
Workflow Modelling using a Temporal Object-Oriented
Model with Roles

Nina Edelweiss1

Mariano Nicolao1

Abstract: The representation of all the processes that compose a workflow, in-
cluding all the constituent activities, their execution sequence and relationships, the
agents responsible for their execution, and the resources that are used during exe-
cution, is known as Workflow Modelling. Several techniques are being proposed to
model workflow. In this paper a workflow modelling technique is proposed, using
a temporal object-oriented data model, the TF-ORM model. The TF-ORM model is
presented, as are the extensions made to adequate the model to workflow modelling.
All the activities that shall be executed during the workfloware represented, including
the mechanisms for their activation and termination, both in normal and exception sit-
uations. The model allows the representation of structuredand unstructured work, the
interactions that will occur among executing activities, and their synchronization. The
workflow model represented in TF-ORM includes a set of rules to be used during the
workflow management. The occurrence of failures and exceptions during workflow
execution may cause serious problems, especially in mission-critical applications. The
TF-ORM formalism, when used to model workflow, allows the representation of sev-
eral exceptions and the definition of information to be used for the systems recovery.

1 Introduction

Administrative work accomplished in enterprises is usually composed by different ac-
tivities, executed by several persons in a defined sequence.As the applications become more
complex, the coordination of their execution becomes an important feature to be considered
while planning activities. The representation of the planned application activities prior to their
implementation is of fundamental importance, especially in complex applications. The def-
inition of the whole process, with the clear identification of all the activities to be executed,
of their relationships, and including the agents responsible of their execution, is known as
workflow[WFMC 99].

Each one of the processes that compose a workflow can be composed of several activ-
ities, also with a specific execution order, executed probably by different agents, in different
locations. The representation of all the processes and activities is known asWorkflow Mod-

1Instituto de Informática, Programa de Pós-graduação em Computação, Universidade Federal do Rio Grande do Sul,
Brasil
[nina,nicolao]@inf.ufrgs.br

Workflow Modelling using a Temporal Object-Oriented Model with Roles

elling. This model helps to understand the complete process, and may be useful to identify
possible problems that may occur during execution [Tang 98]. Workflow Modelling concepts
are being used not only in commercial enterprises – as an example, workflow-modelling tech-
niques can also be used in the educational area, to implementa course on the Web [Oliveira
98].

One of the main goals of workflow modelling is to decrease the number of problems
due to activities’ coordination. In traditional administrative processes, it is not usually pos-
sible to detain absolute control of all the activities that shall be executed. In addition, it is
not always possible to identify which data is manipulated byeach activity at each moment,
and who are the persons manipulating these data. These important aspects shall be clarified
by the workflow modelling process. A workflow model shall define not only the sequence
of activities to be executed, but also the temporal restrictions to their execution, the dynamic
data, and the persons (agents) responsible for each activity.

The understanding and validation of a workflow is fundamental in critical application,
as in areas related to health, insurance companies banking,and electronic commerce. They
present critical properties that shall not fail: properties related to security or that may lead
to life risks. Special attention shall be devoted to these properties, in order to insure (or,
at least, increase) their security. A sorrow analysis of theworkflow can identify possible
exceptions and failures, and the modelling of their treatment will increase the security of the
whole system.

A Workflow Management System – also calledWorkflow Engine– controls the ex-
ecution of all the activities. The importance of managing workflow can be identified by
recent researches in this area, leading to a set of academic experiences of Workflow Engines
[Alonso 97, Georgakopoulos 95, Jablonski 96, Vossen 96, Weissenfels 98], and a number of
commercial tools (Process Buider from Action Technologies, LotusNotes).

As any other computing system, a Workflow Engine may present problems during
executions, due to the occurrence of exceptions or to systemfailures. Experience shows
that “Exceptions are not exceptions – they occur all the time”. Recent researches on this
subject show the importance of this issue when workflow is considered [Eder 96, 98, Ellis
95, Heinl 98, Reichert 97, Saastamoinen 95, Van Stiphout 98,Tang 98]. If some predictable
exceptions are represented in the workflow model, it is possible to program the Workflow
Engine to solve them. Further on, when the solution for an identified problem is not trivial,
the Workflow Engine needs special information to provide a failure recovery. The possibility
of representing recovery information in the workflow model is also a desirable feature when
selecting a modelling tool.

Several workflow-modelling techniques are proposed in recent researches, using dif-
ferent modelling paradigms. Some examples are the model proposed by theWorkflow Man-

30 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

agement Coalition[WFMC 94], the model of Casati, Ceri, Pernici & Pozzi [Casati95], the
trigger model of Joosten [Joosten 94, 94a], the WAMO activity model [Eder 95], object-
oriented models [Missikoff 98] and Petri Nets [Aalst 95, Eddis 93].

A methodology is suggested in [Baresi 99], the WIDE methodology, aimed to support
a workflow project from the initial analysis up to the implementation in specific workflow
systems.

An alternative technique to model workflow is proposed in this paper. The technique
is based on the use of the temporal object-oriented model TF-ORM (Temporal Functionality
in Objects with Roles) [Edelweiss 93, 93a, 94]. This model was extended with some new syn-
tactic constructions, with the aim of better representing the workflow characteristics [Nicolao
98]. Besides being temporal and using the object-orientation paradigm, this model uses the
concept ofroles to represent different behaviors of objects, allowing a richer representation
of the workflow [Edelweiss 97].

Using TF-ORM, the behavior of the workflow processes is represented by classes,
encapsulating the representation of the activities of eachclass. The classes are instantiated
for each process execution. The definition of all the classes’ interfaces with other tasks, and
with agents and resources involved in the workflow completesthe model. A sort of finite state
machine, presenting temporal logic expressions to constrain the state transitions, represents
the evolution of a process. The main difference of this method comparing to traditional
object-oriented models is the use ofroles to represent activities composing a process, and
extending the conditional state transitions also to these roles.

The use of the TF-ORM formalism allows also the representation of possible excep-
tions identified in the modelling level, and of the actions the Workflow Engine shall perform
when these exceptions occur. And it also provides ways of representing information that can
be used in failure recovery mechanisms [Edelweiss 98].

The paper is organized as follows. In Section 2 some conceptsconcerning workflow
modelling are presented, including exception and failure procedures. The TF-ORM data
model used in this proposal is presented in Section 3.. To better represent workflow models,
the TF-ORM model was extended, ad this is presented in Section 4. In Section 5 the con-
structing of the workflow modelling technique, using TF-ORMis detailed. Section 6 comple-
ments the explanation of the modelling technique, explaining how the different synchronisms
between workflow activities are represented in TF-ORM. And the exceptions representations
and the failure handling are detailed in section 7.

RITA • Volume X• Número 2• 2004 31

Workflow Modelling using a Temporal Object-Oriented Model with Roles

2 Workflow Modelling

A workflow, also called a business process, is usually concerned with the coordination
of activities in a business environment. Workflow Modellingis a very important subject in
enterprise analysis processes. The expressive number of researches published recently in this
area attest this fact. Three different dimensions are identified in a workflow [Leymann 98]:

1. Whatshall be represented – the set of activities that compose theworkflow, and the
sequence of their execution;

2. Whoshall execute each one of the activities – the agents of the workflow; and

3. With what the activities shall be executed – the resources involved in the execution,
including automatic tools and support.

Information related to these three dimensions shall be defined in the workflow model.
However, most of the available modelling tools allow only the representation of information
related to the first one. Here lies the main difference between Enterprise Modellingand
Workflow Modelling.

The construction of a workflow model has two important uses. First, during the con-
struction of the model the whole process is analyzed, and theactivities to be executed and
sequence of their execution is identified. This is done in an abstract way, with the pur-
pose of analyzing the workflow. The constructed workflow model may lead to a process
re-engineering, with the aim of solving detected errors andto achieve a better work distribu-
tion [Georgakoupoulos 95]. And after the workflow model is complete, the resulting model
can be used to manage the workflow during the execution.

A workflow model shall include:

a. The description of all the processes that compose the workflow, and the activities per-
formed in each one of these processes;

b. The definition of agents responsible for the execution of each one of the identified
activities;

c. The definition of temporal restrictions to the execution of activities; and

d. The identification of communication between activities and processes (for information
change and control).

