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Abstract. We introduce a weak formulation for a system of electrostatic and hydrodynamic
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1 Introduction

In this paper we establish results on existence and unigueness of the weak solu-
tionsfor asystem modelling the motion of acharged particle driven by the action
of an external electrical field. This phenomenais known as electrophoresis and
isimportant in many technical applications (avast literature isavailable: seefor
example [29], [24], [27], [2], [1], [3], [13], [30], [14]).

We are considering a particle (a charged polymer, for example) immersed in
an ionized solution (a viscous incompressible fluid). On the boundary of the
enclosure an external electric field induces the electrical potential inside the
enclosure which is determined by the Poisson-Boltzmann equation (see [19],
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2 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

[10]). The hydrodynamic behavior of the system is governed by the Navier-
Stokes equation.

We are not considering the usual approximation for the effect of the electrical
field on the particle based on Prandtl boundary layer theory well knownin colloid
science, the so called slip-vel ocity condition (for detailssee[4], [22], [27]); their
derivation requires better regularity properties of the boundary of the particle
(see [28] and the discussion in the introduction of [27]).

Asremarked in [24] the theoretical analysis of the electrophoretic motionsis
quitedifficult, asit combines specific features of polymer physicswiththeintrin-
sic complexity of electrokinetic phenomena. From a mathematical standpoint
the difficultiesreside in the treatment of the el ectrical -hydrodynamic couple and
onthelow regularity of thedata. We have established el sewhere 6] the existence
of a H*-variational solution for the electrostatic potential, for ageneral class of
domains. In the case of Lipschitz regions we have established a H*/?-regularity
result by means of the singular integral operators theory; this regularity is opti-
mal, even in C*-domains (see the comments and negative results in [20]). For
Cl2-domains, 0 < « < 1, and suitable charge distribution this theory can be
applied in the classical sense ([25], [18], [7]) in order to obtain more regularity
for the potential [5].

Recently, the motion of rigid bodiesin abounded domain filled with aviscous
flow has been treated rigoroudly ([11], [17]). Special techniques (from the trans-
port theory [23]) have been used in order to obtain existence and properties of
the suitable weak solutions for these systems. In particular in [11] aglobal weak
formulation isintroduced and existence of solutionslocal in time is established
when a L? body force and C*-*-domains are considered. Evidently, in the study
of the electrophoretic motion we can not use directly these results because we
have an external electrical field interacting with the ionized solution. However,
we obtain asimilar result of local existence (see Theorem 3.1); thisis obtained
as a consequence of uniform bounds and convergence properties involving the
electrical force term F (Corollary 4.1, Theorem 4.2). Following the discussion
in[6] we chooseto prove these properties restricted to the case which the surface
charge distribution of the particle and the fixed charge distribution (in the parti-
cle and in the solution) are L? and L>° functions, respectively; in this case we
need only consider the Lipschitz regularity on the boundary of the particle. The
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LUCIANO BEDIN and MARK THOMPSON 3

existence of weak solutions obtained in Theorem 3.1 follows from the additional
hypothesis that the particle domainis of class C1. More properties on F can be
obtained in the C1 context if we assume stronger hypotheses [5] on the charge
distributions but we do not consider this situation in this paper.

2 The governing equations

Consider arigid, charged particle immersed in a electrolyte solution under the
action of an external electrical field. We suppose that the solution (a viscous
fluid) occupies aregion D C R3 and at the initial moment of time, the particle
(arigid body) occupies acompact region Ko C D such that its center of massis
located at the originy = 0 of a Cartesian coordinatesy.

Let us define K () as the domain occupied by the particle in the time ¢ and
¢(x,t) as area vaued function which represents the electrical potentia in
(x,1) € D x [0, T], whereVr € [0, T], dist(dD; 0K (1)) > d, whered isa
fixed constant. Weset ¥ (x, 1) = 252, where A isthetemperature (constant) of
the system and e is the electron charge. The governing equations and boundary
conditionsto v are (see[6], [19])

V- (k& DOVY (X, 1) —bX, ¥ (x,1) = p(X,1), X€D,
Vo(x, 1) = Y1(x, 1), Xx€IK(D),
Yo(x,t) =V (x), xe€dD,

3 9 4
) — 2 = P ). x € K@),
on an A

2.1)

Here

e k: D x[0,T] - L(R3 R3 isdefined ask;; (x, 1) = §;;k1 if x € K(1),
kij(x,t) = &;jk2 if x € D\K(t), where k1, k, are the dielectric constants
in K () and D\ K (¢) respectively.

«b:DxR = R, b(x ¥(X1) = kap?snhy(x, 1) if x € D\K (1),
b(x, ¥ (x,1)) = 0if x € K (1), rp? isthe Debye radius [10].

« W(x) =T yy(x, 1) = Y (X Dk ad Ya(x, 1) = Y&, D p xa-

Comp. Appl. Math., Vol. 25, N. 1, 2006



4 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

» o isasuperficial charge distribution and p(x,1) = (p1(X, 1), p2(X, 1)),
where

dre e |
,O]_(X, t) = _Tlol(x)v pZ(X’ t) = _TIOZ(Xv t)7

pt=r'lkos P =P lpxw
are the charge distribution in K (r) and D\ K (r) respectively.

