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Molecular dynamics simulations and instantaneous normal mode �INM� analysis of a fluid with
core-softened pair interactions and waterlike liquid-state anomalies are performed to obtain an
understanding of the relationship between thermodynamics, transport properties, and the potential
energy landscape. Rosenfeld scaling of diffusivities with the thermodynamic excess and pair
correlation entropy is demonstrated for this model. The INM spectra are shown to carry information
about the dynamical consequences of the interplay between length scales characteristic of
anomalous fluids, such as bimodality of the real and imaginary branches of the frequency
distribution. The INM spectral information is used to partition the liquid entropy into two
contributions associated with the real and imaginary frequency modes; only the entropy contribution
from the imaginary branch captures the nonmonotonic behavior of the excess entropy and
diffusivity in the anomalous regime of the fluid. © 2010 American Institute of Physics.
�doi:10.1063/1.3429254�

I. INTRODUCTION

The potential energy surface �PES�, U�r�, is the configu-
rational energy of a system of N particles as a function of the
3N-dimensional position vector, r. Energy landscape ap-
proaches focus on the connections between crucial topo-
graphical features of the PES and the thermodynamic and
kinetic properties of liquids.1–3 Structure and dynamics in
simple liquids is dominated by strong, short-range, repul-
sions with weak, long-range attractions.4 Since the hard-
sphere fluid with a single length scale is a very good zeroth-
order model for such systems, the relationship between the
energy landscape, thermodynamics, and mobility is relatively
simple in such systems. Energy landscape analysis of anoma-
lous fluids, such as water and silica, suggests that key fea-
tures of the PES surface are significantly different from PESs
of simple liquids.5–9 Recent work demonstrates that softening
the core-repulsions in liquids with isotropic, pair-additive in-
teractions allows one to generate a range of anomalous be-
havior that mimics the behavior of structurally more com-
plex fluids,10–24 suggesting that significant restructuring of
the energy landscape can be induced by simple modifications
of the pair interactions.

In this study, we explore the energy landscape of such a
core-softened fluid to understand the microscopic origins of
waterlike liquid state anomalies. Our analysis of the PES
focuses on understanding the entropy scaling relationships
that are very useful for connecting structure, mobility and
entropy for a wide range of simple25–31 and anomalous32–35

liquids, confined fluids and polymeric melts.36 The excess
entropy �Sex� measures the reduction in the entropy �S� of a
liquid relative to an ideal gas �Sid� at the same temperature
and density due to structural correlations. The effect of fluid
structure on the entropy can be formally expressed as

Sex = S − Sid = S2 + S3 + . . . , �1�

where Sn is the entropy contribution due to n-particle spatial
correlations.37–41 The pair correlation contribution to the ex-
cess entropy per particle of a one-component fluid of struc-
tureless particles is given by

s2
� = − 2���

0

�

�g�r�ln g�r� − �g�r� − 1��r2dr , �2�

where g�r� is the radial distribution function and s2
�

=S2 /NkB. The structural correlations which lower the en-
tropy may intuitively be expected to reduce mobility by en-
hancing cage effects due to formation of shells of neighbor-
ing particles. This correlated decrease in entropy and
mobility can be semiquantitatively captured through excess
entropy scaling relations of the form

X� = A exp��sex
� � , �3�

where X� are dimensionless transport properties with either
macroscopic �Rosenfeld� or microscopic �Dzugutov� reduc-
tion parameters, sex

� is the excess entropy per particle in units
of kB. The Rosenfeld reduction parameters are given in units
of the mean interparticle distance d= ���−1/3 and of the ther-
mal velocity v= �kBT /m�−1/3 while the Dzygutov reduction
parameter is calculated using the interparticle distance � and
the collision frequency.

The scaling parameters, � and A, depend on the func-
tional form of the underlying interactions.25–31 In the case of
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simple liquids, the excess entropy scaling parameters can be
approximately set as A�0.6 and ��0.8. In addition, for
such fluids, the pair correlation entropy per particle, s2

�, typi-
cally represents 85%–90% of the total excess entropy.