In order to reach this goal, the following strategy can be used:

32 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

• Construct a mathematical model of the workflow;

• Formalise the processes and their relationships, using a temporal logic, in order to
generate all the possible logical computing trees of the workflow (in such a tree, the
successors of a node are the possible states that can be assumed starting from the state
represented by the corresponding root); and

• Use some method to verify this model, usually done by a simulation of the workflow
execution.

Workflow Modelling can be done using different formalisms. Several modelling tech-
niques were proposed recently. And some commercial workflowtools are available. But all of
them present some limitations – it is important to make a sorrowful analysis of the technique
to be used in an application, to have all the necessary functionality needed to the modelling.
The use of a temporal model is advised in order to allow the representation of execution syn-
chronism among the activities. This paper proposes the use of the temporal object-oriented
data model TF-ORM to used as a workflow-modelling tool. This model combines the ad-
vantage of being a formal method with the possibility of representing human decisions in the
formal framework, and all the possible synchronism needed in workflow applications.

2.1 Temporal modelling

Temporal aspects are fundamental in workflow. Workflow models need to support
expressions related to processes, temporal restrictions,dynamic changes and treatment of
exceptions [Ellis 95]. The synchronism of the different tasks and activities involved in the
workflow is usually controlled by temporal logic rules. The choice of a modelling method
to represent workflow shall support the representation of temporal rules to allow a complete
representation.

However, this not always happens in the existent modelling techniques. Temporal
modelling allows the representation of many of these aspects. Using temporal modelling the
dynamics characteristics of the applications and the temporal interaction among different pro-
cesses can be represented. The possibility of storing, manipulating and recovering temporal
data should also be considered when choosing a workflow modelling method.

A workflow also needs time restriction controls. These controls produce warnings
(e.g.: First Reminder Afterx days, Repeat Reminders Everyy days, Deadline Occur After
z days) to automatically alert the participants of pending activities, as well as to fire other
activities related with time. In TF-ORM these controls may be easily represented through
state transition rules, more specifically in the transitioncondition, explained in section 3.2.

RITA • Volume X• Número 2• 2004 33

Workflow Modelling using a Temporal Object-Oriented Model with Roles

Trip
Definition

Hotel
Reservation

Flight
Reservation

Contact
Client

Print
Schedule

Get
Payment

End
Service

Car
Reservation

OR
AND

Not confirmed
Not confirmed

Not confirmed
Confirmed

Confirmed

Confirmed

Figure 1. The Traveluck Example

2.2 Exceptions and Modelling Errors

The modelling of a workflow can be considered as the first phaseof a re-engineering
process of the enterprise. The analysis of possible exceptions that can occur during execution,
and of eventual system failure consequences is important for the complete understanding
of the application.Exceptions(also called semantic failures) occur when activities cannot
by executed according to the workflow model, or do not presentexpected results.Failures
consist of problems due to equipment (errors in programs, failure of some equipment, failure
of communication).

An important distinction shall be made between exceptions occurring during the work-
flow execution and errors due to deficiencies of the workflow representation. To exemplify
this difference, consider the following example, based on the “Traveluck Example” presented
in [Leymann 98]. It concerns a travel agency, and the activities to be executed when a client
of this agency hires a trip, composed of the airplane ticket,hotel reservations and car rental.
The main activities correspondent to this application are represented in Figure 1, using an
activity diagram notation often used to represent workflow graphically - circles represent ac-
tivities, and the arrows define the sequence of their execution. The workflow begins with the
trip definition activity, when the client, together with theagency employee, will choose the
itinerary. When the itinerary is fixed three different and parallel activities will be fired: flight,
hotel and car reservation.

Two alternative and independent results can output these three activities: the reserva-

34 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

tion can be confirmed or not. If one of the three reservations is not confirmed, the client is
contacted (the OR operator represents a conditional join).And only if all the three reserva-
tions are confirmed (AND operator) the next activity is fired,and the trip schedule is printed,
followed by the payment and ending the workflow with the ticket and vouchers delivery.

The workflow of this example presents amodelling error: when one of the reservation
activities is not confirmed, another may already be confirmed, and this last reservation is not
undone. Once the client decides what shall be done to overcome the detected reservation
problem, the workflow would begin once again, and the reservation that was already con-
firmed would be done again. The workflow should verify if any other reservation was made
in such a case.

One possibleexceptionidentified in this example would occur in case the client does
not pay the trip – the workflow would wait the payment indefinitely. The workflow model
can provide some treatment to avoid this exception.

3 TF-ORM

TF-ORM (Temporal Functionality in Objects with Roles Model) [Edelweiss 93, 93a,
94] is a temporal object-oriented data model. It differs from other temporal object-oriented
data models by the use of the role concept to represent the different behaviors an object can
present.

3.1 The Role Concept

Object-oriented data models are often used to model real applications. However, it
is difficult to represent the temporal evolution of the application when traditional object-
oriented data models are used. Some mechanism should be provided to support the real world
temporal evolution. According to the object-oriented paradigm, an object is an instance of
a class, and presents the properties and methods of this class during all its existence. Even
if, due to temporal evolution, some of the characteristics of this object change, the class
definition keeps unchanged. This evolution may lead to situations in which the behavioral
characteristics become similar or identical to those of another class, and should produce the
migration of this object to the other class. Some models allow some kind of limited migration,
but these are usually restricted between a class and its subclasses.

This problem is overcome when using roles associated to the object-oriented paradigm.
Roles, encapsulated in classes, represent different behaviours an object of a class can play,
simultaneously and independently. Roles can be instantiated dynamically, allowing this way
the representation of the dynamic evolution of an object.

RITA • Volume X• Número 2• 2004 35

Workflow Modelling using a Temporal Object-Oriented Model with Roles

The role concept associated to the object-oriented paradigm was introduced with the
ORM model (Objects with Role Model) [Pernici 90] and has been adopted by some modelling
techniques since then [Belkhatir 94, DeAntonellis 91].

The ORM model introduces the role concept in an object-oriented model to represent
the dynamic behavioural evolution of an object. A class presents different roles, each one
representing a specific behaviour of an object of this class.An object is still an instance of
only one class, but it can play different roles during its lifetime. As an example, consider
the classperson, in an academic environment. Three different roles are identified for this
person (Figure 2):professor, studentandadministrative_employee. For each one of these
roles a person presents specific properties and methods – thelectures he is used to present as
a professor, the courses he already has completed as a student, or the salary as an employee.

The role concept provides the separation of the dynamic aspects of an object from the
static ones. The roles can be dynamically instantiated - considering always the same class
instance (the same object), instances of roles can be created, destroyed, or even temporar-
ily suspended and resumed. This allows the representation of the temporal evolution of an
object’s behavior. In the above example, a person (an object) can be accepted at the uni-
versity in, for instance, March 1990. This is represented with the creation of an instance of
the rolestudentfor this person. Supposing he graduates in December 1995, this instance is
destroyed. But in March 1991 he is accepted as a teacher at thesame university, represented
by the creation of an instance of the roleteacher. The evolution of the behavior of this person
is dynamically represented by the roles he is playing at different times. Note that the object
- the person - is always the same, even if his behavior is now absolutely different as at the
beginning.

An object may present, at the same time, two or more instancesof roles. In the previ-
ous example, the same person can be, at the same time, a student and a professor: consider
that, in March 1996 this person, that is already a professor,is accepted as a PhD student at
another university. He keeps on playing the role of professor, but an additional instance of
the rolestudentis created. Both instances of roles (professorandstudent) are played at the
same time from that moment on, each one independent of the other one.

And, finally, an object can have more than one instance of the same role at the same
time, all absolutely independent. This could be represented in the previous example if the
person becomes teacher of another university, keeping alsothe previous post - an additional
instance ofteacherwould be created, and from that moment on each one of the two instances
of this role would evolve dynamically on their own way.

