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ABSTRACT

The interaction between robots and humans has been advancing at an ever-rising pace.
Being aware of not only where humans are but also predict where humans will go and do
next is an important feature to have in an assistant robot. The main goal of this project
is to explore ways of improving this feature. Future trajectories of humans walking were
predicted using deep learning fed with RGB data in a controlled environment in order to
better assist humans when needed. Kinect was used to achieve that goal along with its
RGB camera, infrared laser projector and infrared sensor. Data of people walking in a
controlled environment was collected and a dataset was created. Data from Human3.6m
dataset was used as well. The data was used to train RNN-LSTM models created to pre-
dict future paths. Openpose was used to identify humans and their body joints and create
poses. 3D pose data was estimated from 2D pose data using a 3D Pose Estimator in order
to recreate the path in the 3D space. An LSTM model with a 3D feature was created and
trained with 3D estimated data. A path prediction model with a 3D element was assessed
in comparison with a 2D path prediction model. While models were able to learn from
the data and present good predictions in some cases, they were not able to learn in other
cases outputting bad predictions. The metrics used to get quantitative results presented
limitations to measure the predictions. Limitations of using a 3D Pose estimator for 3D
path reconstruction were described. As a result of our project, models that predict future
path of people with different designs and performances were developed. As contribution,
a dataset of 113 GB containing people walking in a controlled environment was created

and a methodology to estimate 3D path information from 2D Pose was proposed.

Keywords: RNN, LSTM, Deep Learning, Machine Learning, Path Prediction, Kinect,
Robotics, Pose, 3D Pose, 3D Pose Estimation, Openpose, Human3.6m.



Predicao de caminho de humanos usando machine learning com dados de video 2D

e dados estimados de pose 3D

RESUMO

A interagdo entre robds e humanos vem avangando a um ritmo cada vez maior. Estar
ciente ndo s6 de onde os humanos estdo, mas também prever aonde os humanos irdo e
o que fardo € um recurso valioso de se ter em um robo assistente. O principal objetivo
deste projeto € explorar formas de melhorar essa habilidade. Trajetorias futuras de hu-
manos caminhando sdo previstas usando deep learning alimentado com dados RGB em
um ambiente controlado com a inten¢do de melhor assistir humanos quando necessdrio.
Kinect foi usado para atingir esse objetivo junto com suas cameras RGB e infraverme-
lha. Dados de pessoas caminhando em um ambiente controlado foram coletados e um
dataset foi criado, bem como foram utilizados dados do dataset Human3.6m. Os dados
foram usados para treinar modelos RNN-LSTM criados para prever caminhos futuros.
Openpose foi empregado para identificar humanos e suas articulacdes do corpo, além de
criar poses. Os dados de pose 3D foram estimados a partir de dados de pose 2D usando
um estimador de pose 3D, reconstruindo um caminho no espaco 3D. Um modelo LSTM
foi desenvolvido e treinado com dados adquiridos dos poses 3D estimados. O modelo
de predi¢do de trajetéria 3D foi avaliado em comparacdo com um modelo de predicao
de caminho 2D. Embora os modelos pudessem aprender com os dados e apresentar boas
previsdes em alguns casos, eles ndo foram capazes de aprender em outras situacdes. As
métricas utilizadas para obter resultados quantitativos apresentaram limitacdes para medir
as previsdes. As limitagdes do uso do estimador de Pose 3D para reconstru¢io de cami-
nho em 3D foram descritas. Como resultado do nosso trabalho, modelos que prevéem o
caminho futuro de pessoas com diferentes designs e performances foram desenvolvidos.
Como contribui¢do, um dataset de 113 GB contendo pessoas andando em um ambiente
controlado foi coletado e uma metodologia para estimativa do caminho 3D baseado no

pose 2D foi proposta.

Palavras-chave: RNN, LSTM, Deep Learning, Machine Learning, Predicdo de cami-
nho,Kinect, Robotica, Pose, 3D Pose, Estimador de Pose 3D ,Openpose, Human3.6m.
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1 INTRODUCTION

Robotics technology has been growing at astonishing rates. The use of deep learn-
ing made it possible to accomplish tasks that would be considered impossible before. The
combination of robotics and machine learning has been creating solutions that never cease
to surprise what would be expected from computers.

The interaction between computer and humans is becoming more common by the
day, and several technologies have been presented where robot assistants help humans in
many different ways. One of which is robots being used as assistants to elderly people,
helping in several daily tasks such as in (POLLACK et al., 2002). In this context, the
robot has to move accordingly to the position of the human depending on a given task.
This can be quite sensitive since depending on the severity of the situation the robot must
be able to evaluate with precision what it should do. It should not take too long to arrive
at its goal, but must also avoid going too fast in a way that would create a risk to hit the
person being assisted. That is one of the reasons why being able to predict the path of
humans walking is a good feature to have on a robot.

In this context, human detection is an important feature needed. There are several
works that present video-based techniques to detect pedestrians walking on the streets,
such as (DOLLAR et al., 2012), and (MI§EIKIS, 2012) that uses multiple cameras to im-
prove video surveillance. In this dissertation, we perform skeletal detection and afterward
create an artificial neural network models capable of predicting future paths of a person
walking. The main goal is to explore ways to create good predictions of the trajectory of
humans by creating a dataset and designing deep learning models that could contribute to
current mobile robotics. Improving this feature would make robots able to be preemptive,
moving out of the way when not needed, and approach when its service is required. Thus,
always being in the most appropriate place at the right time.

In order to reach the goal of predicting what will be the next path taken by a
human in an environment where a robot acts as an assistant, it is first necessary to detect
humans. Several works such as Openpose (WElI et al., 2016) (CAO et al., 2017) (SIMON
et al., 2017) and Alpha Pose (XIU et al., 2018) (FANG et al., 2017) are already able to
identify the whole human pose as well as several body parts successfully. In this research,
Openpose is used to detect the human body since its considered the state of the art in this
context. Sequential images of people walking are used as an input to Openpose, and the

result is assembled and inputted into different neural networks (NN).
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It is expected from this project to have a neural network able to predict correctly
the future paths that a human will take. To collect data a Kinect was used to record people
performing tasks in a kitchen environment and RGB and RGB-D were recorded to create
a dataset. Apart from that, a known dataset, Human3.6m, was used for experiments with
3D estimated data.

