
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

GUILHERME DOS SANTOS KOROL

A Resource-Aware Multicore CGRA
Architecture for Edge Applications

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Microeletronics

Advisor: Prof. Dr. Antonio Carlos Schneider
Beck
Coadvisor: Dr. Marcelo Brandalero

Porto Alegre
July 2020

CIP — CATALOGING-IN-PUBLICATION

Korol, Guilherme dos Santos

A Resource-Aware Multicore CGRA Architecture for Edge
Applications / Guilherme dos Santos Korol. – Porto Alegre: PG-
MICRO da UFRGS, 2020.

104 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2020. Advisor: Antonio Carlos Schneider Beck; Coad-
visor: Marcelo Brandalero.

1. CGRA. 2. Resource management. 3. Power gating. 4. Re-
configurable architectures. I. Beck, Antonio Carlos Schneider.
II. Brandalero, Marcelo. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Tiago Roberto Balen
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The universe is under no obligation to make sense to you”

— NEIL DEGRASSE TYSON

AGRADECIMENTOS

Gostaria de expressar minha gratidão a todos que tornaram esse trabalho possível.

Em primeiro lugar, agradeço a minha família. Para Leo, Iris e Ricardo, que sempre

me apoiaram, meu mais sincero muito obrigado. Sem vocês, eu não teria chegado até aqui.

Para meu orientador, Prof. Dr. Antonio Carlos Schneider Beck, gostaria de

agradecer pela paciência e pelos ensinamentos passados, que não somente técnicos, levarei

para minha carreira. Também, ao meu co-orientador, Dr. Marcelo Bradalero, que facilitou

enormemente a realização desse trabalho, estando sempre disposto a solucionar minhas

dúvidas.

Aos meus colegas de laboratório, com quem pude dividir momentos de alegria e

trabalho, meu muito obrigado. Estes, que sempre ofereceram ajuda, foram fundamentais

ao longo do ano. Em especial, ao meu amigo, Michael Guilherme Jordan, que desde a

primeira semana, têm se empenhado nesse projeto.

Finalmente, quero agradecer a minha namorada Joice. Minha sorte foi poder con-

tar contigo ao longo desse caminho. Muito obrigado pelo teu suporte e amor.

ABSTRACT

Edge devices on the Internet of Things (IoT) are intelligent, cloud-connected, usually

battery-operated systems that are increasing in numbers and that are used in many ap-

plications, including smart homes, agriculture, healthcare, transportation, security, and

telecommunication. In particular, these performance-hungry devices have exposed de-

signers to the problem of achieving high throughput and low latency in environments

with limited power supply. Moreover, as applications migrate from the cloud to the edge,

these devices must concurrently execute a broad range of applications, and now feature

multiple cores to address this demand. However, as multicore systems do not provide

the best adaptability between the hardware and the various applications with distinct re-

source requirements, many works have investigated the use of reconfigurable architec-

tures, in particular, Coarse-Grained Reconfigurable Architectures (CGRAs), to enable

energy-efficient processing. Currently, this adaptation is limited to either homogeneous

organizations, aiming at the highest performance, or heterogeneous organizations, aim-

ing at improved energy efficiency. We propose in this work a novel approach to increase

the energy efficiency of CGRAs by dynamically monitoring their underutilized resources

and applying power gating to them in order to save power with minimal impact on per-

formance. Then, we extend the approach to a multicore architecture featuring multiple

CGRAs, where a central controller detects which applications are underutilizing their

CGRAs and cleverly tunes the power gating of each unit to meet a system-wide power

constraint. By using the proposed approach, we enable a homogeneous CGRA architec-

ture to achieve the energy consumption levels of a heterogeneous one, since the extra de-

gree of adaptability offered by the online management transparently matches the system’s

resources to the applications at hand. Overall, it is possible to achieve average reductions

in EDP of over to 40% when the proposed architecture is compared to its homogeneous

and heterogeneous counterparts.

Keywords: CGRA. resource management. power gating. reconfigurable architectures.

Uma arquitetura Multiprecessada CGRA com Gerenciamento de Recursos para

Aplicações Edge

RESUMO

Dispositivos Edge na Internet das Coisas (IoT) são sistemas inteligentes, conectados à nu-

vem, normalmente movidos a bateria que estão aumentando em número e são utilizados

em muitas aplicações, que incluem casas inteligentes, agricultura, saúde, transporte, se-

gurança, e telecomunicações. Em especial, esses dispositivos de alta demanda computaci-

onal vem expondo projetistas ao problema de alcançar alta vazão e baixa latência em am-

bientes de alimentação limitada. E mais, com aplicações migrando da nuvem para Edge,

esses dispositivos estão executando paralelamente mais e mais aplicações, e hoje em dia

possuem múltiplos processadores para este tipo de processamento. Entretanto, como as

arquiteturas multiprocessadas não oferecem a melhor adaptabilidade entre o hardware e

as várias aplicações com requisitos de recursos diversos, muitos trabalhos têm investi-

gado o uso de arquiteturas reconfiguráveis. em especial, as Arquiteturas Reconfiguráveis

de Grão Grosso (CGRA), para prover processamento eficiente energeticamente. Atual-

mente, essa adaptabilidade está limitada a ter organização homogênea, objetivando maior

desempenho, ou a ter organização heterogênea, objetivando melhoria da eficiência energé-

tica. É proposta neste trabalho uma nova abordagem para aumentar a eficiência energética

das CGRAs que dinamicamente monitora os recursos subutilizados e aplica power gate

de forma a economizar potência com mínimos impactos em performance. Então, ampli-

amos a abordagem para uma arquitetura multiprocessada com múltiplas CGRAs, onde

um controlador centralizado detecta quais aplicações estão subutilizando suas CGRAs e

regula o power gate de cada unidade para satisfazer uma restrição de potência em nível

de sistema. Usando a abordagem proposta, promovemos uma arquitetura de CGRAs ho-

mogêneas para atingir níveis de consumo energético de uma heterogênea, uma vez que

o grau adicional de adaptabilidade oferecido pelo gerenciamento online adequa de forma

transparente os recursos do sistema às aplicações em uso. No geral, é possível atingir

reduções em EDP de mais de 40% quando a arquitetura proposta é comparada com suas

equivalentes homogênea e heterogênea.

Palavras-chave: CGRA, gerência de recursos, power gating, arquiteturas reconfigurá-

veis.

LIST OF ABBREVIATIONS AND ACRONYMS

ALU Arithmetic Logic Unit

AMU Active Mapping Unit

ASIC Application-Specific Integrated Circuit

BT Binary Translator

CC Configuration Cache

CCA Configurable Compute Accelerator

CGRA Coarse-Grained Reconfigurable Architectures

CLB Configurable Logic Block

CMOS Complementary MOS

CPU Central Processing Unit

CReAMS Custom Reconfigurable Arrays for Multiprocessor System

DAP Dynamic Adaptive Processors

DDH Dynamic Detection Hardware

DFG Data Flow Graph

DIM Dynamic Instruction Merging

DORA Dynamic Optimizer for Reconfigurable Architectures

DVFS Dynamic Voltage and Frequency Scaling

DynaSpAM Dynamic Spatial Architecture Mapping

DySER Dynamically Specialized Execution Resource

FPGA Field Programmable Gate Arrays

FS Full System

FU Functional Unit

GPP General-Purpose Processors

HARTMP Reconfigurable and Transparent Multicore Processing

ILP Instruction Level Parallelism

IoT Internet of Things

IPC Instruction Per Cycle

IPS Instructions Per Second

ISA Instruction Set Architecture

ISE Instruction Set Extension

LCB Local Clock Buffers

LUT LookUp Table

MMU Memory Management Unit

MOS Metal Oxide Semiconductor

NoC Network-on-Chip

NRE Non-Recurring Engineering

OoO Out-of-Order

PC Program Counter

PCPG Per-Core Power Gate

PE Processing Elements

PMU Power Management Unit

PX-CGRA Polymorphic Approximate CGRA

RA Reconfigurable Architecture

ReMAP Reconfigurable Multicore Acceleration and Parallelization

RFU Reconfigurable Functional Units

RISP Reconfigurable-Instruction-Set Processors

RISPP Rotating Instruction Set Processing Platform

RTL Register Transfer Level

SE System call Emulation

SFU Shift and Mask Unit

SMT Simultaneous Multithreading

SoC System on Chip

TLP Thread Level Parallelism

TRePU TransRec Processing Unit

TTL Transistor-Transistor Logic

VLIW Very Large Instruction Word

VMU Virtual Mapping Unit

LIST OF FIGURES

Figure 1.1 Growth in performance relative to the VAX 11/780 processor from 1978
to 2018. ...14

Figure 1.2 Power dissipation of Intel processors over the years.16
Figure 1.3 Example of four sample applications running on systems with homo-

geneous accelerators (a), heterogeneous accelerators (b), and the proposed
architecture (c). ...19

Figure 2.1 IPC and L1 data cache miss behavior of the SPEC2000 gzip application.....24
Figure 2.2 Variance in IPC for the same 300 thousand gcc instructions with two

sampling granularities...25
Figure 2.3 Subthreshold and gate oxide leakage currents in a NMOS transistors for

varying supply voltages and two temperatures. ..28
Figure 2.4 Power optimizations across the design hierarchy. ...28
Figure 2.5 Fine-grained clock gating. ...30
Figure 2.6 Architectural clock gating..30
Figure 2.7 Power gate implementation schematic. ...32
Figure 2.8 Power gating cycle...35
Figure 2.9 Relative Alpha cores sizes (a) and their performance, given by commit-

ted instructions per second, for the applu application (b).......................................36
Figure 2.10 big.LITTLE (Cortex-A17 and Cortex-A7) power savings (y axis) when

compared to a homogeneous system composed of only big processors (Cortex-
A15) for a set of applications (x axis)...37

Figure 2.11 A RISP overview..40
Figure 2.12 Original DFG (left) and transformed DFG (right).......................................41
Figure 2.13 The basic architecture of an FPGA..43
Figure 2.14 A coarse-grained reconfigurable array of functional units.44
Figure 2.15 Overview of the Warp Processor..45
Figure 2.16 Schematic of the CCA’s reconfigurable array. ...46
Figure 2.17 The DIM reconfigurable system. ...47
Figure 2.18 Overview of the DySER (Dynamically Specialized Execution Resources)

architecture (a) and an example configuration (b). ...48
Figure 2.19 The Custom Reconfigurable Arrays for Multiprocessor System (or CReAMS)

in (a) and its Dynamic Adaptive Processor (DAP) in (b).49
Figure 2.20 Schematics of the power control network and controller state machine.51
Figure 2.21 ILP-oriented power gate of the reconfigurable array.52
Figure 2.22 TransRec system overview...53

Figure 3.1 Multicore CGRA Architecture. ...57
Figure 3.2 Architecture tile detailed. ..58
Figure 3.3 CGRA’s reconfigurable array...59
Figure 3.4 Original Binary Translator pipeline...60
Figure 3.5 A sample instruction trace (a) and possible its possible mapping (b).61
Figure 3.6 Configuration Cache structure. ..62
Figure 3.7 Enhanced Binary Translator pipeline. ...63
Figure 3.8 Example of a 60-level CGRA with its respective four mapping units. In

the example, Mapping Unit Y is selected as the Active Mapping Unit (AMU).....64

Figure 3.9 Creation and loading of configurations with varying mapping units and
array sizes in a 60-level CGRA. When creating configurations, the Binary
Translator matches the configuration length from the Active Mapping Unit
(black boxes) with the Configuration Cache entry length by filling the config-
uration (white boxes). When loading configurations for execution, they are
already adapted to bigger array sizes. ...67

Figure 3.10 Example of CGRA mappings for fully (a) and partially (b) functioning
CGRA. ..68

Figure 3.11 Power Management Unit functionality with sample applications.69

Figure 4.1 The Rocket Core pipeline. ...74
Figure 4.2 The BOOM Core pipeline. ..75
Figure 4.3 The CGRA array size for the longest application program phase.77
Figure 4.4 The current CGRA size, in number of levels, attributed by the PMU to

each program phase (circles) along the application execution (t)...........................77
Figure 4.5 Mean FU utilization rate after adding the proposed resource manage-

ment scheme to the CGRA. ..79
Figure 4.6 Performance after adding the proposed resource management scheme

to the CGRA. ..79
Figure 4.7 Execution Time Coverage w.r.t baseline..80
Figure 4.8 Power dissipation after adding the proposed resource management scheme

to the CGRA. ..81
Figure 4.9 Energy Reduction after adding the proposed resource management scheme

to the CGRA. ..82
Figure 4.10 Speedup w.r.t. baseline for the proposed, homogeneous, and heteroge-

neous systems (higher is better). ...84
Figure 4.11 Power dissipation w.r.t. baseline for the proposed, homogeneous, and

heterogeneous systems (lower is better). ..86
Figure 4.12 CGRAs’ power dissipation in homogeneous and heterogeneous sys-

tems w.r.t. the CGRAs in proposed system. ...86
Figure 4.13 Percentage of the execution time spent with each CGRA size....................87
Figure 4.14 Energy w.r.t. baseline for the proposed, homogeneous, and heteroge-

neous systems (lower is better). ..88
Figure 4.15 CGRA’s energy consumption in the homogeneous and heterogeneous

systems w.r.t. the CGRAs in the proposed system. ..89
Figure 4.16 CGRA’s EDP in the homogeneous and heterogeneous systems w.r.t.

the CGRAs in the proposed system. ...89
Figure 4.17 Overview of the Stitch architecture. ..90

LIST OF TABLES

Table 1.1 Device scaling in the Dennard and Post-Dennard eras.15

Table 4.1 Evaluation Setup for the single-core scenario. ..76
Table 4.2 Benchmark summary for the single-core scenario. ...76
Table 4.3 Evaluation Setup for the multi-core scenario. ...83
Table 4.4 Evaluation scenarios for the multi-core scenario. ...83
Table 4.5 Throughput w.r.t quad-core ARM Cortex A7. ..91

CONTENTS

1 INTRODUCTION...14
1.1 Motivation and Scope ...18
1.2 Contributions...20
1.3 Structure of this dissertation..21
2 BACKGROUND..23
2.1 Dynamic Behavior of Workloads...23
2.2 Resource and Power Management Techniques ..25
2.2.1 CMOS Power Dissipation..25
2.2.2 Clock Gating based techniques..29
2.2.3 Power Gating based techniques ...31
2.3 Adaptability for Energy Efficiency..35
2.3.1 Heterogeneous Computing...35
2.3.2 Reconfigurable Architectures...38
2.3.2.1 Classification...39
2.3.2.2 Implementations..45
2.4 Contributions to the State-of-the-Art..53
3 A RESOURCE-AWARE MULTICORE CGRA ARCHITECTURE.....................56
3.1 System Overview...56
3.2 CGRA...58
3.3 Binary Translator..60
3.3.1 Original Binary Translation Module..60
3.3.2 Enhanced Binary Translation...62
3.3.2.1 Mapping Step ..63
3.3.2.2 Configuration Build Step ..65
3.4 PMU ...66
3.4.1 PMU Phases ...68
4 EVALUATION...71
4.1 Tools..71
4.1.1 Gem5..71
4.1.2 CACTI..73
4.1.3 Rocket Chip Generator ..73
4.1.4 Logic Synthesis..75
4.2 Single-core Scenario..75
4.2.1 Methodology ..75
4.2.2 Results..76
4.3 Multicore Scenario..82
4.3.1 Methodology ..82
4.3.2 Results..84
4.3.3 Comparison with State-of-the-art ..90
5 CONCLUSION ...92
5.1 Future Work ..93
5.2 Publications ...94
REFERENCES...95

14

1 INTRODUCTION

Two main forces have driven an exponential increase in microprocessors’ per-

formance over the last years (Figure 1.1). Process technology and microarchitectural

advances have granted speedups for users that could simply wait for the next technol-

ogy generation (OLUKOTUN; HAMMOND, 2005). Precisely, the technological aspect

is pushed by Moore’s Law (MOORE, 2006) that, in conjunction with Dennard Scaling

(DENNARD et al., 1974), ruled that for every new technology node, transistor integra-

tion doubles, circuits are 40% faster, and power dissipation stays the same. Technology

scaling alone has enabled a three-orders-of-magnitude performance increase in the past

forty years (BORKAR; CHIEN, 2011).

Figure 1.1: Growth in performance relative to the VAX 11/780 processor from 1978 to
2018.

Source: (HENNESSY, 2017)

However, a continuous reduction of the supply and threshold voltage is required

in order to keep up with the projections of Dennard scaling. As it turns out, the transistor

is not a perfect switch. Hence, a challenge that was not foreseen in Dennard et al. (1974)

- leakage - has raised its participation in the total chip’s power dissipation, thereby both

threshold and supply voltage do not scale at the desired rate, a fact that has put an end

to the Dennard Scaling around 2003 (HENNESSY, 2017). In practice, power dissipation

has exhibited an opposite trend from what was predicted by Dennard Scaling (Figure 1.2).

Power dissipation has increased instead of being kept at constant values. The phenomenon

15

is best explained in Table 1.1 that presents power density as a function of the scaling

factor S from before and after the Dennard Scaling breakdown. More recently, a slow

down in Moore’s Law is also observed. The market leader, Intel, has taken the time

interval between new technologies nodes from the Moore-predicted, two years, to a slower

pace. For example, the 32nm node took two years after the launch of the 45nm to start

production. Later, the Intel’s 22nm technology took 2.25 years to be launched after the

32nm, and the 14nm had its launch further delayed to a 2.5 years interval, showing a clear

shift from the trend predicted by Moore (FLAMM, 2017). Consequently, the industry can

no longer rely exclusively on technology scaling to provide a continuous performance

increase for new generations of general-purpose processors.

Table 1.1: Device scaling in the Dennard and Post-Dennard eras.
Dennard Scaling Post-Dennard Scaling

Device Count S2 S2

Device Frequency S S
Device Power (cap) 1/S 1/S
Device Power (Vdd) 1/S2 1

Power Density 1 S2

Source: (SHAFIQUE; GARG, 2017)

On the other hand, microarchitectural advances have also contributed to the in-

crease in performance observed over the last years. The additional transistor density has

enabled advanced microarchitectural techniques to enhance performance even further. For

example, techniques like pipelining, branch prediction, out-of-order execution, and specu-

lation were proposed to increase the capability of extracting Instruction Level Parallelism

(ILP) from applications’ code. However, as was empirically described by Pollack’s rule,

performance gains due to extra circuitry are bounded by the square root of the number of

transistors or area (POLLACK, 1999). For example, from a new microarchitectural ad-

vance that quadruples the processor die area, a performance improvement of only about

2× is expected by Pollack’s rule. Additionally, Wall (1991) advocated that relying only

on applications’ intrinsic instruction parallelism, as done in these single-processor archi-

tectures, could not sustain gains indefinitely. In other words, performance gains due to

traditional microarchitecture techniques, such as the ones transparent to the application

(e.g., superscalarity and dynamic scheduling) have stalled in recent microprocessor gen-

erations.

Inevitably, due to both technology stagnation, represented by the end of Dennard

scaling and Moore’s Law, as well as the reduction in microarchitectural-driven perfor-

mance gains, the industry has signaled that the trend in general-purpose processors’ per-

16

Figure 1.2: Power dissipation of Intel processors over the years.

Po
w
er
	(w

at
ts
)

Year
Source: (OLUKOTUN; HAMMOND, 2005)

formance as observed in the last thirty years is likely to be discontinued, as shown in

Figure 1.1. This change of paradigm forced a historic switch from single-processor ar-

chitectures to Chip Multi-Processors (CMP) (OLUKOTUN et al., 1996). With CMPs,

the focus shifted to throughput improvements. Attending multiple requests have become

as, or more, important than attending a single request at a lower latency (OLUKOTUN;

HAMMOND, 2005). For example, in a web server attending requests from multiple users,

throughput may be more relevant than latency. Moreover, parallelization in CMPs is not

restricted to the execution of independent tasks like users’ requests in a web server. Even a

single task can be broken into parallel threads. Exploring Thread Level Parallelism (TLP)

in CMP systems has transferred responsibilities for performance improvements from the

hardware designer to the software developer, who has to find in the application parts of

the code that can execute in parallel - which is not an easy task (BLAKE et al., 2010).

However, as a wide range of applications, such as multimedia, encryption, and net-

work, run on these systems, each of which with a particular computational requirement,

a machine of single architecture and organization will not satisfy all the diverse compu-

tational requirements equally well (MITTAL, 2016). Indeed, the fact that applications’

behavior varies greatly (e.g., in terms of ILP) is explored to the development of power

and energy-efficient architectures. In heterogeneous computing, the strategy of mixing

up cores with high computing capability with less powerful ones, as presented in (KU-

MAR et al., 2003), opened up many research opportunities to save energy by providing

architectures with a better match to what was required by the different applications. Het-

erogeneity may come as processing elements with different architectures or organizations.

For example, processors that implement the same Instruction Set Architecture (ISA) can

17

provide multiple levels of energy efficiency by having different organizations. On the

other hand, the heterogeneous approach was taken even further with systems that in-

clude elements that vary their architectures. For instance, the use of customized hardware

has proven itself to be a useful approach to increase efficiency (CHUNG et al., 2010).

The abundance of transistors is employed to implement hardware customization based

on hardwired or customized processing elements and data movement, creating highly

energy-efficient computation units called accelerators (SHAFIQUE et al., 2014; KHAN;

SHAFIQUE; HENKEL, 2015).

Works coupling accelerators to General-Purpose Processors (GPP) report orders-

of-magnitude gains in performance (HAMEED et al., 2010; KOÇBERBER et al., 2013;

CONG et al., 2014). Hardware accelerators provide the best efficiency since they are

tailored to particular tasks. However, the use of fixed-function, or application-specific,

accelerators comes with costs across all the design stack. From a hardware perspec-

tive, designing an accelerator like video and cryptography engines requires knowledge

of the application by the hardware designers, which configures a more expensive design

cycle when compared to the development of general-purpose, application-independent,

machines. Also, as most accelerators are tailored for performing a specific task, they

lack generality. Moreover, even though, at the time they are launched into the market,

economics justify their implementation, future general-purpose solutions may, eventu-

ally, fill the original application’s niche (PATEL; HWU, 2008). Whereas from a software

perspective, the development cost involved in programming the accelerator might exceed

the performance gains. Historically, software compatibility has played a significant role

in the microprocessor industry. For instance, it has played a major role in the success

of Intel’s x86 ISA and the failure of its attempted replacement, the IA-64 (HENNESSY,

2017). Despite the efforts that have been made for making accelerators’ programming in-

terface easier to programmers, it is still a burden to software development (HWU; PATEL,

2018).

Alternatively, dynamically customizable, or reconfigurable, accelerators were pro-

posed to bridge the gap between the efficiency offered by application-specific accelera-

tors and the generality provided by GPPs. Precisely, the usage of Processing Elements

(PEs) interconnected by programmable networks ensures that a wide range of applications

can be executed over the same hardware fabric, addressing the generality issue and the

already mentioned prohibitive Non-Recurring Engineering (NRE) costs of application-

specific accelerators. Also, by customizing their datapath for specific computations,

18

reconfigurable architectures such as the Field Programmable Gate Arrays (FPGA) and

the Coarse-Grained Reconfigurable Architectures (CGRA) address the lack of efficiency

of GPPs. Even though CGRAs are more generic, have smaller programmability costs,

and have better runtime adaptability than application-specific accelerators (WIJTVLIET;

WAEIJEN; CORPORAAL, 2016; LIU et al., 2019), there is still room for improvement.

