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“The most difficult thing is the decision to act,

the rest is merely tenacity.”

— AMELIA EARHART



AGRADECIMENTOS

Este trabalho é para o meu pai, que não pode ver sua conclusão, mas participou

de todo o seu desenvolvimento. Muito obrigado pelo apoio, incentivo, carinho e alegria

que tu me deu por todos esses anos. Este trabalho também é para minha mãe, que sempre

esteve ao meu lado e que nunca duvidou que eu chegaria aqui. Muito obrigado por nunca

ter questionado minhas decisões e por ser um modelo de garra que eu pude seguir.

Este trabalho também é para minha esposa, que por muitas vezes acreditou mais na

conclusão dele do que eu mesmo. Ela é minha inspiração de força e persistência. Muito

obrigado por dividir esse caminho comigo e por toda a ajuda que tu sempre me deu.

Este trabalho também é para meu sobrinho e afilhado. Tenho esperança que no

futuro em que ele vai viver, a ciência e o conhecimento que essa tese representam sejam

mais valorizados do que hoje.

Todo o apoio que eu recebi nesses anos de formação academica foram essenciais

para o desenvolvimento desta tese e a maior fonte desse apoio sempre foi minha família.

Agradeço a todos os demais que estiveram juntos comigo durante esse processo.

Meus amigos, família, colegas de laboratório e orientador. Vocês todos tiveram um papel

essencial nessa tese, seja colaborando com meu crescimento pessoal ou profissional.

Por fim, também agradeço as agências financiadoras de pesquisa do Brasil e Rio

Grande do Sul, incluíndo a CAPES, o CNPQ e a FAPERGS. Sem elas, não haveria

pesquisa no Brasil e tenho esperança de que elas serão cada vez mais fortalecidas e bem

representadas pelos excelentes pesquisadores do nosso país.



ABSTRACT

For generations, General-Purpose Processors (GPPs) have implemented specialized in-

structions in the form of Instruction Set Architecture (ISA) extensions aiming to increase

the performance of emerging applications. Nonetheless, these extensions impose a signif-

icant overhead in the area and power of the processor, as they require custom components

to implement the specialized datapaths. Examples are the Single Instruction Multiple

Data (SIMD) and Floating-Point (FP) instructions, which pipelines can represent more

than half of the total area of the core. Exploiting the fact that these instructions are not

used as often as the instructions from the base ISA, we propose solutions to reduce the

amount of support for instructions extensions in Asymmetric Multicores (AMCs) (multi-

cores that usually implement cores of high performance - big cores - and high energy/area

efficiency - small cores), enhancing their area and energy efficiency. This thesis proposes

two complementary methods that can be combined to achieve such efficiency. We start

by introducing the Partially Heterogeneous ISA (PHISA) multicore. PHISA is composed

of heterogeneous cores of single base ISA, but asymmetric functionality. In other words,

some of the cores in the multicore system do not fully implement the costly instruction ex-

tensions, but all share a mutual base ISA. Therefore, by replacing full-ISA by partial-ISA

cores and migrating tasks when necessary, it is possible to free valuable area and power

from the processor design, while maintaining support for the extended instructions. While

migrating jobs can be efficient in single-threaded workloads, this might not be the case

in parallel applications. Migrations can increase the time a thread requires to reach a

synchronization point, introducing a bottleneck in the execution. For these applications,

we propose to increment PHISA with the Tightly Coupled Instruction Offloader (TUNE)

component. The TUNE architecture implements a PHISA system in which the big core is

a partial-ISA and responsible for executing only the serial regions of the applications. The

small cores, on the other hand, are all full-ISA and responsible for the parallel regions.

Whenever the serial region requires to execute a non-implemented instruction, TUNE of-

floads this operation to the small cores in a transparent manner. In this thesis, we show

how PHISA and TUNE can be used to improve performance and energy consumption in

both serial and parallel applications, compared to other traditional heterogeneous designs.

Keywords: Heterogeneity. partial isa. overlapping isa. energy efficiency. instruction

offloading. shared resources. shared execution unit.



Da Aplicação de Conjuntos Parciais de Instruções e Despacho Externo de

Instruções para Aumentar a Eficiência de Processadores Multi-Núcleo Assimétricos

RESUMO

Por gerações, os processadores de propósito geral implementam instruções especializa-

das na forma de extensões de conjuntos de instruções ISA com o objetivo de aumentar o

desempenho de aplicações emergentes. Contudo, tais extensões impõe um custo significa-

tivo na área e potência do processador. Um exemplo está nas instruções do tipo instrução

única, múltiplos dados SIMD e de ponto flutuante FP, cujos pipelines podem representar

mais da metade da área total de um núcleo do processador. Aproveitando o fato de que tais

instruções não são tão comumente usadas como as da ISA base, são propostas soluções

para reduzir a quantidade de suporte que é dado a extensões de instruções em processa-

dores multinúcleo assimétricos AMC (sistemas que usualmente implementam núcleos de

alto desempenho - núcleos grandes - e alta eficiência de área/energia - núcleos peque-

nos), aprimorando sua eficiência em área e energia. Inicialmente, é introduzido o sistema

multinúcleo de ISA parcialmente heterogênea PHISA. PHISA é composto de núcleos he-

terogêneos com uma única ISA base, mas funcionalidades diferentes. Em outras palavras,

alguns dos núcleos deste sistema heterogêneo não implementam completamente as caras

extensões de ISA, mas ainda assim todos compartilham uma ISA base mútua. Desta

forma, ao substituir núcleos de ISA completa por núcleos de ISA parcial e migrando ta-

refas sempre que necessário, é possível liberar recursos valiosos de área e potência do

projeto do processador, sem abrir mão completamente do suporte as extensões de ISA.

Por outro lado, enquanto a migração de tarefas é eficiente em aplicações de thread única,

este pode não ser o caso em aplicações paralelas. Migrações podem aumentar o tempo em

que uma das múltiplas threads precisa para atingir seus pontos de sincronização, criando

assim um gargalo em sua execução. Para tais aplicações, é proposto aprimorar o sistema

PHISA com um despachador de instruções fortemente acoplado TUNE. A arquitetura

com TUNE implementa um sistema PHISA cujo núcleo grande implementa parcialmente

a ISA e é responsável pela execução das regiões seriais das aplicações. Os núcleos peque-

nos, por outro lado, implementam todos a ISA completa do sistema e são responsáveis

pela execução das regiões paralelas da aplicação. Sempre que a região sequencial da apli-

cação precisar executar uma instrução não implementada no núcleo grande, o TUNE irá

despachar estas operações para os núcleos pequenos de forma transparente. Nesta tese, é



mostrado como o PHISA e TUNE podem ser usados para melhorar o desempenho e con-

sumo energético ambos de aplicações seriais e paralelas, quando comparado a projetos

tradicionais de AMCs.

Palavras-chave: heterogeneidade, isa parcial, isa sobreposta, eficiência energética, des-

pacho externo de instruções, recursos compartilhados, unidade de execução comparti-

lhada.
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1 INTRODUCTION

General-Purpose Processors (GPPs) have become highly complex, adopting many

performance strategies such as Out-Of-Order (OoO) execution, multithreaded process-

ing, and application-specific instruction sets. Such complex designs, however, are usually

limited by a power constraint, independently from the system application - be it a server

of High-Performance Computers (HPC) or a simple embedded system. To deliver high-

performance throughput at small energy budgets, processor manufacturers are currently

relying on single-Instruction Set Architecture (ISA) heterogeneous processors, such as

the ARM big.LITTLE(ARM, 2016), and - more recently - ARM DynamIQ(ARM, 2018).

These processor’s designs employ distinct cores with different microarchitectural proper-

ties - both in performance and power - in the same die. While the big core is usually a

complex out-of-order core, the little is normally implemented as a simple in-order core.

These processors designs are an efficient strategy both in the perspective of the

area and power usage, and in product deployment, as manufacturers can use readily avail-

able core designs to create them. This reusability is a common approach in the industry,

as manufacturers tend to update their products incrementally and to use existing and val-

idated tools from previous processor generations. Therefore, to boost the performance

of emerging applications, instead of completely changing the microarchitectural organi-

zation, designers of GPPs generally rely on tailoring the processor ISA. Each architec-

tural iteration of GPPs adds newer instructions in the form of extensions (e.g., Streaming

SIMD Extensions (SSE) and Advanced Vector Extensions (AVX) in the x86, and Thumb,

NEON and Scalable Vector Extension (SVE) in the ARM), increasing the complexity of

the microarchitecture. Nonetheless, not all applications will take advantage of such in-

structions. For instance, x86 AVX Single Instruction Multiple Data (SIMD) instructions

are specifically used for highly vectorized applications and ARM’s SVE is targeted for

High-Performance Computing (HPC).

This is no different for NEON instructions (Floating-Point (FP) and SIMD opera-

tions extension) in ARM architectures, as can be seen in Figure 1.1. This Figure shows the

percentage of dynamic instructions executed in several single-threaded workloads from

different benchmark suits in an ARM processor. It demonstrates how underused NEON

instructions (categorized as SIMDFloat in the figure) are. While some applications do

present a considerable amount of SIMD and FP operations, such as the voice synthesizer

rsynth and the vector multiplier atax, most of the others use few or non of these instruc-
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Figure 1.1: Instruction breakdown by category. Highlighted instructions are from NEON
extension
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tions.

Furthermore, there are specific phases in applications that tend to use more of

these operations. For instance, table 1.1 shows several parallel applications, the size of

their parallel regions (as a ratio of the time spent executing in parallel vs serial execution)

and the amount of FP and SIMD operations executed only in the serial region (as a ratio

against the number of all other instructions). In this table, we can observe that even in

applications with larger serial regions, the amount of SIMD and FP operations in these

phases is usually small.

When one considers the current Commercial Off-The-Shelf (COTS) embedded

processors, the trend of incrementing the ISA can only worsen the situation presented

in our observation, in which specific operations are not used in most applications. This

is further aggravated when we analyze the impact that these extensions can introduce in

current embedded processor designs. Figure 1.2 shows the area (1.2a) and power (1.2b)

breakdown of the ARM A15 processor, extracted from McPAT models (LI et al., 2009).

The A15 has two NEON pipelines with ten stages and a wide FP-specific register file

that represent about 69% of the total core area. Furthermore, these components also

comprise about 14% of the dynamic peak power of the A15 processor. Note that this

area and power analysis includes the L1 instruction and data caches of the core, which

makes the impact of such units even more evident. Even when we consider processors of

other architectures, such as the RISC-V, that implement only simple Floating-Point Units

(FPUs) (without SIMD support), the area of this unit can represent 37% of the total core

area (BECKER; SOUZA; BECK, 2019).

It is understandable why such operations are included in current processors. These

instructions can provide huge performance improvements and are much more power effi-
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Table 1.1: Application region of interest characterization in terms of parallel region size
and SIMD/FP ratio in the serial region.

Benchmark Parallel Ratio Serial SIMD/FP Ratio

parsec

bodytrack 99.10% 0.05%

ferret 98.24% 0.10%

dedup 98.18% 0.00%

facesim 97.56% 0.14%

cholesky 96.56% 0.88%

freqmine 95.38% 0.01%

parvec

swaptions 99.99% 0.00%

fluidanimate 99.67% 0.05%

streamcluster 99.60% 0.01%

canneal 99.58% 0.02%

blackscholes 99.55% 0.01%

vips 98.94% 0.14%

polybench

bicg 100.00% 0.00%

fdtd-apml 99.99% 0.00%

convolution-2d 99.99% 0.00%

gemm 99.97% 0.06%

symm 99.95% 0.00%

syrk 99.90% 0.04%

syr2k 99.89% 0.04%

atax 99.73% 0.06%

2mm 99.27% 1.03%

mvt 98.82% 1.11%

gesummv 98.76% 0.46%

3mm 98.68% 1.66%

doitgen 98.41% 0.83%

trmm 82.25% 6.74%

correlation 81.95% 10.10%

gramschmidt 78.70% 11.72%

covariance 77.40% 17.33%

lu 68.71% 0.09%

splash2x

ocean_ncp 99.85% 0.01%

barnes 99.74% 0.02%

ocean_cp 99.63% 0.04%

radix 99.37% 0.00%

raytrace 99.19% 0.12%

lu_cb 98.48% 0.11%

water_nsquared 97.92% 0.20%

lu_ncb 97.86% 0.15%

radiosity 97.81% 0.22%

fft 97.38% 0.21%

water_spatial 94.12% 0.66%

cholesky 75.95% 2.77%
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Figure 1.2: Area and Power breakdown by processor component in an ARM A15 accord-
ingly to McPAT.

(a) Area Breakdown.
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cient than software emulation (FP operations can be emulated using the standard integer

functional units, while SIMD can be serialized). In (LEE et al., 2017) the authors show

that some applications can experience performance drops of up to 23x when NEON in-

structions are not available in hardware.

Therefore, we find ourselves in a scenario in which application-specific instruc-

tions are necessary to maintain non-functional requirements (such as performance). On

the other hand, these instructions are too expansive to implement in terms of area

and power, especially in systems that must be as efficient as possible. When this sce-

nario is considered in an ever-growing ISA future with processors of manycores, it can

become a major issue. Thus, we propose a reevaluation in the way these components are

implemented in a processor.

1.1 Hypothesis

From the previously described observations of applications behavior and the cur-

rent scenario in designs of embedded multicore GPPs, we formulate the following hy-

pothesis:

Hypothesis. Current processors implement non-essential components, designed exclu-

sively for application-specific instructions, which are rarely used but are still needed to

keep non-functional requirements. Such components introduce a high area and power

overhead, which is multiplied in a multicore processor. By exchanging some of these

components for generic in-order cores and applying thread migration, instruction em-

ulation, and offloading, it is possible to improve the non-functional requirements of the

system, while keeping the processor’s binary compatibility.
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In other words, our hypothesis is that if we need to implement instruction exten-

sions to maintain processor performance, there must be more efficient designs than sim-

ply replicating every component in every core of the processor. Although this hypothesis

resembles a scheduling problem, our objective is not to provide an accelerator rich pro-

cessor in which tasks are balanced according to their needs. Our goal is to demonstrate

how GPPs based on current COTS can be efficiently designed to further optimize non-

functional requirements of energy consumption and performance. For that goal, we de-

velop techniques that include migrating tasks and offloading instructions between GPPs,

which aim to use the most of the processor resources.

1.1.1 Partially Heterogeneous ISA (PHISA): a solution for single-threaded work-

loads

In this thesis, we introduce the PHISA multicore, a processor in which parts of the

ISA are removed from some cores, while the remaining cores are fully implemented for

application-specific execution. The goal is to trim the application specific components of

the cores, reducing area and power but without compromising performance. Performance

is kept by migrating applications from partial- to full-ISA cores. If a task running in a

partial core requires a special instruction that is not implemented, it can migrate to a full

core to take advantage of the accelerated instruction. Figure 1.3(1) and (2) illustrate how

a partial-ISA is idealized. In this example, by removing the NEON components of the

A15 core, it is possible to reduce its area (from 3.5mm2 to 1.2mm2) and Thermal Design

Power (TDP) (from 700mW to 600mW).

Nonetheless, migrating tasks between cores can introduce high overheads in the

execution, depending on the frequency of these switches. Thus, we also propose to use

the extra power and area provided by PHISA cores to introduce more cores to the system

that can be used to improve the non-functional requirements of the processor. Differently

from the application specific components removed, extra cores can be more efficiently

used by all the applications running in the system. This is illustrated in the figure 1.3 (3)

and (4). Scenario (3) shows a design in which the TDP of all cores (partial-ISA A15 and

full A7 combined) are the same as the TDP from the full A15 (scenario (1)). Nonetheless,

as the A7 processor is much smaller than the A15, it is possible to fit more cores. This is

illustrated in scenario (4), in which the freed area is almost filled, but the system TDP is
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higher than the full A15 processor. 1

In other words, we propose that it is possible to trade high Instruction per Cycle

(IPC) from a core - given by the ISA extensions - for more Task Parallelism (TP). The

IPC is a metric that directly measures the performance of a core - the average number of

instructions it can commit per cycle -, while the TP is related to the number of processes

a processor can execute simultaneously.

1.1.2 Tightly Coupled Instruction Offloader (TUNE)d PHISA: a solution for multi-

threaded workloads

This exchange of Instruction-Level Parallelism (ILP) for TP can be also very

beneficial for multi-threaded applications, as the extra small cores can naturally deliver

more performance to parallel regions, while serial regions can benefit from a single high-

performance big core. Furthermore, we have seen in table 1.1 that the specific FP and

SIMD are uncommon in the serial regions, suggesting that a processor using a partial-ISA

big core could accelerate the serial regions at almost the same rate as if using a full-ISA

1The presented designs consider the area of the L1 instruction and data caches for each core. However,
we consider that the L2 cache will be shared and have the same size for all designs, independently of the
number of cores.

Figure 1.3: (1)Traditional A15 core. (2)A15 core without NEON instructions (partial-
ISA). (3)Partial-ISA A15 core + 2 full-ISA A7 cores - TDP budget. (4) Partial-ISA A15
core + 4 full-ISA A7 cores - Area budget.
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big core.

However, in parallel applications, the thread migration strategy used by PHISA

might not deliver the best performance. Migrations can cause high unbalance between

threads, which delay the execution of synchronization (join) points, and increase the ap-

plication execution time.

In this thesis, we also develop a Tightly Coupled Instruction Offloader (TUNE) as

a way to provide support for the removed FP and SIMD instructions in the big core used

for serial regions. This design is proposed for Asymmetric Multicores (AMCs), where the

big core is an important component kept to accelerate the serial regions. The TUNEd

PHISA (a PHISA processor using TUNE as offloader) uses the extra area provided by

removing SIMD and FP instructions to increase the amount of small cores in the system.

These extra cores are used to further increase the performance of the parallel regions of

applications, while the partial-ISA big core is used to accelerate serial regions. Whenever

a non supported instruction is required by the big core, TUNE transparently offloads this

instruction to one (or multiple) small core(s), where they are executed and returned to the

big core. The flow of the big core processor is not changed, and TUNE is seen by it as a

higher latency SIMD unit. The design overview is shown in figure 1.4.

In the TUNEd PHISA system, the big core is only used when the small cores are

idle (serial regions) and vice-versa (parallel regions). These guarantees that the NEON

instructions from the big core will not interrupt or affect the execution in the small cores.

Furthermore, as all cores are never active at the same time, the system will never go above

the original TDP budget.

Figure 1.4: TUNEd PHISA system with SIMD/FP instruction offloading.
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1.2 Contributions of this Thesis

In summary, this thesis brings the following contributions to the state-of-the-art in

efficient multicore processor designs:

• PHISA multicores: We develop an area and power aware design to optimize the

components of a processor by providing different ISA support across the cores. In

this design, we show how transparent task migration can maintain binary compati-

bility across the system when running single-threaded applications.

• TUNEd PHISA: We develop a version of PHISA that is optimized for multi-threaded

applications. In a TUNEd PHISA system, transparency is kept through instruction

offloading from partial- to full-cores.

• Models and analysis: We present scalability models for the systems and perfor-

mance and energy consumption analysis over several scenarios and different en-

vironments. We also compare our solution to other published state-of-the-art and

commercial designs.

1.3 Structure of this Thesis

The remaining of this work is organized as follows. Chapter 2 gives a detailed

bibliographic revision on single-ISA heterogeneous processors, as well as studies on the

impact of the ISA, overlapping- and partial-ISA processors proposed in previous works,

and designs using shared functional units. In chapter 3, we introduce the PHISA multi-

core system, its particularities, scheduler policies and how it can be applyed in a COTS.

Chapter 4 presents TUNE, the details of the offloader, performance model and how to ap-

ply in a COTS. Chapter 5 present the simulation tools used and developed in this thesis. In

chapter 6, we analyze the simulated results of both the PHISA multicores and the TUNEd

PHISA system over several different scenarios and against state-of-the-art solutions. We

compile all the conclusions draw by this thesis in chapter 7. Finally, chapter 8 lists all

publications derived from this thesis, along with other publications from the Ph.D.
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2 BACKGROUND

In this chapter, we present a state of the art review related to this thesis. We

include the most recent and relevant works and industrial designs in single-ISA heteroge-

neous processors in section 2.1. In section 2.2 we show works that discuss the impact of

the ISA in different processors. Section 2.3 brings studies that propose overlapping- or

partial-ISAs, focusing on the operating system support, scheduler, and microarchitectural

challenges. We further present works and designs that use shared hardware to perform

different operations, transform the processor cores, and offload instructions in section

2.4. We also bring works that discuss the area instruction extensions can occupy in COTS

processors in section 2.5. Finally, in section 2.6 we discuss the contributions that this

thesis introduces in the current state-of-the-art.

2.1 Single-ISA Heterogeneous Processors

Single-ISA heterogeneous processors have been proposed by Kumar et al. (2003)

as an alternative to power efficiency. The authors show how a mix of in-order and OoO

Alpha processors with different issue widths can be used to adapt the system power usage

accordingly to the application requirements. One of the main advantages of this tech-

nique is that it is transparent to the application and does not require special tools to deal

with many different ISAs, as in the case of accelerator rich processors or Multi-Processor

System-on-Chips (MPSoCs). On this heterogeneous environment, a runtime system man-

ager - such as the Operating System - can identify the resource requirements of the ap-

plications and schedule threads to cores that fulfill these requirements while minimizing

energy consumption. As the entire system uses the same ISA, threads can easily migrate

between cores using a shared memory space, as in traditional multicore processors.

In the following subsections, we will present state-of-the-art works that have been

proposed on the single-ISA heterogeneous processors subject. As we will show, these are

all heavily based on the idea presented by Kumar et al. (2003), that OoO and in-order

processors can be used jointly to maximize energy efficiency.
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2.1.1 The Hardware Approach

Since the first proposal of Single-ISA heterogeneous processors, many authors

have studied different hardware approaches to optimize the way these processors work.

One of the issues of these systems is the overhead introduced by the migration of

threads between big and small cores. To reduce this overhead works usually employ

coarse-grained migrations (of about 100K instructions or more (GUTIERREZ; DRES-

LINSKI; MUDGE, 2014)), which reduce the possibility of fully exploiting the potential

of heterogeneous systems.

On the other hand, Lukefahr et al. (2012) have proposed an approach in which

the cores implement two types of execution units, one reassembling an OoO pipeline

and the other an in-order. These two units share common resources in the pipeline,

such as the data and instruction L1 caches, the fetch unit and the branch predictor. During

runtime, the system decides either to use the OoO for performance or the in-order pipeline

for energy-efficiency. Accordingly to the authors, this design results in fast migrations

between the two pipelines, which allows for the exploitation of fine-grained migrations

(in the order of 1K instructions).

In a different approach, the authors of (PADMANABHA et al., 2015) have pro-

posed a clever way to reuse the internal scheduler of Out-Of-Order (OoO) processors -

which is responsible to find the dependencies of instructions and exploit ILP - in in-order

cores. The approach implements an OoO core along with an in-order one. Applications

first run at the OoO processor, which saves the traces of the executed instructions. These

traces are then reused in the in-order processor, avoiding re-executing the dependency

checks and saving energy.

The Morphcore proposed in (KHUBAIB et al., 2012), is an adaptive architecture

able to exploit both the TLP of high parallel regions and the ILP of serial parts. The sys-

tem is composed of a large core that can change execution modes: from single threaded

out-of-order to simultaneous multithreaded in-order execution. The strategy requires no

instruction or data migration between threads, and the overhead introduced is due to exe-

cution mode changes. Similarly, the authors in (IPEK et al., 2007) propose Core Fusion,

an architecture in which multiple simple cores are reconfigured into one large core to

adapt for the application characteristics.

In (SRINIVASAN et al., 2016), the authors propose a technique for using morph

cores to create heterogeneity inside a core. The work performs a Design Space Explo-
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ration (DSE) on many components of a core to understand which ones have bigger impacts

in applications execution. Then, the authors use this data to create a core which can dy-

namically change its properties - such as issue and fetch width, buffers sizes, clock period

and execution order - to adapt to the application at hand.

Suleman et al. (2009) argue that in a heterogeneous processor small cores are effi-

cient in heavy parallel sections of the application, but lack the performance for executing

the critical sections without creating a bottleneck. They propose a system composed of

many small cores and one big core. The latter is used to accelerate the critical sections of

the application, while the former execute the parallel regions. The authors also claim that

the system can be easily scaled to use more big cores accordingly to requirements.

Works have also extrapolated the traditional monotonic (when the cores can be

strictly ordered by their performance) "big and small" cores classification, using many

cores that exploit different levels of ILP. These non-monotonic designs have led to many

DSE works (NAVADA et al., 2013; MONCHIERO; CANAL; GONZALEZ, 2008; LIY et

al., 2006), which aim to find fine-grained heterogeneity that can cover more performance-

energy constraints in a Pareto curve.

Another common strategy to create non-monotonic cores is to use Dynamic Volt-

age and Frequency Scale (DVFS) on cores that have different microarchitectures. In

(ANNAMALAI et al., 2013), Annamalai et al. propose an approach that combines DVFS

and thread scheduling to increase the throughput per watt of a heterogeneous multicore

system. The technique estimates the throughput/watt of an application phase at different

voltage and frequency levels and maps the thread to the best matching core, along with the

right level of operating voltage and frequency. Figure 2.1 show a high-level schematic of

the approach, in which the Hardware Performance-Counters (HP-Cs) feeds learning data

to scheduling predictors. These predictors guide the decisions of the scheduler at each

system phase change based on data such as IPC and instruction and data cache miss/hit.

It is also possible to create heterogeneous microarchitectures with ISA compati-

bility by using binary translators(BECK; Lang Lisbôa; CARRO, 2013; BORIN; WU,

2009). These are components that dynamically convert binaries from a target ISA to an

alternate one. The approach is used in (SOUZA et al., 2016), in which reconfigurable

accelerators of different sizes - thus, of heterogeneous performance and energy charac-

teristics - are coupled to SPARC processors along with a binary translator. The translator

monitors all the code executed at runtime and converts hotspots and kernels to execute on

the accelerator, as illustrated in Figure 2.2. This approach is transparent to the program-
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Figure 2.1: High level view of the scheduling prediction scheme in (ANNAMALAI et al.,
2013).

Source: (ANNAMALAI et al., 2013)

mer, as the entire application can be compiled directly to the SPARC architecture, as in a

traditional single-ISA system.

Apart from providing performance heterogeneous cores, another component that

is essential in single-ISA heterogeneous processors is the implemented scheduler. The

scheduler is responsible for allocating tasks in the most efficient core, and if it takes wrong

scheduling decisions, it can hurt the system performance. In the following subsection, we

discuss different works for scheduling in heterogeneous processors.

2.1.2 The Scheduler Approach

Mittal in his survey (MITTAL, 2016) compiled many recent works on asymmetric

multicore processors, including those of single-ISA. In this survey, it is noticeable that

many works have focused on efficient ways to schedule tasks on heterogeneous proces-

sors, which is - in fact - one of the biggest challenges of such systems. A heterogeneous

architecture cannot be fully exploited without a scheduler that migrates threads accord-

Figure 2.2: Coupling Binary Translation with a Reconfigurable Accelerator.
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ingly to the necessities of the applications. Furthermore, to fully exploit the heterogeneity,

the scheduler cannot be static and must know how to adapt to changes in the application

behavior (ANNAMALAI et al., 2013).

An efficient scheduler for heterogeneous processors must optimize the task alloca-

tion for a given metric. Generally, the scheduler is modeled to give the best performance,

energy consumption, or a trade-off between these both. To migrate the tasks efficiently,

these schedulers rely on models of the metrics to estimate how the different cores will be-

have. Sondag and Rajan (2009) present a technique that performs offline analysis of basic

blocks to detect phase transition boundaries in applications. This information is then used

to group cores of similar performance into clusters. Based on this, it is possible to match

every application phase to its most suitable core.

Khan and Kundu (2010) use an empirical model on basic blocks to detect phase

changes using performance counters such as IPC, speculative IPC, cycle count, and power.

These are used as input for a linear regression model that estimates the application per-

formance and power in all the cores of the system and uses this information for dynamic

scheduling. Cong and Yuan 2012 also use a regression model to estimate energy con-

sumption and Energy-Delay Product (EDP) based on hardware counters.

Works have also focused on optimizing the scheduling of the Operating System

(OS) kernel on heterogeneous systems. In (MOGUL et al., 2008) and (HRUBY; BOS;

TANENBAUM, 2013), the authors have noticed that there is not a considerable difference

in executing the OS on a big core than in a small core. This is because the OS code

(kernel, virtualization helper, and device interrupts) usually causes the core to go idle

while waiting for an external response, or simply is not performance intensive. Thus, the

authors in (MOGUL et al., 2008) propose running such OS code in a dedicated small core

for improving energy and area efficiency, while user application code is allocated to big

cores.

As already discussed, migrating threads correctly is essential to exploit the het-

erogeneous system’s capabilities fully. However, each migration incurs into overheads of

performance, as the whole state of the core must be saved in memory to be reloaded in

the new target core. This cold start in the new core leads to many initial cache misses

and performance drop. In (GUTIERREZ; DRESLINSKI; MUDGE, 2014) the authors

compare the trade-offs between using private and shared Last Level Cache (LLC) on the

energy efficiency of heterogeneous processors. They show that the shared LLC incur in

a lower number of coherence misses but cannot be powered off to save energy. They
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also show that if the switching interval of threads is high enough (100K instructions or

more), the performance difference between shared and private LLC is negligible. Thus, a

private LLC can be employed to save energy, as it can also be powered off when the core

is not in use. Brown et al. (2011) present a technique to improve performance after the

thread migration. The method consists of recording the access behavior of the thread to

predict future data and instruction accesses. During migration, this information is used to

prefetch data into the cache of the destination core.

To build a complete heterogeneous system, one must combine both the hardware

and scheduling strategies. In the following subsection, we discuss two relevant industry

implementations for single -ISA heterogeneous processors and how they have approached

both the hardware and scheduling implementations.

2.1.3 Industry Implementations

The single-ISA heterogeneous processors have led to industry technologies such

as the ARM big.LITTLE(ARM, 2016). In these processors, clusters separate the LITTLE

(small, energy efficient, in-order models) from the big (larger, high single thread perfor-

mance, out-of-order) cores, while their communication is maintained by a cache coherent

interconnection, as shown in figure 2.3. There are three modes in which the threads can

migrate between the cores of a big.LITTLE system (ARM Ltd., 2013; JEFF, 2013):

• Cluster Migration: Figure 2.4a, in this mode, only one of the two clusters (big

and LITTLE) can be active at the same moment. If the current applications require

high performance, then the big cluster is activated. However, if the usage drops to

Figure 2.3: big.LITTLE cluster organization.
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a certain level, the threads migrate to the LITTLE cluster, and the big is turned off.

The migration in this mode is controlled directly by the big.LITTLE system, driven

by the dynamic voltage and frequency scaling (DVFS) levels - which, in turn, are

determined by the Operating System. Thus, the OS does not explicitly controls the

migration processes but can influence them.

• CPU Migration: Figure 2.4b, in this model, although clustering is still determined

by core size, each big core is paired with a LITTLE core, and only one of these

cores can be active at the same moment. The pairs are independent of each other,

so each pair can have a different type of core active at the same time (pair 1 has

a big core active, while pair 2 has a LITTLE). In this mode, thread migration is

also transparent to the Operating System and is decided accordingly to the DVFS

level of each core - thus, in a finer granularity than Cluster Migration. As each core

from the big cluster must be paired to one from the LITTLE, this model requires

the same number of cores in both clusters.