In traditional object-oriented models an object is represented as a unique instance of
a class. It is not possible to represent that a person has two or more different jobs, each one
having different characteristics. In this case, the objectshould be an instance of the employee

36 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

Person

Teacher Student Employee

Figure 2. Graphical representation of a class with three roles

Person

Teacher Student Employee

Man

Teacher Student Employee

Woman

Teacher Student Employee

Figure 3. Subclasses with roles

subclass and two instances of this subclass would representtwo objects. The use of the role
concept associated to object-oriented model aims at overcoming also this limitation, allowing
that an object presents multiple instances of the same role.

3.2 Roles and Subclasses

The use of roles is not equivalent to the subclass concept - subclasses can also be
defined when roles are used. A subclass inherits the roles of the superclass, can eventually
redefined a role definition, or even present new roles. Subclasses specialise properties and/or
methods of the superclass, not only in the class level, but also in the role level. Figure 3
presents an example of two subclasses defined for the class ofFigure 2, each one with specific
properties and methods: one represents aMan, and the other aWoman. In each one of the
subclasses the same roles of the superclass are defined.

An example that shows clearly the distinction between rolesand subclasses is pre-

RITA • Volume X• Número 2• 2004 37

Workflow Modelling using a Temporal Object-Oriented Model with Roles

sented in [Wieringa 91]:

“Assume thatpassengeris a subclass ofperson, and consider a person who migrates to
thepassengersubclass of person, say by entering a bus. This bus can carry 4000 passengers in
one week, but counted differently, it may carry 1000 personsin the same week. So counting
persons differs from counting passengers".

If passengeris represented as a subclass of the classperson, then counting passengers
would be the same as counting persons. The OId (object identifier) of the object in the sub-
class is the same as the one of the superclass. Each time this person enters a bus, he becomes
a passenger, but each time a different passenger (it can be another bus, or even the same bus
but at another time, he can stop at a different point, etc.). To allow this representation, each
time this person enters a bus a new object should be created, as persons would be identical to
passengers. The same person would thus be represented as different objects.

To keep the identity of a person as only one object, the same OId should always be
used each time this person becomes a passenger. To be a passenger represents in reality
a stateof this person. This state can be represented as arole played by this person - the
passengerrole. Now we have only one object representing a person (witha corresponding
OId). Different instances of the rolepassengercan be created and destroyed during the
lifetime of this object. To count passengers is now the task of counting how many persons
are involved, independently of how many instances of the role passenger are created.

3.3 The TF-ORM Model

TF-ORM [Edelweiss 93, 93a] is an extension of the ORM model [Pernici 90], intro-
ducing the representation of temporal features. Time is modelled as varying in a discrete
form. A unique name and a set of roles define aclass:

classi = (cni, R0, R1, ...,Rn)

Eachrole is defined by a name (rni), a set of properties (Pi), a set of abstract states
the role can assume while playing this role (Si), a set of messages the role can receive or send
(Mi), and a set of rules - state transition rules and integrity rules (Rui):

Ri = (rni, Pi, Si, Mi, Rui)

3.3.1 Properties, states, decisions, and messagesProperties may be static (having the
same value all over the instances lifetime) or dynamic (whenthey may assume different
values with time). Dynamic properties have two different time points associated with each
value: thetransaction time, corresponding to the moment when the information is introduced
in the database, and thevalid time, the time when that information starts to be valid in the real
world. Thus, this data model implements a bitemporal Database [Jensen 98]. Domains are

38 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

assigned to the property values. TF-ORM presents a set of pre-defined classes, calleddata
types,which can be used as domains of properties. In addition to theusual numeric data types
(real, integer), several temporal data types are supported (likedate, hour, instant, semester,
interval). Complex domains can also be defined, as an object, a set of objects, or a list of
objects.

The states an object can play are simply identified by a name. This name must be
unique within a role definition. These state names are referenced in the state transition rules.

The objects’ methods are represented asmessages. Incoming and outgoing messages
are defined, together with the information of which class is sending or receiving the message.
Values are passed by the way of message parameters, to be usedin the methods. Human
decisions are represented in agent classes as incoming messages calleddecisions. These can
also present parameters.

3.3.2 State transition and constraint rules State transition rules define the dynamic
evolution of an object. The arrival of a message sent by another class (or by another role of
the same class) does not mean that the corresponding method will always be executed - state
transition rules control these messages. Such a rule definesa combination of an object state
s1 and incoming message(s)mi1 to change to states2 . One or more messages can be send
when a transition rule is executed (mo1 throughmon). A transition condition, represented by
a first order temporal logic formula, can be associated to a rule, acting like a restriction to the
state transition execution - the transition will only occurif this condition is true. The general
form of a state transition ruleri is the following:

ri : state(s1), msg(mi1) ⇒ msg(mo1), msg(mo2), ...,msg(mon), state(s2); [<transitioncondition>]

A rule may also be defined based on the arrival of a set of messages - the rule is only
executed when all the messages have arrived, in any order or arriving time. This is represented
as follows:

ri : state(s1), msg(mi1), msg(mi2), ...,msg(min) ⇒ msg(mo1), state(s2); [<transitioncondition>]

All the components of a state transition rule are optional. When the initial state is not
defined, the transition takes place every time the incoming message(s) arrive, independently
of this state. When the incoming message is not defined, the transition is executed every time
the object comes to the initial state. If the outgoing message is not defined, the transition takes
place without sending anything. And when the final state is not defined, only the outgoing
messages are sent, without changing the objects state. In any one of these situations, the
transition condition shall always be obeyed.

Constraint rules can also be defined, and are represented by two conditions: ifthe
first condition holds, the second shall also hold. Temporal conditions can be used in both

RITA • Volume X• Número 2• 2004 39

Workflow Modelling using a Temporal Object-Oriented Model with Roles

forms of rules. The set of rules completes the object’s behavior definition.

3.3.3 Process, agent and resource classesThree different kinds ofclasses can be de-
fined: (i) resource classes, modelling information and resources; (ii)process classes, repre-
senting the processes to be executed with this information and the resources; and (iii)agent
classes, representing the agents that carry out the processes. The three class types are mod-
elled in a similar way. The only difference concerns agent classes: in addition to the above-
mentioned messages, agent classes also include human decisions, representing non-structured
work in a formal definition environment.

The role concept is different depending on the class type. Inagent classes, the roles
represent the different behaviors of an agent may present (e.g.: classperson– rolesteacher,
employee, andstudent). Resource classes roles represent different ways of visualizing these
resources, depending on the processes that act on them (e.g.: classbook– rolesconfection,
distribution, sell). And in process classes, the roles represent the activities that compose the
process (for ex: classaccountancy– rolesalary control, budget).

Temporal information are associated to all the instances (class and role instances) - the
instance’s creation time and destruction time, and the timeinstants in which the instance’s
activity was suspended and resumed. These temporal information are stored in special pre-
defined properties and can be used by the query language to retrieve information. Pre-defined
properties are inherited from a superclassObject, from which all the TF-ORM defined classes
are sub-classes.

Each class presents a special role, thebase role, where the global properties inherited
by all other roles and the initial characteristics of the other roles are described. The TF-ORM
model supports specialization and aggregation mechanisms, with the possibility of inheriting
roles, or redefining them.

3.3.4 Pre-defined messagesTF-ORM presents a set of pre-defined messages, used to
manipulate instances of classes and of roles. For instance,the creation of an instance of a
class is made by the following pre-defined message:

add_object(OId, < Class_Name >)

add_role(OId, RId, < Role_Name >)

Theadd_objectmessage creates an instance of the specified class, and the object iden-
tifier (OId) of this object is returned in the parameterOId. Similarly, the messageadd_role
creates an instance of the specified role of the object identified byOId, and returnes the iden-
tifier of this role instance in the parameterRId.

Other pre-defined messages allow suspending an instance’s activity, to resume his

40 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

execution, and to end the instance’s life.