This work investigates these architectures, aiming to reduce their power dissipation and

energy consumption in order to enable their use in constrained environments such as the

one presented below.

1.1 Motivation and Scope

In recent years, computing devices have moved closer to sensors (PAGANI et al.,

2017; ADEGBIJA et al., 2018). Internet of Things (IoT) and Edge devices are examples

of where complexity has increased to attend users’ expectations on performance, which

further aggravates the issue, earlier discussed, of power density since these devices are

usually constrained in power supply. Nowadays, the number of interconnected devices in

IoT keeps increasing at a steady and fast pace. Estimations report that by 2025 the IoT will

compose an economic impact ranging from $2.7 to $6.2 trillion, including more than 50

billion low-power devices world-wide (ADEGBIJA et al., 2018; MOHAMMADI et al.,

2018). A significant part of those devices are capable of complex computations and are

seen in almost every aspect of our daily lives: from cellphones, coffee makers, wearables,

health appliances to washing machines, there is a growing need for fast, low latency

responses. Thus, processing on the IoT has largely been transferred from the cloud to the

network edge (SHI; DUSTDAR, 2016). These so-called Edge devices aim to alleviate

the latency associated with sending and receiving data to/from the cloud, as well as other

non-functional requirements like security and privacy. To that end, edge applications need

to process data locally instead of remotely through the network. Since many of these

devices are portable and battery-operated, they cannot keep up with the near-constant

increase in processing requirements. Although techniques for energy efficiency have been

developed, they cannot adequately satisfy the requirements for the new generation of IoT

Edge applications.

Initially, to support the applications’ demands for low latency, high throughput,

and devices’ physical limitations, homogeneous multicore architectures were extensively

employed (ADEGBIJA et al., 2018). However, rising performance demands and signif-

19

icant energy requirements of Edge devices have pushed the use of heterogeneous archi-

tectures (SHI; DUSTDAR, 2016; FAN et al., 2019). Hence, works like (BAUER et al.,

2010; KULKARNI et al., 2018; LI et al., 2019) that use either FPGA or ASIC devices are

getting more popular for implementing energy-efficient Edge computing platforms. Still,

few works have explored the use of general-purpose reconfigurable accelerators to enable

modern multicore systems to work under Edge-tolerable energy consumption levels.

Besides the requirement of energy efficiency imposed by Edge applications, an-

other crucial aspect of Edge devices is that they are inserted in a fast-evolving environment

with new applications being continually launched into the market (SHI et al., 2016; MO-

HAMMADI et al., 2018). Hence, the programmability of Edge devices becomes a key

aspect for economic reasons (SHI et al., 2016; SHAFIQUE et al., 2018). Aiming to si-

multaneously cope with the requirements of energy efficiency, performance, programma-

bility, and adaptability, reconfigurable architectures present themselves as an attractive

alternative for the new Edge applications.

Figure 1.3: Example of four sample applications running on systems with homogeneous
accelerators (a), heterogeneous accelerators (b), and the proposed architecture (c).

CGRA

CGRA

CGRA

CGRA

CGRA
CGRA

(a) Homogeneous Accelerators (b) Heterogeneous Accelerators

(c) Proposed

CORE CGRA CORE

CORE CGRA CORE CGRA

CORE CGRA CORE

CORE CGRACORE

CORE CORE

CORE
CGRA

CORE

PMU

CGRA demand from Application 2 ()

CGRA demand from Application 4 ()

CGRA demand from Application 1 ()

 CGRA demand from Application 3 ()

Underutilized 					Undersized

Power-Gated
Task migration costs from

initial task mapping in (a) to (b)

Source: the author

Usually, multicore reconfigurable systems are (1) homogeneous, with reconfig-

urable accelerators of the same size distributed across the system (GUPTA et al., 2011;

TAN et al., 2016), or (2) heterogeneous, with different accelerators coupled to the cores

(SOUZA et al., 2016; TAN et al., 2018). Homogeneous architectures often incur in low

20

energy efficiency for applications with low ILP due to the underutilized processing re-

sources. Figure 1.3(a) shows a multicore architecture based on a homogeneous set of

reconfigurable accelerators. In the example, applications 1 and 3 are not leveraging the

full potential of their CGRAs due to their low ILP, causing underutilization. On the other

hand, with heterogeneous approaches, both performance and power efficiency will de-

pend on the workload characteristics to fit in the available accelerators and on an efficient

scheduler (and the associated costs of task migration) to rightly map the applications

(MÜCK; SARMA; DUTT, 2015). An example of a heterogeneous multicore reconfig-

urable architecture is depicted in Figure 1.3(b). It is possible to note that to better accom-

modate the ILP demands of applications 2, 3, and 4, they had to be migrated to smaller ac-

celerators in order to avoid underutilization, bringing together significant migration costs.

Moreover, even though accelerators of multiples sizes are available, it will not always be

possible to perfectly match acceleration demands from every application to the available

heterogeneous CGRAs since their size are fixed after deployment (e.g., application 4 in

Figure 1.3(b)).

Considering the discussion above, this work proposes a resource-aware multicore

CGRA architecture tailored for Edge applications. While physically implemented as a

homogeneous multicore reconfigurable architecture, it is as energy-efficient as a hetero-

geneous architecture, since it can automatically adapt its heterogeneity to the workload at

hand and, by doing so, avoid the expensive energy costs of task migration (Figure 1.3(c)).

This is achieved by employing a novel ILP/TLP-aware resource management module that

dynamically supervises the acceleration provided by each of the CGRAs and the overall

system TLP. That information is gathered cooperatively and used to automatically power

gate underutilized CGRA resources and adapt the system at runtime to the tasks at hand,

keeping the power dissipation at edge-tolerable levels. Precisely, when the proposed ar-

chitecture is evaluated against its homogeneous and heterogeneous counterparts for a di-

verse set of edge applications, the average energy consumed by accelerators is reduced in

43.95% and 19.76%, respectively.

1.2 Contributions

With respect to the earlier discussion, the primary purpose of this work is to im-

prove over existing CGRA architectures on energy efficiency by employing an intelligent

power gating scheme, enabling its use on more energy-restricted environments. In sum-

21

mary, the contributions are as follows:

• This work proposes a resource-aware multicore reconfigurable architecture tailored

for Edge applications. The work includes its hardware implementation and a global

power management unit for CGRAs that, with no need for software schedulers,

efficiently adapts the hardware resources to the applications at hand;

• Considering a relevant set of Edge applications, we assess the proposed architecture

on performance, power, and energy, over a modern multicore system that includes

four Out-of-Order 2-issue BOOM processors. The results show an average reduc-

tion of 63.35% in the total energy consumption with an average speedup of 1.11x

over the multicore system.

• We also compare the proposed architecture to the Stitch (TAN et al., 2018) recon-

figurable architecture, a state-of-the-art system for Edge applications, showing that

the it is possible to achieve better speedups under the same power envelope with the

advantage of being fully transparent and adaptive.

1.3 Structure of this dissertation

Chapter 2 presents a background on the concepts necessary to understand the con-

tributions of this work. It begins by outlining some of the issues caused by the diversity of

behavior presented in modern workloads. Next, Chapter 2 discusses the main techniques

for implementing resource and power management. Concluding this chapter, adaptable

architectures are outlined with a focus on reconfigurable architectures.

Chapter 3 presents the architecture proposed in this work. First, a top overview and

description of the main modules are given. Later, the hardware modules first introduced

in this work are described in more detail.

Chapter 4 presents two evaluations of the proposed system. In the first scenario,

the system is assessed in a single-core architecture with a larger reconfigurable fabric.

While in the second scenario, the full architecture is evaluated. In a multicore reconfig-

urable architecture, the proposed resource management techniques are evaluated against

homogeneous and heterogeneous counterparts. Additionally, a comparison against a

state-of-the-art reconfigurable architecture is proposed.

Finally, Chapter 5 concludes this document summarizing the main points and con-

tributions. Then, some directions for future works are given, and the publications pro-

22

duced throughout this work are listed.

23

2 BACKGROUND

This chapter presents the main concepts and terminology required to understand

this dissertation. The first section discusses particularities encountered in a modern work-

load scenario. Specifically, Section 2.1 explores the dynamic behavior of modern ap-

plications since this work leverages such characteristic to perform dynamic adaptations

on the system’s resources. Next, Section 2.2 outlines the main sources of power dis-

sipation in current digital CMOS circuits. The discussion is followed by a presentation

of the usual techniques used for dealing with the power issue in modern digital circuits,

including the technique used in this work: power gating. Further, Section 2.3 shows

the architectural models used for increasing power and energy efficiency of comput-

ing devices. Initially, the section presents the concept of heterogeneous computing that

leverages the dynamic behavior of workloads for mixing into the same system processing

elements with different processing capabilities. Later, still in Section 2.3, reconfigurable

architectures, the target of this work, are presented in greater detail. Throughout the

following sections, the state-of-the-art works on each subject are also given.

2.1 Dynamic Behavior of Workloads

Many programs present widely different behavior during their execution. For in-

stance, a program may experience portions with an intensive memory-bound behavior

followed by portions of intensive computing. The property known as program phase con-

sists of a set of intervals within a program execution where the behavior (according to

some metric) is regular (SHERWOOD et al., 2002). Although a program phase can reap-

pear multiple times during a single execution, they are identified regardless of temporal

adjacency.

Sherwood et al. (2002) analyzed the behavior of a set of applications from the

SPEC 2000 benchmark suite (HENNING, 2000). Figure 2.1 displays the instruction per

cycle (IPC) and L1 data cache miss for the gzip application. The behavior is analyzed

over a 100 billion instructions interval (x-axis) with samples taken every 100 million

instructions. The y-axis represents the percentage of maximum value that each metric

had during execution. The first observation that can be made about Figure 2.1 is the

clear identification of distinct phases. Program phases are a direct function of the way a

program traverses its code. Hence, most program phases happen repeatedly during the

24

program execution.

Figure 2.1: IPC and L1 data cache miss behavior of the SPEC2000 gzip application.

60B

80B

100B

100B

F igure 1: Basic block similarity matrix for the programs gzi p- graphi c (shown left) and bzi p- graphi c (shown
right). T he diagonal of the matrix represents the program’s execution to completion with units in billions of
instructions. T he darker the points, the more similar the intervals are (the M anhattan distance is closer to
0), and the lighter the points the more dif erent they are (the M anhattan distance is closer to 2).

0B 20B 40B 60B 80B 100B
Instructions Executed (in Billions)

1
2
3
4
5
6

C
lu

st
er

 ID

0%
20%
40%
60%
80%

100%

Pe
rc

en
t o

f M
ax

F igure 2: (top graph) T ime varying graph for gzi p- graphi c. T he average IP C (drawn with solid line) and
L1 data cache miss rate (drawn with dotted line) are plotted for every interval (100 million instructions of
execution) showing how these metrics vary over the program’s execution. T he x-axis represents the execution
of the program over time, and the y-axis the percent of max value the metric had during execution. T he
results are non-accumulative.

F igure 3: (bottom graph) C luster graph for gzi p- graphi c. T he full run of the execution is partitioned into a
set of 6 clusters. T he x-axis is in instructions executed, and the graph shows for each interval of execution
(every 100 million instructions), which cluster the interval was placed into.

4

00B

F igure 1: Basic block similarity matrix for the programs gzi p- graphi c (shown left) and bzi p- graphi c (shown
right). T he diagonal of the matrix represents the program’s execution to completion with units in billions of
instructions. T he darker the points, the more similar the intervals are (the M anhattan distance is closer to
0), and the lighter the points the more dif erent they are (the M anhattan distance is closer to 2).

0B 20B 40B 60B 80B 100B
Instructions Executed (in Billions)

1
2
3
4
5
6

C
lu

st
er

 ID
0%

20%
40%
60%
80%

100%

P
er

ce
nt

 o
f M

ax

F igure 2: (top graph) T ime varying graph for gzi p- graphi c. T he average IP C (drawn with solid line) and
L1 data cache miss rate (drawn with dotted line) are plotted for every interval (100 million instructions of
execution) showing how these metrics vary over the program’s execution. T he x-axis represents the execution
of the program over time, and the y-axis the percent of max value the metric had during execution. T he
results are non-accumulative.

F igure 3: (bottom graph) C luster graph for gzi p- graphi c. T he full run of the execution is partitioned into a
set of 6 clusters. T he x-axis is in instructions executed, and the graph shows for each interval of execution
(every 100 million instructions), which cluster the interval was placed into.

4

Source: (SHERWOOD et al., 2002)

The granularity in which samples are taken during the execution of a program is

a crucial factor that contributes to the accuracy of program phase identification. In the

work by Sheerwood et al., the authors adopted a coarse grain sampling (100 million in-

structions). However, other works have made attempts to the identification of program

phases at finer grains (XU; ALBONESI, 1999; WUNDERLICH et al., 2003; RANGAN;

WEI; BROOKS, 2009). The work in (PADMANABHA et al., 2013) explores the vari-

ance due to the sampling granularity for program phase identification. In Figure 2.2, the

same trace with 300 thousand instructions of the gcc application is analyzed by two phase

detectors. The first one (Figure 2.2(a)) samples the processor IPC every 100 thousand

instructions. As for the second one, in Figure 2.2(b), samples are taken every 500 in-

structions. When the application is analyzed based on larger intervals, it shows a more

stable behavior than what is extracted by the detector with smaller sampling intervals (fine

grain). These differences in the analysis of a program can have a significant impact on a

system’s energy consumption, for example. Resource managers based on program phase

detection must pay attention to these particularities. In Figure 2.2(b), some consecutive

points with drastic IPC variance have been circled. The circles indicate moments in the

execution where a decision based on data gathered previously could have a non-optimal

outcome.

As a case-study on the impact of sampling granularity, Padmanabha et al. give

the scheduling on a heterogeneous architecture of the type Big.LITTLE. In the example,

the scheduler’s sole objective is to schedule phases with low IPC to the energy-efficient

in-order Little processor and performance demanding phases to the out-of-order Big pro-

cessor. They show that when the sampling granularity is reduced from one million to one

thousand instructions, the time spent on the Little processor increases 40% on average

for the SPEC06 benchmark suite. If the granularity is further reduced to one hundred

instructions, the average time running with Little is further increased by 45%.

25

Figure 2.2: Variance in IPC for the same 300 thousand gcc instructions with two sampling
granularities.

Source: (PADMANABHA et al., 2013)

Conclusively, identifying program phases enable software and hardware optimiza-

tions. Resource management is an excellent example of where the online detection of

program phases makes it possible to perform adaptation of the system’s resources in ac-

cordance with their usage by the running applications.

2.2 Resource and Power Management Techniques

2.2.1 CMOS Power Dissipation

After the first bipolar polar transistor (HARRIS, 1956), logic families like the

Transistor-Transistor Logic (TTL) have widespread as the leading choice for implement-

ing logic designs. Furthermore, until the 1980s, bipolar-based technologies have pro-

pelled the integrated circuit revolution (RABAEY; CHANDRAKASAN; NIKOLIC, 2004).

Despite the high integration that bipolar has offered, its high power dissipation per gate

hinders the implementation of more complex designs (that integrate a larger number of

transistors).

The alternative to the power dissipation problem of bipolar devices arose with

the MOS (Metal Oxide Semiconductor) technology. The first MOS family to be em-

ployed by industry was the PMOS-only. It enabled designs with unprecedented com-

plexity, for example, the Intel 8008 microprocessor (SHIMA; FAGGIN; MAZOR, 1974).

Later, the NMOS-only devices with their faster switching speeds were proposed to re-

place the slower PMOS-only devices. However, the same problem that caused the end of

the bipolar era - power dissipation - also affected the NMOS-only logic family. The ma-

26

turity of fabrication processes and the continuous search for higher integration and lower

power dissipation have driven the industry to adopt, the decades early proposed, CMOS

(complementary MOS) logic family (WANLASS; SAH, 1963).

To this day, CMOS is the primary choice for implementing digital circuits. How-

ever, the power issue that struck prior technologies and logic families is still a major

concern. Not only that, but as there is no new technology to shift to, designers have to

find ways to overcome the power dissipation problem so the industry and academia can

continue to innovate in the area.

In the following sections, the sources for power dissipation in CMOS circuits are

presented along with techniques that aim to alleviate the problem in modern circuits.

Sources of Power Dissipation in CMOS. The total power dissipation (as in Equa-

tion 2.1) of a CMOS device can be decomposed into three contributing factors.

Ptotal = Pdyn + Psc + Pst (2.1)

The first factor (Pdyn) is the dynamic power. It represents the power dissipated

by the switching activity of the circuit gates and its transistors. In conventional static

CMOS, a gate load is charged by the PMOS transistors (pull-up network) and discharged

by the NMOS transistors (pull-down network). When either action is performed, a certain

amount of energy is drawn from the source and dissipated by either the PMOS transis-

tor network (when charging) or dissipated through the NMOS transistor network (when

discharging). Equation 2.2 details the CMOS dynamic power

Pdyn = CL ∗ VDD
2 ∗ P0→1 ∗ f (2.2)

where: CL denotes the gate’s load capacitance, VDD gives the supply voltage, P0→1 repre-

sents the probability that a clock event causes the gate’s output to switch its current state

(switching activity), and f is the operating frequency.

The second contributing factor to the total CMOS power dissipation (Equation 2.1)

is the short-circuit power (Psc). In practical CMOS circuits, when a transition happens at

the input of a logic gate, both PMOS and NMOS networks may be simultaneously on due

to non-ideal input slopes (input signal is above the NMOS voltage threshold and below

the PMOS voltage threshold). Having both pull-up and pull-down networks conducting

creates a direct path (short-circuit) between VDD and ground. According to Veendrick

(1984), the power dissipated by short circuits in CMOS designs can be modeled as

27

Psc = K ∗ (VDD − 2VTH)
3 ∗ τ ∗ f (2.3)

where: K is a constant dependent on transistor size, VDD is the supply voltage, VTH is

the threshold voltage, τ is the input signal rise or fall time (representing the time that both

PMOS and NMOS are conducting), and f is the switching frequency.

The final contribution to the total CMOS power is due to static power (Pst). A

CMOS gate in steady-state would ideally consume no energy since there is no direct path

between VDD and ground. However, in actual implementations, a small current that flows

through the transistors is observed (Ist). Equation 2.4 gives the power due to the static

current (flowing between VDD and ground when no switching activity is occurring).

Pst = Ist ∗ VDD (2.4)

There are various mechanisms affecting the static current. For example, reverse-

biased pn-junction leakage, gate-induced drain leakage, and punchthrough leakage cur-

rents are part of the static current, but can be neglected for normal operation (AGARWAL

et al., 2005). However, for recent technology nodes (below 45nm), two main sources can

be attributed to the static current Ist: subthreshold leakage current (increased with the

reduction of the threshold voltage) and gate tunneling leakage current (increased with the

scaling of the gate oxide thickness) (LIU; KURSUN, 2006; MUKHOPADHYAY et al.,

2003). Figure 2.3 shows the contribution of both currents in the total static current for a

45nm NMOS transistor. At high temperature and nominal supply voltage (VDD = 0.8),

the subthreshold is 6.7x larger than the gate leakage. Whereas at room temperature, the

subthreshold corresponds to 2.5x of the current due to gate leakage. Indeed, for smaller

technology nodes, it is observed an equal contribution between subthreshold and gate

leakage currents.

As the voltage applied to the transistor gate gets below VTH , it does not form an

inversion channel. However, the drain-body junction is reversed biased (assuming that

source and body are shorted together), and the movement of carriers forms the subthresh-

old leakage current due to diffusion. Moreover, as it can be modeled by Is ∗ e
q(VGS−VTH)

nKT/q ∗

(1−e VDS

KT/q
) the subthreshold current is said to be exponentially related to the gate voltage

VGS .

The second source of static current, gate tunneling leakage, is caused by the tun-

neling of electrons through from oxide layer to the gate and vice-versa. The problem is

28

Figure 2.3: Subthreshold and gate oxide leakage currents in a NMOS transistors for vary-
ing supply voltages and two temperatures.

Source: (LIU; KURSUN, 2006)

aggravated in recent technology nodes since the probability of tunneling is enhanced by

the high electrical fields due to thinner oxide layers.

Figure 2.4: Power optimizations across the design hierarchy.

Technology
Circuit/Logic

Architecture
Algorithm

System

Threshold	reduction,	double	threshold	devices
Logic	style,	transistor	sizing

Dynamic	voltage	scaling,	clock/power	gating
Regularity,	locality

Portioning,	power	states

Source: Adapted from (RABAEY; PEDRAM; LANDMAN, 1996)

Conclusively, both dynamic and static power are the major concerns in current

designs since short-circuit current can be kept within bounds (since it represents less

than 20% of the dynamic power (VEENDRICK, 1984)). Nowadays, every CMOS de-

sign employs, at some degree or another, efforts for reducing dynamic and static power

dissipation. Optimizations at all levels of the design hierarchy have been used to reduce

power dissipation, as illustrated in Figure 2.4. There are examples from technology level

optimizations that approach the problem improving on traditional CMOS technology like

double threshold transistors (WEI et al., 1998) or promoting the use of new materials like

the high-k gate dielectrics (CHOI et al., 2002), to system-level optimizations that may

implement some form of power management in processors like the Intel’s StrongArm

29

SA-100 (INTEL, 1998) or over entire data-centers like the Facebook’s Dynamo (WU et

al., 2016).

Next, two specific techniques at the architecture level employed to mitigate power

and energy consumption, which are relevant to the scope of this work, will be discussed.

2.2.2 Clock Gating based techniques

The clock signal is used by the majority of circuit blocks in a synchronous design.

Since the clock switches every cycle, it has a switching activity of 1, which implicates

that the sequential parts of a circuit are a great source of power dissipation (refer to Equa-

tions 2.1 and 2.2). A popular technique to reduce dynamic power is the disruption of the

clock signal from the idle parts of the circuit. Specifically, the power savings obtained

with the clock gating technique come from the reduction to zero of the switching activity

P0→1. Moreover, the power savings due to clock gating can be broken into three major

components (PANDA et al., 2010; WU; PEDRAM; WU, 2000):

1. the power dissipated by the combinational circuits being fed by the gated sequential

elements gets reduced once their input is stable (not switching);

2. the input clock of memory elements, like flip-flops, is not triggered, reducing these

elements’ dynamic power;

3. and, the power dissipated by the clock distribution network (or clock tree), which

has its capacitive load reduced (with clock buffers) also reduces.

Clock gating techniques can be classified into fine or coarse-grained. In its sim-

plest form, fine-grained implementations are usually automatically inserted by specialized

tools during the design flow. Take the circuit in Figure 2.5(a), for example. Once the en-

able signal is identified (sel in the example), it is possible to transform the circuit to a

clock-gated one. The resulting circuit in Figure 2.5(b) is a possible solution that keeps the

functionality of its predecessor, but dissipates lower dynamic power.

In coarse-grained clock gating, or architectural level clock gating, clock signals

of entire circuit blocks are gated altogether. At higher levels of the design hierarchy,

automated insertion of the clock-gate circuitry becomes prohibitive (PANDA et al., 2010).

Usually, at the architectural level, clock gating is manually implemented by the designer

in the RTL (register transfer level). However, the gains can be much higher when bigger

portions of the circuit are clock-gated.

30

Figure 2.5: Fine-grained clock gating.

D Q

Q

0

1

S0

Mux Output
Input

Sel Clock

D Q

Q
Sel

Clock

Input Output

Gated
clock

(a)

(b)

Source: the author.

