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Abstract: The assessment of oxygen uptake (VO2) kinetics is a valuable non-invasive way to evaluate
cardiorespiratory and metabolic response to exercise. The aim of the study was to develop, describe
and evaluate an online VO2 fitting tool (VO2FITTING) for dynamically editing, processing, filtering
and modelling VO2 responses to exercise. VO2FITTING was developed in Shiny, a web application
framework for R language. Validation VO2 datasets with both noisy and non-noisy data were
developed and applied to widely-used models (n = 7) for describing different intensity transitions to
verify concurrent validity. Subsequently, we then conducted an experiment with age-group swimmers
as an example, illustrating how VO2FITTING can be used to model VO2 kinetics. Perfect fits were
observed, and parameter estimates perfectly matched the known inputted values for all available
models (standard error = 0; p < 0.001). The VO2FITTING is a valid, free and open-source software for
characterizing VO2 kinetics in exercise, which was developed to help the research and performance
analysis communities.

Keywords: exercise; software; free; open-source; oxygen uptake kinetics; modelling

1. Introduction

Successful sporting performance is the result of a complex interaction between many factors,
which often involves testing procedures to evaluate the effects of training programs [1]. From a
diversity of tests, variables and prediction models [2–4], sports scientists characterize dynamic
profiles (kinetics) of cardiorespiratory variables to better understand the control mechanisms of
muscle energetics and oxidative metabolism [4]. These profiles can inform the preparation of the
annual training plan, periodization of training mesocycles and microcycles and the prescription of
individual training sets [5]. However, for the effective application of cardiorespiratory variables,
a detailed understanding of the basic principles of oxygen uptake (VO2) kinetics is required. The rate
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at which VO2 responds to metabolic demand changes at the onset of exercise is dependent on the
capacity of the cardiorespiratory and muscular systems to react appropriately [6]. Understanding VO2

kinetics involves quantifying physiological mechanisms responsible for the dynamic VO2 response to
exercise (on-transient kinetics) and its subsequent recovery (off-transient kinetics) [4]. Although the
mechanisms that control the regulation of the O2 transport/utilization system to changes in metabolic
demand have been studied over decades, quantifying VO2 kinetics has gained popularity during the
last decade [4]. In fact, some VO2 kinetic parameters have different and eventually faster and higher
responsiveness to training stimuli than maximal oxygen uptake (VO2max) [7–9].

VO2 assessment in exercise, followed by VO2 profile mathematical modelling, is a useful
non-invasive method for studying muscle oxidative metabolism. The VO2 response following the
onset of a specific intensity can be defined by the underlying exercise-intensity domain (moderate,
heavy, severe and extreme) [10–12]. At the moderate intensity domain (i.e., below and at the anaerobic
threshold), VO2 begins to increase within the first breath (Phase I or cardiodynamic component),
and after a brief time delay (~15–20 s), there is an exponential increase of VO2 (Phase II, fundamental
or primary component, to achieve a subsequent steady state (Phase III) [13–15]. At the heavy intensity
domain, after the cardiodynamic phase, VO2 continues rising before a secondary VO2 elevation
becomes apparent after ~90–120 s (the slow component of VO2 kinetics, VO2sc). This increase is
combined with a faster primary response until a delayed steady state is attained, exhaustion ensues
or exercise ends [13,16,17]. At even higher work rates, at the severe intensity domain, VO2 cannot
be stabilized, rising rapidly and exponentially to VO2max [15,18]. At this intensity domain, VO2sc is
more pronounced compared to heavy exertion, rising inexorably until fatigue ensues [19]. Finally,
in the extreme domain, the work rate is so intense that the task finishes before the VO2max can be
achieved [4,20]. At this intensity, VO2 is characterized by the development of a fast component with
insufficient time for a VO2sc to appear [21].

