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Abstract

All blood cells are derived from a small common pool of totipotent
cells, called hematopoietic stem cells. The process is strictly regulated
by the hematopoietic microenvironment, which includes stromal cells,
extracellular matrix molecules and soluble regulatory factors. Several
experimental in vitro assays have been developed for the study of
hematopoietic differentiation, and have provided valuable informa-
tion on the stroma, which includes, among other cell types, macro-
phages, fibroblasts, adipocytes, and endothelial cells. The composi-
tion, ontogeny, and function in physiological as well as pathological
conditions of stroma are discussed.
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The hematopoietic system

Blood cells composing the hematopoi-
etic system can be classified into two main
classes, i.e., lymphoid (B, T and natural killer
lymphocytes) and myeloid (erythrocytes,
megakaryocytes, granulocytes and mono-
cytes). The life span of the fully differenti-
ated mature forms of blood cells may vary
considerably, being of the order of several
hours for some cells (granulocytes), and sev-
eral weeks (erythrocytes) to several years
(memory cells) for others. This system is
extraordinarily complex, since not only huge
numbers of new mature cells are produced
per day (about 1 trillion cells, including 200
billion erythrocytes and 70 billion neutro-
philic leukocytes, in a 70-kg man), but there
is also a need for the maintenance of a pool
of undifferentiated cells and for a rapid re-
sponse to situations of acute stress (1).

Increased production of cells is largely
restricted to the specific cell type that is
required in the particular stress situation:
hemolysis, for example, induces erythroid

hyperplasia, while granulocyte hyperplasia
is observed in response to bacterial infec-
tions. Alterations in the balance between
self-renewal and differentiation can lead to
the emergence of cells that survive and grow
in situations unfavorable to the growth of
normal cells and hence to the establishment
of leukemias.

During ontogeny, there are a number of
hematopoietic sites. Studies in mice and birds
have shown that an early intra-embryonic
site of hematopoiesis is found in the para-
aortic splanchnopleura (2) and the aorta, go-
nads, and mesonephros or AGM (3). It is
believed that hematopoietic stem cells arise
in these two structures and in blood islands
of the yolk sac, enter the embryonic circula-
tion and colonize the newly formed liver
rudiment. The fetal liver is the site of defini-
tive hematopoiesis early during embryonal
development. At birth, and throughout adult
life, the bone marrow with its intersinusoidal
spaces is the site responsible for the genera-
tion of blood cells. The mechanisms respon-
sible for these ontogenic shifts are not well
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known, and may involve changes in the de-
veloping hematopoietic cells (4), or in the
hematopoietic microenvironment (5,6).

Differentiation in the hematopoietic
system

All different types of blood cells are de-
rived, through a series of maturational cell
divisions regulated by the hematopoietic mi-
croenvironment, from a small common pool
of totipotent cells called hematopoietic stem
cells. The stem cell concept originated from
the work of Till and McCulloch in 1961 (7),
showing the formation of nodules of he-
matopoietic cells in the spleens of lethally
irradiated mice after reconstitution with bone
marrow from normal syngeneic donors. In
spite of much effort since then, stem cells are
still elusive entities, as illustrated by some of
the reports available in the literature (�What
defines a pluripotent hematopoietic stem cell
(PHSC): will the real PHSC please stand
up!� (8), �In search of the hemopoietic stem
cell� (9) or �Which are the hematopoietic
stem cells? (or: Don�t debunk the history!)�
(10)).

These cells are of interest not only be-
cause of their developmental capacity but
also because of their potential usefulness for
the treatment of hematological disorders and
as vectors for gene therapy. The most widely
used criterion for their identification, that of
a multipotential cell capable of self-renewal
as well as of reconstituting long-term he-
matopoiesis after marrow ablation, presents
theoretical as well as practical problems (11).
Besides these two main characteristics, other
well-established features of human stem cells
include (12): a) They constitute a very small
compartment, with estimates varying from
less than 0.05% to up to 0.5% of cells in the
bone marrow. b) The majority of stem cells
are normally quiescent, as shown by their
resistance to treatment with 5-fluorouracil
or 4-hydroperoxycyclophosphamide, which
spare them and eliminate dividing cells with-

out adversely affecting the long-term repopu-
lating ability of bone marrow. Estimates of
periodicity of mitosis vary widely (once a
month to once in a few years), and the direct
examination of the cell cycle of long-term
cells indicates that at any moment only 4%
of them are in the S/G2/M phases. c) Their
surface phenotype is poorly known, and in-
cludes the presence of CD34 and the ab-
sence of CD38, HLA-DR and other lineage
markers. d) Besides bone marrow, they can
be found in umbilical cord blood and in
peripheral blood, particularly after �mobili-
zation� treatments.