• Global Task Scheduling (GTS): Figure 2.4c, while the models mentioned above

are transparent to the Operating System they both require some of the cores to

stay inactive while their counterparts are executing. The GTS model exposes all

the available cores, and their compute performance to the OS and its scheduler.

Through this mode, the processing capabilities of the system are fully unlocked,

at the expense of increasing the complexity in the OS scheduler, as it becomes

responsible for deciding the allocation of each task. In case not all cores are needed,

unused processors can be powered off, and if all processors of a cluster are off, then

Figure 2.4: big.LITTLE scheduling modes
(a) Cluster Migration (b) CPU migration (c) Global Task Scheduling

Source: The Author
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the entire cluster can be powered off, further decreasing energy consumption. This

model also allows the use of different numbers of big and LITTLE cores.

Recently, ARM has released a successor for the big.LITTLE technology called

DynamIQ(ARM, 2018). This new technology is highly supportive of the Global Task

Scheduling and brings even more flexibility, as now both big and LITTLE cores form one

single cluster. With single clusters, the system designer can cover more use cases, such as

having a single big core for heavy single threaded performance coupled with seven LIT-

TLE cores for multithreaded workloads. Furthermore, instead of communicating through

an interconnection, the cores can share a LLC inside the cluster, drastically improving task

migration performance. The coherent interconnection is used in this model to communi-

cate to the main memory, closely coupled accelerators and external I/O devices. Figure

2.5 shows a diagram of DynamIQ core organization.

2.2 The Impact of the ISA on the Processor

The Instruction Set Architecture (ISA) is an interface layer that bridges the com-

munication between software and hardware in any computing system. In GPPs, the ISA

is incremental, i.e., it can be extended to reflect new features in different generations of

processors. For instance, the x86 architecture has several extensions, including the tra-

ditional x87 for FP operations, the SIMD-oriented MMX, SSEx and AVX, and the cryp-

tography AES and SHA instructions. All of these instructions have been introduced to

improve the performance of emerging applications. For example, the first vector instruc-

tions (MMX) were introduced to accelerate multimedia and 3D applications, which were

popular among personal computer users. Nonetheless, many major architectures include

different extensions - not only the x86 -, either from periodical updates in functionality

or as ways to customize the processor design. In table 2.1 we present examples of ISA

Figure 2.5: DynamIQ cluster organization.
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Table 2.1: Examples of extensions from the x86, ARM, Power and RISC-V architectures.
Extensions

Floating Point SIMD Compacted DSP Crypto/Security

A
rc

hi
te

ct
ur

e x86 x87 MMX, 3DNow!, SSE, AVX - SSE2 AES, SHA

ARM VFP ARMv6, NEON Thumb DSP-E TrustZone

Power v.2.05 AltiVec - DSP v.2.07

RISC-V F, D, Q, L P, V C P -

extensions for different architectures.

Float point is a real number representation used for computer arithmetic. The

larger the number of bits for internal representation, the higher is the precision allowed

for the real number. In the current IEEE standard for FP arithmetics (IEEE-754, 2008),

FP representation can range from half-precision, using 16-bit registers, to octa-precision

using large 256 bit registers. Most GPP architectures include FP extensions as they are

normally used in signal processing and engineering and scientific applications.

Single Instruction Multiple Data (SIMD) instructions use vector registers to exe-

cute the same instruction over many values. For instance, a 128-bit register can store up to

sixteen 8-bit characters, or four 32-bit integers. These operands are then split for execu-

tion, either sequentially in a pipeline or parallelly in multiple execution lanes (PATTER-

SON; HENNESSY, 2013). Figure 2.6 shows an example of a vector lane for executing

SIMD FP adds, multiplications and load/store. These instructions are also common on

GPP as they can greatly increase the performance in vector computations, such as in for

loops.

Compacted instructions are used to reduce the compiled code-density. For in-

stance, the Thumb instruction set uses 16-bit long instructions instead of the traditional

32-bit word (or 32-bit in a 64-bit processor). To achieve this, the instruction must ei-

ther use implicit operands or restrict the access to some of the registers. These are more

commonly used in embedded GPPs that have limited resources to reduce the memory

footprint of the code. Digital Signal Processing (DSP) instructions are heavily used for

signal processing, such as audio decoding, and Cryptography/Security are generally used

to ensure confidentiality and system integrity.

Each ISA has its advantages when expressing the processor functionalities. For

instance, the ARM’s Thumb is efficient in reducing memory footprint, while the x86

compiles many features, such as wide vector processing and cryptography. Venkat and

Tullsen (VENKAT; TULLSEN, 2014) show that a system can exploit the many traits

of different ISAs to improve the effectiveness of heterogeneous processors. The authors
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Figure 2.6: Structure of a vector unit containing four lanes.

Source: (PATTERSON; HENNESSY, 2013)

combine cores of three ISAs (32 bit Thumb, X86-64 and Alpha 64 bits) in a single system,

classifying their performance according to aspects such as FP and SIMD operations, reg-

ister pressure, code density, and dynamic instruction count. This environment with many

different ISAs introduces several challenges in memory management and process migra-

tion. Each core of different ISA has a distinct runtime state, and also the memory layout

(virtual address space and page table hierarchy) is dependent on the architecture, so it is

not possible to migrate threads between different architectures without some intervention.

To overcome this problem, the authors employ a fat binary that combines target-specific

code sections with target-independent data sections along with binary translation between

ISAs. Furthermore, to overcome the problem of address translation between 32- and 64-

bit architectures, the authors employ a special memory management unit and common

page table structure based on the one used in X86-64 for all the three ISAs.

The authors also show that the applications (used in their experiment) present

distinct ISA affinities in different phases of execution. In other words, an application can

perform better using ISA A in one code region, and then change its behavior to something

that is optimally executed with ISA B. Figure 2.7 presents the affinities found by the

authors on single- and multi-threaded applications when their heterogeneous system is

optimized for performance and EDP. The results show that most applications have phases

in which different ISAs would perform better. However, these are mostly related to the
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Figure 2.7: ISA affinity for different applications on designs optimized for (bars from
left to right) - (bar 1) Single-thread performance, (bar 2) Multi-programmed workload
performance, (bar 3) Single-threaded workload EDP, (bar 4) Multi-programmed workload
EDP.

Source: (VENKAT; TULLSEN, 2014)

features each ISA - combined with its microarchitecture - can deliver. For instance, pure

floating point applications (such as lbm in the figure) avoid using thumb, as this ISA

does not support FP operations. When the FP operation is also vectorized, the x86-64 is

preferred, as it delivers support for SIMD execution.

In an extension of the previously discussed work, Venkat et al. 2019 propose the

composite-ISA cores, an architecture that can tailor cores to use specific ISA features to

maximize the performance of the system. The authors deeply explore the design space of

many systems using different applications to show the potential of systems composed of

cores with tailored ISA features and also different microarchitectures.

Blem et al. in (BLEM; MENON; SANKARALINGAM, 2013; BLEM et al., 2015)

have shown that Reduced Instruction Set Computer (RISC) and Complex Instruction Set

Computer (CISC) ISAs have no particular impact on performance and power in modern

processors. The authors have examined multiple workloads in different processors using

ARM (RISC), MIPS (RISC) and X86 (CISC) instruction sets and observed that, rather

than the complexity of the instruction set, what really impacts performance and power

is the capacity of expressing richer semantics. In other words, the strength of an ISA is

characterized by the presence or absence of specializations such as float point and SIMD

instruction on one set over the other.

Nonetheless, (LOPES et al., 2015) show that ISA extensions that add specialized
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instructions can also be a source of performance degradation in a processor. ISAs such as

the x86 have so many instructions that the processor decoder itself needs several stages

in the pipeline to decode each instruction (FOG, 1996). These specializations in the ISA

reflect the need of the emerging applications on the time of the extension introduction.

However, applications change, and newer instructions can take over the functionalities of

older ones. Lopes et al. 2015 perform an extensive analysis of ISA aging and the cost

in the decoder for keeping old operations in the X86 architecture. In the figure 2.8, the

authors show the growth in the number of instructions in different ISAs, with an impres-

sive increase in the ARM architecture when the NEON and Vector FP operations where

introduced. They also present a study on the instructions usage in two OSs: Windows

95 and Windows 7. Figure 2.9 shows that 38% of the instructions in the x86 set are not

used in both OSs and that there are many instructions that, while were frequently used in

the Windows 95 environment, became deprecated in the newer OS. The authors propose

a technique to remove and recycle instructions that are not used by compilers anymore.

Removed instructions that are eventually fetched for execution in the processor must be

emulated through software for backward compatibility.

2.3 Overlapping- and Partial-ISA

The works mentioned in the previous section show that a diverse and renewed ISA

is essential for processor performance, although most of the added instructions are used

only for specific applications. Thus, it is important to adapt the newer GPPs so that they

Figure 2.8: ISA growth (in number of instructions) over time for different processor ar-
chitectures.

Source: (LOPES et al., 2015)
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Figure 2.9: Histogram (in logarithmic scale) of dynamic instructions sorted by frequency
with respect in Windows 95 and compared to their corresponding frequency in Windows
7. Spikes show differences in the usage pattern.

New Instructions in Win7

 Frequent only in Win95

x86 instructions

Win95 Win7

Unused instructions (38%)

Source: (LOPES et al., 2015)

can deliver performance to emerging applications. However, current designs implement

the full ISA capability of a processor, even when these specialized applications do not

occur as often as they would support. The outcome of such designs is a processor that

invests a great number of resources in components that are usually underused.

To try to balance instruction usage and avoid resource waste, processors of overlapping-

ISA cores have been used on previous works (LI; BRETT; KNAUERHASE, 2010)(REDDY

et al., 2011). These are processors in which the cores individually implement different ex-

tensions, but all share a base ISA. In figure 2.10a, a diagram examples the coverage of

overlapping-ISAs, in which each core implement a distinct ISA extension, but the base

ISA overlaps both. For instance, in an X86 processor, the first core can implement the

whole SSE and AVX instruction set, while leaving other extensions to the second core.

However, both of them implement the base x86 instruction set (integer, boolean and mem-

ory operations). On the other hand, in the figure 2.10b one of the cores defines the whole

ISA and its extensions, while the second implements just a subset of the instructions

(REDDY et al., 2011), namely a partial-ISA implementation.

In the next sections, we discuss works that have explored the requirements for im-

Figure 2.10: Partial ISA processors implement a subset of the full ISA.
(a) Overlapping-ISA set. (b) Partial ISA set.

Source: The Author
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plementing overlapping- and partial-ISA designs. We present these in OS, scheduler, and

microarchitectural support. We also present the current state-of-the-art implementations

of such systems.

2.3.1 Operating System Support

When a system provides cores with partial or overlapping ISAs, there must be a

consensus on how the applications will use these cores. In other words, a task must be

allocated to a core that implements the instruction it has currently fetched. The allocation

decision, however, can be resolved in different levels of the system. In (REDDY et al.,

2011), Reddy et al., categorize functional asymmetries that can be exposed by the applica-

tion software (e.g., by the programmer of a library) and those that can be handled directly

by the Operating System (OS). By using a heterogeneous-aware software approach and

leaving the burden of allocation to the programmer, the complexity of the scheduler can

be reduced, although this would greatly affect the software cost of new systems (each dif-

ferent heterogeneous processor would require a specific version of the function libraries).

The authors also noticed that it is essential that legacy code, programmed to be oblivious

to the system heterogeneity, must be able to extract the best performance from these pro-

cessors. Therefore, the OS must also give support for scheduling legacy applications in

cores with different ISA extensions. The authors broadly discuss many topics that must

be considered when porting an OS to the heterogeneous environment, including - but not

limited to - page tables, physical addresses decoding, paging caches, memory topology,

management of non-overlapping instructions, performance monitoring, and virtualiza-

tion.

Li et al. (2010) have further studied the OS changes needed for overlapping-ISAs

and have categorized these challenges in two sets: correctness and performance. OSs

discover processor features during the bootstrap and then assume the same features for all

cores. In a functional heterogeneous processor, this assumption is invalid, as some appli-

cations may fail in one core, but execute correctly in others. Thus, one of the challenges

is to handle these different core features and to ensure the correctness of the execution by

allocating tasks in cores that can execute their instructions. The performance challenge

lies in the scheduling of threads, as in most heterogeneous processors. The OS must

ensure fairness when sharing usage time of the high-performance cores between work-

loads, especially when different users are running concurrent applications. This is further
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complicated when workloads have unexpected behaviors. For instance, it is expected that

workloads, in general, will run faster on high-performance cores, but this might not hold

for I/O-bound applications.

One of the major contributions of (LI; BRETT; KNAUERHASE, 2010) is arguably

the mechanism that allows for detection and migration of instructions that cannot be ex-

ecuted in a partial-ISA core, named Fault-and-Migrate. In a traditional full-ISA system,

whenever a non-implemented instruction is fetched, the core would trigger a fault to the

OS, which in turn would send a signal kill to terminate the application. The fault-and-

migrate mechanism handles this instruction fault from the core differently, by activating a

scheduling mechanism that migrates to the workload to a new core, capable of executing

the target instruction.

Additionally, the authors in (LI; BRETT; KNAUERHASE, 2010) have also high-

lighted the need for support in transparent workload migration when executing in kernel

mode while in a non-full-ISA core. The first situation is when specific code blocks, such

as in critical sections, are non-preemptible and cannot be transparently migrated between

cores. Another scenario occurs when the code is preemptible, but the faulting instruction

(from a non-implemented ISA) is a privileged instruction that changes the CPU behavior.

Migrating transparently in this situation could lead in the OS assuming that state change

occurred in the wrong core. The authors have assumed in their work that all the cores are

able to execute every instruction from the OS kernel in their overlapping-ISA processor.

In a partial-ISA implementation, this problem is easily solved by executing kernel mode

code in the full-ISA cores.

2.3.2 Schedulers

As with any heterogeneous processor, an efficient scheduler plays a major role in

the performance and energy consumption on a partial-ISA system. As already mentioned,

in (LI; BRETT; KNAUERHASE, 2010) the authors present the fault-and-migrate mech-

anism, which is essential for the support of workload migration when unimplemented

instructions are fetched by a core. This same work also presents a complete, and fair new

scheduler designed for overlapping-ISA processors. The algorithm supports both func-

tional and performance asymmetry, using information on the extensions implemented by

each CPU and their performance rating. This data can be provided to the OS through

simple hardware changes (more on this in the section 2.3.3). Fairness is ensured by guar-
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anteeing that every thread will receive a time slice to execute on fast cores proportional to

its priority.

In (KNAUERHASE; BRETT, 2013) the authors propose Kinship, along with a

rigorous theoretical formulation of metrics that allow matching dynamic workloads to

diverse resources more efficiently than previous works. The Kinship is designed to work

in systems that show both performance and functional asymmetry (also through the fault-

and-migrate mechanism) and that use the different overlapping-ISA cores as accelerators

for specific applications.

Opposed to migration, another common strategy in case of faulting instructions

is emulation. If the faulting instructions are sparsely distributed (will execute for a few

cycles an then return to basic ISA), emulating these instructions can introduce lower over-

head than migrating the entire workload to a different core. In (AMINOT et al., 2015), the

authors propose a FPU speedup estimation model to guide schedulers in the decision of

migrating or emulating in systems that specifically remove the floating-point operations

from its ISA. The goal of the work is to find a more accurate way to balance FPU usage

and emulation.

2.3.3 Microarchitecture Support

Overlapping- and Partial-ISA designs require some microarchitectural support for

correct execution. For instance, in the fault-an-migrate mechanism, there must be a way

for the processor to signal an unsupported instruction fault for the operating system. This

signal already exists in most processors as an invalid opcode exception (e.g. UD fault in

the Intel architecture (LI; BRETT; KNAUERHASE, 2010)). However, this signal might

also be used by regular applications (through the undefined instruction ud2) to secure

certain code paths from executing, forcing the application termination. Thus, to sup-

port fault-and-migration, the hardware must distinguish between faulting instructions that

must trigger a migration from those that are used on the current normal execution flow.

Furthermore, in an overlapping-ISA environment, to migrate the workload to a supporting

core, the OS must know which subset of the ISA each core implements.

To couple with the aforementioned issues, (LI; BRETT; KNAUERHASE, 2010)

proposes minimal changes in the way the processor handles faults and identify instruction

extensions. The processor can provide, through hardware support, a mechanism for the

OS to find the many ISA extentions in all the processors and in which they are present.
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This mechanism is already available in some processors (e.g. the CPUID instruction in

the Intel architecture). Using this approach, the OS can build a mapping of the ISA-per-

core during the boot process. Thus, the OS would migrate only if the faulting instruction

belongs to one of the mapped ISAs in the different cores, otherwise it would consider as

a normal faulting execution (not implemented in any core). However, deciding if a given

instruction is invalid or actually belonging to a unimplemented ISA is a more complex job.

One solution would be to implement the cores in order to decode instructions even from

unimplemented ISAs, although this would add unnecessary complexity to the processor.

Another option would be leaving the OS in charge of decoding a faulting instruction and

deciding where it must be allocated, at the cost of some performance loss.

In a partial-ISA processor, these situations can be easily handled, as the options

for migration are binary (either to a partial or full core). If an instruction faults in a

partial core (that does not implement the whole ISA), it is either because of a migration

or a "normal" termination event. However, if it faults in a full-ISA core, the only valid

option is the termination event. Thus, the OS can assume that every fault in a partial

core triggers a migration to a full core, and the faults in the full core, a termination.

This introduces an unnecessary migration in the case of a termination instruction in the

partial core, which can be mitigated by the OS by caching such instructions for future

checking (LI; BRETT; KNAUERHASE, 2010). Such termination instructions are much

more unlikely to happen than the migration faults, thus it is more efficient to introduce

an eventual miss in migration than including complex checks to completely avoid such

wrongful migrations.

2.3.4 Partial-ISA Implementation

Regarding partial-ISA processor implementations, the work in (LEE et al., 2017)

studies the usage of different ISA extensions in an ARM processor. Figure 2.11 shows

the analysis for usage and execution time (when emulating) the sets of NEON, predicate

and Load/Store Multiple instructions. The authors argue that, although some sets are

rarely used, they can still cause a significant performance drop if removed. In the case

of NEON instructions (Figure 2.11a), the impact in performance can reach up to 23x in

specific applications. Observe that in Figure 2.11a the authors present the coverage of

NEON operations in every 1K instructions (if at least one NEON operation is executed

every 1K instruction, then the coverage is 100%), not the usage. Thus, a designer cannot
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Figure 2.11: ISA extensions usage and execution time.
(a) Performance of ISA without NEON instructions.

(b) Performance of ISA without predicate instructions.

(c) Performance of ISA without Load/Store Multiple instructions.

Source: (LEE et al., 2017)
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simply remove such extensions from a system and expect the same performance from

every application.

Based on the aforementioned results, Lee et. al (2017) propose a system composed

of two ARM A15 processors, in which one of these implements the entire ARM ISA

(which they call a full core) and the other does not implement the NEON, predicate, DSP

and load/store multiple instruction sets (which they call a reduced core). In this system,

the reduced core is given full priority to execute applications, in order to save energy.

Whenever a non-implemented instruction is fetched, the core starts an emulation phase.

If the number of emulated instructions exceeds a certain amount during a period, then the

workload is migrated to the full core. While one of the cores is executing, the other stays

idle, so it implements a cluster-like approach from the big.LITTLE technology. Figure

2.12 shows how the proposed system structure compares to the traditional big.LITTLE

approach. The reduced core maintains most of the performance from the OoO core (apart

from the removed instructions), but with lower energy consumption. This reduced core,

however, is not as energy efficient as an in-order core.

In this thesis, we base our work on concepts from the state-of-the-art. We infer that

the challenges presented in section 2.3 (Overlapping and Partial-ISA) - along with their

solutions - are enough to provide a functional heterogeneous environment. We have also

used schedulers based on the fault-and-migrate mechanism that aims to evaluate the po-

tential increase in the performance and energy-efficiency of the system. These schedulers

are used in the evaluations of the PHISA system without the use of TUNE (instruction

offloading).

Figure 2.12: A heterogeneous system with a reduced-ISA core.

Source: (LEE et al., 2017)
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2.4 Sharing Resources Between Cores

The feasibility of physically sharing the SIMD/FP unit has already been studied

by Kumar et al. (KUMAR; JOUPPI; TULLSEN, 2004) using cojoined-cores. Their work

shows that the layout of multicore processors can be designed to keep components that can

be shared in positions that minimize their distance between the cores. Figure 2.13a shows

the typical components of a core, while figure 2.13b shows how a dual-core processor can

be designed to share the FPU and L1 caches. By keeping the F-Box in the borders of the

core, it is possible to design the floorplan to maintain the unit distance equal for all cores,

minimizing the routing impact.

Commercial core designs like the AMD Bulldozer (SHIMPI, 2011), have adopted

the cojoined approach for sharing pipeline stages between two integer clusters. Figure

2.14 shows how the microarchitecture is designed, tightly sharing pipeline stages such

as the instruction fetch and dispatch and components such as the FPU and instruction

cache between the integer components. In this organization, two integer threads can run

simultaneously in the same core (one in each integer cluster), but only one SIMD/FP

thread can run at a time. Applications that heavily rely on these specific operations will,

therefore, experience performance losses due to resource contention.

The Sun Niagara (UltraSPARC T1) (SUN, 2019) is another example of COTS pro-

cessor in which the FPU is shared between cores. Differently from the AMD Bulldozer,

the FP in the Sun Niagara is shared in a loosely coupled way, communicating with the

cores through the cache crossbar. Figure 2.15 shows an overview of the Niagara microar-

chitecture, in which eight integer cores share a single FPU.
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Figure 2.13: Cojoined-cores sharing resources such as cache memory and FP units.
(a) Typical core components such as caches, integer
unit (I-Box), FPU (F-Box), memory unit (M-Box),
and control unit (C-Box).
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.
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Figure 2.14: AMD Bulldozer microarchitecture.

Source: (BULLDOZER, 2011)

.
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Figure 2.15: Sun Niagara (Ultrasparc T1) microarchitecture.

Source: (MICROSYSTEMS, 2007)

2.5 On the Area of SIMD/FP Units

To protect intellectual propriety, most companies do not provide detailed informa-

tion on the design of commercial architectures. For this reason, it is a common practice

for researches to estimate data such as the total area or power of a processor by using

tools or models. One frequently used tool to estimate the area of a processor and its com-

ponents is McPAT (LI et al., 2009). McPAT estimates area, power, and timing of different

microarchitectures by using known data from real processors and escalating such data to

different technologies.

Figure 2.16 shows an example of the area breakdown of an A15 core as modeled

by McPAT. McPAT reports a total area of about 3.5mm2 for the A15 core, including L1

caches and the memory management unit. From this reported area, 69% is related to

NEON specific components, such as the FP register file, renaming tables, and the execu-

tion pipelines.

Although only actual hardware synthesis - which is not detailed published by man-

ufacturers - can confirm such ratios to be accurate, the McPAT data can be corroborated

by simple extrapolation of publicly available data. Figure 2.17 published by Koppanalil

et al. 2011 shows the floorplan of a dual-core A9 processor with its different components
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Figure 2.16: Area breakdown by processor component in an ARM A15 accordingly to
McPAT.

Instruction Fetch 

Unit 3%

L1i 4% Renaming Unit

1%

Load Store Unit

2%

L1d 7%

MMU 1%
Execution Unit 13%

NEON Unit 69%

Source: The Author

Figure 2.17: Dual core A9 Floorplan. Highlighted are the areas of one entire A9 CPU and
the NEON unit components.

Source: (KOPPANALIL et al., 2011)
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highlighted. The total area reported in this work for one single core is 1.36mm2 using a

technology node of 32nm. In this same figure, we can estimate that the NEON unit occu-

pies about 0.45mm2 of the core area. This is approximately the same area of a single full

A7 core in a similar technology node, as reported by ARM (ARM, 2011) and also McPAT

using a 28nm process. These areas are summarized in table 2.2. Nonetheless, the NEON

implementation of the A9 core is a single-issue, 64-bits wide unit, that has lower perfor-

mance than the A15 implementation (ARM, 2010). If one considers that implementing a

2x wider, dual-issue, complex NEON component (A15 NEON is 128-bits wide, has two

issue lanes and a deeper pipeline) can increase the area of this unit by 4x, then the area

estimates shown in figure 2.16 for the A15 given by McPAT are in accordance with the

published data.

A second experiment that supports the McPAT data was performed by Becker et al.

(2019), in which a RISC-V 4-issue BOOM processor, based on the same characteristics as

an A15 core, was synthesized. This processor has a dual issue FPU (only FP operations

are supported, no SIMD support) with double precision (64-bits) that occupies (along

with extra FP structures such as the Register File (RF)) about 37% of the area of the

core. If one considers that improving this unit to support 128-bits wide words and SIMD

operations can at least increase its area by 3x, then again, the area estimates for McPAT

would be the same as the synthesized data.

2.6 Contributions Over the State-of-the-art

In this thesis, we show how partial-ISA cores can be mixed with full-ISA cores to

improve the system efficiency, both in performance and energy. Differently from previous

works, we further explore the benefits of partial-ISA systems, developing the following

two novel approaches:

Table 2.2: Areas of full (including L1 caches) A7, A9, and A15 cores and their NEON
units. Total and NEON unit areas from the A7 and A15 were reported by McPAT. A9 total
area is reported from (KOPPANALIL et al., 2011) and its NEON unit area is estimated
from the layout. The NEON unit areas in this table do not include potential areas from
wiring, routing, decoding, and other components related to this unit.

A7 A9 A15

Full Core 0.5mm2 1.36mm2 3.53mm2

NEON unit 0.12mm2 0.45mm2 2.36mm2
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• 1 PHISA Multicores: A processor composed of partial- and full-ISA, capable of

executing multiple single-threaded workloads, and that uses thread migration to

maintain binary compatibility in the system.

• 2 TUNEd PHISA: A PHISA processor that implements an instruction offloader. It

is capable of bringing the advantages of PHISA to multi-threaded applications, and

uses offloading to maintain binary compatibility.

In the following sections, we discuss the contributions that these approaches intro-

duce over the previously discussed works. Each following subsection discusses concisely

the contributions over the previously discussed sections, and we finalize with a summary

of the overall contributions.

2.6.1 Contributions over single-ISA heterogeneous processors

One of the main contribution that this thesis introduces is the capacity of exploit-

ing the same advantages of single-ISA heterogeneous processors, in a system that imple-

ments functionally-heterogeneous cores. Our migration and offloading strategies allow

the processor to maintain binary compatibility between full- and partial-ISA cores using

different approaches. Our migration strategy can also be augmented to introduce differ-

ent scheduling policies, further allowing new optimizations, as in a common single-ISA

system. On the other hand, the offloading approach is designed to transparently maintain

binary compatibility between partial- and full-ISA cores.

2.6.2 Contributions over the impact of the ISA

Our partial-ISA cores help to overcome the typical impact of the growing ISA

of modern architectures. Our strategies can be used to remove rarely used components

of the cores, actively reducing the area and power footprint of the removed instructions.

Our approach can also be complementarily used with strategies that recycle instructions

through software emulation. We evaluate scenarios in which emulation can replace thread

migration in our system.
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2.6.3 Contributions over overlapping- and partial-ISAs

Considering the aforementioned scenarios in the state-of-the-art, in this thesis we

argue that both functional and performance asymmetry can be used to further in-

crease the efficiency of a processor, either by reducing energy consumption or improv-

ing performance. Thus, differently from other works in partial- and overlapping-ISA, we

propose to use cores with both different ISA support and performance/energy character-

istics. We also propose to maintain the binary compatibility between cores by either mi-

grating entire tasks or offloading non-supported instructions from partial-ISA cores

to full-ISA cores.

Furthermore, we use partial-ISA cores, as for our applications they show the fol-

lowing advantages over overlapping-ISA approaches:

• Compatibility: Having full cores in the system ease the compatibility issues of ap-

plications/systems that require special instruction extensions while executing pro-

tected code that cannot be migrated. In an overlapping-ISA system, the kernel code

can only use instructions that are present in every core, as seen in section 2.3.1.

• Complexity: Although overlapping-ISA systems can be more flexible when pro-

viding heterogeneity, partial-ISA systems greatly reduce the complexity associated

with scheduling workloads between cores and on solving the problem of where the

given instruction is available. In a partial-ISA system, the full core will always be

able to execute faulting (non-terminating) instructions.

• Concurrency: Cores in an overlapping-ISA system can be seen as accelerators for

specific classes of instructions. If the system runs multiple workloads that demand

the same instruction expansion, it might run in resource concurrency issues. Having

multiple full cores in the system decreases the performance impact in this scenario,

while still maintaining the advantages of having partial cores for traditional appli-

cations.

2.6.4 Contributions over sharing resources

Regarding the sharing of resources, we envision that our PHISA designs can fol-

low the guidelines in (KUMAR; JOUPPI; TULLSEN, 2004), in which cores are built

keeping shared resources close to all computing nodes. This can help a TUNE configu-
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ration to reduce the total latency of offloading the instructions from partial- to full- cores.

When compared to other works that share resources, the PHISA design also has a funda-

mental difference: instead of having one shared resource for many cores (such as in the

Niagara processor), the PHISA designs deliver many resources to many cores. Removing

the resources only where they are really impactful ensure a more efficient processor de-

sign, while incurring in smaller overheads for the system scheduling. When the TUNEd

PHISA is considered, we see the inverse trend from the current state-of-the-art: instead

of having one shared resource for many cores, we have many resources to be used by one

core.

2.6.5 Wrapping up

To summarize the contributions of this thesis, we can highlight the following as-

pects of both the PHISA and TUNE approaches:

Implementing performance heterogeneity: instead of using cores of same per-

formance (such as full- and reduced-ISA A15 cores only), our approach uses monotonic

cores to further optimize processor efficiency. By mixing a big.LITTLE approach (A15

cores + A7 cores) with full- and partial-ISA cores, we can achieve significant improve-

ments in the EDP of the processor that can not be reached even in traditional big.LITTLE

systems.

Multiple workload execution: differently from previous similar works on partial-

ISA, our method includes a scheduler that allows the usage of all the cores available in the

system. We also show that new schedulers can be developed to optimize different features

such as performance and energy.

Parallel applications: we also explore the optimization of a partial-ISA system

for parallel applications. We characterize such applications to determine which regions

mostly benefit from instruction extensions - consequently requiring to run in full cores -

and use the extra cores provided by the partial-ISA approach to improve performance in

parallel regions.

Task migration vs instruction offloading: we discuss how different applications

benefit from either migrating entire tasks from partial- to full-ISA cores or simply of-

floading individual instructions. We use both strategies to develop a PHISA system with

TUNE.

Table 2.3 compiles the main characteristics of the most relevant works (in the sense
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Table 2.3: Characteristics of the relevant works compared against the PHISA and TUNEd
PHISA systems. N/A means that the given characteristic was not applicable to the given
study.
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(KUMAR et al., 2003) Yes No Yes No Yes No No No

(ARM, 2016) Yes No Yes Yes Yes No No No

(LOPES et al., 2015) N/A N/A Yes N/A N/A Yes No N/A

(LI; BRETT; KNAUERHASE, 2010) Yes Overlapping No No Yes No No No

(LEE et al., 2017) No Partial Yes No Yes Yes No No

(KUMAR; JOUPPI; TULLSEN, 2004) No No Yes N/A No No No Yes

(SHIMPI, 2011) No No Yes Yes No No No Yes

(SUN, 2019) No No Yes Yes No No Yes Yes

PHISA Yes Partial Yes Yes Yes Yes No No

TUNEd PHISA Yes Partial Yes Yes No No Yes Yes

of comparison against the proposed systems) analysed in this chapter. In the following

chapters, we present the PHISA multicores, its design concept, and the features required

for its scheduler - along with different scheduling policies. We also introduce TUNE, its

main features, and how it can be employed in current processors.