Theaction of theelectrical field on the particle produceitsmotion. The motion
of fluid is described by the velocity field v/ (x, ) (velocity of the fluid material
point which has Cartesian coordinatesx at timet) and satisfiesthe Navier-Stokes
equation

vy (3,v/ +div(y/ @ v/)) —nAv/ +Vp =7,F, in D'(Qr)?
dvv/ =0, in Qr

v/ =0, in 4D

v/i—o=v{ in D\Ko

2.2)

forall + € (0,T). Here n > 0 isthe viscosity of the fluid, v, > 0 isthe
homogeneous fluid density (of the mass) and Q7 = {(t,x)/t € (0,7), x €
D\K (1)}; denoting p’*" astheion density of the solution, wehave F = —(p2 +
")V ¢, as the electrical force on the fluid domain (see [30]). Then F =
2 (p2 + rpkasinh (¥2)) (V) I p\KG) using the Boltzmann distribution for
p'" (see [16]).

Let us set x.(¢) asthe center of mass of the particle; w(z) the rotation vector;
R(?) the trandlational velocity; A the symmetric inertial matrix; v? the velocity
of the particle. We observe that if v, > 0 is the density (of the mass) of the
particle,

y Ay =7, | Iy x (x —x.(0))|%dx,
Ko
foraly € R3. Wehaveaso v’ (x, 1) = R(t) + w() x (x —x.(¢)) forx € K (z).
It isimportant to observe the implicit dependence of F on v?.

From the Newtonian mechanics for rigid bodies and the stress tensor in fluid
dynamics, if M isthe mass of the particle, the evolution law for the motion is
given by
dR(?)

e

M

/ aH(x,t)-n(x,t)ds+/ of(x, 1) n(x, t)ds
K (1) dK (1)
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LUCIANO BEDIN and MARK THOMPSON 5

and

dw(t) / "
A = xX—x.(0)) x (6" (x,1) -n(x, t))ds +w(t) x (A-w)(t)
AK (1)

dt
+ f (x—x.(1) x (65(x,1) -n(x, 1))ds.
K (1)

If weset D(v/) = 2(Vv/ +(Vv)T) theno # (x, 1) = 2nD(v/ (x, 1)) — p(x, )]
is the stress tensor of the fluid;

UE(X’ t) = Gi?(x7 t) =

Akz (02 02 1 2
il i S S WA
4e <8x,- ox; 2 1(V¥2)

isthe electrostatic tensor (see [30]).
We assume the following hypotheses on the data

(i) KoisaLipschitzdomain.

(i) DisaC?-domain,¥ € HX(dD)NC(AD),o(.,t) € L>(0K (1)), p(., 1) €
L>®(D),Vt € [0, T].

Remark 2.1. Asremarked in the introduction of this paper, under the above
hypotheses we have established elsewhere [6] that

V(1) = @, ¥2)(, 1) € H(D) N (HY*(K (1)), H¥*(D\K (1)),
fordlt € [0, T]. Thisregularity result and Trudinger’sinequality (seediscussion
in [6]) give usthat

sinh (¥2) (., Dllg , ;& < 00, V1< p <+oo.

Recalling the Sobolev embedding HY?(D) c L3(D), the Holder's inequality
gives us

_sinh® (Ya(x, )|V (x, 1) [Pdx

D\K ()

< Isinh (W2, NG 6 12 D5 5 pe < T00-
Then F(.,t) € L?(D)3, vVt € [0, T] (evidently thisimpliesF € L3((0, T) x
D)3). Asimilar calculationshowsusthat o £ (., 1) € L¥*(D\K (1)), Vt € [0, T].

As can be seen in the following section an existence result local in time of

the suitable weak solutions for (2.2) coupled with (2.1) is available if we as-
sumethat Kq isa C**-domain.
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6 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

3 The notion of weak solution

Following [11], let us define the Eulerian densities v,(x, 1) = v,k (X),
vr(x, 1) = Vylp gy (x) and the global density v = v, + v,. We aso define
the global velocity in D as

v/(x,1) if xe D\K(@),

ux, 1) = vP(x,1) if xeK().

In view of the conservation of mass, v satisfies the linear transport equation

in D
o;v + div(vu) = 0.

We requirethat v2 -m = v/ -nando” - n = T in 9K (¢), where —T is the
force applied by the particle on the fluid. We canwrite T = X - n, where X is
the Cauchy stress tensor in the body.

On thewalls, we enforce homogeneous Dirichlet boundary conditionsu|;p =
0. Moreover, the incompressibility of the fluid, the rigidity of the structure and
v? .n =v/ - nimply that div u = 0.

The evolution laws of the momentum for the fluid and for the particle are
given by

. 1 1
o(viu) +diviviu®u) = —divvs(2nD(a) — pl)) + —% - Vv, + V/F
vy Vp
. 1. 1 4 1 .
o(vyu) +divv,u®u) = —div(v,X) — —o" - Vv, — —0o" - Vy,,
Vp Vp Vp

respectively. Here D(u) = %(Vu + (Vu)T) is the global rate-of-deformation
tensor.
Introducing the global stress tensor

vt wE
vy v, ’
we obtain the global systemin D'((0, T) x D)3,

9;(vu) +div(vu ® u) = div T + vF,

' ' (3.0
divu =0, 9,v+div(vu) =0, v,D(u) =0,
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LUCIANO BEDIN and MARK THOMPSON 7

v{(x), xe D\Ko

ll(X, O) = Vp(X, 0) = W(O) X (X - XL(O)) + R(O)’ X€ KO’