3.3.5 TF-ORM examples An example of the TF-ORM definition of thePersonagent
class with the three mentioned roles is partially bellow, using the TF-ORM definition lan-
guage:

agent class (
PERSON,
< base_role,

static properties = {(person_id, integer)},
dynamic properties = { (name, string), (address, string)},

rules = { ... } >,
< employee,

dynamic properties = {(department, string), (salary, real),
(hired, date), (holidays, interval(closed, date), ... },

states = {hired, in_holidays, fired},
messages = {

new_salary(Oid, Value) from Control.Salaries,
ask_vacations(oid, Period) to Control.Holidays, ... },

decisions = { get_vacations(Period), ... },
rules = {

init: add_role ⇒ state(hired),
holidays: state(hired), decision(get_vacancies(Period) ⇒
msg(ask_vacancies(oid, Period), state (hired),
salary: state(hired), msg(new_salary(oid, Value) ⇒ sate(hired);

(Value > salary),
... } >
< teacher,

dynamic properties = { (gratification, real), (start, date), ... },
... >

< student,
static properties = { (student_number, integer) },

dynamic properties = { (courses, string), (start, date), ... },
... >)

To better explain the state transition condition, another example is presented here. The
control of a deadline date for the arrival of a paper to be submitted to a conference may be
represented through the following rule:

deadline : state(active) ⇒ msg(deadline(paper)), state(active);

∃Rid(has_role_instance(Oid, paper, Rid))

and (value(Rid, upper_bound(deadline)) ≥ now)

The ruledeadlinedescribes the following situation: if the object is in the stateactive
and if the transition condition is satisfied, then this activity sends the messagemsg(deadline(paper))
staying in the state active. The messagemsg(deadline(paper)) fires an activity that will treat

RITA • Volume X• Número 2• 2004 41

Workflow Modelling using a Temporal Object-Oriented Model with Roles

the end of the receipt period. The transition condition verifies if the deadline for this has been
reached:∃ Rid (has_role_instance(Oid, paper, Rid) verifies if there exists an instance of the
objectpaper, and (value(Rid, upper_bound(deadline))≥ now) if for this paper (RId identifies
the paper), the deadline is reached.

4 Extensions of TF-ORM for workflow modelling

To support the formalism and the necessary flexibility of a workflow model, some
extensions were accomplished in TF-ORM, commented below. In this section some of these
extensions are presented – extensions that shall be used during the modelling phase. An
example of these extensions, using the application presented in Section 2.2, is presented in the
Appendix of this paper. Further extensions, done with the aim of solving possible exceptions
and failures, are presented in Section 7, together with the explanation of these problems.

4.1 Definition of agents for processes and activities

In workflow modelling, an important feature is the definitionof agents for processes
and activities. To achieve this the TF-ORM model was extended with the following clauses:

responsibleagent =< agent_class > . < role >

executingagent =< agent_class > . < role >

delegationagents =< agent_class > . < role >

These clauses may be used only in a process or in a role definition of a process class.
They allow the definition of three different types of agents,linked to the corresponding pro-
cess or role.

Theresponsible agentdefinition identifies the role that that will be played by the agent
that will be responsible for this process/role. Note that, during the workflow modelling, only
a role is defined for agents. Just the skills that this agent shall present are defined. When an
instant of a process/role is created, an instance of that agent role is selected and associated
to it. If any problem occurs during the execution of the process/role, this specific agent shall
solve it. This clause is obligatory in process classes definition – each process shall present
a responsible agent. Even when the process to be executed is automatic, a responsible agent
shall always be designated to it, to solve eventual failures. When the responsible agent is not
defined in a role definition, the responsible for the class that contains this role will also be
responsible for this role.

Theexecuting agentachieves the execution of the process/role. When the executing
agent is not defined the responsible agent for this process/class will also be the executing one.

42 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

In order to solve possible problems due to a sudden impossibility of an agent respon-
sible for a process/role, a set of other agents may be defined,to whom the responsibility can
be delegate. This is done by thedelegation agentsclause.

The choice of agents to be responsible/executing/delegated is done when the instance
of the process/role is created. To cope with these agents definition, the pre-defined mes-
sages that create instances of processes/roles were also modified, with the addition of new
parameters:

create_object(OId,Class, [Resp], [Exec], [Deleg], [Auto])

add_role(Oid, Role, RId, [Resp], [Exec], [Deleg], [Auto])

where:

• Resp- identifies the responsible person for the activity;

• Exec- identifies the executor of the activity;

• Deleg- determines the list of delegated agents; and

• Auto- determines that the activity is performed automatically.

The argumentRespis obligatory. IfExecisn’t represented, it is understood that the
responsible agent is also the executor. IfDelegis not represented, then it is understood that
this process cannot be delegated to another person.

4.2 Decisions in process classes

Another extension of TF-ORM was done to allow the representation of the decisions
not only in agent classes, but also in the process classes. This allows identifying and monitor-
ing the agents’ interactions during the processes execution, improving that way the modelling
and maintaining the necessary formalism to the representation of workflow associated with
the processes. The decisions are registered in the process class through thedecisionclause:

decision(< decisionname > (< messageparameters >)

Only the agent classes can take decision – they represent theunstructured work of
these environments. But representing them directly in the process classes, they can be used in
the state transition rules, as incoming messages sent by agents. As an example, the following
decision and state transition rule may be defined in a processclass (complete example in the
Appendix):

decisions = {add_city(City : string)fromPERSON.Client, . . .},

rules = {cities : state(defining), decision(add_city(City)) ⇒ state(defining), . . .

RITA • Volume X• Número 2• 2004 43

Workflow Modelling using a Temporal Object-Oriented Model with Roles

Table 1.TF-ORM classes and roles for Workflow Modelling

TF-ORM class Corresponding meaning
in the workflow

Meaning of the roles in the
workflow

Process Process to be executed Activities that compose the process
Agent Agents of the workflow Roles an agent can play
Resource Resources handled by the

workflow
Different ways of visualising the
resource

5 Workflow Modelling using TF-ORM

The TF-ORM model can be used to model workflow in a quiet natural way. The
workflow concept is strictly associated to the representation of processes. In TF-ORM these
processes are represented as process classes. Each activity of a process is represented as a
role of the corresponding process class. The agents involved in the processes (as responsible
or executors) are represented by agent classes, and the roles represent the different roles each
agent can play during the process and activities execution.And the resources involved in
the execution – data and documents – are represented as resource classes. Resource roles
represent different ways of visualizing the resource. Table 1 summarises the correspondence
of TF-ORM classes and roles, and workflow concepts.

The integration between agents and resources is done by the activities’ representation.
So, a workflow is actually represented by the process classes, including the actions executed
on resources, and the responsibility and cooperation of agents.

5.1 The meaning of ’roles’

According to the workflow concept, the term “role” means a group of participants
exhibiting a specific set of attributes, qualifications and/or skills [WFMC 96]. The workflow
role concept is similar to the role concept used in the TF-ORMmodel, concerning agent
classes. TF-ORM agent class roles represents the differentbehaviours an agent (or a group
of agents) may present. For each role a group of properties (static or dynamic) is defined,
representing the participant’s characteristics in the business process.

Some models show limitations in the agent’s formal representation. The model de-
scribed in [Joosten 94, 94a] characterises the agent role bya label. The models described in
[Casati 95] and [WFMC 96a] present a certain degree of formalism in the definition of the
agents’ roles but the properties related to the roles are pre-defined, restricting the flexibility

44 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

in the representation. Using TF-ORM it is possible to define formally any group of static or
dynamic properties needed specifically for roles’ representation.

The activities of a workflow are executed according the organisational structure of the
enterprise, where the agents’ functional roles and possible relationships are defined [WFMC
96]. The activities composing a process are usually scheduled to specific agents, who are
responsible for their execution. An agent may play different roles, simultaneously or not.

5.2 How to construct the Workflow Model

The modelling of a workflow using TF-ORM begins with the identification of the
processes that compose this workflow, representing each oneas a process class. Each process
is then analysed separately.

For each process, the following steps are the performed:

1. Identify the component activities, each one representedby a role in the corresponding
process class;

2. Define the executing / responsible / delegate agents for the process, defined through
predefined properties in the base role;

3. Identify the properties that are common to all the activities, and define them as static
or dynamic properties of the base role;

4. Define the rules that control the activities instantiation (base role state transition rules);

5. Complete the definition of each activity (role) defining first the executing / responsible
/ delegate agents for the activity, then the static and dynamic properties of the activity,
the messages to be sent and received, the states the activitycan present, and finally, the
state transition rules among these states.