54

3 PHISA MULTICORE

To evaluate the potential and feasibility of heterogeneous systems of partial-ISA,

we initially show the concept of the PHISA Multicores. The following sections present

the PHISA system, its design challenges, and scheduling requirements.

3.1 The PHISA System

The reasoning of a PHISA multicore is that it is possible to remove support from

an ISA extension of some cores in a processor while maintaining it in others. This freed

area can then be used to add support for more efficient processing elements, for instance,

increasing the core count. A high-level overview of this design is shown in figure 3.1,

in which the SIMD/FP unit of a big OoO core is replaced by two little in-order cores.

The PHISA multicore design removes hardware components specifically used by an ISA

extension while leaving the remaining microarchitecture of a core unaltered. This core,

which we call a partial-ISA core, keeps its ability to execute instructions from the base

ISA. Therefore, performance is only affected for the removed instructions, as parameters

such as issue-width1, execution order and branch prediction are all kept the same.

Each ISA extension adds its particular logic complexity. In this proof-of-concept,

we have focused on the SIMD and Floating-Point (FP) instructions, as they are usually

implemented in the same block of components that result in a high source of logic over-

head in the processors, as discussed in section 2.5. Accordingly to Smith and Sohi 1995,

the typical superscalar processor is organized in modular components, as pictured in fig-

1If the extension removes entire functional units, then the back-end width might be decreased.

Figure 3.1: Example of PHISA configuration. The resources freed by an instruction
extension are used to increase the core count.
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Figure 3.2: A typical OoO processor datapath. In green, the parts of the datapath that can
be trimmed or simplified when removing the floating-point support from the processor.

Source: Adapted from (SMITH; SOHI, 1995) by the author.

ure 3.2. This modularization allows us to exclude the FP extension by safely remove

the entire SIMD and FP pipelines from the execution unit of the processor. The decoder

stage can also be trimmed by removing support for these instructions, as well as the FP

instruction window in the fetch stage of out-of-order designs. Separate FP register re-

naming table and the FP RF 2 in the dispatch stage can also be removed. Other general

targets for trimming include routing logic, such as write-backs, forwarding, and even the

clock-tree of the processor. In figure 3.2, the blocks in green represent the components

that can be removed and trimmed during the ISA trimming process. Other ISA extensions

(not considered in this work) would incur in more logic trimming in different regions of

the processor. For instance, DSP instructions would simplify the integer pipeline of the

processor by removing the Multiply-Accumulate (MAC) operations.

3.2 Scheduling

As with any heterogeneous processor, an efficient scheduler plays a major role in

the performance and energy consumption of the system. In a PHISA multiprocessor, the

scheduler must be aware of which cores are capable of executing the ISA extensions so

2assuming the multiplication unit is adapted to use the integer RF
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that it can migrate workloads from partial to full cores when necessary. The basic features

that a PHISA scheduler must provide are the two following:

• To detect and/or identify unsupported instructions that are not implemented in partial-

ISA cores, but have an implementation in the full-ISA cores.

• To classify cores between partial- and full-ISA cores and migrate tasks accordingly

to their current execution needs.

We start by developing a minimalist scheduler that implements only the essential

features required for the PHISA system to work. From this simple scheduler, we im-

prove the features to allow instruction emulation and also to apply different optimization

policies.

3.2.1 Minimalist Scheduler

The basic developed scheduler implements the two required features listed in sec-

tion 3.2, as well as a minimum time on core feature and a job-stealing functionality. The

minimum time on core is applied in full cores as a preemption phase. Its function is to

avoid multiples migrations of the same application and to allow other workloads in the

queue a fair slice of time to execute (integer cores are allowed to execute integer applica-

tions to completion). Job stealing is used to avoid cores to stay idle when there are still

other cores with more than one job in their queue.

Figure 3.3 shows a graphical representation of the scheduler decisions. Each core

(which can be a partial- or full-ISA core) keeps a queue of workloads (different applica-

tions) to execute (1). When a core is idle, it fetches a workload from its queue in a FIFO

manner and executes the workload until a migration event is triggered.

In this scheduler, there are two events in which a workload can migrate from a

core to another. The first is when a partial core fetches an unimplemented instruction (2).

When a typical processor fetches an instruction that cannot be decoded, it generates a

trap to the operating system, which would signal a kill command for the process. In this

work, we implement a fault-and-migrate strategy(LI; BRETT; KNAUERHASE, 2010) to

handle the reallocation of workloads. Instead of treating the trap with a signal kill, the

operating system activates the ISA-aware scheduler that migrates the workload to the less

busy full core in the system (with the shortest workload queue)(3). The second event for

migration is activated after a workload has been executed for a minimum time in a full
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Figure 3.3: Scheduler events between full and partial ISA cores.
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core(4). Similarly, the workload will be migrated to the less busy core (which can be

either partial or full)(5).

Algorithm 1 shows the pseudo-code for the employed scheduler. The algorithm

decides to migrate the workloads accordingly to the event that fired the scheduler: either

by an instruction fault - in which the migration occurs to a full core (lines 1-3) -, or after

the minimum time on the core - which migrates to any core (lines 4-6). In case the core

migrates its last task from its queue (lines 8-9), the scheduler tries to steal and allocate a

task from the busiest core in the system.

Many applications present the behavior of interleaving integer and floating-point

operations, which would cause frequent back and forth migrations. To handle it, we

consider a minimum time a thread must stay on full cores of 160K cycles, as suggested

by previous studies as a period that introduces minimal impact on performance (CON-

STANTINOU et al., 2005). The established minimum time on a core helps to reduce

Algorithm 1: Scheduler pseudo-algorithm
Input: event, core

1 if event = instructionFault then
2 minQueueFromFullCores.pull(core.workload);
3 core.workload← core.queue.pop();
4 else if event = minTimeOnCore then
5 minQueueFromCores.pull(core.workload);
6 core.workload← core.queue.pop();
7 end
8 if core.workload = None then
9 core.workload← maxQueueFromCores.pop();

10 end
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these migrations when the application is executing on the full core. Although this is a

period of time that is fixed in our scheduler, the reader should be aware that it can affect

the behavior and performance of the PHISA system. The impacts of varying the pre-

emption time were not evaluated in this thesis, and should be analyzed in future works.

However, as we see in the following chapters, the given preemption period can already

provide performance and energy improvements for the PHISA system.

3.2.2 Minimalist Scheduler with emulation

Although the minimum time on core reduces the number of migrations, they will

still happen if the interleaved application is rescheduled to a partial core after the mini-

mum time. We extend our scheduler to handle this situation by (a) prioritizing migration

of FP applications to full cores or (b), if available to the system, by triggering FP in-

struction emulation in software. In the case of software emulation, the task requiring the

non-implemented instruction can still execute in the partial core for a threshold time (we

use the same 160K cycles as a threshold). Algorithm 2 shows the modified scheduler

using emulation. If the instruction fault happens in a core allowed to emulate, than the

event is ignored, and migration will only happen after the minimum time executing.

To calibrate our simulator (see more details in chapter 5) to consider the cost of

emulating SIMD and FP operations, we have run two different versions of benchmarks.

The first version is compiled to use all instructions from both SIMD and FP extensions.

The second version in compiled to use only scalar code (no SIMD) and to emulate FP

using integer libraries (soft FP). We ran both of these versions and found that the binaries

with emulation are, on average, 40x slower. Thus, we consider a multiplicative value of

40 cycles whenever our scheduler decides to emulate instructions in the PHISA system.

3.2.3 Scheduling Policies

Supporting different optimization goals is also an essential feature in the scheduler

for heterogeneous processors, which can also be supported by the PHISA system. In this

section, we modify our minimalist scheduler to allow prioritization of tasks in cores to

improve either system performance or energy consumption.

In this version of the scheduler, we introduce the following modifications:
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• The workload queue is unified. Instead of using a queue for each core, all workloads

are sent to the same queue, where they can be prioritized.

• Preemption in all cores. Instead of allowing integer applications to run to comple-

tion in integer cores, we apply preemption in all cores, so all applications have the

same time slice to execute, giving fairness to the system.

• Application annotation. Applications are annotated accordingly to the requirements

they need. This is used for the scheduler to decide if the application must be allo-

cated to a full- or partial-ISA core.

Given these modifications, we create two versions of the scheduler, one trying to

optimize execution for performance, and the other for energy consumption. For perfor-

mance optimization, we assume that the system’s OoO cores always present better perfor-

mance than the in-order cores. For energy, we assume that the in-order cores will always

have better energy efficiency. Furthermore, applications that are not specifically marked

to use instruction extensions (are executing instructions from the base ISA) will prioritize

execution in partial-ISA cores. Algorithm 3 shows the algorithm for the scheduler opti-

mizing for performance, while Algorithm 4 shows the scheduler for energy consumption.

In this new system scheme, all workloads are released from their cores after the

preemption phase and sent back to the workload queue. Cores that fetch non-supported

instructions will immediately release their workloads and call the scheduler for a new

assignment. These workloads are annotated as ISA dependent on their next allocation.

The algorithm is executed after the preemption release for all workloads in the queue, in

a First In First Out (FIFO) manner, until no core is left idle or the queue is empty.

Algorithm 2: Scheduler pseudo-algorithm with emulation
Input: event, core

1 if event = instructionFault then
2 if not core.canEmulate then
3 minQueueFromFullCores.pull(core.workload);
4 core.workload← core.queue.pop();
5 else if event = minTimeOnCore then
6 minQueueFromCores.pull(core.workload);
7 core.workload← core.queue.pop();
8 end
9 if core.workload = None then

10 core.workload← maxQueueFromCores.pop();
11 end
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Algorithm 3: Choosing the target core with a performance policy schedul-
ing

Data: workload
Result: target core for the workload

1 if workload.canExecuteInAnyCore then
2 idlePartialBigCores = getIdlePartialBigCores();
3 if idlePartialBigCores is Not Empty then
4 targetCore = idlePartialBigCores.head();
5 return targetCore;
6 end
7 end
8 idleFullBigCores = getIdleFullBigCores();
9 if idleFullBigCores is Not Empty then

10 targetCore = idleFullBigCores.head();
11 return targetCore;
12 end
13 if workload.canExecuteInAnyCore then
14 idlePartialLittleCores = getIdlePartialLittleCores();
15 if idlePartialLittleCores is Not Empty then
16 targetCore = idlePartialLittleCores.head();
17 return targetCore;
18 end
19 end
20 idleFullLittleCores = getIdleFullLittleCores();
21 if idleFullLittleCores is Not Empty then
22 targetCore = idleFullLittleCores.head();
23 return targetCore;
24 end
25 return Empty;
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Algorithm 4: Choosing the target core with an energy policy scheduling
Data: workload
Result: target core for the workload

1 if workload.canExecuteInAnyCore then
2 idlePartialLittleCores = getIdlePartialLittleCores();
3 if idlePartialLittleCores is Not Empty then
4 targetCore = idlePartialLittleCores.head();
5 return targetCore;
6 end
7 end
8 idleFullLittleCores = getIdleFullLittleCores();
9 if idleFullLittleCores is Not Empty then

10 targetCore = idleFullLittleCores.head();
11 return targetCore;
12 end
13 if workload.canExecuteInAnyCore then
14 idlePartialBigCores = getIdlePartialBigCores();
15 if idlePartialBigCores is Not Empty then
16 targetCore = idlePartialBigCores.head();
17 return targetCore;
18 end
19 end
20 idleFullBigCores = getIdleFullBigCores();
21 if idleFullBigCores is Not Empty then
22 targetCore = idleFullBigCores.head();
23 return targetCore;
24 end
25 return Empty;



62

3.3 PHISA in a COTS Processor

In order to evaluate the PHISA multicores system, we analyze real Commercial

Off-The-Shelf (COTS) processors and design partial-ISA cores from them. We chose the

A7 and A15 cores from the ARM Cortex-A family, as these are cores commonly used in

heterogeneous systems, such as the ARM big.LITTLE. Although there are newer cores in

this family (e.g., the A53 and A75), we choose the older ones due to the availability of in-

formation in the microarchitecture, area, and power of these cores. In ARM architectures,

the SIMD and FP instructions are executed by the NEON unit. The NEON extensions are

usually modular, simplifying its removal. These extensions are even considered optional

in some ARM processor families, including the A7 and A15 cores. In other recent archi-

tectures, such as the RISC-V, ISA extensions are also designed to be modular to ease the

process of customizing the processor.

Figure 3.4 shows a diagram of the Cortex A15 pipeline. The A15 is an OoO pro-

cessor with a dual-issue NEON unit. In ARM architectures, the NEON unit is responsible

for executing both the SIMD and FP instructions. The A15 NEON unit is capable of ex-

ecuting 128-bit wide words and has a RF of 32 64-bits wide registers (two registers are

combined to process 128-bits words). The A7 processor, on the other hand, is a simple

in-order core with a single-issue 64-bit wide NEON unit. Its RF is also smaller, with 16

64-bits registers.

To analyze the potential area and power reduction of a PHISA system using the

A15 and A7 cores, we have modeled these same processors in McPAT (LI et al., 2009)

using a node technology of 28nm. Our models consider the entire core (including MMU

and instruction and data L1 caches) without L2 caches. Although McPAT models its

components according to an A9 processor, we have used an approach similar to the one

proposed in (ENDO; COUROUSSÉ; CHARLES, 2015) to model the A7 and A15. The

authors show that this approach results in models very close to the real processors. The

McPAT models report an area of 0.5mm2 with a maximum Thermal Design Power (TDP)

of about 53mW for the A7 core and 3.53mm2 and 700mW for the A15 core. Figure 3.5

shows the area break down per component in both these cores. As shown, the NEON unit

related components are responsible for about 69% of the area in the A15 core and 26% in

the A7 core.

In figure 3.4, the white boxes represent the processor components that can be sim-

plified when removing NEON instructions in the A15 core. McPAT allows the modeling



63

Figure 3.4: Cortex A15 Pipeline organization.
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of configurations without FP and SIMD units (by merely setting the FP related tags in

the template to zero), which also triggers the exclusion of the FP instruction window, the

FP Register File (RF) and the FP register renaming structures. This methodology results

in a conservative model, as removing the NEON extension and all its hardware would

also affect other structures, such as the instruction decoder and the clock tree (LEE et al.,

2017). Thus, the McPAT model very likely represents a pessimistic view of the potential

area reductions. By removing the NEON components of the A15 core, its area is reduced

to about 1.17mm2 and TDP to 590mW, while the A7 is reduced to 0.39mm2 and 46mW.

Figure 3.5: Area breakdown by processor component.
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Therefore, there are many design possibilities using the A15 and A7 to build

PHISA systems. For example, if one wants to maintain a power budget in the system,

a PHISA system with one partial-ISA A15 core and two full-ISA A7 cores has the same

TDP as a single full-ISA A15 core. If low power is not a concern, but the area is, two

additional full A7 cores can be added to this PHISA system (one partial A15 + four full

A7 cores) in the same area as the single full A15 core. Figure 3.6 depicts these examples,

which will be explored in the evaluation of this thesis.

Figure 3.6: PHISA system using A15 and A7 cores examples.
(a) Having the same power budget.
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Source: The Author
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4 TUNE ARCHITECTURE

In this chapter, we present the Tightly Coupled Instruction Offloader (TUNE). As

described by its name, TUNE is an instruction offloader that can be coupled to PHISA

systems to allow the optimization of multithreaded applications. We first motivate the

usage of TUNE and present the concept of the offloader and how it is tightly coupled to a

partial-ISA core. Then, we show how a PHISA with TUNE (TUNEd PHISA) system can

be designed in a COTS processor. Lastly, we present a performance model that motivates

the usage of a TUNEd PHISA system.

4.1 The Offloader

In chapter 3, we have discussed how a PHISA system can be used to optimize

the area and power usage of single-ISA heterogeneous systems. To maintain software

compatibility between partial- and full-ISA cores, the PHISA system presented used a

fault-and-migrate strategy between the cores and the scheduler. For single-threaded ap-

plications, migrating threads during instruction faults is an efficient solution, as workloads

are usually independent and do not produce bottlenecks between themselves. However,

in a parallel application, if a single thread migrates while the others are executing, it will

delay the time in which this thread will reach its joining point (e.g., a barrier or a syn-

chronization point), thus creating a bottleneck that delays the entire application. Figure

4.1 depicts this situation.

In a PHISA system, the expensive SIMD/FP units are removed from cores to give

Figure 4.1: Typical parallel application execution.
(a) Parallel execution with all threads syn-
chronized.
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Source: The Author
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space for additional cores. We have seen in chapter 3 that removing these units from big

cores is usually more meaningful, liberating area and power for multiple extra little cores.

In a parallel application environment, having these extra cores is essential for increasing

the performance, as the multiple threads will be able to exploit the extra Thread-Level

Parallelism (TLP). Furthermore, as discussed in chapter 2, previous works have shown

that parallel applications can usually benefit more from many smaller cores than from

fewer bigger cores, and that big cores are essential only to execute their serial regions

(SULEMAN et al., 2009).

To increase even further our system motivation, we have observed in the charac-

terization of several parallel applications (details in the following section 4.3, in which

we model our system) that SIMD and FP operations are heavily concentrated in the par-

allel regions of these applications. This is naturally expected, as the SIMD instructions

are used to exploit parallelism in vector operations, while the FP instructions are used in

specific code normally present in kernels.

Therefore, we have applications in which the parallel regions benefit from having

many cores, while the serial regions are accelerated in big cores and usually do not require

SIMD or FP operations. This is a scenario in which evaluating the concepts of PHISA

would be interesting, by creating a processor with a single partial-ISA core to execute

serial regions and as many full-ISA little core as possible for the parallel regions. How-

ever, to allow serial regions to execute SIMD/FP instructions without migrating threads

(executing serial regions in little cores can cause bottlenecks), we introduce the TUNE to

our system.

With TUNE, the expensive SIMD/FP pipelines can be traded from the big core

to make room for additional smaller cores. These operations are still supported in the

big core through an offloader, which is responsible for sharing the SIMD/FP units of the

smaller cores with the big core. Our approach for removing these structures follows a

similar methodology as in (LEE et al., 2017), where the SIMD and FP instruction exten-

sions (along with additional extensions) are removed from an A15 processor. However, in

TUNE, we only remove the functional units responsible for the SIMD/FP operations,

leaving the decoder, the renaming logic, the issue queue, and the register file unaltered.

This results in a design that is easier to implement, keeps the binary compatibility, and

simplifies the offloading strategy.

The design we propose is showed in figure 4.2. In the TUNEd PHISA processor,

the big core sees the SIMD/FP units from the little cores as if being its own. When a
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Figure 4.2: TUNEd PHISA system with SIMD/FP instruction offloading.
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SIMD/FP instruction is fetched, it is still decoded by the partial core, and its operands

read from the FP register file in that core. However, after the issue stage, the operands

and operator will be forwarded to the units in the full cores. After executing, the data is

forwarded back to the partial core, where they will be written back (committed) normally.

We use this design so that the flow of the partial core remains the same as if it had its

own execution units. Thus, our design does not require extensive changes in the core

organization.

The concept of our processor layout is similar to the conjoined-cores proposed by

Kumar et al. in (KUMAR; JOUPPI; TULLSEN, 2004), in which the shared units are

placed in the floorplan in a way that minimizes the distance from all cores. However, in

our models and evaluations, we still consider that there is an extra latency of forwarding

the operands from the partial- to the full-ISA cores and returning the computed data back.

We consider this latency to be similar to the L2 cache latency, as it is also a commonly

shared resource in multicore processors.

It is important to notice that in the TUNEd PHISA system, the big core will only

be used during serial regions. Therefore, during the offloading process (which occurs

only in serial regions), the little cores are always idle, which avoids resource concurrency

for the NEON units. This thesis does not evaluate an asynchronous scheduler that can

work out unbalanced threads to be accelerated in the big cores. Thus, during parallel

regions, only the little cores are active.



68

4.2 TUNE in a COTS processor

In chapter 3, we have shown how to design the PHISA system in a ARM COTS

processor. Now, we show how to extend this design to build a TUNEd PHISA. As already

discussed, the feasibility of sharing the SIMD/FP unit has already been studied by Kumar

et. al(KUMAR; JOUPPI; TULLSEN, 2004) and demonstrated in commercial designs like

the AMD Bulldozer, that shares a single SIMD/FP unit between two integer modules, and

the Sun Niagara (Ultrasparc T1), that shares an FP unit between eight cores.

The idea of using a PHISA system in an ARM architecture is to replace the NEON

units of some cores to add extra smaller cores. According to our area models, removing

the NEON unit from the A15 core frees enough area to add up to four extra full A7 cores

in the system.

It is important to notice that an A15 core will only offload instructions when exe-

cuting a serial region of a parallel application. During these execution phases, the A7

cores are mostly idle, which reduces the possibility of a resource conflict in the usage

of the NEON units and keeps the system under the maximum TDP constraint. Fur-

thermore, we design TUNE as a transparent offloader that does not affect the flow of the

processor pipeline: no other structures (such as renaming tables, register file, instruction

scheduler) are changed, apart from the NEON execution lane.

Figure 4.3 shows an overview of how the ARM A15 and the A7 cores can share the

SIMD/FP units using the TUNE offloading strategy. A traditional A15 core implements

two 128-bit wide NEON issue lanes. In our approach, these lanes only are removed

from the core, and an Offloader (TUNE) is implemented in its place as shown in the

figure. NEON instructions fetched by the A15 follow the usual pipeline flow (decoding,

renaming, dispatching) until the issue stage, in which the operation will be sent to the

Offloader. This approach ensures that all cores in the system (including the reduced A15)

will be able to decode NEON instructions, keeping the ISA compatibility in the entire

system.

The Offloader is tightly coupled to the NEON units of the newly added full A7

cores, allowing direct sharing of these units with the A15 core. As instructions reach the

Offloader ready to execute from the issue queues, there is no need for additional operation

decoding or identification in its logic. The Offloader is a simple splitter circuit with buffers

to keep the operating frequency, responsible for routing the operands (and the operation)

of the SIMD/FP instruction from the vector registers of the big core to many NEON units
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Figure 4.3: NEON instruction offloading from a A15 core to A7 cores. The NEON units
from A7 cores are shared with the A15.
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Figure 4.4: The vector registers from the A15 core lanes are split into shorter registers
and distributed over the A7 cores, along with the operation.
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in the little core. Figure 4.4 shows how the 128-bit wide vector registers of the A15 core

are split into two 64-bit wide registers, which are then used to feed the A7 NEON units.

Although both processors have vector registers of 64bits, the typical implementation of

the A15 combines two registers to achieve operands of 128bits (MALLIA, 2007). When

offloading instructions, the 128bits registers are split back into 64bits, as expected by the

A7 NEON unit. By using this approach, each of the two 128bits NEON issue lanes in

the A15 core will be tightly coupled to two other A7 cores (by their 64bits NEON units),

offloading the same instruction for these two cores. Thus, the offloading is always done

to a fixed pair of A7s per lane, avoiding any need for schedulers. If the given operation is

a scalar FP instruction, then the Offloader will use a single A7 NEON unit (per lane).
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As already discussed, the NEON design is usually decoupled from the rest of the

processor. This allows for different power gating domains to be easily adapted for keeping

only the NEON units powered on during the offloading process (KOPPANALIL et al.,

2011). Thus, we expect the overhead in energy consumption of TUNE to be minimal,

and mostly related to the routing wiring. As the A15 core offloads the same instruction

to a pair of A7s with all its dependencies and operands resolved, both A7 cores will

finish their operation in the same cycle. These operations will be redirected back to the

Offloader, which recomposes the original vector register and proceeds to the writeback

stage normally, updating its reservation station and re-order buffer - just as if it had the

original NEON unit. TUNE thereby keeps the original execution flow of the A15 core:

nothing changes in the perspective of the core design, except that now there is an extra

latency for routing SIMD/FP operations.

4.3 TUNE Models

4.3.1 Performance Model

In order to understand the performance potential of our developed TUNEd PHISA

design, we present an analytical model based on simple extensions to the widely known

Amdahl’s law (HILL; MARTY, 2008; AMDAHL, 1967), which express the potential

speedup of applications given that a certain ratio of it is accelerated. In the context of

multicore processors, in Amdahl’s law, the accelerated part of a program is the parallel

region, and the potential speedup is bounded by the number of cores available in the

processor. Amdahl’s law is given by equation 4.1, in which S is the system speedup, PR

is the parallel region ratio (percentage of time spent by the application inside a parallel

region), and N is the number of cores in the system.

S =
1

(1− PR) + PR
N

(4.1)

For our system model analysis, we consider that the processor is also composed

of two distinct types of ARM cores, in which the parallel regions are executed in the

small A7 cores. In contrast, the serial region is executed on the big A15 core. To model

the performance impact of the two distinct core types, we use Pollack’s rule (BORKAR,

2007), which states that the expected increase in the performance of a processor - due
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to microarchitectural improvements - is roughly proportional to the square root of its

growth in area. Conversely, if a micro-architecture has 2X less area (resources) than a

second one, a performance drop of
√
2 is to be expected in the smaller one. Equation 4.2

represents the performance slowdown (LS) - thus, the inverse of Pollack’s rule - of the

A7 core in relation to the A15 core.

LS =
1√
A15
A7

(4.2)

Furthermore, the big core used with TUNE trades SIMD and FP (NEON) instruc-

tions in favor of having more small cores, requiring to offload these operations when they

are executed in serial region. Therefore, the cost of offloading these instructions must be

accommodated in the performance model. We do that by separating from the serial ratio

(1 − PR) the amount of ratio that is actually executing NEON instructions (SRF ) and

applying an overhead cost (OC). Our final model is described by equation 4.3, in which

we apply the slowdown of the A7 cores and the offloading cost to Amdahl’s law.

S =
1

(1− PR) ∗ ((SRF ∗OC) + (1− SRF )) + PR
N∗LS

(4.3)

Summarizing, the parameters are: the speedup (S) normalized to a single big A15

core; SRF is the ratio of the Serial Region that executes SIMD/FP instructions; OC is the

Offloading Cost; PR is the ratio of the Parallel Region; N is the number of little cores;

and LS is the slow down caused by execution on the little cores.

4.3.2 Application Characterization

To feed data to our model, we characterize the regions of interest of several bench-

marks of different classes from PARSEC (BIENIA, 2011), PARVEC (include vectorized

versions of some applications from PARSEC) (CEBRIAN; JAHRE; NATVIG, 2015),

SPLASH-2 (WOO et al., 1995) and PolybenchACC (GRAUER-GRAY et al., 2012).

These benchmarks include parallel workloads optimized to use vector operations, which

should stress the SIMD and FP unit of the processor cores. For the applications that are

not explicitly optimized to use vector operations, we apply the GCC auto-vectorization

framework(GNU, 2020) to produce vectorized code. Table 4.1 shows the list of appli-

cations, their ratio of Parallel Region (parameter PR in equation 4.3) and the ratio of
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SIMD/FP execution time in the serial region (parameter SRF ). For instance, 81.95% of

the execution time in the correlation application is spent in the parallel region. In the re-

maining 18.05% spent executing the serial region, 10.10% is spent in executing SIMD/FP

operations.

The data presented in table 4.1 is obtained by dynamically executing the applica-

tions and observing hardware counters that count cycles executing FP and SIMD oper-

ations, unhalted cycles spent executing multiple threads and total execution cycles. The

table 4.1 shows that, in most of the applications, the parallel region is large enough so that

the serial region does not introduce a big impact in performance. Nonetheless, there are

some applications in which the parallel region does not cover most of the execution, and

in these scenarios, the big core will be essential to reduce the serial region time. What is

most interesting is that even in applications with longer serial regions (such as poly-

bench lu and covariance), the amount of SIMD/FP operations in the sequential part

is still low,

To maintain support for SIMD/FP operations in all cores, TUNE offloads these

operations to the NEON units of the little cores whenever they occur during serial regions.

In this performance model, we assume the operand routing overhead and the difference in

operating frequencies to lead to an average slowdown of 2x. The SIMD/FP instructions

issued during the parallel regions, on the other hand, are executed directly in the A7 cores

and do not require offloading. Furthermore, using Pollack’s rule, and the area estimation

models for the A15 and the A7 core (chapter 3, figure 3.5), the slowdown of the little core

in relation to the big core (parameter LS in equation 4.3) is estimated to be 1
2.64

x.

4.3.3 Discussion

To understand the potential gains of TUNE, we use the proposed model along with

the discussed parameters to extract the performance of two AMCs with an equal area over

a single fully-capable A15 core. The first AMC has a fully capable A15 core and 4 A7

cores and the second has a feature-light A15 core without NEON and 8 A7 cores. The

results of this model can motivate the usage of TUNE in AMCs and give hints on its

behaviour. Figure 6.8 shows the potential speedups for the polybench applications, based

on the model specified by equation 4.3. We have chosen to show only the polybench

applications, as they present better corner cases that are interesting to analyze, such as

applications with long and medium parallel region ratios and high and low SIMD/FP
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Table 4.1: Application region of interest characterization in terms of parallel region size
and SIMD/FP ratio in the serial region.

Benchmark Parallel Ratio Serial SIMD/FP Ratio

parsec

bodytrack 99.10% 0.05%

ferret 98.24% 0.10%

dedup 98.18% 0.00%

facesim 97.56% 0.14%

cholesky 96.56% 0.88%

freqmine 95.38% 0.01%

parvec

swaptions 99.99% 0.00%

fluidanimate 99.67% 0.05%

streamcluster 99.60% 0.01%

canneal 99.58% 0.02%

blackscholes 99.55% 0.01%

vips 98.94% 0.14%

polybench

bicg 100.00% 0.00%

fdtd-apml 99.99% 0.00%

convolution-2d 99.99% 0.00%

gemm 99.97% 0.06%

symm 99.95% 0.00%

syrk 99.90% 0.04%

syr2k 99.89% 0.04%

atax 99.73% 0.06%

2mm 99.27% 1.03%

mvt 98.82% 1.11%

gesummv 98.76% 0.46%

3mm 98.68% 1.66%

doitgen 98.41% 0.83%

trmm 82.25% 6.74%

correlation 81.95% 10.10%

gramschmidt 78.70% 11.72%

covariance 77.40% 17.33%

lu 68.71% 0.09%

splash2x

ocean_ncp 99.85% 0.01%

barnes 99.74% 0.02%

ocean_cp 99.63% 0.04%

radix 99.37% 0.00%

raytrace 99.19% 0.12%

lu_cb 98.48% 0.11%

water_nsquared 97.92% 0.20%

lu_ncb 97.86% 0.15%

radiosity 97.81% 0.22%

fft 97.38% 0.21%

water_spatial 94.12% 0.66%

cholesky 75.95% 2.77%
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Figure 4.5: Potential speedup according to TUNE mechanism model. Bars represent the
speedup over a single A15 core and the shaded areas are the % of PR and SRF of each
application.
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usage (most PARSEC/PARVEC and splash2x applications don’t have significant serial

regions). The bars in the figure represent the speedup (marked by the Y-axis on the left),

while the shaded area in the background (marked by the Y-Axis on the right) represents the

fraction of the parallel region (PR) and the fraction of SIMD/FP operations in the serial

region (SRF ) in the application. The model shows that the traditional AMC (A15 + 4

A7) can provide a maximum speedup of about 1.5x in the applications with ratios of PR

close to 100%. On the other hand, the TUNE AMC with additional cores (feature-light

A15 with no NEON + 8 A7 cores) can provide a maximum potential speedup of 3x. This

model clearly demonstrates that applications with a large parallel region will benefit from

the additional cores while experiencing virtually no negative impact due to the absence of

the SIMD/FP unit in the big core since the serial region is almost negligible. Applications

with smaller PR fraction and a larger fraction of SIMD/FP operations in the serial region

- such as correltion, covariance and gramschmidt - naturally provide smaller speedups

with both the AMCs. Nonetheless, for all of the applications, the model shows a potential

increase in the speedup of TUNE. This speedup can be observed even in applications with

higher ratios of SRF , surpassing the extra cost of offloading instructions in the serial

regions. Considering the geometric mean, TUNE is potentially 1.86x faster on average

than the traditional AMC with NEON units in all cores.