(3.2
V,(X,0) =V,Ik,(X), vr(x,0) = UfID\fo(x)
v(x, 0) = vo(x) = v,(x,0) + v,(x, 0).
We reproduce here, following the paper [11], the notion of the weak solution
of the above system

(3.3)

Definition 3.1. (v, u) isaweak solution of (3.1)—(3.3) in (0, T) if it satisfies
the apriori energy bounds

v e L®((0,T) x D), ue L™, T; L3(D))*N L0, T; Hy(D))?,

and if for al ¢ € 'V and for amost every r € (0, T),

f / (vu- 0,0 +va®@u: D(p) —nD() : D(p) + vF - @) dxdt
o Jp

+ / voug - ¢ (0)dx = ([ vu - (pdx) (1),

D D (3.4)
9;,v+divivu) =0, divu=0,
v,D(u) =0, wul;p =0, in D'(0,T) x D)3,

vo € L¥(D), u(.,0) e L3D)3,
where V is defined by
V ={pe H(O,T) x D)*/p(t) e V(t), ¥t € (0, T)},

and
V(t) = {¢ € Hy(D)*/div ¢ = 0, v,D(p) = 0}.

Thefollowing existence theorem for the above weak solutionsisavailable[11]

Theorem 3.1. Under the hypothesis (ii))~(V) (see Section 4) and the additional
assumptions that Kg is a Ct*-domain, ug € Hol(D)S, divuo =0 v,D(ug) =0
and §(0) > d, there exist T* € (0, +00] and a solution (v, u) of (3.4) such that

(i) B(v) e C(0, T]; LP(2)) N L*®((0,00) x D) forall T < T* p < o0
and B € CY(R; R).
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8 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

(i) ue L>®(0, T; H}(D))® and d,u € L*((0,T) x D)3 forall T < T*.

In [11] the hypothesis F € L2((0, T) x D)® (a body force) is assumed (see
Remark 2.1) and the proof of the existence theorem as Theorem 3.1 is based on
the solution of an approximated system (obtained by regularization techniques).
The existence of the approximated solutions is obtained by the Schauder fixed-
point theorem (see[5]), viaa solution of an appropriate inhomogeneous (linear)
Stokes equation. Using the C**-regularity of the domainsand the smoothness of
the coefficients, thislinear problem has a solution with the necessary regularity.
Thesolution (u, v) isbuilt asalimit of these approximations; the existence of this
limit is derived from the compactness properties of the linear transport equation
[12]. This is made possible if we can obtain eliptic estimates and a priori
bounds for u as well as energy bounds for v (see Section 4 in [11]). However
as F depends on u we need to take some care in this regard. More precisely
let us define for each m € N, (u™, v F) such that v is bounded in
L*((0, T)x D) uniformly inm, u™ isboundedin L2(0, T; Hy(D)NW14(D))3,
d,u is bounded in L2((0, T) x D)3 uniformly in m, vy" converges to vo
in L2(D), uy" converges to uo in L%(D)3 and (3.4) is valid, for al o™ e
Vo We set K™ (1) = M™(t)Ko, where M™ () is an invertible affine
transformation, and we suppose that § = inf{8" (¢),r € [0, T],m > 0} > d,
where §" () = dist(d D, dK ™ (1)); F™ is defined by the calculation of ™,
the solution of (2.1) considering (K™ (z), p™, o™). We have to show that
fOT IF™ (., 7)1, pdt < C, where C does not depends on m.

Admitting this uniform bound on F, the stability results [12] for linear
transport equation can be used asin [11]: there exist (v, u) such that up to the
extraction of asubsequence, B (v™) convergesto B(v) weak* in L>°((0, T) x D)
andinC([0, T]; LP(D))forall p < +ooanddl g € C1(R), andu™ converges
touin C([0, T1; H{(D))3forall s < 1. However, if F isrelated with v, where
Y isthesolution of (2.1) considering K (¢), p, o, itisnot obviousthat (3.4) holds
for (u, v, F) for all given ¢ € V. Thisis established by the special argument in
Section 4 of [11] if we can show that

t t
f/F’”-(dedt—)/ /F-godxdr,m—>oo, VeV, Vtel0,T].
o Jp o Jp

Asweshall seeinthenext section, in order to establish theseresultsfor F | F,
we need to study the properties of the solution v+ of (2.1). Additional hypotheses
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LUCIANO BEDIN and MARK THOMPSON 9

on p and o are also necessary and as remarked in the Section 2 we shall prove
the resultsin amore genera framework: we assume hypothesis (i), i.e.,, Kpisa
Lipschitz domain.

4 Bounds and convergence for the potentials

Asremarked in [6], the determination of the charge densities in bio-molecular
systemsisanon-trivial question which istreated in some computational studies
using Hartree-Fock approximation techniques (see [9], [26]). Here we assume
explicitly the following hypothesis

(iii) Let p™ asinthe Section 3. Then ||p"™ || ~(0.1)xp) < C, Where C does
not depend on m;

(iv) Foralt e [0, T], ™M™ ()x,t) = o (M™ ()X, t) = o (M()X, t) =
o(x,0),Vx € 0Kj.

) llp™ — pllLeqo.ryxpy = 0, m — +o00.
Recalling that & € H'(3.D) and following [6] we consider the problem

V. (k(x,)VU(x,t)) = 0, xeD
U(x,t) = U(x), xeaD,

which hasasolution U € H¥2(D) suchthat 2, 2% ¢ [2(3K (1)), ¥t € [0, T]
and R

oV ~
— (.0 < CII¥(.,Dls220p, (4.1)
on 0.2,0K (1)

where C depends only on the Lipschitz nature of 3 K (see the papers [8], [31]
for details). We observealsothat U(., 1) € L>®(D) (see[15] or [21]).