Extracting the path of humans walking in an environment from video is a chal-
lenging task. By using a skeletal detection 2D pose information can be acquired in each
frame. Therefore, by assembling this information throughout the frames it is possible to
recreate a path. It is important to note that this path is a 2D projection of the 3D space
and is prawn to errors and lack of accuracy. Instead of using only 2D path reconstruction,
a 3D pose estimator is used to create a 3D path in the 3D space. Two NN are designed to
deal with each data structure. The goal of this approach is to discover if an estimated 3D
information can improve the predictions for the case studied.

Many elements can influence the final performance such as model architecture,
data quality, and experimental obstacles like the angle of recording and variation of illu-
mination. During this project, those factors are assessed and ways to overcome the issues
encountered are explored.

The contributions of this work are the following: a dataset of people walking in
a controlled environment performing different tasks was presented, a methodology for
predicting 2D and 3D path based on video using deep learning models was created, a
framework for human walking analysis was developed, and the limitations of using 3D
pose estimator were outlined.

The rest of this document will present the background needed and the related
work in chapter 2. The methodology used in the experiments can be seen in chapter
3. A proof of concept experiment with mouse movement prediction employing one of
the neural network designs is present in Chapter 4. The initial approach taken as well as
the following points of interest approach is shown in chapter 5 followed by the results
of the approach. Chapter 6 exposes the 3D pose estimator as well as the comparative
approach used to measure the 2D RNN (LSTM) and 3D RNN (LSTM) models used,
comparative results of both models are evaluated. The issues encountered along the way
are in Chapter 7. Finally, the conclusions and future work can be verified in Chapter 8.
The acknowledgment is in Chapter 6. Additional work relevant for decisions made during

the master that does not influence directly the final work is presented in the appendices.
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2 BACKGROUND AND RELATED WORK

This chapter presents the basic concepts related to this work in Section 2.1 and the
related work in Section 2.2. The concepts presented here are related to fundamentals of
neural networks, focusing on Recurrent Neural Networks (RNN) with Long-Short Term
Memory (LSTM) layers, the learning models trained, the techniques and programs used

for pose recognition as well as the frameworks used to perform the data collection.

2.1 Background

During this project, many technologies and approaches were used and experi-
mented with. In this section the basic background needed for the technologies used is
explained.

An important part of our project is to identify the human skeleton and its body
joints. That can be done with Openpose. Openpose is a real-time multi-person system
that is able to identify the position of several body joints when an image with a person is
provided, having as result the detection of the human body, hands, and facial keypoints.
It is possible to see the outcome of Openpose on a single frame in Figure 2.1.

A RGB-D image is just like a RGB image with an extra channel that corresponds
to the image depth. For each pixel, the depth channel of the image keeps the information
of the distance between the image plane and the corresponding object in the RGB image.
We are able to create an RGB-D image once we have the RGB and depth data of the same
scene.

Openpose can use many sources like image, video, webcam and IP camera as
input. The output can be basic RGB image, image or video of keypoints, and keypoint
saved in several data formats (such as JSON, XML, etc). In this project, we used several
frames as input after extracting it from RGB and IR videos recorded with Kinect. The
output recorded was the original image with the human body detection plotted on top, as
well as the body keypoints.

The data collected using the Kinect was recorded with the Robot Operating Sys-
tem (ROS) from (QUIGLEY et al., 2009). ROS is a collection of frameworks focused
on development for robots. It has many tools and libraries that assist with developing
complex robotic systems. ROS has the concept of topics. A topic identifies the content of

a message. Kinect outputs a few different topics and the ones of interest to us that were
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Figure 2.1: Example of Openpose being used in one of the experiments. It is possible to
see that openpose can successfully recognize the human skeleton. The image resolution
1s 960x540.

recorded were \kinect2\sd\image_color_rect , \kinect2\sd\points, and \tf. Those topics are
responsible for streaming the RGB and depth data captured. The advantage of using and
recording ROS topics is that we can save them in .rosbag files and playback when
needed. Using this system allows us to have high performance and avoids de-serialization
and re-serialization of the messages. This means that when the playback is executed, the
data will preserve the original order. For this reason, ROS was chosen.

In this project, we use machine learning (ML) to try to predict future information
based on past data. (ZHAO, 2018) describes it as follows, “Algorithms that parse data,
learn from that data, and then apply what they’ve learned to make informed decisions”.
We work with a specific branch of ML, the deep learning (DL). DL creates neural net-
works (NN) with many layers between the input and output. This structure with many
layers is whats characterizes the deep in the name and allows for the model to learn and
make intelligent human-like decisions.

The use of ML and DL is highly dependable on the context. DL is more appro-
priate for complex problems and it can provide very precise prediction and human-like
decision. In another hand, creates a big overhead when it comes to execution time and
hardware needed. Usually, running DL models demand powerful GPUs and can run for
large amounts of time. In order for the DL models to learn a big datasets are often re-
quired. When dealing with simpler problems ML is more appropriate. It can run on low-
end machines, have excellent performance with small and medium datasets and usually
be trained in a smaller amount of time.

According to (BROWNLEE, 2019), we can say that deep learning neural network

basically tries to learn a mapping function from inputs to outputs. Many things are in-
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volved in this process. Defining the hyperparameters of the model as well as the weights
are important and sometimes extensive parts of the process of creating and training a neu-
ral network. It is such an integral part of the ML development that (GOODFELLOW;
BENGIO; COURVILLE, 2016) states: “It is quite common to invest days to months of
time on hundreds of machines in order to solve even a single instance of the neural net-
work training problem.”

The problem that NN solve can be described as a function approximation prob-
lem. Neural networks use the training dataset to try to learn to approximate an unknown
mapping function. The way to do this is by learning weights and the model parameter for
a specific network design. The training is iterative and the same process happens many
times. Each specific set of weights is executed with a number of examples from the train-
ing dataset and a model error is calculated, often referred to as loss. The loss function
is used to evaluate a state of the model with specific weights. The closer to zero the loss
function gets the better performance the neural network has. Each training iteration uses a
number of examples from the training dataset and that number is called batch size which
is highly dependent on the problem dealt with.