We also apply the model to measure the scalability of some interesting configu-

rations. For instance, table 4.2 shows a heatmap of a TUNE configuration (1 A15 core

without NEON + 8 A7 cores) with a fixed offloading cost of 2x normalized by a single

full A15. In the rows the ratio of the parallel region increases from the top to the bottom,

while in the columns the amount of SIMD and FP operations increase from the left to

the right. For instance, the first cell from the top left represents an applicaton that has no

parallel regions (is completely serial) and no SIMD or FP operations in the serial regions
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Table 4.2: Model variation heatmap for the TUNE AMC (1 A15 without NEON + 8 full
A7) with a fixed offloading cost of 2x normalized by a full A15 single core. In the rows the
ratio of the parallel region increases by 10%, while the columns increase the percentage
of SIMD and FP operations in the serial region.

0% 10% 20% 30% 40% 50% 60% 70%

0% 1 0.909091 0.833333 0.769231 0.714286 0.666667 0.625 0.588235

10% 1.071811 0.977517 0.898473 0.831255 0.773395 0.723066 0.678887 0.639795

20% 1.154734 1.057082 0.974659 0.904159 0.84317 0.789889 0.742942 0.701262

30% 1.251564 1.150748 1.064963 0.99108 0.926784 0.870322 0.820345 0.775795

40% 1.36612 1.262626 1.173709 1.096491 1.028807 0.968992 0.915751 0.868056

50% 1.503759 1.398601 1.30719 1.226994 1.156069 1.092896 1.036269 0.985222

60% 1.672241 1.567398 1.474926 1.392758 1.319261 1.253133 1.193317 1.138952

70% 1.883239 1.782531 1.692047 1.610306 1.536098 1.468429 1.40647 1.349528

80% 2.155172 2.066116 1.984127 1.908397 1.838235 1.77305 1.712329 1.655629

90% 2.518892 2.457002 2.398082 2.34192 2.28833 2.237136 2.188184 2.141328

100% 3.030303 3.030303 3.030303 3.030303 3.030303 3.030303 3.030303 3.030303

SIMD and FP ratio in the Serial Region
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0.555556 0.526316 0.5

0.604961 0.573723 0.545554

0.664011 0.630517 0.60024

0.735835 0.69979 0.667111

0.825083 0.786164 0.750751

0.938967 0.896861 0.858369

1.089325 1.043841 1.002004

1.297017 1.248439 1.203369

1.602564 1.552795 1.506024

2.096436 2.053388 2.012072

3.030303 3.030303 3.030303

(in this case, in the entire application). As the values are normalized by a single A15,

the performance in this scenario is 1, i.e., equal to the baseline. In this map we observe

that parallel applications with parallel region coverage as low as 10% can already present

some degree of benefits with the extra A7 cores, as long as there is no SIMD and FP oper-

ations in the serial region. However, the system presents much better performance when

the parallel coverage is high (as expected in parallel applications), even when the amount

of SIMD and FP in the serial region is also high.

An interesting configuration to evaluate in the model - and verify in which char-

acteristics an application must have to be interesting in an AMC - is the homogeneous

manycore processor composed of 16 A7 full cores (no A15 in this case). Because of the

small area footprint of the A7, this configuration has almost the same area as the TUNE

AMC in table 4.2. However, this configuration cannot accelerate serial regions (there is no

big core), so we expect it to have worst performance in applications with smaller parallel

regions. Table 4.3 shows the results for this configuration, using the same organization as

table 4.2, and also normalized by a single A15 core. As this system does not have a partial

core, it does not require instruction offloading, and increasing the amount of SIMD and FP

in the serial region of the application does not influence performance. However, because

an A7 core has to be used to execute the serial region, the system will only show better

performance than the single A15 core when the parallel region covers at least 70% of the

application. If we compare the results of the manycore system against the TUNE AMC,

we will observe that the manycore system will only have better performance than TUNE

if the application has a parallel region larger than 90% and more than 10% SIMD and FP

operations in the serial region. This is an interesting result, as it shows that TUNE should

be a better solution for applications that either (1) have small parallel regions (over 10%
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Table 4.3: Model variation heatmap for a manycore system with 16 full A7 cores, nor-
malized by a full A15 single core. In the rows the ratio of the parallel region increases by
10%, while the columns increase the percentage of SIMD and FP operations in the serial
region (no effect in this scenario).

0% 10% 20% 30% 40% 50% 60% 70%

0% 0.378788 0.378788 0.378788 0.378788 0.378788 0.378788 0.378788 0.378788

10% 0.417973 0.417973 0.417973 0.417973 0.417973 0.417973 0.417973 0.417973

20% 0.4662 0.4662 0.4662 0.4662 0.4662 0.4662 0.4662 0.4662

30% 0.527009 0.527009 0.527009 0.527009 0.527009 0.527009 0.527009 0.527009

40% 0.606061 0.606061 0.606061 0.606061 0.606061 0.606061 0.606061 0.606061

50% 0.713012 0.713012 0.713012 0.713012 0.713012 0.713012 0.713012 0.713012

60% 0.865801 0.865801 0.865801 0.865801 0.865801 0.865801 0.865801 0.865801

70% 1.101928 1.101928 1.101928 1.101928 1.101928 1.101928 1.101928 1.101928

80% 1.515152 1.515152 1.515152 1.515152 1.515152 1.515152 1.515152 1.515152

90% 2.424242 2.424242 2.424242 2.424242 2.424242 2.424242 2.424242 2.424242

100% 6.060606 6.060606 6.060606 6.060606 6.060606 6.060606 6.060606 6.060606
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and less than 60%) and low SIMD and FP usage in the serial regions or (2) have medium

parallel regions (over 60% and less than 80%) and virtually any amount of SIMD and

FP, or (3) high parallel usage (90%) but less than 10% SIMD and FP usage in the serial

region.

Finally, we also show in table 4.4 the behavior of the TUNE AMC when the appli-

cation has a fixed parallel region ratio of 80%, increasing amount (left to right) of SIMD

and FP inside the 20% serial region ratio, but also an increasing cost to offload these in-

struction (top to bottom). We increase the cost in a factor of 2. We see that, as long as

the amount of SIMD and FP in the serial region is kept low (between 10% and 20%), the

cost of executing these instructions can be 16x higher through the offloader than through

the normal hardware. In fact, as we see in table 4.1, all the characterized applications are

inside this range of SIMD and FP usage.

Nonetheless highlight that the aforementioned model makes several assumptions

and has limitations. About the application and the underlying architecture, the model as-

sumes (1) linear scalability of the parallel region, (2) the performance difference of the

distinct cores will be bounded by Pollack’s rule and (3) the fixed 2X penalty for offload-

Table 4.4: Model variation heatmap for the TUNE AMC (1 A15 without NEON + 8 full
A7) with a fixed parallel region ratio of 80% normalized by a full A15 single core. In the
rows, cost of offloading instructions increases by a power of 2, while the columns increase
the percentage of SIMD and FP operations in the serial region.

0% 10% 20% 30% 40% 50% 60% 70%

2 2.155172 2.066116 1.984127 1.908397 1.838235 1.77305 1.712329 1.655629

4 2.155172 1.908397 1.712329 1.552795 1.420455 1.308901 1.213592 1.131222

8 2.155172 1.655629 1.344086 1.131222 0.976563 0.859107 0.766871 0.692521

16 2.155172 1.308901 0.93985 0.733138 0.600962 0.509165 0.441696 0.390016

32 2.155172 0.922509 0.586854 0.430293 0.339674 0.280584 0.239006 0.20816

64 2.155172 0.580046 0.335121 0.235627 0.181686 0.147842 0.124626 0.107712

1024 2.155172 0.047792 0.024164 0.01617 0.01215 0.009731 0.008115 0.00696

O
ff

lo
a

d
in

g
 C

o
st

 (
x 

ti
m

e
s 

m
o

re
 c

y
cl

e
s)

SIMD and FP ratio in the Serial Region

80% 90% 100%

1.602564 1.552795 1.506024

1.059322 0.996016 0.93985

0.631313 0.580046 0.536481

0.349162 0.316056 0.288684

0.184366 0.165453 0.15006

0.094841 0.084717 0.076546

0.006092 0.005417 0.004877



77

ing the SIMD/FP operations. Therefore, there are static values that do not represent the

real behaviour of the applications, and that are useful for this high-level and initial anal-

ysis. Although simplified, the performance model provides insights about the potential

of TUNE architecture over a traditional AMC. Our evaluation in chapter 6 shows that the

projections of the model are consistent with the results obtained from simulations.
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5 SIMULATION METHODOLOGY

In this chapter, we briefly describe the architectural simulators used to evaluate

this thesis. We describe two different simulators: gem5 and PHISA Simulator. The for-

mer is an open source, community developed, full system simulator, while the latter is

a scheduling simulator for PHISA systems. We discuss each of the simulators and how

they were integrated to produce this thesis results.

5.1 Gem5

Gem5 is a modular discrete event driven computer system simulator platform

(LOWE-POWER, 2020). It’s components can be rearranged, parameterized, extended

or easily replaced to suit the designer’s needs. It simulates the passing of time in the sys-

tem as a series of discrete events and its intended use is to simulate one or more computer

systems in various ways. Gem5 is more than just a simulator; it’s a simulator platform

that allows the designer to use as many of its premade components as needed to build up

a custom simulation system.

Gem5 is written primarily in C++ and python and most components are provided

under a BSD style license. It can simulate a complete system with devices and an oper-

ating system in full system mode (FS mode), or user space only programs where system

services are provided directly by the simulator in syscall emulation mode (SE mode).

There are varying levels of support for executing Alpha, ARM, MIPS, Power, SPARC,

RISC-V, and 64 bit x86 binaries on different CPU models. Gem5 supports two simple

single CPI models, an out of order model, and an in order pipelined model. A memory

system can be flexibly built out of caches and crossbars or the Ruby simulator which

provides even more flexible memory system modeling.

In this thesis, we have used both the System-call Emulation (SE) and Full Sys-

tem (FS) modes of gem5. To evaluate the PHISA system, which is aimed to run single-

threaded workloads, we have used gem5 in the SE mode. The SE mode is preferable

to use when one does not want to include OS overheads and is generally suggested for

running single-threaded applications. As this mode does not include support for multiple

core communication, we have also created a scheduling simulator to support PHISA. We

further discuss this simulator in the following sections.

On the other hand, in the TUNEd PHISA, we aim to optimize multi-threaded
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applications, which require OS support to create and manage threads. The TUNEd PHISA

system was completely modeled using gem5 in the FS mode, and, as no scheduling of

threads is required, no extra simulators or modifications were required.

5.2 McPAT

According to the HP Labs(HPLABS, 2009), McPAT (Multicore Power, Area, and

Timing) (LI et al., 2009) is an integrated power, area, and timing modeling framework

for multithreaded, multicore, and manycore architectures. It models power, area, and tim-

ing simultaneously and consistently and supports comprehensive early stage design space

exploration for multicore and manycore processor configurations ranging from 90nm to

22nm and beyond. McPAT includes models for the components of a complete chip multi-

processor, including in-order and out-of-order processor cores, networks-on-chip, shared

caches, and integrated memory controllers. McPAT models timing, area, and dynamic,

short-circuit, and leakage power for each of the device types forecast in the ITRS roadmap

including bulk CMOS, SOI, and double-gate transistors. McPAT has a flexible XML in-

terface to facilitate its use with different performance simulators.

In this thesis, we have used McPAT version 1.3 to model designs of the A15 and A7

cores using a node technology of 28nm. Our models consider the entire core (including

MMU and instruction and data L1 caches) without L2 caches. Although McPAT models

its components according to an A9 processor, we have used an approach similar to the

one proposed in (ENDO; COUROUSSÉ; CHARLES, 2015) to model the A7 and A15.

The authors use strategies such as Pollack’s rule(BORKAR, 2007) to scale the area and

power of the components, and show that this approach results in models very close to the

real processors.

Through the flexible XML interface, it is simple to use McPAT to model processors

without SIMD and FP support. Configuring the XML file to implement these instructions

triggers the exclusion of the FP instruction window, the FP Register File (RF), the FP

register renaming structures, and the SIMD/FP execution lanes. When we evaluate the

PHISA system, we remove all these components. However, in the TUNEd PHISA system,

most of these structures are still needed for decoding and offloading instructions. Thus,

we modify McPAT to only remove the SIMD/FP execution lanes in this case.
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5.3 PHISA Simulator

Since the partial-ISA strategy used by PHISA requires modifications in both the

hardware and the task management (e.g., OS) and we do not have such a real-life system,

we perform our analysis in a simulated environment. In this section, we overview how

the simulation environment is set up and how we combine data from different tools to

evaluate our designs. The contents of this section have been adapted from (BECKER,

2019), which used the same simulator.

Figure 5.1 presents a high-level diagram of the simulation tool-chain we describe

in this section. In the following subsections, we will refer to this diagram, explaining all

the necessary steps to simulate the execution of multiple applications on a PHISA system.

Namely, we detail how we collect workloads execution behavior, how we combine these

with area and power data from McPAT to build our partial-ISA cores, and how we set up

important configurations for experimentation.

5.3.1 Profiling and tracing workloads execution phases

As we discussed in Chapter 3, the PHISA system execution flow depends on a few

hardware triggers for proper functioning. For example, the cores must notify the Sched-

uler when there are workload dependencies for an ISA-extension datapath (as a FP or

SIMD operation). Thereby, it is mandatory to have those triggers information to simu-

Figure 5.1: The simulation tool-chain used in this work.
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late task migrations in an accurate manner. Also, because the system has heterogeneous

cores, and workloads can execute on any of them, our simulator must address the differ-

ent performance that applications have in the different cores available. For example, a

workload can execute quickly on an OoO but slowly on an in-order core. Therefore, these

previous observations suggest for us to build our simulated environment using dynamic

instrumentation.

To collect the behavior of the workloads under different host cores, we use the

gem5 cycle-accurate microarchitecture simulator, previously presented. The gem5 is

capable of executing binary code from different ISAs, including the ARM used in this

work. It can be used as a tool for measuring stats of applications (like the execution time,

the number of committed instructions, the L1 cache miss-rate) in different organizations.

More importantly, its open-source code models cycle-accurate in-order and out-of-order

cores and allows internal modifications for detailed on-the-fly execution profiling.

For our purposes, we have modified the gem5 simulator so it traces the execution

of ARM applications while executing workloads on both OoO (big) and in-order (little)

cores. This appears on the upper part of Figure 5.1. As it appears in the Figure, the traces

created during gem5 profiling hold information regarding different phases of the work-

load’s execution. Particularly, these phases will be consulted by our simulated PHISA

Simulator, so it knows which portions of the program require extensions support (to mark

applications as ISA-extension dependent during simulation). When executing the ap-

plications, gem5 dynamically retrieves the executing instruction, and annotates when a

unsupported operation is executed. Furthermore, we annotate a new phase whenever the

program executes for longer than 10K cycles without extension instructions. This cre-

ates fine-grained phases that allow our custom simulator to schedule threads efficiently.

With the aforementioned instrumentation, gem5 traces contain dynamic information of

the hardware triggers we expect from cores in our PHISA design.

To understand how the profiling traces are internally created and how we leverage

their content information, Figure 5.2 depicts two traces for a given workload: one for its

execution in a big core (OoO), and another for its execution in a little core (in-order).

Each trace is composed of a set of blocks, representing the intervals of the application’s

execution. As the legend of the Figure describes, these blocks represent the intervals of the

application with integer-only instructions and with ISA-extensions instructions (FP and

SIMD in this work). Importantly, the blocks hold the number of cycles and instructions

these execution intervals took to perform, depending on the host core.
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Figure 5.2: Representation of the execution traces of a workload in both a big and a
little core, generated with the gem5 simulator. The current host core of the workload
determines which of the traces will be consumed for a given slice of the execution.
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To generate the traces, gem5 counts the number of committed instructions from the

beginning to the end of an execution interval, on both OoO and in-order simulations. The

blocks usually represent up to 10K instructions1, and are successively reported covering

the whole execution of the application. Blocks can be shortened, however, when an ISA

extension is fetched, which closes an integer block and immediately starts a FP/SIMD

block. This is depicted at the end of the first block of both traces in Figure 5.2. When

gem5 counts more than 10K non-extension instructions, it closes the FP/SIMD block and

starts a new integer block, emulating how a core would trigger the removal of the ISA-

dependency from an application in our PHISA system.

1The size of the blocks must be small for fine-grain representation of the execution phases, but not too
small causing traces to be composed of many of them, turning the traces into big files (which also overheads
the traces parsing in our simulator, as we explain in section 5.3.3).
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Importantly, we guarantee the blocks represent the same portion of a program

execution regardless of the host core, i.e., the number of total blocks and the instructions

they represent are the same in both OoO and in-order traces. This appears in Figure 5.2,

observing the block’s amount of instructions, depicted on the right side of the blocks in the

traces. Since both microarchitectures commit instructions in order, the Nth committed

instruction of a given application is the same for both cores. Since our modified gem5

counts instructions, its internal counters will be incremented symmetrically in both in-

order and OoO simulations, for a given workload. Hence, the Kth block in the big core

trace is equivalent to the Kth block in the little core trace. This is important because

it assures that, at the end of each block, the workload is at the same point of execution

in both traces. Thereby, our simulator can read the big core trace up to a point, and

continue reading from that point ahead in the little core trace, which allows us to simulate

migrations coherently, as we detail further (section 5.3.3).

What can (and generally will) vary is the amount of time it takes to execute a block

depending on the host core. For example, big cores can achieve higher ILP exploitation

to commit the instructions of a block faster than the little core. We also illustrate this in

Figure 5.2, presenting the cycles for executing the blocks (varying with the core). This is

used by our simulator to extract the performance difference among the different cores.

The final pairs of traces for each application (one for the in-order model, and the

other for the OoO) are then grouped in different scenarios. In our evaluations, we use a set

of applications to describe typical scenarios of user softwares, such as image processing

and video decoding. These descriptions, along with the application traces themselves,

will be used as inputs for our PHISA Simulator.

5.3.2 Modeling area and power using McPAT

We use McPAT to extract area and power data from our processors. There are six

cores that are modeled in this thesis. First, the full A15 core, which is modeled as an

embedded OoO core, and the full A7 core, which is an embedded in-order core. Then we

have the partials A15 and A7 for PHISA, in which we remove all the components related

to the NEON units (see section 5.2) from both cores. Finally, we have the partials A15

and A7 for the TUNEd PHISA, in which only the NEON execution lanes are removed,

as the other components are still required for fetching, decoding and offloading these

instructions.
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McPAT produces an output with a breakdown on the area and power information of

all the modeled components in the core. Therefore, it is possible to measure these metrics

individually and analyze which components have a higher impact in the system. We use

the area and power data to build our configurations according to some budget (either a

maximum area in the layout or a maximum TDP). This is shown in figure 5.1 as the

PHISA Descriptions, which are the different cores that compose each of the configurations

we evaluate. The power data is also used by the PHISA simulator to determine how much

energy an application consumes during execution. This is shown in figure 5.1 as the

McPAT Model Data diagram, which is also fed to the PHISA Simulator.

5.3.3 Modeling the PHISA Simulator for a multi-task simulation

Although we execute every workload in gem5 to generate its execution traces, it

is also necessary to consider its execution in a multi-task environment, where multiple

workloads share the system resources. For that end, we developed an in-house simulator

to model the PHISA Simulator scheduler policies (as described in section 3.2). Figure 5.1

presented a comprehensive overview of the tools and simulation flow. Through McPAT

models of the OoO and in-order cores, we provide hardware-related data to the PHISA

Simulator, so it has information regarding the power of the computing cores it is simulat-

ing. At the same time, through the steps described in Section 5.3.1, we provide software-

related data from gem5 to the PHISA Simulator, so it has the executions traces of the

applications to properly simulate the execution of the workloads under the available hard-

ware. Internally, the PHISA Simulator simulates the OS Scheduler (with a policy chosen

by the user), the system Cores, and all auxiliary modules to perform accurate simulation,

as we describe next. With this, we can verify the impact of having partial-ISA cores, in

heterogeneous designs.

Figure 5.3 presents an overview of the simulator components and inputs. As in

the Figure, the PHISA Simulator module wraps the Scheduler. The Scheduler, in turn,

has a list of workloads (in the WorkloadQueue) and the reference for available cores in

the system. Note that workloads can be in the queue, or executing in a computing node.

The mapping strategy to assign a workload from the queue to an idle core is implemented

accordingly with the chosen scheduling policy, detailed in section 3.2.

The diagram illustrated in Figure 5.3 also presents (on the top) the necessary inputs

for accurate experimentation. They are used in the following manner:
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• Scheduler Policy. The policy is defined at the initialization of the simulator by

the user. With this input, it is possible to choose between the naive, performance-

oriented or the energy-oriented mapping strategies described in section 3.2. Also,

the existence of this input allows the simulator to extend the number of policies

while keeping an easy interface. We detail how the scheduler interacts with the

remaining modules of our simulator further in this section.

• Scenarios Descriptions. This input contains the list of workloads we want to ex-

ecute in the simulator, allowing us to create multi-tasking execution environments.

The list of workloads is used to fill the WorkloadQueue when the simulator starts

the execution. This input is simply a json file which holds the workloads names,

and the reference for the trace files from gem5 (another input of the simulator as

we detail further). With this interface, we can quickly create different scenarios for

experimentation.

• PHISA Descriptions. This input is a json file containing each core in the sys-

tem and its microarchitecture, since it is important to inform the simulator of the

Figure 5.3: A high-level view of the PHISA scheduler simulator. On the top, the set of
inputs necessary for execution. Above, the different modules of the simulator and their
interaction with each other and with the inputs.
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computing nodes available. Especially, the Scheduler may leverage this information

when applying its current policy. The json file defines if the core is an OoO or an in-

order core, and the ISA-extensions it supports (or does not support, if partial-ISA).

Configuring the elements in the json file is all it takes for adjusting the composition

of the PHISA system.

• McPAT Model Data. We use the McPAT outcome to feed our simulator with power

information. With this, the simulator can have the mean power of each computing

node at hand. We sum up the energy consumed by each core along with the ex-

ecution of the workloads using data from the PHISA Simulator, which monitors

whether or not the cores are executing.

• gem5 Traces. As previously explained, gem5 traces are used as a trustful repre-

sentation of a workload executing in a core. In our environment, a workload can

execute in either big or little cores (OoO or in-order), or accelerators. Because of

this, for each workload we want to simulate, we need (and have) two gem5 traces.

One contains the execution trace for the workload under an OoO core, and the

other has the execution trace of the workload in an in-order core. Depending on

the workloads’ host core (decided on-the-fly by the Scheduler during our simula-

tion), the appropriate trace will be consulted to advance the workloads’ execution

accordingly.

The execution of workloads in our simulation proceeds after we have these inputs

at hand. With the WorkloadQueue filled with workloads, the Scheduler assigns tasks for

the available cores, accordingly with the chosen scheduling policy, following the specifi-

cations in Chapter 3. For such, we carefully assure all the scheduler restrictions defined in

Section 3.2 are respected in our implementation. A Core will execute a Workload block

as soon as it is assigned. For this, the host Core module verifies its type (big or little).

Based on that, the Core looks up in the corresponding trace (big core trace or little core

trace, depending on its type) and gathers a block, checking its execution interval. This is

used to append execution time in the total time of the workload’s execution, and to add

up the energy consumption for the block execution on that core. Also, it is used by the

Scheduler to know what cores are occupied or idle at a given time. At the end of the

block, the Scheduler verifies for how many cycles the workload has been executing on the

core. If it surpassed the threshold of 160K (see section 3.2), the workload is preempted

from the core and pushed to the Workloads Queue module.

If the workload is not preempted, the simulated Core looks up for the next block.
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If the next block has different dependency than the previous block (e.g., it is marked as

ISA-extension dependent), the core check if it is capable of executing it. If it is, the same

process as above is repeated; if it is not capable of executing the block, the workload will

either be preempted (removed from the core and pushed to the Workloads Queue), or em-

ulated. If the core is able to emulate the requested instruction, the block will be executed

in that core as usual, but paying a multiplicative cost of emulation. For instance, if a ISA-

dependent block takes N cycles to execute in real hardware, the simulator will account

N ∗ emulation_cost cycles in the emulation scenario (see section 3.2 for emulation cost

estimation).
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6 EVALUATION

In this chapter, we evaluate several PHISA systems designs to understand their

benefits and limitations. We start by evaluating the system under single-threaded work-

loads, maintaining ISA compatibility between cores using thread migration. We first

analyze the system using a naive proof-of-concept scheduler, and then we explore dif-

ferent scheduling policies. In the second section, we analyze the TUNEd PHISA system

using multi-threaded applications. For both systems, we present the particularities in

methodologies that we used for evaluation. Finally, we also compare both systems to

other state-of-the-art solution.

6.1 Evaluation of PHISA with single-threaded workloads

In this section, we evaluate the PHISA system under single-threaded applications.

In this system, we aim to remove support for SIMD and FP operation, to increase the

number of cores in the system (see figure 6.1), and potentially increase its workload

throughput. We first present the methodology used to model and simulate the system.

Then, we discuss the benchmarks used and how we build scenarios using them. After

that, we present the different system configurations that we have build, aiming to explore

different design spaces. Later, we present the results for all experiments, along with dis-

cussions for each scenario, using the naive scheduling policy as a proof-of-concept. We

then discuss results for specific policies optimizing performance and energy.

Figure 6.1: Example of a PHISA configuration.
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6.1.1 Evaluation Methodology

Modeling and Simulation Parameters: We have used the gem5 simulator (BINKERT

et al., 2011) to model the different versions of the ARM’s A7 and A15 processors and

trace the applications’ execution. In this evaluation, our partial-ISA cores are configured

to remove all components related to the NEON units, such as register files, issue queues

and execution lanes. Details on how we use this data are shown in chapter 5.

Workload and Scheduling: Our workload set uses applications from different

sources such as embedded applications from Mibench (GUTHAUS et al., 2001), media

processing from Mediabench (FRITTS et al., 2009), linear-algebra, and data mining from

Polybench (POUCHET, 2019) and IoT applications from Locus (TAN et al., 2017) as

listed in Figure 1.1. We aim to simulate traditional but assorted scenarios, and mainly

representative use case scenarios for edge computing. We assume scenarios in which the

applications run either completely in parallel or in a pipeline manner - applications can

output partial results to feed the input of the next benchmark. These scenarios are illus-

trated in table 6.1, in which the column ’Task’ briefly describes the goal of the scenario,

column ’Workloads’ lists the benchmarks executed, column ’Exec Mode’ specify if the

scenario runs in pipeline or in parallel and ’% NEON’ shows the percentage of dynamic

NEON operations executed.

In scenario 1, we include a series of image filters and kernel operations that

represent an image processing application. Scenario 2 and 3 include opensource li-

braries for encoding and decoding videos, along with kernels that represent data transmis-

sion (FFT and FFT-i), cryptography (AES), and redundancy and fault tolerance checks

(CRC32)(ADEGBIJA et al., 2018). These latter kernels are also used in scenario 4 - a

Table 6.1: Workloads in each scenario.
Task Workloads Exec Mode % NEON

Scenario 1 Image processing

Susan (smooth, edges, corners);

2dconv; histogram; reg-detect;

libpng; aes; CRC32; FFT

pipeline 0.5%

Scenario 2 Video encoding FFT-i; libav-enc; aes; CRC32; FFT pipeline 3.34%

Scenario 3 Video decoding FFT-i; aes; h264-dec; CRC32; FFT pipeline 0.04%

Scenario 4 Health app FFT-i; ecg; libpng; aes; CRC32; FFT pipeline 2.55%

Scenario 5 Voice synthesis rsynth; aes; CRC32; FFT pipeline 3.48%

Scenario 6 Multitasking

basicmath; bitcount; qsort;

stringsearch; 3mm; atax;

dynprog; correlation

parallel

tasks
8.92%
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health app that performs an ECG and uses the opensource libpng library to create an im-

age from the data source -, and scenario 5, an app that uses rsynth to generate synthetic

voice for user-device interaction. Finally, scenario 6 represents a multitasking environ-

ment in which the edge device is receiving tasks from multiple sources. For instance,

3mm and atax are matrix multiplication, transpose and vector multiplication kernels used

in graphics processing, and dynamic programming (dynprog) and correlation are com-

monly used in data analitics.

Most of the chosen applications contain some degree of NEON usage. For in-

stance, the selected kernels (correlation, 3mm, atax) are known for generating vectorized

instructions, while the opensource libraries libav and libpng are optimized to use NEON

operations. In our scenarios, from the 23 benchmarks used, only the applications bitcount,

stringsearch, dynprog, h264-dec, CRC32 and aes do not present NEON instructions, rep-

resenting common integer-only workloads. Although the selected applications - and their

NEON usage - are representative for an assorted edge computing environment, a scalabil-

ity study, in which we further increase the number of NEON operations executed, will be

presented in the section 6.1.3.

Finally, to compile our workloads, we have used the gcc arm cross compiler arm-

linux-gnueabihf-gcc version 7.3.0 with -O3 optimization flag, which includes flags to

generate vectorized instructions. The open-source libraries are also configured to use

optimizations for NEON.

For the scheduler, there is a reallocation cost for each time a new workload is

loaded from the queue. This migration cost considers the amount of time necessary to

populate the L1 data cache, and was obtained through experimentation. The A15 pro-

cessors need an average of 12K cycles to fill its data cache, while the A7 requires 17K

cycles. This value may be improved, since we are not using any data prefetch technique

when migrations are applied. Therefore, we are considering only the cache warm-up pro-

cess as our migration cost, and we base this assumption on a previous work by Li et al.

(2007), which claims cache overheads are dominant for task migration. However, it is

important to notice that some extra overheads may apply, such as recovering the register

file and core state and retraining the branch predictor.