Introducing v = ¥ + ¥, we see that (2.1) may be reformul ated as

V. (kx, OV, 1) —bx, ¥ (x, 1)+ U(x) = p(x,1), xe D,
Vox,1) = Y1(x, 1),  x€dK(),
Ua(x, 1) = 0, x e dD,

v - 4 v v
) -2 ) = o) - (k1) — ko2 x, 1)
on on T on on

(4.2)

= 0o(x,1), on K ().
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10 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

Let usconsider ¢ € [0, T] fixed and recall the weak formulation for (4.2).
Findu € V = H}(D) such that b(x, u + W) € L?(D) and satisfying

a(u,v) + (N(u),v) = L(v), Yve Hg(D), (4.3)
where

a(u,v) = / k(x,t)VuVudx, (N(u), v)
D

= /b(x,u+®)vdx,L(v)
D

=/ Eyovds—/ pvdx, Yo
IK (1) D

is the usual trace operator. Here k(x,t) = k1 if x € K(t), k(x,t) = ky if
x € D\K (1).

As can be seen in [6] (see also [19]), this problem is equivalent to find the
minimum in H}(D) of the functional

F(u) = %/ k(x, 1)|Vul|?dx — L) + J (1) (4.4)
D

where J () is defined as
Jw) = korp? [ {cosh(u + W) — cosh (D)} dx,
D\K (1)

if [ |cosh(u+ ¥)— cosh (@)|2dx < 00,
D\K(®)

J(m) = + oo if the square integra is + oo.

Below we establish the first bound on v derived from (4.3)

Lemma 4.1. Let us assume the hypothesis (i)—~(iv). Then the solution ¥ €
HY(D) of (2.1) belongs to L>(0, T; HX(D)) and 1Y ||l ~o.1r:mipy < M,
where M depends only on ||p|lL~«o,ryxp) Il0(.,Dllo20k0) ki ko, FBZ, D,
0Kqgand V.
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Proof. By ¢ = fﬁ + T we only need to prove the lemma for 17/\ Using (4.3)
we have, for al r € [0, T],

—ky f IV (x, 1) [2dx — kg / IVY(x, 0|Pdx + f @yo¥)(x, 1)ds
K@) D\K (1) aK (1)

:/(pa)(x, t)dx+k2rD2/ _Snh(y(x, 1) + B (x, )P (x, 1)dx
D D\K (¢)

or
min (k1. k2) f IV (x, 1)]%dx
D
< / @yoP)(x, ds — / (p¥)(x, Hdx+
AK (1) D
— korp? / _ sSnh@& 0 + IE )@ 1) + VX, 1))dx
D\K (1)

+ kzr,;Z/ ~snh@@(x, 1) + B(x, )V (x, )dx
D\K (1)

lpC.OIE,p @l .03y, 186D 20x0 €lGoVC DG k0
= —— + —— + — + —
2¢q1 2 2¢n 2

- kzrl;ZH@(.,r)noo,D[ _|snh(@(x, 0 + B(x, 0)ldx,
D\K (1)

wherewe have used inequalities of Schwarz and Young. Now, recalling that @ is
the minimum of the functional F(.) definedin (4.4), we have F(z//;) <F0 =0
so that

kerZ/ _|sinh(¥(x, 1) + W (x, 1)|dx
D\K ()

< korp? / cosh (¢ (x, ) + W(x, 1))dx
D\K ()

IA

kor 2 / cosh (U (x, 1))dx
D\K (1)

+ / Gyod)(x, 1)ds — f (p¥)(x, 1)dx,
AK (1) D
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12 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

and

min(kl,kz)/ IV (x, 1)]2dx
D

loC.D13,p @l 0o, 18C DI 250
+ +
2¢q 2 2¢p

e2ll (0¥ (- D13 2 % 1)
2

+ k2% lo.p /  cosh (B (x, 0)dx
D\K(®)

W0 D12 pIEC DG 2 0x0  €BIGOVCDIE 2950
2, N 2,
2¢3 2

19 Dlloo,ploC.OIE 5, €al¥C.013,
2D 2.0
2eq4 2
By the trace theorem and Poincaré's inequality there exist constants A; =
A1(0Ko, D) > 0 and A, = A2(D) > 0 such that [[yv (., o2k
< MY Dllezp and [V (., Dllip < A20VY (., lo2p. If we choose
0 < € < min(kq, kz)/(Z)&)\%), €1 = €1 = )»%6, €2 = €3 = € > 0 we have,
for C1 = Ci(ky, ko, A1, X2), C2 = Ca(ky, k2, A1, A2),

/ VT (x, 1)[2dx
D
< C1(lpC. DI p +1GC. DB 25x) L+ 1T, DI )
+ Cokar?IIW (., D)lloo.n / ~ cosh (U(x, 1))dx.
D\K (1)
Finally, Poincaré'sinequality gives us

191075130y < € (IDI2 1ol 0.r;2 o) o llo2ak0 + Wl 0,7 532()

=~ =~ =~ 172
(4 1Wlizeop,m:20Dy) + CHIV LoD, 7:L D) | COSh‘IJ||L/OO(D,T;L1(D)) ;
where
4rre
C* = max (Alci/z, A Cy 2k Prgt — . Cmax ks, k2}> .
Then

1Yl 0.7 52Dy =M,
where M = M(C*, WV, |lpllz=©,7:2Dy o 1l0.2,0k ¢))-
The following theorem is central in order to establish an uniform bound
for FO™),
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Theorem 4.1. Let us assume hypotheses (i)—<(iV) then the solution ™ of
(2.1) related with (K™ (1), p™, 6 ™) satisfies, for each t € [0, T],

)
max (104" (.. Dllszzz ks V3" ¢ Dlly 0 pyging ) < C

where C does not depends on m.