In each cycle of the learning algorithm, a learning rate is defined. That rate con-
trols how much to update the model weights on each iteration. It is said that an epoch
has been concluded once a whole cycle is done and a complete pass through the training
dataset is performed. We can also set the number of epochs that our model will execute.
Usually, at the end of the epoch we assess the performance of the model by looking at
the loss function. The required number of epochs can vary a lot according to the problem
and is often set after training and assessing the model on each epoch by checking the loss
function. Once there is no improvement in the loss function for a number of epochs, the
model has reached a good level of training.

Before deciding the learning model used, we needed to analyze and characterize
our problem. Since our aim is to predict future (x,y) and (z,y, z) positions for the de-
tected person, we are dealing with a regression problem. The artificial neural network
chosen for our learning architecture is a Long Short-Term Memory (LSTM) network
(HOCHREITER; SCHMIDHUBER, 1997). LSTM is a type of Recurrent Neural Net-
work (RNN) quite successful in many applications that deals with regression. In the field
of language modeling and prediction, LSTM became the leading approach due to its ro-
bustness and success rate to deal with time series problems. Since our problem falls into

time series category, LSTMs are used. Keras framework from (CHOLLET et al., 2015)
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is used in our work. It implements an LSTM described in (GERS; SCHMIDHUBER;
CUMMINS, 1999). The internal structure can be seen in Figure 2.2 from (ALTCHE;
FORTELLE, 2017).

One of the key features of LSTM is the cell’s memory represented in Figure 2.2
by m;. The LSTM cell uses different “gates” (operations) based on the input z;, the
memory of the previous state m,_; and the previous output h; ;. Based on x; and h;_1,
the input gate will decide how much information will be stored in the memory. The forget
gate is responsible for deciding how much to forget from previous internal state m;
based on the input. The output gate creates a new cell output based on the input gate
and a number of previous state outputs. This robust architecture and its features allow
the LSTM to correlate long-term relations between the data and perform learning of long
sequence patterns. For this reason, this model is considered to be powerful for time series
prediction.

As presented in (BROWNLEE, 2018), we can have 3 different LSTM designs:
one-to-one LSTM - input and output of size one; many-to-one LSTM - input sequence
of size n and output of size one; and many-to-many LSTM - input and output of size
n. We experimented with both many-to-one and many-to-many LSTMs. During the de-
velopment of the models, we designed a many-to-one LSTM and used the output of the
previous timestep as input to the next timestep in an interactive way. Having one predic-
tion per time step, we end up with several size 1 predictions performed sequentially to
create a series prediction. The problem encountered with this method was error propaga-
tion. Feeding the output of timestep 1, that had a very insignificant error as input to other
timesteps, caused a much higher error along future timesteps.

We found that this particular problem was not present in many-to-many LSTM
design due to the Time Distributed wrapper provided by Keras framework. Using this
wrapper we input a sequence of size n and receive as output a sequence of size n as well.
It applies a layer to every temporal slice of an input sequence and outputs equal dimension
predicted sequence.

With the goal of comparing LSTMs in a 2D space and a 3D space, we developed
2 LSTM models that differ in the input dimension. Our sequential model is composed by
a layer of 64 LSTM cells configured to return sequences rather than single values(Keras
returnSequences argument set to T'rue), followed by a Dense layer with the dimension
of each element in the sequence outputted. For 2D-LSTM the dimension of the dense

layeris 2, and it is 3 for the 3D-LSTM. Mean square error loss function, ADAM optimizer,
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Figure 2.2: Representation of the LSTM implemented by Keras. The activation functions
used are sigmoid(sigm) and hyperbolic tangent(tanh). The previous output is concate-
nated in [,] with the current input. From (ALTCHE; FORTELLE, 2017).
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and linear activation function were used.

We employed experiments with distinct camera angles and trained different mod-
els for the walking action. Besides that, we employed evaluation protocols often used
in the literature that splits training, validating and testing data. Each person walking is
referred to as a subject; in particular, subjects S1, S2, S3, S4, S5 were used for training,
while subject S6 was used for testing. Since training and testing data are from different
subjects the models never had contact with the particular person that it is trying to predict.

LSTM usage has been rising significantly and has been used in several different
contexts, presenting great performance in the area of natural language processing(NLP).
It has been applied in machine translation from two different languages treated as a se-
quence to sequence learning problem known as seg2seq as it was done in (SUTSKEVER;
VINYALS; LE, 2014). It was used in the context of image captioning where a frame is
interpreted and a text describing its content is outputted, as it is performed in (VINYALS
et al., 2015). A similar approach is done in (VENUGOPALAN et al., 2015), where a de-
scription of events happening in a video is outputted using the LSTM. It was used as well
in handwriting generation in (GRAVES, 2013) where results appear to be from humans
writing.

Many of language-related problems solved with LSTMs are interpret as a seq2seq
problem. One sequence is received and another is outputted. In the language context, we
know that the sequences are made of character, so we deal with discrete data. However,
LSTM power to learn what to remember and what to forget also works with continuous
data. The main difference resigns in the problem often being of regression nature when
it comes to continuous data and a classification problem when looking at discrete data,
such as text. Usually, LSTM in the context of NLP uses softmax as activation function

whereas in the context of path prediction sigmoid or linear activation functions are used.
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2.2 Related Work

Predicting human movements using neural networks is a task that faces several
challenges. A large number of approaches have been presented to better predict human
movements. A recurrent goal in the papers addressed here is Human Robot Interaction
(HRI). There are three different results aimed by the neural networks in this context:
predicting future poses, predicting path and predicting/classifying action. Since there are
similarities in the data collection, training, feature extraction and model, work related to
those three approaches will be considered. In this chapter, we will also exhibit papers
related to time-series predictions that use RNN-LSTM from other contexts such as car
movement prediction, text modeling/prediction, between others. Even though the contexts
are distinct, the approaches used in such projects are similar to ours due to the similarity
in the data.

In (BUTEPAGE; KJELLSTROM; KRAGIC, 2017), an approach for HRI using
conditional variational autoencoder is presented. It predicts a window of human motion
based on past frames. It uses skeletal data obtained from RGBD depth images and can
predict up to 1.660 seconds into the future. Each key point is composed of a (z,y, z)
coordinate and a rate of 30 frames per second was used for the recordings. Besides that,
80 minutes of recordings were used for the training and 10 minutes for the validation.