When stem cells divide, they may return
to the G0 phase of the cell cycle generating
more stem cells; alternatively, they may gen-
erate large numbers of committed progeni-
tors with a progressively restricted differen-
tiation potential. The mechanisms involved
in the process of self-renewal versus differ-
entiation of the stem cell at each division are
poorly known (1,11). Recent progress has
been made with the identification of homeotic
genes that appear to be of fundamental im-
portance in these and other cellular pro-
cesses (13).

Most models assume that the self-renewal
potential of stem cells is finite, as evidenced
by serial transfer experiments (14) and sup-
ported by the �Hayflick limit� concept (15).
Stochastic and deterministic models (re-
viewed in 12) attribute different weights to
the roles played by intrinsic and microenvi-
ronmental factors in the decision of self-
renewal or differentiation.

The transition from stem cells to mature
hematopoietic cells occurs through several
intermediate steps characterized by the pro-
gressive loss of the self-renewal capacity
and the commitment to a specific cell lin-
eage. The progenitor cell compartment, which
can be identified by the expression of specif-
ic lineage markers, comprises cell types
which are determined to differentiate into
any of the hematopoietic lineages. The de-
velopmental potential of these cells is gener-
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ally limited to only one or two of the hemato-
poietic lineages, and these cells progres-
sively display the antigenic, biochemical,
and morphological features characteristic of
the mature cells of the appropriate lineages,
losing their capacity for self-renewal. Their
proliferation is normally tightly controlled
and coupled to development, so that cells
leaving the bone marrow usually possess
little or no proliferative potential.

The expression of different receptors on
the surface of hematopoietic progenitors per-
mits the interaction with various regulatory
elements present in their environment, which
includes stromal cells, extracellular matrix
molecules (ECM) and soluble regulatory fac-
tors (cytokines and growth/differentiation
factors). Although the role played by the
microenvironment in the determination of
the stem cell fate is still unclear, its pivotal
role in the regulation of the amplification of
the progenitor cell compartment is well es-
tablished. Further differentiation of cells into
one of several lineages critically depends on
the nature of factors acting on these cells at a
particular time and at a particular concentra-
tion.

The experimental analysis of
hematopoietic differentiation

Although histologic observations of the
hematopoietic system continue to be the pri-
mary source of information on the process of
differentiation (16), experimental assays have
been fruitfully employed in the study of this
system. As different assays detect and ana-
lyze hematopoietic cell types specifically
stimulated by the experimental conditions
employed, and the correspondence among
the assays is not always easily established,
many different names are given to the cell
types observed, as detailed below.

Till and McCulloch (7), as already men-
tioned, established in 1961 the first quantita-
tive assay for cells with a radioprotective
effect. Although it is now clear that these

cells - denominated spleen colony-forming
units or CFU-S - do not represent the more
primitive stem cells, the assay is useful for
the investigation of early events in hemato-
poiesis. In vivo assays developed more re-
cently, in which human hematopoietic cells
are engrafted in immunodeficient mice, have
demonstrated the existence of human pluri-
potent cells either by limiting dilution analy-
sis or by clonal integration of a retroviral
marker gene (17-19). The term marrow re-
populating ability, derived from in vivo stud-
ies, refers to primitive totipotent hematopoi-
etic stem cells with self-renewal capacity
that are capable of repopulating the bone
marrow of lethally irradiated mice (20). Two
different types of cells with marrow repopu-
lating ability have been distinguished in the
mouse. Initial engraftment (short-term
repopulation) is due to CFU-S. Long-term
engraftment is attributed to a different cell
type but is possible only if the animals also
receive short-term repopulating cells. A cell
type which is more primitive than CFU-S
(pre-CFU-S) is considered to be responsible
for long-term marrow repopulating ability.