Proof. We only need to obtain the bounds for ¥ = (y\™, ™). Let us
consider the problems

V- (k(x, )V (x,1)) = 0, x € D,

W, 1) = v (x, 1), x € 9K™ (1),

v (x,1) =0, xedD, (4.5)
U(m) v(m)

kp—2—(x,1) —ki——(x,1) = —3(x,1), x€IK™(@),
on in

and

V- (kx, OV x, 1)) — b(x, f™ & 1)+ 0" (x, 1) + (X))
= p™(x,1), x e D,

fUn = 0. xe dK™0), 46)

P (x,1) = 0, x € 9D,

9 (m) afz(m)

1
1) —k
n(X) 27

5 (x,1) = 0, x € dK™(1).

kq

Using a variational formulation analogous to that in (4.3) we obtain solu-
tions (weak) v™, £ e H(D) of the problems (4.5) and (4.6), respectively.
We observethat £ + v satisfies (2.1) (in the weak sense), from the unique-
ness of the variational solution for this problem, we have ™ = fm 4 .

The Theorem follows from the lemmas bel ow.

Lemma 4.2. Under hypotheses (i)<iv) the solution v'™ € Hi(D) of (4.5)
has the additional regularity

(1) e HY2(K™(1)), v3” (., 1) € H¥2(D\K™ (1)),
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14 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

foreachm > Oandt € [0, T). Furthermore

(m) (m)
max (”U]_ ||L°°(0,T;H3/2(K(”’)([)))’ ||U2 ”LOO(QT;HS/Z(D\K(W)([)))) = Ca

where C does not depends on m.

Lemma 4.3. Under hypotheses (i)~(iv) the solution f™ € H}(D) of (4.6)
belongs to C O(D) and, foreacht €10, T],

sup sup| £ ™ (x, )| < +oo.

m xeD

Furthermore, f"(.,1) € H¥?(K™(1)), f;"(.,1) € H¥2(D\K™ (1)) and
there exists C > 0O such that

(m) (m)
max <|| f]_m ||L°°(O,T;H3/2(K(m)([)))’ ||f2m ||LOO(O’T;HS/Z(D\K(W)(Z)))) = Ca
where C does not depends on m. ]
Proof of Lemma 4.2. Let usconsider m > Oand ¢ € [0, T'] fixed and define
T = ko™, 09 = ko, then D = (71, 7,) satisfies (in the weak sense)

AY™(x,1) = 0, x e D,

uoy" (x, 1) = iV (x, 1), x €K™ @),
3 (x,1) =0, xeaD, (4.7)
ai}\ém) 81)\;([”1) R -
(X’ t)_ (X9 t) - _U(Xv t)v X € aK (t)’
on on

where i, = k,* and g = k; *. Following [31], we seek asolution v = (v1, 1)
in the form
i}\im) _ D(m)é'(m) + ,les(m)(p(m)

(4.8)
i}\;m) — D(m);-(m) + Mzs(m)(P<m) + D(()m)X(m)’
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LUCIANO BEDIN and MARK THOMPSON 15

for ¢, 1) € HYOK™ (1)), o™ (.,t) € L>QK™(t)) and x™(.,t) e
HY(3D). Here

(S™eM)(x, 1) = / G(x — Vo™ (v, Nds(y),
3K(’")(t)

(D™ ™My (x, 1) = / M;‘"’)(y, Hds(y), (4.9)
K (1)

on(y)
m m aG(X - Y) m
OF ™) = [ PR Dy, sy,
ap  on(y)
where G (x) = ﬁ. Theboundary conditionsin (4.7) give us(see[6] for details)
0 C(m)
- | =am o
0 x ™
where
uz (=314 0{") ~ g (31+0{") (k3 - 1) s uz (" opg™)
A = 0 ) (%HD({"}*)*M (*%’*Dim)*) " (%)
(y(gm) D(m)) 1o (yém) S(m)) (%l + D(()’:’i))
and

(Dt "y(x, 1) = (pv. D™ (x, 1), x € IK™ (1)
(DS x ™) (x, 1) = (p.v. Dox™)(x,1), x € dD.
For eachm € Nandr € [0, T], the operators
S L2OK™ (1)) - HY QK™ (1))

(%1 + D;m>) c HY@K "™ (1)) — H*(@K™ (1))

(—%1 + Di’“)) C HYOK™ (1)) — HYOK™ (1))
(%1 + ng>*) L HYOK™ (1)) — L29K™ (1))

(—%1 + Di””*) t HY QK™ (1)) — L* QK™ (1))
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16 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

1 m Y\ . gl 1
51 + DgY | : HY(3D) — H*(3D)
are continuous [8] with operator norms depending only on K, D. Observing
that

IVu(., Dllozaxme + 1 V)., 1) -mllg2sxmq

isan equivalent normto ||.||1.2.9p (See[32], Definition 1.9) and using the hypo-
thesis|x —y| > d, Vx € dK"™(¢), Yy € 3D, adirect calculation gives us that
the following trace operators

y "M @)DY" . HYX@D) — HY QK" (1)),
vo" ()D™: HY@K™ (1)) — H'(3D)
Y (1) S™: L2(OK ™ (1)) — HY(dD)

(m)
Y™ (1) (85—0) : HY@D) — L2(0K™(1)).
n

are bounded and compact, with operator norms depending only on Kq, D and d.
The compactness follows from an analogous argument asin [7] (Theorems 1.6,
1.7 and 1.10) if we observe that the kernels are continuous.