According to (BUTEPAGE; KJELLSTROM; KRAGIC, 2017), one of the chal-
lenges is that there is a lack of an accurate model of natural human motion. They at-
tempted to use only 8 body keypoints representing the torso, the arms and the head, com-
bined with 4 models. All joints are translated into a local reference frame that had the
root joint (head) as the center. There is one model for the root joint, another for the torso
with 4 keypoints, and one more for each arm with three keypoints. The data recorded
represents a person standing in front of a camera and performing an action, but the person
does not walk around. It is possible to see in Figure 2.3 the results acquired in the bottom
rows. The top row is an example of the training data and the second and third show a
sample of future trajectories predicted. They create models to predict human movements,
but they do not predict the path of the person walking like our approach.

The evaluation method used in this project is the average of the motion prediction
error (MPE): in each timestep, a mean square error is taken on all tests and summed
over each joint. Since we do not predict all body joints, we will be using a different

methodology.
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Figure 2.3: In the first row of the image we have an example of training data in RGB
depth image. The second and third show a sample of future trajectories predicted. Image
extracted from (BUTEPAGE; KIJELLSTROM,; KRAGIC, 2017)

That project differs from ours on significant points, specially because it predicts
keypoint movements of a person in the same place, while we predict the movement of the
person walking. It uses RGB depth images while we use RGB images. It records with a
30 FPS rate, while our experiments are performed with only 6 FPS and the data from the
Human3.6m dataset from (IONESCU et al., 2014a) present in some experiments uses 50
FPS. In addition, the models are distinct.

(MARTINEZ; BLACK; ROMERO, 2017) shows a state-of-the-art method on hu-
man motion prediction for actions such as walking, eating, smoking and discussing. One
surprising conclusion from the paper is that a simple baseline approach can achieve state-
of-the-art performance, which means that no motion modeling has to be done. Creating
a model that describes correctly physical limitations and intentions of subjects is a com-
plex task. Making the model learn from observation is an ideal form of modeling and
learning. The paper uses 3D poses in order to learn the model of human motion and pre-
dict future poses based on past ones. It uses Gated Recurrent Unit (GRU) instead of the
usual LSTM employed for this problem. Gated Recurrent Unit is a simplified version of
LSTMs, but its internal structure is simpler - which means it is faster to train. It tests on
Human3.6m dataset IONESCU et al., 2014b) with the actions: discussing, eating, greet-
ing, phoning, posing, purchasing, sitting, sitting down, smoking, taking a photo, waiting,
walking, walking a dog and walking together. In Figure 2.4 it is possible to see the results
of different algorithms compared with the ground truth (top row).

This work differs from ours for using RGBD instead of RGB and predicting poses
instead of paths. The evaluation methodology used is a measure of the euclidean distance
between ground truth and prediction in angle-space. Since we are working with 2D we

will not be using that evaluation methodology. In some experiments, we also use the data
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Figure 2.4: This figure represents 2 second motion generation by different algorithms.
The top row is the ground truth, the second line is SRNN and the bottom rows present two
variations of the algorithm presented in the paper. Image from (MARTINEZ; BLACK;
ROMERO, 2017)
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from dataset Human3.6m but we focus mainly on the action walking and predict the path.

The state of the art work from (CHEN; RAMANAN, 2017) presents an approach
to estimate 3D body pose with a single 2D RGB image of a person and is used in one
of our experiments. The fundamentals of this approach were shown in (LEE; CHEN,
1985) that tried to infer the 3D joints from their 2D projections. In (LEE; CHEN, 1985),
it was discovered that given the lengths of the bones, it becomes a binary decision tree
and each branch represents two possible joint states relative to its parent. Observing
joint constraints, the tree is pruned but many options were still possible. Following this
approach (JIANG, 2010), created a large pose database and using nearest neighbor queries
was able to solve many ambiguities. Finally, (CHEN; RAMANAN, 2017) was able to
reach a state of the art approach by creating a library with tuples of estimated 2D poses
with known 3D poses. After this, a nearest-neighbor search was used to match 2D pose
wanted with the 2D pose from the library. The result is the 3D pose from the tuple that
has the highest matching with the 2D pose wanted.

As shown in Figure 2.5, the NN receives an image of a person and from that, a 2D
off-the-shelf pose estimator can be used (such as Openpose) to get a 2D pose represented
by 14 body keypoints. The real performance improvement from this work comes from
the use of a 3D pose library. This library has 3D Poses acquired with motion capture
techniques that are very accurate. For each 3D Pose, a corresponding 2D pose projection

is created so the 3D library is filled with (3D, 2D) tuples. Each element of the tuple corre-
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Figure 2.5: This image is the overview of the 3D pose estimation approach from (CHEN;
RAMANAN, 2017). First, it estimates a 2D pose from an image and uses matching on a
library of 3D poses to estimates the depth. The gray skeleton represents the ground-truth
and the prediction is represented by the colored skeleton.
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sponds to the same person described in two dimensions and three dimensions. Having this
equivalence makes it possible to use matching of a 2D pose input with a tuple of (2D,3D)
Pose. This is the technique employed to acquire the 3D poses used in our project. Without
this, we would not be able to estimate the 3D data of a person in order to predict the path
in the 3D space.

Another field of research related to human trajectory prediction is the prediction
in crowded spaces. Predicting humans walking in this context focuses on the impact that
humans have on each other when walking close by. This is focused on multiple people
trajectory prediction. In (ALAHI et al., 2016), an approach is presented taking into ac-
count social norms that pedestrians follow, either to avoid obstacles or to accommodate
and keep a distance from a fellow pedestrian. It is interpreted as a problem of sequence
generation. It uses an LSTM to learn general human movement and predict the trajecto-
ries. Some approaches predict long sequences with LSTM but the dependence between
multiple correlated sequences is not captured by other methods while Social-LSTM tries
to solve that. It uses two data sets - ETH from (PELLEGRINI et al., 2009), and UCY
from (LERNER; CHRYSANTHOU; LISCHINSKI, ) - to test and compare results. In
their model they use a separate LSTM for each trajectory in the scene, meaning that each
person has a different LSTM, and the networks are connected through pooling so the lay-
ers can share information. They compare results with and without pooling and concluded

that pooling yields better results. For each person in the scene, xy-coordinates are used
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to describe the trajectory and a prediction of a certain length is outputted. The model is
composed of an embedding dimension of 64, spatial pooling size of 32, hidden dimen-
sion of 128 for all LSTM models, embedding layer with a rectified linear unit (ReLu).
The general structure of the model can be seen in Figure 2.6. The average crowd density
for the experiments was 30 people per frame. The experiments are taken from a top view

of the people walking.

