Workflow Modelling using a Temporal Object-Oriented
Model with Roles

Nina Edelweiss
Mariano Nicolad

Abstract. The representation of all the processes that compose a warkfi-
cluding all the constituent activities, their executiomsence and relationships, the
agents responsible for their execution, and the resouhadsate used during exe-
cution, is known as Workflow Modelling. Several techniquess laeing proposed to
model workflow. In this paper a workflow modelling technigseproposed, using
a temporal object-oriented data model, the TF-ORM modek TR-ORM model is
presented, as are the extensions made to adequate the madekflow modelling.
All the activities that shall be executed during the workflane represented, including
the mechanisms for their activation and termination, btihdrmal and exception sit-
uations. The model allows the representation of structanebunstructured work, the
interactions that will occur among executing activitiasg &heir synchronization. The
workflow model represented in TF-ORM includes a set of rutdse used during the
workflow management. The occurrence of failures and exaeptiluring workflow
execution may cause serious problems, especially in nmissgitical applications. The
TF-ORM formalism, when used to model workflow, allows theresgntation of sev-
eral exceptions and the definition of information to be usegdte systems recovery.

1 Introduction

Administrative work accomplished in enterprises is usuadimposed by different ac-
tivities, executed by several persons in a defined sequésdie applications become more
complex, the coordination of their execution becomes aromant feature to be considered
while planning activities. The representation of the pkhapplication activities prior to their
implementation is of fundamental importance, especiallgamplex applications. The def-
inition of the whole process, with the clear identificatidradl the activities to be executed,
of their relationships, and including the agents respdasibtheir execution, is known as
workflow[WFMC 99].

Each one of the processes that compose a workflow can be cethpbseveral activ-
ities, also with a specific execution order, executed priybayp different agents, in different
locations. The representation of all the processes anitagiis known asNVorkflow Mod-

Linstituto de Informatica, Programa de Pés-graduacg&o enp@tagéo, Universidade Federal do Rio Grande do Sul,

Brasil
[ni na, ni col ao] @nf. ufrgs. br

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

elling. This model helps to understand the complete process, apdeaseful to identify

possible problems that may occur during execution [Tang\@8fkflow Modelling concepts

are being used not only in commercial enterprises — as angramworkflow-modelling tech-

nigues can also be used in the educational area, to implearemirse on the Web [Oliveira
98].

One of the main goals of workflow modelling is to decrease tlmalmer of problems
due to activities’ coordination. In traditional admingive processes, it is not usually pos-
sible to detain absolute control of all the activities thiaalsbe executed. In addition, it is
not always possible to identify which data is manipulatecebgh activity at each moment,
and who are the persons manipulating these data. Thesetanpaspects shall be clarified
by the workflow modelling process. A workflow model shall defimot only the sequence
of activities to be executed, but also the temporal resristto their execution, the dynamic
data, and the persons (agents) responsible for each gctivit

The understanding and validation of a workflow is fundamiénteritical application,
as in areas related to health, insurance companies bargidgglectronic commerce. They
present critical properties that shall not fail: propestielated to security or that may lead
to life risks. Special attention shall be devoted to thesmerties, in order to insure (or,
at least, increase) their security. A sorrow analysis ofwlegkflow can identify possible
exceptions and failures, and the modelling of their treatimell increase the security of the
whole system.

A Workflow Management System — also calléérkflow Engine- controls the ex-
ecution of all the activities. The importance of managingkflow can be identified by
recent researches in this area, leading to a set of acadgpgdences of Workflow Engines
[Alonso 97, Georgakopoulos 95, Jablonski 96, Vossen 96s$#eifels 98], and a number of
commercial tools (Process Buider from Action TechnologiesusNotes).

As any other computing system, a Workflow Engine may presesitlpms during
executions, due to the occurrence of exceptions or to syfédures. Experience shows
that “Exceptions are not exceptions — they occur all the tinlRecent researches on this
subject show the importance of this issue when workflow issiered [Eder 96, 98, Ellis
95, Heinl 98, Reichert 97, Saastamoinen 95, Van StiphouT@&8y 98]. If some predictable
exceptions are represented in the workflow model, it is pessd program the Workflow
Engine to solve them. Further on, when the solution for antifled problem is not trivial,
the Workflow Engine needs special information to provideilafa recovery. The possibility
of representing recovery information in the workflow modehiso a desirable feature when
selecting a modelling tool.

Several workflow-modelling techniques are proposed innmeesearches, using dif-
ferent modelling paradigms. Some examples are the modpbpeal by théVorkflow Man-

30 RITA e \Volume X e NUimero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

agement CoalitiofWFMC 94], the model of Casati, Ceri, Pernici & Pozzi [Casl, the
trigger model of Joosten [Joosten 94, 94a], the WAMO agtiwiiodel [Eder 95], object-
oriented models [Missikoff 98] and Petri Nets [Aalst 95, Ed@i3].

A methodology is suggested in [Baresi 99], the WIDE methodglaimed to support
a workflow project from the initial analysis up to the implemtion in specific workflow
systems.

An alternative technique to model workflow is proposed iis freper. The technique
is based on the use of the temporal object-oriented mod€ RN (Temporal Functionality
in Objects with RoledEdelweiss 93, 93a, 94]. This model was extended with soemesyn-
tactic constructions, with the aim of better representiregworkflow characteristics [Nicolao
98]. Besides being temporal and using the object-oriemgiaradigm, this model uses the
concept ofrolesto represent different behaviors of objects, allowing aeicrepresentation
of the workflow [Edelweiss 97].

Using TF-ORM, the behavior of the workflow processes is re@néed by classes,
encapsulating the representation of the activities of e¥ats. The classes are instantiated
for each process execution. The definition of all the cldsse=rfaces with other tasks, and
with agents and resources involved in the workflow complitesnodel. A sort of finite state
machine, presenting temporal logic expressions to cdndtra state transitions, represents
the evolution of a process. The main difference of this métbomparing to traditional
object-oriented models is the userofesto represent activities composing a process, and
extending the conditional state transitions also to thekesr

The use of the TF-ORM formalism allows also the represemtatf possible excep-
tions identified in the modelling level, and of the actions Yorkflow Engine shall perform
when these exceptions occur. And it also provides ways aésgmting information that can
be used in failure recovery mechanisms [Edelweiss 98].

The paper is organized as follows. In Section 2 some concepiserning workflow
modelling are presented, including exception and failecedures. The TF-ORM data
model used in this proposal is presented in Section 3.. Tiehetpresent workflow models,
the TF-ORM model was extended, ad this is presented in $edtidn Section 5 the con-
structing of the workflow modelling technique, using TF-ORMletailed. Section 6 comple-
ments the explanation of the modelling technique, exphajhiow the different synchronisms
between workflow activities are represented in TF-ORM. Araléxceptions representations
and the failure handling are detailed in section 7.

RITA e \Volume X e NUimero 2e 2004 31

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

2 Workflow Modelling

A workflow, also called a business process, is usually corezbwith the coordination
of activities in a business environment. Workflow Modellisga very important subject in
enterprise analysis processes. The expressive numbeseafrodes published recently in this
area attest this fact. Three different dimensions are ifiethin a workflow [Leymann 98]:

1. Whatshall be represented — the set of activities that composedhkflow, and the
sequence of their execution;

2. Whoshall execute each one of the activities — the agents of thkflea; and

3. With what the activities shall be executed — the resources iedoin the execution,
including automatic tools and support.

Information related to these three dimensions shall be eefimthe workflow model.
However, most of the available modelling tools allow onlg tiepresentation of information
related to the first one. Here lies the main difference betvirterprise Modellingand
Workflow Modelling

The construction of a workflow model has two important usésst,Fduring the con-
struction of the model the whole process is analyzed, an@dheities to be executed and
sequence of their execution is identified. This is done in lastract way, with the pur-
pose of analyzing the workflow. The constructed workflow nioday lead to a process
re-engineering, with the aim of solving detected errorstarathieve a better work distribu-
tion [Georgakoupoulos 95]. And after the workflow model isngete, the resulting model
can be used to manage the workflow during the execution.