Now it follows as in the paper by Torres and Welland [31] that /A" exist
and is abounded operator on X™ = HYX(QK "™ (t)) x L2(dK "™ (1)) x HX(d D)
to X™ . The operator norm || A™"|| depends only on d, Ko, D. Then

M t)
-1 ~
o™ (., 1) < 1A 1T, Dllo.z.axm

X0 | yon

-1 ~ ~
<CIA™ 1UFC, Ollozsxme + I¥(, Dllz220),

where X is equipped with the product norm.
As observed in [31], the operator norms of the operatorsin (4.9) and its ap-
propriate inverses depend only on the Lipschitz character of the domain, so that
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thereexist L; = L1(0Kp) > 0, L, = L2(dD, dKp) > 0O, suchthat, vz € [0, T],

191, Oll32.2.50)

< Lymax (£, Olls2sxmay 19 Dlloaxme)

= (m) .
||l)2 " ( 5 t)||3/2,2,D\K(m)(t)

< Lomax (£, Dlli2.sxmay 19" ¢ Ollozaxmay 1x™ ¢, Dll120p)-

Hence, using hypothesis (iv), we have established that

) m
max (”Ulm 732k s 102" ||L°C(0,T;H3/2(D\W)>>) =C,

where C does not depends on m. O

Proof of Lemma 4.3. Let usconsider m > Oand ¢ € [0, T] fixed. The
variational solution ™ of (4.6) satisfies

(V™ . v ™y (x, 1)dx

k / (VI .V ) (x, dx — ko /
KO (1) D

\KO (1)

= / (P ™Y ™) (x, 1)dx + korp? / _snh@™(x, 1) + Bx) P ™ (x, 1)dx.
D D\K ™) (1)

Then the Young's inequality gives us that
f VFm s+ 2 [ v s, 2dx

2 Jgm 2 Jp\Km (7

< —f (™M) (x, 1)dx — kerZ/ sinh (¥ (x, 1) + T(x) "™ (x, 1)dx.
D D

\K ™ (1)

Using a similar calculation as in Lemma 4.1, the bound established there for
9™ (., 1)||l12.p and hypothesis (iii), we have || f™ (., )||l12.p < C, where C
does not depends on m and ¢. Observing that D isa C?-domain, standard elliptic
estimates (see Chapter 14, Theorem 2.1in[21]) show usthat £ (., r) € C%(D).

Let us define

R™ () =sup |f™(x,1)|, then 3IR(r) =sup R™(t) < +oo.

xeD
In effect, let us suppose that R(t) = 400, then there exist a subsequence f )
related with (u®™®, vy, 40 such that R™ (1) — +oo with k — +o0.
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18 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

Let us choose x" e D such that £ (x")) = R (), then there exists
8™ > 0 such that

|fx0 1) — f(x, )] <27 i x e B, 8N D.

Recalling that f™|,, = O, if we take k — oo we have, by the bound
I F™, Dllozp < C, 8uuky — 0. Inthiscase |V (., 1)]loz2p — 400,
which contradicts the bound || £ ™% (., ) ||1.2.p < C.

If weset h™ = b(x, f™ + v™ + W) + p™ we have h™(., 1) € L%(D),
foralt e [0, T]and m > 0. Extending 4" to be zero outside of D and setting
g™ = G x h™ wehave Ag"™(.,t) = h™(.,t)ae. inDand g™ (.,1) e
H?(D); if

g (.0 =8 Dk, 82" (.0 = 8" (D pgwmg -
we have
21" (. Dlagengy € HH@K™ (1), 85" (..D)lap € H (D)
(m) (m)
(see the proof of Theorem B in [20]), while %(. , 1) — %(. ,t) = 0 ae
in 3K ™ (¢). Hencethe solution £ of (4.6) can be written as (see [6])

. 81" 1ok )
(j;_(m)’j;(m)> — (gi’"),gé’”)) 4+ gL g m 0 ,

(m

82 )|aD

Sy — [Dm) 1™ 0 }

where

D™ S DY

and /1" = ko f{™, f3" = ko f,"™. Theoperatorsin 3 were definedin (4.9)
and A" was defined in Lemma 4.2. The uniform estimate in the H*2-norm
follows in a similar way as in Lemma 4.2 if we get uniform H22-bounds for
g™ (., 1) and H-bounds for ¢\ (., D)ok, &5 (., H)]ap. From the contin-
uous imbedding H?(D) c H®?(D) and by the boundedness of the operator
F: L>(D) — H?(D),where Fh' (., 1) = G« h™ (., 1) = g™ (., t) (seethe
proof of Theorem 1 in[32]) we have the bounds

lg™ (., Dll3/2.2.0
< M gamkerp? SNh (£ + 0™ + W) (., Dllozp + 10 (¢ Dllo20).
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where A dependsonly on D. A direct calculation and the above estimate give us

18V ¢ D2k < MIo™C, Olloznlled” ¢ Olltzap

< V' gagkerp> SN (£ + 0™ + O, Dllozp + 0™ (., Dllo2.p)

where A’ = A'(Kg, M), A” = A/ (D, ). Hence we need only obtain an uniform
estimate for

I, ~or—karp2sinh (f O + 0™ + W)(.