Analysis of VO2 kinetics provides useful information about the rate of adjustment of oxidative
phosphorylation, which permits separate assessment of the relative contribution of the energy systems
delivery, substrate utilization and the time endured during exercise [21]. Higher exercise tolerance is
essentially associated with changes in the fast and slow components of the VO2 kinetics, particularly
the time constant of the primary component (τp) and the amplitude of the slow component (Asc),
which are relevant for performance analysis [21,22]. Children also exhibit a slow-component response
to exercise, which is consistent with an age-dependent change in muscles’ potential for O2 consumption.
The inherent increase in the signal-to-noise ratio from childhood through adulthood might mask any
clear changes in ventilatory variables [23]. A smaller value for τp results in faster attainment of steady
state, while a delayed or more slowly developing Asc is associated with enhanced exercise tolerance [4].

Given that rapid feedback from testing is necessary for coaches to better plan training sessions,
tools for analysing the VO2 response (data editing, processing, filtering and modelling) should be
available, effective and relatively straightforward. However, free and open-source software supported
by these features is not yet available. Thus, end-users usually need to develop customized in-house
tools, which require mastery of complex mathematical modelling, as well as basic knowledge of
respiratory physiology. Therefore, the aim of the study was two-fold: (i) to develop, describe and
evaluate a VO2 fitting tool for dynamically editing, processing, filtering and modelling VO2 responses
to exercise; and (ii) to verify, using this VO2 fitting tool, the goodness of fit between different models
and respective confidence intervals of VO2 kinetics parameters obtained from one swimming event to
illustrate some of the software capabilities.

2. Materials and Methods

We developed a software package (VO2FITTING) and conducted an experiment illustrating
how it can be used to edit, process, filter and model VO2 responses in exercise. To this end,
we chose swimming as an example, but other examples are available as supporting information
(S1 File), illustrating selected options on VO2FITTING, which should be useful for research and
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performance analysis in sports. We used raw data from a pool-based fixed-distance even-paced swim
test (400-m swim test, T400) performed at the severe intensity domain [24], without any constraint for
parameter estimates (see “Constraining Parameters in Curve Fitting” in S1 File). We chose the severe
intensity domain as an example since it is expected that there is a lower VO2 signal-to-noise ratio than
in heavy and moderate domains.

2.1. Development and Validation of VO2FITTING Software: Source Code, Requirements, Availability
and License

VO2FITTING offers functionalities that confer enough flexibility to compare simultaneously
several respiratory responses with sufficient precision to meet researcher and performance analyst
requirements (S1 File). VO2FITTING runs online, inside a browser, requiring a Shiny server,
which can be configured for local or shared access by multiple users, and importantly does not
require an internet connection while modelling VO2 kinetics (S1 File). News about the application,
source code, installation instructions and other documentation can be verified on the landing page
(https://shiny.cespu.pt/vo2_news/). The latest version of VO2FITTING will be permanently available
in the repository. The source code of VO2FITTING is released under a GNU General Public License
version 3 (GPL-3; https://www.r-project.org/Licenses/GPL-3). Software packages which are covered
by this license are free and open-source, even after each new release. This license ensures that
everyone can use, modify and contribute to the software. Validation VO2 datasets were developed and
applied to 7 widely-used models for describing different intensity transitions (3 mono-exponential,
2 bi-exponential, 1 tri-exponential and 1 logistic model; see S1 File for details).

2.2. Subjects (Swimming Experiment)

Twenty age-group swimmers (10 males and 10 females) volunteered to participate in this study.
Their main physical and training frequency characteristics were: 14.9 ± 0.9 and 14.2 ± 0.9 years old,
body mass 67.2 ± 3.6 and 52.7 ± 6.9 kg, height 170.8 ± 2.6 and 160.0 ± 6.3 cm, arm span 174.5 ± 8.1
and 164.1 ± 10.5 cm (mean ± SD for male and female swimmers, respectively), 6–7 swimming sessions
and 2–3 h of dryland training per week in the same squad and under direction of the same coach,
≥ five years of competitive experience and 538 ± 73 Fédération Internationale de Natation (FINA) points
(year: 2015) from the main event during competition (https://www.swimrankings.net/). The most
individual representative stroke was freestyle for 17 swimmers, backstroke for 2 swimmers and
breaststroke for 1 swimmer. Pubertal maturation stage [25] was similar for both males and females
(late pubertal to post pubertal). All subjects were informed about the benefits and risks of participating
in the investigation prior to signing an institutionally approved informed consent form. In addition,
each swimmer’s parents or guardian provided written consent prior to their participation. The study
was approved by the ethics board (Process CEFADE 04.2017) of the Faculty of Sport of University of
Porto and performed according to the Helsinki Declaration.

