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“Computers are like Old Testament gods; lots of rules and no mercy.”
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ABSTRACT

Reliability has become one of the main issues for computing devices employed in several

domains. This concern only deepens with the increase of integration in the same chip of

several peripherals and accelerators. To evaluate computational system reliability, fault

injection and radiation experiments are used. Fault injection in microarchitectural models

of the processor provides deep insights on faults propagation through the entire system

stack, including the operating system. Beam experiments, on the other hand, estimate the

device’s expected soft error rate in realistic physical conditions by exposing it to the ac-

celerated particle beam. Combining beam experiments and fault injection data can deliver

deep insights about the device’s expected reliability when deployed in the field. However,

it is yet largely unclear if the fault injection error rates can be compared to those reported

by beam experiments and how this comparison can lead to informed soft error protection

decisions in early stages of the system design.

In this work, first, the data gathered with extensive beam experiments (on physical CPU

hardware) and microarchitectural fault injections (on an equivalent CPU model on Gem5)

performed with 13 different benchmarks executed on top of Linux on an ARM Cortex-A9

microprocessor are presented and analyzed. We then compare the soft error rate estima-

tions that are based on neutron accelerated beam and fault injection experiments. We

show that, for most benchmarks, fault injection can be very accurately used to predict the

Silent Data Corruptions (SDCs) rate and the Application Crash rate. The System Crash

rate measured with beam experiments, however, is much larger than the one estimated by

fault injection due to unknown proprietary parts of the physical hardware platform that

can’t be modeled in the simulator. Overall, our analysis shows that the relative difference

between the total error rates of the beam experiments and the fault injection experiments

is limited within a narrow range of values and is always smaller than one order of mag-

nitude. This narrow range of the expected failure rate of the CPU provides invaluable

assistance to the designers in making effective soft error protection decisions in early de-

sign stages.

After that, the impact of cores integration and the OS interference on the reliability of

Arm microprocessors is also analyzed and quantified. But in this analysis besides the

same Arm Cortex-A9, as used in the previous analysis, a standalone Arm Cortex-A5 is

also tested with both neutron beam and microarchitecture-level fault injections (on equiv-



alent CPU models of the A5 and A9 CPUs on Gem5 simulator). Correlating the beam

experiments to the fault injection results it was found that due to the peripherals and inter-

faces, the integration of various cores significantly increases the System Crash rates but

has a negligible impact on the SDC rate which is attributed to the CPU cores. Moreover,

the OS has a beneficial impact on the Application Crashes but not on the System Crashes

nor the SDC rates. The results of this second analysis firmly confirm, on two different

CPU cores, the initial findings and speculations from the first analysis that the SDC part

of the overall system failure rate is minimally affected by the SoC integration and the

existence of the OS, while the Crashes parts are more severely affected by both aspects.

The findings can be employed to support diligent design decisions for CPU cores error

protection at the hardware or software level.

Keywords: Neutron Radiation Experiment. Reliability. ARM processor. Fault Injection.



Entendendo o Impacto de Integração de Núcleos e Sistema Operacional sobre a

Confiabilidade em Sistemas Baseados em ARM

RESUMO

A confiabilidade se tornou um dos principais problemas em dispositivos de computação

empregados em vários domínios. Essa preocupação apenas se aprofunda com o aumento

da integração no mesmo chip de vários periféricos e aceleradores. Para avaliar a confia-

bilidade de um sistema computacional, são utilizados experimentos de injeção de falhas

e de radiação. A injeção de falhas em modelos microarquiteturais do processador, por

um lado, fornece informações detalhadas sobre a propagação de falhas em todo fluxo do

sistema, incluindo o sistema operacional. Os experimentos com radiação, por outro lado,

estimam a taxa de erro mais proximo de condições físicas realistas, expondo-o a fluxos

acelerados de partículas. A combinação de experimentos de radiação e dados de injeção

de falhas pode fornecer informações profundas sobre a confiabilidade esperada do dispo-

sitivo quando implantado em campo. No entanto, ainda não está claro se as taxas de erro

de injeção de falha podem ser comparadas com as relatadas por experimentos com radi-

ação e como essa comparação pode levar a decisões concientes sobre proteção de erros

nos estágios iniciais do projeto de um sistema.

Neste trabalho, primeiro são apresentados e analisados, os dados coletados com extensos

experimentos de radiação (no hardware físico da CPU) e injeções de falhas microarqui-

teturais (em um modelo de CPU equivalente no Gem5) realizadas com 13 benchmarks

diferentes executados no Linux em um microprocessador ARM Cortex-A9. Em seguida,

comparamos as estimativas de taxa de erro leve baseadas em experimentos de radiação

de nêutrons e injeção de falhas. Mostramos que, para a maioria dos benchmarks, a in-

jeção de falhas pode ser usada com muita precisão para prever a taxa de SDCs (Silent

Data Corruptions) e a taxa de falha do aplicativo. A taxa de falha do sistema medida com

experimentos de radiação, no entanto, é muito maior que a estimada por injeção de falha

devido a partes proprietárias desconhecidas da plataforma de hardware físico que não po-

dem ser modeladas no simulador. No geral, nossa análise mostra que a diferença relativa

entre as taxas de erro total dos experimentos de radiação e as experiências de injeção de

falha é limitada dentro de uma faixa estreita de valores e é sempre menor que uma ordem

de magnitude. Esse intervalo estreito da taxa de falhas esperada da CPU fornece assistên-

cia inestimável aos projetistas na tomada de decisões eficazes de proteção contra erros de



software nos estágios iniciais do projeto.

Depois disso, o impacto da integração dos núcleos e a interferência do Sistema Opera-

cional na confiabilidade dos microprocessadores Arm também são analisados e quanti-

ficados. Mas nessa segunda análise, além do mesmo Arm Cortex-A9 usado na análise

anterior, um Arm Cortex-A5 também é testado com injeções de falha no nível de mi-

croarquitetura (em modelos de CPU equivalentes dos processadores A5 e A9 no Gem5

simulador) e na radiação de nêutrons. Correlacionando os experimentos de radiação com

os resultados da injeção de falhas, verificou-se que, devido aos periféricos e outras in-

terfaces, a integração aumenta significativamente as taxas de falha do sistema, mas tem

um impacto insignificante na taxa de SDC atribuída aos núcleos da CPU. Além disso, o

sistema operacional tem um impacto benéfico nos travamentos de aplicativos, mas não

nos travamentos do sistema nem nas taxas de SDC. Os resultados desta segunda análise

confirmam firmemente, em dois núcleos diferentes de CPU, as descobertas e especula-

ções iniciais da primeira análise de que a parte SDC da taxa geral de falhas do sistema

é minimamente afetada pela integração do SoC e pela existência do sistema operacional,

enquanto os Crashes são mais severamente afetadas por ambos os aspectos. Ambas des-

cobertas podem ser empregadas para apoiar decisões de projeto com o objetivo minimizar

a taxa de erros tanto no nível de hardware quanto no de software.

Palavras-chave: Experimentos de radiação de neutrôns, Confiabilidade, Processadores

ARM, Injeção de Falhas.
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1 INTRODUCTION

Reliability has become one of the main concerns for computing devices employed

in several domains, from High Performance Computing (HPC) to automotive, military,

and aerospace applications (LUCAS, 2014; DONGARRA; MEUER; STROHMAIER,

2015; COHEN et al., 2018). Reliability has been identified by the U.S. Department

of Energy (DOE) as one of the ten major challenges for exascale performance comput-

ing (LUCAS, 2014). In fact, a lack of understanding or the underestimation of devices and

applications error rate may lead to lower scientific productivity of large scale HPC servers,

resulting in significant monetary loss (SNIR et al., 2014). When the computing device is

integrated in cyber-physical systems such as cars, airplanes, or Unmanned Aerial Vehi-

cles (UAVs), high reliability becomes mandatory and unexpected errors should be strictly

avoided (DONGARRA; MEUER; STROHMAIER, 2015; COHEN et al., 2018).

For example, the Titan super computer at Oak Ridge National Laboratory, which

is composed of 18000 Graphics Graphics processing units (GPU), registered during 3.2

years 18000 errors. This means 14 errors per day. Another example, is the Jaguar super

computer also located at Oak Ridge National Laboratory. With its 360 terabytes of main

memory, it was measured 350 ECC error per minute.

This problem is also seen in self-driving cars, a emerging trend in the automotive

market. One example would be the self-driving car from Google which, when adding

all journeys made, traverse a distance of 1.5 ∗ 106 miles. During all these trips, it was

detected 1 system error. Assuming a speed of 25 mph, this results in 60000 hours driven.

This results in an error rate of 16000 errors per 109 hours of operation. However, if

the cars speed would have been 50 mph, this would result in 30000 hours of operation

resulting in an error rate of 23000 errors per 109 hours of operation.

Additionally, reliability concerns have become more crucial as highly integrated

System on Chips (SoCs) move from consumer applications to the automotive, military,

aerospace, and HPC markets as the the complexity of these systems increase and the tran-

sistor size keeps shrinking. The trend in the design of computing devices is to include

multiple, heterogeneous, cores in the same chip. This allows flexibility and more compu-

tational power.