Architectural clock gating can also be implemented in a hierarchical manner. Usu-

ally, there is a top-level clock feeding the multiple clock gates, which are responsible for

their blocks (or even feed another level of clock gating). An example of a hierarchical

clock gating is depicted in Figure 2.6. At the top level, the main clock signal that, be-

sides feeding the circuit elements in its level, is the source for the clocks under the next

level. The pattern could continue indefinitely and is attributed to the designer to keep in

mind the issues that this method could give rise to. For example, the overheads created

by simultaneous clock gating large groups of blocks must be assessed in order to avoid

glitches, additional clock skew, and di/dt problems (i.e., large current swings in the power

rail when the clock signal is reestablished for a large block).

Figure 2.6: Architectural clock gating.

Source: (CHADHA; BHASKER, 2012).

An extensive number of designs that use some form of clock gating as means to

31

save power have been proposed. For example, the Intel low-power processor, XScale, uses

clock gating as one way to save power (CLARK et al., 2001). Besides an extensive use

of Dynamic Voltage and Frequency Scaling (DVFS), the XScale employs clock gating in

three architectural levels. First, it employs a top-level clock gating that freezes all core in

the idle mode. Second, XScale implements a global clock level that has 83 enable signals

spread across the core. And, at a final level, XScale uses clock gating at its LCB units

(Local Clock Buffers, or LCB, are units responsible for clock distribution at the design’s

smallest block level, at least five latches).

Another commercial design that uses clock gating is the IBM Power5 processor

(CLABES et al., 2004). While there are enable signals for both global and local clock

gating, in the IBM Power5 processor, the logic generating the clock interruptions are

taken locally. It is constituting, in fact, a fine-grained clock gating approach. Savings of

more than 25% in the processor switching power are reported.

2.2.3 Power Gating based techniques

Despite the savings in dynamic power achieved by clock gating, it does not prevent

static power dissipation from occurring even when the circuit is clock gated. For early

CMOS technologies reducing dynamic power was sufficient. However, as it was already

seen in Subsection 2.2.1, for more recent technologies, static power is responsible for

a significant part of the total power dissipation. A widely adopted alternative to reduce

power dissipation due to leakage is power gating. Essentially, the power gating cuts-off

power supply of non-active parts of the circuit. To that end, power switches (in the form

of sleep PMOS and NMOS transistors) and additional circuitry for generating control

signals are used.

In a design that makes use of power gating, the power network is split into two

parts: the always-on and the virtual power rails. When PMOS headers are inserted, a

virtual Vdd is created isolating the gated block from the always-on Vdd. In a similar

manner, when NMOS footers are used, a virtual ground is created (Figure 2.7).

One of the big issues in the implementation of power gated circuits is the sleep

transistor sizing. At the same time that the sleep transistors (header and/or footer) must

cope with the switching current drained by the block they are feeding, the sleep transistors

are also a source of static power dissipation. Also, as those transistors are, typically,

large, they produce high slew rates - requiring long time intervals for being charged and

32

Figure 2.7: Power gate implementation schematic.
Vdd

Virtual	Vdd

GND

Virtual	GND

Logic	Block

sleep

sleep Header

Footer

Source: the author.

discharged. However large the sleep transistors are, the savings in static power due to

power gating come from the fact that, collectively, the effective transistor length of the

logic power being gated is larger and consumes more static power.

The effectiveness of the power gating is the result of the various aspects, such as

correct transistor sizing, control logic behind the sleep signals (controlling the header and

footer transistors), power gate topology, and controller design. The following discussion

will address those central issues.

Power Gating Granularity. Two approaches can be taken for including power

gate in a design: fine or coarse-grained power gating.

For fine-grained power gating, the sleep transistor is included inside the standard

cell. It facilitates the power gate implementation since EDA tools can handle the addi-

tional circuitry, and the power gating overheads can be characterized together with the

standard cells by the traditional design flow. Nevertheless, the logic required to control

the massive number of sleep transistors makes fine-grained power gate expansive in terms

of area (sleep transistors takes usually 2× to 4× the area of the original cell (PAL, 2014)).

On the other hand, in the coarser approach, the circuit is divided into blocks or

modules, making it possible to share the virtual supply network by groups of cells. The

area overhead is smaller since fewer sleep transistors are required, and is less sensitive to

process variations (PANDA et al., 2010).

Overall, due to the smaller area overhead, the coarse-grained power gate is pre-

ferred over the fine-grained. Additionally, a coarse-grained power gate has been used

33

as means for increasing the adaptability of designs, increasing their power (and energy)

efficiency. For example, the simultaneous multithread (SMT) processor, Power9, can

power gate half of its execution units for its microarchitecture to sequential workloads

(SADASIVAM et al., 2017). At a coarser grain power gate, the authors in (LEVERICH

et al., 2009) advocate in favor of the per-core power gate (PCPG) in multicore systems.

Leverich et al. (2009) show that power gate can be beneficial even for traditional general-

purpose processors used in datacenters. Such modern systems usually employ DVFS as

the primary technique for power saving. However, the fact that DVFS is commonly ap-

plied to all cores uniformly does not allow a more precise adaptation to the workload at

hand, is added to the observed low utilization of cores in a datacenter (ranging from 10

to 50% (BARROSO; HÖLZLE, 2007)). It is making the use of PCPG a great alterna-

tive to increase a system’s adaptability. Leverich et al. (2009) report savings in energy

consumption of up to 40% with no significant performance losses due to PCPG (results

that are 30% better than due to DVFS-only). Additionally, as DVFS and power gate are

orthogonal techniques, energy savings can achieve up to 60% when both techniques are

used.

Power Gating Topology. Closely related to the granularity, the power gate topol-

ogy is another crucial aspect. According to Pal (2014), there are three categories of power

gate topology: Global, local, and switch topologies.

A global topology refers to power gate implementations that share the virtual sup-

ply network across all logic blocks (applied only to coarse-grained power gate). Effec-

tively, it incurs in a single power domain1. The second topology, local, is also used for a

coarse-grained power gate. However, this arrangement results in a set of multiple power

domains. It is implemented by segmenting the virtual supply networks at each sleep tran-

sistor. Hence, in a local topology, each sleep signal independently controls the state of

specific logic blocks. Finally, the switch topology is particular to fine-grained power gate,

where each cell has its own sleep transistor.

State Retention for Power Gating. Some designs may employ some form of state

retention to recover from sleep modes in an "unmodified" state (not in reset state). The

system state may refer to the state of flip-flops or contents of memory modules. Generally,

retention mechanisms can be categorized into four approaches (CHADHA; BHASKER,

2012):

1A power domain is a group of logic blocks, or cells, that share a common sleep signal and virtual supply
network.

34

1. System state saved externally. Before powering down the logic block, its state is

scanned via scan chains and the content saved to external memory. When recover-

ing from the sleep mode, the contents are shifted back from the external memory to

the flip-flops.

2. Retention cells. A logic block can employ retention cells, flip-flops or latches, for

keeping their states throughout the sleep mode. The retention cells have a dual-rail

power supply, connecting the cell to both virtual and always-on power networks.

Hence, the designer may select some memories elements in the circuit to be kept

on during sleep mode, retaining their state.

3. Memory retention. This approach is similar to the one used by retention cells.

However, it employs dual-rail memories, so their contents are kept even if the blocks

they are inserted in get power gated.

Power Gating Controllers. An essential aspect of power gating physical imple-

mentations is controlling the turning on and off the logic blocks. The in-rush current

caused by multiple blocks being powered up together can cause severe damages to the

circuit. Consequently, some orchestration has to be used when large portions of the cir-

cuit are entering and exiting sleep modes. The most common approach is to daisy-chain

the sleep signals to the headers and footers transistors. The main result of daisy-chaining

sleep signals is that between the sleep signal assertion and the actual power-up of a logic

block, some additional time is taken to ensure safe operation.

Power Gating Operation. In (HU et al., 2004), the authors detailed a time-based

approach for power gating execution units of a processor. Hu et al. (2004) explain the

time characteristics involved in activating and deactivating parts of a design via power

gating. Figure 2.8 summarizes the process.

The interval in Figure 2.8 starts at t = 0 with the header transistor fully charged

(high virtual Vdd). After some time passes, the control circuit makes a decision to power

gate the block. Hence, in T1, the sleep signal is brought low, and the overhead energy

(green curve) starts to rise due to the energy consumed by the signal propagating up to the

sleep transistor gate. Only at T2, the sleep signal is delivered at the sleep transistor gate,

and it starts the switching-off. As soon as the virtual Vdd (red curve) starts the decline,

the leakage current of power gated block also starts to go down (rising the aggregate en-

ergy saved - blue curve). The full discharge time is the [T2, T4] interval. However, as

mentioned earlier, sleep transistors present leakage current themselves and, then, the vir-

tual Vdd does not, necessarily, get to zero Volts. Now, the block under the sleep transistor

35

Figure 2.8: Power gating cycle.

Source: (HU et al., 2004)

is said to be power gated, or in sleep mode. When the control logic detects an upcoming

busy state, in T5, the sleep signal is de-asserted. From T5 to T6 the sleep signal propa-

gates trough the power control network until the header transistor gate is achieved. When

that happens, T6, the header starts to charge (switch-on) again. The charging up of the

header also causes an energy overhead to occur. Only at T7 it power on is completed,

virtual Vdd is at Vdd level, and the process can be repeated whenever the control logic

finds another opportunity to power gate.

Additionally, Hu et al. (2004) propose the break-even point for operating power

gated circuits. At this point, the aggregate energy savings equal the overheads. Precisely,

the break-even point is given by T3− T2. After the development of an analytical model,

the authors state that the break-even point for a typical modern technology (with static to

dynamic power ratio of 33/67) is ten cycles.

2.3 Adaptability for Energy Efficiency

2.3.1 Heterogeneous Computing

Initially, to support the applications’ demands for high latency, high throughput,

and devices’ physical limitations, homogeneous multicore architectures were extensively

employed (ADEGBIJA et al., 2018). Multicore architectures tackle the problem of per-

36

formance not only by providing means for TLP exploitation but also by exploiting ILP

with superscalar and Out-of-Order (OoO) processors. However, when a homogeneous

multicore system faces applications with diverse behavior, it bears the power inefficiency

of executing every application (even the ones with low ILP opportunities) on processors

optimized for low latency.

Only recently, seeking to improve energy efficiency, the paradigm has shifted to

heterogeneous architectures that can better accommodate applications’ diverse workload.

Asymmetric, or heterogeneous systems, benefit from the differences among applications’

needs, or even among phases of an application, to mix into the same system, comput-

ing resources with varying processing capabilities (consequently, with different area and

power costs).

Kumar et al. (2003) is one of the first works to propose a heterogeneous system

with a homogeneous instruction set architecture (ISA), enabling the transparent migration

of tasks between cores. Four cores made up the heterogeneous system, each with distinct

performance and computing capability. They were retrieved from the Alpha processor

roadmap (two in-order and two out-of-order cores), namely Alpha 21064 (EV4), Alpha

21164 (EV5), Alpha 21264 (EV6), and a single-thread Alpha 21464 (EV8-). On the

left side of Figure 2.9, the relative sizes of the four heterogeneous cores used by the

authors is given. On its right side, Figure 2.9 presents the cores’ performance (measured

as committed instructions per second - IPS) when executing the applu benchmark from

SPEC2000, evidencing the difference in performance and area size among the cores.

Figure 2.9: Relative Alpha cores sizes (a) and their performance, given by committed
instructions per second, for the applu application (b).

Source: Adapted from (KUMAR et al., 2003).

37

Kumar et al. (2003) used two different objective functions that performed the on-

line match of applications to cores. The first one targeted energy efficiency with a tight

performance loss (up to 10% of the EV8- performance). When executed for 14 SPEC2000

benchmarks, an average reduction of 39% on energy consumption was observed with a

small 3% performance degradation for the energy-targeting objective function. The sec-

ond objective function was designed to optimize for energy-delay product with a looser

performance constraints (up to 50% of the EV8- performance). With the energy-delay

objective function, an average of nearly 3× improvement on energy consumption was

observed with a more substantial performance penalty of 22%.

The big.LITTLE is a heterogeneous architecture with homogeneous ISA that be-

came popular in industry (ARM, 2013). It is composed of two superscalar processors

with distinct power requirements that are capable of exploring different levels of instruc-

tion parallelism. Big.LITTLE employs an online scheduler that is responsible for profil-

ing the running applications and perform the switching of the cores to best accommodate

the application needs. The efficiency achieved by the big.LITTLE system is shown in

Figure 2.10. From it, we may also see the potential gains in migrating application be-

tween energy-efficient and performance-powerful cores in accordance with the applica-

tion needs.

Figure 2.10: big.LITTLE (Cortex-A17 and Cortex-A7) power savings (y axis) when com-
pared to a homogeneous system composed of only big processors (Cortex-A15) for a set
of applications (x axis).

Source: (ARM, 2013).

The performance of heterogeneous systems is dependent on factors that range

from software compatibility to task scheduling (MITTAL, 2016; AMALARETHINAM;

JOSPHIN, 2015). Single-ISA systems, like the big.LITTLE, tackle on the problem of

38

software compatibility since the same code can run on any of the system’s core. However,

scheduling tasks appropriately has proved itself to be of a great challenge for computer

architects.

The first approach to schedule applications in a heterogeneous system consists

of statically scheduling tasks (e.g., Oh e Ha (1996)). However, a static schedule is not

able to adapt to changes in the input set and becomes impractical due to its complexity

as the number of applications rises. The second approach is the scheduling performed

dynamically (e.g., (BECCHI; CROWLEY, 2006; CRAEYNEST et al., 2013)). The first

issue in dynamic schedulers regards on how the applications are profiled. It is essential

to the scheduler to acquire knowledge of the application’s behavior so that it can match

it to the appropriate core. One way to profile the application is through estimations made

about the performance of each core type. Despite the fact that these estimations do not

require the application to actually run on the cores, this approach is error-prone, and the

scheduler becomes specific to the hardware it was initially designed for. Another way

to profile applications is to set applications to run on each core type and profile their

behavior. Nonetheless, it incurs in the obvious issue of scalability since it may present

high overheads due to profiling that can take most of the lifetime of a short-lived thread.

Furthermore, there is a cost caused by task migration. For example, Pricopi et

al. (2013) found that the migration latency in ARM’s big.LITTLE architecture is 3.75ms

when migrating a thread from the big (Cortex-A15) core to the little (Cortex-A7) and

2.10ms when migrating from the little to the big core. Also, there are overheads originat-

ing from cache warm-up and flushing and other state variables, restricting the scheduling

of tasks in a finer grain.

2.3.2 Reconfigurable Architectures

Usually, the execution of algorithms can be based on two main methods. In the

first method, ASIC devices are tailored for specific computations as they rely on lengthy

and costly design flows. By customizing the hardware, designers can achieve high lev-

els of performance and energy efficiency. However, a solution based on ASIC devices

presents a serious drawback: they cannot be changed after fabrication. This implies that

whenever the algorithm or computation, which the device was built to perform, requires

modifications, the substitution of all deployed devices must be done. The second method

involves software-programmed processors that can execute an endless number of algo-

39

rithms since they support a defined set of generic instructions for execution. Nonetheless,

the flexibility brought by software comes with a highly complex hardware infrastructure,

incurring a significant penalty on the performance and energy efficiency of GPPs.

Reconfigurable Architectures (RAs) offer a compromise between efficiency (as

found in ASIC devices) and the flexibility of software-programmed processors (COMP-

TON; HAUCK, 2002; BECK; CARRO, 2010). RAs (or reconfigurable accelerators) con-

tain an array of computational elements that are interconnected by reconfigurable fabrics.

As a result, RAs can potentially achieve performance higher than solutions based only

on GPP while still providing some flexibility. Systems that couple RAs to GPPs in order

to achieve some acceleration are called Reconfigurable-Instruction-Set Processors (RISP)

(BARAT; LAUWEREINS, 2000).

As shown in Figure 2.11(a), instructions can be executed either by the GPP or by

the reconfigurable logic in a RISP. A hardware controller arbitrates what traces of instruc-

tions are offloaded as well as performs communication and synchronization tasks. Gener-

ally, the first step required for code execution in reconfigurable logic is the identification

of traces of instructions (step 1 in Figure 2.11(b)) with high acceleration opportunities

(hot spots) in the application. After hot spots are flagged, their instructions are trans-

formed (or translated) to execution on the reconfigurable logic (step 2). Once the hot spot

is transformed, it is ready for execution. To that end, the accelerator fabric is configured

accordingly to the configuration at hand (step 3), and its input data is fetched (step 4).

Now, the configuration is ready to be executed (step 5). Finally, the results are written

back to the GPP (step 6).

2.3.2.1 Classification

In the field of reconfigurable computing, there is no consensus for the classification

of reconfigurable architectures (BARAT; LAUWEREINS, 2000; COMPTON; HAUCK,

2002; THEODORIDIS; SOUDRIS; VASSILIADIS, 2007; WIJTVLIET; WAEIJEN; COR-

PORAAL, 2016; LIU et al., 2019). Inevitably, the classification proposed in (BECK;

LISBôA; CARRO, 2013) will be adopted in this work. According to the authors, recon-

figurable systems can be classified regarding code analysis and transformation, coupling,

granularity, and reconfigurability.

Code Analysis and Transformation. This subject concerns the search and trans-

formation of hot spots in the application code for execution in the reconfigurable fabric

(steps 1 and 2 in Figure 2.11). The code analysis can be done at the executable or source

40

Figure 2.11: A RISP overview.

Source: (BECK; CARRO, 2010)

code, or even analyzing execution traces of applications. At any level, hot spots can be

automatically identified by specific tools or manually by the designer.

Once these hot spots are flagged, a transformation takes place for replacing them

with reconfigurable instructions. Code transformation is usually highly dependent on the

system it was designed for. When transforming a code region, issues like communication

between host and reconfigurable fabric, reconfiguration overheads, memory accesses, and

writing-back of results have to be addressed. For automated processes, some kind of

Data Flow Graph (DFG) analyzer is customarily employed. For instance, the DFG at the

left side of Figure 2.16 represents the application’s code instructions (nodes) and their

dependencies (edges). After the DFG is analyzed, instructions that can be grouped are

identified and transformed into reconfigurable instructions, resulting in the DFG at the

41

right side of Figure 2.16.

Figure 2.12: Original DFG (left) and transformed DFG (right).

Source: adapted from (CLARK et al., 2004).

Analysis and transformation can be further divided into static and dynamic. In

static approaches, all work is done at compile time. It makes the analysis and transforma-

tion simpler to implement since it can be based on code annotation and modifications to

the assembler, for example. However, some critical information is left aside when static

methods are used. Only dynamic methods, which have access to information such as

loop bounds and input size, can have a better assessment of an application’s hot spots.

Besides, dynamic analysis and transformation do not require re-compilation, and can nat-

urally adapt to the new, or already-deployed, workloads.

An important aspect that may help with the adoption of reconfigurable architec-

tures is binary compatibility. As can be seen in the history of commercial systems, main-

taining compatibility with legacy systems is essential to the success in the deployment

of new systems and architectures. In the context of dynamic code analysis and trans-

formation, binary translation is a technique that enables transparent portability of code

between different Instruction Set Architectures (ISA) (ALTMAN; KAELI; SHEFFER,

2000; ALTMAN et al., 2001). For example, when applied to a RISP machine, binary

translators are capable of porting the code form the host processor to the reconfigurable

fabric in a dynamic and transparent manner. When referring to binary translators in this

42

work, it will be assumed a dynamic translator. According to Altman, Kaeli e Sheffer

(2000), binary translators can be divided into three types: emulators, static translators,

and dynamic translators. The letter besides the translation of the code, saves the resulting

code for further reuse (reducing the translations overheads).

Coupling. Reconfigurable units can be coupled to the main processor in different

ways. Generally, the reconfigurable unit can be attached to the system through a sec-

ondary I/O bus, as a co-processor, or as a functional unit (inside the main processor). With

the exception of the allocation as a functional unit, which is also called tightly coupling,

the other two coupling types are also said to be loosely coupled. Naturally, the coupling

has an impact on the performance and complexity of the reconfigurable hardware. For

instance, loosely coupled accelerators are not constrained, as tightly coupled accelera-

tors, in their area. However, for loosely coupled accelerators, communication overheads

may become a significant impediment for achieving higher performance levels. For ex-

ample, access to the register file, and other modules of the processor microarchitecture,

are only granted to tightly coupled reconfigurable units (sometimes called Reconfigurable

Functional Units, or RFU).

Granularity. The level that data is manipulated by the reconfigurable unit gives

the granularity of the architecture.

Fine-grained reconfigurable architectures manipulate data at the lowest levels (i.e.,

at the bit-level), which is the reason behind the high flexibility. In such systems, the set

of Processing Elements (PEs) implement one bit functions, and are interconnected by

some network. A well-known example of fine-grained reconfigurable architecture is the

Field Programmable Gate Arrays or FPGAs. The principle behind FPGAs is a generic

circuitry that can be configured to execute any function for any specific application (digital

functions). To achieve its programmability, the FPGA distributes several logic blocks

across a programmable interconnection fabric surrounded by input and output blocks for

interfacing the FPGA core with external devices.

Figure 2.13 shows the arrangement of the basic blocks inside an FPGA. In current

FPGAs, several lookup tables (LUTs) are grouped into larger logic blocks, also called

Configurable Logic Blocks (CLBs). These modules provide faster internal connections

between LUTs than those provided by connections across the FPGA network. Also, they

may house flip-flops, shift registers, distributed RAMs, multiplexers, and arithmetic op-

erators. The CLBs are disposed of in a mesh-like programmable network. Recent FP-

GAs have been using SRAM to program the interconnection and logic. In SRAM-based

43

FPGAs, the logic function of a block or the state of interconnection is controlled by pro-

grammed SRAM cells (BAILEY, 2007).

Figure 2.13: The basic architecture of an FPGA.

Source: (BAILEY, 2011)

Coarse-grained reconfigurable architectures, on the other hand, make use of PEs

that implement operations at word-level and configurable interconnections that gives some

degree of flexibility to the system. Usually, Coarse Grained Reconfigurable Architectures

(CGRAs) are implemented using off-the-shelf functional units and multiplexers as well

as crossbars for interconnection. Figure 2.14 depicts an example of such architectures. It

implements 16-bit long functional units interconnected by a set of crossbars.

When comparing fine and coarse granularities, the authors in (THEODORIDIS;

SOUDRIS; VASSILIADIS, 2007) point out some aspects that favor coarse-grained re-

configurable architectures:

• Small configuration contexts. Due to the coarser configuration grain, CGRAs re-

quire less context to configure the PEs and interconnection.

• Reduced configuration time. For the same reason that makes the size of the config-

uration context smaller in CGRAs, the time required for configuring the fabric is

also reduced.

• Reduced context memory size. Since the configuration contexts are smaller when

compared to RA of finer grains, the memory used for storing configurations is also

smaller.

44

Figure 2.14: A coarse-grained reconfigurable array of functional units.

Source: (BECK; LISBôA; CARRO, 2013)

• High performance and low power dissipation. Hard-wired functional units tend

to perform better than the same functions implemented with programmable logic

at bit-level (e.g., LUTs). Also, many CGRA implementations do not use memory

elements (flip-flops) inside the reconfigurable array. By being fully combinational,

a huge source of power dissipation is eliminated.

• Silicon area efficiency and reduced routing overhead. When supporting fine-grained

configuration, architectures are bound to use large interconnection networks, with

high overheads, that cannot be optimized in the way networks that are required to

communicate at coarser grains are.

Overall, CGRAs are favored for the acceleration of applications with a large num-

ber of hot spots. With multiple hot spots, the aspects mentioned above, like configuration

context size and reconfiguration time become decisive in the system performance. Con-

versely, for applications that have few hot spots and do not require frequent reconfigura-

tion, fine-grained reconfigurable architectures might present better results.

