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Abstract: Evapotranspiration (ET) provides a strong connection between surface energy and
hydrological cycles. Advancements in remote sensing techniques have increased our understanding
of energy and terrestrial water balances as well as the interaction between surface and atmosphere
over large areas. In this study, we computed surface energy fluxes using the Surface Energy Balance
Algorithm for Land (SEBAL) algorithm and a simplified adaptation of the CIMEC (Calibration using
Inverse Modeling at Extreme Conditions) process for automated endmember selection. Our main
purpose was to assess and compare the accuracy of the automated calibration of the SEBAL algorithm
using two different sources of meteorological input data (ground measurements from an eddy
covariance flux tower and reanalysis data from Modern-Era Reanalysis for Research and Applications
version 2 (MERRA-2)) to estimate the dry season partitioning of surface energy and water fluxes in a
transitional area between tropical rainforest and savanna. The area is located in Brazil and is subject
to deforestation and cropland expansion. The SEBAL estimates were validated using eddy covariance
measurements (2004 to 2006) from the Large-Scale Biosphere-Atmosphere Experiment in the Amazon
(LBA) at the Bananal Javaés (JAV) site. Results indicated a high accuracy for daily ET, using both
ground measurements and MERRA-2 reanalysis, suggesting a low sensitivity to meteorological
inputs. For daily ET estimates, we found a root mean square error (RMSE) of 0.35 mm day−1 for both
observed and reanalysis meteorology using accurate quantiles for endmembers selection, yielding an
error lower than 9% (RMSE compared to the average daily ET). Overall, the ET rates in forest areas
were 4.2 mm day−1, while in grassland/pasture and agricultural areas we found average rates between
2.0 and 3.2 mm day−1, with significant changes in energy partitioning according to land cover. Thus,
results are promising for the use of reanalysis data to estimate regional scale patterns of sensible heat
(H) and latent heat (LE) fluxes, especially in areas subject to deforestation.
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1. Introduction

Evapotranspiration (ET), defined as the sum of evaporation and vegetation transpiration leaving
the surface and entering the atmosphere as water vapor, is a key process in the terrestrial water, carbon,
and energy cycles [1]. In the current scenarios of land cover changes associated with deforestation and
increasing agricultural areas in the tropics, monitoring surface energy fluxes and ET over large areas is a
fundamental requirement to assess changes in the water cycle. For instance, climate change associated
with deforestation could impact the water cycle due to alterations in ET rates [2–5], atmospheric water
vapor content, and precipitation rates [6,7], ultimately modifying the hydrological surface–atmospheric
feedback [8]. In the Amazon and the Cerrado (Brazilian savanna) biomes, conversion from natural
vegetation to cropland, concurrent to the expanding Brazilian agricultural frontier [9], has led to
significant changes in surface energy balance, with decreases in latent heat (LE), increases in sensible
heat (H) and changes in river discharges [4,10–13]. Since tropical rainforests play a fundamental role in
initiating the dry-to-wet season transition, land cover changes can potentially disrupt the wet season in
tropical biomes [14] and contribute to making the dry season longer, with potentially severe ecological
consequences [15].