Experiments: We have built several PHISA configurations using A7 and A15

processors with different ratios of full and partial cores. Table 6.2 shows all the tested

configurations with their area and power characteristics. The configurations names are

codified as Ax(yFzP) to express the cores used on it, being x the core type (A7 or A15), y
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Table 6.2: Multicore configurations. *PHISA core using emulation

Configuration
A7 A15

Area (mm2) Power (W)
Full PHISA Full PHISA

A15(4F0P) 0 0 4 0 14.12 2.76

A15(3F1P) 0 0 3 1 11.76 2.66

A15(2F2P) 0 0 2 2 9.41 2.56

A15(1F3P) 0 0 1 3 7.05 2.45

A15(1F0P) 0 0 1 0 3.53 0.69

A15(0F1P)A7(2F0P) 2 0 0 1 2.19 0.69

A15(0F1P)A7(1F1P) 1 1 0 1 2.07 0.69

A15(1F0P)A7(2F0P) 2 0 1 0 4.54 0.80

A15(0F1P)A7(2F0P) 2 0 0 1 2.19 0.69

A15(0F1P)A7(1F1P) 1 1 0 1 2.07 0.69

A15(0F1E)A7(2F0P) 2 0 0 1* 2.19 0.69

A15(0F1E)A7(1F1E) 1 1* 0 1* 2.07 0.69

A15(1F0P)A7(2F0P) 2 0 1 0 4.54 0.80

A15(0F1P)A7(4F0P) 4 0 0 1 3.20 0.80

A15(0F1E)A7(2F2E) 2 2* 0 1* 2.96 0.79

the number of (F)ull cores, and z the number of (P)artial cores. For instance, configuration

A15(0F1P)A7(2F0P) is composed of 1 partial A15 core and 2 full A7 cores. We have also

tested these configurations in three setups, aiming to understand the different behaviors of

the PHISA system. We briefly describe all these setups shown in the section 6.1.2. These

are also summarized in table 6.3.

In Setup 1 (6.1.2.1), we progressively replace full A15 cores by partial-ISA A15

cores to observe the impact of excluding the instruction extension datapaths. The first

block of configurations in table 6.2 shows all the tested scenarios of this experiment,

along with their extracted peak power and area, where the configuration names represent

the type of cores they implement. For instance, the A15(3F1P) is a 4-Core processor with

3 Full cores and 1 PHISA.

We start by building PHISA configurations composed of A15 cores without NEON

units (partial cores) and full A7 cores in Setup 2 (6.1.2.2). In this experiment, we compare

the PHISA configurations that have the same peak power as a single-, full-ISA A15 core.

For instance, as the table 6.2 shows in the second block of configurations, configuration

A15(0F1P)A7(2FP) has approximately the same peak power as the A15(1F0P). We also

extrapolate the partial cores usage - aiming to reduce energy further - replacing one of the

A7 full cores with a partial A7. The goal of this setup is to show how a PHISA design can
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Table 6.3: The experiments and their goals
Description Goal Baseline Configurations Section

Setup 1
Homogeneous

PHISA organization

Measure the impact

of removing ISA extensions

from a multicore processor.

A15(4F0P)
A15(4F0P); A15(3F1P);

A15(2F2P); A15(1F3P)
6.1.2.1

Setup 2

Heterogeneous

PHISA organization

with same power budget

of single core

Use the extra area and

power of removing ISA

extensions to create

a heterogeneous system.

A15(1F0P)

A15(1F0P);

A15(0F1P)A7(2F0P);

A15(0F1P)A7(1F1P)

6.1.2.2

Setup 3

Heterogeneous

PHISA organization vs

DynamIQ-like

configuration

Understand which gains

are derived from the

heterogeneous PHISA

organization and which

are from the use of

big and little cores.

A15(1F0P)A7(2F0P)

A15(1F0P)A7(2F0P);

A15(0F1P)A7(2F0P);

A15(0F1P)A7(1F1P)

6.1.2.3

Setup 4

Heterogeneous

PHISA organization

with emulation

vs DynamIQ-like

configuration

Apply emulation to

reduce migrations in

the PHISA system

and amortize the

performance loses.

A15(1F0P)A7(2F0P)

A15(1F0P)A7(2F0P);

A15(0F1E)A7(2F0P);

A15(0F1E)A7(1F1E)

6.1.2.5

Setup 5

Heterogeneous

PHISA organization with

same power budget of

DynamIQ-like

Reestabilish the power

budget to compare the

DynamIQ-like system

with the PHISA multicores.

A15(1F0P)A7(2F0P)

A15(1F0P)A7(2F0P);

A15(0F1P)A7(4F0P);

A15(0F1E)A7(2F2E)

6.1.2.6

improve energy and performance over a system with the same power budget.

We perform another experiment in Setup 3 (6.1.2.3) in which the power and area

constraints are lifted to compare the PHISA system against a traditional single-ISA het-

erogeneous processor - reflecting an ARM DynamIQ configuration. The goal is to under-

stand if the gains observed in Setup 1 were due to the PHISA configuration or because

of the heterogeneous environment. The configurations in this setup are listed in the third

block in table 6.2. This is represented as in configuration A7(2F0P)A15(1F0P) in table

6.2, which has the same cores as configuration A7(2F0P)A15(0F1P), but all full-ISA. We

also discuss, in Setup 4 (6.1.2.5), how these configurations would perform using emu-

lation in the partial-ISA cores before migrating to a full core, without considering any

power or area constraints(fourth block in table 6.2). Note that the baseline processor in

Setups 3 and 4 do not respect the power and area budgets and is much bigger than their

PHISA counterparts.

Finally, we apply the power constraints back to show how a PHISA system of the

same power as the DynamIQ configuration would perform (Setup 5, 6.1.2.6). We also

allow the partial cores to emulate NEON instructions, aiming to reduce migrations in

these cores. These are presented in the fifth block of configurations in table 6.2.
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In the figures we present the results, the performance is measured by the num-

ber of cycles, energy is the cycles x power, and EDP is the product of cycles and

energy. These are all presented normalized by the given baseline for each experiment

(as shown in table 6.3). Therefore, all values bellow 1 are better than the baseline, while

values above 1 are worse. Note that this also holds for what we call performance during

this section, as performance here is the normalized number of cycles.

We also perform a final analysis in section 6.1.3, in which we estimate the behav-

ior of PHISA in environments with high NEON usage. We have tested configurations

similar to those from the previous experiments to analyze the behavior of Energy-Delay

Product (EDP) when hypothetical applications with high usage of NEON instructions are

executed.

6.1.2 Results

6.1.2.1 Impact of Partial ISA Cores

Experiment discussion: In this experiment, we measure the impact of implement-

ing partial ISA cores in a multicore environment. The goal is to evaluate if removing

cores capable of executing NEON operations would impact the performance and energy

of the system, and in which ratio (full:partial) this impact would become relevant. This is

done by progressively replacing full A15 ISA cores by partial A15 ISA ones in systems

with 4 cores.

The first block of configurations in table 6.2 shows how area and power behave

in the modeled systems of this experiment, with an expressive reduction in area and a

smaller, but significant, decrease in power for configurations that comprise partial ISA

cores. For example, when aggressively replacing full cores in the quad-core processor,

the area is reduced by 50%, while power decreases by 11%.

Given the expected area and power decrease, we now analyze how they influence

performance and energy consumption. We have executed all the six scenarios in table

6.1 in all systems from the first block in table 6.2 using the naive scheduler presented in

section 3.2 to handle workload migration. Figure 6.2 shows results for this experiment.

The x-axis contains the different A15 multicore versions, separated by each evaluated ap-

plication scenario. The y-axis shows the normalized performance, energy, and EDP with

respect to the A15(4F0P) configuration, which represents a traditional full-ISA multicore
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Figure 6.2: A15 cores with progressive replacement of full with partial ISA cores. Per-
formance, Energy and EDP are normalized to the A15(4F0P) configuration
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processor. As a reminder, in the figures, the performance is measured by the number

of cycles, energy is the cycles x power, and EDP is the product of cycles and energy.

Therefore, for all the metrics, the lower the bar, the better. As the figure 6.2 shows, for

most of the scenarios, the number of cycles increases as we include more partial cores,

which is expected, as partial cores will need to migrate tasks that require NEON instruc-

tions. Energy, on the other hand, remains almost constant in most cases, due to the power

reductions of the partial cores.

Observations from this experiment: Two observations should be highlighted at

this point. (i) Although the cycle count increase is significant in the tested scenarios, this

increase is much smaller when the proportion of full cores is high. For example, in the

configuration with 75% of full ISA cores and 25% partial ISA cores (the A15(3F1P)), the

increase in cycle counts is only relevant in scenario 6 (about 10%). In other words, partial

cores can be introduced in the system as long as we provide enough full cores for NEON

execution. (ii) As seen in Table 6.4, the full ISA A15 processor power is about 14x higher

than the full A7 and occupies about 7x more area. A single partial A15 ISA core has 66%

less area from a full A15 core and 15% less power. The freed area represents 4 times the

area of a full A7, while the freed power is approximately the same as 2 full A7 cores.

Thus, extra A7 cores (which may be full or partial) can be introduced in the freed area of

the system, while still respecting a power budget. We explore next the trade-off between

replacing full A15 by partial A15 cores - which consequently decreases performance -

and adding A7 cores to recover some of the performance and increase energy efficiency.

Table 6.4: Area and power of full and partial A15 and A7 processors.
A15 A7

Full PHISA Full PHISA

Area(mm2) 3.53 1.17 0.5 0.38

Power(W ) 0.69 0.59 0.05 0.046
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6.1.2.2 Full Core vs PHISA Multicore - Sharing a Power Budget

Let us consider that most IoT and mobile systems are battery-powered and that it

is necessary to limit their designs to a particular peak power supplied by their batteries.

Based on this reasoning, we establish a power budget for our system and use the extra

area and power provided by removing NEON pipelines from A15 cores to add full A7

cores in the processor. Through this methodology, we create heterogeneous multicore

configurations (in organization and ISA) that fit in the same area and power budgets of

a traditional single-core processor. To exemplify this design, we have built the config-

urations A15(0F1P)A7(2F0P) and A15(0F1P)A7(1F1P), which have approximately the

same peak power as the traditional single-core A15 processor (A15(1F0P), as shown in

table 6.2).

Experiment discussion: Figure 6.3 shows the performance and energy consump-

tion of the PHISA configurations A15(0F1P)A7(0F2P), A15(0F1P)A7(1F1P) and the tra-

ditional single-core A15(1F0P). PHISA multicores can significantly decrease energy con-

sumption while also improving performance, as long as enough full cores are provided.

A15(0F1P) A7(2F0P) reduces energy by 3.11x while improving performance by 1.94x

in scenario 1 (Image Processing) when compared to the baseline. Similar results are ob-

served in other scenarios. The performance increase is mainly attributed to the extra cores

present in the system, which can execute more workloads in parallel. As the workloads

are independent (apart from their pipelined behavior), the scheduler can easily distribute

the applications between cores, so more cores result in more performance. On the other

hand, energy is reduced by the use of much less power-hungry cores. Not only the partial

ISA A15 cores have reduced power when compared to the traditional design, but the full

A7 processors added to the system are also much more efficient. The exception is in sce-

nario 6 (Multitasking), which is also the scenario that uses NEON operations the most. In

this scenario, the pressure on the full cores (A7 cores) is much higher due to more usage

of NEON instructions, thus performance improvements are smaller.

About the cores usage: Figure 6.4 shows the usage of the cores in configuration

A15(0F1P) A7(2F0P) running scenario 6. In the figure, Core 0 is the partial A15 core,

and the others are the full A7. The figure shows how the big cores are idle (low step)

during a great part of the execution. The "solid bar" in Core0 are constant changes in the

core state, which happen when the core has no more tasks to run (idle), receives a task

(active), and the task fetches a NEON instruction and migrates again (idle). Such periods

of inactivity are usually of 160K cycles, which is the period of migration in the full cores.
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Figure 6.3: Evaluation PHISA multicores against a single-core baseline under a 700mW
power budget. Performance, Energy and EDP are normalized to the A15(1F0P) configu-
ration
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Figure 6.4: Core usage in configuration A15(0F1P)A7(2F0P) running scenario 6. High
step means the core is in usage, low step is idle. Solid bars are constant idle-active
changes. Dots represent migrations.
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This smaller load in the big cores greatly affects the energy consumption, as the A7 cores

have a peak power nearly 10x lower than the A15. Thus, although the maximum peak

power of the PHISA is the same as the baseline, the dynamic peak power of the system is

smaller because the workload is not fully concentrated in the big cores.

Introducing partial-ISA A7: Extrapolating further the reduction of power using

partial cores, configuration A15(0F1P)A7(1F1P) - also in Figure 6.3 - replaces a full A7

core with its partial version, leaving the configuration with only one full core. The energy
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consumption shows a small decrease in the scenarios, but the extra pressure in the only

full core in the system causes a high increase in the number of cycles, which in turn,

prevents higher energy reductions. In general, the trade-off between performance and

energy consumption - the EDP - is worse in configuration A15(0F1P)A7(1F1P), mainly

because of the performance of such a system. Scenarios 1 and 6 show a huge reduction

in energy, and, controversially, a high increase in the number of cycles. This is because

both of these scenarios include many applications that execute NEON instructions and

compete for the only full core, an A7 core. As most of the execution happens in this

A7, which is extremely energy efficient, the energy consumption falls, but the cycle count

increase. Other scenarios have higher NEON usage than scenario 1, however, in these,

the NEON operations are concentrated in fewer applications. For instance, in scenario 5

the NEON operations are only required by rsynth and FFT, which makes it simpler for the

scheduler to manage the A7 resources. In general, the power reduction from replacing a

full A7 core with a partial version is too small and does not show enough advantages, as

is the case of the bigger A15 cores.

In this experiment, we have seen that it is possible to create heterogeneous systems

with PHISA and have better energy consumption than power equivalent full processors.

Nonetheless, if the power budget is not considered, this is as expected from all heteroge-

neous processors. In the next section, we isolate the gains provided by the PHISA system

by comparing it with an equivalent full core processor.

6.1.2.3 PHISA vs Traditional Heterogeneous Systems (DynamIQ)

Experiment discussion: Heterogeneous processors naturally deliver better energy

efficiency than homogeneous multicores. To understand which gains are derived from the

usage of PHISA and which are simply from having additional cores, we now evaluate

configuration A15(1F0P)A7(2F0P), which represents a DynamIQ heterogeneous proces-

sor in Figure 6.5. Nonetheless, it is important to highlight that, in this configuration, the

power and area budgets are completely ignored. Configuration A15(1F0P)A7(2F0P)

is much bigger (more than twice the size) and has higher power (about 14%) than the

PHISA equivalents of the same core count. Thus, it is expected that the PHISA system

will be worse in performance in this scenario, as the DynamIQ has many more resources

to use. As can be seen in the Figure 6.5, the cycle count of the configurations with partial

cores is higher than those from the DynamIQ configuration, which was expected, as the

full core configuration does not require migrations to execute NEON instructions.
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On the other hand, energy consumption in the PHISA systems is usually lower,

showing that partial ISA cores are essential to decrease energy. In fact, the EDP of the

PHISA system is usually lower, showing that the partial cores can deliver better trade-

off between performance and energy consumption. Energy consumption in the PHISA

configurations is reduced due to the partial A15 cores. The original A15 processor has

a peak power 15% higher than its counterpart partial ISA version. Besides, since in the

PHISA configuration the A15 cannot execute NEON instructions, the scheduler must

migrate the workloads from the power-hungry A15s to the efficient A7s more frequently

than in the traditional system. Effectively, these migrations increase the usage of the A7

cores, leaving the A15 idler and reducing energy consumption.

The DynamIQ configuration, on the other hand, tends to use the A15 core more

often to increase performance, which comes at the price of energy. If the scheduler of

the DynamIQ were to be changed to optimize energy - and use the A7 cores at the same

ratio as PHISA - it would still consume more energy, as the full A15 core dissipates

more power than the partial-ISA version. This balance is clearly seen with configuration

A15(0F1P)A7(1F1P) in scenario 6, which frequently requires the NEON unit. There is

only one full A7 in the system, and it has to execute all the NEON requests from the

workloads. This pressure increases the time required to execute all applications, but also

reduces energy consumption, as the A7 is much more efficient than the A15.

6.1.2.4 Task Migration or NEON Emulation

About task migration: Scheduling in PHISA multicores is tied to the usage of

NEON instructions by a workload. To avoid constant migration, we use a scheduler policy

of prioritizing NEON applications to full cores: if a full core migrates an application and

Figure 6.5: Evaluation of PHISA multicores against a DynamIQ baseline. The baseline
has the same amount of cores as the PHISA configurations, thus there is no power/area
budget. Performance, Energy and EDP are normalized to the A15(1F0P)A7(2F0P) con-
figuration.
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there are two possible targets (same size of workload queue), being one full and the other

a partial core, it will schedule the application to the full core. This helps to avoid constant

back and forth migrations from the partial cores, as they will be assigned more integer

workloads. However, this does not completely remove this problem, as when the full

cores are all busy, and the partial ones are free, workloads will be assigned to the partial

cores, independently of the type of instruction they hold. These excessive migrations are

also the reason for the high increases in the cycle counts of PHISA systems observed in the

experiment of figure 6.5. To mitigate this problem and reduce the number of migrations,

we use the minimalist policy scheduler with emulation described in section 3.2.2. In this

policy, every time a NEON instruction is fetched by a partial core, the scheduler will

decide whether the instruction should be emulated in software or migrate to a capable

core: if the workload has already been executed for more than a certain threshold time in

that core, it migrates. Otherwise, it emulates the instruction. For the sake of compatibility

of the migration times, we have set this threshold to 160K cycles, the same time as the

original migration event for full cores.

6.1.2.5 The impact of emulation

Figure 6.6 shows the results for configurations A15(0F1E)A7(2F0P) and A15(0F1E)

A7(1F1E) compared to the DynamIQ-like configuration. In this processor, the ’E’ in the

name means a partial-ISA core that can emulate NEON instructions in software. As the

figure shows, the emulation strategy can amortize some of the impacts in cycle counts

caused by the partial cores. In some scenarios, such as 2, 4, and 5, the cycle count is even

smaller than the baseline, due to the balancing of workloads in the cores. The energy,

on the other hand, increases when compared to the non-emulation scenario, as now the

partial A15 cores are used more frequently. When one considers the EDP, the PHISA sys-

tems are better than the baseline in almost all cases. From our experiments, emulation can

potentially reduce the migration overhead from 10% to 0.5%. Nonetheless, it is important

to remember that, in this case, the original DynamIQ-like configuration is 2x bigger and

has 14% higher peak power than the PHISA configurations (table 6.2).

6.1.2.6 PHISA with emulation vs DynamIQ - Power Parity

When one considers a power budget parity between the DynamIQ and the PHISA

configurations, it is possible to add two extra A7 cores in the PHISA system. This parity is
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represented in configuration A15(0F1P)A7(4F0P) and a version with more partial cores,

but that allows emulation, A15(0F1E)A7(2F2E) in table 6.2.

Figure 6.7 shows the results for running the scenarios in these configurations. In

all the scenarios, the PHISA processors have better performance, energy, and, consequen-

tially, EDP than the completely full-ISA processor. The best performance improvement

is observed in scenario 4 (Health app) with 32% reduction in cycle count. This scenario

presents applications that contain high NEON usage (ECG), but that are very fast to exe-

cute, creating a perfect combination for the extra A7 cores.

The best energy consumption is observed in scenario 5 (Voice synthesis) - with

82% reduction -, which is composed of only two NEON applications that can execute in

the two full cores of the system, while the other applications are executed in the (more

energy efficient) partial-ISA cores. Emulation can reduce energy and execution time even

further in some cases, especially when the applications show very sparse use of NEON,

as it reduces the number of migrations in the entire system. However, in scenarios of

high, and concentrated, NEON usage (such as the Multitasking), the emulation cost can

be higher than the migration, increasing energy and execution time.

Furthermore, as shown in table 6.2, the PHISA configurations are still smaller, in

area, than the DynamIQ-like processor. Thus, the PHISA designs present an opportunity

to create systems that are smaller and more energy-efficient than the current industry

trend.

Figure 6.6: Evaluation of PHISA multicores allowing emulation against a DynamIQ base-
line. The baseline has the same amount of cores as the PHISA configurations, thus
there is no power/area budget. Performance, Energy and EDP are normalized to the
A15(1F0P)A7(2F0P) configuration
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Figure 6.7: Evaluation of PHISA multicores with and without emulation against a Dy-
namIQ baseline under a 800mW power budget. Performance, Energy and EDP are nor-
malized to the A15(1F0P)A7(2F0P) configuration.
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6.1.3 Analisys of PHISA on High NEON Usage

Our experiments have been using scenarios with some of the single-threaded work-

loads presented in Figure 1.1. Although the selected set of workloads covers a wide range

of applications from the embedded system and IoT market, one may question the behav-

ior of the system when exposed to higher amounts of NEON instructions. Considering

that the number of instructions from removed extensions will directly influence the be-

havior of a PHISA multicore, we now use an analytic model of hypothetical applications,

in which we can vary the number of issued NEON instructions, as shown in Figure 6.8.

The goal is to observe how the different PHISA configurations scale with the number of

NEON instructions compared to a traditional full-ISA system.

In this new environment, we assume configurations from the previous experi-

ments, in which the partial cores only execute integer operations, and the full cores

execute both integer and NEON operations. In the configuration A15(0F1E)A7(2F0P)

the partial-ISA A15 core can also emulate NEON instructions. As a best-case compar-

ison, we have selected configuration A15(1F0P)A7(2F0P), which represents a similar

processor, but with all full-ISA cores.

We assume there is a migration cost (12k for the A15 and 17K for the A7, the same

as in previous configurations) and that the number of migrations increases proportionally

to the ratio between NEON and integer instructions: the higher is the ratio, the higher are

chances of these instructions being interleaved, causing multiple migrations. This cost

rises until 50% of NEON instructions, and from 60% forward, the cost decreases as the

ratio inverts, and there is a lower chance of interleaved operations. For example, when the

application has 10% NEON instructions, there will be nine integer instructions for one

NEON instruction, which would cause one migration. For 50% NEON instructions, there
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Figure 6.8: Behaviour on high NEON usage PHISA multicore (with and without emula-
tion) and DynamIQ.

0

1000

2000

3000

4000

5000

6000

7000
E

D
P

 (
C

y
cl

e
s*

E
n

e
rg

y
)

% of NEON instructions

A15(0F1P)A7(2F0P) A15(0F1E)A7(2F0P) A15(1F0P)A7(2F0P)

Mibench 

Mediabench 

(~2%)

Spec CPUfp 

Polybench 

(~38%)

will be five integer instructions for each five NEON, which can be interleaved (1 int, 1

NEON, 1 int, 1 NEON...), and would cause five migrations. However, this scenario will

reverse if there are more NEON instructions than integers. We also assume that a NEON

instruction takes twice as many cycles to execute than an integer instruction in the A15

core and eight times more in the A7 core. These are average numbers estimated from

simulations.

Figure 6.8 shows the behavior of the EDP of the configurations as the number

of NEON instructions in the application increase. As the figure shows, configuration

A15(0F1P)A7(2F0P) has good scalability, which is tied to its types of cores. As the

number of NEON instruction increases, the partial A15 will become idle more often.

Although this becomes a burden for the processor performance, migrating the load to

the A7 processors greatly reduces the system dynamic peak power, which decreases the

energy consumption. This allows the PHISA configuration to stay very close in EDP to

its full-ISA counterpart. It is important to notice that the configuration with full cores has

more than twice the area and higher peak power than the PHISA version.

On the other hand, the same PHISA configuration but with emulation capacity

A15(0F1E)A7(2F0P) shows bad scalability in higher rates of NEON. When executing

few NEON instructions, the emulation has good performance, however as the NEON

instructions increase, the A15 processors will be assigned to emulate more of these in-

structions, which will incur in high-performance overhead. Furthermore, the A15 is a

power-hungry core, which will also increase consumption.

This experiment demonstrates that the PHISA multicore has potential even when
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the ratio of NEON instructions increases, as its expected EDP stays close to that of a full-

ISA system. In fact, the difference in EDP from the full-ISA processor and the PHISA

system in a modeled application with 90% of NEON instructions is of less than 10%.

For both applications with low NEON usage (such as in the Mediabench and Mibench

suites) and for high NEON usage applications (such as SPEC CPUfp and Polybench), the

PHISA system can have similar scalability as the traditional DynamIQ-like heterogeneous

processor. For low NEON usage, such as in Mibench applications, emulation is also a

good choice to balance workloads between cores.

6.1.4 Scheduling Policies Impact

In this subsection, we discuss the impact of using different optimization policies in

the PHISA scheduler. Details of the employed algorithms are presented in section 3.2.3.

6.1.4.1 Scheduling for Performance

As discussed in section 3.2.3, we have redesigned the naive scheduler to make

a best effort to optimize the system for different goals. In the performance policy, the

scheduler always gives priority to allocate tasks in the big OoO cores (A15), assuming that

this core will execute the application faster than the small in-order cores (A7). Although

this prioritization can improve system performance, it might not be the best strategy if

one expects higher energy efficiency.

In this experiment, we have simulated the same scenarios from table 6.1, com-

paring the the configurations from setup 2 (heterogeneous PHISA against single-core

baseline with same TDP) and setup 4 without emulation (heterogeneous PHISA against

traditional DynamIQ-like system with same area TDP). Our goal is to evaluate how the

performance policy affects the same scenarios already evaluated using the naive approach.

Figure 6.9 shows the performance, energy, and EDP of the PHISA configurations

using the performance policy normalized by the single-core A15 processor. The figure

shows that the PHISA configurations have better performance and energy consumption

in all the scenarios. When compared to the naive scheduler, the performance is improved

in every scenario for almost every configuration. The PHISA configurations with only

one full core show even further improvements when compared to the naive scheduler.

This is not only because of the policy itself but also because of the improvements in
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Figure 6.9: Evaluation PHISA multicores against a single-core baseline under a 700mW
power budget. Scheduling of tasks follows a performance optimization policy for all
configurations, including the baseline. Performance, Energy and EDP are normalized to
the A15(1F0P) configuration.
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Figure 6.10: Evaluation of PHISA multicores against a DynamIQ baseline under a
800mW power budget. Scheduling of tasks follows a performance optimization policy
for all configurations, including the baseline. Performance, Energy and EDP are normal-
ized to the A15(1F0P)A7(2F0P) configuration.
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task preemption and workload queues that this new scheduler introduces - as discussed in

section 3.2.3. Again, scenario 6 is the only one in which the PHISA systems show worse

performance than the baseline, and this is because the scenario was built with high NEON

usage in mind.

Figure 6.10 shows the performance, energy and EDP of the PHISA configurations

using the performance policy normalized by a traditional DynamIQ-like configuration.

Again, the PHISA configurations show both better performance and energy consumption

in all scenarios. What is mostly interesting in this evaluation is that the differences be-

tween the results in the PHISA systems (with one or two full cores) are very small (close

to 2% only).

Finally, figure 6.11 shows the scheduler behaviour of the traditional DynamIQ

configuration A15(1F0P)A7(2F0P) while executing the applications in scenario 1. Fig-

ure 6.12 shows the behaviour in the same scenario for the PHISA A15(0F2P)A7(4F0P)

configuration. As shown in the figure 6.12, the PHISA configuration has more cores to

execute the multiple applications, increasing the throughput of the scenario. Migrations

in the traditional DynamIQ happens only during preemption phases, while in the PHISA
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Figure 6.11: Scheduler migrations using the performance policy in the traditional Dy-
namIQ configuration A15(1F0P)A7(2F0P) during execution of scenario 1. Bars represent
each application being run over time in each processor core.
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the applications have to change cores whenever a non-implemented function is fetched in

a partial core. This is better observed in the final execution of the FFT application, as in

figure 6.11 it is completely run in the big full core, while in figure 6.12 it has to migrate

from the big partial to the little full several times.
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6.1.4.2 Scheduling for Energy

In this experiment, we prepare the same configurations and scenarios from sub-

section 6.1.4.1, but change the scheduler policy to optimize energy consumption. As

discussed in the previous section 3.2.3, this policy prioritizes the allocation of tasks in the

little cores, assuming that these will be more energy efficient. It is important to notice that

in these scenarios, all the configurations use the energy consumption optimization policy,

including the baseline.

Figure 6.13 shows the results for this experiments. The PHISA configurations

using this policy are able to reduce the energy consumption further when compared to the

results in subsection 6.1.4.1. Performance is also improved in relation to the baseline, as

the baseline is also running the energy policy.

Figure 6.14 shows the same experiment for the PHISA configuration with same

TDP as a traditional DynamIQ. Again, PHISA is able to further reduce the energy con-

sumption, performance, and - consequently - their trade-off in the form of EDP.

Finally, figures 6.15 and 6.16 show the scheduling behaviour of configurations

A15(1F0P)A7(2F0P) (DynamIQ) and A15(0F1P)A7(4F0P) (PHISA) using the energy

policy respectively. Once more, the PHISA configuration can deliver more throughput

Figure 6.12: Scheduler migrations using the performance policy in the PHISA configura-
tion A15(0F2P)A7(4F0P) during execution of scenario 1. Bars represent each application
being run over time in each processor core.
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Figure 6.13: Evaluation PHISA multicores against a single-core baseline under a 700mW
power budget. Scheduling of tasks follows a energy consumption optimization policy for
all configurations, including the baseline. Performance, Energy and EDP are normalized
to the A15(1F0P) configuration.
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than the DynamIQ. However, as the full little cores are prioritized due to their energy effi-

ciency, the number of migrations is reduced. This is seen in the final execution of the FFT

application, in which in both figures, it finishes executing in one of the full little cores (in

contrast with the performance policy).

6.1.5 Summarizing the results

In this section we have analyzed the PHISA multicores for single-threaded appli-

cations under various scenarios, configurations and scheduling policies. We have shown

that, in most scenarios, the strategy of removing resources from cores once destined to

ISA extensions to invest in more GPPs provides better performance and energy consump-

tion. The overhead of migrating workloads from partial- to full-ISA cores is usually

compensated by the improvements provided by the extra workload throughput. More-

over, a system that provides efficient scheduling policies can further improve the overall

performance and energy consumption of the processor.

Figure 6.14: Evaluation of PHISA multicores against a DynamIQ baseline under a
800mW power budget. Scheduling of tasks follows a energy consumption optimization
policy for all configurations, including the baseline Performance, Energy and EDP are
normalized to the A15(1F0P)A7(2F0P) configuration.
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Figure 6.15: Scheduler migrations using the energy policy in the traditional DynamIQ
configuration A15(1F0P)A7(2F0P) during execution of scenario 1. Bars represent each
application being run over time in each processor core.
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Figure 6.16: Scheduler migrations using the energy policy in the PHISA configuration
A15(0F2P)A7(4F0P) during execution of scenario 1. Bars represent each application
being run over time in each processor core.
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6.2 Evaluation of TUNEd PHISA with multi-threaded workloads

In this section, we evaluate the TUNEd PHISA, a system that combines the partial-

ISA cores strategy with an instruction offloader to improve the performance of multi-

threaded applications (see figure 6.17). We first present the methodology used to model

and simulate the system. Then, we discuss the benchmarks used and how we build scenar-

ios using them. Later, we present the results for all experiments, along with discussions

for each scenario.

6.2.1 Evaluation Methodology

Modeling and Simulation Parameters: To extract area and power data, we also

use McPAT in this evaluation. As mentioned in chapter 5, McPAT allows for configura-

tions without FP and SIMD units (by simply setting the FP related tags in the template

to zero), which also triggers the exclusion of the FP instruction window, the FP Register

File (RF) and the FP register renaming structures. However, in the TUNE system, these

structures are still needed for decoding and offloading instructions, thus we have mod-

ified McPAT to include such components in the model. To extract the performance of

our system, we have used the gem5 simulator (BINKERT et al., 2011) in Full System

(FS) mode. The FS mode emulates an entire platform, including the Operating System

(OS). Thus, the simulations include all the typical overheads of parallel programming a

real system would have. The offloader was also modeled to introduce the extra latency in

Figure 6.17: Example of a TUNEd PHISA configuration.
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the execution of SIMD and FP instructions. In our experiments, we have considered an

extra ten cycles of latency for each SIMD and FP instruction, which is approximately the

same latency of the L2 cache. We model based in this latency as the L2 cache is also a

shared resource between cores that, in the ARM processors, transfer the same amount of

data per access (64 bytes) as the offloader (4x128bits).