Table 2 summarises which workflow concepts are represented in the TF-ORM process
classes.

Once the process classes are defined, the modelling is completed identifying all the
agents involved in the processes (represented as agent classes) and all the manipulated re-
sources (represented as resource classes). The equivalence between workflow concepts and
the correspondent TF-ORM representation are showed in Table 3 (for the agent classes) and
Table 4 (for resource classes).

The processes send messages to agents and to resources, withthe aim of recording
new property values or to change their states. As the main focus in workflow is on processes,

RITA • Volume X• Número 2• 2004 45

Workflow Modelling using a Temporal Object-Oriented Model with Roles

Table 2.Workflow process class

Workflow TF-ORM
Process Process class
Responsible, executing and delegate
agents for the process

Base role pre-defined properties

Properties common to all the activities
of a process

Base role properties

Activity control Base role rules
Activity Role
Responsible, executing and delegate
agents for the activity

Role pre-defined Properties

Specific properties of an activity Role properties
Operations executed by an activity Messages and decisions in the role
Initial and final states of an operation States of the role
Synchronism among activities State transition rules
General integrity constraints Integrity rules

the representation of the process classes evolution is controlled only through the income of
messages sent by other processes. Therefore, the message flow between the three TF-ORM
class types is supposed to be the one represented in Figure 4.

6 Synchronism between activities

The activities that compose the processes of a workflow can present several different
synchronism features, represented in the TF-ORM model through the state transition rules.
The messages describe the interactions among the activities, determining the flow control
and allowing the synchronisation of the activities that compose a process. The possibility of
formal representation of these interactions is a fundamental issue in a workflow model. The
activity execution order (synchronism) determines the evolution of the work in a workflow.

Activities are fired by messages sent by other activities. By“fired” we mean not only
the beginning of an activity’ execution, but also the continuation of a paused activity, waiting
for an event to continue her execution.

Activities can execute in sequence or in parallel, independently or in a synchronised
way. The following synchronism conditions can occur:sequential, convergent(Join),diver-
gent (Fork) andconditional. The analysis of several forms of synchronism and the corre-
sponding representation in TF-ORM is presented here.

46 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

Table 3.Workflow Agent Class

Workflow TF-ORM
Person Agent class
Person executing an activity Role of the agent class
Properties common to all the agent
behaviours

Base role properties

Specific properties of a behaviour Property of the correspondent role
Decisions that this agent can take in
any behaviour

Base role decisions

Decisions that this agent can take in a
specific behaviour

Decision of the correspondent role

Actions this agent can perform Messages of the correspondent role
Initial and final state of an operation States of a role
Agent evolution State transition rules

Table 4.Workflow Resource Class

Workflow TF-ORM
Resource manipulated by a process Resource class
Different aspects of the resource Role of the resource class
Properties common to all the resource
behaviours

Base role properties

Properties of a specific behaviour Properties of the correspondent role
Actions that are executed on this
resource

Messages of a role

Initial and final states of an operation States of a role
Resource evolution State transition rules

6.1 Sequential

Activities can be scheduled in sequential form, obeying a fixed execution order. Two
activities aresequentialwhen the execution of the second activity only begins when the pre-
vious one has finished her own. Figure 5 shows a graphical representation of the transition
of activity a1 from states1 to a final statesf in consequence of the receiving of messagem1 .
This transition causes the start of another activitya2 , sending a message that creates a new
instance of that activity (represented by the messageadd_role):

st(s1, msg(m1) ⇒ msg(add_role(< pri >, < a2 >)), st(sf);

To simplify the examples presented here, no transition condition is represented.

RITA • Volume X• Número 2• 2004 47

Workflow Modelling using a Temporal Object-Oriented Model with Roles

AgentClass Process Class

Recurse Class

Role
Role

Role

Role

Role

Role

Role

msg

msg Role

Role

Figure 4. Messages for Workflow Modelling using TF-ORM

a2

a1

a1

m1
add_role

sis1

sf

Figure 5. Sequential activities

48 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

a2

a1

a1

m1
add_role

sis1

s2

Figure 6. Parallel activities

6.2 Parallel activities

In the same example presented before, ifsf is not the final state ofa1 and this activity
continues executing, the first activity only fires the secondone, and from there on both evolve
in parallel (Figure 6):

st(s1), msg(m1) ⇒ msg(add_role(< pri >, < a2 >)), st(s2);

6.3 Synchronised, parallel activities

A similar situation is when an activity is temporarily suspended, waiting a specific
message to resume execution, characterising asynchronised execution. In the example of
Figure 7 the second activity would be in a waiting state, and the output message ofa1 would
not beadd_rolebut the message that represents the event for which the second activity is
waiting. The first activity may continue her execution, or evolve to another waiting state, and
stay so until another message activate it again. The rule representing this situation has the
following form:

st(s1), msg(m1) ⇒ msg(m2), st(s2);

The following rule shall be defined in the set of transition rules of the second activity:

st(sx), msg(m2) ⇒ st(sy);

RITA • Volume X• Número 2• 2004 49

Workflow Modelling using a Temporal Object-Oriented Model with Roles

a2

a1

a1

m1

sxs1

s2

m2

a2

sy

Figure 7. Synchronised, parallel activities

6.4 Totally convergent synchronism (total join)

The execution of an activity can be conditioned to the receiving of a set of incoming
messages, sent by different activities. This situation is usually calledconvergence, repre-
sented by ajoin of incoming messages. All the messages must arrive to execute the transition
(total convergence) (Figure 8). The order in which the messages arrive is not relevant. In
TF-ORM this is represented by a unique state transition rulewith a set of incoming messages
(example in the Appendix):

st(s1), {msg(m1), msg(m2), ...,msg(mn)} ⇒ msg(mo), st(s2);

6.5 Partially convergent activities (partial join)

A situation similar to the previous one may occur when only a subset of the incom-
ing messages is required (partial convergence). If the set containsn messages, and onlyk
messages are required, the relation (1 ≤ k < n) must hold. This is represented in TF-ORM
defining the number of messages that shall arrive in front of the set of incoming messages:

st(s1), k{msg(m1), msg(m2), ...,msg(mn)} ⇒ msg(mo), st(s2);

Also in this case the messages may arrive in any order. Figure9 represents this kind
of synchronism supposing that only two messages are required.

50 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

a2

a1

a1

sxs1

s2

m0

mn

m2

m1

Figure 8. Totally convergent synchronism

6.6 Divergent activities (fork)

The opposite situation occurs when an activity fires the execution of several other
activities, which is known as afork. This is represented by a state transition rule with several
outgoing messages (example in the Appendix) (Figure 10), represented by the following rule:

st(s1) ⇒ msg(m1), msg(m2), . . . , msg(mn), st(s2);

6.7 Conditional activities

All the previous situations can be conditioned by the transition conditions, in which
present and past values of properties and states can be verified to define if a transition shall
be executed or not.

st(s1), msg(m1) ⇒ msg(m2), st(s2); (< transitioncondition >)

The possibility of representing this temporal condition isone of the most important
features of the proposed modelling technique.

7 Representing exceptions and failure recovery information in TF-ORM

The use of TF-ORM enables the representation, in the workflowmodel, of signifi-
cant information that can be used in case exceptions occur during the execution, including
information for failure recovery.

RITA • Volume X• Número 2• 2004 51

Workflow Modelling using a Temporal Object-Oriented Model with Roles

a2

sx

a1

a1

s1

s2

m0

mn

m2

m1

2

Figure 9. Partially convergent synchronism

Exceptions can be represented in the workflow model when using the TF-ORM for-
malism, with the corresponding actions to be executed. In the following sections some pos-
sible exceptions are identified and their representation inTF-ORM is explained. At the end,
some explanation is given about failure recovery.

7.1 Impeachment of the agent in charge of an activity

Each workflow activity shall have a responsible agent, to control the execution and
solve possible problems. When the TF-ORM model is used in workflow modelling, the
definition of a responsible agent for each activity is required. In the model, only the role that
the agent shall play is defined. The specific person is defined the moment an instance of that
activity is created.