This paper focuses on the connection between the poten-
tial energy landscape �PEL� of a fluid and Rosenfeld excess
entropy scaling of transport properties. Liquids in the stable,
as opposed to the strongly supercooled regime, are charac-
terized by a very high degree of connectivity between basins
of local minima. This implies that the diffusivity, corre-
sponding to the probability that a particle will make a suc-
cessful move from its current position, will be proportional
to the number of accessible configurational states, or
exp��sex

� �. In order to develop a quantitative test of this in-
tuitive picture, the diffusivity and/or the entropy must be
correlated with landscape-based quantities that are sensitive
to basin connectivity. We also require an energy landscape
approach that does not presume a time-scale separation be-
tween intra- and interbasin motions. An existing energy land-
scape approach that is simple to implement and satisfies
these requirements is the instantaneous normal mode �INM�
approach.42–44 In the INM approach, the key quantity is the
ensemble-averaged curvature distribution of the PES
sampled by the system. For a system of N particles, the
mass-weighted Hessian associated with each instantaneous
configuration is diagonalized to yield 3N normal mode ei-
genvalues and eigenvectors and the ensemble-average of this
distribution is referred to as the INM spectrum. The short-
time dynamics of the liquid can be derived from the INM
spectra. Unlike in a crystalline solid, the INM spectrum of a
liquid will have a substantial fraction of unstable modes with
negative eigenvalues, corresponding to interbasin crossing
modes or shoulder regions within the same inherent structure
basin. The diffusivity is strongly correlated with the proper-
ties of the INM spectrum, specially the fraction of imaginary
frequencies, in both simple liquids, such as Lennard-Jones
and Morse,45–47 as well as molecular liquids, such as CS2 and
H2O.9,48,49 A refinement of the INM approach shows that
interbasin crossing or double-well modes are critical for dif-
fusional motion.50

Here we study the INM spectra of a liquid bound by
isotropic, core-softened pair interactions which shows water-
like structural, density, entropy, and diffusional anomalies.
The thermodynamic and transport properties of such a liquid
is representative of structurally more complex anomalous
liquids, including water19–21,51 and other tetrahedral liquids,
such as Te,52 Ga, Bi,53 S,54,55 Ge15Te85,

56 silica,32,57–59

silicon,60 and BeF2.32–34,57,61,62 Section II describes our core-
softened model fluid with isotropic interactions consisting of
a sum of Lennard-Jones and Gaussian terms. The continuous
nature of the pair interaction makes it very convenient for
energy landscape analysis. The liquid state anomalies of this
model, which have been described in detail elsewhere,14,15

are summarized. In Sec. III, we provide a summary of the
relevant features of INM analysis. We also address the pos-
sibility of extracting thermodynamic quantities, including ex-
cess entropy, from INM spectra which has so far not been
discussed in the literature. Section IV presents our results
and Sec. V contains the conclusions.

II. THE MODEL

A. PES

We consider a three-dimensional �3D�, core-softened
fluid with isotropic pair interactions given by

U�r� = 4�	
�

r
�12

− 
�

r
�6� + a� exp	−

1

c2
 r − r0

�
�2� .

�4�

Equation �4� shows that the pair interaction is composed of a
Lennard-Jones term, with characteristic energy and length
scale parameters corresponding to � and � respectively, plus
a Gaussian well centered at a pair separation r0 with depth a�
and width c�. In this work, we use the parameters for Eq. �4�
as a=5, r0 /�=0.7, and c=1. This set of parameters generates
a core-softened potential with a very small attractive mini-
mum at r�3.8� and a soft, repulsive core lying between �
and 3�. All quantities in this paper are reported in reduced
units with the � and � as the reduced units of length and
energy respectively. The waterlike structural, density, and
diffusional anomalies of this model are briefly described in
this section in order to provide a background to the INM
results presented in Sec. IV.