D\K ) (1) 1) ||O,2,D\K(m>(t) .

We observe that

sinh (£ + v™ + W) = sinh (f™ + v™) cosh ()
+ cosh (f™ 4 v™) sinh (V).

Theresult follows using the fact that ¥ € L*°(D), recaling that by Lemma4.3
we have sup|| f™ (., 1)l cop, < 400 and from the estimate

m

(m) (m)
” COSh (Uz )(- 1) t) ||0,2,D\K(m)(t) S C eXp <C” U2 ( ’ t) “3/2,2,D\K(’”)(t)> (410)
=C,

(see[6] and Lemma4.2). O

Corollary 4.1. fOT [F0 (., t)||8’2’Ddt < C, where C does not depends on m.

As remarked in the preceding section the solution of (3.4) is constructed as
a limit of a sequence of the appropriate approximation solutions and depends
on the respective convergence of the force term F™ to F in L((0, T) x D)%.
Below we show in detailed manner how to do this. We begin with a technical
lemma.

Lemma 4.4. Let us assume hypothesis ()~V) and consider ™, v the solu-

tions of (2.1) related with (K™ (1), p™, ™) and (K (t), p, o), respectively.
Then, ||y ™ (., t) — ¥ (., )|12.p — O, withm — o0, for each t € [0, T].
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Proof. Letussetn, = ¥ — . The variationa formulation for v, v ™
gives us

ks / (VT . Vi) (x, 1)dx
K0 (1)

ko f (VT . V) (x, Ddx + / @ yomm) (x, 1)ds
D\K (™) (t) KM (1)

= / (Pmhm) (X, 1)dX + kor ) / __§nh@™(x, 1) + YU(x, 1))nm(x, 1)dx
D D\K () (z)

and

ks / (VT - V) (x, D)dx
K1)
~ ke f (VT - Vi) (x, dx + / @ yomm) (x, H)ds
D\K(®) IK (1)

= /(pnm)(x, ndx + kerZ/ _ Snh (@ (x, 1) + (X, )0 (X, 1)dX.
D D\K(®)

If we define A™ (1) = K™ () N K (1), B™(t) = D\(K (1) U K™ (t)) we
have, after subtracting the above expressions,

- klf Vi (X, 1)|2dx — k2/ |V 1 (X, 1) |2dx + / (@ yonm)(x, t)ds
A (1) B (¢) KM (1)

- f @ yomm)(x, )ds = / (0™ — p)(%, 1) (x, D)dx
IK () D

o~ o~ ) s t
+ kzrng 2cosh ('7—’" +U+ \11) (x. 1y sinh (Mm% D)
B(’")(Z) 2 2

)nm (Xv t)dX
—k / VT (%, )1V (x, Ddx
KO\AM (1)
- sz VT (%, )1V (x, Ddx
K 1)\ Am) ()
IV ™ (x, )|V (X, 1)|dX
™) ()\ A0 1)

+ kl/
K
ko / VT (x, )|V (x, D)dx
K(O)\AM (1)
- erBzf sinh (¥ (x, 1) + W (X, )0 (X, 1)dx
K (0)\AM (1)

+ k2r52/ sinh (v "™ (x, 1) + T (x, O)nm (X, 1)dX.
K(O\AM (1)
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Using Young's and Holder’s inequalities and positiveness of the second inte-
gral on theright side, we have

k f IV 1 (x, )X + k2 / IV (%, 1)12dx
A0 (1) BO (1)

<

/ @G ™ yonm)(x, 1)ds — / (G yonm) (X, t)ds
K M (1) IK (1)

+IDIY21(0™ = p)(.. Dllo.cc.pllTm (. . Dllo.2.

+ k1K ONA™ OOV Dlloz koI VIm (. Dllo2. k)

+ k2l K™ ONA™ 178V (-, D)3, kom0 IV (. Dllo.2, gm0 1)

+ k| K NA™ O1YOIVE ™ (L D) o,z k000 IV IIm (D250 r)

+ k2l KONA™ O8IV ™ (D) los ko IV, Dllo.2. k)

+ kar LK™ O\NA™ (@)Y sinh (F + W), D)llg,2, gon ) 10 (- Dllg,a.om 1)

+kar p? K (ONA™ )| Y4] sinh (" + W) (., D10.2, 8,0 10 (- ) 110.4,8,00)-
Now, following [11],

sup (IM™ @) — M@®)| + |M™ ) — M(@)))
1€(0,T) (4.11)
< Crlvy"u™ — vyl e 712y = O,

with m — +o0, since vu™ convergesto v,u in C([0, T]; L?(D))*. Hence
[K™@O\NA™ ()|, |[K(®\A™ ()] — 0, m — 4o00. We observe that, by the
Theorem 4.1 and the Sobolev imbedding HY2(K ™ (¢)) ¢ L3(K ™ (1)),

A

IV Ollosxmae < CIVY™ G D122 km0)