Assessing the effects of large-scale surface–atmospheric interactions and hydrological changes
may be accomplished with remote sensing techniques using multispectral and thermal images to
calculate the energy balance [16–18]. Remote sensing-based ET models can add to information
from the small footprint of eddy covariance [19], since those measurements do not provide spatial
trends at a large scale or for heterogeneous surfaces [16]. To estimate the spatial and temporal
patterns of ET, many types of models are currently in use, from regional to continental and global
scales, grouped into two general classes: (i) vegetation index-based and (ii) land surface temperature
(Ts ) methods [17,20]. The first group, including the Global Land-surface Evaporation Amsterdam
Methodology (GLEAM) [21], the Water Cycle Multi-mission Observation Strategy – Evapotranspiration
(WACMOS-ET) [22,23], the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface
Evapotranspiration (MOD16) [24], and the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) [25],
is based on vegetation indices as parameters for physically-based equations to estimate soil evaporation
and vegetation transpiration. The second group, including the Surface Energy Balance Algorithm for
Land (SEBAL) [26], the Mapping Evapotranspiration at high Resolution with Internalized Calibration
(METRIC) [27], The Atmosphere-Land Exchange Inverse (ALEXI) [28], the operational Simplified
Surface Energy Balance (SSEBop) [29], and the Surface Energy Balance System (SEBS) [30], uses TS
to calculate ET based on the surface energy balance conservation. Despite significant advances in
ET modelling in the past decades at multiple temporal and spatial scales [31–33], several challenges
remain to increase the accuracy of estimations [34–36] towards higher spatial and temporal resolution
and larger spatial and temporal coverage and monitoring [1].

Among remote sensing-based ET algorithms, SEBAL [26] has been widely used worldwide and
validated across multiple biomes and climate conditions [37–40], including cropland areas [31,41–43]).
Its application is recommended for water resources management due to its ability to provide high
resolution estimates of ET [27,43]. Although most SEBAL applications were performed in arid and
temperate regions [17,44,45], its use in tropical climates also yielded accurate estimations [46–52].

To estimate H, SEBAL assumes a linear relationship between dT and TS across a domain area,
where dT is designed as a vertical air temperature (Ta) floating over the land surface, considering two
extreme conditions [26,53]. At the hot and dry extreme conditions, LE is zero and H is equal to the
available energy, whereas at the cold and wet extreme conditions, H is zero and LE is equal to the
available energy. To solve the internal calibration, automatic calibration procedures were developed
to select the endmembers, representing the hot and cold ends of the spectrum, using populations
of endmember candidates from pre-defined ranges of TS and the normalized difference vegetation
index (NDVI) [31,54]. Endmembers selected at well-watered areas are associated with low TS and
high NDVI values, while endmembers selected at dry areas are associated with high TS and low NDVI
values. Automated methods to select the endmembers provide consistent calibration when compared
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to manual calibration [55], especially for time-series analysis [54]. However, there is still a need to
refine the endmembers selection process, which will further improve the model accuracy since ET
estimations are sensitive to changes in endmembers [55–58].

Regional applications of the SEBAL are usually based on local meteorological
measurements [52,55,59,60], including wind speed (u), relative humidity (RH), and shortwave incident
radiation (Rs). On the other hand, large-scale ET estimations can potentially benefit from the use of
global, gridded meteorological variables (e.g., reanalysis methods) due to their global spatial coverage
and long time-series [17,21,24,61–63]. In the case of reanalysis, data assimilation techniques are
employed to combine global climatic models with observed data to improve the accuracy of global
meteorological estimates [64–67]. For instance, Modern-Era Reanalysis for Research and Applications
version 2 (MERRA-2) reanalysis was developed by the Global Modeling and Assimilation Office Project,
providing consistent long-term meteorological datasets [68].

In the context of assessing techniques of automated ET time-series mapping and using global
meteorological and remote sensing datasets, the goals of this study were to investigate how (1) the hot
and cold endmembers selection and (2) the use of global reanalysis data as meteorological input impact
the accuracy of the SEBAL in estimating the dry-season surface energy and water fluxes, when compared
to eddy covariance measurements. We selected a transitional area between tropical rainforest and
savanna in the southeastern part of the Amazon as the study area, with an experimental site located in
a seasonal floodplain forest–savanna ecosystem. This area is characterized by a climatological 5-month
dry season [69,70], and is strongly affected by land cover conversion from forest and savanna to pasture
and cropland [71].