B. Molecular dynamics simulations

Classical molecular dynamics �MD� simulations were
used to study the model fluid described in the previous sub-
section. N=500 identical, structureless particles of mass m
were confined in a cubic box, of volume V, with periodic
boundary conditions in all directions. All MD simulations
were performed in the canonical �NVT� ensemble with a time
step of 0.002�
m /�. A Nosé–Hoover thermostat with the
coupling parameter equal to 2 was used to maintain the tem-
perature. All simulations were initialized with the system in a
face centered cubic configuration and further equilibrated
over 250 000 steps for each temperature, T, and density, �
=N /V. After the equilibration period was over, additional
500 000 steps were used to sample the system. A cutoff ra-
dius rc=3.5� was employed for the potential Eq. �4�. Diffu-
sivities were computed using the Einstein relation. At each
state point, 100 configurations were sampled and used to
construct the INM spectra and associated quantities. We re-
peated the calculation for some state points using 500 con-
figurations and found no significant difference.

C. Density, diffusional, and structural anomalies

Figure 1 illustrates the regions associated with the den-
sity, diffusional, and structural anomalies of the model fluid
studied here in the density-temperature planes. The region of
density anomaly corresponds to state points for which
��� /�T�P�0 and is bounded by the locus of points for which
the thermal expansion coefficient is zero. The translational
diffusion coefficient as a function of ��=��3 goes as follows.
For the low temperature isotherms, the diffusivity increases
as the density is lowered, reaches a maximum at �D max and
decreases until it reaches a minimum at �D min. The locus of
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extrema in the D��� curve mark the boundaries of the region
of diffusional anomaly, as shown in Fig. 1 using dashed
lines.

The region of structural anomaly of core-softened fluids
is defined most simply using the translational or pair corre-
lation order metric, defined as19

t � �
0

�c

�g��� − 1�d� , �5�

where ��r�1/3 is the interparticle separation scaled by the
mean interparticle distance, g��� is the radial distribution
function and �c is a scaled cutoff distance. In this work, we
use �c=�1/3L /2, where L=V1/3. For a completely uncorre-
lated system �ideal gas� g=1 and t vanishes. In a crystal, the
presence of long-range translational �g�1� implies that t
depends on choice of �c. In simple liquids, t increases with
isothermal compression. In liquids with waterlike anomalies
at low temperatures, t shows a nonmonotonic behavior. At a
given temperature T, a structurally anomalous regime can be
defined between densities �t−max�T� and �t−min�T� corre-
sponding to locations of the maxima and minima in the
translational order. In this structurally anomalous regime,
shown using dot-dashed lines in Fig. 1, an increase in density
induces a decrease in translational order. The nested struc-
tures of the anomalous regions is evident with the structur-
ally anomalous regime enclosing the diffusion anomalous re-
gion which in turn encloses the region of density anomaly.

III. INM ANALYSIS

In this section, we define the INM spectrum and explore
how it can be used to connect the energy landscape of a
liquid with its thermodynamic entropy. The potential energy
of configuration r near r0 can be written as a Taylor expan-
sion of the form

U�r� = U�r0� − F • z + 1
2rT • H • z �6�

where zi=
mi�ri−r0� are the mass-scaled position coordi-
nates of a particle i. The first and second derivatives of U�r�
with respect to the vector z are the force and the Hessian
matrix, denoted by F and H respectively. The eigenvalues of
the Hessian H are ��	i

2� , i=1,3N� representing the squares of
normal mode frequencies, and W�r� are the corresponding
eigenvectors. In a stable solid, r0 can be conveniently taken

as the global minimum of the PES U�R�, which implies that
F=0 and H has only positive eigenvalues corresponding to
oscillatory modes. The INM approach for liquids interprets r
as the configuration at time t relative to the configuration r0

at time t0. Since typical configurations, r0 are extremely un-
likely to be local minima, therefore F�0 and H will have
negative eigenvalues. The negative eigenvalue modes are
those which sample negative curvature regions of the PES,
including barrier crossing modes. The ensemble-averaged
INM spectrum, �f�	��, is defined as

f�	� =� 1

3N
�
i=1

3N


�	 − 	i�� . �7�

Quantities that are convenient for characterizing the INM
spectrum are �i� the fraction of imaginary frequencies,
namely

