSchema = binarizeSchema(

node.schema, self.sampleSpace)
coeff = coeff + (1.0 / numCoefficients) * node.numInstances() \

* node.label * basisFuncs[tuple(currentTuple)] \
.applyPartialFunc(translatedSchema)

else:
nodesToProcess = nodesToProcess + \

[node.children[key] for key in node.children]

coefs[tuple(currentTuple)] = coeff
currentTuple = add1(currentTuple, self.sampleSpace.dimSizes)

return coefs

	Acknowledgement
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Background
	1.2 Collection of Papers and Contributions
	1.2.1 Real-Time Visual Exploration of Big Data
	1.2.2 Similarity-based Visual Exploration of Multidimensional Datasets
	1.2.3 Real-Time Visual Exploration and Analysis Based on Order Statistics
	1.2.4 Visual Formation and Comparison of Patient Cohorts
	1.2.5 Real-Time Visual Exploration of Streaming Big Data

	2 HashedCubes: A Data Structure for Real-Time Exploration of Large Multidimensional Datasets
	2.1 Abstract
	2.2 Introduction
	2.3 HashedCubes Concept
	2.4 HashedCubes Construction
	2.4.1 Spatial Dimensions
	2.4.2 Categorical Dimensions
	2.4.3 Temporal Dimensions

	2.5 HashedCubes Queries
	2.6 Experiments and Discussion
	2.6.1 Result Analysis

	2.7 Conclusions and Future Work

	3 Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data
	3.1 Abstract
	3.2 Introduction
	3.3 Related Work
	3.4 Hashedcubes
	3.4.1 Some Intuition
	3.4.2 Construction Algorithm
	3.4.3 Spatial Dimensions
	3.4.4 Categorical Dimensions
	3.4.5 Temporal Dimensions
	3.4.6 Queries

	3.5 Implementation
	3.6 Datasets and Schemas
	3.6.1 Location-Based Social Networks
	3.6.2 Airline On-Time Performance
	3.6.3 SPLOM
	3.6.4 Twitter
	3.6.5 NYC Yellow and Green Taxis

	3.7 Performance Results
	3.7.1 Memory Usage
	3.7.2 Construction Time
	3.7.3 Query Time

	3.8 Discussion
	3.9 Conclusions and Future Work

	4 Real-Time Exploration of Large Spatiotemporal Datasets based on Order Statistics
	4.1 Abstract
	4.2 Introduction
	4.3 Related Work
	4.4 Background
	4.5 The t-digest data sketch
	4.6 Quantile Data Structure
	4.6.1 Overview and Query Types
	4.6.2 Internal Representation
	4.6.2.1 Indexing Scheme
	4.6.2.2 The p-digest data sketch

	4.6.3 Query Algorithm
	4.6.4 Implementation

	4.7 Building Visualizations with QDS
	4.7.1 Extending Usual Visualizations
	4.7.2 Easing the Reading of Uncertainty Visualizations
	4.7.3 Uncovering the Unexpected

	4.8 Use Cases
	4.8.1 Analyzing Flights Delays
	4.8.2 Exploring Outlierness in Taxi Trip Records

	4.9 Experimental Results
	4.9.1 The QDS Index Experiments
	4.9.2 The p-digest Sketch Experiments

	4.10 Discussion
	4.11 Conclusions and Future Work

	5 Visual Formation and Comparison of Patient Cohorts
	5.1 Abstract
	5.2 Introduction
	5.3 System Design
	5.3.1 Datasets
	5.3.2 Cohort formation
	5.3.3 Cohort exploration

	5.4 Interface
	5.5 Demonstration Scenarios

	6 Conclusions and Discussion
	6.1 A Fourier Spectrum-Based Approach to Represent the Decision Tree Classifier and Regression Method
	6.2 A Clustering Technique

	References
	Appendices
	Appendix A Similarity-based Visual Exploration of Very Large Georeferenced Multidimensional Datasets
	A.1 Abstract
	A.2 Introduction
	A.3 Related Work
	A.4 Our approach
	A.4.1 Projecting data to 1D
	A.4.2 Indexing data
	A.4.3 Querying data
	A.4.4 Implementation details

	A.5 Results
	A.6 Discussion and Limitation
	A.7 Conclusion

	Appendix B Packed-Memory Quadtree: A Cache-Oblivious Data Structure for Visual Exploration of Streaming Spatiotemporal Big Data
	B.1 Abstract
	B.2 Introduction
	B.3 Related Work
	B.4 Packed-Memory Quadtree
	B.4.1 The PMQ Data Structure
	B.4.2 Data Indexing
	B.4.3 Dynamic Updates
	B.4.4 Query Types

	B.5 Implementation
	B.6 Examples of Visualization Analysis using PMQ
	B.6.1 Drill-down exploration of a Twitter stream
	B.6.2 Allert detection of regions with high tweet rates

	B.7 Performance Evaluation
	B.7.1 Evaluating Storage Solutions for Spatial Data
	B.7.2 Evaluating Insertions
	B.7.3 Evaluating Bulk Deletions
	B.7.4 Evaluating the Rebalancing Procedure
	B.7.5 Evaluating Range Queries
	B.7.6 Evaluating Top-k Queries
	B.7.7 Evaluating Memory Usage
	B.7.8 Discussion of the Evaluation Results

	B.8 Conclusion and Future Work
	B.9 Proof of the PMQ Amortized Cost

	Appendix C Implementation of Fourier spectrum-based approach to represent decision trees