Reconfigurability. Reconfigurable architectures are differentiated accordingly to

their capacity of reconfiguration. Architectures, where the configuration is possible only

at startup, are not considered reconfigurable. Hence, only those architectures capable of

adapting their fabric during the execution of an application, at runtime, are considered

reconfigurable architectures.

45

2.3.2.2 Implementations

This subsection will first present the main works on general dynamic reconfig-

urable architectures. Later, it will also be shown works that apply resource or power

management techniques to reconfigurable architectures.

The Warp Processor is one of the first attempts to unify techniques of dynamic

optimization with reconfigurable computing (LYSECKY; VAHID, 2004; LYSECKY; STITT;

VAHID, 2006; LYSECKY; VAHID, 2009). The proposed system consists of a System on

Chip (SoC) that integrates a microprocessor, instruction and data caches, an embedded

FPGA, a hardware-implemented profiler, and another microprocessor dedicated to the ex-

ecution of a simplified CAD tool (Figure 2.15). The execution flow of the Warp Processor

can be decomposed into five steps: (i) the application first executes on software only (over

the main processor); (ii) the profiler determines the hot spots by listening to the addresses

being requested to the instruction memory; (iii) the on-chip CAD synthesizes the circuit

from the selected hot spots; (iv) the circuit is programmed in the FPGA and the hot spots

in the application’s binary code are replaced with instructions for partitioned execution;

(v) application’s hot spots execute in the FPGA.

Figure 2.15: Overview of the Warp Processor.

Source: (LYSECKY; STITT; VAHID, 2006)

The CCA (Configurable Compute Accelerator) architecture was proposed in (CLARK

et al., 2004). The architecture tightly couples a CGRA to an ARM processor. The recon-

figurable array is equipped with two types of functional units: one that is capable of

performing both logical and addition/subtraction operations on 32-bit words, and another

only capable of the logical and/or/xor/not operations. Also, the functional units in the

same array level execute in parallel, and instructions with dependence inside the hot spot

46

can be mapped to subsequent levels of the array. As can be seen in Figure 2.16, the re-

configurable array was designed following a triangular shape. The triangular shape was

selected after an empirical study conducted by the authors. In this experiment, they found

that the average shape of configurations being mapped to the array followed a triangular

shape (i.e., mapping more instructions in the initial levels). In its dynamic operation, the

CCA uses a trace cache to profile the retired instructions. Based on that trace, it is possible

to build the DFG.

Figure 2.16: Schematic of the CCA’s reconfigurable array.

Source: (CLARK et al., 2004)

In the RISPP (Rotating Instruction Set Processing Platform) architecture (BAUER

et al., 2007), an FPGA is used for the acceleration of hot spots. Bauer et al. proposed the

concept of Atoms and Molecules (that implement the so-called Special Instructions, based

on the hot spots synthesized at compile time). These components can be pre-allocated in

the FPGA, so a runtime manager can decide whether to compute a hot spot in the FPGA

or leave the execution for the main processor. Also, the authors point out that partial

reconfiguration could be used, so the system’s adaptability could be even increased.

The DIM (Dynamic Instruction Merging) reconfigurable system (BECK; CARRO,

2007; BECK et al., 2008; BECK; CARRO, 2009) is proposed by coupling a CGRA, with

configurations generated by a hardware-implemented binary translator, to a MIPS proces-

sor. The configurations are extracted from the application’s hot spots by a fully transparent

47

and dynamic binary translation mechanism when they are first executed. The hot spots, or

basic blocks, already translated are saved to a cache where they are indexed by their first

instruction program counter (PC), so future fetching of the configurations are possible.

Figure 2.17 details the approach proposed for execution in the reconfigurable system.

Figure 2.17: The DIM reconfigurable system.

Source: (BECK; CARRO, 2007)

Govindaraju et al. (2012) presented the DySER (Dynamically Specialized Exe-

cution Resources) architecture. It consists of a coarse-grained reconfigurable fabric of

heterogeneous functional units, which, as claimed by the authors, entitles functionality

specialization to the architecture. On the other hand, parallelism specialization is granted

to architectures that employ homogeneous resources disposed on wide and independent

interconnects (such as vector processors and GPUs). Govindaraju et al. suggest that the

DySER is a step towards the unification of functionality and parallelism specialization.

To attend the specialization, the DySER’s compiler synthesizes data paths in the recon-

figurable fabric that are specific to each application’s phase. Whereas, the parallelization

is achieved by employing vectorization techniques only possible via the reconfigurable

array.

The system overview is shown in Figure 2.18. The reconfigurable fabric is tightly

coupled to a general-purpose processor that acts as a load/store unit feeding the DySER.

48

Figure 2.18: Overview of the DySER (Dynamically Specialized Execution Resources)
architecture (a) and an example configuration (b).

Source: (GOVINDARAJU et al., 2012)

As for the reconfigurable fabric, the heterogeneous functional units are connected by sim-

ple switches. The interconnection is implemented in a credit-based technique forming

a circuit-switched network. Data propagates only between neighboring functional units.

Also, the ISA was extended with five instructions for configuring the DySER execution

units and interfacing with the register file and external memory. Later, the DORA (Dy-

namic Optimizer for Reconfigurable Architectures) system extended DySER by replac-

ing the offline generation of configurations with a dynamic binary translation mechanism

(WATKINS; NOWATZKI; CARNO, 2016).

The work in (LIU et al., 2015) couples a reconfigurable fabric to an OoO pro-

cessor. DynaSpAM (Dynamic Spatial Architecture Mapping) leverages some already

existing structures (branch predictor and issue unit) that enable out-of-order instruction

execution in the hardware dynamically generating configurations. Specifically, as the is-

sue unit schedules instructions to the OoO functional units, DynaSpAM simultaneously

maps the instruction to an available reconfigurable PE along with the necessary routing.

Once the configuration is generated, it is saved in a configuration cache for future reuse.

When compared to a traditional 8-issue OoO processor, DynaSpAM achieves a geomean

speedup of 1.42× and a geomean energy reduction of 23.9%.

As became clear in studies like (WALL, 1991) and (OLUKOTUN et al., 1996),

instruction level parallelism (or ILP) alone cannot scale performance gains indefinitely.

Also, the software heterogeneity, as shown in Section 2.1, present in modern workloads,

aggravates the problem even more. The following works approach the thread level par-

49

allelism (TLP), via multicore implementations, in combination with the fine-grained ILP

exploration enabled by their reconfigurable fabrics.

Watkins e Albonesi (2010) presented the ReMAP (Reconfigurable Multicore Ac-

celeration and Parallelization), a general-purpose fine-grained reconfigurable architecture

that executes both sequential and parallel workloads. To enable the acceleration, the sys-

tem requires an offline mapping procedure that may allocate the reconfigurable fabric to

single or multiple threads. The architecture supports fine-grained point-to-point commu-

nication for the executing threads, enabling pipeline parallelization and barrier synchro-

nization.

Rutzig, Beck e Carro (2011) proposed the CReAMS (Custom Reconfigurable Ar-

rays for Multiprocessor System) architecture. It is composed of multiple Dynamic Adap-

tive Processors (DAP), consisting of a coarse-grained reconfigurable path connected to the

Dynamic Detection Hardware (DDH), a binary translator, that transparently configures

the reconfigurable datapath with instructions fetched by the main, SparcV8, processor.

Since multiple DAPs are instantiated together sharing an L2 cache (as detailed in Figure

2.19), the CReAMS system is capable of exploring both thread level and instruction level

parallelisms.

Figure 2.19: The Custom Reconfigurable Arrays for Multiprocessor System (or
CReAMS) in (a) and its Dynamic Adaptive Processor (DAP) in (b).

Source: (RUTZIG; BECK; CARRO, 2011)

The HARTMP (Reconfigurable and Transparent Multicore Processing) is a work

that followed the CReAMS architecture by providing a heterogeneous reconfigurable

multicore organization (SOUZA et al., 2016). As explained earlier in Subsection 2.3.1,

the use of heterogeneous organizations present an energy-efficient alternative to homoge-

50

neous architectures that cannot match their resources to the diverse applications’ needs.

As the DAPs in the HARTMP have different performance potentials, it is necessary the

use of a predictive scheduler to match the threads’ demands to the accelerator.

Having presented some of the mains works on dynamic reconfigurable architec-

tures implemented in both single and multicore systems, we can now focus on the works

that involve techniques targeting either power-saving or resource management to increase

aspects like performance and power or energy efficiency of reconfigurable architectures.

The studies in (LAMBRECHTS; RAGHAVAN; JAYAPALA, 2005) and (LAM-

BRECHTS; RAGHAVAN; JAYAPALA, 2005) motivated the authors of the ADRES re-

configurable system (MEI et al., 2003) to propose a new architecture, based on the pre-

vious one, but featuring architectural changes for increasing performance and energy ef-

ficiency. The Enhanced ADRES (BOUWENS et al., 2008) includes operand isolation

and clock gating optimizations, so an energy reduction of 50% was achieved when ex-

ecuting classical digital signal processing algorithms. The ADRES framework relies on

code analysis and transformations made at compile time for mapping basic blocks to a

tightly coupled CGRA. Specifically, clock gates were automatically added to the CGRA’s

register file by CAD tools, reducing the power dissipated by the registers from 50 to 80%.

One of the first attempts to reduce leakage power in CGRA architectures was pro-

posed by Saito et al. (2008). The MuCCRA-2.32b extends its predecessor architecture,

the MuCCRA (AMANO et al., 2007), by providing a fine-grained power gating mech-

anism. Only targeting the PE’s Arithmetic Logic Unit (ALU) and Shift and Mask Unit

(SFU) execution units, the sleep controls are concatenated into the CGRA configuration

word. As configurations are generated statically, it is possible to know in advance which

execution units will be idle for each configuration. Also, two control modes are proposed:

the pair control mode and the unit individual control mode. When running with pair con-

trol mode, the MuCCRA-2.32b powers-off both PE’s units (ALU and SFU). In contrast,

configurations can select individual units to power gate when the unit individual mode is

active. The proposed method achieves reductions of up to 48% in leakage power.

Kissler et al. (2011) proposed a scalable many-domain power gating scheme for

CGRA architectures depicted in Figure 2.20. The architecture implements power gating

at the PE level (resulting in 24 independent power domains) controlled by a distributed

power control network. Particularly, the status signals of all PEs propagate from west to

east and north to south across the neighboring PEs up to an AND-tree that generates the

pwr_ok_global signal. This signal informs the application whether the CGRA is ready

51

to execute configurations. Another advantage of propagating the status signal among

the PEs is that it inherently power-up the PEs in a daisy-chain fashion. The authors

also make use of EDA design tools for automatic insertion of hierarchical clock gating.

However, the whole process relies on a static scheme. The programmer is responsible for

assigning the PEs to a specific application, which will cause the controller to power gate

the unassigned PEs. Hence, power, throughput, and latency trade-offs have to be assessed

by the programmer at design time. Overall, a 60% reduction in the leakage power is

reported for the edge detection application, which assigned a 2x2 subarray (from a total

of 24 PEs).

Figure 2.20: Schematics of the power control network and controller state machine.

Source: (KISSLER et al., 2011)

In (MINISKAR et al., 2016), an architecture, based on the Samsung Reconfig-

urable Processor (SRP), makes use of a code annotation mechanism to power gate func-

tional units in the reconfigurable array. Hence, it is in charge of the programmer to iden-

tify which parts of the program have low ILP that would lead to low utilization of the

reconfigurable fabric in case no power gate is performed. For example, in Figure 2.21 an

application is manually profiled by the programmer who identified three distinct kernels.

After the programmer finds the ILP of each kernel, program directives in the application

source code can be used to "instruct" the power gating. Also, the architecture can oper-

ate on both Very Large Instruction Word (VLIW) mode, in which maximum savings of

33% are achieved in power dissipation, or CGRA mode, where savings of up to 56% are

reported.

There is also the work by Akbari et al. (2018) that aims reductions in the power

dissipation of a CGRA system by using approximate functional units. The authors argue

that the same class of applications that are the most amenable to CGRA execution, such

as multimedia and digital signal processing, are also inherently error-resilient. Based on

an energy consumption breakdown of an exact PE, the authors propose the replacement

52

Figure 2.21: ILP-oriented power gate of the reconfigurable array.

Source: (MINISKAR et al., 2016)

by their approximated counterparts, of the two most consuming operations, multiplication

(corresponding to 43% of the PE’s total energy consumption) and addition (16% of the to-

tal PE’s energy). PEs in the PX-CGRA (Polymorphic Approximate CGRA) architecture

are made up of mixed-accuracy ALUs connected to a switch box. The ALUs of varying

accuracy can be allocated as independent units in the CGRA configuration words. How-

ever, the configuration of the approximate CGRA is not transparent to the user, who has

to program the CGRA accuracy in the application code explicitly, and evaluate possible

issues caused by approximation. Overall, the PX-CGRA achieves up to 45% improve-

ment in energy-efficiency when compared with their fully exact counterpart (with a 35%

output quality degradation).

The TransRec was proposed in (BRANDALERO et al., 2019). The system cou-

ples the acceleration provided by a CGRA to big.LITTLE-like architecture. In it, both big

and LITTLE processors have access to the reconfigurable fabric through a shared bus. As

can be seen in Figure 2.22, the TransRec Processing Unit (TRePU) is composed of three

main modules: the CGRA, responsible for executing the reconfigurable datapaths, the Bi-

nary Translator, in charge of transparently transforming the instructions arriving through

the Inst. Queue into CGRA configurations that are saved in the third module, the configu-

ration cache, allowing further reuse whenever an already translated basic block reappears

for execution. Additionally, Brandalero et al. (2019) make use of the DVFS technique to

53

improve the system’s energy efficiency further. It achieves an energy efficiency of 1.59×

better when compared to execution on the big core, and performance improvements of

2.28× and 1.32× when compared to execution on the LITTLE and big core, respectively.

Figure 2.22: TransRec system overview.

Source: (BRANDALERO et al., 2019)

Das, Martin e Coussy (2019) propose CGRA acceleration for ultra low-power en-

vironments. The approach taken by the authors, however, targets power savings at the al-

gorithm level where smaller CGRA configurations should be generated during code anal-

ysis and transformation. A reduction in the configuration size means that reconfigurable

units require smaller caches. Hence, the authors tackle the reduction of an important

source of power dissipation of dynamic reconfigurable systems. As the mapping of basic

blocks to the reconfigurable fabric is performed by an offline tool, an exhaustive search

can look among multiple mapping options for the one mapping that executes the specific

basic block requiring the smallest amount of CGRA resources. Das, Martin e Coussy

(2019) report 2.3× gains in energy consumption while requiring 2× less configuration

memory when compared to traditional mappings.

2.4 Contributions to the State-of-the-Art

Following works like (LYSECKY; VAHID, 2004; BAUER et al., 2007), and (GOVIN-

DARAJU et al., 2012), the architecture proposed here involves the use of a reconfigurable

fabric dynamically configured for offloading execution from the main processor. How-

ever, those works have the significant drawback of requiring offline code generation for

execution on the reconfigurable fabric. To overcome this issue, authors in (BECK et

al., 2008; LIU et al., 2015) and (WATKINS; NOWATZKI; CARNO, 2016), have pro-

54

posed the use of dynamic mechanisms for generating reconfigurable instructions at run-

time. Specifically, this work leverages the approach in (BECK et al., 2008), which uses a

hardware-implemented binary translator responsible for the online transformation of the

instructions in the application’s code to configuration words enabling execution on the

CGRA.

In the context of multicore reconfigurable architectures, this work differs from

(RUTZIG; BECK; CARRO, 2011) that employs a set of CGRAs with homogeneous or-

ganizations that may lead to inefficiency due to applications with low or unbalanced ILP.

On the other hand, a multicore with a heterogeneous set of CGRAs was already proposed

in (SOUZA et al., 2016). However, such organization incurs on costs related to task

scheduling and migration, which are avoided by our dynamic adaptation scheme, as will

be detailed in the next chapter. Furthermore, many works have proposed improvements to

the power or energy efficiency of CGRAs. Orthogonal to this work, the automatic inser-

tion of clock gating by EDA tools can be used to take reductions in dynamic power dissi-

pation even further, as done in (BOUWENS et al., 2008) and (KISSLER et al., 2011). On

the works that make use of power gating, the authors in (AMANO et al., 2007) also em-

ploy a fine-grained power gating mechanism. However, their approach requires including

in the configuration word information about which of the functional units must be power

gated - information that is gathered offline by the programmer. The approach taken in this

work explores a power gating mechanism similar to the one proposed in (KISSLER et al.,

2011), which implements a scalable many-domain power gate across a CGRA. Neverthe-

less, the adaptation of the reconfigurable fabric to the application needs to be carried out

manually by the programmer via code annotation. Code annotation-based power gating

is also performed in (MINISKAR et al., 2016).

Regarding other orthogonal techniques for reducing power and energy consump-

tion presented in this chapter, approximate functional units could be integrated into CGRA

devices, as performed in (AKBARI et al., 2018). Additionally, more advanced techniques

like DVFS, in addition to power gating, can also be used to reduce the power dissipated by

CGRA’s functional units, as shown in (BRANDALERO et al., 2019). Finally, the memory

used for storing configuration words that is present in most CGRA works can also be the

target of improvement as described in (DAS; MARTIN; COUSSY, 2019).

In summary, our work is the first one to incorporate dynamic and transparent adap-

tation of the reconfigurable fabric resources for keeping power dissipation under edge-

tolerable levels. As will be explained later, the proposed approach is based on online

55

monitoring of the applications’ performance requirements to match it to the CGRA re-

sources. Moreover, the proposed approach is extended to a multicore architecture, where

it is used to manage resources of multiple reconfigurable fabrics simultaneously.

56

3 A RESOURCE-AWARE MULTICORE CGRA ARCHITECTURE

This chapter presents the resource-aware multicore CGRA architecture proposed

in this work. It is a multicore architecture, where each processor is coupled to a dedicated

reconfigurable unit for accelerating data-dependent sequences of instructions, as further

detailed in Section 3.1. The architecture’s primary goal is to leverage the thread-level

parallelism provided by the multiple cores and the elevated instruction-level parallelism

achieved by reconfigurable accelerators. In order to reduce the power dissipation of the

reconfigurable accelerators, a resource management technique that performs online pro-

filing of the executing applications and the state of the system’s multiple reconfigurable

fabrics was developed. By selectively using power gate to adapt the available resources of

each accelerator to the applications at hand, the efficiency of a heterogeneous organization

is achieved without incurring costs, such as task migration. The proposed architecture is

fully transparent to the user since it extends existing works on dynamic reconfigurable

architectures based on the use of transparent hardware-implemented binary translation

modules.

Since the proposed architecture extends the works in (BECK et al., 2008) and

(BRANDALERO; BECK, 2017). The description will focus on the novel architectural

elements, while modules that were implemented in the original works will only be briefly

described.

3.1 System Overview

Figure 3.1 gives an overview of the proposed architecture. It consists in a set of

General-Purpose Processors (GPP) tightly coupled to reconfigurable units, each includ-

ing a Coarse-Grained Reconfigurable Architecture (CGRA), a special cache dedicated for

storing the CGRA configurations called Configuration Cache (CC), and a Binary Trans-

lator (BT). At the center, a Power Management Unit (PMU) is connected to all reconfig-

urable units.

Generally speaking, the execution flow involving the execution of a single thread

on the GPP and reconfigurable fabric can be decomposed into five steps. To support the

explanation, a system’s tile (GPP plus reconfigurable unit) is detailed in Figure 3.2. For

the sake of simplicity, despite the multicore architecture, only a single tile is used for

explanation.

57

Figure 3.1: Multicore CGRA Architecture.

CGRA
1GPP 0

GPP 2

GPP 1
CGRA

0

PMU

BT

BT

BT

BT

GPP 3CGRA
2

CGRA - Coarse-Grained Reconfigurable Architecture
BT - Binary Translator
CC - Configuration Cache
PMU - Power Management Unit

CC

CC CC

CC

CGRA
3

Source: the author

First-time instructions are always executed by the core as in a regular execution.

However, these instructions are simultaneously forwarded to the the Instruction Queue

(Inst. Q. in Figure 3.2), which acts as an interface between core and BT module. Then,

the incoming instructions are fed to the BT and the translation step takes place (1 in Fig-

ure 3.2). During the first step, the BT is producing configurations, from the instructions in

the Instruction Queue, for future execution in the CGRA. Step 2 consists in saving the

configurations produced by the BT in the CC. Configurations are indexed by the Program

Counter (PC) of their first instruction. Later, during program execution, the GPP fetch

unit performs a lookup for the PC in the CC. If the lookup returns a match (there is a

PC tag in the CC equal to the fetched PC), a configuration for executing the application’s

current basic block is loaded from the CC (Step 3). Now, the CGRA can be configured

and execution is offloaded to the reconfigurable fabric (Step 4). Finally, step 5 regards

the results that are written back to the GPP. Besides the execution flow described above,

data about the applications’ performance on the CGRA is continuously sent to the PMU

module (e.g., configurations’ ILP). The steps from 1 to 5 just described were proposed in

(BECK et al., 2008), and are used in other recent works such as (SOUZA et al., 2016)

and (BRANDALERO et al., 2019). Moreover, the second step was extended to support

the proposed resource management scheme (indicated as 2* in Figure 3.2). Now, this

step is also responsible for calculating configurations’ ILP after each translation is fin-

58

ished. As will be further discussed in Section 3.4, this data will help the PMU to perform

adjustments to all system’s reconfigurable units accordingly to the applications at hand.

Figure 3.2: Architecture tile detailed.

GPP

BT

CC

Inst. Q.
In
te
rc
on
ne
ct

CGRA

1

2

3

4

5

Reconfigurable Unit

To PMU
2*

Source: the author

The following sections will detail the functioning of the architecture’s main com-

ponents. First, Section 3.2 presents the CGRA used as case-study and the configuration

cache. Next, Section 3.3 explains how the system achieves transparent acceleration of ba-

sic blocks over the CGRAs’ reconfigurable fabric. Finally, Section 3.4 presents the novel

strategies implemented for dynamically and transparently adapting the reconfigurable re-

sources to the applications’ requirements.

3.2 CGRA

To facilitate the description of the reconfigurable fabric, we depict a two-level

CGRA, smaller than the one used in this work, in Figure 3.3. The reconfigurable array

is divided into rows and levels of Functional Units (FUs), which may implement integer

ALU, integer multiplication (MULT), or memory operations (LD, for instance). The main

characteristic of the employed CGRA is that it has no state-holding elements (i. e., there

are no flip-flops between FUs). Data propagates vertically through the FUs (from row to

row). FUs residing in the same row execute in parallel. A sequence of rows where the

propagation delay equals the main processor cycle is called a level - therefore, it is possi-

ble to fit one level within a processor equivalent cycle without affecting its critical path.

For example, the CGRA in Figure 3.3 is capable of executing up to 9 integer ALU, one

59

multiplication, and two memory loads, totalling a maximum execution of 12 instructions

per cycle.

Figure 3.3: CGRA’s reconfigurable array.

IN
PU

T
C

O
N

TE
XT

R
ES

U
LT

S
BU

FF
ER

ALU ALU ALU
Xbar

ALU ALU ALU

Xbar
MULT

ALU ALU ALU

Xbar

LD LD

ALU ALU ALU
Xbar

ALU ALU ALU

Xbar
MULT

ALU ALU ALU

Xbar

LD LD

Xbar

Le
ve

l 1
Le

ve
l 2

Source: the author

Rows of FUs are connected via crossbars (Xbars in Figure 3.3). Input data are fed

to all rows through the input context. Results are sent to the result buffer, which leads to

the main processor’s register file. Not depicted in the Figure 3.3, for the sake of clarity, the

multiplexers at the input and output of all FUs are configured by the CGRA configuration

word. Input multiplexers select which words from the previous crossbar will feed the FU.