Fim = �
im

f�	�d	 , �8�

where the subscript in means that the integral is performed
only in the imaginary branch; �ii� the fraction of real frequen-
cies, that is

Fr = �
r

f�	�d	 , �9�

where the subscript r indicates that the integral is performed
only in the real branch and �ii� the mean square or Einstein
frequency, 	E, given by

	E
2 =� 	2f�	�d	 =

�Tr H�
m�3N − 3�

, �10�

where the last equality comes from using Eq. �7� and �Tr H�
is the ensemble-averaged value of the trace of the Hessian.

The simplest approximation to the entropy that can be
derived from the INM approach is to consider a liquid as a
collection of 3N simple harmonic oscillators vibrating at the
Einstein frequency. The entropy of a one-dimensional har-
monic oscillator with frequency 	 is given by

s	/kB = 1 − ln���	� . �11�

The entropy of an ideal gas of N particles in three dimen-
sions will be given by

Sid

NkB
=

5

2
− ln��
3� , �12�

where 
=h /
2�mkBT is the thermal de Broglie wavelength.
In three dimensions the entropy of the harmonic oscillators
given by Eq. �11� is multiplied by 3. The entropy per particle
of the harmonic oscillator within Einstein approximations
becomes s	E

. In this case, the excess entropy of the Einstein
model of the liquid is given by the subtraction of the ideal
gas entropic contribution, Eq. �12�, from Ns	E

/kB to give

0.1 0.15 0.2
ρ∗

0.25

0.5

0.75

1

T
*

FIG. 1. Density vs temperature phase diagram for the model studied. The
solid line limits the region of density anomaly, the dashed lines illustrate the
region of diffusion anomaly and the dot-dashed lines show the region of
structural anomaly.
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Sex
	E/NkB =

1

2
+

3

2
ln
2�kBT�2/3

m	E
2 � , �13�

where 	E is given by Eq. �10�. This expression for the excess
entropy forms the basis of quasiharmonic cell model ap-
proaches to understand entropy scaling of transport proper-
ties, which have had only limited success.27 In this study, we
compare the Einstein frequency-based expression for the ex-
cess entropy with the pair correlation entropy to obtain a
better microscopic insight into the differences.

An alternative approach is to consider the liquid to be
composed on average of a set of 3NFr harmonic oscillators
and a set of 3NFim degrees of freedom associated with the
imaginary or unstable modes. The total thermodynamic en-
tropy of the liquid can be written as a sum of contributions
from the real and imaginary branches,

S = Sr + Sim. �14�

Using Eq. �11�, Sr can be obtained by integrating the real
branch of the INM distribution as follows:

Sr/kB = 3N�
r

f�	�s	�	�d	 , �15�

where f�	� is the INM probability density at frequency 	
given by Eq. �7�. Contribution of the imaginary modes to the
entropy must then be

Sim = S − Sr = Sid + Sex − Sr. �16�

In the present work, we use the above equations to esti-
mate Sr and Sim; the per particle values of these quantities in
units of kB are labeled sr

� and sim
� . To our knowledge, this

decomposition of the entropy has not been used previously.
A somewhat parallel approach was used by Goddard et al.63

to treat the entropy of a liquid as a sum of contributions from
a harmonic component and a hard-sphere fluid component.