2. Materials and Methods

2.1. Research Overview

To estimate surface energy fluxes, we first ran the SEBAL algorithm using ground measurements
(SEBAL-T) and MERRA-2 reanalysis data as meteorological inputs (SEBAL-M). Landsat 5 Thematic
Mapper (TM) data were used in both cases as remote sensing inputs. To assess uncertainties related to
MERRA-2, we also compared MERRA-2 estimates to meteorological measurements. For validation,
SEBAL estimations were assessed using measured radiative and turbulent fluxes. Subsequently,
the averages of surface fluxes for each land cover class of the study area were quantified. A flowchart
of the methodology is presented in Figure 1. Detailed information about the methodology is presented
in the next sections.
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2.2. Micrometeorological and Eddy Covariance Measurements

The micrometeorological and eddy covariance tower is located at 9◦49′16.1”S and 50◦08′55.3”W, in
a transitional area between the Amazon and the Cerrado biomes (Figure 2), at the northern boundary of
the Bananal island, between the Araguaia and Javaés rivers, over a seasonal forest-savanna ecosystem
floodplain. Natural vegetation within the tower footprint is composed mostly of woodland savanna
(with trees up to 18 m and sparse bushes) and fragments of wooded savanna (with trees up to
5 m) and grassland, with a 5-month dry season (May to September) and a 3-month flood season
(January to March) [69,70]. The climate is defined as tropical with a dry winter (Aw Koppen’s climate
classification) [72], with annual precipitation around 1755 mm and 90% of the precipitation during the
wet season, causing seasonal flooding [73].
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Figure 2. Characterization of the transitional area between tropical forest and savanna vegetation
in the Brazilian state of Tocantins (TO) and location of the eddy covariance measurements at the
Bananal Javaés (JAV) site (flux tower), using the Landsat 5 image path-row 223–067 from July 2005
(left). MODIS tree cover fraction is used to illustrate the large-scale vegetation spatial pattern (right).

Micrometeorological and eddy covariance measurements at the Bananal Javaés site (JAV),
available from 10/2003 to 12/2006, are part of the Large-Scale Biosphere and Atmosphere Experiment in
the Amazon (LBA) [74], reported in da Rocha et al. [70]. LBA is an international research program
focused on understanding the interactions between terrestrial ecosystems and the atmosphere within
a region of great human and natural complexity (encompassing a wide range of land-use and
land-cover types and climate conditions) on the Amazon biome [75]. Data from the JAV site have
been described [69,70,76] in terms of their environmental characteristics, instrumentation (Table 1),
measurement procedures, and results. We used quality-controlled data from Saleska et al. [77], recorded
above the canopy at 30 min intervals, to perform our analysis. We did not gap fill the data.

The energy balance closure (defined as Rn −G = H + LE, where G is the ground heat flux and Rn

is the net radiation) at several LBA sites presented an imbalance of 70%–105% [70] due to systematic
biases in instruments, energy sources not considered, as well as losses of turbulent fluxes at high and
low frequencies [78]. For the JAV site, during the dry season, the energy balance closure presented a
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negative imbalance of 15% [70]. Therefore, the energy balance closure was forced using the Bowen
ratio (β) technique (Equation (1)). The residual available energy was then distributed between H and
LE, and the energy imbalance was closed to conserve the energy partitioning, according to Equations
(2) and (3) [79]. This simple and reliable approach, used in a wide range of climates [80], was adopted
since it can perform similarly to other methods, despite remaining uncertainties about energy balance
closure [81].

β =
H
LE

(1)

H =
β(Rn−G)

1 + β
(2)

LE =
Rn−G
1 + β

(3)

Table 1. Description of micrometeorological and eddy covariance instrumentation.