Configurations: To evaluate a TUNEd PHISA system, we take as baseline a

single-core, full-ISA, A15 processor. Then, we use an Asymmetric Multicore (AMC)

traditionally employed to accelerate parallel applications, i.e., a processor with many in-

order cores and one single OoO core. This is a configuration with one full-ISA A15 core

along with four full-ISA A7 cores. To create our TUNEd PHISA configuration optimized

for parallel applications, we remove the NEON units from the OoO core responsible for

the serial regions (A15) and add four extra in-order A7 cores in their same area. Thus, the

TUNEd PHISA configuration is composed of one partial-ISA A15 core along with eight

full-ISA A7 cores.

Workloads: We have evaluated the TUNE mechanism using several benchmarks

of different characteristics (table 6.5). The set includes applications of both high and

medium ratios of parallelism and SIMD/FP usage. Thus, we can analyze the system in

different scenarios. To compile our workloads, we have used the GCC arm cross compiler

arm-linux-gnueabihf-gcc version 7.3.0 with -O3 optimization flag, which includes flags

to generate vectorized and floating-point NEON instructions.

6.2.2 Performance results

We start our analysis with table 6.6, which shows two sets of results that help to

understand the behavior of TUNE. The column
SingleA15

SingleA7
shows how faster the A15 is

compared to the A7 for each application. These results were obtained by simulating the

single-threaded version of each application in both core types. Results show that the A7

slowdown varies from low 1.36x (gemm) to huge 5.70x (gramschmidt). Moreover, the col-

umn
8CoreA7

SingleA7
shows the speedup achieved by an 8-core A7 processor when compared

to a single A7, which represents how much performance the application can extract from

parallel execution (8x means perfect parallel exploitation). Results show, as expected, that

applications with smaller PR (from Table 6.5), such as correlation and covariance, can

achieve lower parallel speedups. Nonetheless, some applications that previously showed

high coverage of the PR, such as bicg, which region of interest is virtually 100% covered
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Table 6.5: Application region of interest characterization in terms of parallel region size
and SIMD/FP ratio in the serial region.

Benchmark Parallel Ratio Serial SIMD/FP Ratio

bicg 100.00% 0.00%

fdtd-apml 99.99% 0.00%

convolution-2d 99.99% 0.00%

gemm 99.97% 0.06%

symm 99.95% 0.00%

syrk 99.90% 0.04%

syr2k 99.89% 0.04%

atax 99.73% 0.06%

2mm 99.27% 1.03%

mvt 98.82% 1.11%

gesummv 98.76% 0.46%

3mm 98.68% 1.66%

doitgen 98.41% 0.83%

trmm 82.25% 6.74%

correlation 81.95% 10.10%

gramschmidt 78.70% 11.72%

covariance 77.40% 17.33%

lu 68.71% 0.09%

by the PR (Table 6.5), do not present the same expected speedup (only 4.86x). This is

because many dynamic factors can influence the execution of the parallel region, such as

shared memory accesses, data-synchronization, and bandwidth saturation (LORENZON

et al., 2019). Table 6.6 also shows the overhead data for the simulation of a TUNE system

in column Offloading Overhead. This data is obtained by measuring the cycles taken to

execute each application serial region with and without using the offloading strategy. The

data shows that the overhead is usually low, and is only significant in applications that

have smaller parallel regions and larger amounts of SIMD/FP in their serial parts (Table

6.5).

Figure 6.18 shows the results of the different applications using the traditional

AMC (A15 + 4 A7) and TUNEd PHISA (A15 (No NEON) + 8 A7) configurations. The

figure shows both the speedups (left Y-Axis, represented by bars) of each configuration
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Table 6.6: Simulated application characteristics for Polybench applications. Columns
show, in order: How many times a single A15 is faster than a single A7 (A7 slowdown);
The parallel speedup of 8 A7 cores over a single A7; The overhead caused by offloading
instructions in the TUNEd PHISA system.

Benchmark
SingleA15

SingleA7

8CoreA7

SingleA7

Offloading
Overhead

correlation 1.51x 3.91x 14%

covariance 1.70x 3.38x 26%

2mm 5.04x 6.35x 2%

3mm 4.45x 6.38x 3%

atax 2.04x 5.58x 0%

bicg 2.41x 4.86x 0%

cholesky 1.51x 5.39x 1%

doitgen 1.79x 7.37x 1%

gemm 1.36x 6.36x 0%

gesummv 1.73x 6.50x 1%

mvt 1.88x 6.31x 1%

symm 4.07x 6.31x 0%

syr2k 3.11x 7.44x 0%

syrk 2.02x 7.44x 0%

trmm 1.99x 5.61x 12%

gramschmidt 5.70x 3.68x 15%

lu 1.84x 3.02x 0%

convolution-2d 1.87x 7.80x 0%

Fdtd-apml 2.04x 7.62x 0%

normalized by a single A15 core as a baseline and the PR and SRF parameters of each

application (right Y-Axis, represented by the background areas). It is important to notice

that we use the single-core A15 as a baseline to show the speedups of using both heteroge-

neous multicore systems. However, the parity of area exists only between the traditional

configuration and the TUNEd PHISA system.

Some applications have a considerable amount of NEON instructions in their

longer serial regions (e.g. correlation, covariance and gramschmidt have 10-17%, in

table 6.5). These applications also have a smaller parallel speedup (as seen in table 6.6),

which results in the worst-case scenarios for the TUNE configuration, as more instruc-

tions will require offloading and the extra A7 cores will not be optimally used. The lack

of parallelism in these applications will affect both the speedup of the traditional system

and TUNE. Still, with the extra cores, TUNE is able to extract more performance from the
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Figure 6.18: Speedup according to the developed system simulation. Bars are the speedup
over a single A15 core and areas are the % of PR and SRF of each application.
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application. This behavior is more apparent when we analyze the application lu, which

has the same long serial regions, but almost no NEON operations, as seen in table 6.5. In

this case, with no offloading overheads to hold TUNE back, our system is nearly 2x faster

than the traditional heterogeneous processor. The results show that in all these four appli-

cations, the TUNE system is faster than the traditional one, indicating that the extra cores

can compensate for the slowdown of offloading instructions, even when the application is

not highly parallel.

The application gramschmidt has similar parallel characteristics, however, both

configurations show a slowdown in performance when compared to the single A15, due

to the huge performance loss of the A7 cores (5.70x in table 6.6) being larger than the

parallel speedup. One possible solution for the traditional configuration at this scenario

would be to migrate all work to the A15 core, leaving the A7 cores idle and maintaining

the higher baseline performance. The TUNE system could also adopt this policy, but

in this case, it would need to offload every NEON instruction of the application to the

A7 cores, adding a considerable overhead. We have simulated this particular scenario,

running the single-threaded application in the A15 core with TUNE, and found that there

is an increase in 30% of the execution time when compared to a full A15 core. This

is virtually the same slowdown we have observed in the multithreaded execution of this

application in figure 6.18.

Applications such as 2mm, 3mm and symm, have high parallel speedup (about 6x

in table 6.6) and small ratios of NEON instructions in the serial region (about 1% in table

6.5). However, the slowdown of executing in the A7 cores is huge(4-5x in table 6.6), at the

point that executing these applications in the traditional full core configuration is actually

slower than in a single A15 core. This is seen in figure 6.18 as these three applications
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are under the normalized performance of the baseline (constant black line). The TUNE

system, on the other hand, can overcome the A7 slowdown where the traditional system

could not, by exploiting more parallelism with the extra cores. In the case of the 2mm,

the traditional system performance is of 0.69x of a single A15, while the TUNE system

achieves 1.27x speedup, as seen in figure 6.18.

The applications that benefit the most from the extra cores are those that show

smaller A7 slowdown, a lower ratio of NEON instructions in the serial region, and higher

parallel speedups, such as doitgen, gemm, and convolution-2d. These applications show

high speedups in the traditional configuration of one A15 core and four A7 cores (up to

2.68x), but even higher in the TUNE configuration (up to 4.67x). As TUNE can provide

more cores in the same area, it delivers more thread-level parallelism to these applications,

without suffering from the performance loss of offloading instructions.

Finally, when one considers the geometric mean of all applications, the traditional

system shows an average speedup of 1.43x, while the TUNE system is 2.52x faster than

the baseline. Thus, TUNE is 1.76x faster than the traditional heterogeneous system. These

average speedups are very close to the ones reported by our model in section 4.3 of the

TUNE chapter. This suggests that the model can be used as a guideline to estimate the

performance of the system in a diverse application environment.

6.2.3 Energy consumption results

Figure 6.19 shows the energy savings for both the traditional configuration and

the system with TUNE normalized to a single A15 core. The bars show that the energy

consumption in this scenario is proportional to the execution time of each application, as

benchmarks with higher degrees of acceleration also show higher energy savings. This re-

sults in better energy savings for the TUNE system in almost all applications. Indeed, the

only application in which the traditional configuration has lower energy consumption than

the TUNE system is trmm, which is also the application with a smaller speedup difference

between both systems. gramschmidt is the only application in which the TUNE system

has the same energy consumption as the baseline (single A15), while the traditional con-

figuration consumes more energy, which is directly caused by the bad performance of this

configuration.

However, figure 6.19 also shows that energy savings in the TUNE system against

the traditional configuration are not as expressive as the speedup in figure 6.18. This is
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Figure 6.19: Energy savings for the traditional system and TUNE normalized by the
energy the single A15 core. Bars below 1 means that the energy consumption was lower
than the baseline.
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because power dissipation can be broken into two components: static and dynamic power.

While the dynamic power is related to the circuit activity, the static power is associated

with the current leakage and is dissipated whenever the circuity is powered on. As the

TUNE system doubles the amount of A7 cores, it also doubles the amount of static power

dissipated during the parallel region execution. Considering the energy for offloading, we

assume that the NEON units in the A7 have their own power gating domain (as discussed

in section 4.2) that allows turning this unit on and off individually, and adding negligible

overhead when compared to the original full A15 core. On average, the TUNE system is

still capable of delivering energy consumption 12.4% smaller than the traditional AMC

system.

6.2.4 Summarizing the results

In this section, we have analyzed the TUNEd PHISA system running parallel ap-

plications. We show that maintain binary compatibility through instruction offloading can

be an advantageous strategy for these applications. As in the characteristic of parallel

applications, SIMD and FP instructions tend to be executed mostly in parallel regions,

which reduces the overhead of offloading instructions. By using the extra cores provided

by PHISA area reduction, it is also possible to further exploit TLP in these applications,

increasing overall performance and decreasing energy consumption. Even in applications

high longer serial regions, the overhead of offloading instructions is still smaller than

the improvements provided by the extra cores, supporting the advantages of the TUNEd
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PHISA system.

6.3 PHISA and TUNE vs the State-of-the-art

In the previous sections, we have analyzed the performance and energy consump-

tion of PHISA, compared to baseline models that represent common processor configu-

rations. In this section, we evaluate this thesis approaches against real processor models

and other state-of-the-art proposed solutions.

6.3.1 PHISA vs State-of-the-art

In chapter 2, we have discussed different approaches to heterogeneous proces-

sors, that compare to the PHISA system approach. An example is the ARM big.LITTLE

technology (ARM, 2016), which uses a mix of big OoO cores and little in-order cores

to achieve energy-efficiency, just like PHISA. Differently from PHISA, the big.LITTLE

strategy does not exploit functional heterogeneity, replicating all instructions in all cores

of the processor. Another example is the reduced-ISA system proposed by Lee et al. (LEE

et al., 2017). In this solution, instead of having a mix of big and little cores, the system

provides full- and reduced-ISA cores with the same performance, apart that the reduced-

ISA do not implement all instructions. Differently from PHISA, this approach assumes

that either one of the cores (full or reduced) can be used at a time, and no performance

asymmetry exists on the system.

To evaluate PHISA against these related solutions, we have faithfully modeled

both the big.LITTLE system and the reduce-ISA approach. To give a competitive boost

for the reduced-ISA, we allow it to run workloads on both the full and reduced cores

concurrently. All three systems are designed to have the same area budget (a power budget

against the reduced-ISA system would result in big.LITTLE and PHISA systems with

Table 6.7: PHISA vs State-of-the-art configurations.

Configuration
A7 A15

Area (mm2)
Full Partial Full Partial

big.LITTLE 2 0 1 0 4.55

SOA(Lee2017) 0 0 1 1 4.70

PHISA 6 0 0 1 4.22
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many more cores). Table 6.7 shows the configurations an the total area of each of the

processors. All systems have been submitted to the same scenarios described by table 6.1,

with both the performance and energy consumption optimization policies from section

3.2.3.

Figure 6.20 shows the results for all scenarios running in the three configurations

using a performance optimization policy. The bars represent the number of cycles, energy

consumption and EDP, all normalized by the big.LITTLE configuration. Therefore, bars

above one represent worse results (more cycles to execute, more energy spent and higher

EDP), while bars bellow one represent better results.

The figure 6.20 shows that the state-of-the-art approach proposed by (LEE et

al., 2017) can be actually worse in performance, energy consumption and EDP than a

big.LITTLE processor of same area. When this approach was proposed, the authors de-

bated that the reduce-ISA core, coupled with a full core, could present better energy

consumption than a single full core. Therefore, differently from our baseline, the authors

were not considering an area budget to compare processors, but the amount of cores that

can be active in the system concurrently. The big.LITTLE processor has more cores (3

against 2), that are actually more energy efficient (full little cores are more efficient than

big reduced-ISA) than the reduced cores, providing better performance and energy con-

sumption. The only scenario in which the SOA have similar performance to the baseline

is in scenario 6. This is a scenario in which the little cores have a much lower perfor-

mance than the big cores, thus running the workloads on more of them do not provide

higher throughput.

On the other hand, figure 6.20 shows that PHISA can deliver better performance,

Figure 6.20: Evaluation of PHISA multicores and state-of-the-art (LEE et al., 2017)
against a big.LITTLE baseline under a 4.7mm2 area budget. Scheduling of tasks fol-
lows a performance optimization policy for all configurations, including the baseline.
Performance, Energy and EDP are normalized to the big.LITTLE configuration.
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energy consumption and EDP than both state-of-the-art approaches in almost every sce-

nario. PHISA achieves better performance by the extra cores that the system can hold in

the same area, along with the more energy-efficient OoO core (partial-ISA A15) present

in this system. Scenario 6 is the only one in which PHISA shows worse performance than

the compared state-of-the-art, as the high NEON usage and differences in performance of

NEON execution in the A15 vs the A7 are more evident.

Figure 6.21 shows the results for the three configurations, but running under a

energy consumption optimization policy. In this policy, small cores are given priority

during the allocation phase over the big cores (to potentially reduce energy consumption).

Nonetheless, the State-of-the-art (SOA) configuration does not have small cores, and will

give priority to its reduced-ISA core. This is the reason why the performance of the SOA

in this policy gets closer to the performance of the baseline. On the other hand, the lack

of small cores directly affects the energy consumption of the SOA system, being much

worse than the baseline. In scenario 6, this becomes extremely evident, as the energy

consumption skyrockets. As the baseline executes most of its workloads in its small cores

(due to policy), but the SOA can only execute in big cores, heavily increasing its energy

consumption. Besides the poor results of the SOA, PHISA can still show better (or at least

the same) performance and energy consumption when compared to the baseline, thanks

to its ability to use both the advantages of the big.LITTLE system and the SOA.

Figure 6.21: Evaluation of PHISA multicores and state-of-the-art (LEE et al., 2017)
against a big.LITTLE baseline under a 4.7mm2 area budget. Scheduling of tasks follows
a energy consumption optimization policy for all configurations, including the baseline.
Performance, Energy and EDP are normalized to the big.LITTLE configuration.
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6.3.2 TUNEd PHISA vs State-of-the-art

The TUNE architecture approach is based in the idea that specific instruction set

extensions do not have to be implemented in every core. Furthermore, some of this in-

structions, such as FP and SIMD can be offloaded from partial-ISA cores to one (or mul-

tiple) full-ISA cores. We have discussed in chapter 2 other processors that also share or

offload instructions to external processing units. One of this works is the Niagara pro-

cessors (UltraSparc T1 (SUN, 2019)), which is composed of 8 simple cores without FP

capabilities and a single FP unit loosely coupled with them. In this section, we com-

pare a faithfully modeled Niagara-like processor with a TUNEd PHISA system executing

multi-threaded applications.

To model the Niagara-like processor, we use 8 in-order cores (modeled as A7

cores) that have increased latency to execute FP and SIMD operations. As all the 8 Ni-

agara cores have to access a single FPU through a crossbar, we model this latency as 20

cycles, which is double the latency of the TUNE access. TUNE is tightly coupled and is

designed to use dedicated wiring to connect the partial-ISA core to the units in the full

cores. Furthermore, while in the TUNEd PHISA one partial A15 core can use up to 4

NEON units in the A7s, in the Niagara 8 cores have to share a single FP unit, which has

a huge chance of causing resource contentions. Therefore, we believe that considering

double the latency for the Niagara to access the FPU (compared to TUNE) is a fair as-

sumption. Nonetheless, it is important to notice that the Niagara system works with a pool

of threads, and that a new thread can be assigned to an integer core that has requested an

FP operation. Unfortunately, our simulations can not model this behavior.

We compare this Niagara-like processor of 8 cores against TUNEd PHISA proces-

sor of same area budget. The Niagara area is modeled as 7 A7 cores without NEON units

plus 1 A7 core with NEON unit, while the TUNEd PHISA is 1 A15 core without NEON

along with 4 A7 cores with NEON. Table 6.8 shows the configurations of these systems.

Figure 6.22 shows the results for performance of both Niagara and TUNEd PHISA

Table 6.8: TUNEd PHISA vs Niagara configurations.

Configuration
A7 A15

Area (mm2)
Full Partial Full Partial

Baseline 0 0 1 0 3.52

Niagara 1 7 0 0 3.20

TUNEd PHISA 4 0 0 1 3.20
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Figure 6.22: Speedup for the state-of-the-art Niagara system and TUNE normalized. Bars
are the speedup over a single A15 core and areas are the % of PR and SRF of each
application.
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normalized by the single A15 processor. While the Niagara system can potentially exploit

more TLP because of its extra cores, it also pays a heavy latency price in every FP and

SIMD instruction executed. On the other hand, the TUNEd PHISA can still exploit TLP,

but only suffers overhead in these instructions during serial regions, when they are only

rarely used. The result is that the TUNEd PHISA has better performance than Niagara

in 14 of the 19 tested benchmarks. The scenarios in which the Niagara performs better

than TUNEd PHISA are either when the application has big parallel regions with low FP

usage (such as in 3mm and mvt) or when the serial region is too long and uses many FP

operations (which causes high overhead in TUNE, such as in gramschmidt). In average,

the TUNEd PHISA is still 1.39x faster than the Niagara system.

Figure 6.23 shows the energy savings of both the Niagara and TUNEd PHISA,

normalized by the single A15 core. The TUNEd PHISA system shows better energy

savings than the Niagara in 15 of the 19 benchmarks, showing that using a big core to

accelerate the serial regions does not compromise the energy efficiency of the processor.

In average, the energy savings of the TUNEd PHISA over Niagara are of 23%.

6.3.3 Summarizing the results

In this section, we have analyzed both the PHISA system for single-threaded ap-

plications and the TUNEd PHISA for multi-threaded applications against state-of-the-art
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Figure 6.23: Energy savings for the state-of-the-art Niagara system and TUNE normalized
by the energy the single A15 core. Bars below 1 means that the energy consumption was
lower than the baseline.
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systems. We have shown the advantages of our system designs and how they can de-

liver better performance and energy consumption under the same constraints. The PHISA

system shows better performance and energy consumption than the big.LITTLE (ARM,

2016) and the reduced-ISA (LEE et al., 2017), as it can pack more efficient cores in the

same area. On the other hand, the TUNEd PHISA shows better overall performance and

energy consumption than the Niagara processor (SUN, 2019), as it can provide more sup-

port to ISA extensions, reducing resource contention.
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7 CONCLUSIONS

In this section, we wrap-up all the conclusions provided by the systems developed

in this thesis. Both our PHISA and TUNEd PHISA systems leverage the extra resources

provided by the use of partial-ISA in some cores of a processor. However, each of them

tackles the problem of maintaining binary compatibility using different but complemen-

tary strategies. Therefore, we split our conclusions not only focusing on the developed

systems but also in their strategies for achieving transparent ISA compatibility. We then

finish the section discussing some of the open challenges that this thesis introduces for

future research.

7.1 On PHISA - binary support through migration

The PHISA multicores is a processor composed of cores that implement the full

architectural ISA and other cores that implement such ISA partially. The partial cores

are envisioned as cores that can deliver the same performance as the full cores, but are

not able to execute a determined set of instructions. Therefore, to maintain the binary

compatibility between all the cores in the processor, the system must be aware that cores

can fail to execute some instructions - without this recurring into a kill signal - and must

be able to migrate the faulting workload to cores that can execute these instructions. We

have seen that this scheduling process of workloads is an essential part of the PHISA

system. Depending on the decisions of the scheduler, the overhead of migrating threads

can be highly reduced.

One of the strategies that we have explored to reduce migration overhead is the

emulation of non-supported instructions through software. Emulation proved to be effi-

cient in reducing the number of re-allocations, although it could introduce new overheads

in the system. Naturally, emulation through software has a high cost in performance when

compared to execution in hardware. Therefore, it should only be used in scenarios where

the number of faulting instructions is small or highly scattered throughout the code. The

system must be able to analyze the trade-off between the emulation cost and the migration

cost and determine which one is lower to use emulation efficiently.

Further observations on the scheduler showed that by supporting binary compati-

bility through migration, it is possible to optimize the system for different non-functional

requirements. In our experiments, we showed that scheduler policies could be introduced



123

in our system without a negative impact on overall performance. In other words, we can

still optimize a PHISA multicores for - for instance - performance or energy consumption

and still be better than traditional solutions optimized by the same requirements.

On another point, the instructions removed from partial-ISA cores must be in a set

that is both normally not used by general applications, and that introduces a high impact

in either power or area in the processor. This is essential not only to reduce the amount

of migrations required in the system but also to create power and area efficient cores. If a

common set of instructions is removed, or a set that uses few resources in the core (e.g.,

the DSP instructions in an ARM core), the partial implementation would hardly provide

any benefits. Furthermore, as the PHISA system uses the extra area to increase the core

count of the system, it becomes even more important that the impact in the area of the

instruction set removed should be high.

In the current ISAs state, the sets of instructions that better fit these characteristics

are the FP and SIMD (or vector) instructions. However, trends in applications suggest

that other high resource-demanding - and highly specialized - instructions should appear

as common options in future ISAs, such as instructions for Neural Network (NN) and

Artificial Intelligence (AI) processing.

Furthermore, the same instruction extension can have a different impact on differ-

ent processor organizations. This depends on various factors, such as the performance of

the operation in the processor or its throughput capacity. For instance, the impact of the

NEON instructions in the A15 core is proportionally much higher than in the A7 core.

That is because the A15 core implements two-issue lanes of NEON (against one in the

A7) and a twice wider SIMD operation (128-bits against 64-bits). These differences can

become even more evident in the upcoming SVE instructions, which allow vector opera-

tions of up to 2048-bits wide operands. With that being said, we have seen that some cores

have characteristics that make them better targets for removing support of instructions.

Overall, supporting compatibility through migration has shown an interesting level

of flexibility and good efficiency for single-threaded workloads. As in this type of appli-

cations there are no direct dependencies1, the overhead of preempting applications is low.

1Some of our scenarios were modeled to execute in pipeline, which introduces some degree of depen-
dency
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7.2 On TUNEd PHISA - binary support through offloading

We argue that we can build a PHISA system just like traditional AMCs for parallel

applications, where a single high-performance core is used to accelerate serial regions,

and many small cores are used to execute parallel regions. As parallel regions (hopefully)

represent larger sections of the application code, we use PHISA to create a partial-ISA

big core, and with the extra area, we introduce more small cores for these regions.

Another characteristic of the parallel applications that we observed is that opera-

tions of FP and SIMD type are usually executed in the parallel regions. This also motivates

removing these instructions from the big core, as they are only sporadically required in

serial regions. However, we also discussed how the migration strategy could not be suit-

able for every type of parallel applications, as allocating threads to different cores could

create unbalanced threads that would lead to delayed synchronization/join points.

Therefore, to use PHISA to optimize parallel applications, we have developed

TUNE, which tackles the compatibility challenge differently from the traditional PHISA.

TUNE is an instruction offloader that is implemented in place of the traditional FP/SIMD

instructions. It is responsible for splitting the SIMD operations and forwarding them

directly to the SIMD units of the small (full) cores of the system.

This solution proved efficient in the real implementation using ARM A15 and A7

cores. As one NEON unit of the A15 core has the same area of 4 A7 cores, we can

highly increase the number of cores used to accelerate the parallel regions. Also, each

lane of NEON in the A15 core works with operands of 128-bits, while the A7 works

with operands of 64-bits. Therefore, it is possible to split each vector instruction of the

A15 lane in two and directly assign (without any further transformation) these to two A7

cores. As the A15 cores have two NEON lanes, all the four added A7 cores could be used

to offload the NEON instructions from the A15 core.

Another advantage of the TUNEd PHISA is that all modifications are made di-

rectly into the hardware. The OS only needs to implement a standard solution for AMCs

of this type - i.e., that can identify serial regions to run in the big core and parallel regions

to run in the small cores. Therefore, there is no need for a novel scheduler with faulting

support as the migration strategy required.

The TUNEd PHISA showed good improvements when compared to other AMC,

as it can deliver more cores in the same area. Even when compared to a many-core

processor in the state-of-the-art that also uses instruction offloading, the TUNEd PHISA
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showed average better performance. This is because, differently from other approaches

that share a single FP/SIMD unit between many cores, our solution actually provides

many of these units to a single core. The results are that with TUNE, there is no resource

contention and that the instructions can be split into many units, which helps to reduce

the overhead in offloading the instruction.

7.3 Limitations

We would like to acknowledge some limitations that come from the results of this

thesis and that should be kept in mind in any future works related to it. First, all of our

evaluation has been based in models and simulations. Although we have always tried

to adopt the most commonly used tools in the field, and also striven for validating their

data with public information, the results can not be taken as final numbers. Second, mix-

ing results from different tools (McPAT, gem5, PHISA Simulator) will mostly certainly

introduce inconsistencies in the final results. We rely in the high gains that we observe

in most configurations and scenarios (in both PHISA and glsTUNEd PHISA) to assume

that, when this inconsistencies are introduced to a real world system, it will still show

improvements. Third and last, our analytical models have not been statistically analyzed.

Although they show an average consistency with the simulated results, they could be tied

only to the specific applications used in the analysis.

7.4 Open Challenges

In this section, we briefly describe some of the remaining open challenges intro-

duced by this thesis, and that can be addressed in future works. The goal is not to provide

solutions, but to discuss these problems in a high-level approach.

Dynamic analysis of emulation VS migration cost: In the current PHISA imple-

mentation, the scheduler can signal a faulting instruction to be emulated in a partial-ISA

core. This is quite useful when the faulting instruction is not followed by many extra

unsupported operations, as it avoids unnecessary workload migration. However, this de-

cision is statically made: the application will always emulate the sequence of instructions

for a fixed amount of cycles. If the unsupported instructions are still being issued after that

time, the scheduler will migrate the workload to a full core. When this scenario happens,
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the system is actually paying both the cost of emulating the instructions and migrating

the workload, when the best decision would have been to migrate the workload directly

(avoiding the emulation cost).

Therefore, one open challenge is to create a dynamic system, which is able to

predict if the best decision is to migrate a workload or to emulate a faulting instruction.

This could be done by profiling the application (either offline or during runtime) and

learning the behaviors of its phases. Nonetheless, this profile could introduce overheads

by itself, which should be considered by the researchers.

New applications and instruction mix: Although this thesis has striven for a

varied and representative set of applications, newer benchmarks with a higher instruction

mix could be analyzed. Benchmarks or real applications that stress more SIMD and FP

operations, or even trending applications that do not use this instructions (which would

run great in the PHISA system) could be added to the list. This would be interesting to

analyze and verify if the current application set is not biased for our proposed system.

Impact in single-threaded applications using TUNE: The TUNEd PHISA AMC

was explicitly designed in this work to accelerate parallel applications. Although this sys-

tem should be able to run single-threaded applications, it definitely would experience

performance losses on them. This is because the processor would either have to execute

the applications in the full-ISA small (and low performance) cores, or in the partial-ISA

big cores, which have an extra overhead for executing FP/SIMD operations.

One interesting research possibility would be to find a solution to mask the of-

floading overhead in the big cores of a TUNEd PHISA. This would be interesting not

only for the execution of the serial regions in parallel applications but also to improve

the execution of single-thread applications. The current TUNEd PHISA design keeps all

SIMD related components in the big core, to reduce the complexity of the offloading.

This includes data in the caches and register files. If this data was directly available in

the A7 cores, some offloading costs could be amortized. For instance, if the FP register

file of the A15 are the register file from the A7 themselves, the amount of data transferred

would be smaller.

Another possibility would be to improve vector operations performance by using

length agnostic instructions such as SVE. A designer could create a morphcore-like ar-

chitecture that can fuse or split NEON units from different A7 cores. This could also be

a dynamic operation, which could provide varying support for wider vectors VS many

cores support.
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Impact of the latency: This thesis has assumed a fixed latency of 10 cycles to

execute the offloaded instructions. However, we did not analyzed the real impact in this

extra latency. How much can this latency increase and TUNE still be a viable option for

AMCs?

Allowing the use of big cores in the parallel region: In this work we have

restricted the usage of big cores in TUNE to accelerate serial regions. However, this

extra core could be used to run the parallel region too, increasing the TLP of the system.

This would be very interesting in applications that have unbalanced threads, in which

higher demanding threads can take too long to execute and become a bottle neck of the

application. These threads could be accelerated in the big core too. A future work could

analyze this scenario, but it would involve the development of a scheduler capable of

dealing with this type of threads and also the offloading problem: during parallel regions,

the A7s are busy. How to offload operation to them in this situation?

Merging PHISA and TUNEd PHISA designs: In this work, PHISA for single-

threaded workloads and TUNEd PHISA for parallel applications were presented as dif-

ferent designs. However, they are actually complementary solutions. A TUNEd PHISA

is a still a PHISA system, but with the TUNE offloader.

It is possible to use both the migration and offloading strategies in the PHISA sys-

tem. However, some extra modifications would be required. In the TUNEd PHISA, the

partial cores still implement the decoding logic for the unsupported operations. Therefore,

an extra verification would be necessary for the core to throw an exception for the sched-

uler if it is running a single-thread application. Furthermore, a big core might require to

offload some serial region (of a parallel application) instruction while the small cores are

being used to execute other single-threaded workloads. In this case, either a scheduling

decision to halt these workloads should be issued, or some hardware interruption required

so that the NEON units in the small cores are made available for offloading.
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8 PUBLICATIONS

The results of this thesis have been published in three different articles:

• Souza, J. D. and Beck, A. C. (2019). Trimming the ISA to Optimize Area and

EDP in Heterogeneous CMPs. 2019 31st International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), 17–24. (SOUZA;

FILHO, 2019) - This publication introduced the PHISA system for single-threaded

workloads. It contains most of the results presented in section 6.1. This article has

received the best paper award of the conference.