Modern SoCs usually integrate a central processing unit (CPU) and an acceler-

ator, such as Graphic Processing Units (GPUs) or a Field Programmable Gate Array

(FPGA). These SoCs typically allow the computing cores to share a common memory,



15

which significantly improves the performance and reduce the total power consumption

by removing costly device-to-device data transfers. The improved efficiency of heteroge-

neous SoCs makes them widely common in portable devices such as smartphones, tablets,

and laptops. Lately, embedded SoCs are become extremely attractive for autonomous ve-

hicles and High Performance Computing. Arm announced the interest in entering the

self-driving market based on the increased performance, improved efficiency, and consid-

erable computing power, which is necessary to detect objects in real-time. Moreover, the

US Department of Energy’s (DOE’s) labs at Sandia and Los Alamos, in NM, announced

that their next clusters are going to be powered by Arm SoCs (HEMSOTH, 2018).

To be useful and effective any method for the chip’s reliability evaluation must be

both fine grain (i.e., providing full visibility and understanding of faults effect in the mi-

croarchitecture and the software stacks) and realistic. A fine grain evaluation is employed

to capture a clear understanding of the causes and effects of faults, to identify the most

vulnerable parts of the hardware or software, and to observe how raw bit flips propagate

through the system stack. A realistic evaluation ensures a correct prediction of the ex-

pected error rate of the device when used in the field and provides realistic models of the

faulty behavior. The fine grain and realistic evaluation of the reliability of Commercial

Off-The-Shelf (COTS) devices, that became increasingly common in both safety-critical

and HPC applications, is challenging as information about the architecture and device

characteristics is typically very limited.

Neutron accelerated beam experiments are the most realistic way to measure the

error rate of a code or device in conditions that are as close as possible to the actual ones

after system deployment. However, neutron accelerated beam experiments are coarse

grain, i.e., errors can be observed only when they manifest at the application output or

when they compromise the system responsiveness. There is no information about the

spatial/temporal location of the original fault and no information on its propagation pat-

tern through the microarchitecture, the system software or the application software layers.

It is, therefore, hard to identify the most vulnerable hardware resources or software code

portions and to extend/generalize results to other applications or devices when relying on

neutron accelerated beam experiments only.

Fault injection on models of a microprocessor at different detail levels (architec-

ture, microarchitecture, register-transfer, transistor) has been extensively used to evaluate

the vulnerability of hardware architectures and software codes. By injecting faults in the

hardware blocks of a microprocessor or particular parts of a software code it is possi-
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ble to measure the probability for faults to impact the application output or the system

responsiveness, i.e., the Architectural Vulnerability Factor, AVF (MUKHERJEE et al.,

2003). Fault injection can then identify codes, code portions, or architectural resources

which are more likely, once corrupted, to affect the system reliability. This information

is extremely useful to design dedicated and efficient hardening solutions. It has been

shown that fault injection at the microarchitecture level is a very effective (fast and ac-

curate method) for early assessment of the reliability of a microprocessor (CHATZIDIM-

ITRIOU; GIZOPOULOS, 2016; KALIORAKIS et al., 2017). However, faults can typi-

cally be injected in a limited set of resources and, due to time constraints, simplified errors

models (such as single bit flip) are usually adopted. In other words, if fault injection is

not validated or tuned with physical experimental data, the efforts could potentially lead

to imprecise results.

On one side a device with more integrated accelerator can have more functional-

ities, execute codes with higher speed and efficiency, however, this may result in loss of

reliability. Although the reliability of standalone CPUs and FPGAs has been extensively

studied (WANG; LIU; SUN, 2018; Vallero; Carelli; Di Carlo, 2018; Chatzidimitriou et

al., 2019a) in previous works, which have also addressed the reliability of GPUs for HPC

and automotive applications (Wilkening et al., 2018; Vallero et al., 2018; Santos et al.,

2019; OLIVEIRA et al., 2017b), few works evaluate the impact of integration of a com-

puting core in a SoC on reliability.

The increased hardware complexity required to integrate several resources and the

increased software complexity necessary to manage these resources makes the reliability

evaluation of embedded CPU extremely challenging. This setup suffers failures (either

Silent Data Corruptions, SDCs or Crashes) that can only be caused by soft errors affecting

the CPU core while running user instructions. This integration of the SoC can potentially

modify the SDC and Crash FIT rates of the system.

Additionally, in order to use the full advantage of the resources available in an

SoC, the use of an Operating System (OS) becomes essential. The OS is used to orches-

trate the execution of multiple tasks, to manage resources utilization, and to allow codes

portability. When using an OS, besides the main application running, there are also other

applications running responsible for the OS management. This might influence the sys-

tem reliability. Although previous works have evaluated the effect of the operating system

on a code reliability and even designed neutron accelerated beam hardened OS (Iyer; Ros-

setti, 1985; Santini et al., 2015; SANTINI et al., 2016; SANTINI et al., 2017), it is still
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unclear which are the architectural vulnerabilities that induce errors in operating systems.

1.1 Work Proposal

This work aims to refine and confirm initial findings and speculation about the

sources of failures manifesting as SDCs and as Crashes as well as their magnitude varia-

tion when SoC integration and OS inclusion are employed.

More specifically, the main contributions of this work are:

• Compare fault injection and neutron accelerated beam experiments in order to eval-

uate at which level fault injection can be used to emulate neutron accelerated beam

experiment. ("How much fault injection SDC and Crashes differ from reality?")

• An experimental evaluation of the impact of cores integration and Operating System

on Arm microprocessors reliability, based on neutron accelerated beam experiments

("how much do SDC and Crashes differ?").

• A microarchitecture-level fault injection analysis of the vulnerability of programs

executed on top of the Linux kernel and also bare-metal in Arm microprocessors

("how much do SDC and Crashes differ in this setup as well?").

• Hints and guidelines on how to estimate the reliability of a microprocessor when it

is integrated on a SoC or when executing programs on top of an OS. ("how much

does SDC and Crash rates change when SoC and OS integration is employed?").

1.2 Work Structure

The rest of this work is organized as follows: Chapter 2 presents some important

definition and concepts used in this work. Chapter 3 presents some works already done

in the reliability field. Chapter 4 shows the methodology used for this work. In Chap-

ter 5, the results are presented and discussed. First, two methodologies, fault injection

and neutron accelerated beam experiments, are compared and analysed. After, the results

comparing the Operating System and integration impact are presented and discussed. Fi-

nallly, conclusions are presented in Chapter 6.
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2 BACKGROUND

In this section, the main concepts of radiation effects and reliability, as the metrics

used in the reliability evaluation are presented.

2.1 ARM architecture

ARM is one of the most used architectures on embedded systems. It started focus-

ing as a low-power processor architecture. Most ARM processors design seek a Reduced

Instruction Set Computer (RISC) architecture aiming to get the best clock cycle perfor-

mance by simplifying the computing architecture. Today there are 3 main families of

ARM processors, design for different applications, Cortex-A, Cortex-R and Cortex-M.

The Cortex-A family is a group of 32-bit and 64-bit processor cores, intended for

application use. It includes several features found in general-purpose processors such as

Memory Management Unit (MMU).

The Cortex-M is a group of 32-bit RISC ARM processor cores, intended for mi-

crocontroller use. The main difference between the M family to the A is that there is

no FPU unit but on latter cores it can be added but it is optional. Since this family of

cores is focused on microcontrollers there is no MMU unit, therefore, it cannot run a full

general-purpose OS.

The Cortex-R is a family of ARM cores designed for high performance hard real-

time and safety-critical applications. It is similar to the A profile for application process-

ing but adds features that make it more fault-tolerant and suitable for use in hard real-time

and safety-critical applications. Some of these features include non-overlapping memory

regions, ECC on L1 cache and buses and Dual-core lockstep for CPU fault tolerance.

2.2 Faults, Errors and Failures Concepts

In the literature faults errors and failures have similar but with small differences

in their definition. In order to establish a standard in this work, the definition used for

these 3 concepts is described in (Avizienis et al., 2004). The definition of failure states

that, if the system deviates from the correct function which it was designed. The failure

is caused by an error, which is the state that deviates from the correct state of a system.
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The cause of an error is called a fault. Faults can be classified as permanent, transient or

intermittent. Permanent faults are ones that are continuous in time, transient faults are the

ones which are temporary and occur randomly. Intermittent faults are temporary faults

which happens repetitively. A fault can be active if it causes and error otherwise it is

called dormant.

2.3 Radiation Effects in Electronic Devices on Ground Level

When a galactic cosmic ray interacts with the terrestrial atmosphere, it triggers

a chain reaction that generates a flux of particles (mainly neutrons) that reach ground.

About 13 neutrons/((cm2) × h) reach ground (JEDEC, 2006). A neutron strike may

perturb a transistor’s state, generating bit-flips in memory or current spikes in logic cir-

cuits that, if latched, lead to an error (MAHATME et al., 2011). A transient error can

have no effect on the program output (i.e., the fault is masked, or the corrupted data is not

used) or propagate through the abstraction stack of the system leading to a Silent Data

Corruption (SDC), or unrecoverable behaviors such as a program or system crashes.