A workflow model shall include:
a. The description of all the processes that compose theflearkand the activities per-
formed in each one of these processes;

b. The definition of agents responsible for the executionaaheone of the identified
activities;

c. The definition of temporal restrictions to the executibadivities; and

d. The identification of communication between activitiad @arocesses (for information
change and control).

In order to reach this goal, the following strategy can beluse

32 RITA e \Volume X e NUmero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

e Construct a mathematical model of the workflow;

e Formalise the processes and their relationships, usinghpdeal logic, in order to
generate all the possible logical computing trees of thekflaw (in such a tree, the
successors of a node are the possible states that can becdsstaning from the state
represented by the corresponding root); and

e Use some method to verify this model, usually done by a sitimulaf the workflow
execution.

Workflow Modelling can be done using different formalismsv&ral modelling tech-
nigues were proposed recently. And some commercial workfiolg are available. But all of
them present some limitations — it is important to make aosaiul analysis of the technique
to be used in an application, to have all the necessary fumatity needed to the modelling.
The use of a temporal model is advised in order to allow theesemtation of execution syn-
chronism among the activities. This paper proposes the futbeedemporal object-oriented
data model TF-ORM to used as a workflow-modelling tool. Thizdel combines the ad-
vantage of being a formal method with the possibility of egemting human decisions in the
formal framework, and all the possible synchronism neededbirkflow applications.

2.1 Temporal modelling

Temporal aspects are fundamental in workflow. Workflow medded to support
expressions related to processes, temporal restrictdymamic changes and treatment of
exceptions [Ellis 95]. The synchronism of the differentk&and activities involved in the
workflow is usually controlled by temporal logic rules. Theo@ce of a modelling method

to represent workflow shall support the representationraptaral rules to allow a complete
representation.

However, this not always happens in the existent modeléutrtiques. Temporal
modelling allows the representation of many of these aspélging temporal modelling the
dynamics characteristics of the applications and the teatpderaction among different pro-
cesses can be represented. The possibility of storing,pukating and recovering temporal
data should also be considered when choosing a workflow rirgledethod.

A workflow also needs time restriction controls. These auatproduce warnings
(e.g.: First Reminder Aftex days, Repeat Reminders Everyglays, Deadline Occur After
z days) to automatically alert the participants of pendintiviies, as well as to fire other
activities related with time. In TF-ORM these controls maydasily represented through
state transition rules, more specifically in the transitondition, explained in section 3.2.

RITA e \Volume X e NUmero 2e 2004 33

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

Trip
Definition
Hotel
Reservatio

ohfirmed A
OR Confirmed
Print
c Schedule
ontact
Client

Figure 1. The Traveluck Example

Flight
Reservation
~

Not confirmed
Not col

2.2 Exceptions and Modelling Errors

The modelling of a workflow can be considered as the first pbhsare-engineering
process of the enterprise. The analysis of possible exareptinat can occur during execution,
and of eventual system failure consequences is importarthé& complete understanding
of the application.Exceptiongalso called semantic failures) occur when activities cann
by executed according to the workflow model, or do not presgpected resultsFailures
consist of problems due to equipment (errors in prograniayéeof some equipment, failure
of communication).

Animportant distinction shall be made between excepti@gesizing during the work-
flow execution and errors due to deficiencies of the workflogresentation. To exemplify
this difference, consider the following example, basedheriTraveluck Example” presented
in [Leymann 98]. It concerns a travel agency, and the a@wip be executed when a client
of this agency hires a trip, composed of the airplane tidketel reservations and car rental.
The main activities correspondent to this application &mresented in Figure 1, using an
activity diagram notation often used to represent workfloapgically - circles represent ac-
tivities, and the arrows define the sequence of their exaculihe workflow begins with the
trip definition activity, when the client, together with tagency employee, will choose the
itinerary. When the itinerary is fixed three different andgtiel activities will be fired: flight,
hotel and car reservation.

Two alternative and independent results can output these tctivities: the reserva-

34 RITA e Volume X e NUmero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

tion can be confirmed or not. If one of the three reservatisnmot confirmed, the client is
contacted (the OR operator represents a conditional j@éinyl only if all the three reserva-
tions are confirmed (AND operator) the next activity is firadd the trip schedule is printed,
followed by the payment and ending the workflow with the ticked vouchers delivery.

The workflow of this example presentsrendelling error when one of the reservation
activities is not confirmed, another may already be confirraad this last reservation is not
undone. Once the client decides what shall be done to overtcbendetected reservation
problem, the workflow would begin once again, and the resienvahat was already con-
firmed would be done again. The workflow should verify if anlgartreservation was made
in such a case.

One possiblexceptioridentified in this example would occur in case the client does
not pay the trip — the workflow would wait the payment indeéhit The workflow model
can provide some treatment to avoid this exception.

3 TF-ORM

TF-ORM (Temporal Functionality in Objects with Roles Moggtdelweiss 93, 93a,
94] is a temporal object-oriented data model. It differsvirother temporal object-oriented
data models by the use of the role concept to represent tteeatif behaviors an object can
present.

3.1 The Role Concept

Object-oriented data models are often used to model redicafipns. However, it
is difficult to represent the temporal evolution of the apation when traditional object-
oriented data models are used. Some mechanism should hdguade support the real world
temporal evolution. According to the object-oriented jlégen, an object is an instance of
a class, and presents the properties and methods of thisdiligisg all its existence. Even
if, due to temporal evolution, some of the characteristitshs object change, the class
definition keeps unchanged. This evolution may lead to sitoa in which the behavioral
characteristics become similar or identical to those otlagroclass, and should produce the
migration of this object to the other class. Some modelswdlome kind of limited migration,
but these are usually restricted between a class and ittassbs.

This problem is overcome when using roles associated tdijeeoriented paradigm.
Roles, encapsulated in classes, represent different lmefmavan object of a class can play,
simultaneously and independently. Roles can be instant@dynamically, allowing this way
the representation of the dynamic evolution of an object.

RITA e \Volume X e NUimero 2e 2004 35

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

The role concept associated to the object-oriented paradigs introduced with the
ORM model Objects with Role Modg[Pernici 90] and has been adopted by some modelling
techniques since then [Belkhatir 94, DeAntonellis 91].

The ORM model introduces the role concept in an object-tegmodel to represent
the dynamic behavioural evolution of an object. A class @nesdifferent roles, each one
representing a specific behaviour of an object of this classobject is still an instance of
only one class, but it can play different roles during itetifhe. As an example, consider
the clasgperson in an academic environment. Three different roles aretifiet for this
person (Figure 2)professor studentand administrative_employeeFor each one of these
roles a person presents specific properties and methoddecthees he is used to present as
a professor, the courses he already has completed as atstdiie salary as an employee.

The role concept provides the separation of the dynamiccéspéan object from the
static ones. The roles can be dynamically instantiated sidening always the same class
instance (the same object), instances of roles can be draddstroyed, or even temporar-
ily suspended and resumed. This allows the representatithe demporal evolution of an
object’s behavior. In the above example, a person (an gbjact be accepted at the uni-
versity in, for instance, March 1990. This is representetth Wie creation of an instance of
the rolestudentfor this person. Supposing he graduates in December 1985ngtance is
destroyed. But in March 1991 he is accepted as a teacher sathe university, represented
by the creation of an instance of the rédacher The evolution of the behavior of this person
is dynamically represented by the roles he is playing aedsffit times. Note that the object
- the person - is always the same, even if his behavior is naslately different as at the
beginning.

An object may present, at the same time, two or more instasfaedes. In the previ-
ous example, the same person can be, at the same time, atsindemprofessor: consider
that, in March 1996 this person, that is already a profess@gcepted as a PhD student at
another university. He keeps on playing the role of profedsat an additional instance of
the rolestudentis created. Both instances of rolggdfessorandstudeny are played at the
same time from that moment on, each one independent of tiee otle.

And, finally, an object can have more than one instance ofdhgegole at the same
time, all absolutely independent. This could be represemehe previous example if the
person becomes teacher of another university, keepingla¢sprevious post - an additional
instance oteachermwould be created, and from that moment on each one of the tstarines
of this role would evolve dynamically on their own way.