IV. RESULTS

A. Excess entropy and diffusivity

The excess entropy is defined as the difference between
the entropy of the real fluid and that of the ideal gas at the
same temperature and density. Figure 2 illustrates the density
dependence of the excess �represented in the figure by
dashed lines� and pair correlation entropy �represented in the

figure by solid lines� for four different isotherms. The values
of the thermodynamic excess entropy, sex

� , have been taken
from the work of Mittal et al.35

The sex
� ��� curves at low temperatures show a pro-

nounced excess entropy anomaly, corresponding to a rise in
excess entropy on isothermal compression. Such an entropy
anomaly is characteristic of waterlike liquids18,32–34 and con-
trasts with the behavior of simple liquids where free volume
arguments are sufficient to justify a monotonic decrease in
entropy on isothermal compression. Figure 2 also compares
sex

� ��� and s2
���� curves at four temperatures. It is evident that

s2
� essentially captures the anomalous behavior present in sex

� .
The effect of the higher-order multiparticle correlations
terms in sex

� is to generate a downward shift in the values of
the entropy and to attenuate the entropy anomaly. In the case
of simple liquids, the residual multiparticle entropy, �s�

=sex
� −s2

�, is typically of the order of 10%–15% of sex
� for a

fairly wide range of densities. Clearly in the case of the
core-softened modeled fluids, the residual multiparticle en-
tropy contribution is larger in magnitude and more strongly
density dependent. The anomalous pair entropy regime at a
given temperature is an interval of densities �s2max

��

��s2min
within which ��S2 /���T�0. This can be identified

from the locus of extrema in s2��� shown in Fig. 10.
We now consider the scaling relationship between the

diffusivity and the excess entropy. The diffusivity as a func-
tion of density for different isotherms is shown in Fig. 3�a�.
Clear maxima and minima in the D��� curves can be identi-
fied at low temperatures. Figures 3�b� and 3�c� show the
scaling of the reduced diffusivity, DR, with the excess, sex

� ,
and pair, s2

�, entropy. Using the Rosenfeld macroscopic re-

0 0.1 0.2 0.3
ρ∗

-3

-2

-1

0

s
*

FIG. 2. The pair correlation entropy, s2
� �solid lines�, and the excess entropy,

sex
� �Ref. 35� �dashed lines� against density for fixed temperatures for

T�=0.2,0.3,0.4,0.5 from bottom to top.

0.05 0.1 0.15 0.2 0.25 0.3
ρ∗

0.2

0.4

0.6

0.8

D
*

(a)

-s
*

ex

10
-2

10
-1

10
0

D
R

ρ∗ = 0.05
ρ∗ = 0.10
ρ∗ = 0.15
ρ∗ = 0.20
ρ∗ = 0.25
ρ∗ = 0.35

0.5 1 1.5 2 2.5 3

-s
*

2

10
-2

10
-1

ρ∗ = 0.04
ρ∗ = 0.10
ρ∗ = 0.16
ρ∗ = 0.20
ρ∗ = 0.25
ρ∗ = 0.30

(b)

(c)

FIG. 3. �a� Diffusion vs reduced density for fixed temperatures T�

=0.2,0.23,0.30,0.35,0.40,0.45,0.50,0.55 from bottom to top; �b� diffusion
in Rosenfeld units vs the negative of the −sex

� and �c� diffusion in Rosenfeld
units as a function of −s2

�.
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duction parameters for the length as �−1/3 and the thermal
velocity as �kBT /m�1/2, the dimensionless diffusivity is de-
fined as

DR � D
�1/3

�kBT/m�1/2 . �17�

The scaling of the reduced diffusivity, DR with sex
� is excel-

lent with DR=AeBsex
�

where A=0.95 and B=0.98. The scaling
with the pair entropy, s2

�, shows a weak isochore dependence
and the line of best fit is obtained with A=0.68 and B
=1.35. The comparison between the Figs. 3�b� and 3�c� in-
dicates that for our anomalous fluid, the diffusivity scaling
with the pair correlation entropy is not as universal as with
the excess entropy. This is likely to be a consequence of the
presence of two density-dependent length scales, in such wa-
terlike fluids when compared to simple liquids, such as the
Lennard-Jones fluid.