The error rate of an application running on a computing device depends on both

the memory/logic sensitivity (BAUMANN, 2005; NOH et al., 2015) and the probabilities

for the fault to propagate through the architecture or program (MUKHERJEE et al., 2003;

SRIDHARAN; KAELI, 2010). Hardening solutions can be applied at different levels

of abstraction (from transistor level to software or system level) to reduce the probabil-

ity of the fault occurrence or to avoid fault propagation. One of the most common and

effective strategies to protect memory is the Single Error Correction Double Error Detec-

tion (SECDED) Error Correcting Code (ECC). However, many user-oriented embedded

devices, such as ARM Cortex A5 and A9 do not implement ECC in their memory.

2.4 Effects of radiation-induced errors on processors

As discussed in the previous section, the radiation may disturb the transistor state

causing a transient pulse. This pulse is called Single Event Transient (SET). If a SET

happens in a memory cell it may result in a bit-flip, a Single Event Upset (SEU). If more

than one bit is flipped in the same memory word, this event is defined as Multiple Bit

Upset (MBU). Depending where a SET happens, it may lead to SDCs or crashes. If a
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SET causes a SEU or a MBU in in the register file or the caches this may lead either to

an SDC or to a Crash. If a byte containing data is modified this may lead to a SDC but

if a control variable is modified this will lead to a Crash or in rare cases to an SDC if the

modified value is a valid one in the context of the execution. In this case a crash maybe an

explicit error detected by the CPU or and infinite loop, where the exit condition is never

reached. The same behavior is expected on the data and instruction caches, or the data

portion on the upper-level caches. In the specific case of the instruction caches, a SET

can either cause an invalid instruction to executed leading to a crash or an execution of

a different but valid instruction leading to a SDC. (OLIVEIRA, 2017). A SET on the

control logic may lead to a crash or a SDC and due to the computation being wrongly

done or the synchronization maybe. Also a SET in the ALU or in the FPU, may cause a

SDC or a crash, due the computation being wrongly done.

2.5 Functional Safety

A safety-critical application is defined as an application whose failure may result

in loss of life, property damage, or environmental damage (Knight, 2002). Some embed-

ded systems are used in safety-critical systems, so they have specific dependability con-

straints. The main properties for embedded systems used in safety-critical applications

are reliability, maintainability, availability, safety, and security. Reliability is the proba-

bility of a fail on the system. Maintainability is the probability when a failure occurs, it

could be repaired on a time interval. Availability is the probability that the system will

be available to service. Safety is the probability that the system will not cause any harm

or property damage. Security is the probability if the system has confidential data it will

keep this data confidential, and authentic communication is guaranteed (MARWEDEL,

2010).

It is worth noting that in some specific applications embedded systems are re-

quired to respect all the mentioned requirements. Self-driving cars, civilian and military

aerospace sectors are examples in which the system must be reliable while manipulating

a significant amount of data in real-time and be extremely energy efficient. In this sce-

nario, design an embedded system that fills all requirements is not an easy task, due to the

resource limitation, essentially on energy and performance, and the inhospitably of the

operating environment which some times is not possible to emulate realistically.
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2.6 Reliability Evaluation Methodologies

The evaluation of the error rate of a device is essential to understand if the device

meets the project’s reliability requirement. Additionally, an early pre-silicon prediction

of the device error rate is useful to evaluate if the reliability needs to be improved and to

identify possible design vulnerabilities.

Realistic error rates can be measured exposing the real hardware to controlled par-

ticles beams. By exposing the device to particle beams, it is possible to mimic the effect

of natural radiation on the final system in the field. Thanks to the high particles flux in-

tensity, a statistically significant amount of data is gathered in a short time. Moreover, the

same kind of faults that would impact the device in its application in the field are injected

in all physical hardware resources with realistic probabilities. Unfortunately, radiation

experiments offer limited visibility of fault propagation as faults are observed only when

they compromise the system functionality (corrupting the output or crashing the appli-

cation/system). With radiation experiments it is then very hard to correlate the observed

effects with their causes, limiting the identification of the system most vulnerable parts.

Additionally, radiation experiments can obviously be performed only on real hardware,

after the device project has been finalized.

Designs that need to comply with certain dependability constraints require deci-

sions to improve the reliability of the system but without adding unnecessary overhead.

Reliability evaluation is intended also to support such decisions. It is critical to have this

analysis in time and as early as possible, since any additional re-design iteration can lead

to catastrophic costs. As a result, early-reliability assessment is often performed in mod-

els that exist prior to silicon prototypes, which can be summarized as architecture level,

microarchitecture level and Register-transfer Level (RTL). These vary in level of detail,

with the most abstract being available earlier in the design chain while the most detailed

(RTL) being available at the later stages. Architecture-level models often lack most, if not

all, of the hardware details of the system, offering a software level functional emulation,

while microarchitecture-level includes most functional and timing-accurate models of the

microarchitecture (pipeline, cache memories etc.), offering clock cycle accuracy. In addi-

tion, most memory elements of the system (including (Static Random-access Memories

(SRAMs), pipeline registers and flops/latches not related to logic; e.g. state machines)

are accurately modeled in microarchitecture level. RTL offers a full description of the

implemented hardware, including the logic and SRAM components. Simulation time for
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Table 2.1: Performance of different abstraction layer models (CHO et al., 2013;
CHATZIDIMITRIOU et al., 2017a).

Abstraction Layer Model Performance
(Cycles/sec)

Software (native) Modern processors 2× 109

Architecture Gem5 atomic model 2× 107

Microarchitecture Gem5 detailed out-of-order model 2× 105

RTL NCSIM simulation 6× 102

each abstraction layer is proportional to the level of detail, with each detail step adding

approximately 2 orders of magnitude more simulation time; the most detailed RTL model

ends up being extremely slow. Table 2.1 illustrates the simulation throughput of each

abstraction level.

Different reliability evaluation techniques can be applied on top of each model, de-

livering different levels of detail along with throughput. Probabilistic and statistical mod-

els (ASADI et al., 2005; SUH; ANNAVARAM; DUBOIS, 2012) often require a single

simulation to deliver a rough estimation of the reliability, based on simulation statistics.

Architecturally Correct Execution (ACE) analysis (FU; LI; FORTES, ; MUKHERJEE et

al., 2003; WANG; MAHESRI; PATEL, 2007; GEORGE et al., 2010) on the other hand

tries to capture more details on the residency and lifetime of workload critical data on

each vulnerable component of the system, and weight their vulnerability against their

sensitive exposure time. ACE analysis often requires one or a few simulations to quantify

the vulnerability, but also requires additional development effort in order to capture all of

the system’s complexity. ACE analysis is claimed to have adjustable accuracy (propor-

tional to the effort) but the tradeoff between effort and speed should always lean towards

speed, otherwise more straight-forward approaches can be used (BISWAS et al., 2008).

Statistical fault-injection is one of the most widely adopted approaches of reliability as-

sessment. It offers the flexibility of variable accuracy (depending on the size of statistical

sample) while at the same time, it delivers failure samples produced by simulation. On

the drawback side, the requirement of multiple simulations requires significant amount of

time and, depending on the model detail, it can often be considered as unfeasible. There-

fore, one of the objectives of this work is to compare the FIT rate which fault injection

estimated using neutron accelerated beam experiment, giving an estimation of how far is

the former from reality.



23

3 RELATED WORKS

Particle accelerators have been used for many years to measure and study the re-

liability of devices and applications (BAUMANN, 2005; ZIEGLER; PUCHNER, 2010).

Computing devices reliability has a strong tradition, motivated mainly by their use in

safety-critical applications (SEIFERT; ZHU; MASSENGILL, 2002; NGUYEN et al.,

2005; CONSTANTINESCU, 2002).

Arm processors have been exposed to accelerated particles beam and have been

subjects to fault injection in previous studies. In (SANTINI et al., 2016), (OLIVEIRA;

RODRIGUES; KASTENSMIDT, 2017), (MARTÍNEZ-ÁLVAREZ et al., 2016), and (FRATIN

et al., 2018). authors present neutron accelerated beam experimental data on embed-

ded Arm Cortex-A9, propose hardening solutions, and discuss the impact of the pres-

ence of an operating system in the application and device reliability. (RODRIGUES;

KASTENSMIDT, 2016) and (ROSA et al., 2015) present results on architecture-level

fault injection of the processor core, while (CHATZIDIMITRIOU et al., 2017b) includes

a microarchitecture-level fault injection on A9. (CHATZIDIMITRIOU et al., 2017a)

presents a comparative reliability evaluation between microarchitecture and RTL fault in-

jection, for baremetal workloads running on Cortex-A9, while (ITURBE; VENU; OZER,

2016; BLOME et al., 2005) also includes results of RTL fault injection on Arm CPU

cores. Apart from Arm processors, fault injection on RTL was also used in (CHO et al.,

2013; MANIATAKOS et al., 2011; WANG; MAHESRI; PATEL, 2007). Some prelimi-

nary studies have proposed a comparison or combination of different reliability evaluation

techniques (WANG; MAHESRI; PATEL, 2007; GEORGE et al., 2010; CHO et al., 2013;

FRATIN et al., 2018; Santos et al., 2019; OLIVEIRA et al., 2017a). In (Chatzidimitriou

et al., 2019b), a first attempt to compare the reliability evaluation of Cortex-A9 using

neutron accelerated beam experiment and microarchitectural fault injection was made.