In traditional object-oriented models an object is repnése as a unique instance of
a class. It is not possible to represent that a person hasrtwme different jobs, each one
having different characteristics. In this case, the olglhould be an instance of the employee

36 RITA e \Volume X e NUimero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

Person

Teacher Student Employee

Figure 2. Graphical representation of a class with three roles

Person

Teacher I Student I EmployeeI

Man Woman

Teacher I Student I EmployeeI Teacher I Student I EmployeeI

Figure 3. Subclasses with roles

subclass and two instances of this subclass would repregembjects. The use of the role
concept associated to object-oriented model aims at oreéngpalso this limitation, allowing
that an object presents multiple instances of the same role.

3.2 Roles and Subclasses

The use of roles is not equivalent to the subclass concepbclasses can also be
defined when roles are used. A subclass inherits the roldgedduperclass, can eventually
redefined a role definition, or even present new roles. Sabetaspecialise properties and/or
methods of the superclass, not only in the class level, tzat il the role level. Figure 3
presents an example of two subclasses defined for the cl&ggusé 2, each one with specific
properties and methods: one represent$aa, and the other &/oman In each one of the
subclasses the same roles of the superclass are defined.

An example that shows clearly the distinction between rales subclasses is pre-

RITA e \Volume X e NUmero 2e 2004 37

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

sented in [Wieringa 91]:

“Assume thapassengeis a subclass gierson and consider a person who migrates to
thepassengesubclass of person, say by entering a bus. This bus can &0€ypassengersin
one week, but counted differently, it may carry 1000 persorike same week. So counting
persons differs from counting passengers".

If passengers represented as a subclass of the giesson then counting passengers
would be the same as counting persons. The Old (object fahtf the object in the sub-
class is the same as the one of the superclass. Each timeth@enters a bus, he becomes
a passenger, but each time a different passenger (it carotieeatvus, or even the same bus
but at another time, he can stop at a different point, et@)allbw this representation, each
time this person enters a bus a new object should be creatpdrsons would be identical to
passengers. The same person would thus be representefiteendifbjects.

To keep the identity of a person as only one object, the sandesiduld always be
used each time this person becomes a passenger. To be agesssgmesents in reality
a stateof this person. This state can be represented @deaplayed by this person - the
passengerole. Now we have only one object representing a person @ithrresponding
Old). Different instances of the rolpassengercan be created and destroyed during the
lifetime of this object. To count passengers is now the tdstoanting how many persons
are involved, independently of how many instances of the palssenger are created.

3.3 The TF-ORM Model

TF-ORM [Edelweiss 93, 93a] is an extension of the ORM modelfiei 90], intro-
ducing the representation of temporal features. Time isathed as varying in a discrete
form. A unique name and a set of roles defirztass:

class;

(eng, Ro, R1, ..., Rn)

Eachrole is defined by a name-(;), a set of propertiesH;), a set of abstract states
the role can assume while playing this rofg)(a set of messages the role can receive or send
(M), and a set of rules - state transition rules and integrigsr(Ru;):

R; = (rng, Py, Si, My, Ru;)

3.3.1 Properties, states, decisions, and messagdroperties may be static (having the
same value all over the instances lifetime) or dynamic (wtheay may assume different
values with time). Dynamic properties have two differemdipoints associated with each
value: theransaction timecorresponding to the moment when the information is inioed

in the database, and thialid time the time when that information starts to be valid in the real
world. Thus, this data model implements a bitemporal Dataljdensen 98]. Domains are

38 RITA e \Volume X e NUimero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

assigned to the property values. TF-ORM presents a set aedgfieed classes, callathta
typeswhich can be used as domains of properties. In addition taghal numeric data types
(real, integen), several temporal data types are supported @ik hour, instant semester,
interval). Complex domains can also be defined, as an object, a sefexftgbor a list of
objects.

The states an object can play are simply identified by a nhame. This namst el
unigue within a role definition. These state names are nefeckin the state transition rules.

The objects’ methods are representednassages. Incoming and outgoing messages
are defined, together with the information of which clas®isdng or receiving the message.
Values are passed by the way of message parameters, to béubedmethods. Human
decisions are represented in agent classes as incominggesssalledlecisions. These can
also present parameters.

3.3.2 State transition and constraint rules State transition rules define the dynamic
evolution of an object. The arrival of a message sent by amatlass (or by another role of
the same class) does not mean that the corresponding methativays be executed - state
transition rules control these messages. Such a rule deficesbination of an object state
s; and incoming message(s)i; to change to state,. One or more messages can be send
when a transition rule is executeti¢, throughma,). A transition condition, represented by
a first order temporal logic formula, can be associated tdeq aating like a restriction to the
state transition execution - the transition will only ocdtthis condition is true. The general
form of a state transition rule is the following:

r; : state(s1), msg(mi1) = msg(mo1), msg(moz), ...,msg(moy), state(s2); [<transitioncondition>]

A rule may also be defined based on the arrival of a set of message rule is only
executed when all the messages have arrived, in any ordenangtime. This is represented
as follows:

r; : state(s1), msg(mi1), msg(miz), ..., msg(min) = msg(mo1), state(s2); [<transitioncondition>]

All the components of a state transition rule are optionaheWthe initial state is not
defined, the transition takes place every time the incomiagsage(s) arrive, independently
of this state. When the incoming message is not defined,dhsition is executed every time
the object comes to the initial state. If the outgoing messagot defined, the transition takes
place without sending anything. And when the final state isdefined, only the outgoing
messages are sent, without changing the objects state.yloremof these situations, the
transition condition shall always be obeyed.

Constraint rules can also be defined, and are represented by two conditiotise if
first condition holds, the second shall also hold. Tempooalditions can be used in both

RITA e Volume X e NUmero 2e¢ 2004 39

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

forms of rules. The set of rules completes the object’s biehaefinition.

3.3.3 Process, agent and resource classeshree different kinds otlasses can be de-
fined: (i) resource classesnodelling information and resources; (fijocess classesepre-
senting the processes to be executed with this informatidrtze resources; and (iidgent
classesrepresenting the agents that carry out the processes hiidmdlass types are mod-
elled in a similar way. The only difference concerns ageassts: in addition to the above-
mentioned messages, agent classes also include humaiodgaigpresenting non-structured
work in a formal definition environment.

The role concept is different depending on the class typagknt classes, the roles
represent the different behaviors of an agent may presant @asgperson— rolesteacher
employe, andstuden}. Resource classes roles represent different ways oflizswathese
resources, depending on the processes that act on themclaggbook— rolesconfection,
distribution sell). And in process classes, the roles represent the actititee compose the
process (for ex: classccountancy- rolesalary contro] budgej.

Temporal information are associated to all the instandasg@nd role instances) - the
instance’s creation time and destruction time, and the timsants in which the instance’s
activity was suspended and resumed. These temporal infiomere stored in special pre-
defined properties and can be used by the query languageiévedhformation. Pre-defined
properties are inherited from a supercl@gect from which all the TF-ORM defined classes
are sub-classes.

Each class presents a special role,libse role where the global properties inherited
by all other roles and the initial characteristics of thesotioles are described. The TF-ORM
model supports specialization and aggregation mechangitiisthe possibility of inheriting
roles, or redefining them.

3.3.4 Pre-defined messagesTF-ORM presents a set of pre-defined messages, used to

manipulate instances of classes and of roles. For instaéineereation of an instance of a
class is made by the following pre-defined message:

add_object(OId, < Class_Name >)
add_role(OId, RId, < Role_Name >)

Theadd_objectmessage creates an instance of the specified class, angebtidén-
tifier (Old) of this object is returned in the parame@id. Similarly, the messagadd_role
creates an instance of the specified role of the object iikxhtiyOld, and returnes the iden-
tifier of this role instance in the paramefeid.

Other pre-defined messages allow suspending an instarct&/gya to resume his

40 RITA e \Volume X e NUmero 2e¢ 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

execution, and to end the instance’s life.