B. INM analysis

Next, we present the results from our INM analysis of
the simulation for the core-softened fluid. The INM spectra
along the ��=0.11 isochore for various temperatures is illus-
trated in Fig. 4�a� while the INM spectra along the T�

=0.20 isotherm for various densities is illustrated in Fig.
4�b�. The shape of the INM spectra have the characteristic
real and imaginary branches. As in the case of Lennard-Jones
and Morse liquids,45,58 the negative modes shrink in intensity
and go to low frequencies as the temperature is decreased,
while the peak of the real branch increases. Unlike in the
case of simple liquids, however, both the real and the imagi-
nary branch have a pronounced bimodality which can be
clearly seen for the spectra along the ��=0.11 isochore.
which must be connected with two different length scales of
the potential. Figure 4�b� shows that along the T�=0.20 iso-

therm, the bimodality in the imaginary branch is most pro-
nounced within the anomalous regime and is attenuated at
both low and high densities. In contrast, the bimodality of
the real branch persists even at high densities. It would be
interesting to explore in future work if this bimodal fre-
quency distribution results in multiple-time-scale behavior
analogous to that seen in hydrogen-bonded liquids, such as
water and methanol.51,64–66

The Einstein frequency is the second moment of the
INM distribution, as defined in equation Eq. �10�, and repre-
sents an effective frequency describing the very short-time,
local dynamics of the particles. Figure 5 illustrates the be-
havior of Einstein frequency for the core-softened potential.
For a fixed temperature, increasing density results in increase
of 	E

� =	
m�2 /�, indicating stronger trapping of the liquid
particles in local cages. This is consistent with the behavior
of simple liquids observed in earlier studies.45,58 The 	E

� val-
ues is virtually independent of temperature for ���0.05 and
���0.125. At low densities, 	E

� shows a small decrease with
increasing temperature while at higher densities, there is a
weak minimum in the 	E

� at intermediate temperatures. The
density dependence of 	E

� carries no significant signatures of
the diffusivity anomaly.

The fraction of imaginary modes, Fim, indicates how
much the system samples regions with negative curvature
which is known to be strongly correlated with the
diffusivity.67 Figure 6 shows density dependence fraction of
imaginary modes, Fim, for our core-softened anomalous
fluid. In simple liquids, Fim decreases with density and the
graph Fim versus �� always exhibit a negative slope.45,58 In
contrast, for the core-softened potential studied here, Fim

shows very pronounced non-monotonic behavior For very
low, ���F min, and very high, ���F max, densities, Fim has a
negative slope, decreasing with increasing density. For inter-
mediate densities, �F max����F max, Fim increases with den-
sity. The density, �F min

� �0.1, is almost temperature indepen-
dent. The location of the maximum in Fim��� curve is
�F max

� �0.4 at low temperatures, but shifts to lower densities
with increasing T�.

A comparison of the behavior of Fim���, illustrated in
Fig. 6, and D���, illustrated in Fig. 3 shows that the density
of minimum Fim coincides with the density of minimum D.
In contrast, the density of maximum Fim occurs at densities
much higher than the density of maximum diffusivity. More-
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(b)

FIG. 4. �a� INM spectra as a function of frequency for T�=0.20, 0.23, 0.30,
0.35, 0.40, 0.45, 0.50, and 0.55 and ��=0.11. The arrows indicate the in-
crease of the temperature. �b� INM spectra as a function of frequency for
T�=0.20 and ��=0.06,0.12,0.14,0.20,0.30.
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FIG. 5. Einstein frequency vs density for fixed temperature. The insets show
the dependence with temperature for two fixed densities ��=0.08 �bottom
inset� and ��=0.23 �top inset�.

234509-5 Energy landscape of a waterlike fluid J. Chem. Phys. 132, 234509 �2010�



over, the region in which Fim shows an anomalous increase
with compression persists to very high temperatures, well
above the temperature for onset of structurally anomalous
behavior. In order to understand this behavior, we compare
the zeroth, first and second derivatives of the potential as a
function of pair separation with Fim for T�=1.0 plotted as a
function of the mean interparticle separation, �−1/3 in Fig. 7.
It is immediately obvious that the location of the minimum
of Fim coincides with the location of the minimum of the
second derivative. For densities lower than this minimum,
the second derivative increases and the number of imaginary
modes decreases. Clearly, this effect persists in the high-
temperature fluid where binary collisions dominate the dy-
namics since it reflects the curvature of the pair interaction.