According to authors, for SDCs the comparison can be very close, for Crashes the differ-

ence is significant. Some work has been done to evaluate the influence of an operating

system on the reliability of codes executions (Iyer; Rossetti, 1985; Santini et al., 2015;

SANTINI et al., 2016; SANTINI et al., 2017). The available data shows that the operating

system can be beneficial in the presence of cache conflicts, as the application data is writ-

ten back when the operating system takes control. However, these works do not perform

fault injection, as it is done in this work, but are just based on neutron accelerated beam

experiments, which might limit the insights that can be gathered.
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Finally, none of these works address the impact of the integration of heterogeneous

components in a single chip in the reliability of the device or of a code. This is one of the

first works that uses both neutron accelerated beam experiments and microarchitectural

fault injection to better understand how the operating system and the cores integration

affect the reliability of a processor.
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4 METHODOLOGY

This chapter aims to present the experimental setup for the neutron accelerated

beam test and fault injection campaigns. First, it is described the Arm CPUs (the Cor-

tex A5 and the Cortex A9) that were used, the operating system version running on the

selected processors, and the benchmarks that were executed.

The study is performed on an Arm R©CortexTM-A5 implemented in the Microchip

SAMA5D2 XPLAINED ULTRA board and on the Arm R©CortexTM-A9 that is embedded

in a Xilinx ZynqTM-7000 AP System on Chip (SoC). Both the A5 and A9 CPU configu-

rations were resembled and simulated in Gem5 using the in-order and out-of-order CPU

cores, respectively (details in Section 4.2). The Zynq device has two Arm cores operating

at a maximum frequency of 667 MHz and the SAMA5D2 device has a single core oper-

ating at a maximum frequency of 500MHz. Each core has a 32 KB 4-way set-associative

instruction and data caches and a unified 8-way set-associative Level 2 cache of 128kB

and 512kB for A5 and A9 respectively. The Gem5 model was tuned to resemble the phys-

ically available one and the second core of the SoC was disabled in order to make the two

evaluation setups as close as possible. The A9 is implemented with with 28nm CMOS

technology and the A5 is implemented with 65nm.

The two configurations were evaluated in both bare-metal and full-system envi-

ronments. The Linux kernel versions that were used on the neutron accelerated beam

setups is 3.14 for the A9 and 4.14 for the A5 while for Gem5, the kernel version used for

both devices is 3.13. These were the closest kernel versions that have been ported on the

two platforms. Despite the different versions between A9 and A5, all executables were

compiled with the same compiler and static linked. This means that all the functions used

during computation are exactly the same between the A5 and A9. The only difference

would be the communication with the board which uses the Ethernet adapter and the ap-

propriate system calls which are only used at the end of each iteration of the benchmark.

Table 4.1 presents the main characteristics of the two setups.

Table 4.1: Summary of setup attributes.
Property Cortex-A5 Cortex-A9

Setup Neutron accelerated beam Gem5 Neutron accelerated beam Gem5
Platform SAMA5D2 VExpress Zynq 7000 VExpress

CPU cores 1 1 1∗ 1
L1 Cache 32 KB 4-way 32 KB 4-way 32 KB 4-way 32 KB 4-way
L2 Cache 128 KB 8-way 128 KB 8-way 512 KB 8-way 512 KB 8-way

Kernel version 4.14 3.13 3.14 3.13
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To have a broad analysis and avoid the bias of results on specific applications, the

chosen benchmarks have different computational characteristics. The applications chosen

are part of mibench (GUTHAUS et al., 2001) testbench and are listed below.

• CRC32: It takes a file as input and calculate the corresponding Cyclic Redundancy

check (CRC) with length of 32 bits. CRC is widely used in networks and storage

devices in order to detect unwanted changes in the data. It calculates the corre-

sponding 32-bit Cyclic Redundancy check (CRC) of a given file input. CRC is

widely used in networks and storage devices in order to detect unwanted changes

in the data.

• Dijkstra: This benchmark calculates the shortest path between 2 nodes using a ad-

jacency matrix. 100 paths are calculated during each execution.

• FFT: It performs the Fast Fourier Transform (FFT). The FFT is widely used in

digital signal processing.

• Jpeg C (Encode) and Jpeg D (Decode): This benchmark converts one PPM image

to JPEG format (JPEG C) and from JPEG to PPM (JPEG_D). One input file is a

PPM image with size of 512X512 pixels (JPEG C), the other one is a JPEG image

(JPEG D). These benchmarks convert one PPM image to JPEG format (Jpeg C) and

vice versa (Jpeg D).

• MatMul and MatMul_Big: It multiplies two matrices. This algorithm is used in

image processing and Convolutional Neural Networks (CNN).

• Qsort: It sorts an array using the quick-sort algorithm implemented in the GNU

C standard library. This algorithm was chosen in order to represent data sorting

operations.

• Rijndael E (Encryption) and Rijndael D (Decryption): These two benchmarks use

the Rijndael algorithm as defined in the Advanced Encryption Standard (AES). One

encrypts an input file (E) and the other decrypts an encrypted input file (D).

• StringSearch: It searches a word in a sentence.

• Susan C: It uses the corner SUSAN algorithm in order to find the corners of the

features. This algorithm is used to detect corners in features in an image.

• Susan E: It uses the edge SUSAN algorithm in order to find the edges of the fea-

tures.

• Susan S: It uses the SUSAN algorithm in order to remove noise and preserve the

image structure.
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Figure 4.1: Neutron accelerated beam test setup at ChipIR.

Source: The author

It is worth to mention that the exact same input vector, i.e., the same values and

same size for each corresponding benchmark were used in both neutron accelerated beam

experiments and fault injection campaigns. Further discussion is presented in Section 4.3.

4.1 Neutron Beam Experiments

The neutron accelerated beam experiments were performed at the ChipIR facility

of the Rutherford Appleton Laboratory (RAL) in Didcot, UK and at Los Alamos National

Laboratory (LANL). As faults are induced with realistic probabilities and the whole chip

is irradiated, faults are not restricted to a subset of accessible resources like for most

software fault-injection frameworks. Neutron beam experiments are then a precise way

to predict devices and applications error rates but can give little insights on the origin of

faults, as errors are observed only when they appear at the output.

Figure 4.1 shows part of the setup at ChipIR. For the experiment two Xilinx Zed-

boards and three Microchip boards with a 3 × 3 cm beam spot were irradiated, which is

sufficient to irradiate the chip uniformly.

As shown in Figure 4.2, the spectrum of energy of neutrons produced at ChipIR is

very similar to the atmospheric one as measured in (JEDEC, 2006). This means that the

kind of neutrons produced at ChipIR (or LANL) is very similar to the neutrons that hit

computing devices on realist applications. ChipIR, then, provides a neutron beam suitable
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Figure 4.2: Spectrum of neutron energy produced at ChipIR compared to the atmospheric
and Los Alamos Nuclear Science Center (LANSCE) one.

Source: (CAZZANIGA; FROST, 2018)

to mimic the atmospheric neutron effects in electronic devices (CAZZANIGA; FROST,

2018).

The available neutron flux was about 3.5 × 106n/(cm2/s), about 6 orders of

magnitude higher than the terrestrial flux (13n/(cm2 × h) at sea level (JEDEC, 2006)).

Since the terrestrial neutron flux is low, in a realistic application it is highly unlikely to

see more than a single corruption during program execution. Experimental data, then, can

be scaled to the natural radioactive environment without introducing artifacts.

A beam spot of 3cm of diameter was chosen, which is sufficient to uniformly

irradiate the SoC without affecting the main memory or other on-board peripherals. This

means that data in the DDR is not exposed to the neutron accelerated beam and is not

corruptible. In the unlikely event of a fault in the DDR, this would be detected in the

setup as it would affect multiple subsequent executions.

With the experiments, as the spectrum of neutrons energy at ChipIR resembles
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the terrestrial one, the Failures In Time (FIT) rate of the device executing a code (fail-

ures per 109 hours of operation) can be measured. FIT depends only on the kind and

amount of resources required for computation, without considering the code execution

time (BAUMANN, 2005).

During the experiments, the Arm output is compared to a golden reference which

contains the expected output (pre-computed in a fault-free environment). Any mismatch

between the experimental and expected output is marked as an SDC and logged for later

analysis. Additionally, during the execution the Arm sends an "Alive" message to a host

PC to indicate the correct function of the application. When the code is running bare-

metal, if no message is received after a given period (normally 10x higher the code execu-

tion time), the board is power-cycled and a Crash is logged. When the code is running on

top of Linux, the Crashes are distinguished between two types. First an attempt is made

to contact to the board and restart the application. If the attempt is successful, the event is

logged as an Application Crash (Linux is still running and responding). If no connection

with the board can be establish, the event is logged as a System Crash, as the operating

system has crashed.