However, it was the development of in
vitro cultivation systems for the study of
hematopoiesis (reviewed in 21), which had
its heyday between 1965 and the late 1970s,
that allowed the identification and quantifi-
cation of several different types of precursor
cells. The colony formation assay (22) al-
lows the enumeration of early progenitors
capable to form colonies when cultured un-
der appropriate conditions in semisolid me-
dium. In this test, cells are grown in vitro in
soft agar or other highly viscous media, con-
taining, for example, methylcellulose, plasma
gel or fibrin clots. These semisolid media
reduce cell movement and allow individual
cells to develop into cell clones that are
identified as single clusters (<50 cells) or
colonies (>50 cells) of differentiated cells
after a culture period of 7 to 14 days. These
colonies are the progeny of single cells called
colony-forming cells (CFC) or colony-form-
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ing units (CFU), and the composition of the
colonies determines which CFU is being
assessed. Thus, CFU-blasts give rise to colo-
nies composed of cells with blast-like mor-
phology, CFU-GEMM corresponds to pluri-
potent progenitor cells identified by the pro-
duction of multilineage colonies (granulo-
cytes, erythrocytes, monocytes and mega-
karyocytes), CFU-meg is a more restricted
progenitor giving origin to megakaryocyte
colonies, and so on (21). This system has
also allowed the identification of the high
proliferative potential colony-forming cells
(HPP-CFC), defined by their ability to form
very large colonies (>5 mm in diameter)
containing approximately 50,000 cells and
including progenitor and mature hematopoi-
etic cells of the granulocyte, macrophage,
and megakaryocyte lineages. Cells that give
rise to colonies smaller than 1 mm, on the
other hand, are usually referred to as low
proliferative potential colony-forming cells
(LPP-CFC). These primitive hematopoietic
stem cells are considered to comprise cell
types such as BFU-E (erythrocyte blast-form-
ing unit) and CFU granulocytes and mono-
cytes (CFU-GM) (20).

Another culture system currently used
for the study of hematopoietic progenitors is
the delta assay (23). This assay uses a short-
term suspension culture in which potentially
colony-forming cells are grown first in liq-
uid culture for one week and then replated
onto semisolid medium. Numbers of colo-
nies observed are considered as an indicator
of the number of hematopoietic progenitors
of an earlier stage than those normally ob-
tained after 14 days of growth in semisolid
medium.

The generation of hematopoietic colo-
nies is absolutely dependent on the continu-
ous presence of so-called colony-stimulat-
ing factors (CSF), and this system was the
key to the original discovery and character-
ization of many of the hematopoietic growth
factors (24). Colony formation assays, there-
fore, allow the study of the influences of

given growth factors or cytokines on the
determination of the lineage along which
colony-forming cells differentiate. Growth
factors are denominated according to the
colonies originating under their influence -
M-CSF or GM-CSF, for instance, for factors
inducing colonies composed of monocytes
or granulocytes and monocytes, respectively.

Sustained production or self-renewal of
clonogenic cells, however, has not been pos-
sible with standard semisolid culture sys-
tems. The long-term culture system (LTC),
originally described by Dexter for murine
cells (25) and later adapted for human cells
(26,27), makes use of a rich culture medium
containing high concentrations of horse se-
rum and hydrocortisone and lower incuba-
tion temperatures, which allows the self-
renewal of stem cells over a period of several
months in the presence of a supportive mi-
croenvironment. The long-term culture of
bone marrow cells employs primary adher-
ent layers of stromal cells as an important
source of cytokines and low molecular weight
substances required for the controlled differ-
entiation and proliferation of hematopoietic
progenitor cells. Stromal cells provide a com-
plex functional ECM allowing direct cell-to-
cell contacts between different cell types.
These, either alone or in synergy with de-
fined cytokines, can conserve primitive stem
cells, induce early differentiation of a frac-
tion of the primitive progenitors, and pre-
vent their terminal differentiation.

A second type of widely used LTC is the
Whitlock-Witte long-term bone marrow cul-
ture (28), initially developed for murine bone
marrow to obtain stromal layers devoid of
hematopoietic cells. It is a lymphoid culture
system which uses a �poor� culture medium
containing 5% fetal calf serum without cor-
tisone and permits the growth of freshly
isolated bone marrow cells that form conflu-
ent adherent stromal cell layers within 2-3
weeks. Whitlock-Witte cultures can recon-
stitute the B-lymphocyte compartment in
immune-compromised mice, but do not main-
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tain primitive multilineage hematopoietic
precursors such as CFU-S (20).