V. INM SPECTRA AND LIQUID-STATE ENTROPY

In Sec. III, we discuss the possibility of partitioning the
entropy of a liquid into contributions, Sr and Sim, associated
with real and imaginary branches respectively of the INM

spectrum. The Sr contribution is directly derived from the
frequency distribution of the real branch while the Sim con-
tribution is given by Sim=S−Sr. In order to get a better un-
derstanding of the role played by each contribution to the
entropy, Fig. 8 shows the behavior with density for a fixed
temperature of sim

� , sr
�, sid

� , and sex
� . It is immediately evident

that sr
� shows a very similar density dependence to sid

� , even
though the numerical value of sr

� is significantly lower. Other
than a small inflection at ���0.1, the contribution of the real
INM modes to the entropy carries virtually no signature of
the structural, entropy or diffusivity anomalies. The non-
monotonic behavior of sex

� in the anomalous regime seems to
be reflected only in sim

� . The strong resemblance between sid
�

and sr
� in T-and �-dependence suggests that this term reflects

the generic effects of thermal fluctuations and spatial con-
finement on the entropy but in general it is insensitive to the
structural details associated with the interplay between the
two length scales in the anomalous regime.

Figure 9 compares, for various isotherms, the density
dependence of three different entropy estimators: �a� sim

� , the
imaginary mode contribution to the entropy, �in the graph,
form the value of sim

� it is subtracted 2�, �b� s2
�, the pair

correlation entropy, and �c� s	E

� , the entropy estimated using
the Einstein model for the liquid, Eq. �13�. As discussed in
Sec. IV A, the s2

� behavior is very similar in density and
temperature dependence to sex

� , indicating that the pair corre-
lation contribution to the entropy is sufficient to capture the
essential features of the anomalies. s	E

� , derived from the
Einstein model, is very similar to sr

�, presumably because of
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the use of the harmonic oscillator representation of the en-
tropy. The nonmonotonic behavior of 	E��� results in small
plateau at low temperatures. The overall decrease in S	E

with
density is much too steep and monotonic compared with sex

�

and s2
�. In contrast, sim

� =s�−sr
�, captures the behavior of the

entropy within the anomalous region very successfully. The
relative displacement of sim

� ��� curves for different isotherms
is very small, consistent with the earlier observation that the
overall effect of thermal and free volume effects is better
captured by sr

�.
As a summary of the insights obtained from INM analy-

sis and pair correlation entropy into the nested cascade of
anomalies picture of waterlike liquids, we use the extrema in
Fim��� and s2

���� curves to define additional anomalous re-
gimes within which ��Fim /���T�0 and ��s2

� /����T�0 re-
spectively, as shown in Fig. 10. The low density boundaries
of anomalous regime in t, Fim, and s2

� almost coincide, re-
flecting the onset of the steep repulsive wall. The high-
density boundary of the anomalous regime of Fim occurs at
very high densities. In contrast, the high density limit of the
anomalous regime in s2

� is very close to that defined by t, and
also by sim

� though the latter is not shown in the figure.

VI. CONCLUSIONS

This paper explores the connection between entropy, dif-
fusivity and the PEL of a core-softened fluid with waterlike
anomalies using MD simulations and INM analysis.

We demonstrate that the diffusivity and the excess en-
tropy of a core-softened fluid with isotropic pair interactions
obey Rosenfeld-type excess entropy scaling of transport
properties. The use of macroscopic reduction parameters for
the diffusivity based on temperature and density is particu-
larly appropriate for fluids with multiple length scales where
defining an effective hard-sphere radius is inappropriate. We
also show that the substituting the excess entropy by the pair
correlation entropy leads to a weak isochore dependence of
the Rosenfeld-scaling parameters, not seen in simple liquids
but observed in other waterlike liquids.68

The INM spectra, including the Einstein frequency and
the fraction of imaginary modes, is computed over a wide
range of temperatures and densities. INM analysis is shown

to provide unexpected insights into the dynamical conse-
quences of the interplay between length scales characteristic
of anomalous fluids that cannot be obtained from an equilib-
rium transport property such as the diffusivity.