4.2 Fault Injection

The microarchitecture-level reliability assessment was performed on top of Gem5

simulator (BINKERT et al., 2011), using the GeFIN fault injection framework (CHATZIDIM-

ITRIOU; GIZOPOULOS, 2016). The results of the fault injections were made by the re-

liability group at the University of Athens on a collaboration between the groups of both

universities. GeFIN was used to quantify the Architectural Vulnerability Factor (AVF)

(MUKHERJEE et al., 2003) of the system, which expresses the probability for a fault to

lead to a failure. Combined with the raw fault rate, AVF can be used to estimate the FIT

rate of a system. Gem5 has been demonstrated to accurately resemble Arm Cortex mi-

croarchitectural configurations (GUTIERREZ et al., 2014). The in-order core was used to

resemble A5 microarchitecture while the out-of-order core was used for A9. Both cores

include a detailed model of the CPU pipeline along with cache memories and TLBs.

Unlike RTL models, microarchitecture-level simulation can achieve a faster simulation

throughput by two orders of magnitude, allowing simulation of realistic workloads, both

in bare metal and with an operating system, as well as evaluation of multiple hardware

components.
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The GeFIN was configured to inject single-event transient faults during system

simulation in the following components, which cover the vast majority (>90%) of SRAM

cells inside the CPU core: L2 Cache, L1 Data and Instruction Caches, Physical Register

file, Data and Instruction Translation Lookaside Buffers (TLB). To achieve a statistical

sample of 4% error margin and 99% confidence level, it was injected 1,000 single bit

transient faults on each of the target components (LEVEUGLE et al., 2009). By refining

the p variable of the formulation to correspond to the estimation result, the error margin is

different for each workload and component and ranges between 1.7% and 4% with 99%

confidence. Thus, the fault injection estimates first the Architectural Vulnerability Factor

(AVF) which is used later to calculate the FIT rate of each benchmark.

The AVF is the probability that a fault in a specific hardware structure can result in

a corruption in the execution of a program. The metric is independent of the components’

technology or environmental factors, which are however related to the soft error rate.

There is a direct connection between the failure rate and the vulnerability of a structure.

The soft error rate quantifies how many faults are introduced in a hardware structure at

a given period of time. As the structure’s size increases, the error rate is also increased.

In order to attribute the FIT of a component to its size, a per-bit FIT, which is called raw

FIT, or FITraw must be measured. The FIT of a component can then be expressed as:

FITcomponent = FITraw(bit) ∗ Size(bits) ∗ AV Fcomponent

The size of each component is known a priory and the AVF is provided by GeFIN. The

only missing attribute is the one that depends on the technology, which is the FITraw. To

have a perfect emulation of the realistic error rate, the FITraw for all the resources in the

processor should be measured, which is unfeasible mainly for COTS devices. However

the L1 cache bit FITraw can be used as representative of the Cortex-A9 or the Cortex A5

technology as implemented in each board. The L1 cache was choosen because it is among

the most vulnerable resources, while at the same time uses the same SRAM technology

with rest of the CPU components. The L1 cache bit FIT was used as a common baseline

for all the resources in the ARM CPU.

The sum of all FITcomponent equals to the FIT rate of the system. This can be

calculated for all of the different fault-effects that were observed by the fault injection ex-

periments. For the purpose of this work, the faults are classified in four fault effect classes:

Masked, SDC, Application crash and System Crash (for the full system experiments).
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4.3 Fault Injection vs. Neutron accelerated beam Experiment Setup

To avoid any difference not related to the reliability evaluation that can bias the

results, the exactly same source codes were used, compiler, compiler options, and input

vector (size and values) for both fault injection and neutron accelerated beam experiments.

Still, the setups used for neutron accelerated beam experiments and fault injection are in-

trinsically different when executing on actual hardware vs. Gem5 simulation (GUTIER-

REZ et al., 2014). To evaluate if the benchmark execution shows any difference when

running in the setups used for neutron accelerated beam experiments and fault injection,

the execution of the same code are compared in the two setups using 7 different counters:

CPU cycles, branch misses, L1 data cache accesses, L1 data cache misses, L1 data TLB

misses, L1 instruction cache misses, and L1 Instruction TLB misses. About 70% of the

counters report acceptable deviations between the two setups. The biggest difference is

observed in the L1 Instruction TLB counters. Literature actually identifies certain design

differences that exist in the implementation of TLB of Gem5 and Arm Cortex microarchi-

tectures that support these observations (GUTIERREZ et al., 2014). Differences are to be

expected as the Gem5 model is not exactly the same as the one implemented in hardware.

One of the main goals of this work is to also understand if microarchitectural simulations

can provide accurate insights on the corresponding hardware reliability.

To estimate the failure rate of a code using fault injection in order to compare

it with the one measured with neutron accelerated beam experiments, it is necessary to

know the raw (intrinsic) fault rate along with the probability of each fault to lead into a

failure. In principle, multiplying the raw fault rate of each microarchitectural resource to

its AVF would provide the failure (FIT) rate of the code executed on the device. However,

measuring the raw fault rate for each hardware resource would require too much time and,

when dealing with COTS, could be unfeasible due to visibility limitations. In this work,

it was decided to use the experimentally measured L1 Cache raw FIT rate, as a reference

raw FIT for the technology of each microprocessor. This simplification is justified by the

fact that caches are normally the most vulnerable resource in a microprocessor and also

the targeted components in GeFIN are all implemented in the same SRAM technology as

the L1 cache.
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5 RESULTS

This chapter presents the results obtained with neutron accelerated beam experi-

ments and fault injection on the A9 and A5. First, the fault injections and neutron acceler-

ated beam experiments are compared only on the A9 in order to show the differences on

the FIT rates between the neutron accelerated beam experiments the fault injection. After

that, the results of the neutron accelerated beam and fault injection on the A5 are shown

and compared with another run of experiments on the A9 in order to see the operating

system and integration impact of the overall FIT rate.

5.1 Neutron accelerated beam experiments vs fault injection: Linux on ARM A9

In this Section, neutron accelerated beam experiment results and fault injection

analysis are presented and discussed, highlighting the similarities and differences each

methodology provides on the reliability of the ARM A9.

5.1.1 Neutron accelerated beam Experiments Results

Figure 5.1 shows the FIT rates for the 13 benchmarks tested at LANSCE following

the experimental procedures detailed in Section 4. It is shown the FIT rate for SDC,

Application Crash, and System Crash. It is worth noting that these three types of events

are uncorrelated and independent, in the sense that at most one of the three events occurs

in one execution and its occurrence will not affect the probability of errors in the next

executions.

From Figure 5.1 it is clear that a System Crash is the most likely event, for all

the benchmarks but FFT and Qsort. As discussed in the following, FFT and Qsort have a

higher Application Crash FIT compared to other benchmarks; their Application Crash FIT

is even higher than their System Crash rate. As shown in (FRATIN et al., 2018), System

Crashes have a component which is intrinsic to the particular hardware platform, only.

Even resilient codes (i.e., with very low SDC or Application Crash rates), then, could

experience a relative high number of System Crashes. This is the case of CRC32, Rijndael

D, and Rijndael E in Figure 5.1. The benchmarks with the highest System Crashes FIT

are Dijkstra, MatMul, StringSearch, and the three Susans benchmarks. These are actually



33

Figure 5.1: neutron accelerated beam experiments FIT rates for SDCs, Application
Crashes and System Crashes.

Source: The author

Figure 5.2: Fault injection effects classification for all 13 benchmarks in all 6 components.
Effects are Masked, AppCrash, SysCrash, and SDC. The AVF corresponds to the sum of
the three non-Masked cases.

Source: The author

the benchmarks with the smallest input size, which is not even sufficient to fill all caches.

Since there is space available in the caches, the Linux kernel code will not be evicted

when the context is switched to the application. When Linux is in idle, its data is then

exposed and vulnerable to neutron accelerated beam. An error in the kernel code is likely

to lead to a System Crash, exacerbating the System Crash vulnerability. This is aligned

with previous studies that show a higher operating system error rate in the absence of

cache conflicts (SANTINI et al., 2016).
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There is also a significant variation among the Application Crash FIT of the dif-

ferent benchmarks. The benchmarks with highest Application Crash rate are MatMul,

Qsort, and FFT while the lowest (about 2 orders of magnitude lower than MatMul) is

CRC32. The codes with the higher Application Crash FIT are found to be the ones with

higher presence of control-flow operations, higher use of stack for memory or nested

loops. Additionally, these applications are the ones with non-coherent memory accesses.

This requires several accesses (reads and writes) to the main memory, which is outside the

irradiated chip. To access the main memory it is necessary to use an interface between the

core and the main memory. It has already been demonstrated that errors during intra-chip

communications are likely to lead to an Application Crash as an error in the interface or

in one of the cores involved in the communication makes the application to wait indefi-

nitely (FRATIN et al., 2018). While Rijndael has similar Application Crash FIT rate for

both encoding and decoding, for Jpeg C the coding has a much higher (almost 1 order

of magnitude) Application Crash FIT rate than the decoding. This can be explained by

the fact that in the case of Rijndael the process to encode and decode is algorithimcally

almost identical, but in Jpeg D the decoding is achieved by doing the reverse steps from

the encoding. This means that the program flow is different and behaves differently when

an error occurs.