Variable Instrumentation

Air temperature HMP45C Vaisalla (Campbell Scientific)
Relative humidity HMP45C Vaisalla (Campbell Scientific)

Wind speed Met One 014 (Campbell Scientific)
Soil heat flux REBS HFT 3.1 (Campbell Scientific)
Net radiation NR Lite Net radiometer (Campbell Scientific)
Surface fluxes Li-Cor 7500 (Li-Cor)

2.3. MERRA-2 Meteorological Reanalysis Data

As global gridded reanalysis inputs, we used reanalysis data from MERRA-2, with spatial
resolution of 0.5◦ × 0.625◦ and hourly temporal resolution [68]. Meteorological reanalysis inputs
include daily average Rs and hourly Ta (average between 10:00 and 11:00 am local time to coincide
with the satellite overpass), u, specific humidity (q), and atmospheric pressure (P). MERRA-2 RH was
computed from q, according to Equations (4)–(6) [82]. To combine meteorological reanalysis and remote
sensing inputs, MERRA-2 data were interpolated from coarse spatial resolution to match the spatial
resolution of Landsat images (30 m) using a simple bicubic interpolation method (MATLAB®R2012b).

q = 0.622
e
P

(4)

es = 0.6108exp
( 17.27− T

237.3 + T

)
(5)

RH = 100
e
es

(6)

where e and es are vapor pressure and saturated vapor pressure, respectively, while P is the
atmospheric pressure.

2.4. Landsat Data

Landsat 5 TM images were selected periodically during the dry season (June to September),
with consideration given to cloud-cover condition and micrometeorological and eddy covariance
measurements availability. After excluding images with greater than 10% cloud cover, a total of
12 images were obtained (Table 2). Landsat images have a temporal resolution of 16 days and a
spatial resolution of 30 m for multispectral data and 120 m for thermal data. We used Landsat data
because of the high spatial resolution and data availability during the eddy covariance measurements,
encompassing the 2004–2006 dry seasons. To compute SEBAL variables we used bands 1 to 7 and to
select high confidence pixels we used the quality attributes band.
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Table 2. Description of the Landsat 5 Thematic (TM) images used to implement the Surface Energy
Balance Algorithm for Land (SEBAL).

Date DOY 1 Landsat ID Cloud Cover

16/Jun/2004 168 LT05_L1TP_223067_20040616_20161130_01_T1 0%
02/Jul/2004 184 LT05_L1TP_223067_20040702_20161201_01_T1 0%
18/Jul/2004 200 LT05_L1TP_223067_20040718_20161130_01_T1 0%
04/Sep/2004 248 LT05_L1TP_223067_20040904_20161129_01_T1 0%
18/May/2005 138 LT05_L1TP_223067_20050518_20161126_01_T1 0%
03/Jun/2005 154 LT05_L1TP_223067_20050603_20161125_01_T1 0%
05/Jul/2005 186 LT05_L1TP_223067_20050705_20161126_01_T1 0%
21/Jul/2005 202 LT05_L1TP_223067_20050721_20161125_01_T1 0%
06/Jun/2006 157 LT05_L1TP_223067_20060606_20161121_01_T1 0%
22/Jun/2006 173 LT05_L1TP_223067_20060622_20161121_01_T1 1%
08/Jul/2006 189 LT05_L1TP_223067_20060708_20161120_01_T1 2%
10/Sep/2006 253 LT05_L1TP_223067_20060910_20161119_01_T1 3%

1 DOY: Day of the year.

2.5. Surface Energy Balance Algorithm for Land (SEBAL)

SEBAL calculates instantaneous LE at the moment of satellite overpass (around 10:30 am local
time) as the residual in the surface energy balance Equation (Equation (7)).

LE = Rn−H −G (7)

G was computed based on Bastiaanssen [83] (Equation (8)), assuming a relationship with Rn, Ts,
α, and NDVI.

G
Rn

=
Ts

α

(
0.0038α+ 0.0074α2

)(
1− 0.98NDVI4

)
(8)

where α is the surface albedo, estimated following Tasumi et al. [84] (Equation (9)) using instantaneous
Landsat surface reflectances to retrieve maximum spatial fidelity.

α =
∑

(ωλ ∗ ρλ) (9)

where ωλ is a coefficient related to the ratio of the solar radiation at the surface occurring within a
given spectral band and ρλ is the surface reflectance for this band.