Both the real and imaginary branches of the INM spectra
exhibit bimodality that has so far not been observed. As a
function of density along an isotherm, the bimodality in the
real branch of the INM spectrum persists to very high den-
sities well beyond the structurally anomalous region. In con-
trast, the bimodality of the imaginary branch is much more
closely correlated with the region of the structural anomaly.
The bimodal character of the both branches of the INM spec-
trum suggests that such core-softened fluids may show mul-
tiple time-scale behavior similar to that seen in hydrogen-
bonded systems.

The Einstein frequency shows an essentially monotonic
dependence on density along an isotherm. The temperature
dependence of the Einstein frequency is weak and monotoni-
cally decreasing with temperature at low densities and non-
monotonic at high temperatures. In contrast to the Einstein
frequency, the fraction of imaginary frequencies shows very
anomalous behavior in comparison to simple liquids, with an
extended density regime over which Fim increases with in-
creasing density. While the low density boundary of this re-
gion coincides with that of the structural anomaly, the high
density boundary occurs at very high densities well beyond
the structurally anomalous regime. Previous INM studies of
liquids have largely connected the diffusivity with the frac-
tion of imaginary modes. Our results show that information
about diffusivity is largely contained in the behavior of the
imaginary branch of the INM spectra, but factors such as the
bimodality of the frequency distribution in this branch must
be considered in addition to Fim.

Given the validity of excess entropy scaling for the dif-
fusivities, we introduce INM-based estimators of the entropy,
to connect the energy landscape with liquid state thermody-
namics and kinetics. The conceptually simplest INM-based
estimator is to treat the liquid as a collection of 3D harmonic
oscillators vibrating at a single frequency, corresponding to
the Einstein frequency. The Einstein model entropy shows a
very steep decrease with density along isotherms with a very
weak signature of the onset of the structurally anomalous
regime.

An alternative approach to developing an INM-based es-
timator of the entropy that we have explored is to assume
that the total entropy of the fluid can be written as a sum of
contributions from 3NFr harmonic modes and 3NFim imagi-
nary modes. The real branch of the INM spectrum can be
used to estimate the harmonic contribution, sr

�, exactly. The
entropy contribution of the imaginary branch, sim

� , is then
given by the difference of the thermodynamic entropy, s, and
the real branch contribution, sr

�. The temperature and density
dependence of sr

� carries virtually no signature of the liquid-
state anomalies, and seems to reflect only the generic effects
of thermal fluctuations and spatial confinement on the en-
tropy In contrast, sim

� =s�−sr
�, captures the behavior of the

entropy within the anomalous region very successfully
though the relative displacement of sim

� ��� curves for differ-
ent isotherms is too small. The extrema in sim

� define a region
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FIG. 10. Cascade of waterlike anomalies in the density-temperature plane.
The solid line limits the region of density anomaly, the dashed line illus-
trates the region of diffusion anomaly and the dot-dashed line shows the
region of structural anomaly. The filled circles represent the density of mini-
mum and maximum s2 and the stars represent the region of minimum and
maximum Fim.
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of anomalous entropy behavior in the density-temperature
plane that is almost identical as the region within which
��S2 /���T�0.

The overall and somewhat unexpected outcome of our
INM analysis of a core-softened waterlike fluid is that the
real and imaginary frequency branches show very different
sensitivities to the dynamical consequences of the interplay
between two length scales in the anomalous regime of the
liquid. Moreover, the entropy contribution from the imagi-
nary frequency modes of the INM spectrum reflects the
anomalous behavior of the excess entropy and diffusivity
characteristic of waterlike fluids, but the real frequency
branch does not.
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