For SDC FIT rate, the difference between the lowest (Dijkstra) and the highest

(Qsort) is around 2 orders of magnitude. This result confirms previous studies showing

that the SDC rate is strongly application dependent (FRATIN et al., 2018). The codes with

lower SDC FIT rate are the three Susans, StringSearch, MatMul, Dijkstra, and CRC32.

These benchmarks either have a small input (Susans, StringSearch, MatMul) or have long

memory latency (CRC32). This translate to either small irradiation area or the information

is being fetched from the main memory which is not irradiated. It is also observed that

for SDC rate for both encoding and decoding of Jpeg and Rijndael benchmarks have

similar FIT SDC rate. This can be explained noting that, for Rijndael, both encoding and

decoding have equal input size and, for Jpeg, the combination of input and output have

equal size (the input of the encoding and the output of the decoding have almost identical

sizes).
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5.1.2 Fault injection results using GeFIN

Unlike neutron accelerated beam experiments, fault injection campaigns were ex-

ecuted for each hardware component separately. Figure 5.2 illustrates the AVF estimation

reported by GeFIN. With fault injection the faults that were benign (masked) and the

fault was either overwritten or did not affect the execution in any observable way can be

counted. Figure 5.2 presents the AVF distribution of each fault class, SDC, Application

Crash or System Crash, while the summary of all non-masked cases expresses the vul-

nerability of the structure (AVF). Notice that AVF does not only depend on a structure’s

size or organization, and is aggregately related to the significance of the stored data to the

correct operation of the system.

As one would intuitively expect, the majority of SDC results (grey areas) are re-

lated with the structures that mostly contain data, which are the L1 Data Cache and L2

Cache. In contrast, it can be seen how most of the abnormalities reported by faults in

the L1 Instruction Cache are crashes. Interestingly, most of the benchmarks have higher

Application Crashes than System Crashes, with CRC32, Qsort and StringSearch being

the only outliers.

The TLBs are consistently highly vulnerable. The reported fault injections refer

to the Physical page (target) of the tables as they mostly lead to either incorrect memory

translations or wrong permission flags. Incorrect translations will lead to use of wrong

data in all references of the particular page. In contrast, the virtual part (tag) has almost

zero vulnerability as corruption in the tag can mainly result to tag misses and thus invoke

unnecessary page walks, which introduces a performance penalty. The Register file is in-

volved in both control and data processing and the vulnerability is evenly distributed in all

classes, without particular trends. However, it can be seen how both Rijndael benchmarks

report high probability of SDCs, and this can be attributed to the high level of instruction

level parallelism of the algorithms, which results in high utilization of the register file for

data processing.

Although the AVF measurement is not related only to the size of a component,

the probability that a fault is introduced at a particular structure (by a particle) is highly

related to its size. Each TLB for instance, has a size of 512 bytes (4,096 bits) while the

L1 Cache memories have a size of 32KB (252,144 bits). Consequently, the probability

that a fault will strike the TLB is only 1/64th of the Cache’s probability. That being said,

the L2 Cache, which covers more than 80% of the modeled memory cells of the system,
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Figure 5.3: Fault Injection FIT rates for SDCs, Application Crashes and System Crashes.

Source: The author

suffers the most by the striking of faults.

5.1.3 Discussion of the comparison between Fault Injection and Neutron Accelerated

Beam Experiments Data on the A9

To experimentally measure the FITraw, a specific benchmark was designed in

order to test the L1 data cache. This is achieved filling byte-by-byte the L1 data cache

with a known pattern (0xA5) and read it after a period of time, comparing the read values

with the pattern and counting the bit-flips. This gives us the FIT rate for the cache and,

diving it by the tested cache size, it gives us the cache FIT per bit. For the L1 cache, the

measured error rate is 2.76x10−5 FIT per bit, very close to other publicly available data

for the same technology (BAGGIO et al., 2004).

Using the FITraw the FIT rate of applications can be estimated based on the AVF

analysis, as shown in Figure 5.3. In order to compare the FIT rate predicted with neutron

accelerated beam experiments and fault injection, for each benchmark the highest FIT rate

between both methodologies are divided by the lowest FIT rate. Whenever the fault injec-

tion FIT rate is lower than the one estimated with neutron accelerated beam experiments
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the value is represented as positive, if not it is represented as a negative number.

Figure 5.4: Multiplication Factor for SDC FIT comparison between neutron accelerated
beam experiments and fault injection.

Source: The author

Figure 5.4 shows the comparison between neutron accelerated beam experiments

and fault injection SDC FIT rates for all 13 benchmarks. The positive values (towards the

right) of the horizontal axis indicate how many times the FIT rate measured with neutron

accelerated beam experiments is higher than the FIT rate calculated with fault injection

while negative numbers indicate the opposite (fault injection FIT rates are higher). For

most benchmarks neutron accelerated beam and fault injection give very close FIT rates

(for 10 out of 13 codes the difference is smaller than 4x, while for 7 of them it is less

than 2x). MatMul, StringSearch, and CRC32 have the largest difference between the two

FIT rate measurements. However, these benchmarks have very low SDC FIT rate, for in-

stance, StringSearch has 5.45 SDC FIT on the neutron accelerated beam experiment and

only 0.34 on the fault injection, meaning that the absolute difference between FIT rates

is very small and such differences are within the statistical error. As expected from the

discussion in Section 2, for most of the benchmarks the FIT rate measured with neutron

accelerated beam experiment is higher than the fault injection one. However, for 5 bench-

marks (Rijndael, Jpeg D, FFT, Dijkstra, and, mainly, MatMul), fault injection reports a

higher SDC FIT rate than neutron accelerated beam experiments. As discussed in the

following sections, these are also the benchmarks that show a much higher Application

Crash and System Crash rate for neutron accelerated beam experiments compared to fault
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injection and this difference implies that some faults propagate differently to generate

SDCs or Crashes in the two setups but still result in a corruption of the correct execution.

Figure 5.5: Multiplication Factor for Application Crash FIT comparison between neutron
accelerated beam experiments and fault injection.

Source: The author

When comparing the Application Crash FIT rate calculated with the two setups, as

shown in Figure 5.5, the differences between fault injection and neutron accelerated beam

experiments are much higher than for SDCs, ranging from 1.5x to almost 500x (horizontal

axis is in logarithmic scale). It is worth noting that neutron accelerated beam experiments

FIT is always higher than the fault injection estimation, which is expected since Applica-

tion Crashes could be triggered by corruption in logic/control hardware elements which

are difficult to simulate (FRATIN et al., 2018). For three benchmarks, StringSearch, Mat-

Mul, and Qsort, the difference between neutron accelerated beam experiments and fault

injection is close or bigger than two orders of magnitude (while for all others the differ-

ence is smaller than 22x). The reason behind this may be attributed to differences between

the two setups. While fault injection experiments output is downloaded and compared off-

line against the fault-free output to detect SDCs, neutron accelerated beam experiments

require an additional routine for on-line SDC checking. As during neutron accelerated

beam experiments most executions are error-free, downloading all outputs would be an

unnecessary waste of space and time. These checks are almost transparent to the workload

characteristics and, to avoid the corruption of SDC details, they are intentionally designed

to hold pointer references instead of actual data. Application Crashes are mostly sourcing

in abnormalities caused in the program flow (i.e., irregular branches, wrong memory ref-



39

Figure 5.6: Multiplication Factor for System crash FIT comparison between neutron ac-
celerated beam experiments and fault injection.

Source: The author

erences, etc.). These have roots in the executed code of a program (of what is placed in

the .text section of a program). The common property of the 3 workloads with greater dif-

ferences between fault injection and irradiation data (StringSearch, MatMul, and Qsort)

is the relatively small code size, which fits inside the Instruction Cache. As a result, the

code sits in the cache for the whole experiment, being exposed to neutrons. Additionally,

there is enough space for the SDC check routines to remain in the cache hierarchy, in-

stead of being evicted during the program execution (as L2 is shared) during the neutron

accelerated beam experiments. The exposure of these routines to the neutron accelerated

beam (which mainly consist of pointers) would result in segmentation faults that translate

to Application Crashes. This inevitable difference between the two setups could explain

the observed behavior for the three outliers.

The System Crash FIT difference, as shown in Figure 5.6, does not follow the

same behavior of the Application Crash FIT. In this case there is a high difference be-

tween neutron accelerated beam and fault injection for all benchmarks, with the neutron

accelerated beam FIT being always higher than the injection. The difference ranges from

about 9 times (CRC32) to about 287 times (MatMul). The benchmarks with the largest

difference are MatMul, Dijkstra, StringSearch, and the three Susans. These workloads

also happen to have the smallest inputs. As a result, they actually leave a large part of the

cache hierarchy unused. These differences can also be attributed to by differences on the
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Figure 5.7: SDC and Application Crash Comparison between neutron accelerated beam
experiments and fault injection.