3.3.5 TF-ORM examples An example of the TF-ORM definition of thBersonagent
class with the three mentioned roles is partially bellowngghe TF-ORM definition lan-
guage:

agent class (
PERSON,
< base_rol e,
static properties = {(person_id, integer)},
dynami c properties = { (name, string), (address, string)},

rules = { ... } >
< enpl oyee,
dynami ¢ properties = {(department, string), (salary, real),
(hired, date), (holidays, interval(closed, date), ... },

states = {hired, in_holidays, fired},
messages = {
new_sal ary(G d, Value) fromControl. Sal ari es,
ask_vacations(oid, Period) to Control.Holidays, ... },
deci sions = { get_vacations(Period), ... },
rules = {
init: add_role = state(hired),
hol i days: state(hired), decision(get_vacancies(Period) =
nmsg(ask_vacanci es(oi d, Period), state (hired),
sal ary: state(hired), nsg(new salary(oid, Value) = sate(hired);
(Val ue > sal ary),

A
< teacher,
dynami ¢ properties = { (gratification, real), (start, date), ... },
. >
< student,
static properties = { (student_nunber, integer) },
dynami ¢ properties = { (courses, string), (start, date), ... },
>)

To better explain the state transition condition, anotikangple is presented here. The
control of a deadline date for the arrival of a paper to be sttbchto a conference may be
represented through the following rule:

deadline : state(active) = msg(deadline(paper)), state(active);
JRid(has_role_instance(Oid, paper, Rid))
and (value(Rid, upper_bound(deadline)) > now)

The ruledeadlinedescribes the following situation: if the object is in thatstactive
and if the transition condition is satisfied, then this attigends the messagesgdeadlingpapel))
staying in the state active. The messag&(deadlingpape) fires an activity that will treat

RITA e \Volume X e NUimero 2e 2004 41

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

the end of the receipt period. The transition conditionfiesiif the deadline for this has been
reached3d Rid (has_role_instand®id, paper, Rid) verifies if there exists an instance of the
objectpaper, and {alugRid, upper_bounfeadling) > now) if for this paper Rldidentifies
the paper), the deadline is reached.

4 Extensions of TF-ORM for workflow modelling

To support the formalism and the necessary flexibility of akflow model, some
extensions were accomplished in TF-ORM, commented belothi$ section some of these
extensions are presented — extensions that shall be used) doe modelling phase. An
example of these extensions, using the application predémSection 2.2, is presented in the
Appendix of this paper. Further extensions, done with the@fisolving possible exceptions
and failures, are presented in Section 7, together withstpkpation of these problems.

4.1 Definition of agents for processes and activities

In workflow modelling, an important feature is the definitiohagents for processes
and activities. To achieve this the TF-ORM model was extdvd¢h the following clauses:

responsibleagent =< agent_class > . < role >

executingagent =< agent_class > . < role >
delegationagents =< agent_class > . < role >

These clauses may be used only in a process or in a role dufioitia process class.
They allow the definition of three different types of agelited to the corresponding pro-
cess or role.

Theresponsible agerdefinition identifies the role that that will be played by thgeat
that will be responsible for this process/role. Note thatjmg the workflow modelling, only
arole is defined for agents. Just the skills that this ageait present are defined. When an
instant of a process/role is created, an instance of thaitagks is selected and associated
to it. If any problem occurs during the execution of the pss¢mle, this specific agent shall
solve it. This clause is obligatory in process classes difini- each process shall present
a responsible agent. Even when the process to be executatdimatic, a responsible agent
shall always be designated to it, to solve eventual faillW#isen the responsible agent is not
defined in a role definition, the responsible for the class ¢batains this role will also be
responsible for this role.

The executing agenachieves the execution of the process/role. When the drgcut
agent is not defined the responsible agent for this prodassiwill also be the executing one.

42 RITA e \Volume X e NUmero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

In order to solve possible problems due to a sudden impdigsiti an agent respon-
sible for a process/role, a set of other agents may be detm&dom the responsibility can
be delegate. This is done by thelegation agentslause.

The choice of agents to be responsible/executing/delégatione when the instance
of the process/role is created. To cope with these agentsititefi the pre-defined mes-
sages that create instances of processes/roles were afifieaiowith the addition of new
parameters:

create_object(OId, Class, [Respl, [Exec], [Deleg], [Auto])
add_role(Oid, Role, RId, [Resp|, [Exec],[Deleg], [Auto])

where:

Resp- identifies the responsible person for the activity;

Exec- identifies the executor of the activity;

e Deleg- determines the list of delegated agents; and

Auto- determines that the activity is performed automatically.

The argumenRespis obligatory. IfExecisn’t represented, it is understood that the
responsible agent is also the executoDé#legis not represented, then it is understood that
this process cannot be delegated to another person.

4.2 Decisions in process classes

Another extension of TF-ORM was done to allow the represemaf the decisions
not only in agent classes, but also in the process classesalldws identifying and monitor-
ing the agents’ interactions during the processes exeagutigproving that way the modelling
and maintaining the necessary formalism to the representat workflow associated with
the processes. The decisions are registered in the prdessdtirough theecisionclause:

decision(< decisionname > (< messageparameters >)

Only the agent classes can take decision — they represenntitrictured work of
these environments. But representing them directly in thegss classes, they can be used in
the state transition rules, as incoming messages sent bysages an example, the following
decision and state transition rule may be defined in a prattass (complete example in the
Appendix):

decisions = {add_city(City : string) fromPERSON.Client, ...},

rules = {cities : state(defining), decision(add_city(City)) = state(defining),...

RITA e Volume X e NUimero 2e 2004 43

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

Table 1. TF-ORM classes and roles for Workflow Modelling

TF-ORM class | Corresponding meaning Meaning of the roles in the
in the workflow workflow
Process Process to be executed Activities that compose the process
Agent Agents of the workflow Roles an agent can play
Resource Resources handled by the | Different ways of visualising the
workflow resource

5 Workflow Modelling using TF-ORM

The TF-ORM model can be used to model workflow in a quiet nhtwesy. The
workflow concept is strictly associated to the represemtati processes. In TF-ORM these
processes are represented as process classes. Eacly attvijirocess is represented as a
role of the corresponding process class. The agents inyavine processes (as responsible
or executors) are represented by agent classes, and teegptesent the different roles each
agent can play during the process and activities executdord the resources involved in
the execution — data and documents — are represented ascestasses. Resource roles
represent different ways of visualizing the resource. ddbtummarises the correspondence
of TF-ORM classes and roles, and workflow concepts.

The integration between agents and resources is done bgtthiéies’ representation.
So, a workflow is actually represented by the process clags#gding the actions executed
on resources, and the responsibility and cooperation oftage

5.1 The meaning of 'roles’

According to the workflow concept, the term “role” means aupr@f participants
exhibiting a specific set of attributes, qualifications andkills [WFMC 96]. The workflow
role concept is similar to the role concept used in the TF-ORbUel, concerning agent
classes. TF-ORM agent class roles represents the diffeedratviours an agent (or a group
of agents) may present. For each role a group of propertiasc(®r dynamic) is defined,
representing the participant’s characteristics in thénass process.

Some models show limitations in the agent’'s formal repriedem. The model de-
scribed in [Joosten 94, 94a] characterises the agent radelddyel. The models described in
[Casati 95] and [WFMC 96a] present a certain degree of fasmain the definition of the
agents’ roles but the properties related to the roles arg@gfieed, restricting the flexibility

44 RITA e \Volume X e NUimero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

in the representation. Using TF-ORM it is possible to defovenfally any group of static or
dynamic properties needed specifically for roles’ represam.

The activities of a workflow are executed according the oigional structure of the
enterprise, where the agents’ functional roles and passdthtionships are defined [WFMC
96]. The activities composing a process are usually scleddal specific agents, who are
responsible for their execution. An agent may play différefes, simultaneously or not.

5.2 How to construct the Workflow Model

The modelling of a workflow using TF-ORM begins with the idéoation of the
processes that compose this workflow, representing eachsomerocess class. Each process
is then analysed separately.