As for the output multiplexers, they select whether the word passed to the next crossbar

will be the FU’s output value or a value bypassed from a previous layer’s input context.

In a broader context, many CGRA organizations are possible implementing. For

example, in (BECK et al., 2008), three CGRA configurations of 24, 48, and 150 rows are

explored. Each row includes either 8 ALUs (in the CGRAs with 24 and 48 rows) or 12

ALUs (for the 150-rows CGRA), one or two multipliers, or two to six load/store units. In

another work, Rutzig, Beck e Carro (2011) use reconfigurable arrays of 24 rows, where

each row is composed of 6 ALUs, 4 load/store, and 2 multipliers. In (BRANDALERO;

BECK, 2017), experiments are carried out with CGRAs of 15, 30, and 60 levels of ALUs,

multipliers, and load/store units.

60

3.3 Binary Translator

A key component of the proposed architecture is the Binary Translator (BT). The

use of a hardware-implemented BT enables the architecture to perform automatic and

transparent selection and mapping of an applications’ basic blocks. As explained in Sub-

section 2.3.2.1, the selection, or code analysis, consists of choosing the code regions

suitable for acceleration. Ideal regions provide easily predictable branches, few true data

dependencies among instructions, and a reduced number of memory operations. On the

other hand, the mapping, or code transformation, lies on configuring the reconfigurable

fabric to execute the selected code region.

3.3.1 Original Binary Translation Module

As the GPP executes an application, a Binary Translator (BT - Figure 3.1) con-

nected to it is concurrently analyzing the fetched instructions to find basic blocks suitable

for translation and acceleration on the CGRA. Figure 3.5 presents the Binary Translator’s

four pipeline stages used for the translation.

Figure 3.4: Original Binary Translator pipeline.

Instruction
Decode

Dependency
Analysis

Config.
BuildMapping

Source: the author

As adapted from (BECK; RUTZIG; CARRO, 2014), the pipeline starts with the

Instruction Decoding stage, where it reads the incoming instructions from the processor

fetch stage and decodes these instructions before storing them in a queue, where the sec-

ond stage can further analyze data hazards. Next, the Dependency Analysis assures that

the input data will be ready at the FU input by detecting data hazards. Moreover, in this

stage, subsequent basic blocks and multiple branches can be speculated to enable their

mapping into a single configuration. The Binary Translator speculation helps to improve

the CGRA utilization of upper levels and ILP exploitation across control boundaries. The

Dependency Analysis stage results in a table (initial mapping) that gives the lowest level

each instruction can be mapped to. The Mapping stage attempts to find, for each instruc-

tion in the BB, an available FU from the lowest possible level for allocation onwards. This

stage builds a bitmap, assigning an (x,y) coordinate to all instructions in the BB. From

61

there, the Mapping allocates FUs to instructions as well as configures the multiplexers by

setting the FUs’ inputs and outputs to their correct datapaths. Finally, the Configuration

Build stage stores all the configuration context (FUs and multiplexers control signals) into

the Configuration Cache. Thus, when a BB re-appears for execution, its respective con-

figuration can be loaded from the Configuration Cache (CC - Figure 3.1), and the CGRA

is configured for correct execution. As an example, Figure 3.3(b) shows numbers next to

some FUs to indicate the resulting mapping from the translation of a basic block shown

in Figure 3.3(a).

Figure 3.5: A sample instruction trace (a) and possible its possible mapping (b).

IN
PU

T
C

O
N

TE
XT

R
ES

U
LT

S
BU

FF
ER

ALU ALU ALU
X

ALU ALU ALU

X
MULT

ALU ALU ALU

X

LD LD

ALU ALU ALU
X

ALU ALU ALU

X
MULT

ALU ALU ALU

X

LD LD

X

42

1

5

3

6 78

Le
ve

l 1
Le

ve
l 2

(b)

			ADD	r7,r5,r6
			ADD	r8,r7,r6
			SUB	r9,r8,r6
			ADD	r1,r2,r7
			ADD	r4,r2,r7
			LW	r6,	8
			LW	r5,	4

			XOR	r1,r2,r9

Incoming Instructions

(a)

1
2
3
4
5
6
7
8

Source: the author

Besides the basic functionality implemented in the BT pipeline described above,

there are few other points that deserve better clarification.

Immediate Values are handled by the BT with the help of a dedicated table. At

translation time, these values are detected and, at runtime, these immediate values are

loaded to their respective FUs by using the input context (see Figure 3.3).

Memory Accesses are mostly handled as ordinary operations (e.g., ALU) by the

BT. However, few modifications are necessary. For FUs implementing load operations,

there are two input multiplexers (as in ordinary ALUs) responsible for feeding the base

address and offset values. For FUs implementing stores, three input multiplexers are in

order: two for address (base plus offset) and one for the value. During translation, an

additional counter is used to keep track of the stores and avoid them of being reordered

62

w.r.t. previous loads.

Speculative Execution is also performed by the BT. Speculation happens "natu-

rally" as subsequent basic blocks are translated into the same configuration (i.e., after a

branch operation is found, BT assumes one of the possible outcomes to continue trans-

lation). Later, during execution, a mechanism confirms the outcome and the validity of

the configuration from the branch forward. This mechanism consists of an auxiliary table

that enables a comparison between the predicted (stored in the table) and actual (executed)

outcome. If a lookup to this branch table returns a match, the branch is successful, and the

execution may continue in the CGRA. Although, if a mismatch occurs, the last instruc-

tion prior to the branch is committed, and the remaining execution of that configuration is

aborted from the CGRA.

Moreover, all configurations generated by the Binary Translator module are saved

in the Configuration Cache. Each basic block originating a configuration is addressed

by the PC of its first instruction. The configuration cache is organized into two array

blocks (Figure 3.6): one for PC tag and another for their corresponding data (CGRA

configuration). Also, an entry can be erased due to end of its lifetime. Each entry line

in the Configuration Cache has a 2-bit counter incremented whenever a misspeculation

happens (pred. counter in Figure 3.6). When the counter saturates, the entry is erased.

Figure 3.6: Configuration Cache structure.

PC (tag) Configuration pred.
counter

Source: the author

As briefly discussed in Section 3.1, the BT includes an interface with the Power

Management Unit (PMU). The additional steps for implementing this enhancement to BT

are described below.

3.3.2 Enhanced Binary Translation

The Binary Translator (BT) was enhanced to interface with the module responsible

for power management and enable translation when parts of the reconfigurable fabric

63

are power gated. Essentially, multiple mappings are concurrently being generated during

translation. Each mapping matches a reconfigurable fabric of different size (accomplished

via power gating of CGRA resources). Also, as will be detailed below, the ILP provided

by the multiple mappings are used for evaluating the CGRA performance under multiple

sizes.

As seen in Figure 3.7, the enhanced binary translator keeps the same Instruction

Decode and Dependency Analysis steps as the original BT approach. The main changes

were proposed in the Mapping and Configuration Build steps, described in the following

subsections.

Figure 3.7: Enhanced Binary Translator pipeline.

To PMU ILP
Detection

Instruction
Decode

Dependency
Analysis

Mapping
Unit V

Mapping
Unit X

Mapping
Unit Y

Mapping
Unit Z

Config.
Build

From PMU
Control

CGRA
MAPPING
(To CC)

Active Mapping Unit
(AMU)

Virtual Mapping Unit
(VMU)

Source: the author

3.3.2.1 Mapping Step

The third stage in the enhanced BT (in charge of the instruction mapping) is now

composed of four Mapping Units, as observed in Figure 3.7. It was empirically found that

dividing the CGRA into four power domains brings the best trade-off between hardware

complexity, energy consumption, and timing overheads. The main goal of replicating the

mapping stage is to generate, concurrently, configurations for CGRAs under all possible

power gate scenarios. That is, each tile (CGRA plus GPP), composing the multicore

system, has a private BT with multiple mapping units translating basic blocks for only the

tile’s CGRA.

Power domains, which are defined at design time, comprise groups of four CGRA

levels corresponding to the Mapping Units V , X , Y , and Z. Four Mapping Units give rise

to four possible CGRA array sizes, which are given by the four power gate sleep controls.

64

For example, in Figure 3.8, a CGRA of 60 levels is depicted. It, then, corresponds to the

array sizes of 15, 30, 45, and 60 levels. The figure also shows how those CGRA levels are

divided in respect with the Mapping Units. Precisely, Mapping Unit V covers the first 15

levels of the reconfigurable fabric. Whereas Mapping Unit X is responsible for mapping

the CGRA from levels 1 to 30. Following the pattern, Mapping Unit Y and Z assume a

45-level and 60-level CGRA, respectively.

Figure 3.8: Example of a 60-level CGRA with its respective four mapping units. In the
example, Mapping Unit Y is selected as the Active Mapping Unit (AMU).

\

\

\

INPUT CONTEXT

RESULTS BUFFER

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

Xbar

LD
LD

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

Xbar

LD
LD

Xbar

Level 1 Level 2

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

LD
LD

Level 15

Xbar

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

LD
LD

Level 16

Xbar

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

LD
LD

Xbar

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

LD
LD

Xbar

Level 30 Level 31

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

LD
LD

Xbar

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

LD
LD

Xbar

Level 45 Level 46

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

LD
LD

Xbar

ALU
ALU

ALU
Xbar

ALU
ALU

ALU

Xbar
M
U
LT

ALU
ALU

ALU

LD
LD

Xbar

Level 59 Level 60

Levels mapped by Mapping Unit V (VMU)

Levels mapped by Mapping Unit X (VMU)

Levels mapped by Mapping Unit Y (AMU)

Levels mapped by Mapping Unit Z (VMU)

Source: the author

With each system’s tile being able to execute CGRAs in any one of four possible

sizes, the PMU can measure the ILP of the application as well as how efficiently the

resources of each CGRA are being used and then cooperatively decide to which ones it

will apply power gate. Let us assume that during the execution of a certain application,

the Mapping Units Y and Z are providing the same average ILP, meaning that the BT

is not able to leverage the extra levels provided in Z with more instructions. Hence, it

is possible to make the CGRA size compatible to the mappings in Y by turning-off the

underutilized levels (as done in the example of Figure 3.8, where the CGRA levels under

mapping of Mapping Unit Z are power gated). Hence, power is saved and efficiency is

increased since no performance penalty is incurred when shutting off the underutilized

levels.

It is important to note that only configurations from one Mapping Unit are saved in

the Configuration Cache. We call the Mapping Unit generating the configurations being

sent to the Configuration Cache the Active Mapping Unit (AMU), while the remaining

ones are called Virtual Mapping Units or VMU (Figure 3.7). These units are only used for

ILP monitoring and their configurations are discarded afterward. Another relevant point

to make is that replicating mapping units adds low complexity to the hardware module

65

and small costs in power dissipation (as will be shown in Section 4). According to Figure

3.7, the selection of the Active Mapping Unit is performed by the PMU module based on

the ILP averaged over configurations produced by each Mapping Unit. As will be better

detailed in Section 3.4, a new Active Mapping Unit is selected whenever the PMU detects

a new program phase. In the example of Figure 3.8, Mapping Unit Y is selected as the

AMU. As we can see, levels that are not under Mapping Unit Y coverage are power gated.

Hence, the CGRA is running with 45 levels. However, the remaining Mapping Unit Z,

a VMU in this case, keeps translating the application’s basic blocks so the PMU module

can monitor the performance delivered by the Mapping Unit Z (measured as ILP sent after

each mapping is finished.

Furthermore, the reason for adding multiple Mapping Units to the Binary Trans-

lator pipeline instead of simply clipping a configuration into smaller configurations is as

follows: the array size targeted by the mapping algorithm influences which basic blocks

will compose a configuration during the runtime analysis of the application and, conse-

quently, the acceleration delivered by the CGRA. In other words, changing the size of the

array would influence where a configuration would begin and end, so it is not possible to

infer, from configurations built for a larger array, how configurations of a smaller CGRA

size would behave.

3.3.2.2 Configuration Build Step

Because a configuration entry is composed of control signals for all FUs and multi-

plexers in the array, Mapping Units targeting arrays of different sizes create configuration

entries of different lengths. In other words, a Mapping Unit mapping 15 levels needs to

map fewer FUs and multiplexers than a Mapping Unit that is mapping 60 levels, for ex-

ample. Hence, a 60-level configuration entry is longer than a 15-level one. Consequently,

the Binary Translator must be able to adapt configurations from the Configuration Cache

(which has fixed size) to the current array size (which may vary in size depending on the

Active Mapping Unit).

To overcome the compatibility problem caused by mixing configurations from dif-

ferent Mapping Units, the Binary Translator Configuration Build stage physically con-

figures the storing and loading of configurations in the Configuration Cache considering

the worst case in terms of entry size, which are the ones mapping to the maximum array

size (in number of levels). In this respect, before storing a configuration in the Configura-

tion Cache, the Configuration Build stage matches the length of configurations created by

66

the Mapping Units (of any array size) to the Configuration Cache entry by filling the con-

figuration parts corresponding to the levels that were not mapped. Additionally, a word

indicating the number of mapped levels was added to all configurations. Consequently,

the Binary Translator is able to adapt configurations from any Mapping Unit to the actual

length of a Configuration Cache entry (process illustrated in Figure 3.9(a)).

On the other hand, a similar problem arises when configurations are loaded from

the Configuration Cache. If an instruction that is fetched by the GPP produces a hit in

the Configuration Cache (i.e., its PC corresponds to an already translated basic block and

there is a configuration stored in the Configuration Cache), the current CGRA size may

not match the configuration size. Particularly, the issue can be broken into two cases:

1. The Binary Translator loads from Configuration Cache a configuration that maps

more levels than what is currently available in the array (e.g., CGRA is running

with 15 levels and a configuration mapping 60 levels is loaded from Configuration

Cache). Then, the configuration is labeled by the Binary Translator as invalid and

a new translation, which maps the current array size, takes place. As in a Configu-

ration Cache miss, the execution of the basic block is left to the GPP. The process

causes this particular configuration entry to be erased from the Configuration Cache.

2. The Binary Translator loads from Configuration Cache a configuration that maps

fewer levels than what is currently available in the CGRA (e.g., CGRA is running

with 60 levels and a configuration previously mapped for 15 levels is loaded from

Configuration Cache). Hence, due to the adaptation performed by the Configuration

Build stage, the configuration can be transparently loaded. This process is depicted

in Figure 3.9(b).

3.4 PMU

The Power Management Unit (PMU - Figure 3.1) dynamically monitors each

CGRA coupled to each core in the system to assess its utilization, measuring the workload

being executed by all concurrent applications. Depending on the applications’ potential

ILP of each hardware tile (CGRA plus GPP), the PMU may adapt the CGRAs to the

workload at hand.

Since performing power gating implies on long interval cycles for charging and

discharging circuits and additional energy consumption (HU et al., 2004), we group en-

67

Figure 3.9: Creation and loading of configurations with varying mapping units and array
sizes in a 60-level CGRA. When creating configurations, the Binary Translator matches
the configuration length from the Active Mapping Unit (black boxes) with the Configura-
tion Cache entry length by filling the configuration (white boxes). When loading config-
urations for execution, they are already adapted to bigger array sizes.

Levels 1 - 1515

45

60

t

Levels 16 - 30 Levels 31 - 45 Levels 46 - 60

When creating configurations (a)

15

45

60

t

When loading configurations (b)

Mapped levels by
AMU in the

configuration entry

Levels filled by the
BT's Configuration
Build step in the

configuration entry

Levels 1 - 15

Levels 1 - 15

Levels 1 - 15

Levels 1 - 15

Levels 1 - 15

Levels 1 - 15

Levels 1 - 15

Levels 1 - 15

Levels 16 - 30

Levels 16 - 30

Levels 16 - 30

Levels 16 - 30

Levels 16 - 30

Levels 31 - 45

Levels 31 - 45

Levels 31 - 45

Levels 31 - 45

Levels 46 - 60

Levels 31 - 45 Levels 46 - 60

Levels 46 - 60

Levels 16 - 30 Levels 31 - 45 Levels 46 - 60

Levels 16 - 30 Levels 31 - 45 Levels 46 - 60

Levels 46 - 60

Levels 46 - 60

Levels 16 - 30 Levels 31 - 45 Levels 46 - 60

C
ur

re
nt

 M
U

 a
rra

y
si

ze
 ta

rg
et

C
ur

re
nt

 M
U

 a
rra

y
si

ze
 ta

rg
et

Config. ID 0

Config. ID 1

Config. ID 2

Config. ID 0

Config. ID 0

Config. ID 1

Config. ID 0

Config. ID 1

Config. ID 2

Source: the author

tire CGRA levels into power domains rather than power gate at the FU granularity. As

stated earlier in Subsection 3.3.2, the CGRA was divided into four power domains. The

PMU controls the sleep transistors responsible for activating and deactivating the power

domains (therefore increasing or decreasing the number of available resources), as indi-

cated in Figure 3.10.

Let us assume a straightforward example of a CGRA with only two levels and

two power domains when the same instruction mapping is loaded (Figure 3.10). In the

example, we have the CGRA in two states, fully operational (a) and partially power gated

(b). The PMU increases energy efficiency by avoiding configurations like the one pre-

68

Figure 3.10: Example of CGRA mappings for fully (a) and partially (b) functioning
CGRA.

ALU ALU ALU
X

ALU ALU ALU

X
ALU ALU ALU

ALU ALU ALU
X

ALU ALU ALU

X
ALU ALU ALU

42

1

5

3

(a) (b)
Power-Gated FUAvailable FU

6

X

X

R
ES

U
LT

S
BU

FF
ER

X

IN
PU

T
C

O
N

TE
XT

MULT LD LD

MULT LD LD

Po
w

er
 D

om
ai

n
1

Po
w

er
 D

om
ai

n
2

ALU ALU ALU
X

ALU ALU ALU

X
ALU ALU ALU

ALU ALU ALU
X

ALU ALU ALU

X
ALU ALU ALU

42

1

5

3

6

X

X

R
ES

U
LT

S
BU

FF
ER

X

IN
PU

T
C

O
N

TE
XT

MULT LD LD

MULT LD LD

Po
w

er
 D

om
ai

n
1

Po
w

er
 D

om
ai

n
2

6

78

6

Sleep Signal 1
Sleep Signal 2From PMU

Sleep Signal 1
Sleep Signal 2From PMU

Source: the author

sented in Figure 3.10(a) - which results in low resource utilization in the upper levels. In

this one, the array takes two clock cycles after reconfiguration to execute eight instruc-

tions. Our strategy lies in pruning the levels with low utilization from the configurations.

Therefore, not executing all possible instructions of a configuration in the CGRA raises

the opportunity to power gate the under-utilized levels, as shown in Figure 3.10(b).

3.4.1 PMU Phases

The PMU algorithm is divided into four phases: Initialization, Learning, Power

Gate, and Watching (Figure 3.11).

1. Initialization Phase. All CGRAs start fully powered-on, but, in order to avoid con-

figuration thrashing in the future (i.e., when a partially power gated CGRA attempts

to fetch a configuration for a full powered-on CGRA), all Binary Translators start

execution limited to the reduced amount of CGRA resources (done by selecting the

Active Mapping Unit to the smallest number of levels - Mapping Unit V). Concur-

rently, the PMU starts the supervision of the four CGRA instances (from the four

tiles). Meaning that it starts collecting ILP data from active and virtual Mapping

69

Figure 3.11: Power Management Unit functionality with sample applications.

CGRA
3CGRA 2

CGRA
1

CGRA
0

IL
P

time

DTW

ECG

Initialization Learning Power-Gate

LogReg

Bitcount

Watching

ILP Readjust
Yes

Continue
Execution

No

CGRA
1

CGRA
0

CGRA
2

CGRA
3

PMU

CGRA
1

CGRA
0

CGRA
2

CGRA
3

PMU PMU

CGRA
3CGRA 2

CGRA
1

CGRA
0

PMU

Source: the author

Units from all Binary Translators.

2. Learning Phase. In this phase, the PMU cooperatively adjusts the number of re-

sources of each CGRA with respect to both the ILP information provided by the

applications’ behavior and the total system power dissipation (Learning in Figure

3.11). After configurations from the Active and Virtual Mapping Units have their

mapping finished, each Binary Translator sends the resulting ILP to the PMU. Ef-

fectively, the PMU has access to the ILP produced by each Mapping Unit of each

tile in the architecture. With that information at hand, the PMU can determine the

precise amount of CGRA resources demanded by all running applications. The

PMU always prioritizes the application that delivers the highest ILP to its CGRA at

the expense of reducing the number of activated levels from the remaining CGRAs.

3. Power Gate Phase. Next, parts of the CGRA resources are deactivated by the

PMU through power gating (light gray shaded over Power Gate in Figure 3.11). In

the example, the CGRA accelerating the application with the lowest ILP (LogReg)

has most of its resources power gated. As a consequence, the system can employ

the power that would be dissipated by the under-utilized CGRA to other CGRAs

running applications with higher ILP that are more suitable for acceleration.

4. Watching Phase. Even though the power gating phase has passed and some CGRAs

have part of their resources turned-off, the PMU keeps monitoring the ILP data from

all Binary Translators in the Watching Phase. Consequently, the PMU can adjust

70

the CGRAs resource whenever it detects a change in the applications’ ILP (e.g., due

to distinct program phases). In case of detecting significant losses in the CGRA per-

formance, the PMU returns to the Learning Phase to adjust the number of resources

to each CGRA to new applications or program phases. Specifically, a value of 20%

was adopted to flag a new program phase, and, consequently, the selection of the

new BT’s Active Mapping Unit. Also during this phase, the power gating break-

even point is observed to assure that power dissipation is not increased. For that,

a sequence of at least five CGRA configurations is monitored before performing

any power gating, which gives an interval of hundreds of cycles between phases

(according to experiments performed with the benchmark described in Chapter 4) -

safely above the break-even point suggested in (HU et al., 2004).

71

4 EVALUATION

Initially, this Chapter describes the framework used to develop and evaluate the

proposed architecture. Next, two evaluation scenarios are proposed that attest to the fea-

sibility of using power gating for increasing the energy efficiency of CGRAs. In the first

experiment, the PMU controller is evaluated after insertion to an architecture featuring a

single GPP coupled to a relatively large reconfigurable array (60 levels). Next, a second

experiment is proposed where an evaluation of the resource-aware multicore is performed

against a modern multicore system of four OoO 2-issue BOOM processors. Also, in the

second experiment the proposed approach is compared to multicore architectures with

homogeneous and heterogeneous reconfigurable organizations.

4.1 Tools

This section presents the tools used during the development and evaluation of the

proposed architecture. In this work, a cycle-accurate performance simulator was used in

combination with data from hardware synthesis of real processor designs.

4.1.1 Gem5

Simulations using the Gem5 cycle-accurate simulator (BINKERT et al., 2011)

were carried out for extracting performance results. When modeling an architecture in

Gem5, it is possible to perform rapid design space exploration with accurate microarchi-

tectural models, enabling shorter development cycles. Gem5 includes a wide range of

CPU models and ISAs such as x86, ARM, ALPHA, SPARC, and RISC-V. It also imple-

ments detailed and flexible cache coherent mechanisms and interconnection models. The

flexibility in Gem5 comes at a simulation speed/accuracy trade-off. It can be broken into

three principal axes:

• CPU Model. Gem5 provides four CPU models, where each model gives a distinct

speed and accuracy combination. AtomicSimple performs the fastest simulations

since it runs as an instruction-level simulator with no microarchitectural timing.