• Souza, J. D.; Manivannan, M.; Pericàs, M. and Beck, A. C. S. (2020). Enhanc-

ing Multithreaded Performance of Asymmetric Multicoreswith SIMD Offloading.

In:23rd Design, Automation and Test in Europe Conference (DATE’20) (SOUZA et

al., 2020a) - The article introduces the TUNEd PHISA and most of the performance

results showed in section 6.2.2.

• Souza, J. D.; Manivannan, M.; Pericàs, M. and Beck, A. C. S. (2020). Enhancing

Thread-Level Parallelism in Asymmetric Multicoresusing Transparent Instruction

Offloading. In:57th ACM/EDAC/IEEE DesignAutomation Conference (DAC’20)

(SOUZA et al., 2020b)1 - This publication presents all the concepts of the TUNEd

PHISA for multi-threaded applications. It includes the performance model (section

4.3), and the results from the simulated environments, both for performance and

energy (section 6.2.2).

As an indirect result of (but related to) this thesis, the Ph.D. has collaborated in

the following works:

• Becker, P. H. E.; Souza, J. D.; Beck, A. C. S. (2019). Increasing MPSoCs de-

signspace with partial-ISA processors. In:2019 26th IEEE International Confer-

enceon Electronics, Circuits and Systems (ICECS). (BECKER; SOUZA; BECK,

2019) - This publication evaluates a scenario in which ISA extensions give space to

different accelerators in an MPSoC.

• Becker, P. H. E.; Souza, J. D.; Beck, A. C. S. (2020) Tuning the ISA for increased

heterogeneous computation in MPSoCs. In:23rd Design, Automation and Test in

Europe Conference (DATE20). (BECKER; SOUZA; BECK, 2020) - The article

extends the previous work by analyzing different scheduling policies and EDP scal-

1This paper was accepted for publication and will be presented during the conference in July 2020
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ability.

Not directly related to this thesis, the Ph.D. has published the following works:

• Souza, J. D.; Carro, L.; Rutzig, M. B. and Beck, A. C. S. (2014) Towards a Dynamic

and Reconfigurable Multicore Heterogeneous System. In: Brazilian Symposium on

Computing Systems Engineering, p. 73–78 (SOUZA et al., 2014) - A performance

analysis of a multicore heterogeneous system comprised of reconfigurable hard-

ware, using a static scheduler.

• Souza, J. D.; Cachola, J. V. G.; Carro, L.; Rutzig, M. B. and Beck, A. C. S.

(2016). Evaluating schedulers in a reconfigurable multicore heterogeneous system.

In: International Symposium on Applied Reconfigurable Computing (SOUZA et

al., 2016) - An evaluation of different scheduling methods in the reconfigurable

multicore heterogeneous system.

• Souza, J. D.; Carro, L.; Rutzig, M. B.; and Beck, A. C. S. (2016). A Reconfigurable

Heterogeneous Multicore with a Homogeneous ISA. Proceedings of the 2016 Con-

ference on Design, Automation & Test in Europe (DATE’16), 1598–1603. (SOUZA

et al., 2016) - Full performance and energy analysis of the reconfigurable multicore

heterogeneous system using an Oracle scheduler for measuring the system poten-

tial.

• Souza, J. D.; Sartor, A. L.; Carro, L.; Rutzig, M. B.; Wong, S. and Beck, A. C. S.

(2018). DIM-VEX: Exploiting Design Time Configurability and Runtime Recon-

figurability. In: International Symposium on Applied Reconfigurable Computing

(SOUZA et al., 2018) - An evaluation of performance and energy in a system with

reconfigurable hardware coupled to configurable processors.

Moreover, the Ph.D. has also published the following works in project coopera-

tions:

• (LORENZON; Dellagostin Souza; BECK, 2017) - A library for automatic opti-

mization of thread count in OpenMP applications.

• (LORENZON et al., 2018) - An OpenMP extension for seamless and dynamic op-

timization of thread count in parallel applications.

• (SILVEIRA et al., 2016) - Image processing acceleration using approximation and

function reuse.

• (BRANDALERO et al., 2017) - Acceleration of error-tolerant applications using
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memoization and input value hashing.

• (ERICHSEN et al., 2018) - Exploiting big.LITTLE-like processors to provide Di-

versity Triple Modular Redundancy (TMR) and fault tolerance.

• (De Moura et al., 2016) - Extends the previous works in reconfigurable multicore

heterogeneous processors to evaluate unified context caches.

• (SFREDDO et al., 2017) - A framework to create efficient heterogeneous configu-

rations for reconfigurable hardware.
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AppendixA

A.1 Processor configuration files from gem5

A.1.1 A15 core

1 # Copyright (c) 2012 The Regents of The University of Michigan

# Copyright (c) 2016 Centre National de la Recherche Scientifique

# All rights reserved.

#

# Redistribution and use in source and binary forms, with or without

6 # modification, are permitted provided that the following conditions

are

# met: redistributions of source code must retain the above copyright

# notice, this list of conditions and the following disclaimer;

# redistributions in binary form must reproduce the above copyright

# notice, this list of conditions and the following disclaimer in the

11 # documentation and/or other materials provided with the distribution;

# neither the name of the copyright holders nor the names of its

# contributors may be used to endorse or promote products derived from

# this software without specific prior written permission.

#

16 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

21 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

26 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#

# Authors: Ron Dreslinski

# Anastasiia Butko

# Louisa Bessad

31

from m5.objects import *
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#

-----------------------------------------------------------------------

# ex5 big core (based on the ARM Cortex-A15)

36 #

-----------------------------------------------------------------------

# Simple ALU Instructions have a latency of 1

class ex5_big_Simple_Int(FUDesc):

opList = [ OpDesc(opClass=’IntALU’, opLat=1) ]

41 count = 2

# Complex ALU instructions have a variable latencies

class ex5_big_Complex_Int(FUDesc):

opList = [ OpDesc(opClass=’IntMult’, opLat=4, pipelined=True),

46 OpDesc(opClass=’IntDiv’, opLat=11, pipelined=False),

OpDesc(opClass=’IprAccess’, opLat=3, pipelined=True) ]

count = 1

# Floating point and SIMD instructions

51 class ex5_big_FP(FUDesc):

opList = [ OpDesc(opClass=’SimdAdd’, opLat=3),

OpDesc(opClass=’SimdAddAcc’, opLat=4),

OpDesc(opClass=’SimdAlu’, opLat=4),

OpDesc(opClass=’SimdCmp’, opLat=4),

56 OpDesc(opClass=’SimdCvt’, opLat=3),

OpDesc(opClass=’SimdMisc’, opLat=3),

OpDesc(opClass=’SimdMult’,opLat=6),

OpDesc(opClass=’SimdMultAcc’,opLat=5),

OpDesc(opClass=’SimdShift’,opLat=3),

61 OpDesc(opClass=’SimdShiftAcc’, opLat=3),

OpDesc(opClass=’SimdSqrt’, opLat=9),

OpDesc(opClass=’SimdFloatAdd’,opLat=6),

OpDesc(opClass=’SimdFloatAlu’,opLat=5),

OpDesc(opClass=’SimdFloatCmp’, opLat=3),

66 OpDesc(opClass=’SimdFloatCvt’, opLat=3),

OpDesc(opClass=’SimdFloatDiv’, opLat=21),

OpDesc(opClass=’SimdFloatMisc’, opLat=3),

OpDesc(opClass=’SimdFloatMult’, opLat=6),

OpDesc(opClass=’SimdFloatMultAcc’,opLat=1),
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71 OpDesc(opClass=’SimdFloatSqrt’, opLat=9),

OpDesc(opClass=’FloatAdd’, opLat=6),

OpDesc(opClass=’FloatCmp’, opLat=5),

OpDesc(opClass=’FloatCvt’, opLat=5),

OpDesc(opClass=’FloatDiv’, opLat=12, pipelined=False),

76 OpDesc(opClass=’FloatSqrt’, opLat=33, pipelined=False),

OpDesc(opClass=’FloatMult’, opLat=8) ]

count = 2

81 # Load/Store Units

class ex5_big_Load(FUDesc):

opList = [ OpDesc(opClass=’MemRead’,opLat=2) ]

count = 1

86 class ex5_big_Store(FUDesc):

opList = [OpDesc(opClass=’MemWrite’,opLat=2) ]

count = 1

# Functional Units for this CPU

91 class ex5_big_FUP(FUPool):

FUList = [ex5_big_Simple_Int(), ex5_big_Complex_Int(),

ex5_big_Load(), ex5_big_Store(), ex5_big_FP()]

# Bi-Mode Branch Predictor

96 class ex5_big_BP(BiModeBP):

globalPredictorSize = 4096

globalCtrBits = 2

choicePredictorSize = 1024

choiceCtrBits = 3

101 BTBEntries = 4096

BTBTagSize = 18

RASSize = 48

instShiftAmt = 2

106 class ex5_big(DerivO3CPU):

LQEntries = 16

SQEntries = 16

LSQDepCheckShift = 0

LFSTSize = 1024

111 SSITSize = 1024
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decodeToFetchDelay = 1

renameToFetchDelay = 1

iewToFetchDelay = 1

commitToFetchDelay = 1

116 renameToDecodeDelay = 1

iewToDecodeDelay = 1

commitToDecodeDelay = 1

iewToRenameDelay = 1

commitToRenameDelay = 1

121 commitToIEWDelay = 1

fetchWidth = 3

fetchBufferSize = 16

fetchToDecodeDelay = 3

decodeWidth = 3

126 decodeToRenameDelay = 2

renameWidth = 3

renameToIEWDelay = 1

issueToExecuteDelay = 1

dispatchWidth = 6

131 issueWidth = 8

wbWidth = 8

fuPool = ex5_big_FUP()

iewToCommitDelay = 1

renameToROBDelay = 1

136 commitWidth = 8

squashWidth = 8

trapLatency = 13

backComSize = 5

forwardComSize = 5

141 numPhysIntRegs = 90

numPhysFloatRegs = 256

numIQEntries = 48

numROBEntries = 60

146 switched_out = False

branchPred = ex5_big_BP()

class L1Cache(Cache):

tag_latency = 2

151 data_latency = 2

response_latency = 2
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tgts_per_mshr = 8

# Consider the L2 a victim cache also for clean lines

writeback_clean = True

156

# Instruction Cache

class L1I(L1Cache):

mshrs = 2

size = ’32kB’

161 assoc = 2

is_read_only = True

# Data Cache

class L1D(L1Cache):

166 mshrs = 6

size = ’32kB’

assoc = 2

write_buffers = 16

171 # TLB Cache

# Use a cache as a L2 TLB

class WalkCache(Cache):

tag_latency = 4

data_latency = 4

176 response_latency = 4

mshrs = 6

tgts_per_mshr = 8

size = ’1kB’

assoc = 8

181 write_buffers = 16

is_read_only = True

# Writeback clean lines as well

writeback_clean = True

186 # L2 Cache

class L2(Cache):

tag_latency = 15

data_latency = 15

response_latency = 15

191 mshrs = 16

tgts_per_mshr = 8

size = ’2MB’
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assoc = 16

write_buffers = 8

196 prefetch_on_access = True

clusivity = ’mostly_excl’

# Simple stride prefetcher

prefetcher = StridePrefetcher(degree=8, latency = 1)

tags = RandomRepl()

A.1.2 A7 core

# Copyright (c) 2012 The Regents of The University of Michigan

# Copyright (c) 2016 Centre National de la Recherche Scientifique

# All rights reserved.

#

5 # Redistribution and use in source and binary forms, with or without

# modification, are permitted provided that the following conditions

are

# met: redistributions of source code must retain the above copyright

# notice, this list of conditions and the following disclaimer;

# redistributions in binary form must reproduce the above copyright

10 # notice, this list of conditions and the following disclaimer in the

# documentation and/or other materials provided with the distribution;

# neither the name of the copyright holders nor the names of its

# contributors may be used to endorse or promote products derived from

# this software without specific prior written permission.

15 #

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

20 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

25 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#
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# Authors: Ron Dreslinski

# Anastasiia Butko

30 # Louisa Bessad

from m5.objects import *

#

-----------------------------------------------------------------------

35 # ex5 LITTLE core (based on the ARM Cortex-A7)

#

-----------------------------------------------------------------------

# Simple ALU Instructions have a latency of 3

class ex5_LITTLE_Simple_Int(MinorDefaultIntFU):

40 opList = [ OpDesc(opClass=’IntALU’, opLat=4) ]

# Complex ALU instructions have a variable latencies

class ex5_LITTLE_Complex_IntMul(MinorDefaultIntMulFU):

opList = [ OpDesc(opClass=’IntMult’, opLat=7) ]

45

class ex5_LITTLE_Complex_IntDiv(MinorDefaultIntDivFU):

opList = [ OpDesc(opClass=’IntDiv’, opLat=9) ]

# Floating point and SIMD instructions

50 class ex5_LITTLE_FP(MinorDefaultFloatSimdFU):

opList = [ OpDesc(opClass=’SimdAdd’, opLat=6),

OpDesc(opClass=’SimdAddAcc’, opLat=4),

OpDesc(opClass=’SimdAlu’, opLat=4),

OpDesc(opClass=’SimdCmp’, opLat=1),

55 OpDesc(opClass=’SimdCvt’, opLat=3),

OpDesc(opClass=’SimdMisc’, opLat=3),

OpDesc(opClass=’SimdMult’,opLat=4),

OpDesc(opClass=’SimdMultAcc’,opLat=5),

OpDesc(opClass=’SimdShift’,opLat=3),

60 OpDesc(opClass=’SimdShiftAcc’, opLat=3),

OpDesc(opClass=’SimdSqrt’, opLat=9),

OpDesc(opClass=’SimdFloatAdd’,opLat=8),

OpDesc(opClass=’SimdFloatAlu’,opLat=6),

OpDesc(opClass=’SimdFloatCmp’, opLat=6),
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65 OpDesc(opClass=’SimdFloatCvt’, opLat=6),

OpDesc(opClass=’SimdFloatDiv’, opLat=20, pipelined=False

),

OpDesc(opClass=’SimdFloatMisc’, opLat=6),

OpDesc(opClass=’SimdFloatMult’, opLat=15),

OpDesc(opClass=’SimdFloatMultAcc’,opLat=6),

70 OpDesc(opClass=’SimdFloatSqrt’, opLat=17),

OpDesc(opClass=’FloatAdd’, opLat=8),

OpDesc(opClass=’FloatCmp’, opLat=6),

OpDesc(opClass=’FloatCvt’, opLat=6),

OpDesc(opClass=’FloatDiv’, opLat=15, pipelined=False),

75 OpDesc(opClass=’FloatSqrt’, opLat=33),

OpDesc(opClass=’FloatMult’, opLat=6) ]

# Load/Store Units

class ex5_LITTLE_MemFU(MinorDefaultMemFU):

80 opList = [ OpDesc(opClass=’MemRead’,opLat=1),

OpDesc(opClass=’MemWrite’,opLat=1) ]

# Misc Unit

class ex5_LITTLE_MiscFU(MinorDefaultMiscFU):

85 opList = [ OpDesc(opClass=’IprAccess’,opLat=1),

OpDesc(opClass=’InstPrefetch’,opLat=1) ]

# Functional Units for this CPU

class ex5_LITTLE_FUP(MinorFUPool):

90 funcUnits = [ex5_LITTLE_Simple_Int(), ex5_LITTLE_Simple_Int(),

ex5_LITTLE_Complex_IntMul(), ex5_LITTLE_Complex_IntDiv(),

ex5_LITTLE_FP(), ex5_LITTLE_MemFU(),

ex5_LITTLE_MiscFU()]

95 class ex5_LITTLE(MinorCPU):

executeFuncUnits = ex5_LITTLE_FUP()

class L1Cache(Cache):

tag_latency = 2

100 data_latency = 2

response_latency = 2

tgts_per_mshr = 8

# Consider the L2 a victim cache also for clean lines

writeback_clean = True
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105

class L1I(L1Cache):

mshrs = 2

size = ’32kB’

assoc = 2

110 is_read_only = True

tgts_per_mshr = 20

class L1D(L1Cache):

mshrs = 4

115 size = ’32kB’

assoc = 4

write_buffers = 4

# TLB Cache

120 # Use a cache as a L2 TLB

class WalkCache(Cache):

tag_latency = 2

data_latency = 2

response_latency = 2

125 mshrs = 6

tgts_per_mshr = 8

size = ’1kB’

assoc = 2

write_buffers = 16

130 is_read_only = True

# Writeback clean lines as well

writeback_clean = True

# L2 Cache

135 #class L2(Cache):

# tag_latency = 9

# data_latency = 9

# response_latency = 9

# mshrs = 8

140 # tgts_per_mshr = 12

# size = ’512kB’

# assoc = 8

# write_buffers = 16

# prefetch_on_access = True

145 # clusivity = ’mostly_excl’
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# # Simple stride prefetcher

# prefetcher = StridePrefetcher(degree=1, latency = 1)

# tags = RandomRepl()

150 # L2 Cache big core

class L2(Cache):

tag_latency = 15

data_latency = 15

response_latency = 15

155 mshrs = 16

tgts_per_mshr = 8

size = ’2MB’

assoc = 16

write_buffers = 8

160 prefetch_on_access = True

clusivity = ’mostly_excl’

# Simple stride prefetcher

prefetcher = StridePrefetcher(degree=1, latency = 1)

tags = RandomRepl()

165 #repl_policy = RandomRP()

A.1.3 A15 core with extra SIMD/FP latency (for TUNE)

# Copyright (c) 2012 The Regents of The University of Michigan

# Copyright (c) 2016 Centre National de la Recherche Scientifique

# All rights reserved.

#

5 # Redistribution and use in source and binary forms, with or without

# modification, are permitted provided that the following conditions

are

# met: redistributions of source code must retain the above copyright

# notice, this list of conditions and the following disclaimer;

# redistributions in binary form must reproduce the above copyright

10 # notice, this list of conditions and the following disclaimer in the

# documentation and/or other materials provided with the distribution;

# neither the name of the copyright holders nor the names of its

# contributors may be used to endorse or promote products derived from

# this software without specific prior written permission.
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15 #

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

20 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

25 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#

# Authors: Ron Dreslinski

# Anastasiia Butko

30 # Louisa Bessad

from m5.objects import *

#

-----------------------------------------------------------------------

35 # ex5 big core (based on the ARM Cortex-A15)

#

-----------------------------------------------------------------------

# Simple ALU Instructions have a latency of 1

class ex5_big_Simple_Int(FUDesc):

40 opList = [ OpDesc(opClass=’IntALU’, opLat=1) ]

count = 2

# Complex ALU instructions have a variable latencies

class ex5_big_Complex_Int(FUDesc):

45 opList = [ OpDesc(opClass=’IntMult’, opLat=4, pipelined=True),

OpDesc(opClass=’IntDiv’, opLat=11, pipelined=False),

OpDesc(opClass=’IprAccess’, opLat=3, pipelined=True) ]

count = 1

50 # Floating point and SIMD instructions

class ex5_big_FP(FUDesc):
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opList = [ OpDesc(opClass=’SimdAdd’, opLat=3),

OpDesc(opClass=’SimdAddAcc’, opLat=4),

OpDesc(opClass=’SimdAlu’, opLat=4),

55 OpDesc(opClass=’SimdCmp’, opLat=4),

OpDesc(opClass=’SimdCvt’, opLat=3),

OpDesc(opClass=’SimdMisc’, opLat=3),

OpDesc(opClass=’SimdMult’,opLat=6),

OpDesc(opClass=’SimdMultAcc’,opLat=5),

60 OpDesc(opClass=’SimdShift’,opLat=3),

OpDesc(opClass=’SimdShiftAcc’, opLat=3),

OpDesc(opClass=’SimdSqrt’, opLat=9),

OpDesc(opClass=’SimdFloatAdd’,opLat=6),

OpDesc(opClass=’SimdFloatAlu’,opLat=5),

65 OpDesc(opClass=’SimdFloatCmp’, opLat=3),

OpDesc(opClass=’SimdFloatCvt’, opLat=3),

OpDesc(opClass=’SimdFloatDiv’, opLat=21),

OpDesc(opClass=’SimdFloatMisc’, opLat=3),

OpDesc(opClass=’SimdFloatMult’, opLat=6),

70 OpDesc(opClass=’SimdFloatMultAcc’,opLat=1),

OpDesc(opClass=’SimdFloatSqrt’, opLat=9),

OpDesc(opClass=’FloatAdd’, opLat=6),

OpDesc(opClass=’FloatCmp’, opLat=5),

OpDesc(opClass=’FloatCvt’, opLat=5),

75 OpDesc(opClass=’FloatDiv’, opLat=12, pipelined=False),

OpDesc(opClass=’FloatSqrt’, opLat=33, pipelined=False),

OpDesc(opClass=’FloatMult’, opLat=8) ]

timings = [MinorFUTiming(description=’FloatSimd’,

extraCommitLat=10, srcRegsRelativeLats=[2])]

80 count = 2

# Load/Store Units

class ex5_big_Load(FUDesc):

85 opList = [ OpDesc(opClass=’MemRead’,opLat=2) ]

count = 1

class ex5_big_Store(FUDesc):

opList = [OpDesc(opClass=’MemWrite’,opLat=2) ]

90 count = 1

# Functional Units for this CPU
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class ex5_big_FUP(FUPool):

FUList = [ex5_big_Simple_Int(), ex5_big_Complex_Int(),

95 ex5_big_Load(), ex5_big_Store(), ex5_big_FP()]

# Bi-Mode Branch Predictor

class ex5_big_BP(BiModeBP):

globalPredictorSize = 4096

100 globalCtrBits = 2

choicePredictorSize = 1024

choiceCtrBits = 3

BTBEntries = 4096

BTBTagSize = 18

105 RASSize = 48

instShiftAmt = 2

class ex5_big(DerivO3CPU):

LQEntries = 16

110 SQEntries = 16

LSQDepCheckShift = 0

LFSTSize = 1024

SSITSize = 1024

decodeToFetchDelay = 1

115 renameToFetchDelay = 1

iewToFetchDelay = 1

commitToFetchDelay = 1

renameToDecodeDelay = 1

iewToDecodeDelay = 1

120 commitToDecodeDelay = 1

iewToRenameDelay = 1

commitToRenameDelay = 1

commitToIEWDelay = 1

fetchWidth = 3

125 fetchBufferSize = 16

fetchToDecodeDelay = 3

decodeWidth = 3

decodeToRenameDelay = 2

renameWidth = 3

130 renameToIEWDelay = 1

issueToExecuteDelay = 1

dispatchWidth = 6

issueWidth = 8
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wbWidth = 8

135 fuPool = ex5_big_FUP()

iewToCommitDelay = 1

renameToROBDelay = 1

commitWidth = 8

squashWidth = 8

140 trapLatency = 13

backComSize = 5

forwardComSize = 5

numPhysIntRegs = 90

numPhysFloatRegs = 256

145 numIQEntries = 48

numROBEntries = 60

switched_out = False

branchPred = ex5_big_BP()

150

class L1Cache(Cache):

tag_latency = 2

data_latency = 2

response_latency = 2

155 tgts_per_mshr = 8

# Consider the L2 a victim cache also for clean lines

writeback_clean = True

# Instruction Cache

160 class L1I(L1Cache):

mshrs = 2

size = ’32kB’

assoc = 2

is_read_only = True

165

# Data Cache

class L1D(L1Cache):

mshrs = 6

size = ’32kB’

170 assoc = 2

write_buffers = 16

# TLB Cache

# Use a cache as a L2 TLB
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175 class WalkCache(Cache):

tag_latency = 4

data_latency = 4

response_latency = 4

mshrs = 6

180 tgts_per_mshr = 8

size = ’1kB’

assoc = 8

write_buffers = 16

is_read_only = True

185 # Writeback clean lines as well

writeback_clean = True

# L2 Cache

class L2(Cache):

190 tag_latency = 15

data_latency = 15

response_latency = 15

mshrs = 16

tgts_per_mshr = 8

195 size = ’2MB’

assoc = 16

write_buffers = 8

prefetch_on_access = True

clusivity = ’mostly_excl’

200 # Simple stride prefetcher

prefetcher = StridePrefetcher(degree=8, latency = 1)

tags = RandomRepl()

A.1.4 A7 core with extra SIMD/FP latency (for Niagara)

# Copyright (c) 2012 The Regents of The University of Michigan

2 # Copyright (c) 2016 Centre National de la Recherche Scientifique

# All rights reserved.

#

# Redistribution and use in source and binary forms, with or without

# modification, are permitted provided that the following conditions

are
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7 # met: redistributions of source code must retain the above copyright

# notice, this list of conditions and the following disclaimer;

# redistributions in binary form must reproduce the above copyright

# notice, this list of conditions and the following disclaimer in the

# documentation and/or other materials provided with the distribution;

12 # neither the name of the copyright holders nor the names of its

# contributors may be used to endorse or promote products derived from

# this software without specific prior written permission.

#

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

17 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

22 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

27 #

# Authors: Ron Dreslinski

# Anastasiia Butko

# Louisa Bessad

32 from m5.objects import *

#

-----------------------------------------------------------------------

# ex5 LITTLE core (based on the ARM Cortex-A7)

#

-----------------------------------------------------------------------

37

# Simple ALU Instructions have a latency of 3

class ex5_LITTLE_Simple_Int(MinorDefaultIntFU):

opList = [ OpDesc(opClass=’IntALU’, opLat=4) ]

42 # Complex ALU instructions have a variable latencies

class ex5_LITTLE_Complex_IntMul(MinorDefaultIntMulFU):
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opList = [ OpDesc(opClass=’IntMult’, opLat=7) ]

class ex5_LITTLE_Complex_IntDiv(MinorDefaultIntDivFU):

47 opList = [ OpDesc(opClass=’IntDiv’, opLat=9) ]

# Floating point and SIMD instructions

class ex5_LITTLE_FP(MinorDefaultFloatSimdFU):

opList = [ OpDesc(opClass=’SimdAdd’, opLat=6),

52 OpDesc(opClass=’SimdAddAcc’, opLat=4),

OpDesc(opClass=’SimdAlu’, opLat=4),

OpDesc(opClass=’SimdCmp’, opLat=1),

OpDesc(opClass=’SimdCvt’, opLat=3),

OpDesc(opClass=’SimdMisc’, opLat=3),

57 OpDesc(opClass=’SimdMult’,opLat=4),

OpDesc(opClass=’SimdMultAcc’,opLat=5),

OpDesc(opClass=’SimdShift’,opLat=3),

OpDesc(opClass=’SimdShiftAcc’, opLat=3),

OpDesc(opClass=’SimdSqrt’, opLat=9),

62 OpDesc(opClass=’SimdFloatAdd’,opLat=8),

OpDesc(opClass=’SimdFloatAlu’,opLat=6),

OpDesc(opClass=’SimdFloatCmp’, opLat=6),

OpDesc(opClass=’SimdFloatCvt’, opLat=6),

OpDesc(opClass=’SimdFloatDiv’, opLat=20, pipelined=False

),

67 OpDesc(opClass=’SimdFloatMisc’, opLat=6),

OpDesc(opClass=’SimdFloatMult’, opLat=15),

OpDesc(opClass=’SimdFloatMultAcc’,opLat=6),

OpDesc(opClass=’SimdFloatSqrt’, opLat=17),

OpDesc(opClass=’FloatAdd’, opLat=8),

72 OpDesc(opClass=’FloatCmp’, opLat=6),

OpDesc(opClass=’FloatCvt’, opLat=6),

OpDesc(opClass=’FloatDiv’, opLat=15, pipelined=False),

OpDesc(opClass=’FloatSqrt’, opLat=33),

OpDesc(opClass=’FloatMult’, opLat=6) ]

77 timings = [MinorFUTiming(description=’FloatSimd’,

extraCommitLat=20, srcRegsRelativeLats=[2])]

# Load/Store Units

class ex5_LITTLE_MemFU(MinorDefaultMemFU):

82 opList = [ OpDesc(opClass=’MemRead’,opLat=1),

OpDesc(opClass=’MemWrite’,opLat=1) ]
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# Misc Unit

class ex5_LITTLE_MiscFU(MinorDefaultMiscFU):

87 opList = [ OpDesc(opClass=’IprAccess’,opLat=1),

OpDesc(opClass=’InstPrefetch’,opLat=1) ]

# Functional Units for this CPU

class ex5_LITTLE_FUP(MinorFUPool):

92 funcUnits = [ex5_LITTLE_Simple_Int(), ex5_LITTLE_Simple_Int(),

ex5_LITTLE_Complex_IntMul(), ex5_LITTLE_Complex_IntDiv(),

ex5_LITTLE_FP(), ex5_LITTLE_MemFU(),

ex5_LITTLE_MiscFU()]

97 class ex5_LITTLE_BUFFERED(MinorCPU):

executeFuncUnits = ex5_LITTLE_FUP()

class L1Cache(Cache):

tag_latency = 2

102 data_latency = 2

response_latency = 2

tgts_per_mshr = 8

# Consider the L2 a victim cache also for clean lines

writeback_clean = True

107

class L1I(L1Cache):

mshrs = 2

size = ’32kB’

assoc = 2

112 is_read_only = True

tgts_per_mshr = 20

class L1D(L1Cache):

mshrs = 4

117 size = ’32kB’

assoc = 4

write_buffers = 4

# TLB Cache

122 # Use a cache as a L2 TLB

class WalkCache(Cache):

tag_latency = 2
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data_latency = 2

response_latency = 2

127 mshrs = 6

tgts_per_mshr = 8

size = ’1kB’

assoc = 2

write_buffers = 16

132 is_read_only = True

# Writeback clean lines as well

writeback_clean = True

# L2 Cache

137 class L2(Cache):

tag_latency = 9

data_latency = 9

response_latency = 9

mshrs = 8

142 tgts_per_mshr = 12

size = ’512kB’

assoc = 8

write_buffers = 16

prefetch_on_access = True

147 clusivity = ’mostly_excl’

# Simple stride prefetcher

prefetcher = StridePrefetcher(degree=1, latency = 1)

tags = RandomRepl()
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AppendixB

B.1 PHISA Multicores raw results values
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Table B.1: Setup 1
Cycles Energy EDP

Scenario 1

A15(4F0P) 132403130 228411710.1 3.02424E+16

A15(3F1P) 129398986 232916623 3.01392E+16

A15(2F2P) 165050854 231135711.2 3.81491E+16

A15(1F3P) 194616321 229742773.1 4.47117E+16

Scenario 2

A15(4F0P) 129320412 153334138.4 1.98292E+16

A15(3F1P) 129320916 158853153.5 2.0543E+16

A15(2F2P) 164778015 153306314.9 2.52615E+16

A15(1F3P) 241607457 180868375.8 4.36991E+16

Scenario 3

A15(4F0P) 129320412 155685349.1 2.01333E+16

A15(3F1P) 129320152 155654513.1 2.01293E+16

A15(2F2P) 171050052 155619207.8 2.66187E+16

A15(1F3P) 243658974 180464051.4 4.39717E+16

Scenario 4

A15(4F0P) 129320152 170347914.1 2.20294E+16

A15(3F1P) 129320412 174329318.1 2.25443E+16

A15(2F2P) 135897330 195183071 2.65249E+16

A15(1F3P) 129320411 171198590.8 2.21395E+16

Scenario 5

A15(4F0P) 129259607 119214415.5 1.54096E+16

A15(3F1P) 129438513 105820894.8 1.36973E+16

A15(2F2P) 129438513 105807568 1.36956E+16

A15(1F3P) 136587841 105892254.1 1.44636E+16

Scenario 6

A15(4F0P) 60233946 83814001.45 5.04845E+15

A15(3F1P) 67386822 88680156.07 5.97587E+15

A15(2F2P) 75752735 87187148.6 6.60466E+15

A15(1F3P) 118433300 89277017.71 1.05734E+16
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Table B.2: Setup 2
Cycles Energy EDP