For each process, the following steps are the performed:

1. Identify the component activities, each one represemyealrole in the corresponding
process class;

2. Define the executing / responsible / delegate agents éopttbcess, defined through
predefined properties in the base role;

3. ldentify the properties that are common to all the agéigitand define them as static
or dynamic properties of the base role;

4. Define the rules that control the activities instantiafioase role state transition rules);

5. Complete the definition of each activity (role) definingffithe executing / responsible
/ delegate agents for the activity, then the static and dymanoperties of the activity,
the messages to be sent and received, the states the amivipresent, and finally, the
state transition rules among these states.

Table 2 summarises which workflow concepts are represemtee iTF-ORM process
classes.

Once the process classes are defined, the modelling is cmdpientifying all the
agents involved in the processes (represented as ages¢sjamnd all the manipulated re-
sources (represented as resource classes). The equévalemeen workflow concepts and
the correspondent TF-ORM representation are showed ire Bafibr the agent classes) and
Table 4 (for resource classes).

The processes send messages to agents and to resourcakewvdtn of recording
new property values or to change their states. As the mairsfimcworkflow is on processes,

RITA e Volume X e NUmero 2e¢ 2004 45

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

Table 2. Workflow process class

Workflow

TF-ORM

Process

Process class

Responsible, executing and delegate
agents for the process

Base role pre-defined properties

Properties common to all the activities
of a process

Base role properties

Activity control

Base role rules

Activity

Role

Responsible, executing and delegate
agents for the activity

Role pre-defined Properties

Specific properties of an activity

Role properties

Operations executed by an activity

Messages and decisions in the role

Initial and final states of an operation

States of the role

Synchronism among activities

State transition rules

General integrity constraints

Integrity rules

the representation of the process classes evolution isattet only through the income of
messages sent by other processes. Therefore, the messagetiieen the three TF-ORM
class types is supposed to be the one represented in Figure 4.

6 Synchronism between activities

The activities that compose the processes of a workflow cesept several different
synchronism features, represented in the TF-ORM modeugirdhe state transition rules.
The messages describe the interactions among the adtiviiermining the flow control
and allowing the synchronisation of the activities that pose a process. The possibility of
formal representation of these interactions is a fundaatégue in a workflow model. The
activity execution order (synchronism) determines thdwdiam of the work in a workflow.

Activities are fired by messages sent by other activities:fBgd” we mean not only
the beginning of an activity’ execution, but also the coundtion of a paused activity, waiting
for an event to continue her execution.

Activities can execute in sequence or in parallel, indepatig or in a synchronised
way. The following synchronism conditions can occseguentialconvergentJoin),diver-
gent(Fork) andconditional The analysis of several forms of synchronism and the corre-
sponding representation in TF-ORM is presented here.

46 RITA e Volume X e NUmero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

Table 3. Workflow Agent Class

Workflow

TF-ORM

Person

Agent class

Person executing an activity

Role of the agent class

Properties common to all the agent
behaviours

Base role properties

Specific properties of a behaviour

Property of the correspondent role

Decisions that this agent can take in
any behaviour

Base role decisions

Decisions that this agent can take in a
specific behaviour

Decision of the correspondent role

Actions this agent can perform

Messages of the correspondent role

Initial and final state of an operation

States of a role

Agent evolution

State transition rules

Table 4. Workflow Resource Class

Workflow

TF-ORM

Resource manipulated by a process

Resource class

Different aspects of the resource

Role of the resource class

Properties common to all the resource
behaviours

Base role properties

Properties of a specific behaviour

Properties of the correspondent role

Actions that are executed on this
resource

Messages of a role

Initial and final states of an operation

States of a role

Resource evolution

State transition rules

6.1 Sequential

Activities can be scheduled in sequential form, obeying edigxecution order. Two
activities aresequentialvhen the execution of the second activity only begins wherptte-
vious one has finished her own. Figure 5 shows a graphicatéseptation of the transition
of activity a; from states; to a final states; in consequence of the receiving of message
This transition causes the start of another actigity sending a message that creates a new
instance of that activity (represented by the message rolg:

st(s1, msg(m1) = msg(add_role(< pr; >, < az >)), st(sy);

To simplify the examples presented here, no transition itimmds represented.

RITA e \Volume X e NUmero 2e 2004 47

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

AgentClass Process Class

s
.

msg@

Recurse Class

Figure 4. Messages for Workflow Modelling using TF-ORM

add role

Figure 5. Sequential activities

48 RITA e \Volume X e NUimero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

add role

S

Figure 6. Parallel activities

6.2 Parallel activities

In the same example presented befors; i not the final state ad; and this activity
continues executing, the first activity only fires the secone, and from there on both evolve
in parallel (Figure 6):

st(s1), msg(m1) = msg(add_role(< pr; >, < a2 >)), st(s2);

6.3 Synchronised, parallel activities

A similar situation is when an activity is temporarily susded, waiting a specific
message to resume execution, characterisisgnghronised executionn the example of
Figure 7 the second activity would be in a waiting state, &edoutput message af would
not beadd_rolebut the message that represents the event for which the deotinity is
waiting. The first activity may continue her execution, ookre to another waiting state, and
stay so until another message activate it again. The rulesepting this situation has the
following form:

st(s1), msg(mi1) = msg(ma), st(s2);
The following rule shall be defined in the set of transitiokesuof the second activity:

st(sz), msg(mz) = st(sy);

RITA e \olume X e NUimero 2e 2004 49

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

m m,

—>

S
S_ €

Figure 7. Synchronised, parallel activities

S

6.4 Totally convergent synchronism (total join)

The execution of an activity can be conditioned to the réngiof a set of incoming
messages, sent by different activities. This situationsisally calledconvergencerepre-
sented by goin of incoming messages. All the messages must arrive to exéuaitransition
(total convergencde(Figure 8). The order in which the messages arrive is newegit. In
TF-ORM this is represented by a unique state transitionwitlea set of incoming messages
(example in the Appendix):

st(s1), {msg(m1), msg(mza), ..., msg(mn)} = msg(mo), st(s2);

6.5 Partially convergent activities (partial join)

A situation similar to the previous one may occur when onlyhbset of the incom-
ing messages is requirepdrtial convergence If the set contain® messages, and onky
messages are required, the relatibn{(£ < n) must hold. This is represented in TF-ORM
defining the number of messages that shall arrive in frortt@fet of incoming messages:

st(s1), k{msg(m1), msg(m2), ..., msg(mn)} = msg(mo), st(s2);

Also in this case the messages may arrive in any order. FRjuepresents this kind
of synchronism supposing that only two messages are ratjuire

50 RITA e \Volume X e NUimero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

My

>
i>:>

I
'@

Figure 8. Totally convergent synchronism

6.6 Divergent activities (fork)

The opposite situation occurs when an activity fires the etiec of several other
activities, which is known asfark. This is represented by a state transition rule with several
outgoing messages (example in the Appendix) (Figure 1pjesented by the following rule:

st(s1) = msg(m1), msg(ma), ..., msg(mn), st(s2);

6.7 Conditional activities

All the previous situations can be conditioned by the trigmsiconditions, in which
present and past values of properties and states can bedddafdefine if a transition shall
be executed or not.

st(s1), msg(my) = msg(ma), st(s2); (< transitioncondition >)

The possibility of representing this temporal conditioroie of the most important
features of the proposed modelling technique.

7 Representing exceptions and failure recovery informatinin TF-ORM

The use of TF-ORM enables the representation, in the workfimael, of signifi-
cant information that can be used in case exceptions ocainglthe execution, including
information for failure recovery.

RITA e \Volume X e NUimero 2e 2004 51

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

=5 @@

Figure 9. Partially convergent synchronism

Exceptions can be represented in the workflow model whergukim TF-ORM for-
malism, with the corresponding actions to be executed. érfaHowing sections some pos-
sible exceptions are identified and their representatidiORM is explained. At the end,
some explanation is given about failure recovery.

7.1 Impeachment of the agent in charge of an activity

Each workflow activity shall have a responsible agent, totrobithe execution and
solve possible problems. When the TF-ORM model is used irkfiaw modelling, the
definition of a responsible agent for each activity is regdirin the model, only the role that
the agent shall play is defined. The specific person is defmechbment an instance of that
activity is created.