2.3. Experimental Methodology

Prior to the experiment, swimmers were familiarized for three months, 2–3 times per week, with a
snorkel and nose clip. The experimental protocol took place in a 25-m indoor pool (water (~27 ◦C) and
air (~25 ◦C) temperature, and ~65% relative humidity). Swimmers were tested at the same time of the
day and instructed not to perform strenuous exercise on the day before. Swimmers were instructed
to follow their normal diet in the day preceding the testing, and to have a light meal (breakfast) 3 h
before, including ~500 mL of water or a beverage but no caffeine. Following a randomized order,
each swimmer performed ~800-m front crawl warm up at a moderate intensity, and soon after, a T400.
The T400 is commonly used to assess aerobic power in swimmers, given its pace is situated on the severe
intensity domain [16]. Although the breathing snorkel used for respiratory gas collection does not add
additional hydrodynamic drag [26], in-water starts and open turns (without underwater gliding) were
used given the inherent physical restrictions of the snorkel. Subsequently, the VO2FITTING software

https://shiny.cespu.pt/vo2_news/
https://www.r-project.org/Licenses/GPL-3
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was applied (see S1 File) for editing, processing and modelling VO2 response from each swimmer.
Although seven different models are available to describe different intensity transitions (see S1 File
for details), the goodness of fit of two different models (mono- and bi-exponential) and respective
confidence of VO2 kinetics parameters were verified during this experiment with swimmers to check
if the current data are consistent with the expected behaviour for the exercise response in the severe
intensity domain.

2.4. Experimental Measurements

Respiratory and pulmonary gas-exchange data were measured breath-by-breath using a low
hydrodynamic resistance respiratory snorkel and valve system (AquaTrainer®, Cosmed, Rome,
Italy) [27]. The AquaTrainer® was connected to a telemetric portable gas analyzer (K4b2, Cosmed,
Rome, Italy) and suspended at a height of 2 m over the water in a steel cable (designed to minimize
disturbance of the normal swimming movements) [26]. The telemetric portable gas analyzer and
turbine volume transducer were calibrated (following the manufacturer instructions) before each
testing session with gases of known concentrations (16% O2 and 5% CO2) and 3 L syringe, respectively.

2.5. Models and Parameters Estimation

To increase the VO2 signal-to-noise ratio, 2–3 exercise transitions are usually performed per
participant [28–31]. These are time-aligned and ensemble averaged to yield a single profile per
participant [32–35]. This feature is available in the VO2FITTING, of which an example is shown
(S1 File). However, it was not used in the current experiment, since even only two repetitions by each
swimmer are not easily measured poolside. In fact, squads are often large and facilities, equipment and
sports science expertise hard to come by. Thus, instead of identical repetitions, a single test is commonly
used. Therefore, we employed an experimental model where each swimmer (n = 20) performed a
single 400-m front crawl even-paced swim test (T400), in randomized order, same warm-up, arousal,
time of day and time of testing within the training period.

The VO2 kinetics parameters were estimated, including the precision of estimation (confidence
limits), by bootstrapping [36–38] (see Statistical Analysis section for more details). Parameter estimates
and the goodness of fit of each model (mono- and bi-exponential) were only analyzed with raw data.

The first 20 s of data after the onset of exercise (cardiodynamic phase) were not considered for VO2

kinetics analysis [39]. For each swimmer, the on-transient was modelled with mono- and bi-exponential
models (Equations (1) and (2)), characterizing the exercise VO2 response during the T400:

VO2(t) = A0 + H
(
t − TDp

)
× AP

(
1 − e−(t−TDp)/τp

)
(1)

VO2(t) = A0 + H
(
t − TDp

)
× AP

(
1 − e−(t−TDp)/τp

)
+H(t − TDSC)× Asc

(
1 − e−(t−TDsc)/τsc

)
(2)

where VO2(t) (mL·kg−1·min−1) represents the VO2 normalized to body mass at the time t, A0 is the
VO2 at rest (2 min average; mL·kg−1·min−1). Ap and Asc (mL·kg−1·min−1), TDp and TDsc (s), and τp

and τsc (s) are respectively the amplitudes, the corresponding time delays and time constants of the
fast and slow VO2 components. H represents the Heaviside step function (Equation (3)) [40]:

H(t) =

{
0, t < 0
1, t ≥ 0

(3)

VO2 at the end was calculated as the average of the last 60 s of exercise for both models.
Since the asymptotic value of the second function is not necessarily reached at the end of the



Sports 2019, 7, 31 5 of 15

exercise, the amplitude of the Asc at the end of the T400 (Asc_end) was also calculated (Equation (4))
(see “Auxiliary Reports” in the S1 File) [22,41]:

Asc_end = Asc(1 − e−(tend−TDsc)/τsc) (4)

where tend is the time at the end of the T400. The Asc represented the difference between the VO2

at the end (average of the last 60 s) and “Ap + A0” was also calculated using the available option
from VO2FITTING.

The R (R Core Team, 2015), a free software environment for statistical computing and
graphics, was used to perform all the computations in the study, with the support of the Shiny
package [42] (https://cran.r-project.org/web/packages/shiny/index.html) and other dependencies
(see S1 File). Notable dependencies are minpack.lm and nlstools, PACKAGES for non-linear least-square
regression analysis [43,44], used to fit he VO2 response from the single T400 for both mono-and
bi-exponential functions.

2.6. Statistical Analysis

Noisy (Gaussian) and non-noisy datasets were developed for seven different models to describe
different intensity transitions (3 mono-exponential, 2 bi-exponential, 1 tri-exponential and 1 logistic
model; see S1 File for details), both are provided as downloadable spreadsheets in the supporting
information (S2 File). Subsequently, VO2 data outputs as a function of time were created through
these files and uploaded in the application, verifying whether the fitted parameters perfectly matched
the known input values. Moreover, all these spreadsheets (S2 File) can be employed by the end-user
to generate different datasets, even with different ranges of input values and suitable for specific
scenarios, to verify and validate the software response. We used bootstrapping with 1000 samples
(with replacement from the observed residuals), adjustable in the interface, to estimate parameters
of mono- and bi-exponential fitting models for each swimmer T400 [36–38]. The mean, standard
deviation, coefficient of variation, and 95% confidence intervals were calculated for each parameter
estimate (bootstrapping analysis is available in VO2FITTING; see “Output Options” in the S1 File).
To verify the goodness-of-fit for both mono- and bi-exponential models, Shapiro–Wilk (residuals
distribution) and ANOVA F-test (with respective residuals sum of the squared from the differences
between both models) were applied. A level of significance of 0.05 was used in all tests.

3. Results

VO2 output data as a function of time obtained from the validation datasets (S2 File) generated
perfect fits. Moreover, the parameter estimates perfectly matched the known inputted values for all
seven available models (standard error = 0; p < 0.001). An example of a bi-exponential model validation
dataset uploaded in VO2FITTING is displayed in Figure 1, with parameter estimates perfectly matching
the known inputted values.

https://cran.r-project.org/web/packages/shiny/index.html
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Table 1 shows an overview of all parameter estimates for each model, particularly the mean
parameter estimates for all swimmers (fitted individually), standard deviation, 95% confidence interval
and mean coefficient of variation. The mean swimming performance in T400 was 5:15 ± 0:20 min:s
(males: 5:04 ± 0:06 min:s; females; 5:27 ± 0:17 min:s).

Table 1. Estimated VO2-related parameters obtained from mono- and bi-exponential models (mean ±
SD).