An exception will occur when the agent presents an impeachment, and the responsibil-
ity of the corresponding activity shall be transferred to another one. To prevent this exception,
the TF-ORM model allows the representation of a set of agentsto whom the activity can be
delegated. These agents shall also be defined the moment the activity is instantiated.

Even if there are some agents to whom the responsibility for the activity can be dele-
gated, the exception can still occur if the whole list is impeached. To prevent this last case,
the TF-ORM model requires the definition of an agent responsible for the whole process, and
this one shall define who will be the new agent responsible forthat activity.

52 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

a1

a1

a2

sa2

s1

s2

a3

sa3
a4

sa4

m2

mn

m1

Figure 10.Divergent activities

7.2 Changing the activity flow during execution

When the order of the activities is changed during the workflow execution, serious
problems can occur. To avoid these problems, the TF-ORM requires the definition of an
agent responsible for each process. Only this agent shall have the power of changing the
order of executing activities.

To implement this interference, each activity presents twopre-defined incoming mes-
sages, to be sent by the agent responsible for the process in which the activity is defined.
These messages shall be received any time, independent of the actual state of the activity.
The process’ responsible agent shall send these messages toall the activities that will be
involved in the changing he is planning. The first message will change the actual state of
the activity to the state defined by the agent, with passed as aparameter. The second mes-
sage concerns property values - if there is the need to adapt some properties values, specific
messages shall also be sent, with the name and the new value ofthese properties.

As an example, consider the same example presented in Section 2.2, concerning a
travel agency. Suppose the responsible agent wants to suspend a running hotel reservation
activity and, undoing reservations that were eventually already made. This would be done
sending to this activity the following messages:

msg(agent_interfer(hotel_reserve, suspended))

msg(values_interfer(hotel_name, null)),

msg(values_interfer(hotel_reservation, nok))

The effect of these messages is the same as if a rule were defined for each one of the

RITA • Volume X• Número 2• 2004 53

Workflow Modelling using a Temporal Object-Oriented Model with Roles

states of the hotel reservation role, as the following one (for the “reserving” state):

ri : state(reserving),

msg(agent_interfer(hotel_reserve, suspended)),

msg(values_interfer(hotel_name, null)),

msg(values_interfer(hotel_reservation, nok)) ⇒ state(suspended)

It is important to remember that the executing agent is responsible for the change in
the activities’ execution order, and it is his task to adapt all the involved processes and activ-
ities to the new executing order. The modification may reflecton property values that were
changed in former executing activities.

7.3 Activity waiting for not available resources

A possible exception may be caused when an activity is suspended waiting for a re-
source, and this resource is not available. The availability of a resource is represented in
TF-ORM by a message sent by the corresponding resource classto the activity.

A way of avoiding this problem is to model the interaction between the process and
resource class requiring an answer of the required resource– positive or negative. The tran-
sition rules of the activity shall consider both the answers, and provide an alternative solution
in case the resource is not available. If there is no alternative solution, the activity shall send
a pre-defined message to the agent responsible for the activity (represented by a message sent
to the same role), asking for an intervention. This message has the following form:

msg(resource_interfer) to itself

7.4 Cycles

The occurrence of cycles during a workflow executing is one ofthe most important
problems that can happen. A cycle is characterized when an activity a1 fires another activity
a2 , and the activitya2 , directly or not, activates again the activitya1 . This situation can only
be avoided by a serious analysis of the workflow, consideringall the possible evolutions.

However, in behave of diminishing the possibility of cycle occurrence, the TF-ORM
model presents a pre-defined property, defined in the base-role of all classes (a role that shall
be defined in all classes and where the global characteristics of all objects of that class are
defined). This property, calledcycle_alert, has the role of controlling cycles, and of alerting
the responsible agent in case of detecting a possible occurrence. The domain of this property
is a set of pairs – the name of a role and the number of active instances of that role. The

54 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

responsible agent of the process shall control this property, and identify possible cycles.

7.5 Deadlocks

Rules to prevent deadlocks are more difficult to represent especially because of the
possibility of constructing temporal logic conditions to constraint the transition rules. What
can be done is to associate a time period to a state that may present deadlocks. After this time
period elapsed, another rule would be executed, to undo the deadlock.

To avoid deadlock exceptions, the TF-ORM model was extendedwith the definition of
a timing class. This class, pre-defined in all the constructed models, can be used to count the
elapsed time. This is done creating an instance of this classwith the maximum waiting time
passed as parameter. The behaviour of the timing class is thefollowing: once an instance is
created, this instance counts the elapsed time and when the time parameter is reached, sends
a messageinterrupt to the prior class.

The complete treatment of deadlock is the following. When the possibility of a dead-
lock occurrence in the statestate_1of activity_1is identified, each time this state is reached a
message is sent to the timing class, with the maximum time this activity shall wait for another
event (represented by a new state transition). This messagehas the following form:

msg(timing(<class.role>, <state>, <waiting time>, <temporal granularity>))

The timing class begins to count the elapsed time. When the waiting time is reached,
an interrupt message is sent to the sending class/role (representing the activity). If this role is
still in the same state, a deadlock really happened, and a state transition to a recovery state is
provided. On the other hand, of the role evolved and is in another state, the interrupt message
will not be receive, and will not affect the activity. An example of a possible deadlock control
in statedl_stateis the set of transition rules:

state(x), msg(m_in)⇒ msg(m_out), msg(timing(C.R, dl_state, 5, min)), state(dl_state);

state(dl_state), msg(waited_msg)⇒ state(y);

state(dl_state), msg(interrompt)⇒ state(recovery_state);

7.6 Waiting message receipt acknowledgement

The sending of a message to another activity does not guarantee that the message is
received. This can cause a problem in the whole workflow, whenthe receipt of the message
is fundamental. When using TF-ORM to represent a workflow, messages are sent and there
is really no certainty of the reception, once a transition rule is only executed if the message
is received in a specific state, and additionally if the transition condition is satisfied. If one of
these (state or transition conditions) is not satisfied, themessage is not received.

RITA • Volume X• Número 2• 2004 55

Workflow Modelling using a Temporal Object-Oriented Model with Roles

To guarantee that a message is received, the TF-ORM model shall represent the fol-
lowing:

• The role that sends the message shall evolve to a waiting state, and stay in this state for
a defined time (using the timing class) until a confirmation ofthe message reception is
received;

• If the message is correctly received, the receiving role sends an acknowledge message
to the sending role and continues his own evolution;

• If the message is not received, after the maximum waiting time is elapsed the role
evolves from the waiting state to a state that will solve thisproblem – probably sending
another message in place of the first one.

7.7 Information to be used for failure recovery

Two aspects shall be clearly identified in failure recovery processes:

• Who (whatagent) is in charge of the recovery, taking the necessary decisions to over-
come the failure; and

• What kind ofinformationis needed in this process?

An agent must do the recovery of a system failure – these failures can not be predicted,
in order to mechanise the recovery. To guarantee that an agent is available in case a failure
occurs, the TF-ORM model requires the definition of responsible agents for the whole work-
flow. Each identified process must have a responsible agent, so as each activity. In case of
a failure occurrence, first the activity responsible tries to recover the execution and, if this is
not possible within the activity domain, the process responsible takes charge.

The recovery of a failure will restart the executing activities from a previous execution
point, after solving the problem that caused the failure. This process is known asrollback.
To enable this, additional information is needed. A form of doing rollback that has proved to
be efficient is to store the past states assumed by the activities and processes, with temporal
information associated (time when each one of these states was assumed). This is already a
feature of the TF-ORM model – being a temporal model, temporal information (transaction
and valid time) is associated to every information (states and property values), and all the past
information is supposed to be kept in the temporal database modelling the workflow. This
enables the agent responsible for the recovery to, analysing the stored information, choose a
past temporal instant, delete information defined after that instant (considering the transaction
time of each stored value), this way restoring a past state ofthe considered process or activity.