In addition to CFU-S and HPP-CFC, pluri-
potent stem cells and early precursors can be
identified by the LTC assays as cobblestone
area-forming cells (CAFC; 29) and long-
term culture-initiating cells (LTC-IC). So-
phisticated analyses such as limiting dilution
analysis are used for the quantification of
these cells (30). However, even these culture
systems are unable to maintain hematopoie-
sis indefinitely due to limiting culture condi-
tions or, alternatively, to a natural process of
senescence of the hematopoietic cells. More
recent evidence involving the transduction
of CFU cells and LTC-IC using retroviral
vectors, indicate that the in vitro progenitor
assays currently available measure function-
ally different, and presumably less quies-
cent, populations than the long-term repopu-
lating stem cell (31).

The hematopoietic stroma

To obtain sustained hematopoiesis, primi-
tive hematopoietic cells must interact with
an adequate microenvironment, which in-
cludes, as already mentioned, stromal cells,
ECM components and soluble regulatory
factors (32). The experimental analysis of
hematopoiesis, as described above, has pro-
vided much of the present knowledge on the
role played by the stroma in the process.

The term �stromal cells� is used rather
loosely and the true histogeneic origin of
these mesenchyme-derived cells is still un-
certain. Stromal cells, which mechanically
support the differentiating hematopoietic
cells, include among others macrophages,
fibroblasts, adipocytes, and endothelial cells
and are frequently defined as non-hemato-
poietic cells (1,33). Adventitial reticular cells
reside on the adluminal surface of venous
endothelial cells, which branch through the
medullary cavity, and appear to provide a
reticular network that supports hematopoi-
etic cells. Marrow adipocytes possess the

mechanical function of controlling hemato-
poietic volume: impaired hematopoiesis is
associated with increased accumulation of
fat inclusions, whereas accelerated hemato-
poiesis is associated with loss of fat vacuoles
and the provision of increased space for
hematopoietic cells (34). Adipocytes may
play an additional role in blood cell produc-
tion as a reservoir for lipids needed in cell
metabolism during proliferation. Macrophag-
es and osteoclasts, cells derived from he-
matopoietic precursor cells and osteoblasts,
may also play important roles in the hemato-
poietic microenvironment. Macrophages are
important in the clean-up of ineffective eryth-
ropoiesis and in the removal of the nuclear
pole, produced during the process. Stromal
cells represent a highly dynamic structure
which plays an active role in hematopoiesis
by producing ECM components and both
soluble and membrane-associated growth
factors (35).

Stromal cells are rare in the marrow (ap-
proximately 0.125% of the marrow cellular-
ity), and since in bone marrow suspensions
they are mostly contained in tight aggre-
gates, their analysis in freshly isolated mate-
rial is difficult (36). Although adherent stro-
mal cell layers in LTC, established by grow-
ing bone marrow cells over a period of sev-
eral weeks, are considered to mimic many
characteristics of the marrow microenviron-
ment, it has not yet been established conclu-
sively that these cultures encompass all types
of stromal cells identified in vivo and that
they retain all of their functional properties
in vitro.

As the heterogeneous composition of the
stroma makes it extremely difficult to ana-
lyze the role of individual cell types in he-
matopoietic development, numerous stroma-
derived cell lines have been established from
bone marrow and a variety of other tissues,
including spleen, thymus, and non-hemato-
poietic organs such as kidney, lung, skin, or
mammary tumors. These studies have shown
in vitro the heterogeneity and compartmen-
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talization of cell types already observed dur-
ing the in situ study of bone marrow. In the
analysis of 33 bone marrow stromal cell
lines, for instance, lineage-restricted stimu-
latory activity and a reciprocal relationship
between granulocyte and macrophage for-
mation were observed (37). A more detailed
characterization of stromal lines generally
shows differences with respect to growth
potential, cell surface markers and cytokine
transcripts, secondary to the varying capac-
ity to expand bone marrow or cord blood
stem/progenitor cells (38,39). The cell types
which compose these heterogeneous popu-
lations are also being separately analyzed. In
one study, three cell types could be grown
separately in vitro, and were identified as
macrophages, endothelial-like cells and myo-
fibroblasts, with different potential for the
support of hematopoietic cell growth (40).

Hematopoietic stromal precursors have
been described, besides adult bone marrow,
in fetal liver and fetal bone marrow, with
reported differences in the anatomic and
ultrastructural characteristics which, how-
ever, have not been clearly correlated to
functional differences (6,41,42). Several
studies suggest that hematopoietic progeni-
tors collected at one stage of ontogenetic
development may not be able to interact with
a microenvironment originating from cells at
a different ontogenetic stage. The observa-
tion that fetal liver progenitors may not be
capable of differentiating in an adult bone
marrow microenvironment, for instance (43),
may have important implications for fetal
liver transplantation into postnatal recipi-
ents.