Figure 2.6: This image shows the structure of Social-LSTM. Each trajectory has its own
LSTM and a pooling layer connects the LSTM layers, so information of close trajectories
can be exchanged. Image from (ALAHI et al., 2016)
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It uses 3 metrics to evaluate the predictions, average displacement error (ADE);
final displacement error (FDE); and average non-linear displacement error (NL-ADE).
These metrics are explained in Section 3.7. A 2.5 frame rate is used, and 8 frames are
observed to predict the next 12 frames. Since we have a similar input and output result,
the metrics used in this paper are the same ones employed in our research. The main
difference from this paper is that we only look at one person and the camera is not far
away from the person walking.

In (XU et al., 2018), a similar approach was taken but focused on collision avoid-
ance, a similar LSTM structure from (ALAHI et al., 2016) but the pooling layer is a
repulsion pooling layer focusing on avoiding collision by using a function that simulates
repulsion. It also uses ADE, NL-ADE, and FDE as metrics to evaluate the performance
as used in our project. It uses 8 frames to predict the next 12. After running experiments
of Social-LSTM, Collision-FreelLSTM, a simple LSTM, Linear trajectory avoidance and

Social Forces, the best results were acquired with Collision-FreelLSTM closely followed



25

by Social-LSTM. This shows that the pooling layers have a good impact on the final

result.

Figure 2.7: It is possible to see 3 cases of prediction using 3 different methods. The
ground truth is represented in yellow. Collision-FreeLSTM is presented in red, Social-
LST in blue. Image from (XU et al., 2018).
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In Figure 2.7 from (XU et al., 2018) it is possible to see prediction results of
Collision-FreeLSTM technique (in red) being compared with Social-LSTM (in green)
and Social Forces (in blue) technique. The ground truth (in yellow) is also shown. The
best prediction comes from Collision-FreeLSTM. The people recorded are very distant
from the camera so in 12 frames they have a small movement as it is possible to see in the
image. Whereas in the data used in our experiments the movement is quite significant: the
person walking is very close to the camera so a great distance is covered in a few frames.
Figure 2.8: a) Points of Interest and b) Action Paths are presented for trajectory learning

experiments. Image from (MORRIS; TRIVEDI, 2008b).
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In (MORRIS; TRIVEDI, 2008b) a survey on different vision-based trajectory
learning is presented for the context of surveillance. The technique used and discussed is
successful for trajectory learning in many different contexts. It is based on the definition
of points of interest (POIs) and activity paths (APs). The POIs are areas of the image in
which subjects perform actions or in which they enter or leave the scene. APs are the path

taken for each activity. In Figure 2.8 it is possible to see an example of POIs and APs of a
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situation discussed on (MORRIS; TRIVEDI, 2008b). This is the approach used by us in

one of the experiments that can be seen in Section 5.2.
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3METHODOLOGY

This chapter presents the methodology as well as the work performed in this
project. The main frameworks used in this project were Robot Operating Systems (ROS)
(QUIGLEY et al., 2009), Openpose (WEI et al., 2016) (CAO et al., 2017) (SIMON et
al., 2017), Tensorflow (ABADI et al., 2015) and Keras (CHOLLET et al., 2015). Python
(Python Core Team , 2019) was used to develop the NNs.

Some work has been done towards the setup of the software and hardware. Kinect
2.0 was used to capture the data and had to be calibrated prior to the data collection. Also,
short experiments were done as proof of concept using techniques that intended to be used
in future parts of the project such as mouse prediction experiment in Chapter 4.

Main experiments that trained, tested and predicted the path of the people walk-
ing as well as Openpose conversion from RGB frames to bodyjoint coordinates were
performed in the same equipment. It was an ASUS laptop with Intel Core 17 7500U,
with 2.7GHz, RAM memory of 8 GB, Nvidia GEFORCE 930MX Graphical Card with
2Gb dedicated RAM, running Linux Ubuntu 16.04 operating system. The process that
converted a 25 bodyjoint into a 14 bodyjoint represented by step 6 of Figure 6.3 was ex-
ecuted in another machine. This machine was also used for step 8 and it was a Positivo
computer with inter Core 15-3470 3.2GHz, RAM 4GB, running Linux Ubuntu 16.04.

This chapter begins dealing with machine learning technologies, presents the frame-
work and equipment used, shows the data collected, the dataset created and the external

dataset used, and ends with the evaluation metrics used.

3.1 Machine Learning Methodology

The methodology followed was the one presented in (FRANCOIS, 2008). This
work presents a well-defined methodology and standards for projects related to data and
machine learning. It compares 4 different methodologies directed to machine learning
project and extracts the common steps to create guidelines. The compared methodolo-
gies are Fayyad from (FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996), Cios from
(CIOS; KURGAN, 2005), SEMMA from (INSTITUTE, 2008), and CRISP-DM from
(CHAPMAN et al., 2000). The comparative result showing which steps are performed by
each project can be seen in Table 3.1. We also outline our approach and the steps present

in our work.
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Table 3.1: All steps involved in four proposed machine learning methodologies from
(FRANCOIS, 2008). We also show the steps used in our approach.