TimingSimple adds to the previous model memory access latency. MinorCPU mod-

els an in-order processor. It simulates a microarchitecture that can be configured to

72

simulate any number of pipeline stages and issue widths. It also supports branch

prediction. The O3CPU models the microarchitecture of an out-of-order super-

scalar processor. This model simulates instruction dependence, functional units,

and memory latency. It also allows the configuration of processor resources like

load/store queue and reorder buffer that even enables Simultaneous Multithreading

(SMT) execution.

• System Mode. Each previously described CPU model can simulate under two sys-

tem modes: System call Emulation (SE) or Full System (FS). In SE mode, there is

no need to model devices or an operating system since a simplified library emulates

most of the system calls. On the other hand, when running in FS mode, both user-

level and kernel-level code are executed by Gem5, which enables simulation of a

complete system including operating system and devices.

• Memory System. The Gem5 simulator inherited from its predecessors two mem-

ory system models. The Classic model (from M5) provides fast and easy memory

simulation. The second model, Ruby (from GEMS), implements a more complex

memory system simulator. It can accurately simulate a wide range of cache co-

herence protocols (e.g., SLICC). Additionally, Ruby can implement any network

topology composed of point-to-point links. Once the topology is declared (via a

simple Python script), Ruby can simulate the network under two modes: Simple

and Garnet. The former models latency of link and router and bandwidth of network

links. While the latter implements the router microarchitecture in detail, including

resource contention and flow control.

The Gem5 framework used leveraged an existing implementation that has coupled

the Binary Translator (BT) to the O3CPU and TimingSimple CPU models used in the

(BRANDALERO; BECK, 2017) and (BRANDALERO et al., 2019) works, for instance.

The BT algorithm (as described in Subsection 3.3.1) was added as a pipeline stage after

the CPU instruction commit to generate CGRA configurations. These configurations are

then saved to a high-level Configuration Cache. The Gem5 was adapted to consider the

CGRA execution when producing the simulation statistics. Precisely, whenever a config-

uration executes causing no misspeculation or cache misses, the timing information taken

by the instruction trace executing in the CPU is replaced by the timing information in

CGRA execution.

For this work, a few modifications to the Gem5 framework were introduced. First,

the original BT implementation in the Gem5 code was modified to include the changes

73

detailed in Subsection 3.3.2. The modifications consisted of the replication of the third

translation stage, where multiple Mapping Units were added with predefined array sizes

for mapping (corresponding to CGRA power domains). Later, the Configuration Build

stage was modified to include the selection of the Active Mapping Unit (for storing con-

figurations in the Configuration Cache) and the new interface with the PMU module.

Second, the PMU module was implemented as a Gem5 module connected to the

BT via buffers. The module implements a version of the algorithm explained in Section

3.4. The final changes to the Gem5 simulation framework were to enable multicore simu-

lations in SE mode (currently, the only mode allowed). To that end, all simulation scripts

were firstly adapted to lunch simulation of multiple CPUs. Then, the instantiation of BTs

and Configuration Caches were also adapted to enable their functioning with multiple

CPUs. Finally, the PMU module that was first implemented for interfacing with a single

BT was extended to work with multiple BTs.

4.1.2 CACTI

CACTI (BALASUBRAMONIAN et al., 2017) is an analytical tool that takes as

input user-specified parameters like line size, associativity, number of sets and ports, and

optimization targets that can be latency, area, or power. Then, CACTI estimates the results

of latency, area, energy per access, and leakage power. In its latest major review, CACTI

provides results for 90nm, 65nm, 45nm, and 32nm technology nodes.

Moreover, an extension of CACTI, the FinCACTI (SHAFAEI et al., 2014), was

proposed to include more recent technology nodes, modeling caches and memories based

on FinFET devices. FinCACTI is used in this work to estimate area and power of Config-

uration Cache implementations.

4.1.3 Rocket Chip Generator

For power and area results of the main processor, the Rocket Chip Generator 1 was

used. It is an open-source framework for generating parameterizable RISC-V processors

(ASANOVIć et al., 2016). It is implemented in the Chisel language (BACHRACH et al.,

2012), which is a hardware construction language that provides a high level of abstraction

1https://github.com/chipsalliance/rocket-chip

74

by enabling object orientation, type inferencing, and parameterized types, for instance.

From a hardware module described in Chisel, it is possible to generate a high-speed C++

simulator for validation or a low-level Verilog design that works as input for traditional

FPGA and ASIC design flows.

The Rocket Chip Generator was first proposed for generating the Rocket Core,

an in-order 5-stage scalar processor with branch prediction that implements the RV32G

and RV64G ISAs. The Rocket Core also includes a Memory Management Unit (MMU)

that supports page-based virtual memory and may include a floating-point functional unit.

Figure 4.1 details the Rocket Core pipeline.

Figure 4.1: The Rocket Core pipeline.

Source: (ASANOVIć et al., 2016).

Later, an out-of-order superscalar core was incorporated into the generator. The

BOOM Core (Berkeley Out-of-Order Machine) implements the RV64G (CELIO; PAT-

TERSON; ASANOVIć, 2015). BOOM supports full branch prediction with branch tar-

get buffer (BTB), branch history table (BHT), and a return address stack (RAS). The

load/store unit allows for out-of-order loads and forward of stores to dependent loads. Fig-

ure 4.2 shows the six pipeline stages: Fetch, Decode/Rename/Dispatch, Issue/RegisterRead,

Execute, Memory, and Writeback. Chisel enables us to easily parameterize the BOOM

Core according to fetch, decode, and issue widths as well as customization of the func-

tional units mix.

In this work, experiments were carried out using both Rocket and BOOM (2-issue

configured) cores. As the Rocket Chip Generator offers a full design flow, performance

results could also be extracted from it through RTL simulations, instead of Gem5 simu-

lations. However, it would require re-implementation, in the generator’s language Chisel,

of the full reconfigurable unit (including Binary Translator and its interface with the CPU,

the reconfigurable array and its interface, and the Configuration Cache). Additionally, it

is known that RTL simulations involve long simulation times, restricting the benchmark

to a more simple set of applications and input sets, and incurring in longer design cycles

75

Figure 4.2: The BOOM Core pipeline.

Source: (CELIO; PATTERSON; ASANOVIć, 2015).

than what is possible with Gem5.

4.1.4 Logic Synthesis

The hardware modules implemented in register transfer level (RTL) were synthe-

sized using the Cadence Genus tool. Additionally, the 15nm predictive FinFET standard

cell library by Silvaco was used in the logic synthesis (MARTINS et al., 2015) for power

and area characterization. It is important to note that, for the power analysis, the power

gated parts of the CGRA are assumed to consume no power.

4.2 Single-core Scenario

4.2.1 Methodology

Aiming to evaluate the resource management scheme in a single-core environ-

ment, in terms of utilization rate, performance, power, and energy, the baseline architec-

ture has the same configuration without the ability to power gate any CGRA resource.

The setup used for this scenario is presented in Table 4.1. The setup is based on the archi-

tecture proposed in (BRANDALERO; BECK, 2017). Precisely, the configuration cache

and CGRA size, as well as for selecting the CGRA functional units setup are kept from

the work by Brandalero e Beck (2017).

76

Table 4.1: Evaluation Setup for the single-core scenario.
GPP Processor RISC-V Rocket (In-order) 1.6GHz

L1 Cache 64KB DCache, 32KB ICache

CGRA Level
12 Integer ALUs, 2 Multipliers (3 cycles, pipelined),

2 Read Ports (3 cycles), 1 Write Port (3 cycles)
Configuration Cache 32KB

PMU
Power Domains (#levels)

for Mappings Units from V to Z 15, 30, 45, 60

Source: the author.

Applications from domains usually present in IoT devices, namely machine learn-

ing, image/signal processing, and security, were selected as benchmark from (LECUN

et al., 1998; GUTHAUS et al., 2001; FRITTS et al., 2009; REAGEN et al., 2014;

POUCHET, 2019). More details about the selected applications are given in Table 4.2.

Table 4.2: Benchmark summary for the single-core scenario.
Benchmark Description Data Size

3mm (POUCHET, 2019) Matrix Multiplication 3x (128x128)
K-Means Machine Learning 100 points, 10 iterations

LeNet (LECUN et al., 1998) Machine Learning 1 image
FFT (GUTHAUS et al., 2001) Signal Processing 4 waves, 4096 points

Bit Count (GUTHAUS et al., 2001) Bit Manipulation 75000 iterations
CRC32 (GUTHAUS et al., 2001) Security 10M Bytes

LogReg Logistic Regression 500 epochs, 10 train points, 10 test points
BasicMath (GUTHAUS et al., 2001) Automotive MiBench’s small

AES (REAGEN et al., 2014) Security 2M Bytes
H264Dec (FRITTS et al., 2009) Video Decoder 904K Bytes
SHA (GUTHAUS et al., 2001) Security 2M Bytes

Source: the author.

4.2.2 Results

CGRA Usage. The first analysis regards the CGRA resource usage when a diverse

set of applications is adopted. Figure 4.3 attest for the necessity of having a dynamic al-

location scheme that takes into account the application running when targeting efficiency.

Since the PMU module optimizes CGRA size (given by the number of enabled levels) at

the program phase granularity (not application), it is shown the array size used for the ap-

plication’s program phase with the longest duration. For example, applications like 3mm,

K-Means, and LeNet spent most of their time using 15 levels only while other applica-

tions namely SHA, H264Dec, and AES end up using all the levels available by the CGRA

for most of their execution time. Essentially, in a system that aims to, simultaneously,

meet performance and energy savings for a variety of applications, the ability to adapt the

available resources to the current application is paramount.

77

Figure 4.3: The CGRA array size for the longest application program phase.

0

20

40

60

3mm kMeans leNet bitcount crc32 fft LogReg basicmath aes h264dec sha

Benchmark

N
um

be
r

of
 a

rr
ay

 le
ve

ls

Source: the author.

Additionally, adapting CGRA resources is also relevant during the execution of a

single application. Shifts in program phase (SHERWOOD et al., 2002) provide opportu-

nities for power savings if one can power-gate under-utilized levels of CGRA during the

execution of a single application. To illustrate how the PMU module adapts the CGRA

size according to the application program phase, Figure 4.4 shows the program phases of

five applications. Each circle represents a program phase detected by the PMU. Inside

a circle is the CGRA number of levels picked by the PMU. Each CGRA size is loading

configurations from a particular mapping unit, where the Mapping V is used for generat-

ing configurations for the array of 15 levels, Mapping X for 30 levels, Mapping Y for 45

levels, and Mapping Z for 60 levels.

Figure 4.4: The current CGRA size, in number of levels, attributed by the PMU to each
program phase (circles) along the application execution (t).

15 45 60

15 30

AES

LogReg

15LeNet

30Bitcount

15 30 60H264Dec 45

t

Source: the author.

From Figure 4.4 is also possible to notice a remarkable difference in the applica-

tions behavior. The homogeneity in program phases positively contributes to the overall

78

system performance. For instance, applications such as Bitcount and LeNet have a single

program phase. Consequently, PMU needs to perform power gating only once during the

execution of those applications - implicating in smaller performance overhead and higher

gains in power dissipation when compared to applications with highly heterogeneous pro-

gram phases. Applications like H264Dec and AES possess four and three program phases,

respectively. For applications with a heterogeneous behavior, the PMU will be more fre-

quently interrupted by the detection of new program phases, hence, performing more

power gating and switches between Mapping Units.

Utilization Rate. One important aspect to investigate is the number of powered

functional units (i.e. not power-gated) that are actually performing computation. We have

called utilization rate the ratio between mapped and total number of FUs. To achieve

high levels of energy efficiency, the mapping process has to produce configurations with

high utilization rates, which may also be interpreted as high levels of instructions per cy-

cle (IPC). Figure 4.5 shows the FU utilization rates of the proposed architecture over the

baseline architecture. As expected, when the PMU converges to smaller array, higher uti-

lization rates are shown. For instance, the PMU improves the utilization of FUs more than

2× when considering the K-Means and FFT applications. On the other hand, for appli-

cations that have long program phases requiring all 60 levels (SHA, AES and H264Dec),

small improvements in utilization rate are observed. BasicMath also provides small im-

provements in utilization rate (13.7%), since it has three very distinct program phases.

Considering all benchmarks, the increasing on utilization rate is 52.37%, on average.

Performance Evaluation. Figure 4.6 shows the performance of the proposed

approach normalized to the baseline architecture, where positive values mean an increase

and negative values mean a reduction in the execution time of each application (distributed

along the y-axis). As explained in the Chapter 3.2, the more opportunities to power gate

the application has, more overhead will be added, given by the frequently changing of

the Binary Translator’s Active Mapping Unit. 3mm, LogReg and SHA suffer from that

behavior, which affects their performance in 10%, 3.3% and 3.2%, respectively.

However, applications that rapidly converge and stabilize their execution into a

reduced number of levels show performance improvements since fewer CGRA levels are

propagated in the Binary Translator configurations than in the baseline architecture. For

instance, the proposed architecture even improves the performance of the CRC application

in 2%, for which the PMU converged to 30 levels (refer to Figure 4.3) - producing levels

of ILP higher than the produced by the baseline system with 60 levels.

79

Figure 4.5: Mean FU utilization rate after adding the proposed resource management
scheme to the CGRA.

+52.37% Average+52.37% Average+52.37% Average+52.37% Average+52.37% Average+52.37% Average+52.37% Average+52.37% Average+52.37% Average+52.37% Average+52.37% Average+52.37% Average

sha

aes

h264dec

basicmath

crc32

LogReg

3mm

bitcount

leNet

fft

kMeans

0 50 100

Mean FU utilization w.r.t baseline [%]

B
en

ch
m

ar
ks

Source: the author.

Figure 4.6: Performance after adding the proposed resource management scheme to the
CGRA.

+1.52% Average+1.52% Average+1.52% Average+1.52% Average+1.52% Average+1.52% Average+1.52% Average+1.52% Average+1.52% Average+1.52% Average+1.52% Average+1.52% Average

crc32

leNet

aes

h264dec

kMeans

bitcount

fft

basicmath

sha

LogReg

3mm

−2.5 0.0 2.5 5.0 7.5 10.0

Execution Time w.r.t baseline [%]

B
en

ch
m

ar
ks

Source: the author.

Additionally, we also can assess the difference in performance between baseline

and proposed system by looking at what fraction of execution time an application spent

in the CGRA during its complete execution. We call Execution Time Coverage the frac-

tion of time the application executed in the reconfigurable fabric. Naturally, when more

80

instructions execute in the reconfigurable fabric, greater acceleration levels are expected.

Figure 4.7 depicts the Execution Time Coverage of the proposed architecture w.r.t base-

line. It is clear that only for those applications with marginal speedups, more time was

spent with CGRA execution. Precisely, for Lenet, CRC, and AES applications, an im-

provement of 5.92%, 5.13%, and 3.19%, respectively, is observed. As for the remaining

applications, all experienced some reduction in the execution time spent over the CGRA -

with direct impacts on performance (as seen in Figure 4.6). For Basicmath and 3mm, the

PMU caused the biggest impacts on Execution Time Coverage with reductions of 48.9%

and 46.53%, respectively.

Figure 4.7: Execution Time Coverage w.r.t baseline.

−14.39% Average−14.39% Average−14.39% Average−14.39% Average−14.39% Average−14.39% Average−14.39% Average−14.39% Average−14.39% Average−14.39% Average−14.39% Average−14.39% Average

basicmath

3mm

fft

sha

kMeans

LogReg

bitcount

h264dec

aes

crc32

leNet

−50 −40 −30 −20 −10 0

Execution Time Coverage on CGRA w.r.t baseline [%]

Source: the author.

Power Evaluation. Figure 4.8 shows the savings in power dissipation when using

the PMU over the baseline architecture. Negative values mean a reduction, while positive

values mean an increase in power dissipation. In addition, the power results consider both

dynamic and static power.

As it can be noticed in Figure 4.8, the PMU provides power savings in most ap-

plications. LeNet (-52.3%), K-Means (-47.7%) and 3mm (-34%) are most benefited from

PMU since they rapidly converge to 15 levels, allowing the system to power-gate 45

CGRA levels early in the program execution. In addition, such an applications have reg-

ular program phases (i.e., with few shifts in CGRA usage) requiring fewer power gating

executions.

81

Figure 4.8: Power dissipation after adding the proposed resource management scheme to
the CGRA.

−21% Average−21% Average−21% Average−21% Average−21% Average−21% Average−21% Average−21% Average−21% Average−21% Average−21% Average−21% Average

leNet

kMeans

3mm

crc32

basicmath

LogReg

bitcount

h264dec

aes

fft

sha

−50 −40 −30 −20 −10 0

Power w.r.t baseline [%]

B
en

ch
m

ar
k

Source: the author.

On the other hand, as there is no room for power gating in SHA (refer to Figure

4.3), a small power overhead of 0.26% is observed in the SHA application execution.

Conclusively, even though the enhanced Binary Translator consumes 29% more power

than the baseline Binary Translator, the proposed approach results in an average decrease

of 21% in the overall system power dissipation since the BT represents only a small

portion of the total power.

Energy Evaluation. To evaluate energy consumption, we have set the applica-

tions to continually execute for twenty seconds on both proposed and baseline systems.

For all applications, but SHA, the PMU achieves energy savings since there are more

power savings (refer to Figure 4.8) than performance penalties (refer to Figure 4.6). For

instance, as K-means rapidly converges to 15 levels, an energy saving of 75% is achieved

by avoiding power dissipation of unused functional units. On the other hand, even in

applications, such as SHA, that do not provide any room for power gating, the proposed

system spends, at most, 3.2% more energy. Summarizing, the proposed system provides

a transparent power gating approach based on application phase prediction that reduces,

on average, 40.15% of the energy consumption with an negligible (1.52%) performance

penalty.

Key Findings. In this experiment, it became clear that applications’ requirements

for CGRA resources are diverse when one considers a heterogeneous and complex set of

82

Figure 4.9: Energy Reduction after adding the proposed resource management scheme to
the CGRA.

−40.15% Average−40.15% Average−40.15% Average−40.15% Average−40.15% Average−40.15% Average−40.15% Average−40.15% Average−40.15% Average−40.15% Average−40.15% Average−40.15% Average

kMeans

leNet

3mm

crc32

bitcount

fft

LogReg

basicmath

aes

h264dec

sha

−60 −40 −20 0

Energy w.r.t baseline [%]

B
en

ch
m

ar
ks

Source: the author.

applications. It was shown that to overcome the underutilization caused by applications

with low levels of ILP, a simple but yet efficient power gating technique can be used.

Precisely, with an average increase of the CGRA utilization rate of 52.37%, the average

energy consumption could be reduced in 40.15% at marginal costs in performance (1.52%

average).

4.3 Multicore Scenario

4.3.1 Methodology

In the multicore scenario, full usage of the PMU is required. With multiple tiles

under coordination of the PMU, a full system view is possible by the manager module.

The evaluated system configuration (shown in Table 4.3) was designed to function

under the power envelope of a state-of-the-art edge platform. For that, the edge-tailored

Stitch (TAN et al., 2018), designed to meet the power requirements of wearable devices,

was modeled with synthesis data of RISC-V Rocket processors, which gives the 140mW

upper-bound on the total power dissipation. The baseline used for comparison is com-

posed of a quad-core Out-of-Order (OoO) 2-issue BOOM processors (CELIO; PATTER-

83

SON; ASANOVIć, 2015) (running at 2GHz), with area footprint equivalent to system of

Table 4.3.

We also compare the proposed with other two systems: the same quad-core RISC-

V Rocket system used, but coupled to four homogeneous CGRAs; and coupled to four

heterogeneous CGRAs. While the homogeneous system is configured with 24-levels

CGRAs (same size as a fully active CGRAs in Table 4.3), the heterogeneous configu-

ration was selected by taking the average occupation on each CGRA for the evaluated

applications and respective scenarios’ allocation. The resulted heterogeneous configura-

tion is composed of 6, 18, 18, and 24-level CGRAs. By comparing to the homogeneous

version, which is basically a version of same architecture without resource management

that can achieve the maximum possible performance, we can evaluate what is the price

to pay in performance for achieving the aimed energy gains. The comparison with the

heterogeneous version is also interesting: in this case, we are assessing how important the

adaptability provided by the resource management is, since the heterogeneous version has

the same amount of hardware available in Table 4.3, but is fixed throughout execution. An

additional performance evaluation against the state-of-the-art Stitch is provided (TAN et

al., 2018).

Table 4.3: Evaluation Setup for the multi-core scenario.
4xGPP Processor RISC-V Rocket (in-order, single-issue) 2GHz

Cache Size 64KB DCache, 32KB ICache

4xCGRA CGRA level
12 Integer ALUs, 2 Multipliers (3 cycles, pipelined),

1 Read Port (3 cycles), 1 Write Port (3 cycles)
Configuration Cache Size 32KB

PMU Power Domains (#levels) 6, 12, 18, 24
Source: the author.

A set of edge representative benchmarks were evaluated, which include appli-

cations from four application domains: Machine Learning, Security, Image and Signal

Processing, and Miscellaneous (TAN et al., 2016; POUCHET, 2019; GUTHAUS et al.,

2001). We propose four evaluation scenarios where each one (from A to D) is composed

of four applications, every one of which was randomly selected from a different domain

(Table 4.4).

Table 4.4: Evaluation scenarios for the multi-core scenario.
Scenario Machine Learning Security Image and Signal Processing Misc.

A 2D Convolution SHA Reg-detect ECG
B SVM AES Seidel Basicmath
C KMeans Bitcount DTW A*
D Logistic Regression Blowfish FFT Dijkstra

Source: the author.

84

4.3.2 Results

Performance Evaluation. Figure 4.10 shows the speedup when executing the

evaluation scenarios in the proposed, heterogeneous, and homogeneous systems (pre-

sented as distinct bar colors). Applications composing each of the four scenarios are

grouped with their average speedup. Considering all evaluation scenarios, the average

speedup over the baseline system is 1.11x. While the systems with homogeneous and

heterogeneous CGRAs reported average speedups of 1.22x and 1.01x, respectively.

Figure 4.10: Speedup w.r.t. baseline for the proposed, homogeneous, and heterogeneous
systems (higher is better).

Scenario A Scenario B Scenario C Scenario D

.A
V
E
R

A
G

E

2d
C

on
v

E
C

G

R
eg

D
et

ec
t

S
H

A

.A
V
E
R

A
G

E

A
E
S

B
as

ic
m

at
h

S
ei

de
l

S
V
M

.A
V
E
R

A
G

E

A
st

ar

B
itC

ou
nt

D
T
W

K
M

ea
ns

.A
V
E
R

A
G

E

B
lo

w
fis

h

D
ijk

st
ra

F
F
T

Lo
gR

eg

0.0

0.5

1.0

1.5

2.0

2.5

BenchmarkS
pe

ed
up

 w
.r.

t.
B
as

el
in

e
(4

x
2−

is
su

e
O

oO
)

System
MCEA
Het.
Homo.

System
Prop.
Het.
Homo.

Source: the author.

From the results, it is clear that even compared to a system with powerful GPPs,

CGRAs still provide performance benefits for some applications. Also, Figure 4.10

shows that applications’ ILP causes significant impacts on the performance attainable by

CGRAs. For instance, applications with high levels of ILP like BitCount, AES, and ECG

present significant speedups over the baseline system (2.19x, 1.46x, and 1.32x, respec-

tively) while running over the proposed system. On the other hand, it provides smaller

levels of acceleration for other applications, which do not have enough ILP to use the

CGRA resources better. For example, SVM and LogReg are not able to leverage the

highly parallel CGRA’s fabric due to their low ILP and highly memory-dependent codes,

resulting in faster execution times when running on OoO 2-issue processors (speedups of

0.52x and 0.63x, respectively).