Mono-Exponential Bi-Exponential

A0 (mL·kg−1·min−1) 8.8 ± 3.4 8.8 ± 3.4
A0 (mL·min−1) 528 ± 204 528 ± 204
Ap (mL·kg−1·min−1) 44.1 ± 7.0 40.0 ± 7.3
Ap (mL·min−1) 2644 ± 419 2398 ± 438
95%CI (mL·kg−1·min−1) 42.9 to 45.4 35.0 to 42.9
CV (%) 1.5% 5.3%
TDp (s) 20.8 ± 6.1 24.0 ± 6.8
95%CI (s) 13.9 to 26.9 16.5 to 30.4
CV (%) 18.5% 16.3%
τp (s) 26.5 ± 12.0 16.5 ± 7.4
95%CI (s) 18.3 to 36.4 8.1 to 28.1
CV (%) 16.6% 36.4%
Asc_end (mL·kg−1·min−1) - 7.0 ± 1.8
Asc_end (mL·min−1) - 417 ± 108
95%CI (mL·kg−1·min−1) - 3.3 to 12.4
CV (%) - 34.8%
TDsc (s) - 137 ± 23
95%CI (s) 11 to 240
CV (%) - 45%
VO2 at the end (mL·kg−1·min−1) 55.1 ± 6.4 55.1 ± 6.4
VO2 at the end (mL·min−1) 3303 ± 384 3303 ± 384

A0 is the VO2 at rest; Ap and Asc_end, TDp and TDsc are respectively amplitudes and corresponding time delays of
the fast and slow VO2 components. The τp is the time constant of the fast VO2 component. CV (%) and 95%CI are
the mean coefficient of variation and 95% confidence interval for each mean parameter estimate, respectively.

Figure 2 shows the VO2FITTING home menu with an example of a T400 modelled VO2 response
(bi-exponential). Software options include joining multiple observations, data filtering, specific data
point deletions, multiple options related to A0, several fitting models, output reports, and constraint
fitting ranges for parameters when the fitting fails with default values. A screenshot from the bottom
of the VO2FITTING home menu detailing residuals plots to evaluate the goodness of fit of the
T400 modelled VO2 response (bi-exponential) of the same swimmer are presented in the supporting
information (S1 File–Figure 2).
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Figure 3 shows two examples of mono- versus bi-exponential fits comparisons from a typical T400
VO2 response (with corresponding residual plots for each model). On the top of Figure 3, the F-test
indicated that the bi-exponential model was superior for this swimmer. Likewise, the bi-exponential
model best fitted for 15 swimmers, presenting a smaller residual sum of squares and standard error
of regression (p < 0.05). The mono-exponential model was not superior for any swimmer since the
F-test did not show differences between models for the remaining five swimmers, as illustrated on
the bottom of Figure 3. The Asc calculated as the difference between the VO2 at the end (average of
the last 60 s) and “Ap + A0” was 6.3 ± 2.7 mL·kg−1·min−1. Model comparison was similar between
gender, since the bi-exponential model best fitted for 70 and 80% of males and females, respectively.
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Figure 3. Examples of goodness-of-fit analysis between mono- and bi-exponential models of a typical
T400 VO2 response from two swimmers. (A) bi-exponential model being superior; (B) No difference
between mono- and bi-exponential models. Shapiro–Wilk (residuals distribution) and ANOVA F-test
(with respective residuals sum of the squared from the differences between both models) detailed on
the top of both graphics. * Res.Df: residual degree of freedom; Res.Sum Sq: residual sum of square; Df:
degree of freedom; Sum Sq: sum of square; F value: for testing the hypothesis that the group means for
that effect are equal; Pr(>F): the significance probability value associated with the F Value; SE of reg:
standard error of regression.
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We also added an example in the supporting information (S1 File), in which a comparison
between swimming and running was performed at the same relative intensity. We observed that the
coefficients of variations from parameter estimates were predominantly higher in swimming than
running, thus illustrating some of the available options of VO2FITTING, useful for research and
performance analysis in elite, sub-elite or recreational athletes.

4. Discussion

Performance analysts typically take several hours per week to provide objective information for
athletes and coaches, helping them to understand and improve performance in sports. The use of
technology and software by these professionals is crucial. Analysts need to give rapid performance
diagnosis, since coaches need immediate feedback for planning, modifying and evaluating training
sessions. To this end, dynamic and feasible fitting tools for VO2 kinetics analysis should be available.
In this study, VO2 data outputs were uploaded from noisy and non-noisy datasets to assess the
concurrent validity of available models from VO2FITTING, and some experiments were performed to
illustrate its applicability.