Step Fayyad | Cios | SEMMA | CRISP-DM | Our Approach

Objective determination X
Data collection X
Data cleansing X
Data reduction

Problem reformulation
Data exploration
Tools selection
Model construction
Model validation
Result interpretation
Deployment

O 00T AW —
el
ol alale

SRRl
el oReB ol R R RNl

el R eR o R R R RNl

SRl alo
SRl alo

—_ —
— O

Our project was designed according to the steps described in Fayyad methodology.
Since it is able to break down the methodology in modular parts and has a step of prob-
lem reformulation that happens after collecting, cleaning, and getting in touch with the
data that was necessary for our project. Each step of our work is described individually

considering those 11 steps:

e Objective determination: In this step, we determined the goal of our project. Ini-
tially, it was to predict the movement of multiple people walking in a controlled
environment with RGB and RGB-D. With this data, we would have a 3D represen-
tation of a person walking in a 3D environment. After this, ML models would be
applied to predict the path in the 3D and 2D space. The objective was redefined in

future steps.

e Data collection: The data collection was performed in a controlled kitchen en-
vironment and RGB and infrared (IR) data were captured. After exploring and
experimenting with this data, additional experiments with data from Human3.6m
dataset were made. The data collection process was performed with the consent of

subjects involved and is better explained in subsection 3.3

e Data cleansing: After collecting the data it was necessary to look at it and discard
the irrelevant information, check the quality and correct the discontinuities. This
was a step that had a lot of influence on the final problem definition that changed
in the problem reformulation step. Data cleansing was performed several times
during the whole process since the data has a huge impact on the training of the

model and the results. A few problems were found after looking at the data such
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as the occlusion of a person walking behind objects; the data discontinuity happens
due to a few miss detection so data suddenly drops to 0 as can be seen in section 7.1
and this had a significant negative impact on the learning of the model; the lack of
tracking of Openpose made it hard to distinguish data from one person to another,
problem described in subsection 3.3, so instead of multiple people in the scene only
one was used; the RGB data had good quality and it was possible to detect the
person in the whole area of the environment, but the infrared had a limited range,
shown in Section 7.3, in which it could detect the person walking so the problem
reformulation step was influenced by that as well. The paths walked by the subjects
were long and wide, and were outside the IR range. This problem can be seen in
section 7.3. IR data was not used in the final experiment and only RGB data had
good enough quality to be used.

Data reduction: In this step, the data had to go though a few adjustments. To
correct short discontinuities we used interpolation described in subsection 7.1. We
had to be sure that the data was being read sequentially after being recorded, and
using ROS assured the original order of frames which is paramount for time-series
prediction. Another process related to this step was the normalization of the data
before using as input in the model. The data had to be normalized to assume values
between 0 and 1. x y and z were normalized according to the frame width, height,
and depth of the scene. After the training, the data had to be de-normalized so the

prediction would assume real-world values.

Problem reformulation: This step was reached a few times, and problem reformu-
lations usually had a strong relation with data issues. Because of the infrared short
range, explained in 7.3, we stopped using IR data and only used RGB data. At this
point, we were dealing with a 2D path prediction problem that only used x and y.
We also reformulated the problem and did experiments with 3D estimated data us-
ing the dataset Human3.6m and compared path prediction using 2D data with path

prediction using 3D estimated data.

Data exploration: In this step, we analyzed the data captured and took relevant
decisions regarding the possibility of using the data. We plotted the data and looked
at it from different angles. Looking at the data we realized that a wrong detection
was happening, people that appeared from time to time in the television that was
present in the scene were recognized and disturbed the results. This problem is

described in subsection 7.2. Data limitations were also discovered in this step.
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e Tools selection: At this point, we made tests and decisions regarding what tools to

use for the creation of the model and experiments. The development environment
used was Pycharm (PYCHARM, 2016), which made it possible to debug the code
and to look at the data during the execution. The system used to collect and extract
the data was ROS. Keras 2.2.4 on top of Tensorflow 1.12.0 was the framework
chosen to create and experiment with different models reaching the decision of

using LSTM. Both Many-to-One LSTM and Many-to-Many LSTM were used.

Model construction: The model construction was a step of heavy load program-
ming and tests with distinct models were done using different algorithms, data con-
figurations, shapes, and sizes. The 3 main models used were a Many-to-One 2D-
LSTM, Many-to-Many 2D-LSTM, and Many-to-Many 3D-LSTM better explained

in the background section 2.1.

Model validation: The data was split in different ways depending on the case.
Some experiments were trained, tested and validated with different data of the same
subject, while others were trained with data of one subject and tested with data from
other subjects. All experiments had a split of 60 % training 20 % validation and 20
% testing. In some cases experiments were done in a way that data from one subject
was used to train and data from other subject was used to test. The upside from this
approach is that the test data is from a subject never seen by the neural network.
Other experiments used data from the same subject but from different paths. Data
from the testing, validation, and training never overlapped.

Result interpretation: Our results were interpreted according to measurement
metrics that compare the predicted path with the ground truth. The metrics em-
ployed were FDE and ADE as used in papers related to path prediction of people.
More on the evaluation metrics can be seen in subsection 3.7. It was also possible
to plot the results and asses whether the predictions are good or not in a qualitative

way.

Deployment: The preprocessing is computation-heavy and could not be done in
realtime with the resources available. Therefore, our models were tested only with
prior recorded data, meaning that no model was used with realtime data. Given
that the appropriate equipment was available it would be be possible to apply the
models in realtime. In that case, significant changes would have to be done in the

architecture of our approach.
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3.2 Kinect Calibration

Before starting to work with Kinect, it was necessary to calibrate the device. The
data collected were RGB and infrared (IR) images. In order to capture infrared (IR)
data, a calibration of the Kinect camera to define distortion coefficients was necessary.
Kinect has one RGB camera, one infrared camera, and IR projector. Both cameras have
to be calibrated separately as well as together. There are 3 kinds of calibration that had
to be done: RGB camera calibration, Infrared camera calibration, and synchronization
between the two cameras. The calibration needs to be done only once and has a distortion
coefficient matrix as a result. Calibration is needed due to lens distortion and is more
common in wide-angle lenses. When precision is needed, calibration is paramount.

In (OPENCYV, 2017) the theory used for the calibration is presented. OpenCV
takes radial and tangential distortion factors into account. The radial distortion factor is
calculated in equations 3.1 and 3.2. Therefore, for a given x and y pixel point in the

undistorted image, we will have Zrqq,,.,..,.. a0d YRrady;.,...., 10 the distorted image.

xRaddistorted = x(]' + leQ + k2T4 + k3r6) (31)

YRadgisiorsea = Y(1 + k1r? + kor* + kgr®) (3.2)

Tangential distortion happens when the plane of the image being taken is not par-
allel to the lenses - which is the case for the data dealt with in this work. Therefore, the
tangential distortion factor can be calculated with the equations 3.3 and 3.4, which are

used to reach the distortion coefficient matrix in equation 3.5.