The proposed system even outperforms its homogeneous and heterogeneous coun-

85

terparts for some applications, showing the little impact the PMU has on performance.

The effect of applications obtaining better performance results when parts of the CGRA

are power gated is mainly caused by the Binary Translator algorithm producing configu-

rations with higher ILP for smaller CGRAs (as previously discussed in Subsection 3.3).

For instance, the BitCount application, when executing in the proposed system, achieves

a speedup 30% greater than the provided by the homogeneous system and 39% greater

than the provided by the heterogeneous one. This effect is also notable for the BasicMath

application that improved the speedup, over the homogeneous system, in 40% and 41%

over the heterogeneous.

Power Dissipation. Figure 4.11 displays the evaluation scenarios, their appli-

cations, and their total power dissipation w.r.t. the baseline (a quad-core OoO 2-issue

BOOM processors). Results are given for the proposed, homogeneous, and heteroge-

neous systems, where lower bars represent savings in power dissipation over the baseline

system. Overall, the proposed system can keep up with similar saves in power dissipation

to what is achieved with the heterogeneous system. Averaging the results across all ap-

plication scenarios and comparing it to the baseline, the proposed system saves 58.98%

over the total system power dissipation. Whereas the system with heterogeneous CGRAs

decreases the total power dissipation in 59.24%. On the other hand, when the system with

four homogeneous CGRAs is compared to the baseline, a reduction of 47.64% in the total

power dissipation is observed. The increase in power dissipation, w.r.t the baseline, for

the AES and SHA applications, is caused by high CGRA utilization rates provided by the

applications’ high levels of ILP (also observed in terms of elevated speedups in Figure

4.10).

As presented earlier, the savings in power dissipation, when compared to sys-

tems with no online management, come at little impact on performance since the power

management leverages the applications that make poor usage of the CGRA to let other

applications to allocate more resources cooperatively. Precisely, by employing the pro-

posed resource management technique 44.79%, on average, of the power dissipated by

CGRAs is saved when compared to the homogeneous system and -0.55% when com-

pared to the system with heterogeneous CGRAs. In Figure 4.12, we focus our analysis on

the power dissipated by the homogeneous and heterogeneous CGRAs w.r.t. proposed’s

CGRAs. From Figure 4.12, the gains arising from dynamic adaptability of CGRAs be-

come clearer. While keeping power dissipation at levels similar to the heterogeneous

architecture, the proposed system obtains power savings ranging from 26.89% to 78.12%

86

Figure 4.11: Power dissipation w.r.t. baseline for the proposed, homogeneous, and het-
erogeneous systems (lower is better).

Scenario A Scenario B Scenario C Scenario D

.T
O

TA
L

2d
C

on
v

E
C

G

R
eg

D
et

ec
t

S
H

A

.T
O

TA
L

A
E
S

B
as

ic
m

at
h

S
ei

de
l

S
V
M

.T
O

TA
L

A
st

ar

B
itC

ou
nt

D
T
W

K
M

ea
ns

.T
O

TA
L

B
lo

w
fis

h

D
ijk

st
ra

F
F
T

Lo
gR

eg

−50%

0%

Benchmark

P
ow

er
 w

.r.
t.

B
as

el
in

e
(4

x
2−

is
su

e
O

oO
)

System
MCEA
Het.
Homo.

System
Prop.
Het.
Homo.

Source: the author.

when compared to the homogeneous system.

Figure 4.12: CGRAs’ power dissipation in homogeneous and heterogeneous systems
w.r.t. the CGRAs in proposed system.

−8.56%

34.41%

−6.74%

39.73%

0.19%

78.12%

12.92%

26.89%

−0.55%

44.79%

A B C D AVERAGE
Evaluation Scenarios

CGRAs in Homo.
CGRAs in Het.

Po
we

r I
nc

re
as

e
w.

r.t
 P

ro
po

se
d

CG
RA

s

Source: the author.

CGRA usage. Here, an analysis of the CGRA utilization is proposed. In Fig-

ure 4.13, each bar corresponds to the full execution breakdown of the CGRA for each

87

application regarding the available power domains (6, 12, 18, and 24 levels - See Table

4.3), while running over the proposed system. For example, for the SVM application, in

60.23% of the execution time, the PMU selected the Mapping Unit Z (running with the

full 24 CGRA levels). In contrast, for the remaining 39.77% of the execution, the PMU

selected execution over six levels (Mapping Unit X). Additionally, in other applications,

it is possible to note a more steady behavior. For instance, applications like 2dConv (18

levels), FFT (6 levels), and LogReg (12 levels) have spent most of their execution time

with the same CGRA size (99.78%, 99.98%, and 99.93%, respectively). Also, Figure

4.13 may help in understanding the gains in power dissipation. For example, the SHA

application, which produced over 50% in power savings, has spent most of its execution

with the only six levels powered-on. Naturally, as more CGRA levels can be powered-off

by the PMU module, more power is saved.

Figure 4.13: Percentage of the execution time spent with each CGRA size.
A B C D

2d
C

on
v

E
C

G

R
eg

D
et

ec
t

S
H

A

A
E

S

B
as

ic
m

at
h

S
ei

de
l

S
V

M

A
st

ar

B
itC

ou
nt

D
T

W

K
M

ea
ns

B
lo

w
fis

h

D
ijk

st
ra

F
F

T

Lo
gR

eg

0%

25%

50%

75%

100%

Benchmark

P
er

ce
nt

ag
e

of
 E

xe
cu

tio
n

T
im

e

CGRA size 6 12 18 24

Source: the author

Energy Evaluation. As expected by the results in power dissipation and the accel-

eration provided by the CGRAs, all the proposed scenarios present reductions in energy

consumption. Figure 4.14 presents the energy consumed by the proposed, heterogeneous,

and homogeneous systems w.r.t. the baseline. Averaging the savings in energy con-

sumption over all application scenarios, the proposed, heterogeneous, and homogeneous

systems achieved savings of 63.65%, 60.17%, and 58% respectively.

Additionally, we present the energy savings when one considers only the CGRAs.

Figure 4.15 displays the increase in energy consumption for the homogeneous and hetero-

geneous systems when compared to the proposed system for the four evaluation scenarios

88

Figure 4.14: Energy w.r.t. baseline for the proposed, homogeneous, and heterogeneous
systems (lower is better).

Scenario A Scenario B Scenario C Scenario D

.T
O

TA
L

2d
C

on
v

E
C

G

R
eg

D
et

ec
t

S
H

A

.T
O

TA
L

A
E
S

B
as

ic
m

at
h

S
ei

de
l

S
V
M

.T
O

TA
L

A
st

ar

B
itC

ou
nt

D
T
W

K
M

ea
ns

.T
O

TA
L

B
lo

w
fis

h

D
ijk

st
ra

F
F
T

Lo
gR

eg

−80%

−60%

−40%

−20%

0%

BenchmarkE
ne

rg
y

w
.r.

t.
B
as

el
in

e
(4

x
2−

is
su

e
O

oO
)

System
MCEA
Het.
Homo.

Source: the author.

and their average. Resulting from the savings in power dissipation and ability to adapt

to the applications’ ILP requirements, architecture employing resource management is

more energy efficient than both homogeneous and heterogeneous systems in all evalua-

tion scenarios. The greater savings, ranging from 18.87% to 80.73% are observed in the

comparison with the homogeneous CGRAs. As for the heterogeneous system, savings

from 4.99% to 44.15% are observed. On average, the homogeneous and heterogeneous

systems consume 43.95% and 19.76% more energy than the proposed system, respec-

tively.

Energy-Delay Product Evaluation. We provide a final comparison of the pro-

posed system with its heterogeneous and homogeneous counterparts. Figure 4.16 displays

the energy-delay product (EDP) of the CGRAs in the heterogeneous and homogeneous

systems w.r.t. the managed ones. Given that the average EDP increases 42.18% for the

homogeneous and 47.48% for the heterogeneous CGRAs, it is clear that by dynamically

adapting the CGRAs resources to the applications’ needs, the proposed system can effec-

tively provide the energy efficiency of heterogeneous architectures and the performance

of homogeneous architectures.

Power Management Area Overhead. After synthesizing the proposed system, it

was observed a small area overhead due to the addition of the hardware responsible for

the power management scheme since it mainly arises from the PMU module and the BT

89

Figure 4.15: CGRA’s energy consumption in the homogeneous and heterogeneous sys-
tems w.r.t. the CGRAs in the proposed system.

44.15%

80.73%

4.99%

72.32%

12.76%
18.87% 17.15%

3.89%

19.76%

43.95%

A B C D AVERAGE
Evaluation Scenarios

CGRAs in Homo.
CGRAs in Het.

En
er

gy
 In

cr
ea

se
 w

.r.
t P

ro
po

se
d

CG
RA

s

Source: the author.

Figure 4.16: CGRA’s EDP in the homogeneous and heterogeneous systems w.r.t. the
CGRAs in the proposed system.

82.22%

97.90%

3.13%

43.93%

83.45%

42.29%

21.13%

−15.41%

47.48%
42.18%

A B C D AVERAGE
Evaluation Scenarios

CGRAs in Homo.
CGRAs in Het.

ED
P

In
cr

ea
se

 w
.r.

t P
ro

po
se

d
CG

RA
s

Source: the author.

replicated mapping units. Specifically, the addition of the PMU incurs in a 2.14% of area

overhead.

Key Findings. Overall, the proposed system is capable of dynamically and trans-

parently adapting the CGRAs to the applications’ workloads while applying power gating

90

for limiting their power dissipation. Therefore, we bring the power efficiency nature

of heterogeneous systems without demanding complex schedulers at performance levels

equivalent to what is achieved by homogeneous systems. Specifically, the main results

show an average reduction in the power dissipated by the CGRAs of 44.79% when com-

pared to a homogeneous architecture. When compared to a heterogeneous system, the

average energy consumed by the CGRAs is reduced in 19.76%. As for EDP, significant

gains are reported over both homogeneous (42.18%) and heterogeneous (47.18%) sys-

tems.

4.3.3 Comparison with State-of-the-art

To validate this proposal under edge performance constraints, we first present the

architecture, which targets the same domain, that is used as benchmark throughout this

experiment. The Stitch Architecture (TAN et al., 2018) proposes a set of reconfigurable

Instruction Set Extension (ISE) accelerators tightly coupled to ARM in-order processors

in a many-core system (Figure 4.17). Its predecessor, the Locus Architecture (TAN et al.,

2016), was also designed to work under Edge-tolerable power envelopes. The reconfig-

uration, in both Locus and Stitch architectures, comes from the instructions added to the

ISA that can set the extra functional units called patches (in the case of Stitch), which are

coupled to the CPUs.

Figure 4.17: Overview of the Stitch architecture.

Source: (TAN et al., 2018).

Precisely, the Stitch’s patches can be of one out of three types: AT-MA (consisting

of ALUs connected to a local memory access and a multiplier connected to another ALU),

AT-SA (consisting of ALUs connected to a local memory access and a shifter connected

91

to another ALU), and AT-AS (consisting of ALUs connected to a local memory access

and an ALU connected to one shifter). There are in total 16 ARM Amber Cores 2 running

at 200MHz and interconnected by a 2-D mesh Network-on-Chip (NoC). The patches have

a dedicated bufferless NoC with clockless repeaters. The reason for interconnecting mul-

tiple patches is that processors not using their "close" patches may yield their resources to

form bigger accelerators for other processors running performance-demanding tasks. In

other words, the system’s reconfigurable units can be patched together forming more ca-

pable accelerators. However, all patching process is done offline since the ISE approach

naturally requires compilation of the application’s code. Also, the disposition of patch

types in the system is left in charge of the user that has to identify at design time the mix

of patches that best match the kernels in the workload.

Comparison with the Stitch architecture. We evaluate the attainable perfor-

mance by comparing the proposed architecture to Stitch, using the same baseline in (TAN

et al., 2018) (an edge-popular GPP-only baseline (Qualcomm, 2019)) under the appli-

cations available in (TAN et al., 2016). The quad-core ARM Cortex-A7 (at 1.6GHz)

baseline was modeled in the Gem5 simulator.

In Table 4.5, the performance in terms of applications’ throughput normalized to

the quad-core ARM Cortex-A7 baseline is presented along with the result reported in

(TAN et al., 2018). As can be seen, the proposed system, configured to work under the

same power envelope of its counterpart (140mW upper-bound), achieves higher through-

put than the reported in (TAN et al., 2018) when compared to the same baseline. Addi-

tionally, the approach proposed comes with the advantage of being fully automated and

transparent to the programmer.

Table 4.5: Throughput w.r.t quad-core ARM Cortex A7.
System Homogeneous Heterogeneous Proposed Stitch (TAN et al., 2018)

Throughput 1.84x 1.40x 1.77x 1.65x
Source: the author

2https://opencores.org/projects/amber

92

5 CONCLUSION

This work presented a resource-aware multicore CGRA architecture for edge ap-

plications. Extending on the works by (BECK; RUTZIG; CARRO, 2014) and (BRAN-

DALERO; BECK, 2017), the primary motivation was to improve the energy efficiency

of those architectures. Generally speaking, this work is based on the observation that

CGRA systems may face significant variations in the utilization of their reconfigurable

fabrics when a broad spectrum of applications is faced. As shown in Chapter 4, control

flow applications that have low ILP cannot fully explore the benefits of larger CGRAs. At

the same time, other applications in the same working set may achieve great acceleration

thanks to their higher levels of intrinsic parallelism. In previous works, a careful design

space exploration was required to size the CGRA to the workload correctly. However, in

modern IoT and Edge environments acquiring knowledge of the workload beforehand can

be a difficult task. Furthermore, when considering a multicore scenario, this problem ag-

gravates. Designing the CGRAs as a homogeneous or heterogeneous set of reconfigurable

accelerators has a significant impact on metrics like performance, power, and energy.

With the scenario above discussed in mind, it was clear that a dynamic approach to

manage CGRA resources was crucial. Thus, this work approaches the problem by intro-

ducing changes to the Binary Translator mechanism used in previous works (as described

in Chapter 3) and proposing a module to orchestrate the selective power gating of portions

of the reconfigurable fabric. Specifically, the changes to the Binary Translator module and

the new PMU module aim to provide an online scheme for monitoring performance and

utilization of the system’ CGRAs. With that information at hand, it is possible to evaluate

what parts of the reconfigurable fabric can be powered-off with no significant harm to

performance.

In the first experiment, this work explored the use of power gating and the pro-

posed resource management technique in a single-core scenario. This scenario consisted

of an in-order Rocket processor coupled to a larger array (compared to the second ex-

periment) in which average savings of energy consumption of 40% were achieved. The

increased efficiency is mainly due to a rise in the utilization rate of the CGRA. Specifi-

cally, the online and dynamic adaptation of the reconfigurable fabric, at a program phase

granularity, granted an average increase of over 50% in the utilization rate for a bench-

mark composed of a diverse and modern set of applications.

Later, in a second experiment, a multicore scenario was proposed. It enabled a

93

more complex evaluation of the benefits of dynamically adapting the reconfigurable fab-

ric of a CGRA to the applications at hand. By comparing the proposed approach to a

homogeneous architecture (which could achieve higher results in performance) and to a

heterogeneous architecture (which could provide a more energy-efficient architecture), it

was possible to attest that the online adaptation presented in this work brings together

the desired aspects of both approaches. Notably, when focusing on an analysis of the

CGRAs only, the reconfigurable fabrics under resource management achieved average re-

ductions in EDP of over 40% when compared to either homogeneous and heterogeneous

systems. When compared to homogeneous architectures, these results are mainly due to

improvements in power dissipation (44.79% average) at marginal performance penalties.

When compared to heterogeneous architectures, the advantages of matching the applica-

tions’ performance requirements to the CGRAs in a dynamic fashion becomes evident as

better performance results are achieved at similar levels of power dissipation, producing

improvements in energy consumption of 19.76% (on average).

5.1 Future Work

The work developed for this dissertation opened up many other research oppor-

tunities. First, there are still other possible benefits of applying power gate to CGRA

resources that can be evaluated. For example, power gating functional units may impact

the system’s reliability due to beneficial effects on negative bias temperature instability

(NBTI). Alternatively, the approach taken to produce CGRA configurations for an array

with dynamic size can be employed to continue execution in case that faulty functional

units have to be avoided. Furthermore, the resource management technique may include

additional, and orthogonal, optimization targets beyond the applications’ requirements.

For example, the system may enter a low-power phase. And, independently from ap-

plications’ performance, power gate portions of the CGRA leveraging the mechanisms

proposed in this work. Also, power management might be extended to other parts of

the architecture like the configuration cache. In the example of a low-power phase, parts

of the configuration cache may also be power gated, increasing the margins for power

savings.

In the context of multicore CGRA architectures, the adaptability added to the Bi-

nary Translator module may be enhanced to enable a shared CGRA. In such a system,

a central reconfigurable fabric is shared by the multiple cores. Here, many implemen-

94

tations paths are worthwhile pursuing. For instance, the architecture may encompass a

set of regular dedicated Binary Translators or a central, more complex, shared module

responsible for translating basic blocks from all cores. The same idea goes to the con-

figuration cache. As applications may migrate between cores, it will be possible to share

the CGRA context (entries of the configuration cache) between cores - in case of a cen-

tralized configuration cache. It would also be possible to dedicate smaller and distributed

configuration caches to their respective cores, avoiding the necessary hardware controllers

for managing a shared cache. A work on shared CGRA may also include exploration of

resource managing policies for load balancing, performance, energy, or temperature, for

example. Here, several methods are possible. They may include static allocation of sec-

tions of the reconfigurable array for specific cores or policies based on dynamic evaluation

of applications’ array usage.

5.2 Publications

In consequence of the work developed on the course of the Master’s program, the

following publications have been made.

• G. Korol, M. Jordan, M. Brandalero, M. B. Rutzig, A. C. S. Beck. "Power-Aware

Phase Oriented Reconfigurable Architecture". 26th IEEE International Conference

on Electronics Circuits and Systems (ICECS). Genova, 2019.

• G. Korol, M. Jordan, R. S. Silva, M. Pereira, M. Brandalero, M. B. Rutzig, A. C.

S. Beck. "A Runtime Power-Aware Phase Predictor for CGRAs". International

Conference on Reconfigurable Computing and FPGAs (ReConFig). Cancun, 2019.

• G. Korol, M. Jordan, M. Brandalero, M. Hübner, M. B. Rutzig, A. C. S. Beck.

"MCEA: A Resource-Aware Multicore CGRA Architecture for the Edge". Field-

Programmable Logic and Applications (FPL). Gothenburg, 2020.

Additionally, as a Master’s student, the author collaborated in one more publica-

tion:

• J. Schwarzrock, M. Jordan, G. Korol, C. C. Oliveira, A. F. Lorenzon, A. C. S. Beck.

"On the influence of Data Migration in Dynamic Thread Management of Parallel

Applications". Brazilian Symposium on Computing System Engineering (SBESC).

Natal, 2019.

95

REFERENCES

ADEGBIJA, T. et al. Microprocessor optimizations for the internet of things: A survey.
IEEE Trans. on CAD of Integrated Circuits and Systems, v. 37, n. 1, p. 7–20, 2018.

AGARWAL, A. et al. Leakage power analysis and reduction: models, estimation and
tools. IEE Proceedings - Computers and Digital Techniques, v. 152, n. 3, p. 353–368,
May 2005.

AKBARI, O. et al. PX-CGRA: polymorphic approximate coarse-grained reconfigurable
architecture. In: 2018 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2018, Dresden, Germany, March 19-23, 2018. [S.l.: s.n.], 2018. p.
413–418.

ALTMAN, E. R. et al. Advances and future challenges in binary translation and
optimization. Proceedings of the IEEE, v. 89, n. 11, p. 1710–1722, Nov 2001.

ALTMAN, E. R.; KAELI, D.; SHEFFER, Y. Welcome to the opportunities of binary
translation. Computer, v. 33, n. 3, p. 40–45, March 2000.

AMALARETHINAM, D. I. G.; JOSPHIN, A. M. Article: Dynamic task scheduling
methods in heterogeneous systems: A survey. International Journal of Computer
Applications, v. 110, n. 6, p. 12–18, January 2015.

AMANO, H. et al. Muccra chips: Configurable dynamically-reconfigurable processors.
In: 2007 IEEE Asian Solid-State Circuits Conference. [S.l.: s.n.], 2007. p. 384–387.

ARM. big.LITTLE Technology: The Future of Mobile. 2013. <https://www.arm.com/
files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf>.

ASANOVIć, K. et al. The Rocket Chip Generator. [S.l.], 2016.

BACHRACH, J. et al. Chisel: Constructing hardware in a scala embedded language.
In: Proceedings of the 49th Annual Design Automation Conference. New York, NY,
USA: Association for Computing Machinery, 2012. (DAC ’12), p. 1216–1225. ISBN
9781450311991.

BAILEY, D. G. Introduction to Reconfigurable Computing: Architectures,
Algorithms, and Applications. [S.l.]: Springer, 2007.

BAILEY, D. G. Design for embedded image processing on FPGAs. [S.l.]: Wiley-IEEE
Press, 2011.

BALASUBRAMONIAN, R. et al. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Transactions on Architecture and Code
Optimization, Association for Computing Machinery, New York, NY, USA, v. 14, n. 2,
jun. 2017.

BARAT, F.; LAUWEREINS, R. Reconfigurable Instruction Set Processors: A Survey.
In: Proceedings of the 11th IEEE International Workshop on Rapid System
Prototyping (RSP 2000), Paris, France, June 21-23, 2000. [S.l.: s.n.], 2000. p.
168–173.

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

96

BARROSO, L. A.; HÖLZLE, U. The case for energy-proportional computing. IEEE
Computer, v. 40, n. 12, p. 33–37, 2007.

BAUER, L. et al. RISPP: rotating instruction set processing platform. In: Proceedings of
the 44th Design Automation Conference, DAC 2007, San Diego, CA, USA, June 4-8,
2007. [S.l.: s.n.], 2007. p. 791–796.

BAUER, S. et al. FPGA-GPU architecture for kernel SVM pedestrian detection. In: 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition -
Workshops. [S.l.: s.n.], 2010. p. 61–68.

BECCHI, M.; CROWLEY, P. Dynamic thread assignment on heterogeneous
multiprocessor architectures. In: Proceedings of the Third Conference on Computing
Frontiers, 2006, Ischia, Italy, May 3-5, 2006. [S.l.: s.n.], 2006. p. 29–40.

BECK, A. C. S.; CARRO, L. Transparent acceleration of data dependent instructions for
general purpose processors. In: IFIP VLSI-SoC 2007, IFIP WG 10.5 International
Conference on Very Large Scale Integration of System-on-Chip, Atlanta, GA, USA,
15-17 October 2007. [S.l.: s.n.], 2007. p. 66–71.

BECK, A. C. S.; CARRO, L. Reconfigurable acceleration with binary compatibility
for general purpose processors. In: . VLSI-SoC: Advanced Topics on Systems
on a Chip: A Selection of Extended Versions of the Best Papers of the Fourteenth
International Conference on Very Large Scale Integration of System on Chip
(VLSI-SoC2007), October 15-17, 2007, Atlanta, USA. Boston, MA: Springer US,
2009. p. 1–16.