Analysis of VO2 kinetics enables a non-invasive assessment of the effectiveness of training
programs, providing relevant information about exercise tolerance determinants. Commercial software
requires mastery of complex software for mathematical modelling (e.g., Matlab, Mathworks, Natick,
USA, www.mathworks.com; LabVIEW™, National Instruments, Austin, TX, USA, http://www.ni.
com/en-us/shop/labview.html), and basic knowledge of respiratory physiology for research and
performance analysts in sports [14,35,45]. The VO2FITTING software solves that constraint, allowing
straightforward analysis of VO2 kinetics in exercise with a feasible graphical interface. Although some
of the available commercial software also provides the end-user with relatively straightforward options
for VO2 kinetics data analysis (e.g., Origin, OriginLab, Northampton, MA, USA, www.originlab.com;
GraphPad Prism, GraphPad Software, San Diego, CA, USA, https://www.graphpad.com/; SigmaPlot,
Systat Software, San Jose, CA; www.sigmaplot.co.uk), VO2FITTING goes further since it is free and
open-source with built-in features that are commonly used in VO2 kinetics modelling, which appears
to have promise as a useful tool for the research and performance analysis communities.

Every VO2 breath-by-breath signal has non-uniformities in the underlying breathing pattern [32],
which are relevant for its variability, particularly if corrections for the differences between alveolar
and mouth O2 exchanges are not taken into consideration [46]. We chose swimming as an example,
using raw data from a pool-based fixed-distance even-paced swim test performed at the severe
intensity domain, since it is expected that there is a lower VO2 signal-to-noise ratio than in heavy
and moderate intensity domains. However, other examples are available as supporting information
(S1 File). Fluctuations in gas exchange are even more pronounced in swimming given the constraint
related to the breathing pattern (e.g., during front crawl there is a specific moment to inspire and other
to expire). Unlike swimming, athletes can breathe when they want during running or cycling. Likewise,
swallowing and coughing can also generate fluctuations in gas exchange, resulting in variability or
‘noise’ around the mean VO2 response [18,32,47]. These errant breaths can degrade the signal quality
since they are not components of the response, influencing the confidence in parameter estimates and
their interpretation [48]. Thus, the high coefficients of variation of critical estimated parameters also
highlight some issues regarding our experimental design.

VO2FITTING is also provided with the widely used filters for VO2 kinetics analysis, which are
described in detail in the supporting information (S1 File). In this regard, we present related data
illustrating quantitatively and graphically some of these filters, like rolling standard deviation, averaging
in a box and moving average. Other filters like interpolation every 1-s and moving mean are also available
in VO2FITTING (S1 File). Although commonly used, there is little consensus on how to fit and
treat swimming VO2 kinetics data [10,11]. However, even assuming that errant breaths are not from
the actual transient VO2 kinetics, editing of the VO2 signal should be done with caution using a
priori established criteria [29]. As standard values for data editing have not been established yet,

www.mathworks.com
http://www.ni.com/en-us/shop/labview.html
http://www.ni.com/en-us/shop/labview.html
www.originlab.com
https://www.graphpad.com/
www.sigmaplot.co.uk
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some authors prefer to err on the side of less stringency, and exclude data that lie more than four
standard deviations away from the mean [12,29,47]. Although symmetrical high–low pairing of breaths
may offset fitting effects, it is debatable whether the fitting model should be conducted on filtered or
raw data, since more stringency (allowing more ‘errant’ data points) could exert a major influence on
the parameters estimation. For example, substantial errors can be observed during fast VO2 kinetic
responses given the limited volume of data in the transient region [29]. Since model fitting VO2 kinetics
parameters are necessarily estimates, adequate characterization of its response cannot be satisfactorily
retrieved from artificially filtered data where noise is deliberately attenuated [32,49]. Thus, to avoid
any constraint, parameter estimates and goodness of fit between different models were only analyzed
with raw data.

It is unclear whether time aligning and ensemble averaging VO2 data to yield a single transition
can affect the physiological interpretation of parameter estimates. Some of the existing modelling
methods require subjects to perform several transitions, reducing noise and improving parameter
estimates [33–36]. Although VO2FITTING also allows this type of signal processing, a bootstrapping
method was chosen to estimate parameters using samples from a unique transition for each participant.
This approach provides reliable information about the estimated parameters [37,38,40]. In fact,
the estimated coefficients of variation for Ap (mono: 1.5% vs. bi-exponential: 5.3%) and TDp (mono:
19% vs. bi-exponential: 16%) in the current study were relatively suitable for both models. However,
the low accuracy of the two critical parameters on the bi-exponential model (i.e., Asc_end: 35% and
TDsc: 45%) seems to be related to the pronounced fluctuations in VO2 kinetics in swimming, and the
inherently low signal-to-noise ratio which typically decreases from childhood through adulthood [23].