An exception will occur when the agent presents an impeanhraed the responsibil-
ity of the corresponding activity shall be transferred totlwer one. To preventthis exception,
the TF-ORM model allows the representation of a set of agentthom the activity can be
delegated. These agents shall also be defined the mometctithity és instantiated.

Even if there are some agents to whom the responsibilityh@iattivity can be dele-
gated, the exception can still occur if the whole list is impieed. To prevent this last case,
the TF-ORM model requires the definition of an agent resgd@$or the whole process, and
this one shall define who will be the new agent responsibléairactivity.

52 RITA e Volume X e NUimero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

@
S

Figure 10.Divergent activities

7.2 Changing the activity flow during execution

When the order of the activities is changed during the wovk#xecution, serious
problems can occur. To avoid these problems, the TF-ORMimegjthe definition of an
agent responsible for each process. Only this agent shadl @ power of changing the
order of executing activities.

To implement this interference, each activity presentspvesdefined incoming mes-
sages, to be sent by the agent responsible for the procedsi¢h the activity is defined.
These messages shall be received any time, independerd atthal state of the activity.
The process’ responsible agent shall send these messagtghe activities that will be
involved in the changing he is planning. The first messageahénge the actual state of
the activity to the state defined by the agent, with passedpasameter. The second mes-
sage concerns property values - if there is the need to adap properties values, specific
messages shall also be sent, with the name and the new vahesefproperties.

As an example, consider the same example presented in 5&cfpconcerning a
travel agency. Suppose the responsible agent wants torglgpeinning hotel reservation
activity and, undoing reservations that were eventualigaly made. This would be done
sending to this activity the following messages:

msg(agent_inter fer(hotel_reserve, suspended))

msg(values_inter fer(hotel_name, null)),
msg(values_inter fer(hotel_reservation, nok))

The effect of these messages is the same as if a rule weredl&ineach one of the

RITA e \Volume X e NUmero 2e 2004 53

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

states of the hotel reservation role, as the following onetffe “reserving” state):
ri : state(reserving),
msg(agent_inter fer(hotel_reserve, suspended)),

msg(values_inter fer(hotel_name, null)),
msg(values_inter fer(hotel_reservation, nok)) = state(suspended)

It is important to remember that the executing agent is nesibte for the change in
the activities’ execution order, and it is his task to addigha involved processes and activ-
ities to the new executing order. The modification may reftecproperty values that were
changed in former executing activities.

7.3 Activity waiting for not available resources

A possible exception may be caused when an activity is sugukwaiting for a re-
source, and this resource is not available. The availghifita resource is represented in
TF-ORM by a message sent by the corresponding resourcetaldss activity.

A way of avoiding this problem is to model the interactionvbe¢n the process and
resource class requiring an answer of the required reseypositive or negative. The tran-
sition rules of the activity shall consider both the answanrsl provide an alternative solution
in case the resource is not available. If there is no altemmablution, the activity shall send
a pre-defined message to the agent responsible for thetpétepresented by a message sent
to the same role), asking for an intervention. This messageHe following form:

msg(resource_inter fer) to itsel f

7.4 Cycles

The occurrence of cycles during a workflow executing is onthefmost important
problems that can happen. A cycle is characterized whentatita@; fires another activity
a», and the activityay, directly or not, activates again the activay. This situation can only
be avoided by a serious analysis of the workflow, consideaihiipe possible evolutions.

However, in behave of diminishing the possibility of cyclecarrence, the TF-ORM
model presents a pre-defined property, defined in the bdsefrall classes (a role that shall
be defined in all classes and where the global charactaristiall objects of that class are
defined). This property, callegycle_alert has the role of controlling cycles, and of alerting
the responsible agent in case of detecting a possible @rer The domain of this property
is a set of pairs — the name of a role and the number of activariogs of that role. The

54 RITA e \Volume X e NUmero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

responsible agent of the process shall control this prgpemt identify possible cycles.

7.5 Deadlocks

Rules to prevent deadlocks are more difficult to represgmeaally because of the
possibility of constructing temporal logic conditions tonstraint the transition rules. What
can be done is to associate a time period to a state that msgmideadlocks. After this time
period elapsed, another rule would be executed, to undogaeélaick.

To avoid deadlock exceptions, the TF-ORM model was extendtidhe definition of
a timing class. This class, pre-defined in all the constrdustedels, can be used to count the
elapsed time. This is done creating an instance of this glithghe maximum waiting time
passed as parameter. The behaviour of the timing class feltb&ing: once an instance is
created, this instance counts the elapsed time and wheimteg@arameter is reached, sends
a messagmterruptto the prior class.

The complete treatment of deadlock is the following. Whenghssibility of a dead-
lock occurrence in the staggate 1of activity _1lis identified, each time this state is reached a
message is sent to the timing class, with the maximum tinsestttivity shall wait for another
event (represented by a new state transition). This messagthe following form:

msg(timing(<class.role>, <state>, <waiting time>, <teropal granularity>))

The timing class begins to count the elapsed time. When tlitthgdime is reached,
an interrupt message is sent to the sending class/rolee@epting the activity). If this role is
still in the same state, a deadlock really happened, andatsaasition to a recovery state is
provided. On the other hand, of the role evolved and is intarattate, the interrupt message
will not be receive, and will not affect the activity. An exate of a possible deadlock control
in stated|_stateis the set of transition rules:

state(x), msg(m_iny msg(m_out), msg(timing(C.R, dlI_state, 5, min)), statsete)
state(dl_state), msg(waited_msg) state(y);

state(dl_state), msg(interrompt)- state(recovery_state);

7.6 Waiting message receipt acknowledgement

The sending of a message to another activity does not gearémat the message is
received. This can cause a problem in the whole workflow, whemeceipt of the message
is fundamental. When using TF-ORM to represent a workflowsgages are sent and there
is really no certainty of the reception, once a transitide is only executed if the message
is received in a specific state, and additionally if the titions condition is satisfied. If one of
these (state or transition conditions) is not satisfiedmbesage is not received.

RITA e \Volume X e NUimero 2e 2004 55

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

To guarantee that a message is received, the TF-ORM modefehi@sent the fol-
lowing:

e Therole that sends the message shall evolve to a waitirey stad stay in this state for
a defined time (using the timing class) until a confirmatiothef message reception is
received;

o If the message is correctly received, the receiving rolelsem acknowledge message
to the sending role and continues his own evolution;

¢ If the message is not received, after the maximum waitinge timmelapsed the role
evolves from the waiting state to a state that will solve fhisblem — probably sending
another message in place of the first one.

7.7 Information to be used for failure recovery

Two aspects shall be clearly identified in failure recoveycesses:

e Who (whatagen) is in charge of the recovery, taking the necessary decdimover-
come the failure; and

e What kind ofinformationis needed in this process?

An agent must do the recovery of a system failure — theseréasilcan not be predicted,
in order to mechanise the recovery. To guarantee that art egavailable in case a failure
occurs, the TF-ORM model requires the definition of resgaesigents for the whole work-
flow. Each identified process must have a responsible agemas sach activity. In case of
a failure occurrence, first the activity responsible trieseicover the execution and, if this is
not possible within the activity domain, the process resjigia takes charge.

The recovery of a failure will restart the executing actastfrom a previous execution
point, after solving the problem that caused the failureisinocess is known asllback
To enable this, additional information is needed. A form oiind) rollback that has proved to
be efficient is to store the past states assumed by the asigihd processes, with temporal
information associated (time when each one of these state@ssumed). This is already a
feature of the TF-ORM model — being a temporal model, terpofarmation (transaction
and valid time) is associated to every information (statesgoperty values), and all the past
information is supposed to be kept in the temporal databastehing the workflow. This
enables the agent responsible for the recovery to, anglylsestored information, choose a
past temporal instant, delete information defined afterittstant (considering the transaction
time of each stored value), this way restoring a past stateeafonsidered process or activity.