Source: The author

setups.

In fault injection experiments, the unused portion of the cache hierarchy remains

empty as the caches are reset on every experiment, while in neutron accelerated beam

experiments this space is used by the kernel for other system operations (e.g. scheduling

routines, timer handlers etc.). The introduction of faults in these regions that will most

likely result to system crashes only in the neutron accelerated beam experiments. The

rest of the benchmarks that use most of the cache hierarchy do evict the kernel from the

caches and do not suffer from this scenario.

As it is shown in Figures 5.4, 5.5, and 5.6, the magnitude of the differences be-

tween neutron accelerated beam experiment and fault injection FIT rate are application

dependent while there exists a clear trend of larger FIT rates measured by neutron accel-

erated beam experiment compared to fault injection for all FIT rates (SDC, Application

Crash, and System Crash FIT rates). As discussed in Section 2, there are various reasons

for fault injection and neutron accelerated beam experiments to provide different FIT rates

and this is the reason why they have to be considered complementary to each other. One

very likely reason for the differences and particularly of the larger number of corruptions

in the neutron accelerated beam experiments are the resources that are not modeled in

the simulator. This high System Crash FIT rate is a peculiar characteristic of the Xilinx

Zynq platform, specifically the FPGA-ARM interface based on interrupts, which cannot
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be further investigate without detailed (proprietary) information.

An indirect way to correlate the results and focus on the same hardware is by

attributing the effects that different hardware parts cause. While System Crashes, excep-

tions and wrong memory accesses can be caused by most of the system’s components

(including CPU cores, peripherals, controllers, bridges and interconnections), SDCs can

only occur at the components that produce the output, which is the CPU core. This also

partially applies to the majority of Application Crashes.

In Figure 5.7, the relative difference of the sum of the FIT rates for SDCs and Ap-

plication Crashes measured with neutron accelerated beam and fault injection are shown.

StringSearch has the highest relative difference (of about 100x). This is due to the ex-

tremely small number of SDCs observed in both setups, having much less events observed

in the injection than in the neutron accelerated beam setup. It is also interesting that the

MatMul and Qsort, that show a difference of 100 times in Application Crash FIT (Fig-

ure 5.5), now have a difference lower than 10 times when comparing SDC and Application

Crash FIT rates (Figure 5.7). This means that, the overall FIT rate is only 10x higher in

the neutron accelerated beam case. It is likely that some of the Application Crashes ob-

served in the neutron accelerated beam experiment are observed as SDCs in the injection.

This is probably caused by the corruption of some hardware resource not modeled in the

injection setup. The other benchmarks are less affected by the code characteristics dis-

cussed previously. For three benchmarks, Jpeg D and the two Rijndael, the overall FIT

difference is very small, from 1.08x up to 1.26x.

5.2 Operating System and Integration Impact: ARM A9 and ARM A5

In this Section it is presented and discussed neutron accelerated beam experiment

results and fault injection analysis on both the A9 and A5, but this second comparison

aims to also compare the operating system and SoC integration impact on the overall FIT

rate.

5.2.1 Neutron accelerated beam Experiments Results

Figures 5.8 and 5.10 show the FIT rates measured with neutron accelerated beam

experiments for the A9 (Linux) and for the A5 (bare-metal and Linux), respectively. What
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Figure 5.8: Cortex A9 Linux neutron accelerated beam FIT rates for SDCs, Application
Crashes and System Crashes.

Source: The author

can be observed from the neutron accelerated beam experiment data is that there is a sig-

nificant dependence of the FIT rate on both the device, program executed, and system

stack configuration (Linux vs bare-metal, on the A5). Next the reasons for these depen-

dencies are analyzed and understood.

The SDC FIT variation from benchmark to benchmark is of about 1 order of mag-

nitude for both the A5 and the A9. Interestingly, qsort benchmark is the one with the

highest FIT rate in both devices, probably because how the code access its input data

stored in the caches and memory. While the main memory of the A5 is kept out of the

neutron accelerated beam, and then fault-free, as the core is waiting for new data to be

fetch the elements kept in the caches are exposed and can be corrupted.

The average SDC rate is 3.5x higher on the A5 than on the A9. Nevertheless, to

have a fair comparison of the CPU vulnerability, the data measured in the two Silicon

devices needs to be normalized by the technology sensitivity (raw FIT rates per bit). This

is done in Section 5.2.4.

Interestingly, both the Application Crash and the System Crash FIT rates, are much

higher (more than 2 orders of magnitude) on the A9 than on the A5. Additionally, the

reported experimental data shows that, while the SDC rate and Application Crash rate

varies significantly across benchmarks (over 1 order of magnitude for SDC and Appli-
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Figure 5.9: Cortex A5 Bare-metal and Linux GeFIN FIT rates for SDCs, Application
Crashes and System Crashes.

Source: The author

cation Crashes), the System Crash rate is almost constant on the A5 and on the A9 (the

variation for system crashes is, on the average, 30%). This observation confirms previous

studies that demonstrate that the System Crash has a stronger component that depends

on the hardware alone (FRATIN et al., 2018). And additional insight this works data

provides is that the OS does not play a significant role in the System Crash of processors.

5.2.2 Fault injection results using GeFIN

Figure 5.9 shows the equivalent A5 estimation using fault injection. The fault

injection was provided with the experimentally measured raw FIT for caches. In this

second experiment run the FIT rate measured for the Cortex-A5 is 2.37 × 10−4cm2 and

2.59× 10−5cm2 for the Cortex-A9 which is similiar as the previous experiment run. This

raw FIT is used to predict, from the Architectural Vulnerability Factor, the error rate of

applications. When compared to neutron accelerated beam data, the SDC FIT estimation

appears to be extremely close and in all cases less than 3x. When the technology depen-

dence of the error rate is removed(fault injection uses the same fault probability as neutron

accelerated beam experiments), then, the SDC rate can be predict with good precision. In-

terestingly, GeFIN crash rates appear to be slightly higher compared to irradiated. The

fault effect classes follow similar trends and behavior.
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Figure 5.10: Cortex A5 Bare-metal and Linux neutron accelerated beam FIT rates for
SDCs, Application Crashes and System Crashes.

Source: The author

5.2.3 Operating System impact

Figure 5.9 and 5.10 show, respectively for fault injection and neutron accelerated

beam experiments, the comparison between the FIT rates of the different codes executed

on the A5 bare-metal or on top of Linux. As described in Section 4, the very same codes

with the very same input vectors in the two configurations were executed to reduce any

possible bias. The observed differences between bare-metal and Linux configurations

are then due to the operating system presence, only. Unlike application crashes, system

crashes can occur when the CPU operates in kernel mode. A fault that has affected OS

data structures (e.g. kernel heap) or kernel code, including system calls and drivers can

result to a system crash.

5.2.4 Integration Impact

There are three variable factors that can affect the vulnerability of each CPU core:

(a) Manufacturing Technology, (b) Microarchitecture and (c) System integration. To un-

derstand the impact of SoC integration in the reliability of the two cores, it is required to

isolate as many variables that influence the observed differences between the Cortex-A5

and Cortex-A9 error rates, as possible. The GeFIN fault injection setup allows control
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Figure 5.11: Cortex A5 and A9 Bare-metal FIT rates estimated through GeFIN using the
experimentally measured technology sensitivity.

Source: The author

over these variables and can be used to evaluate the impact of (b); it receives (a) in terms

of the raw FIT rate as an input. However, there is no Gem5 description available for com-

plex and integrated SoC. So GeFIN lacks the possibility of evaluating the impact of (c).

neutron accelerated beam experiments data, as the whole silicon chip is irradiated, is af-

fected by all three factors. However, as errors can be observed only at the output, neutron

accelerated beam experiments offer very limited visibility and cannot be used to differen-

tiate between the three factors. It is only combining GeFIN and ChipIR data that allows

us to quantify what is the impact of each of these attributes to the overall vulnerability

estimation.

Figure 5.11 shows, for both the A5 and the A9, the FIT rates estimated using

GeFIN. To estimate the FIT rates the same technology raw FIT measured through neutron

accelerated beam experiments on the real hardware is used. The average A9 difference is

6x for SDC and 2.4x for Crashes, or 3.3x in total FIT.

Since the Cortex-A5 and Cortex-A9 are implemented in two different technolo-

gies, the raw probability for a neutron to generate a fault in the memory or during com-

putation is different in the two devices. To measure the technology sensitivity the same
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static test in each device was performed exactly as discussed previously on both cores.

The difference between the per-bit sensitivity of the Cortex-A5 and Cortex-A9

states that a neutron is about 8.6x more likely to generate a fault in the Cortex-A5 than in

the Cortex-A9. The difference in raw sensitivities is not surprising, there are several rea-

sons for the cross section of two devices to be highly different, including transistor dimen-

sions, transistor layout, voltage, charge, etc. (BAUMANN, 2005; ZIEGLER; PUCHNER,

2010).