Understanding the physiological significance of both VO2 fast and slow components during
exercise is an essential skill for researchers and performance analysts [21,50,51]. We tested the
VO2FITTING with data from a T400, usually used to prescribe the target swimming speed for aerobic
power development, both in age-group and adult swimmers [16,52]. The workload demand during
severe intensity exercise leads to a loss of muscle metabolic homeostasis that compromises the muscle
power output, requiring additional motor unit recruitment and increased oxygen cost forming the
VO2sc [53]. However, although the bi-exponential model was the best fit for 75% of the current
sample when comparing with the mono-exponential model, the sum of squares residuals when
fitting this model was smaller for all swimmers [15]. This contradiction may be explained by the
inherent breath-by-breath noise observed in young swimmer’s response profiles, which could mask
any clear changes in ventilatory variables [23]. Nevertheless, even without significant differences
observed between mono- and bi-exponential models for the remaining five swimmers, the mean Asc

calculated as the difference between the VO2 at the end and the amplitude of the primary phase
was ≥2.1 mL·kg−1·min−1 (Figure 3). These data are suggestive of an imbalance in muscle metabolic
homeostasis followed by peripheral fatigue [51,53]. Thus, the current data are consistent with the
expected behaviour for exercise response in the severe intensity domain for most of the swimmers
who performed the T400 [16,54]. However, since both heavy and severe exercise may evince a slow
component [15], concomitant analysis with other physiological variables and swimming techniques
could yield a more comprehensive overview of the swimmer profile [55].

Although VO2FITTING allows straightforward analysis of respiratory responses for research
and performance in sports practitioners, it cannot be considered as the definitive solution for VO2

kinetics data processing for novice/regular user because its interpretation requires knowledge about
respiratory physiology. Although some commercial software packages provide intuitive graphical
interfaces and relatively straightforward options to analyze VO2 kinetics data, knowledge about
respiratory physiology is also mandatory. Moreover, none of these commercial software packages
are free or open-source. VO2FITTING offers advantages, but it is important to acknowledge some
of the shortcomings and potential limitations of the software. First, although relevant for research
and performance assessment, off-transient VO2 kinetics analysis is not yet available in this version.
However, since VO2FITTING is open-source software, other mathematical functions traditionally used
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to estimate physiological parameters related to VO2 kinetics can be incorporated into the software by
the authors or contributors. Secondly, technical support and detailed user manuals of VO2FITTING
(S1 File) are only available in English. Finally, despite the concurrent validity observed for all
available models in VO2FITTING and examples illustrating its applicability, we have not examined
the constraints for parameter estimates, logistic and tri-exponential models. Future challenges include
testing of all the remaining available options with experimental data, and updating VO2FITTING
documentation with examples to illustrate each of these available tools.

5. Conclusions

VO2FITTING has shown to be valid for characterizing VO2 kinetics in exercise. Initial concurrent
validation showed perfect fits for all available models, with parameter estimates matching perfectly
the known inputted values. The evaluation of severe intensity transitions in swimming has illustrated
some applications and feasibilities of VO2FITTING. We identified the expected behaviour for severe
intensity VO2 kinetics for most swimmers, which, if assessed concurrently with other physiological
variables and swimming technique analysis should generate a complete (biophysical) overview of a
swimmer’s profile [55]. We also showed fitting results when using supplementary swimming and
running-related data (S1 File), illustrating other available options of VO2FITTING. This freely available
software, which analyzes VO2 kinetics in exercise, can be applied for research and performance in
elite, sub-elite or recreational athletes. Since it is open-source software, we believe that VO2FITTING
appears to have promise as a useful tool for the sports science community.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4663/7/2/31/s1,
S1 File: Supporting information 1_VO2FITTING Documentation; S2 File: Supporting information 2_Validation Datasets.
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