Scenario 1
A15(1F0P) 588703904 406498279.6 2.39307E+17

A15(0F1P) A7(2F0P) 303050639 130446422.2 3.95319E+16

A15(0F1P) A7(1F1P) 555568230 70797202.72 3.93327E+16

Scenario 2
A15(1F0P) 359523965 248250219.3 8.92519E+16

A15(0F1P) A7(2F0P) 175264300 97251648.64 1.70447E+16

A15(0F1P) A7(1F1P) 343728371 96028393.28 3.30077E+16

Scenario 3
A15(1F0P) 387663281 267680332.5 1.0377E+17

A15(0F1P) A7(2F0P) 194318684 98341070.65 1.91095E+16

A15(0F1P) A7(1F1P) 377419153 97311312.2 3.67272E+16

Scenario 4
A15(1F0P) 336271085 232194175.4 7.80802E+16

A15(0F1P) A7(2F0P) 180024569 91697885.4 1.65079E+16

A15(0F1P) A7(1F1P) 278596562 93509554.29 2.60514E+16

Scenario 5
A15(1F0P) 261329038 180446916.8 4.7156E+16

A15(0F1P) A7(2F0P) 180376029 86397254.96 1.5584E+16

A15(0F1P) A7(1F1P) 200060633 87654140.12 1.75361E+16

Scenario 6
A15(1F0P) 266420882 183962819.8 4.90115E+16

A15(0F1P) A7(2F0P) 223772236 35791482.33 8.00914E+15

A15(0F1P) A7(1F1P) 379894324 28232956.96 1.07255E+16
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Table B.3: Setup 3
Cycles Energy EDP

Scenario 1
A15(1F0P) A7(2F0P) 236865977 183618620.9 4.3493E+16

A15(0F1P) A7(2F0P) 303050639 130446422.2 3.95319E+16

A15(0F1P) A7(1F1P) 555568230 70797202.72 3.93327E+16

Scenario 2
A15(1F0P) A7(2F0P) 192086097 110105107.3 2.11497E+16

A15(0F1P) A7(2F0P) 175264300 97251648.64 1.70447E+16

A15(0F1P) A7(1F1P) 343728371 96028393.28 3.30077E+16

Scenario 3
A15(1F0P) A7(2F0P) 184747330 134636906.6 2.48738E+16

A15(0F1P) A7(2F0P) 194318684 98341070.65 1.91095E+16

A15(0F1P) A7(1F1P) 377419153 97311312.2 3.67272E+16

Scenario 4
A15(1F0P) A7(2F0P) 190762441 106589860 2.03333E+16

A15(0F1P) A7(2F0P) 180024569 91697885.4 1.65079E+16

A15(0F1P) A7(1F1P) 278596562 93509554.29 2.60514E+16

Scenario 5
A15(1F0P) A7(2F0P) 144463496 100359609.2 1.44983E+16

A15(0F1P) A7(2F0P) 180376029 86397254.96 1.5584E+16

A15(0F1P) A7(1F1P) 200060633 87654140.12 1.75361E+16

Scenario 6
A15(1F0P) A7(2F0P) 142633018 109207844.1 1.55766E+16

A15(0F1P) A7(2F0P) 223772236 35791482.33 8.00914E+15

A15(0F1P) A7(1F1P) 379894324 28232956.96 1.07255E+16
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Table B.4: Setup 4
Cycles Energy EDP

Scenario 1
A15(1F0P) A7(2F0P) 236865977 183618620.9 4.3493E+16

A15(0F1E) A7(2F0P) 271012060 136850767.6 3.70882E+16

A15(0F1E) A7(1F1E) 332966322 109374882.9 3.64182E+16

Scenario 2
A15(1F0P) A7(2F0P) 192086097 110105107.3 2.11497E+16

A15(0F1E) A7(2F0P) 160879354 105671406.6 1.70003E+16

A15(0F1E) A7(1F1E) 230945570 98128058.41 2.26622E+16

Scenario 3
A15(1F0P) A7(2F0P) 184747330 134636906.6 2.48738E+16

A15(0F1E) A7(2F0P) 191107188 107638211.2 2.05704E+16

A15(0F1E) A7(1F1E) 232030445 103327719.7 2.39752E+16

Scenario 4
A15(1F0P) A7(2F0P) 190762441 106589860 2.03333E+16

A15(0F1E) A7(2F0P) 178351640 93356221.17 1.66502E+16

A15(0F1E) A7(1F1E) 193350780 95141159 1.83956E+16

Scenario 5
A15(1F0P) A7(2F0P) 144463496 100359609.2 1.44983E+16

A15(0F1E) A7(2F0P) 130201717 87051862.84 1.13343E+16

A15(0F1E) A7(1F1E) 168158964 48509813.35 8.15736E+15

Scenario 6
A15(1F0P) A7(2F0P) 142633018 109207844.1 1.55766E+16

A15(0F1E) A7(2F0P) 182503509 79756290.18 1.45558E+16

A15(0F1E) A7(1F1E) 217668864 77873942.84 1.69507E+16
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Table B.5: Setup 5
Cycles Energy EDP

Scenario 1
A15(1F0P) A7(2F0P) 236865977 183618620.9 4.3493E+16

A15(0F1P) A7(4F0P) 163221669 107853436.1 1.7604E+16

A15(0F1E) A7(2F2E) 212356040 109735279.9 2.33029E+16

Scenario 2
A15(1F0P) A7(2F0P) 192086097 110105107.3 2.11497E+16

A15(0F1P) A7(4F0P) 153831474 93956368.95 1.44534E+16

A15(0F1E) A7(2F2E) 153804646 96867511.41 1.48987E+16

Scenario 3
A15(1F0P) A7(2F0P) 184747330 134636906.6 2.48738E+16

A15(0F1P) A7(4F0P) 129906779 95336677.03 1.23849E+16

A15(0F1E) A7(2F2E) 157831878 38297295.36 6.04453E+15

Scenario 4
A15(1F0P) A7(2F0P) 190762441 106589860 2.03333E+16

A15(0F1P) A7(4F0P) 129881605 91021591.94 1.1822E+16

A15(0F1E) A7(2F2E) 129797737 94033651.82 1.22054E+16

Scenario 5
A15(1F0P) A7(2F0P) 144463496 100359609.2 1.44983E+16

A15(0F1P) A7(4F0P) 129980829 86192117.78 1.12033E+16

A15(0F1E) A7(2F2E) 105660883 17681726.58 1.86827E+15

Scenario 6
A15(1F0P) A7(2F0P) 142633018 109207844.1 1.55766E+16

A15(0F1P) A7(4F0P) 138777334 33822276.5 4.69377E+15

A15(0F1E) A7(2F2E) 163317574 58154467.62 9.49765E+15
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Table B.6: Performance Policy - Single A15
Cycles Energy EDP

Scenario 1
A15_1F0P 13177354359 8514224604 1.12195E+20

A15_0F1P_A7_2F0P 6007625560 3390851060 2.0371E+19

A15_0F1P_A7_1F1P 5986478472 3349345798 2.00508E+19

Scenario 2
A15_1F0P 6924669448 4454499341 3.08459E+19

A15_0F1P_A7_2F0P 3251247362 1490785935 4.84691E+18

A15_0F1P_A7_1F1P 3876275528 1471918929 5.70556E+18

Scenario 3
A15_1F0P 16525345054 10660315998 1.76165E+20

A15_0F1P_A7_2F0P 7506222463 4389370940 3.29476E+19

A15_0F1P_A7_1F1P 7525206119 4360639694 3.28147E+19

Scenario 4
A15_1F0P 13990996018 9004252136 1.25978E+20

A15_0F1P_A7_2F0P 6043463415 3413880345 2.06317E+19

A15_0F1P_A7_1F1P 6045428254 3386277049 2.04715E+19

Scenario 5
A15_1F0P 11641130291 7484630004 8.71296E+19

A15_0F1P_A7_2F0P 5175624520 2849736967 1.47492E+19

A15_0F1P_A7_1F1P 5179434615 2826356146 1.46389E+19

Scenario 6
A15_1F0P 1238808634 797731621.9 9.88237E+17

A15_0F1P_A7_2F0P 1525867958 156510738 2.38815E+17

A15_0F1P_A7_1F1P 1531257208 157272536.4 2.40825E+17
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Table B.7: Performance Policy - big.LITTLE
Cycles Energy EDP

Scenario 1
A15_1F0P_A7_2F0P 5747917148 4208095612 2.41878E+19

A15_0F1P_A7_4F0P 4091508039 2469127653 1.01025E+19

A15_0F1P_A7_2F2P 4092869321 2435882602 9.96975E+18

Scenario 2
A15_1F0P_A7_2F0P 2898605187 2102978947 6.09571E+18

A15_0F1P_A7_4F0P 2453669344 1102096931 2.70418E+18

A15_0F1P_A7_2F2P 2461573996 1081719262 2.66273E+18

Scenario 3
A15_1F0P_A7_2F0P 7278351340 5346748909 3.89155E+19

A15_0F1P_A7_4F0P 5101111319 3254198174 1.66E+19

A15_0F1P_A7_2F2P 5105560860 3208180094 1.63796E+19

Scenario 4
A15_1F0P_A7_2F0P 5810715154 4238043220 2.46261E+19

A15_0F1P_A7_4F0P 4086903406 2466706520 1.00812E+19

A15_0F1P_A7_2F2P 4088289510 2431598278 9.94108E+18

Scenario 5
A15_1F0P_A7_2F0P 4845718233 3521400047 1.70637E+19

A15_0F1P_A7_4F0P 3524093515 2044406888 7.20468E+18

A15_0F1P_A7_2F2P 3527913783 2015572252 7.11077E+18

Scenario 6
A15_1F0P_A7_2F0P 1118059732 727589988.5 8.13489E+17

A15_0F1P_A7_4F0P 1514098814 154082253.3 2.33296E+17

A15_0F1P_A7_2F2P 1519983033 153519867.2 2.33348E+17
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Table B.8: Energy Policy - Single A15
Cycles Energy EDP

Scenario 1
A15(1F0P) 13177354359 8514224604 1.12195E+20

A15(0F1P) A7(2F0P) 6007300820 3345325735 2.00964E+19

A15(0F1P) A7(1F1P) 6043015207 3303619701 1.99638E+19

Scenario 2
A15(1F0P) 6924669448 4454499341 3.08459E+19

A15(0F1P) A7(2F0P) 3238406199 1415874511 4.58518E+18

A15(0F1P) A7(1F1P) 3893742580 1377241962 5.36263E+18

Scenario 3
A15(1F0P) 16525345054 10660315998 1.76165E+20

A15(0F1P) A7(2F0P) 7528199329 4359621305 3.28201E+19

A15(0F1P) A7(1F1P) 7583891955 4317211857 3.27413E+19

Scenario 4
A15(1F0P) 13990996018 9004252136 1.25978E+20

A15(0F1P) A7(2F0P) 6042126529 3367523271 2.0347E+19

A15(0F1P) A7(1F1P) 6102805033 3341149851 2.03904E+19

Scenario 5
A15(1F0P) 11641130291 7484630004 8.71296E+19

A15(0F1P) A7(2F0P) 5173721630 2802200532 1.44978E+19

A15(0F1P) A7(1F1P) 5236319529 2779694015 1.45554E+19

Scenario 6
A15(1F0P) 1238808634 797731621.9 9.88237E+17

A15(0F1P) A7(2F0P) 1470766463 101124842.7 1.48731E+17

A15(0F1P) A7(1F1P) 1580867976 99594957.43 1.57446E+17
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Table B.9: Energy Policy - big.LITTLE
Cycles Energy EDP

Scenario 1
A15_1F0P_A7_2F0P 5972597162 3836175259 2.29119E+19

A15_0F1P_A7_4F0P 4094381053 2425775690 9.93205E+18

A15_0F1P_A7_2F2P 4148396094 2389713794 9.91348E+18

Scenario 2
A15_1F0P_A7_2F0P 3199721514 1591768870 5.09322E+18

A15_0F1P_A7_4F0P 2442099725 1027610947 2.50953E+18

A15_0F1P_A7_2F2P 2506962538 1007184437 2.52497E+18

Scenario 3
A15_1F0P_A7_2F0P 7483573288 4982718550 3.72885E+19

A15_0F1P_A7_4F0P 5102810596 3211485967 1.63876E+19

A15_0F1P_A7_2F2P 5158603861 3163329344 1.63184E+19

Scenario 4
A15_1F0P_A7_2F0P 6034435265 3866209661 2.33304E+19

A15_0F1P_A7_4F0P 4087231585 2421090767 9.89556E+18

A15_0F1P_A7_2F2P 4144104950 2386185555 9.8886E+18

Scenario 5
A15_1F0P_A7_2F0P 5072463496 3145328307 1.59546E+19

A15_0F1P_A7_4F0P 3524821369 1998384765 7.04395E+18

A15_0F1P_A7_2F2P 3582725308 1967466158 7.04889E+18

Scenario 6
A15_1F0P_A7_2F0P 1459278035 108952978.5 1.58993E+17

A15_0F1P_A7_4F0P 1458512482 82797203.31 1.20761E+17

A15_0F1P_A7_2F2P 1570625813 82276376.95 1.29225E+17
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Table B.10: PHISA vs SOA - Performance Policy
Cycles Energy EDP

Scenario 1
big.LITLLE 5747917148 4208095612 2.41878E+19

SOA (Lee2017) 6934683157 7900232951 5.47856E+19

PHISA 3221960451 2055324015 6.62217E+18

Scenario 2
big.LITLLE 2898605187 2102978947 6.09571E+18

SOA (Lee2017) 4100960526 4179633420 1.71405E+19

PHISA 2103543518 930027531.4 1.95635E+18

Scenario 3
big.LITLLE 7278351340 5346748909 3.89155E+19

SOA (Lee2017) 8607884454 9883725757 8.5078E+19

PHISA 3971745240 2720653973 1.08057E+19

Scenario 4
big.LITLLE 5810715154 4238043220 2.46261E+19

SOA (Lee2017) 7338408284 8350770323 6.12814E+19

PHISA 3205967320 2041150697 6.54386E+18

Scenario 5
big.LITLLE 4845718233 3521400047 1.70637E+19

SOA (Lee2017) 6165633346 6945246381 4.28218E+19

PHISA 2790100675 1686068936 4.7043E+18

Scenario 6
big.LITLLE 1118059732 727589988.5 8.13489E+17

SOA (Lee2017) 1167770977 777473120.1 9.07911E+17

PHISA 1512459457 153105390.9 2.31566E+17
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Table B.11: PHISA vs SOA - Energy Policy
Cycles Energy EDP

Scenario 1
big.LITLLE 5972597162 3836175259 2.29119E+19

SOA (Lee2017) 6934683157 7900232951 5.47856E+19

PHISA 3221647605 2009276098 6.47318E+18

Scenario 2
big.LITLLE 3199721514 1591768870 5.09322E+18

SOA (Lee2017) 4100960526 4179633420 1.71405E+19

PHISA 2091726782 856704568.7 1.79199E+18

Scenario 3
big.LITLLE 7483573288 4982718550 3.72885E+19

SOA (Lee2017) 8607884454 9883725757 8.5078E+19

PHISA 3972088769 2676809468 1.06325E+19

Scenario 4
big.LITLLE 6034435265 3866209661 2.33304E+19

SOA (Lee2017) 7338408284 8350770323 6.12814E+19

PHISA 3206043770 1995631068 6.39808E+18

Scenario 5
big.LITLLE 5072463496 3145328307 1.59546E+19

SOA (Lee2017) 6165633346 6945246381 4.28218E+19

PHISA 2790422276 1640027989 4.57637E+18

Scenario 6
big.LITLLE 1459278035 108952978.5 1.58993E+17

SOA (Lee2017) 1167770977 777473120.1 9.07911E+17

PHISA 1456673686 79137193.59 1.15277E+17
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B.2 TUNEd PHISA raw results values
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Table B.12: Performance
A15 A15+4A7 A15(P)+8A7

correlation 168013 101745 64052.2

covariance 151261 110075 73860.4

2mm 2.7E+07 3.9E+07 2.1E+07

3mm 4.3E+07 5.2E+07 3E+07

atax 3315352 2295791 1211861

bicg 2553661 2242909 1268350

cholesky 2265741 1239833 636702

doitgen 7293761 3331253 1761612

gemm 1.1E+08 4.2E+07 2.4E+07

gesummv 1.3E+08 6E+07 3.4E+07

mvt 6714679 3587764 1986457

symm 1.5E+07 1.6E+07 9531864

syr2k 2.6E+07 2.1E+07 1.1E+07

syrk 1.9E+07 1E+07 5240825

trmm 9861433 4143704 3436830

gramschmidt 1.7E+07 3.9E+07 2.2E+07

lu 6390694 5856566 3343264

convolution-2d 4E+07 1.9E+07 9602851

Fdtd-apml 2.4E+07 1.2E+07 6288539
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Table B.13: Energy
1_0 1_4 1(b)_8

correlation 4.1E-05 1.9E-05 1.5E-05

covariance 3.8E-05 2.1E-05 1.7E-05

2mm 0.00731 0.00687 0.00492

3mm 0.01117 0.00937 0.00694

atax 0.00091 0.00041 0.0003

bicg 0.00075 0.0004 0.0003

cholesky 0.00061 0.00023 0.00016

doitgen 0.00195 0.00062 0.00045

gemm 0.02602 0.00743 0.00569

gesummv 0.03034 0.01069 0.00804

mvt 0.0015 0.00063 0.00046

symm 0.00364 0.0028 0.00208

syr2k 0.00739 0.0036 0.00249

syrk 0.00493 0.00179 0.00124

trmm 0.0025 0.00075 0.00079

gramschmidt 0.00436 0.0062 0.00442

lu 0.00163 0.0011 0.0008

convolution-2d 0.01037 0.00325 0.00216

Fdtd-apml 0.00617 0.00219 0.00154
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Table B.14: Performance vs Niagara-like
A15 A15(P)+4A7 Niagara

correlation 168013 106977 166574

covariance 151261 117966 165461

2mm 2.7E+07 3.9E+07 38558751

3mm 4.3E+07 5.3E+07 46688703

atax 3315352 2296942 2740877

bicg 2553661 2242915 2637490

cholesky 2265741 1259940 1832253

doitgen 7293761 3347108 4444602

gemm 1.1E+08 4.2E+07 61070058

gesummv 1.3E+08 6E+07 81921199

mvt 6714679 3591286 3190544

symm 1.5E+07 1.6E+07 15010840

syr2k 2.6E+07 2.1E+07 34239923

syrk 1.9E+07 1E+07 17082189

trmm 9861433 4460487 13989463

gramschmidt 1.7E+07 3.9E+07 30683078

lu 6390694 5856543 8409925

convolution-2d 4E+07 1.9E+07 58609912

Fdtd-apml 2.4E+07 1.2E+07 26814534
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Table B.15: Energy vs Niagara-like
1_0 1(b)_4 8(b)

correlation 4.1E-05 1.98E-05 2.73E-05

covariance 3.8E-05 2.20E-05 2.81E-05

2mm 0.00731 6.88E-03 6.97E-03

3mm 0.01117 9.38E-03 8.50E-03

atax 0.00091 4.13E-04 5.20E-04

bicg 0.00075 4.02E-04 4.80E-04

cholesky 0.00061 2.36E-04 2.92E-04

doitgen 0.00195 6.24E-04 7.87E-04

gemm 0.02602 7.43E-03 1.01E-02

gesummv 0.03034 1.08E-02 1.38E-02

mvt 0.0015 6.29E-04 5.76E-04

symm 0.00364 2.80E-03 2.52E-03

syr2k 0.00739 3.61E-03 5.40E-03

syrk 0.00493 1.79E-03 2.75E-03

trmm 0.0025 8.00E-04 2.19E-03

gramschmidt 0.00436 6.27E-03 4.90E-03

lu 0.00163 1.10E-03 1.43E-03

convolution-2d 0.01037 3.25E-03 7.58E-03

Fdtd-apml 0.00617 2.19E-03 4.09E-03
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AppendixC - RESUMO EM PORTUGUÊS

C.1 Introdução

Por gerações, os processadores de propósito geral implementam instruções espe-

cializadas na forma de extensões de conjuntos de instruções Instruction Set Architecture

(ISA) com o objetivo de aumentar o desempenho de aplicações emergentes. Contudo, tais

extensões impõe um custo significativo na área e potência do processador. Um exemplo

está nas instruções do tipo instrução única, múltiplos dados Single Instruction Multiple

Data (SIMD) e de ponto flutuante Floating-Point (FP), cujos pipelines podem representar

mais da metade da área total de um núcleo do processador. A figura C.1 mostra a divisão

de área e potência do processador A15 da ARM e destaca que a área dos componentes

resposáveis pelas instruções NEON (FP e SIMD na arquitetura ARM) ocupa 69% da área

do processador.

Além disso, a figura C.2 mostra que a quantidade de instruções NEON usadas em

aplicações de thread única (single-thread) é muito baixa. Além disso, a tabela C.1 mostra

que em aplicações paralelas, a quantidade de instruções do tipo NEON é muito pequena

nas regiões seriais, mesmo em aplicações em que essas regiões são maiores.

Nesta tese, são propostas soluções para reduzir a quantidade de suporte que é

dado a extensões de instruções em processadores multinúcleo assimétricos Asymmetric

Multicore (AMC) (sistemas que usualmente implementam núcleos de alto desempenho -

núcleos grandes - e alta eficiência de área/energia - núcleos pequenos), aprimorando sua

eficiência em área e energia. Inicialmente, é introduzido o sistema multinúcleo de ISA

parcialmente heterogênea (Partially Heterogeneous ISA (PHISA)). PHISA é composto

Figure C.1: Divisão da área e potência por componente de um processador ARM A15 de
acordo com o McPAT.

(a) Divisão da área.
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(b) Divisão da potência.
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Figure C.2: Divisão do tipo de instruções em diversas aplicações single-thread. São
destacadas as instruções de extenções NEON.
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de núcleos heterogêneos com uma única ISA base, mas funcionalidades diferentes. Em

outras palavras, alguns dos núcleos deste sistema heterogêneo não implementam comple-

tamente as caras extensões de ISA, mas ainda assim todos compartilham uma ISA base

mútua. Desta forma, ao substituir núcleos de ISA completa por núcleos de ISA parcial

e migrando tarefas sempre que necessário, é possível liberar recursos valiosos de área e

potência do projeto do processador, sem abrir mão completamente do suporte as exten-

sões de ISA. A figura C.3 mostra como esse sistema é pensado. Partindo de um núcleo

A15 completo (1), remove-se as instruções NEON (2) e na mesma potência (3) ou área

Figure C.3: (1)Núcleo A15 tradicional. (2)Núcleo A15 sem instruções NEON instruc-
tions (ISA parcial). (3)Núcleo A15 de ISA parcial + 2 núcleos A7 de ISA completa -
mesma potência máxima (TDP). (4) Núcleo A15 de ISA parcial + 4 núcleos A7 de ISA
completa - mesma área.
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(4) liberadas adiciona-se novos núcleos.

Por outro lado, enquanto a migração de tarefas é eficiente em aplicações de thread

única, este pode não ser o caso em aplicações paralelas. Migrações podem aumentar o

Table C.1: Caracterização das regiões de interesse de aplicações em termos do tamanho
da região paralela e da quantidade de instruções SIMD/FP na região serial.

Benchmark Razão paralela Razão de SIMD/FP serial

parsec

bodytrack 99.10% 0.05%

ferret 98.24% 0.10%

dedup 98.18% 0.00%

facesim 97.56% 0.14%

cholesky 96.56% 0.88%

freqmine 95.38% 0.01%

parvec

swaptions 99.99% 0.00%

fluidanimate 99.67% 0.05%

streamcluster 99.60% 0.01%

canneal 99.58% 0.02%

blackscholes 99.55% 0.01%

vips 98.94% 0.14%

polybench

bicg 100.00% 0.00%

fdtd-apml 99.99% 0.00%

convolution-2d 99.99% 0.00%

gemm 99.97% 0.06%

symm 99.95% 0.00%

syrk 99.90% 0.04%

syr2k 99.89% 0.04%

atax 99.73% 0.06%

2mm 99.27% 1.03%

mvt 98.82% 1.11%

gesummv 98.76% 0.46%

3mm 98.68% 1.66%

doitgen 98.41% 0.83%

trmm 82.25% 6.74%

correlation 81.95% 10.10%

gramschmidt 78.70% 11.72%

covariance 77.40% 17.33%

lu 68.71% 0.09%

splash2x

ocean_ncp 99.85% 0.01%

barnes 99.74% 0.02%

ocean_cp 99.63% 0.04%

radix 99.37% 0.00%

raytrace 99.19% 0.12%

lu_cb 98.48% 0.11%

water_nsquared 97.92% 0.20%

lu_ncb 97.86% 0.15%

radiosity 97.81% 0.22%

fft 97.38% 0.21%

water_spatial 94.12% 0.66%

cholesky 75.95% 2.77%
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tempo em que uma das múltiplas threads precisa para atingir seus pontos de sincroniza-

ção, criando assim um gargalo em sua execução. Para tais aplicações, é proposto apri-

morar o sistema PHISA com um despachador de instruções fortemente acoplado Tightly

Coupled Instruction Offloader (TUNE). A arquitetura com TUNE implementa um sis-

tema PHISA cujo núcleo grande implementa parcialmente a ISA e é responsável pela

execução das regiões seriais das aplicações. Os núcleos pequenos, por outro lado, imple-

mentam todos a ISA completa do sistema e são responsáveis pela execução das regiões

paralelas da aplicação. Sempre que a região sequencial da aplicação precisar executar

uma instrução não implementada no núcleo grande, o TUNE irá despachar estas oper-

ações para os núcleos pequenos de forma transparente. Este sistema nós chamamos de

TUNEd PHISA e é exemplicado na figura C.4.

Nesta tese, é mostrado como o PHISA e TUNE podem ser usados para melhorar

o desempenho e consumo energético ambos de aplicações seriais e paralelas, quando

comparado a projetos tradicionais de AMCs.

C.2 Arquiteturas desenvolvidas

C.2.1 PHISA Multi Núcleos

O desenvolvimento do PHISA multi núcleos parte da ideia de que é possível abrir

mão de componentes específicos de alguns núcleos para adicionar outros componentes

que potencialmente podem acelerar mais aplicações. No caso desta tese, são adicionados,

Figure C.4: TUNEd PHISA com despachador de instruções SIMD/FP.
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na mesma área ou potência dos componentes de SIMD e FP, novos núcleos pequenos. Esta

estratégia cria um processador multi núcleo com maior capacidade de executar diferentes

aplicações em paralelo.

Contudo, como o sistema agora possui núcleos que não são capazes de executar

algumas instruções do conjunto completo da ISA, se faz necessário criar uma formar de

manter o suporte a essas instruções nos nesses núcleos parciais. Para isso, foram criados

diferentes escalonadores que mantém essa compatibilidade migrando tarefas dos núcleos

parciais para núcleos completos quando essas tarefas requerem o uso das instruções re-

movidas. Além disso, também se explora o uso de emulação de instruções em núcleos

parciais.

C.2.2 TUNEd PHISA

O TUNEd PHISA é uma extensão do sistema PHISA pensado para otimizar apli-

cações multi-thread. Como a migração de tarefas feita no sistema PHISA normal pode

criar desbalanceamento de threads, o TUNEd PHISA propõe explorar o despacho de

instruções diretamente de núcleos parciais para as unidades funcionais dos núcleos par-

alelos.

A proposta do TUNEd PHISA é usar um AMC composto de um núcleo grande e

parcial para executar as regiões seriais da aplicação (já que essas executam usando apenas

uma thread) e vários núcleos pequenos e completos para executar as regiões paralelas.

Essa idéia parte da observação de que nas aplicações paralelas, as operações de SIMD

e FP são majoritariamente executadas nas regiões paralelas e raramente nas seriais, de

forma que remover o suporte a essas instruções do núcleo grande não causará grande

impacto.

Contudo, essas instruções ainda precisam ser executadas nos núcleos grandes nos

casos em que elas ocorrem. Para isso, é desenvolvido um despachador de instruções que

é chamado de TUNE. O TUNE é ligado diretamente no estágio de despacho de operações

no pipeline do núcleo grande. Ele irá dividir as operações (quando necessário) SIMD ou

FP e despachá-las diretamente para as unidades de execução dos núcleos pequenos. Após

a executação, os resultados retornam para o núcleo grande, onde eles serão comitados

e escritos no banco de registradores deste núcleo. Portanto, o núcleo grande não muda

seu processo de execução das instruções removidas e ele ve as unidades SIMD e DP dos

núcleos pequenos como se fossem suas próprias unidades. Contudo, como essas unidades
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estão em núcleos mais afastados, a latência de execução dessas instruções irá aumentar.

C.3 Metodologia

Nesta tese foram usadas diferentes ferramentas de modelamento e simulação de

arquiteturas de computadores. Para extrair os dados de área e potência dos diferentes

processadores modelados, foi utilizado o McPAT, uma ferramenta amplamente usada na

comunidade. Já para as simulações, foi usado o gem5 (também amplamente usado para

simular diversas organizações e arquiteturas) e um simulador desenvolvido propriamente

para o PHISA multi núcleos.

Além disso, foram usadas diversas aplicações de várias fontes. Usamos bench-

marks de vários conjuntos usados para avaliar o desempenho de sistemas dos mais vari-

ados ramos. Também foram usadas aplicações reais (de bibliotecas de código aberto) de

processamento de imagens, vídeo e internet das coisas.

Várias configurações de sistemas foram testadas. Além disso, comparamos nossos

sistema PHISA e TUNEd PHISA com configurações de sistemas reais, como o big.LITTLE

e DynamIQ da ARM e o Niagara da SUN.

C.4 Resumo dos resultados

Os resultados demonstram a efetividade dos sistemas PHISA em relação aos sis-

temas tradicionais de ISA única. O PHISA consegue, com o mesmo Thermal Design

Power (TDP) máximo e em uma área menor, ter melhor desempenho e consumo en-

ergético do que os sistemas tradicionais. Também avaliamos o uso de emulação de in-

struções junto com a migração de tarefas e verificamos que é possível usar essa estratégia

para diminuir o número de migrações no sistema.

Do ponto de vista do TUNEd PHISA, os resultados também mostram que com o

aumento do número de núcleos do sistema (na mesma área original), é possível aumentar a

exploração de Thread-Level Parallelism (TLP) e obter mais desempenho do que o sistema

tradicional. Esse aumento do desempenho é grande o susficiente para compensar a perda

devido aos despacho de instruções nas regiões seriais (devido ao uso de um núcleo grande

parcial). Além disso, o consumo de energia no sistema com TUNE também é menor do

que no sistema tradicional.
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