:L.Tangdistorted =z + [2p1xy + p2 (T2 + 21.2)] (3.3)
yTangdistorted = y + [pl (TZ + 2y2> + 2p21‘y} (34)
distortion_coef ficients = (ki, ko, p1, D2, k3) (3.5)

A camera matrix is used to create a correlation between physical world units and

pixels. The optical centers ¢, , ¢, and the focal lens f,, f, are calculated and used in the
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matrix multiplication equation 3.6 to make a conversion between units.

x fo 0 | | X
yl =10 f, ¢l |Y (3.6)
w 0 0 1 Z

The process of calibration calculates those two matrices. A chessboard was used
for the calibration and several images were captured. The chessboard was positioned
in different locations and angles, new patterns are found with every new image and the
matrices are updated. This is made to cover the majority of the image and correct any
possible distortion in several areas of the image. Roughly, between 100 to 150 frames
were used in the calibration performed.

Part of the process can be seen in Figure 3.1. In the 4 pictures in Figure 3.1, it
is possible to see many patterns being recognized by OpenCV due to different positions
and angles that the chessboard is in. The matrices are updated at each new image. In
this process, it is necessary to gather a lot of images with diverse distances from the focal
points and distinct angle so the calibration can be done properly. The practical process of

calibration followed is described in (WIEDEMEYER, 2017).

Figure 3.1: Chessboard being capture in different angles and recording different patterns
to update the camera matrix and the distortion coefficient matrix.

Even though the calibration process was made and the IR data was captured, it
was not possible to use the IR data due to the long distances of the paths recorded. The
range of the IR camera is much different than the RGB camera. The Kinetic depth range
goes from 0.8m to 4m and the path taken by the subjects exceeds this range. This is better

explained in Section 7.3.
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3.3 Dataset Collected

After the process of calibration, the data that Kinect provided was more reliable,
so it was possible to start the data collection to create our dataset. The data collection
was made by using ROS to capture and store the data in rosbag format. All files were
kept in external hard drives. In order to be able to perform diverse experiments, many
types of data were captured from the same experiment. Also, distinct experiments and
data extraction were performed. The data captured was RGB and infrared(IR). The RGB
images had 960x540 resolution. The depth images had 623x537 resolution. Having these
data combined with the keypoints of the human body, it is possible to create more robust
complex prediction models. The frame rate used was 6 FPS and it was used partially
because of computer limitations since higher FPS caused memory problems given that
only 8 GB RAM was available. The frame rate chosen is expected to be enough to record
and analyze the data for our goals.

ROS framework was used to collect and store the data in .bag format. When
using the Rosbag tool, it is possible to record from and playback to ROS topics. It al-
lows high performance and avoids de-serialization and re-serialization of the messages.
Meaning that the original order of the messages will be preserved when the playback of
the data is performed.

After recording the data, each experiment is converted from .bag to video format.
The video is then inputted into the Openpose system. At this point, we have two types
of data: the keypoints presented in JSON and the original image with the human joint
detection plotted on top of the respective joints.

Several issues were encountered while collecting the data and some modifications
in the original project had to be done. Having more than one person recorded at the
same time was a problem since Openpose does not have people tracking. The output has
the format described in Section 3.6. This means that when reading the JSON file that
represents human keypoints it is not possible to keep track of which keypoints belong
to which person through the time. It is possible to see in the snippet below the format
outputted by a frame with two human bodies detected. In this case, throughout the frames,
it is not possible to set the two people apart without additional tracking techniques. To
focus on the path prediction problem, we decided to perform experiments and collect data
of a single person walking instead of applying individual tracking. Applying tracking

techniques would bring new issues such as people crossing paths or being behind each
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other. In order to focus on the NN model, only datasets with one person at a time were

used, and the data recorded also had one person at a time present in the scene.

{

"people": [ {
"pose_keypoints":[842,322,0.885,878,322,0.848...], }1],
[ {
"pose_keypoints":[438,151,0.827,451,156,0.830...1, 1}]

All data from our dataset was recorded in a kitchen environment. The data descrip-
tion can be seen in Table A.1 in the appendices section. Experiments were performed by
a few people, but the majority of the data recorded was performed with only one subject
that was available for most recordings. We had 4 data collection setups. In the setup num-
ber 1 and 2 initial data was recorded containing people walking in the kitchen randomly
and performing everyday actions at will. No particular goal or path was taken and the
data was not labeled. That data was used in the initial experiments described in Section
5.1. The data was stored in .rosbag files the setup 1 had size 5.21 GB and setup 2 had size
26.03 GB.

The data from setup 3 was recorded envisioning experiments such as the ones
presented in Figure 2.8 from (MORRIS; TRIVEDI, 2008b) in which points of interest
(POIs) are defined and activity paths are performed between the POIs. We recorded peo-
ple walking to specific points of interest in the kitchen area and performing some action.
The actions were: sitting on the back table (bt), sitting on the side table (st), going to
the coffee machine (cm), and going to the espresso machine (em). The paths towards the
actions started on other points of interest of the kitchen: the bottom left (bl), the bottom
right (br), the top left (tl), and the top right (tr). Activity paths were recorded to and from
the point of interest, and each path was performed 5 times, therefore each activity path
was observed at least 5 times. Each path was labeled with the final POI. The points of
interest can be seen in Figure 5.3 and a few of the activity paths taken between the points
of interest can be seen in Figure 5.4. In setup 3 a total of 38.04 GB were recorded. Setup
4 had 43.46 GB recorded but was not used in any experiment in this project and can be
used in future work.

From the rosbag files, we run Openpose on the data and acquire more detailed and
descriptive data in the form of a human pose. That data is preprocessed before being used

in the experiments. In each frame, we have 25 bodyjoints that are  and y coordinates and
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describe the body of the humans detected in the image. With this data, many actions can
be performed. Once we have two or more sequential frames we can calculate the velocity
of each joint in the frame. We can use the pose to infer the 3D pose and the depth of the
person, as we do in section 6.1, and we can recreate the path of the person detected. The
data from this dataset was used in a few experiments so far but many relevant experiments

can be designed with the dataset and are part of our future work.