The ontogeny of stromal cells is cur-
rently very poorly understood. Based on the
well-established generation of multiple mes-
enchymal cell types from bone marrow cells,
the existence of stromal stem cells has been
proposed (44). Besides gaps in our knowl-
edge of the biology of these cell populations,
much information at the molecular level is
also lacking. At least 16 Hox genes and 5

genes with homeobox domains have already
been identified, although their temporal ex-
pression has not yet been determined (45).

The transplantation capability of stromal
cells is also a controversial subject. Some
studies have indicated that the stroma of
bone marrow receptors is developed from
the host�s precursor cells (46-48), whereas
others show that stromal cells in LTC of
transplanted patients progressively originate
from the donor marrow (49), a situation also
reported for human/sheep chimeric cultures
(50). In an in vivo system, it has been re-
ported that murine bone marrow mesenchy-
mal precursor cells, expanded in culture,
were detected in the bone, cartilage and lungs
of recipient mice at 1 to 5 months after
transplantation (51). Recently, the migration
of bone marrow-derived cells to areas of
induced muscular degeneration, followed by
differentiation along the myogenic pathway
and participation in the regeneration of dam-
aged fibers, has been reported in mice (52).

Differently from hematopoietic cells, the
existence of stromal precursors outside the
bone marrow in adults is highly controver-
sial, so that while some studies have de-
tected their presence in peripheral blood (53-
55), others have reported negative results
(56,57). The existence of stromal precursors
in cord blood under normal conditions is the
subject of intense discussion (58-62). A rep-
resentative recent study (58), for instance,
reports deficient myeloid progenitor cell
growth in LTC of umbilical cord blood, sug-
gesting that this is due to the impaired devel-
opment of an adherent layer. Under special
conditions, Ye et al. (59) and Nieda et al.
(60) reported the establishment of an adher-
ent stromal layer (using a special substra-
tum) and of an endothelial layer (in the
presence of IL-2 and conditioned medium
from the 5637 carcinoma cell line), respec-
tively. We have recently described the estab-
lishment, under normal long-term culture
conditions, of an adherent layer from human
umbilical cord blood capable to support the
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proliferation of hematopoietic clonogenic
cells (63; Alfonso ZZC, Forneck ED and
Nardi NB, unpublished results). Different
results probably reflect the varying experi-
mental conditions employed.

The hematopoietic stroma is operation-
ally defined by its ability to support hemato-
poiesis. This functional characteristic is more
probably a result of interactions between the
adherent cells and hematopoietic cells they
make contact with, but although stromal lay-
ers can be developed by in vitro cultivation
of different organs, only those derived from
bone marrow were shown to support the
proliferation of more primitive hematopoi-
etic cells (64). Although stem cells adhere to
stroma developed from other organs, their
hematopoietic potential is not maintained.
Additional factors - ECM interactions and
cytokine stimulation - are important for the
interaction of the hematopoietic cells with
the stroma. Actually, the need for contact
between elements of these two compartments
is being questioned, and in culture systems
in which progenitors are physically sepa-
rated from the stroma layer by a microporous
membrane (stroma noncontact culture), the
LTC-IC has been shown to be maintained

(65). In LTC established under conditions
favoring lymphoid development, however,
contact between stem and stromal cells is
required for maturation of hematopoietic cells
(66). A more detailed study in which the
composition of the stem cell compartment
was analyzed suggested that different sets of
stem cells may or may not require contact
with stroma to proliferate and differentiate
(67).

The investigation of the stromal com-
partment is also important for direct applica-
tions in human health. Abnormalities in the
stromal compartment have been implicated
as one of the possible mechanisms of aplas-
tic anemia (68,69), and may also be involved
in the abnormal behavior of Ph+ cells in
chronic myeloid leukemia (68). The impli-
cations of a compatibility between trans-
planted hematopoietic cells and the receptor
stroma has already been mentioned; the ad-
equate in vitro expansion of hematopoietic
cells for transplant or gene therapy purposes
requires the establishment of stromal layers
in various systems; and transduction of he-
matopoietic-supportive stromal cells with
genes of interest is already being reported
(70).
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