56 RITA e \Volume X e NUmero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

An alternative way of implementing system recovery wouldlbéning in each class
a property that would store the activation history of eactance of that class, also associ-
ated to the correspondent transaction time. Analysing voéugon of these instances, the
responsible agent would choose how the recovery should de.ma

8 Conclusion

To make the modelling of workflow systems more effective itégessary to improve
the conceptual level specification with an unified model ableepresent its internal be-
haviour (cooperation and interaction among tasks) andafagienship with the environment
(designation of tasks to the executors).

In this paper, a technique of conceptual modelling of wokkfissing the model TF-
ORM is presented. This technique is intended to specify tbekflow, and to support the
workflow implementation. The TF-ORM model was extendedhwifite definition of new
syntactic constructions, to allow the representation akfiow characteristics in an efficient
way.

When using TF-ORM in workflow modelling all the processe®irred in a workflow
are represented, together with their relationships andabedination of their execution. In
addition, the data flow between these processes is also defind agents are identified as
responsible for each process. A set of temporal logic rulesrporates a solid formalism
to express reactive computations, usually influenced bgtevexternal to the workflow, like
exceptions and pre and post-conditions associated to ggaeecution. The final model is
a formal model, and can be used to analyse the workflow, igérgi possible definition
problems that can be solved prior to the implementation @fabrkflow.

Most of the existent workflow modelling techniques do notresent formally the
work portion that needs human intervention (unstructuredk)v TF-ORM allows the rep-
resentation of the processes’ unstructured work portiooutiph agent classes. Agent classes
represent people acting in the system. Agents have an owetidnality that is the human de-
cision. A decision represents the result of a formally umdsfiprocess executed by an agent.
The structures of the resources (data, documents) aresegiegl by the resource classes. The
process classes integrate these agents and resourcegidgsbe organisation of the work
executed in the application and the co-operation amongtagen

The TF-ORM model proved to be a powerful tool for workflow mbide, due to the
following aspects:
e Itis a formal model, allowing the complete modelling of thenkflow, including the

possibility of validation of the whole process;

RITA e \Volume X e NUmero 2e 2004 57

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

e not only the structured part of the workflow can be represgriet also the decisions
involved in the processes;

¢ All the possible synchronism among activities executiory rha represented, using
rules expressed in temporal logic;

¢ Allows the representation of the communication among @Eseg and activities;

e The relationship between activities belonging to diffégmocesses may also be repre-
sented, fact that is not always possible in other workflow eflath methods;

e based on the role concept, allows the representation ofiffieeesht roles an agent can
perform, in a natural way;

e Exceptions handling and information to be used in failucowery may be represented
using this model, in a convenient way.

The use of a new object-oriented model to specify an appicatoes not imply the
need of implementing a special database management systahisf data model. Existing
commercial DBMSs can be used, if a mapping from this data itodbe data model of the
adopted DBMS is provided. In [Oliveira 95] the implementatiof TF-ORM is discussed
using three different DBMSs: the commercial object-oteh®, DBMS [O2T 91], the re-
search system Postgres [Postgres 94] and the commereiibnell DBMS Ingres [Ingres
91].

A complete environment based on TF-ORM is under developitedgiweiss 00],
including a modelling tool, the mapping of the TF-ORM modekt commercial database,
and a query interface using the TF-ORM query language [Eeiefn94].

9 References

[Aalst 95] Aalst, W.M.P.Petri-net-based Workflow Management Softw&amdhoven Uni-
versity of Technology, 1995.

[Alonso 97] Alonso, G.; Agrawal, D.; El Abbadi, A.; Mohan, Eunctionality and Limita-
tions of Current Workflow Management SystertSEE Experfv.12, n.5, 1997.

[Baresi 99] Baresi, L; Casati, F.; Castano, S.; Ceri, S.;iudl. G.; Mirbel, I.; Pernici,
B.; Pozzi, GWIDE Workflow Development Methodolodgniversity of Twente, Nether-
lands, 1999.

[Belkhatir 94] N. Belkhatir, W.L. Melo. “Tempo: defining swfare processes in an approach
based on objects with roles”, Proceedings of the ORM-1 Qenfee, July 4-7, 1994,
Magnetic Island, Australia. Brisbane: University of Qusland, 1994. p.157-166.

58 RITA e \Volume X e NUimero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

[Edelweiss 00] Edelweiss, N.; Hubler, P.N.; Moro, M.M.; Dartini, G. A Temporal Database
Management System Implemented on Top of a Conventionab@a&a To be published
in the Proceeding®f the XX International Conference of the Chilean Compuigece
Society - SCCC 2000, to be held 16-18 November 2000 in Samtiaqile.

[Casati 95] Casati, F.; Ceri S.; Pernici, B.; Pozzi, G. Cqutaeal Modeling of Workflows.
Proceeding®f OO-ER Conference. Gold Coast, Australia, 1995.

[DeAntonellis 91] Antonellis, V.; Pernici, B.; Samarati, RORM Method: a F-ORM Method-
ology for reusing specifications. In: Assche, F.V.; MOoult; Rolland, C.,Object
Oriented Approach in Information Systemsnsterdam, North-Holland, 1991. p.117-35.

[Eddis 93] Eddis, C.; nutt, g.j. Modelling and enactment aiflow SystemsApplications
and Theory of Petri NetBerlin: Springer-Verlag, 1993. p.1-16.

[Edelweiss 93] Edelweiss, N., Oliveira, J.P.M. and PeridciAn Temporal Object-Oriented
Model Proceedings, 5th International Conference on Advandedriration Systems En-
gineering, Paris, France, June 8-11, Lecture Notices inflen Science n. 685, pp.397-
415.

[Edelweiss 93a] Edelweiss, N., Oliveira, J.P.M. and ClastilJ.M.V, Temporal Logic Lan-
guage for Temporal Conditions DefinitioRroceedings, 13th International Conference of
the Chilean Computer Science Society, La Serena, Chile,X2¢€16, pp.163-178.

[Edelweiss 94] Edelweiss, N., Oliveira, J.P.M. and PerrBcj An Object-oriented approach
to temporal query languag®roceedings,’8 Database and Expert Systems Applications
Conference, Athens, Greece, Sept. 7-9, Lecture Notes inpGtam Science n. 856,
pp.225-235.

[Edelweiss 97] Edelweiss, N.; Oliveira, J. P.M. Roles Reprding the Evolution of Objects.
Proceedingof the Argentine Symposium on Object Orientation of thé"28ornadas
Argentinas de Informética e Investigacion Operativa - @AlAug. 11-12, 1997, Buenos
Aires, Argentina. p.57-65.

[Edelweiss 98] Edelweiss, N.; Nicolao, M. Workflow Modelirgxception and Failure Han-
dling RepresentatiorProceeding®f the XVIII International Conference of the Chilean
Computer Science Society - SCCC'98, Antofagasta, ChilejeNther 09-14, 1998. Los
Alamitos: IEEE Computer Society, 1998. p.58-67.

[Eder 95] Eder, J.; Liebhert, W. The Workflow Activity ModelAMO. Proceeding®f the
3 Int. Conference on Cooperative Information Systems, \éemkustria, My 1995.
p.87-98.

[Eder 96] Eder, J.; Liebhert, W. Workflow recoveBroceeding®f the 1*¢ IFCIS Int. Con-
ference on Cooperative Information Systems, Brusselgig®al, June 1996. IEEE Com-
puter Society Press. p.124-134.

[Eder 98] Eder, J.; Liebhert, W. Contributions to excepti@mndling in Workflow Manage-
ment.Proceeding®fthe EDBT Workshop on Workflow Management Systems, Vakenci

RITA e \Volume X e NUmero 2e 2004 59

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

Spain, March 27-28, 1998. p.3-10.

[Ellis 95] Ellis, C.; Keddara, K.; Rozenberg, G. Dynamic olga within Workflow Systems.
Proceeding®f the Conference on Organization Computing Systems — CQOIifitas,
CA, Aug. 1995. Comstock, N.; Ellis, C. (eds.), ACM Press,399.10-21.

[Georgakoupoulos 95] Georgakoupoulos, D.; Hornick, MetBhA An Overview of Work-
flow Management: from process modeling to workflow autormaitndrastructure ACM
Distributed and Parallel Databases.3, p.119-153, Sep. 1995.