3.4 Data collection Approval

In order to collect the data from people, it was required to apply for a data col-
lection approval with Norsk Senter for Forskningsdata (Norwegian Center of Research
Data). After this approval, a form was created and can be seen in Appendix B. It is impor-
tant to mention that the data was used only from the users that read, consented and signed

the form.

3.5 Human3.6m Dataset

Human3.6m is a 3D Humanpose dataset widely used for bench-marking 3DPose
algorithms created by (IONESCU et al., 2014a). It contains video of 11 human actors
performing several actions in a controlled indoor environment. Some of the actions are
walking, sitting and phoning, walking a dog, between others, but the only that interests
us is the walking scenario. The scenes are captured from 4 different camera angles at the
same time at 50 frames per second. We can see camera arrangement on the environment
in Figure 3.2. The space is 4 by 3 meters and there are 4 cameras recording each subject
from different angle. In our experiments, we distinguish the cameras by naming them
A, B, C, and D. In total, Human3.6m contains 3.6 million frames of humans walking,
with labeled poses of actors performing various tasks as well as the mocap data of each
experiment. Having such a robust dataset is what makes it possible to have data-driven
3D pose estimation models trained.

In one of the approaches taken by our project, only data from Human3.6m was
used in order to avoid problems related to data quality. When using the data collected a
few data-related issues were encountered. By using this dataset we can be sure that the

data has good quality and we are able to focus on experimenting with the LSTM models.
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Figure 3.2: Camera arrangement of the environment in which the recording of the Hu-
man3.6m data was performed. We see that there are 4 cameras all recording from different
points of the room with distinct angles. Image from (IONESCU et al., 2014a)
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3.6 Openpose Data - Human Keypoint Format

Openpose outputs the human body detected as a set of keypoints and each one
represents a part of the body. Depending on the version used it is possible to obtain 25
or 18 keypoints to recognize the body. Besides the body, face and hand are also detected,
20 and 69 keypoints are used for the recognition respectively. It is possible to see a

representation of the keypoints in Figures 3.3, 3.4, 3.5 from (WEI et al., 2016).

Figure 3.3: Representation of the 25 body keypoints detected by Openpose on the left,
and 18 body keypoints representation on the right. The number of keypoints changes
depending on the version of Openpose. During the project, we used both. Images from
(WEI et al., 2016)
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At the beginning of the project, the latest version of Openpose used 18 body key-
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points, so all algorithms were developed to fit that human body model. During the devel-
opment, a new version of Openpose with higher accuracy was published using 25 body
keypoints so the following experiments were adapted to use the latest version of Open-

pose.

Figure 3.4: Representation of the 69 face keypoints detected by Openpose from (WEI et
al., 2016)
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Figure 3.5: Representation of the 20 hand keypoints detected by Openpose from (WEI et
al., 2016)

The data is outputted in JSON format and several flags are available to get different
data formats. It this project, only the keypoints of the neck were used as shown in Figure
3.3. Each keypoint is composed of three variables: z, y, and c. The parameters x and y
represent the position of the keypoint on the = and y axis of the image. The parameter c
represents the certainty of the reading. The range of ¢ goes from 0 to 1 while x and y will
be in a range from O to the height and width of the image. The images have a height of
540 and width of 960. The parameters x and y are outputted with values from 0 and 960,
and 0 to 540, respectively, and are normalized before being inputted into the NN model,

assuming values between 0 and 1.
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3.7 Evaluation Metrics for xy-coordinate trajectory prediction

The metrics used to evaluate the results of our prediction are the same as those used
in (ALAHI et al., 2016) and (XU et al., 2018) for path prediction in crowded spaces. They
compare the result of the prediction with the ground truth using the metrics in Equations

3.7 and 3.8. Those are the metrics:

e Average Displacement Error (ADE) : The average displacement error is the mean
square error (MSE) of each predicted point of a trajectory compared to the real
points. M represents the number of trajectories predicted and 7, is the timestep
of the last observed sequence, meaning that the prediction will start from the next
timestep. Tpcq is the last timestep of the predicted sequence. (&%, §¢) represents the
predicted z and y position at timestep ¢ and of trajectory 4, while (z£, y!) represent

the ground truth of the = and y for a timestep ¢ and sequence «.

M Tore ~ ~
Zizl ZtiT:bSH [("Lf - xDZ + (yf - y§)2]
M(Tpred - Tobs—i—l)

ADE = (3.7)

e Final Displacement Error (FDE): The final displacement error evaluates the dis-
tance between the true and the predicted final destination in the last position at

timestep 7 preq-

B sz\il (:%Tp'red . xrp'red)Q + (ngTEd . yTstd)Q

FDE (2 (2 (2 (2 )
% (3.8)

e Mean Square Error of x and y (MSE): The mean square error of x and y was also

measured separately in order to asses the predictions in each axis.
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4 MOUSE PREDICTION EXPERIMENT

The initial results from the first models created were just random data. A lot
of effort was employed into changing the model to see if the output would presented
improvement but nothing changed. After following the study of IVANOV, 2017) that
presents many reasons why neural networks do not work the results started to improve. In
this article, the importance of the data quality is stressed. No good prediction can come
from a perfect model fed with bad data. The data can have many problems that are not
easy to detect especially if there is a lot of complex data. Apart from the many different
techniques and hints presented to investigate and enhance the data, a valuable suggestion
is given: try solving a simpler version of the problem. This can help find where any issues
are and that is what is proposed in this chapter. A simpler version of our problem is solved
and accurate data is used.

After being guided by (IVANOV, 2017), it was suspected that the data extracted
from Openpose was the main reason for the problems presented in the first experiments
with the model. For that reason, an experiment with similar data was made. In order to
acquire data without any noise, the  and y position of the mouse cursor were recorded.
This data was used to train an RNN model with LSTM layers. Since the data from the
mouse has the same shape as the data used in our walking path prediction experiments
it was possible to reuse the RNN model for that problem. After verifying that the model
works with the data extracted from the mouse it is possible to single out the problem
and be sure that it is related with the data extracted from the walking direction prediction
experiments. This experiment was built on top of an example available at the repository
(MAJUMDAR, 2017) that detects the mouse movement in real time and plots the trace
of it in the screen in real time. We used the parts of the program that track and plot the
mouse movement and design our model with few adaptions.

First, the training process takes place, and the