56 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

An alternative way of implementing system recovery would bedefining in each class
a property that would store the activation history of each instance of that class, also associ-
ated to the correspondent transaction time. Analysing the evolution of these instances, the
responsible agent would choose how the recovery should be made.

8 Conclusion

To make the modelling of workflow systems more effective it isnecessary to improve
the conceptual level specification with an unified model ableto represent its internal be-
haviour (cooperation and interaction among tasks) and the relationship with the environment
(designation of tasks to the executors).

In this paper, a technique of conceptual modelling of workflow using the model TF-
ORM is presented. This technique is intended to specify the workflow, and to support the
workflow implementation. The TF-ORM model was extended, with the definition of new
syntactic constructions, to allow the representation of workflow characteristics in an efficient
way.

When using TF-ORM in workflow modelling all the processes involved in a workflow
are represented, together with their relationships and thecoordination of their execution. In
addition, the data flow between these processes is also defined, and agents are identified as
responsible for each process. A set of temporal logic rules incorporates a solid formalism
to express reactive computations, usually influenced by events external to the workflow, like
exceptions and pre and post-conditions associated to process execution. The final model is
a formal model, and can be used to analyse the workflow, identifying possible definition
problems that can be solved prior to the implementation of the workflow.

Most of the existent workflow modelling techniques do not represent formally the
work portion that needs human intervention (unstructured work). TF-ORM allows the rep-
resentation of the processes’ unstructured work portion through agent classes. Agent classes
represent people acting in the system. Agents have an own functionality that is the human de-
cision. A decision represents the result of a formally undefined process executed by an agent.
The structures of the resources (data, documents) are represented by the resource classes. The
process classes integrate these agents and resources, describing the organisation of the work
executed in the application and the co-operation among agents.

The TF-ORM model proved to be a powerful tool for workflow modelling, due to the
following aspects:

• It is a formal model, allowing the complete modelling of the workflow, including the
possibility of validation of the whole process;

RITA • Volume X• Número 2• 2004 57

Workflow Modelling using a Temporal Object-Oriented Model with Roles

• not only the structured part of the workflow can be represented, but also the decisions
involved in the processes;

• All the possible synchronism among activities execution may be represented, using
rules expressed in temporal logic;

• Allows the representation of the communication among processes and activities;

• The relationship between activities belonging to different processes may also be repre-
sented, fact that is not always possible in other workflow modelling methods;

• based on the role concept, allows the representation of the different roles an agent can
perform, in a natural way;

• Exceptions handling and information to be used in failure recovery may be represented
using this model, in a convenient way.

The use of a new object-oriented model to specify an application does not imply the
need of implementing a special database management system for this data model. Existing
commercial DBMSs can be used, if a mapping from this data model to the data model of the
adopted DBMS is provided. In [Oliveira 95] the implementation of TF-ORM is discussed
using three different DBMSs: the commercial object-oriented O2 DBMS [O2T 91], the re-
search system Postgres [Postgres 94] and the commercial relational DBMS Ingres [Ingres
91].

A complete environment based on TF-ORM is under development[Edelweiss 00],
including a modelling tool, the mapping of the TF-ORM model to a commercial database,
and a query interface using the TF-ORM query language [Edelweiss 94].

9 References

[Aalst 95] Aalst, W.M.P.Petri-net-based Workflow Management Software.Eindhoven Uni-
versity of Technology, 1995.

[Alonso 97] Alonso, G.; Agrawal, D.; El Abbadi, A.; Mohan, C.Functionality and Limita-
tions of Current Workflow Management Systems.IEEE Expert, v.12, n.5, 1997.

[Baresi 99] Baresi, L; Casati, F.; Castano, S.; Ceri, S.; Fugini, M. G.; Mirbel, I.; Pernici,
B.; Pozzi, G.WIDE Workflow Development Methodology. University of Twente, Nether-
lands, 1999.

[Belkhatir 94] N. Belkhatir, W.L. Melo. “Tempo: defining software processes in an approach
based on objects with roles”, Proceedings of the ORM-1 Conference, July 4-7, 1994,
Magnetic Island, Australia. Brisbane: University of Queensland, 1994. p.157-166.

58 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

[Edelweiss 00] Edelweiss, N.; Hübler, P.N.; Moro, M.M.; Demartini, G. A Temporal Database
Management System Implemented on Top of a Conventional Database. To be published
in theProceedingsof the XX International Conference of the Chilean Computer Science
Society - SCCC 2000, to be held 16-18 November 2000 in Santiago, Chile.

[Casati 95] Casati, F.; Ceri S.; Pernici, B.; Pozzi, G. Conceptual Modeling of Workflows.
Proceedingsof OO-ER Conference. Gold Coast, Australia, 1995.

[DeAntonellis 91] Antonellis, V.; Pernici, B.; Samarati, P. F-ORM Method: a F-ORM Method-
ology for reusing specifications. In: Assche, F.V.; MOoulin, B.; Rolland, C.,Object
Oriented Approach in Information Systems, Amsterdam, North-Holland, 1991. p.117-35.

[Eddis 93] Eddis, C.; nutt, g.j. Modelling and enactment of Workflow Systems.Applications
and Theory of Petri Nets. Berlin: Springer-Verlag, 1993. p.1-16.

[Edelweiss 93] Edelweiss, N., Oliveira, J.P.M. and Pernici, B., An Temporal Object-Oriented
Model, Proceedings, 5th International Conference on Advanced Information Systems En-
gineering, Paris, France, June 8-11, Lecture Notices in Computer Science n. 685, pp.397-
415.

[Edelweiss 93a] Edelweiss, N., Oliveira, J.P.M. and Castilho, J.M.V,Temporal Logic Lan-
guage for Temporal Conditions Definition, Proceedings, 13th International Conference of
the Chilean Computer Science Society, La Serena, Chile, Oct. 14-16, pp.163-178.

[Edelweiss 94] Edelweiss, N., Oliveira, J.P.M. and Pernici, B., An Object-oriented approach
to temporal query language, Proceedings, 5th Database and Expert Systems Applications
Conference, Athens, Greece, Sept. 7-9, Lecture Notes in Computer Science n. 856,
pp.225-235.

[Edelweiss 97] Edelweiss, N.; Oliveira, J. P.M. Roles Representing the Evolution of Objects.
Proceedingsof the Argentine Symposium on Object Orientation of the 26th Jornadas
Argentinas de Informática e Investigación Operativa - JAIIO, Aug. 11-12, 1997, Buenos
Aires, Argentina. p.57-65.

[Edelweiss 98] Edelweiss, N.; Nicolao, M. Workflow Modeling: Exception and Failure Han-
dling Representation.Proceedingsof the XVIII International Conference of the Chilean
Computer Science Society - SCCC’98, Antofagasta, Chile, November 09-14, 1998. Los
Alamitos: IEEE Computer Society, 1998. p.58-67.

[Eder 95] Eder, J.; Liebhert, W. The Workflow Activity Model WAMO. Proceedingsof the
3rd Int. Conference on Cooperative Information Systems, Vienna, Austria, My 1995.
p.87-98.

[Eder 96] Eder, J.; Liebhert, W. Workflow recovery.Proceedingsof the 1st IFCIS Int. Con-
ference on Cooperative Information Systems, Brussels, Belgium, June 1996. IEEE Com-
puter Society Press. p.124-134.

[Eder 98] Eder, J.; Liebhert, W. Contributions to exceptionhandling in Workflow Manage-
ment.Proceedingsof the EDBT Workshop on Workflow Management Systems, Valencia,

RITA • Volume X• Número 2• 2004 59

Workflow Modelling using a Temporal Object-Oriented Model with Roles

Spain, March 27-28, 1998. p.3-10.

[Ellis 95] Ellis, C.; Keddara, K.; Rozenberg, G. Dynamic change within Workflow Systems.
Proceedingsof the Conference on Organization Computing Systems – COOCS, Milpitas,
CA, Aug. 1995. Comstock, N.; Ellis, C. (eds.), ACM Press, 1995. p.10-21.

[Georgakoupoulos 95] Georgakoupoulos, D.; Hornick, M.; Sheth, A. An Overview of Work-
flow Management: from process modeling to workflow automation infrastructure. ACM
Distributed and Parallel Databases, n.3, p.119-153, Sep. 1995.