1™ (., Ollj2,2.km )
C,

IA

IA

where C does not depend on m. Similarly, using the Sobolev embedding
HY(D) c L*(D), Lemma4.1 and hypothesis (iii) and (iv) we see that uniform
bounds to ||, ll0.2.0, |1mll0.4.p are available. From hypothesis (v), ||(p™ —
P)(. s Dllo.co.0 = 0. Theorem 4.1 and similar argument asin (4.10) give us that

A

I sinh (v + ﬁ)(-,f)“o,z,mm)(z) < Cexp(ClYy™ (. Dl32.25m0)
C,

IA
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where C does not depend on .
Using the rigidness of the particle we have

/ @™ yomm) (x, 1)ds (x) — / @ y0mm) (x, 1)ds (x)
BK(’")(Z) K (1)
_ /6 EI M0N0 MO 1) = 1y (MOY). 5@ (4.12)
0
+ /a . Yol (M (2)y, @™ (M™ (1)y, 1) — G (M(1)y), t)ds(y).
0

Now, we introduce, for each m, the usual C°-regularization {n{"} for ,, such
that |(n™ — 1), ]l1..p — O when h — 0. Observing that

lyon (M™ )y, t) — yon' (M 1)y, )llo.2.9ks — O With m — 400

the first integral in (4.12) tends to zero with m — +o0, as can be seen using
the usual trace theorem. Analogously we have the same result for the second
integral in (4.12), recaling that & = *¢o + (kla‘l’l kza‘l’z) the hypothesis

on
(iv) and regularity U (., 1) € H¥2(D). O

Theorem 4.2. Let us consider 9™ e H((0, T) x D)3 such that 9™ — ¢
strongly in C([0, T1; L?(D))% and ¢ € H*((0, T) x D). Then

t t
lim / / (F™ . oMy (x, T)dxdt = / / (F - ¢)(x, T)dxdT,
m——+00 0 D 0 D

forallt € (0, T).

Proof. Recallingthat F™ = - (of" + rj;%ks Sinh (3") (VY5 )y e
we can write
F™ g, —F-¢ = Cilp g @™ —¢) - Vg™ sinh (y ™)

+ Cip - Up\g V¥ Sinh (¥)

- ID\K(m)([)Vw(’")Smh ™)) (4.13)

+ Colp g™ (0" — @) - VY™

+ Cap - (ID\mpr - ID\W/)"")VW’)) :

where C; = k"” and C, =

471 e’
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In what follows we shall estimate the integral of each term above.
t
/O /DID\W((% — @) - V™ sinh (v ")) (x, T)dxdt
=< ||</’(m) - <P||C([0,T];L2(D))3
t
/ IV ™ Do gl ST W) Dl g g dT
0

=< C||§0(m) — ¢llcro.ry:L2(0) —> 0,

withm — +o0. Here we have used the Holder's inequality, the embeddings
HY2(D) c L3(D) and HY?(D) c H*?(D), Theorem4.1jointly with asimilar
estimate as in (4.10) and the convergence [l¢™ — ¢llco0.71.2(py)2 —> O-

t
Yo Ty §nh (g™
/(;/D((p.(ID\K<T)V1//S|nh(1//)—ID\K(m)(T)Vx/r sinh (¥ ))) (x, 7)dxdt

t
< f [ f lp(x, 7) - (VY sinh () — V™ sinh (y ™)) (x, 7)|dx
0 LJBm (1)
(4.14)
+ / lo(x, 7) - (V¥ (x, 7) Sinh (¥ (x, 7)) |dx
KM (T)\K (1)

+ f lo(x, 7) - (V™ (x, 7)) sinh (v ") (x, r)|dx:| dr.
K(@\K ™ (7)

Writing
Vi sinh (y) — V™ sinh (y ™)
= snh (Y) (VY — Vy™) + V™ (sinh () — sinh (¥ ™))
we have
t
/ / o(x,7) - (VY sinh () — V™ sinh (y ™)) (x, 7)dxdt
0 JBm(7)
t
= /0 | sinh (¥ (., T))||0,4,B(m)(f) e, T)||0,4,B<m)(r)
1Y = V¥ ") D)llg 2, pom zydT (4.15)

t
+ /0 loC. Do e 1) va(m)(. » Do,z 50m (1)

llsinh () — sinh (B ") (., Dlg 2, gom ()T
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Now, observing that if

Y™ — ¢ >0, cos’(Yy™ + 0y —y™)) < cosh’(y)  and if
Y™ — <0, cosh*(Y™ + 0y — ™)) < cosh® (¥ —y™),

we have, by Schwarz's inequality

llsinh () = sinh () DG 5 o

1 2
_ / ( / (W — ¥ ™) (x, 1) cosh(y ™ (x, 1) + B — ¥ ™)(x, t))de) dx
By \Jo

1
< / / (¥ — ¥"™)2(x, 1) cosh?(y "™ (x, 1) + 0 — ¥ ™) (x, 1))dOdx
B(m)(l) 0
< ClW =¥ "), OI§4p — O.

where we have used a similar estimate as in (4.10), Theorem 4.1 and Lemma
4.4, Hence the dominated convergence theorem, Theorem 4.1 and Lemma 4.4
gives us that the terms in (4.15) tends to zero with m — +o00. Passing the
termsin (4.14) to the limit m — +o0, using (4.11) and Theorem 4.1 we obtain
the desired result for the second term in (4.13). The convergence of the others
termsin (4.13) to zero follows from a completely similar way, using hypothesis
(iii), (iv) and (v), Theorem 4.1 and Lemma 4.4. O
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