BECK, A. C. S.; CARRO, L. Dynamic Reconfigurable Architectures and Transparent
Optimization Techniques - Automatic Acceleration of Software Execution. [S.l.]:
Springer, 2010.

BECK, A. C. S.; LISBôA, C. A. L.; CARRO, L. Adaptable Embedded Systems. [S.l.]:
Springer, New York, NY, 2013.

BECK, A. C. S.; RUTZIG, M. B.; CARRO, L. A transparent and adaptive reconfigurable
system. Microprocessors and Microsystems - Embedded Hardware Design, v. 38,
n. 5, p. 509–524, 2014.

BECK, A. C. S. et al. Transparent reconfigurable acceleration for heterogeneous
embedded applications. In: Design, Automation and Test in Europe, DATE 2008,
Munich, Germany, March 10-14, 2008. [S.l.: s.n.], 2008. p. 1208–1213.

BINKERT, N. L. et al. The gem5 simulator. SIGARCH Computer Architecture News,
Association for Computing Machinery, v. 39, n. 2, p. 1–7, 2011.

BLAKE, G. et al. Evolution of thread-level parallelism in desktop applications. In: 37th
International Symposium on Computer Architecture (ISCA 2010), June 19-23,
2010, Saint-Malo, France. [S.l.: s.n.], 2010. p. 302–313.

BORKAR, S.; CHIEN, A. A. The future of microprocessors. Commun. ACM, v. 54,
n. 5, p. 67–77, 2011.

97

BOUWENS, F. et al. Architecture enhancements for the ADRES coarse-grained
reconfigurable array. In: High Performance Embedded Architectures and
Compilers, Third International Conference, HiPEAC 2008, Göteborg, Sweden,
January 27-29, 2008, Proceedings. [s.n.], 2008. p. 66–81. Disponível em:
<https://doi.org/10.1007/978-3-540-77560-7_6>.

BRANDALERO, M.; BECK, A. C. S. A mechanism for energy-efficient reuse of
decoding and scheduling of x86 instruction streams. In: Design, Automation & Test
in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March
27-31, 2017. [S.l.: s.n.], 2017. p. 1468–1473.

BRANDALERO, M. et al. Transrec: Improving adaptability in single-isa heterogeneous
systems with transparent and reconfigurable acceleration. In: Design, Automation &
Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29,
2019. [S.l.: s.n.], 2019. p. 582–585.

CELIO, C.; PATTERSON, D. A.; ASANOVIć, K. The Berkeley Out-of-Order
Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized
RISC-V Processor. [S.l.], 2015.

CHADHA, R.; BHASKER, J. Architectural Techniques for Low Power. [S.l.]:
Springer New York, 2012. 93–111 p.

CHOI, R. et al. Fabrication of high quality ultra-thin hfo/sub 2/ gate dielectric mosfets
using deuterium anneal. In: Digest. International Electron Devices Meeting,. [S.l.:
s.n.], 2002. p. 613–616. ISSN null.

CHUNG, E. S. et al. Single-chip heterogeneous computing: Does the future include
custom logic, fpgas, and gpgpus? In: 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2010, 4-8 December 2010, Atlanta,
Georgia, USA. [S.l.: s.n.], 2010. p. 225–236.

CLABES, J. et al. Design and implementation of the power5 microprocessor. In:
Proceedings. 41st Design Automation Conference, 2004. [S.l.: s.n.], 2004. p. 670–672.

CLARK, L. T. et al. An embedded 32-b microprocessor core for low-power and
high-performance applications. IEEE Journal of Solid-State Circuits, v. 36, n. 11, p.
1599–1608, Nov 2001.

CLARK, N. et al. Application-specific processing on a general-purpose core via
transparent instruction set customization. In: 37th International Symposium on
Microarchitecture (MICRO-37’04). [S.l.: s.n.], 2004. p. 30–40.

COMPTON, K.; HAUCK, S. Reconfigurable computing: a survey of systems and
software. ACM Comput. Surv., v. 34, n. 2, p. 171–210, 2002.

CONG, J. et al. Accelerator-rich architectures: Opportunities and progresses. In: The
51st Annual Design Automation Conference 2014, DAC ’14, San Francisco, CA,
USA, June 1-5, 2014. [S.l.: s.n.], 2014. p. 180:1–180:6.

CRAEYNEST, K. V. et al. Fairness-aware scheduling on single-isa heterogeneous
multi-cores. In: Proceedings of the 22nd International Conference on Parallel

https://doi.org/10.1007/978-3-540-77560-7_6

98

Architectures and Compilation Techniques, Edinburgh, United Kingdom,
September 7-11, 2013. [S.l.: s.n.], 2013. p. 177–187.

DAS, S.; MARTIN, K. J. M.; COUSSY, P. Context-memory aware mapping for energy
efficient acceleration with cgras. In: Design, Automation & Test in Europe Conference
& Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019. [S.l.: s.n.], 2019. p.
336–341.

DENNARD, R. H. et al. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, v. 9, n. 5, p. 256–268, Oct 1974.

FAN, T. et al. Energy aware edge computing: A survey. In: High-Performance
Computing Applications in Numerical Simulation and Edge Computing. Singapore:
Springer Singapore, 2019. p. 79–91.

FLAMM, K. Has moore’s law been repealed? an economist’s perspective. Computing
in Science Engineering, v. 19, n. 2, p. 29–40, Mar 2017.

FRITTS, J. E. et al. Mediabench II video: Expediting the next generation of video
systems research. Microprocessors and Microsystems - Embedded Hardware Design,
v. 33, n. 4, p. 301–318, 2009.

GOVINDARAJU, V. et al. DySER: Unifying Functionality and Parallelism Specialization
for Energy-Efficient Computing. IEEE Micro, v. 32, n. 5, p. 38–51, 2012.

GUPTA, S. et al. Bundled execution of recurring traces for energy-efficient general
purpose processing. In: 44rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2011, Porto Alegre, Brazil, December 3-7, 2011. [S.l.:
s.n.], 2011. p. 12–23.

GUTHAUS, M. R. et al. MiBench: A free, commercially representative embedded
benchmark suite. In: WWC. [S.l.: s.n.], 2001. p. 3–14.

HAMEED, R. et al. Understanding sources of inefficiency in general-purpose chips. In:
37th International Symposium on Computer Architecture (ISCA 2010), June 19-23,
2010, Saint-Malo, France. [S.l.: s.n.], 2010. p. 37–47.

HARRIS, J. Direct-coupled transistor logic circuitry in digital computers. In: 1956 IEEE
International Solid-State Circuits Conference. Digest of Technical Papers. [S.l.:
s.n.], 1956. p. 9–9. ISSN null.

HENNESSY, D. A. P. J. L. Computer Architecture, Sixth Edition: A Quantitative
Approach. 6. ed. [S.l.]: Morgan Kaufmann, 2017. (The Morgan Kaufmann Series in
Computer Architecture and Design).

HENNING, J. L. SPEC CPU2000: Measuring CPU Performance in the New Millennium.
Computer, v. 33, n. 7, p. 28–35, jul. 2000. ISSN 0018-9162.

HU, Z. et al. Microarchitectural techniques for power gating of execution units. In:
Proceedings of the 2004 International Symposium on Low Power Electronics and
Design, 2004, Newport Beach, California, USA, August 9-11, 2004. [S.l.: s.n.], 2004.
p. 32–37.

99

HWU, W.; PATEL, S. J. Accelerator architectures A ten-year retrospective. IEEE Micro,
v. 38, n. 6, p. 56–62, 2018.

INTEL. SA-1100 Microprocessor. [S.l.], 1998.

KHAN, M. U. K.; SHAFIQUE, M.; HENKEL, J. Power-efficient accelerator allocation
in adaptive dark silicon many-core systems. In: Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2015, Grenoble,
France, March 9-13, 2015. [S.l.: s.n.], 2015. p. 916–919.

KISSLER, D. et al. Scalable Many-Domain Power Gating in Coarse-Grained
Reconfigurable Processor Arrays. Embedded Systems Letters, v. 3, n. 2, p. 58–61,
2011.

KOÇBERBER, Y. O. et al. Meet the walkers: accelerating index traversals for
in-memory databases. In: The 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, Davis, CA, USA, December 7-11, 2013. [S.l.: s.n.],
2013. p. 468–479.

KULKARNI, A. et al. An energy-efficient programmable manycore accelerator for
personalized biomedical applications. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, v. 26, n. 1, p. 96–109, Jan 2018.

KUMAR, R. et al. Single-isa heterogeneous multi-core architectures: The potential
for processor power reduction. In: Proceedings of the 36th Annual International
Symposium on Microarchitecture, San Diego, CA, USA, December 3-5, 2003. [S.l.:
s.n.], 2003. p. 81–92.

LAMBRECHTS, A.; RAGHAVAN, P.; JAYAPALA, M. Energy - aware interconnect -
exploration of coarse grained reconfigurable processors. In: WASP 4th Workshop on
Application Specific Processors. [S.l.: s.n.], 2005.

LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, Nov 1998.

LEVERICH, J. et al. Power management of datacenter workloads using per-core power
gating. Computer Architecture Letters, v. 8, n. 2, p. 48–51, 2009.

LI, Y. et al. A 34-fps 698-gop/s/w binarized deep neural network-based natural scene text
interpretation accelerator for mobile edge computing. IEEE Transactions on Industrial
Electronics, v. 66, n. 9, p. 7407–7416, Sep. 2019. ISSN 1557-9948.

LIU, F. et al. Dynaspam: dynamic spatial architecture mapping using out of order
instruction schedules. In: Proceedings of the 42nd Annual International Symposium
on Computer Architecture, Portland, OR, USA, June 13-17, 2015. [S.l.: s.n.], 2015.
p. 541–553.

LIU, L. et al. A survey of coarse-grained reconfigurable architecture and design:
Taxonomy, challenges, and applications. ACM Comput. Surv., Association for
Computing Machinery, New York, NY, USA, v. 52, n. 6, out. 2019.

100

LIU, Z.; KURSUN, V. Leakage power characteristics of dynamic circuits in nanometer
CMOS technologies. IEEE Trans. on Circuits and Systems, v. 53-II, n. 8, p. 692–696,
2006.

LYSECKY, R.; STITT, G.; VAHID, F. Warp processors. ACM Transaction on Design
of Automated Electroninc Systems, Association for Computing Machinery, New York,
NY, USA, v. 11, n. 3, p. 659–681, jul. 2006.

LYSECKY, R.; VAHID, F. A configurable logic architecture for dynamic hard-
ware/software partitioning. In: Proceedings Design, Automation and Test in Europe
Conference and Exhibition. [S.l.: s.n.], 2004. v. 1, p. 480–485 Vol.1.

LYSECKY, R.; VAHID, F. Design and implementation of a microblaze-based warp
processor. ACM Trans. Embed. Comput. Syst., Association for Computing Machinery,
New York, NY, USA, v. 8, n. 3, abr. 2009.

MARTINS, M. G. A. et al. Open cell library in 15nm freepdk technology. In:
Proceedings of the 2015 Symposium on International Symposium on Physical
Design, ISPD 2015, Monterey, CA, USA, March 29 - April 1, 2015. [S.l.: s.n.], 2015.
p. 171–178.

MEI, B. et al. ADRES: an architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix. In: Field Programmable Logic and Application,
13th International Conference, FPL 2003, Lisbon, Portugal, September 1-3, 2003,
Proceedings. [S.l.: s.n.], 2003. p. 61–70.

MINISKAR, N. R. et al. Intra mode power saving methodology for cgra-based
reconfigurable processor architectures. In: IEEE International Symposium on Circuits
and Systems, ISCAS 2016, Montréal, QC, Canada, May 22-25, 2016. [S.l.: s.n.],
2016. p. 714–717.

MITTAL, S. A survey of techniques for architecting and managing asymmetric multicore
processors. ACM Comput. Surv., v. 48, n. 3, p. 45:1–45:38, 2016.

MOHAMMADI, M. et al. Deep learning for iot big data and streaming analytics: A
survey. IEEE Communications Surveys and Tutorials, v. 20, n. 4, p. 2923–2960, 2018.

MOORE, G. E. Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits
Society Newsletter, v. 11, n. 3, p. 33–35, Sep. 2006.

MÜCK, T.; SARMA, S.; DUTT, N. D. Run-dmc: Runtime dynamic heterogeneous
multicore performance and power estimation for energy efficiency. In: 2015
International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2015, Amsterdam, Netherlands, October 4-9, 2015. [S.l.: s.n.], 2015.
p. 173–182.

MUKHOPADHYAY, S. et al. Leakage in nanometer scale cmos circuits. In: 2003
International Symposium on VLSI Technology, Systems and Applications.
Proceedings of Technical Papers. (IEEE Cat. No.03TH8672). [S.l.: s.n.], 2003. p.
307–312.

101

OH, H.; HA, S. A static scheduling heuristic for heterogeneous processors. In: Euro-Par
’96 Parallel Processing, Second International Euro-Par Conference, Lyon, France,
August 26-29, 1996, Proceedings, Volume II. [S.l.: s.n.], 1996. p. 573–577.

OLUKOTUN, K.; HAMMOND, L. The future of microprocessors. ACM Queue, v. 3,
n. 7, p. 26–29, 2005.

OLUKOTUN, K. et al. The case for a single-chip multiprocessor. In: ASPLOS-VII
Proceedings - Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, Cambridge, Massachusetts,
USA, October 1-5, 1996. [S.l.: s.n.], 1996. p. 2–11.

PADMANABHA, S. et al. Trace based phase prediction for tightly-coupled
heterogeneous cores. In: The 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, Davis, CA, USA, December 7-11, 2013. [S.l.: s.n.],
2013. p. 445–456.

PAGANI, S. et al. Energy efficiency for clustered heterogeneous multicores. IEEE
Trans. Parallel Distrib. Syst., v. 28, n. 5, p. 1315–1330, 2017.

PAL, A. Low-Power VLSI Circuits and Systems. [S.l.]: Springer Publishing Company,
Incorporated, 2014. ISBN 8132219368.

PANDA, P. R. et al. Power-Efficient System Design. 1st. ed. [S.l.]: Springer Publishing
Company, Incorporated, 2010. ISBN 1441963871.

PATEL, S. J.; HWU, W. W. Guest editors’ introduction: Accelerator architectures. IEEE
Micro, v. 28, n. 4, p. 4–12, 2008.

POLLACK, F. J. New microarchitecture challenges in the coming generations of cmos
process technologies (keynote address)(abstract only). In: Proceedings of the 32nd
Annual ACM/IEEE International Symposium on Microarchitecture. USA: IEEE
Computer Society, 1999. (MICRO 32), p. 2. ISBN 076950437X.

POUCHET, L.-N. PolyBench/C: the Polyhedral Benchmark suite. 2019.
Http://web.cse.ohio-state.edu/ pouchet.2/software/polybench/.

PRICOPI, M. et al. Power-performance modeling on asymmetric multi-cores. In:
International Conference on Compilers, Architecture and Synthesis for Embedded
Systems, CASES 2013, Montreal, QC, Canada, September 29 - October 4, 2013.
[S.l.: s.n.], 2013. p. 15:1–15:10.

Qualcomm. Qualcomm Snapdragon Wear 20100: Wearables Processor. 2019.
Https://www.qualcomm.com/media/documents/files/snapdragon-wear-2100-processor-
product-brief.pdf.

RABAEY, J. M.; CHANDRAKASAN, A.; NIKOLIC, B. Digital integrated circuits- A
design perspective. 2ed. ed. [S.l.]: Prentice Hall, 2004.

RABAEY, J. M.; PEDRAM, M.; LANDMAN, P. E. Low Power Design Methodologies.
1st.. ed. [S.l.]: Springer US, 1996.

102

RANGAN, K. K.; WEI, G.; BROOKS, D. M. Thread motion: fine-grained power
management for multi-core systems. In: 36th International Symposium on Computer
Architecture (ISCA 2009), June 20-24, 2009, Austin, TX, USA. [S.l.: s.n.], 2009. p.
302–313.

REAGEN, B. et al. MachSuite: Benchmarks for accelerator design and customized
architectures. In: IISWC. [S.l.: s.n.], 2014. p. 110–119.

RUTZIG, M. B.; BECK, A. C. S.; CARRO, L. Creams: An embedded multiprocessor
platform. In: Reconfigurable Computing: Architectures, Tools and Applications
- 7th International Symposium, ARC 2011, Belfast, UK, March 23-25, 2011.
Proceedings. [S.l.: s.n.], 2011. p. 118–124.

SADASIVAM, S. K. et al. IBM power9 processor architecture. IEEE Micro, v. 37, n. 2,
p. 40–51, 2017.

SAITO, Y. et al. Leakage power reduction for coarse grained dynamically reconfigurable
processor arrays with fine grained power gating technique. In: 2008 International
Conference on Field-Programmable Technology, FPT 2008, Taipei, Taiwan,
December 7-10, 2008. [S.l.: s.n.], 2008. p. 329–332.

SHAFAEI, A. et al. Fincacti: Architectural analysis and modeling of caches with
deeply-scaled finfet devices. In: IEEE Computer Society Annual Symposium on
VLSI, ISVLSI 2014, Tampa, FL, USA, July 9-11, 2014. [S.l.: s.n.], 2014. p. 290–295.

SHAFIQUE, M.; GARG, S. Computing in the dark silicon era: Current trends and
research challenges. IEEE Design & Test, v. 34, n. 2, p. 8–23, 2017.

SHAFIQUE, M. et al. Dark silicon as a challenge for hardware/software co-design. In:
CODES+ISSS. [S.l.: s.n.], 2014. p. 13:1–13:10.

SHAFIQUE, M. et al. An overview of next-generation architectures for machine learning:
Roadmap, opportunities and challenges in the iot era. In: 2018 Design, Automation &
Test in Europe Conference & Exhibition, DATE 2018, Dresden, Germany, March
19-23, 2018. [S.l.: s.n.], 2018. p. 827–832.

SHERWOOD, T. et al. Automatically characterizing large scale program behavior. In:
ASPLOS-X. [S.l.: s.n.], 2002. p. 45–57.

SHI, W. et al. Edge computing: Vision and challenges. IEEE Internet of Things
Journal, v. 3, n. 5, p. 637–646, 2016.

SHI, W.; DUSTDAR, S. The Promise of Edge Computing. IEEE Computer, v. 49, n. 5,
p. 78–81, 2016.

SHIMA, M.; FAGGIN, F.; MAZOR, S. An n-channel 8-bit single chip microprocessor.
In: 1974 IEEE International Solid-State Circuits Conference. Digest of Technical
Papers. [S.l.: s.n.], 1974. XVII, p. 56–57.

SOUZA, J. D. et al. A reconfigurable heterogeneous multicore with a homogeneous ISA.
In: 2016 Design, Automation & Test in Europe Conference & Exhibition, DATE
2016, Dresden, Germany, March 14-18, 2016. [S.l.: s.n.], 2016. p. 1598–1603.

103

TAN, C. et al. Stitch: Fusible heterogeneous accelerators enmeshed with many-core
architecture for wearables. In: 45th ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2018, Los Angeles, CA, USA, June 1-6, 2018. [S.l.:
s.n.], 2018.

TAN, C. et al. Locus: Low-power customizable many-core architecture for wearables.
In: 2016 International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, CASES 2016, Pittsburgh, Pennsylvania, USA, October 1-7,
2016. [S.l.: s.n.], 2016.

THEODORIDIS, G.; SOUDRIS, D.; VASSILIADIS, S. A Survey of Coarse-Grain
Reconfigurable Architectures and Cad Tools". [S.l.]: Springer Netherlands, 2007.
89–149 p.

VEENDRICK, H. J. M. Short-circuit dissipation of static cmos circuitry and its impact
on the design of buffer circuits. IEEE Journal of Solid-State Circuits, v. 19, n. 4, p.
468–473, Aug 1984.

WALL, D. W. Limits of instruction-level parallelism. In: ASPLOS-IV Proceedings
- Forth International Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, California, USA, April 8-11, 1991.
[S.l.: s.n.], 1991. p. 176–188.

WANLASS, F.; SAH, C. Nanowatt logic using field-effect metal-oxide semiconductor
triodes. In: 1963 IEEE International Solid-State Circuits Conference. Digest of
Technical Papers. [S.l.: s.n.], 1963. VI, p. 32–33.

WATKINS, M. A.; ALBONESI, D. H. ReMAP: A Reconfigurable Heterogeneous
Multicore Architecture. In: MICRO. [S.l.: s.n.], 2010. p. 497–508.

WATKINS, M. A.; NOWATZKI, T.; CARNO, A. Software transparent dynamic binary
translation for coarse-grain reconfigurable architectures. In: 2016 IEEE International
Symposium on High Performance Computer Architecture, HPCA 2016, Barcelona,
Spain, March 12-16, 2016. [S.l.: s.n.], 2016. p. 138–150.

WEI, L. et al. Design and optimization of low voltage high performance dual threshold
cmos circuits. In: Proceedings 1998 Design and Automation Conference. 35th DAC.
[S.l.: s.n.], 1998. p. 489–494.

WIJTVLIET, M.; WAEIJEN, L.; CORPORAAL, H. Coarse grained reconfigurable
architectures in the past 25 years: Overview and classification. In: International
Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation, SAMOS 2016, Agios Konstantinos, Samos Island, Greece, July 17-21,
2016. [S.l.: s.n.], 2016. p. 235–244.

WU, Q. et al. Dynamo: Facebook’s data center-wide power management system. In:
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). [S.l.: s.n.], 2016. p. 469–480.

WU, Q.; PEDRAM, M.; WU, X. Clock-gating and its application to low power design
of sequential circuits. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, v. 47, n. 3, p. 415–420, March 2000.

104

WUNDERLICH, R. E. et al. SMARTS: accelerating microarchitecture simulation
via rigorous statistical sampling. In: 30th International Symposium on Computer
Architecture (ISCA 2003), 9-11 June 2003, San Diego, California, USA. [S.l.: s.n.],
2003. p. 84–95.

XU, B.; ALBONESI, D. H. Methodology for the analysis of dynamic application
parallelism and its application to reconfigurable computing. In: Proceedings of the
Society of Photo-Optical Instrumentation Engineer (SPIE), Volume 3844, p. 78-86
(1999). [S.l.: s.n.], 1999. v. 3844, p. 78–86.

	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation and Scope
	1.2 Contributions
	1.3 Structure of this dissertation

	2 Background
	2.1 Dynamic Behavior of Workloads
	2.2 Resource and Power Management Techniques
	2.2.1 CMOS Power Dissipation
	2.2.2 Clock Gating based techniques
	2.2.3 Power Gating based techniques

	2.3 Adaptability for Energy Efficiency
	2.3.1 Heterogeneous Computing
	2.3.2 Reconfigurable Architectures
	2.3.2.1 Classification
	2.3.2.2 Implementations

	2.4 Contributions to the State-of-the-Art

	3 A Resource-Aware Multicore CGRA Architecture
	3.1 System Overview
	3.2 CGRA
	3.3 Binary Translator
	3.3.1 Original Binary Translation Module
	3.3.2 Enhanced Binary Translation
	3.3.2.1 Mapping Step
	3.3.2.2 Configuration Build Step

	3.4 PMU
	3.4.1 PMU Phases

	4 Evaluation
	4.1 Tools
	4.1.1 Gem5
	4.1.2 CACTI
	4.1.3 Rocket Chip Generator
	4.1.4 Logic Synthesis

	4.2 Single-core Scenario
	4.2.1 Methodology
	4.2.2 Results

	4.3 Multicore Scenario
	4.3.1 Methodology
	4.3.2 Results
	4.3.3 Comparison with State-of-the-art

	5 Conclusion
	5.1 Future Work
	5.2 Publications

	References