[Heinl 98] Heinl, P. Exceptions during workflow execution.Proceedingsof the EDBT Work-
shop on Workflow Management Systems, Valencia, Spain, March27-28, 1998. p.11-20.

[Ingres 91] Ingres Corporation.Ingres SQL Reference Manual.Release 6.4, 1991

[Jablonski 96] Jablonski, S.; Bussler, C.Workflow Management, Modeling Concepts, Archi-
tecture, and Implementation. International Thomson Computer Press, 1996.

[Jensen 98] Jense, C.S. et al. The Consensus Glossary of Temporal Database Concepts -
February 1998 Version. In:Temporal Databases Research and Practice. O. Etzion, S.
Jajodia and S. Sripada (eds.) Springer-Verlag. Berlin Heidelberg 1998. pp. 367-405.

[Joosten 94] Joosten, M. M. Stef -Trigger Modelling for Workflow Analysis- Design Method-
ology Group - Center for Telematics and Information Technology, University or Twente,
P.O. Box 217, 7500 AE Enschede, the Netherlands.

[Joosten 94a] Joosten, S. Trigger modelling for Workflow Analysis. ProceedingsWorkflow
Management, Challenges, Paradigms, and Products – COM’94,Vienna, Austria, Oct.
1994.

[Leymann 98] Leymann, F.Production Workflow Systems. Tutorial at the 6th Intl. Conf. On
Extending Database Technology, Valencia, Spain, Mar. 24, 1998. 90p.

[Missikoff 98] Missikoff, M.; Pizzicannella, R. An Object-oriented approach to WorkFlow
Modeling. Proceedingsof the EDBT Workshop on Workflow Management Systems,
March 27-28, 1998, Valencia, Spain. O. Bukhres, J. Eder, S. Salza (Eds.) p. 57-65.

[Nicolao 98] Nicolao, M.; Edelweiss, N. Workflow Modelling using a Temporal Object-
Oriented Model.Proceedingsof the EDBT Workshop on Workflow Management Sys-
tems, March 27-28, 1998, Valencia, Spain. O. Bukhres, J. Eder, S. Salza (Eds.) p. 71-79.

[Oliveira 95] Oliveira, J.P.M. et al., On the Implementation of an Object-Oriented Temporal
Model using Object-Oriented and Relational DBMSs.Workshop Proceedingsof the 6th

Database and Expert Systems Applications - DEXA’95, London, United Kingdom, Sept.
1995. Norman Revell, A. Min Tjoa (Eds.). p.35-44.

[Oliveira 98] Oliveira, J.P.M.; Nicolao, M.; Edelweiss, N.Conceptual Workflow Modelling
for Remote Courses.Proceedingsof the International IFIP Conference on Distance
Learning, Training and Education – TELETEACHING’98, Viena, Austria, 1998.

[O2T 91]O2 TECHNOLOGY.The O2 Programmer’s Manual, 1ed. Versailles:O2 Technol-
ogy, 1991.

60 RITA • Volume X• Número 2• 2004

Workflow Modelling using a Temporal Object-Oriented Model with Roles

[Pernici 90] Pernici, B., 1990,Objects with Roles, Proceedings, ACM/IEEE Conference on
Office Information Systems, Cambridge, MA, April 25-27, SIGOIS Bulletin, v.11, n.2-3,
pp.205-15.

[Postgres 94] The Postgres Group.The Postgres User Manual,Version 4.2, The Postgres
Group, Computer Science Div., Dept. of EECS, University of California at Berkeley,
1994.

[Reichert 97] Reichert, M.; Dadam, P. A Framework for dynamic changes inWorkflow Man-
agement Systems.Proceedingsof the 8th Int. Workshop on Database and Expert Systems
Applications – DEXA’97, Toulouse, France, Sept. 1997. Wagner, R.R. (ed.), IEEE Com-
puter Society Press, 1997. p.42-48.

[Saastamoinen 95] Saastamoinen, H.; White, G.M. On Handling exceptions.Proceedings
of the Conference on Organizational Computing Systems – COOCS, Milpitas, CA, Aug.
1995. Comstock, N.; Ellis, C. (eds.), ACM Press, 1995. p.302-310.

[Tang 98] Tang J.; Hwang, S.-Y. A Scheme to specify and implement ad-hoc recovery in
workflow systems.Proceedingsof the 6th Int. Conf. On Extending Database Technology
– EDBT’98, Valencia, Spain, March 23-27, 1998. Springer, 1998. p.484-498. (Lecture
Notes in Computer Science no.1377).

[Van Stiphout 98] Van Stiphout, R. et al. TREX: Workflow Transations by means of Excep-
tions.Proceedingsof the EDBT Workshop on Workflow Management Systems, Valencia,
Spain, March 27-28, 1998. p.21-26.

[Vossen 96] Vossen, G.; Weske, M. (Eds.)Business Process Modelling and Workflow Man-
agement, Models, Methods, and Tools. International Thomson Publishing, Bonn, 1996.

[Weissenfels 98] Weissenfels, J.; Muth, P.; Weikum, G. Flexible Worklist Management in
a light-weight Workflow Management System.Proceedingsof the EDBT Workshop on
Workflow Management Systems, Valencia, Spain, March 27-28,1998. p.29-38.

[WFMC 94] Workflow Management Coalition - The Workflow Reference Model. Document
Number: WFMC-TC00-1003, Issue 1.1, Nov.1994.

[WFMC 99] Workflow Management Coalition- Terminology & Glossary, Document Num-
ber: WFMC-TC-1011, Issue 2.0, Jun. 99 Available at http://www.wfmc.org.

[WFMC 96a]Workflow Management Coalition- The Workflow Reference Model, Document
Number: WFMC-TC00-1003, Issue 1.1, Nov.1994.

[Wieringa 91] Wieringa, R.; De Jonge, W.The identification of objects and roles - object
identifiers revisited. Technical Report IR-267, Vrije University, Amsterdam, Holland,
Dec. 1991.

Appendix

Process class (

RITA • Volume X• Número 2• 2004 61

Workflow Modelling using a Temporal Object-Oriented Model with Roles

TRIP,
< base_role,

/* properties and rules that apply to all other roles */
responsible agent = PERSON.Manager,
executing agent = PERSON.Employee,
static properties = { reg_nr: integer },
dynamic properties = { contact_date: date, client: PERSON.Client },
rules = {

init: msg(add_object) ⇒ state(active),
start: state(active) ⇒ msg(add_role(define_route)),

msg(allow_role(fligth_reserve)), msg(allow_role(hotel_reserve)),
msg(allow_role(car_reserve)), ... }

>,
< define_route,

responsible agent = PERSON. Employee,
executing agent = PERSON.Employee,
static properties = { ... },
dynamic properties = { cities: list of string, ... },
states = {active, defining, defined},
messages = {

res_flight(Cit: list of strings) to reserve_flight,
res_hotel(Cit: list of strings) to reserve_hotel,
res_car(Cit: list of strings) to reserve_car },

decisions = {
ok from PERSON.Client,
add_city(City: string) from PERSON.Client, ... },

rules = {
init: msg(add_role) ⇒ state(defining),
cities: state(defining), decision(add_city(City)) ⇒ state(defining),
/* rule representing a fork: */
done: state(defining), decision(ok) ⇒ msg(res_flight(cities)),

msg(res_hotel(cities)), msg(res_car(cities)), state(defined)}
>,
< reserve_flight ... >,
< reserve_hotel ... >,
< reserve_car ... >,
< program_print,

messages = {
flight_ok (Price: real) from reserve_flight,
hotel_ok (Name: string, Price: real) from reserve_hotel,
car_ok (Price: real) from reserve_car },

states = { waiting, printing, done },
rules = {

init: msg(add_role) ⇒ state(waiting),
/* rule representing a join: */

start: state(waiting), {msg(flight_ok(P)),
msg(hotel_ok(N,P)), msg(car_ok(P)) } ⇒ state(printing),

... }
>,
...)

62 RITA • Volume X• Número 2• 2004