[Heinl 98] Heinl, P. Exceptions during workflow executidProceeding®f the EDBT Work-
shop on Workflow Management Systems, Valencia, Spain, M2irep8, 1998. p.11-20.

[Ingres 91] Ingres Corporatiofngres SQL Reference Manu&lelease 6.4, 1991

[Jablonski 96] Jablonski, S.; Bussler, Workflow Management, Modeling Concepts, Archi-
tecture, and Implementatioiternational Thomson Computer Press, 1996.

[Jensen 98] Jense, C.S. et al. The Consensus Glossary obf@nifatabase Concepts -
February 1998 Version. InTemporal Databases Research and Practi€e Etzion, S.
Jajodia and S. Sripada (eds.) Springer-Verlag. Berlin elbielg 1998. pp. 367-405.

[Joosten 94] Joosten, M. M. SteTrigger Modelling for Workflow AnalysisDesign Method-
ology Group - Center for Telematics and Information Tecbgg| University or Twente,
P.O. Box 217, 7500 AE Enschede, the Netherlands.

[Joosten 94a] Joosten, S. Trigger modelling for Workflow iais. ProceedingsNorkflow
Management, Challenges, Paradigms, and Products — COMi@dAna, Austria, Oct.
1994,

[Leymann 98] Leymann, FProduction Workflow SystemEutorial at the 6* Intl. Conf. On
Extending Database Technology, Valencia, Spain, Mar. 248190p.

[Missikoff 98] Missikoff, M.; Pizzicannella, R. An Objeatriented approach to WorkFlow
Modeling. Proceedingsof the EDBT Workshop on Workflow Management Systems,
March 27-28, 1998, Valencia, Spain. O. Bukhres, J. EderaaSEds.) p. 57-65.

[Nicolao 98] Nicolao, M.; Edelweiss, N. Workflow Modellingsing a Temporal Object-
Oriented Model.Proceeding®f the EDBT Workshop on Workflow Management Sys-
tems, March 27-28, 1998, Valencia, Spain. O. Bukhres, J,EEd&alza (Eds.) p. 71-79.

[Oliveira 95] Oliveira, J.P.M. et al., On the Implementattiof an Object-Oriented Temporal
Model using Object-Oriented and Relational DBMS®¥orkshop Proceedings the 8"
Database and Expert Systems Applications - DEXA'95, Londérited Kingdom, Sept.
1995. Norman Revell, A. Min Tjoa (Eds.). p.35-44.

[Oliveira 98] Oliveira, J.P.M.; Nicolao, M.; Edelweiss, ionceptual Workflow Modelling
for Remote Courses.Proceedingsof the International IFIP Conference on Distance
Learning, Training and Education — TELETEACHING’98, Vieraustria, 1998.

[02T 9110, TECHNOLOGY.The G; Programmer’s Manualled. VersaillesO, Technol-
ogy, 1991.

60 RITA e \Volume X e NUmero 2e 2004

Workflow Modelling using a Temporal Object-Oriented ModéltwRoles

[Pernici 90] Pernici, B., 1990bjects with RolesProceedings, ACM/IEEE Conference on
Office Information Systems, Cambridge, MA, April 25-27, 8 Bulletin, v.11, n.2-3,
pp.205-15.

[Postgres 94] The Postgres Grouphe Postgres User Manualfersion 4.2, The Postgres
Group, Computer Science Div., Dept. of EECS, University alif@rnia at Berkeley,
1994.

[Reichert 97] Reichert, M.; Dadam, P. A Framework for dynagtianges inWorkflow Man-
agement System®roceeding®f the 8" Int. Workshop on Database and Expert Systems
Applications — DEXA'97, Toulouse, France, Sept. 1997. WagR.R. (ed.), IEEE Com-
puter Society Press, 1997. p.42-48.

[Saastamoinen 95] Saastamoinen, H.; White, G.M. On Hagdiceptions.Proceedings
of the Conference on Organizational Computing Systems —C&Mlilpitas, CA, Aug.
1995. Comstock, N.; Ellis, C. (eds.), ACM Press, 1995. p-30Q.

[Tang 98] Tang J.; Hwang, S.-Y. A Scheme to specify and imgleihad-hoc recovery in
workflow systemsProceeding®f the 8" Int. Conf. On Extending Database Technology
— EDBT'98, Valencia, Spain, March 23-27, 1998. Springe©8.9p.484-498. (Lecture
Notes in Computer Science no.1377).

[Van Stiphout 98] Van Stiphout, R. et al. TREX: Workflow Tratisns by means of Excep-
tions. Proceeding®f the EDBT Workshop on Workflow Management Systems, Vakenci
Spain, March 27-28, 1998. p.21-26.

[Vossen 96] Vossen, G.; Weske, M. (Ed&siness Process Modelling and Workflow Man-
agement, Models, Methods, and Todidernational Thomson Publishing, Bonn, 1996.

[Weissenfels 98] Weissenfels, J.; Muth, P.; Weikum, G. BllexWorklist Management in
a light-weight Workflow Management Systefroceeding®f the EDBT Workshop on
Workflow Management Systems, Valencia, Spain, March 27:288. p.29-38.

[WFMC 94] Workflow Management Coalition - The Workflow Reference Mdaetument
Number: WFMC-TC00-1003, Issue 1.1, Nov.1994.

[WFMC 99] Workflow Management CoalitionTerminology & GlossaryDocument Num-
ber: WFMC-TC-1011, Issue 2.0, Jun. 99 Available at httpsdmwwfmc.org.

[WFMC 96a]Workflow Management CoalitionThe Workflow Reference ModBlocument
Number: WFMC-TC00-1003, Issue 1.1, Nov.1994.

[Wieringa 91] Wieringa, R.; De Jonge, Whe identification of objects and roles - object
identifiers revisited Technical Report IR-267, Vrije University, Amsterdam, lldad,
Dec. 1991.

Appendix

Process class (

RITA e \Volume X e NUmero 2e 2004 61

Workflow Modelling using a Temporal Object-Oriented ModéiiwRoles

TRI P,
< base_rol e,
/* properties and rules that apply to all other roles */
responsi bl e agent = PERSON. Manager ,
executing agent = PERSON. Enpl oyee,
static properties = { reg_nr: integer },
dynami c properties = { contact_date: date, client: PERSON. Client },
rules = {
init: nsg(add_object) = state(active),
start: state(active) = nsg(add_rol e(define_route)),
nsg(allow role(fligth_reserve)), nsg(allow rol e(hotel _reserve)),
msg(al l ow rol e(car_reserve)), ... }
>!
< define_route,
responsi bl e agent = PERSON. Enpl oyee,
executing agent = PERSON. Enpl oyee,
static properties = { ... },
dynanmic properties = { cities: list of string, ... },
states = {active, defining, defined},
messages = {

res_flight(CGit: list of strings) to reserve_flight,
res_hotel (Cit: list of strings) to reserve_hotel,
res_car(Cit: list of strings) to reserve_car },

decisions = {
ok from PERSON. Cient,
add_city(City: string) fromPERSON.Client, ... },
rules = {
init: nsg(add_role) = state(defining),
cities: state(defining), decision(add_city(City)) = state(defining),
/* rule representing a fork: */
done: state(defining), decision(ok) = nsg(res_flight(cities)),
msg(res_hotel (cities)), msg(res_car(cities)), state(defined)}

reserve_flight ... >,
reserve_hotel ... >,
reserve_car ... >,
program print,
messages = {
flight_ok (Price: real) fromreserve_flight,
hotel _ok (Nane: string, Price: real) fromreserve_hotel,
car_ok (Price: real) fromreserve_car 1},
states = { waiting, printing, done },
rules = {
init: nsg(add_role) = state(waiting),
/* rule representing a join: */
start: state(waiting), {msg(flight_ok(P)),
nsg(hotel _ok(N,P)), nmsg(car_ok(P)) } = state(printing),
-}

ANNNANYV

62 RITA e Volume X e NUmero 2e¢ 2004