This means that on the ChipIR setup, the difference of the estimated FIT rate that

can be attributed to the variables of technology and microarchitecture is expected to be

within the same order of magnitude, as the two variables negate each other. Thus, any

differences that exceed an order of magnitude can be safely attributed to the system in-

tegration of the A9 CPU. In a first approximation, to compare the error rate of the two

devices,all the FIT rate of the Cortex-A5 and Cortex-A9 are divided by the respective

technology sensitivity. This is shown in Figure 5.12 for SDCs and Figure 5.13 for Appli-

cation and System Crashes.

Data depicted in Figure 5.12 shows that the SDC FIT rates for the A5 and A9,

normalized by the respective technology sensitivity, are very similar (well inside the order

of magnitude). Figure 5.13, on the contrary, highlights that the integration of different

cores have a strong impact (well over two orders of magnitude) on the Application and

System Crashes.

5.2.5 Discussion on Operating System and Integration Impact

The experimental analysis provides useful insights that allow us to quantify how

different attributes impact the reliability evaluation. The combination of fault injection re-

sults along with the normalized A9 and A5 neutron accelerated beam experiments results

allows us to see how either the SoC integration or the OS influences the overall FIT rate.

Figure 5.16 shows a high level summary of the results that were observed using neutron

accelerated beam experiments and validated using microarchitecture level fault injection

analysis. It shows the impact of the integration of the CPU core in the SoC as well as the

impact of the OS in the system software stack, in the SDC FIT rates as well as the Crashes

FIT rates that. Confirming the initial findings and general speculations of previous work,

it is clearly shown that the SDC part of the FIT rate is minimally affected by both the SoC

integration and the OS existence while the Crashes FIT rates are severely affected by both
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Figure 5.12: SDC FIT comparison between the stand-alone Cortex-A5 and the integrated
Cortex-A9. Susan c, e, and s could not be tested in the A5 for lack of neutron accelerated
beam time.

Source: The author

parameters.

The most dominant variable is the SoC integration, which was present only in

the neutron accelerated beam experiments. The different microarchitecture itself was

quantified to be 5x more vulnerable on A9 using fault injection. Along with the different

fabrication technology which results to 8.6x higher fault rate on A5, the product of these

two variables (which are self-neutralized) results to an expected difference of 2-3x. It can

be seen that the FIT rate of crashes is increased, on the average, by 174 times when the

CPU is integrated in the SoC, and this difference can only be attributed to the integration

variable. In practice, this translates to a different and highly complex interconnection

inside the chip. In the particular case of the A9 on the Zynq board, apart from the normal

DDR memory controllers and other peripherals, the SoC also includes the programmable

logic arrays and other programmable connections to the FPGA. The increased complexity

is proved with this analyzes to have a massive impact in the failure rate of the system but

not on the SDC rate of the applications.

The impact of cores integration and operating system can be further evaluated

by considering, in Figures 5.14 and Figure 5.15, fft and qsort, which are the benchmarks

estimated across all of the setups of this work. These setups cover several combinations of

the system variables and only A9 Linux involves SoC integration. Interestingly, the SDC

estimation is close in all cases with an average difference of 6.8x, which also matches

the expected difference due to the different technology and microarchitecture. When



48

Figure 5.13: Application and System Crash FIT comparison between the stand-alone
Cortex-A5 and the integrated Cortex-A9. Susan c, e, and s could not be tested in the A5
for lack of neutron accelerated beam time.

Source: The author

considering the A5 microprocessor, which is not integrated to a complex SoC in both

neutron accelerated beam and fault injection experiments, the estimation between the two

methodologies is very close.

When focusing on the normalized A5 and A9 FIT neutron accelerated beam ex-

periment estimations, it can be seen that, as expected (due to the larger cross section), A9

reports slightly higher vulnerability. The SDCs are very little influenced, where observed

an increase of 3.5x on the average FIT rate between the A9 and the A5 on the neutron

accelerated beam experiments, the A9 being higher. Since all benchmarks running on

Linux on both the A9 and A5 use common I/O like Ethernet, the SDC FIT rate is little

influenced by the A9-FPGA interface.

Apart from the SoC components, the OS also affects the overall crash FIT rate. A

difference of 7.5x (the setup with Linux being higher) on the averages crash FIT rates be-

tween A5 bare-metal and A5 Linux on neutron accelerated beam experiments is observed,

while the difference is only 3.5x on fault injection experiments. The increase in crashes

can be explained by the fact that besides the benchmarks several other system processes

responsible for the OS management are also running and since there is only a single core

these processes coded are susceptible to irradiation. In addition, since FI only targets

SRAM-based components, it is expected to underestimate vulnerability that is associated
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to the microprocessor logic and is expected to lead to crashes. Faults in logic can only

lead to SDCs only in data processing components, such as the functional units (e.g. ALU)

of the microprocessor. This can explain why it is observed a 2x difference in the crash

estimation between neutron accelerated beam and fault injection experiments.

Again, just like with the previous analysis the SDC are only slightly affected, since

output is only being processed under the actual workload and any OS interference does

not participate or relate the the generated output, unless it is serviced by a system call.

This is observed in both irradiation experiments as well as fault injection.

Figure 5.14: FIT estimation of FFT across all configurations.

Source: The author
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Figure 5.15: FIT estimation of qsort across all configurations.

Source: The author
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Figure 5.16: Overall impact of cores integration and operating system on the CPU error
rate as resulting from the data. On the average, the cores integration barely increases
the SDC rates (about 3.5x) but significantly increases the Crash rate (174x, combining the
increase in App crashes and Sys crashes. The operating system does not have a significant
impact on SDCs (about 2.5x) and increases crashes of about 7.5x.

Source: The author
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6 CONCLUSION

This work presents first a detailed analysis that aims to report a head-to-head com-

parison of two very popular reliability assessment methods: (a) physical accelerated beam

test of an ARM Cortex-A9 CPU and (b) fault injection on the corresponding model of the

ARM Cortex-A9 CPU on the state-of-the-art microarchitectural simulator Gem5. For an

as-close-as-possible comparison, this work maximize the equivalence of the physical sys-

tem setup and the simulated system setup: hardware configuration, application software,

and operating system.

Although accelerated beam testing is both very fast and accurate, it suffers from

the very limited observability level and can only deliver the summary of these variables;

the eventual result of programs execution when hit by the neutron beam is either a crash

or a silent data corruption (output mismatch) but there is no way to attribute the failure

to a specific part of the hardware or a specific portion of the software code. Aided by

microarchitecture-level fault injection using a state-of-the-art fault injector built on top

of Gem5, this work have been able to quantify the portion of the differences that can be

attributed to each of these variables. The fault injector has been fed by different raw FIT

rate per bit to estimate different manufacturing nodes, and has been used to model the two

different microarchitectures as well as the impact of the operating system (the injector

was employed in both bare metal and OS setup).

The comparison of the two reliability assessment approaches helps in bounding

the range of the expected FIT rates of a CPU when it is deployed in a final system in the

field. This work have shown that for the diverse set of benchmarks employed in these ex-

periments, the FIT rates differences between accelerated beam test and microarchitectural

fault injection can be extremely small (when only the SDC FIT rate is considered) and

does not exceed one order of magnitude when all types of errors (including Application

and System Crashes) are considered for the Total FIT rate of the system. The insights

of this study can assist CPU designers in making informed decisions about the soft error

protection mechanisms best suited to a particular hardware and software combination.

After, it was performed an extensive reliability evaluation of 2 widely used ARM

microprocessors, Cortex-A5 and Cortex-A9 with the primary objective of identifying the

failure rates impact the SoC integration and OS inclusion can have on their operation. The

two cores are fabricated using different technologies and their SoC had a different organi-

zation; A5 was an individual CPU core whereas the A9 was integrated on a Xilinx Zynq
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SoC along with an FPGA. The two microprocessors are associated with 3 variables in the

setup, namely: Technology, Microarchitecture, and SoC integration. Using accelerated

beam testing, this work have evaluated the two platforms on baremetal and full system

setups, in order to quantify how each of these variables contributes to the FIT rate of the

device.

This works analysis showed that the SDC FIT rate is only slightly affected by

the SoC integration and the existence of the OS, and is measured to only increase up to

3.5x due to the microarchicture difference. On the other hand, Crashes (both application

and system) are dramatically increased (up to 2 orders of magnitude) on the SoC that

includes the FPGA, showcasing how this attribute can really influence the FIT rate. The

OS influence on the overall setup is also evaluated and is quantified to increase the crash

rate up to 7.5x.

The outcomes of this analysis confirm on two different Arm CPU cores the initial

findings and speculations from earlier work that the majority of the SDC failure rates can

be safely attributed to the CPU core itself while executing the user codes. On the other

hand the System and Application Crashes parts of the overall system failure rates are sig-

nificantly affected by the complexity of the SoC integration as well as the inclusion of the

operating systems and are significantly increased. Using a combination of neutron beam

testing and microarchitecture level fault injection this work have quantified the magnitude

of these differences which can be used for the integration of diligent soft error protection

methods at the hardware and microarchitecture level as well as at the software level.
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