To estimate Ts based on Landsat images, we used the modified Planck Equation (Equation (10)),
following Allen et al. [27], with atmospheric and surface emissivity corrections.

Ts =
K2

ln
[(
εNBK1

Rc

)
+ 1

] (10)

where εNB is the surface emissivity corresponding to the thermal sensor wavelength, Rc is the corrected
thermal radiance from the surface based on the spectral radiance (Landsat band 6), while K1 and K2

are constants [27].
To estimate H (Equation (11)) it is necessary to select endmembers to represent extreme conditions

for internal calibration [26]. Based on the hot and cold endmembers selection, SEBAL considers a
linear relation between Ts and dT between two heights z1 and z2. H is assumed to be zero for the cold
pixel and maximum for the hot pixel, while LE is assumed to be zero for the hot pixel and maximum
for the cold pixel.

H =
ρ Cp dT

rah
(11)

where ρ is the air density, Cp is the specific heat capacity of air, and rah is the aerodynamic resistance to
turbulent heat transport from the evaporating surface at height z1 to the air above the evaporating surface
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z2 (Equation (12)), considering the atmospheric stability correction based on the Monin–Obhukov
similarity hypothesis [26].

rah =
ln z2

z1

u ∗ k
(12)

where k is the von Karman constant (0.41) and u∗ the friction velocity, estimated for each pixel
(Equation (13)).

u∗ =
u200 k

ln
(

200
Zom

) (13)

where u200 is wind speed at 200 m and zom is the surface roughness for each pixel, estimated according
to Bastiaanssen [83].

To select the hot and cold endmembers, we used a simplified version adapted from the automated
methodology from METRIC [27] based on the Calibration using Inverse Modeling at Extreme Conditions
(CIMEC) process [54]. The CIMEC process employs a population of candidate members based on
quantiles of remote sensing estimations of Ts and NDVI to select the hot (dry) and cold (wet) ends of
the ET spectrum, aiming at consistent internal calibration for time-series applications. Allen et al. [54]
defined a subset of endmembers within the highest 5% of NDVI and the lowest 20% of Ts to select
the cold extreme condition, while endmembers within the lowest 10% NDVI and with the highest
20% Ts were used to select the hot extreme condition. After [54], several additional criteria were
proposed to improve and refine the endmember selection, sometimes with an increase in complexity
and time processing [17,31,55,56,85]. In this research, we proposed an assessment of the automated
calibration of the endmembers based on the Allen et al. [54] methodology to accurately select the
quantiles to estimate the surface energy components. We tested for the effect of nine different automated
endmember selection quantiles (Table 3) over an area of 100 × 100 km, based solely on Ts and NDVI,
without additional filters. The first quantile group was proposed by Allen et al. [54]. For the other
eight groups we used different quantiles to select the endmembers.

Table 3. Quantiles used for the automated selection of cold and hot endmembers.

Endmember Group NDVI Cold Ts Cold NDVI Hot Ts Hot

1 (gA) 5% 20% 10% 20%
2 (gTs1 ) 5% 10% 10% 10%
3 (gTs2 ) 5% 1% 10% 1%
4 (gTs3 ) 5% 0.1% 10% 0.1%
5 (gTs4 ) 5% 0.01% 10% 0.01%
6 (gVI1 ) 3% 20% 7% 20%
7 (gVI2 ) 2% 20% 4% 20%
8 (gVI3 ) 1.5% 20% 3% 20%
9 (gVI4 ) 1% 20% 2% 20%

To estimate the daily average net radiation (Rn24h) we used the methodology proposed by de
Bruin [86] (Equation (14)).

Rn24h = (1− α) ∗Rs24h −Cs ∗
Rs24h

Ra24h

(14)

where Rs24h is the shortwave incident daily radiation, Ra24h is the exoatmospheric shortwave radiation,
while Cs is an empirical constant, calibrated according to local climate conditions. We used a generalized
reduced gradient nonlinear method for calibration [87], yielding a value of 115 for clear-sky days and
atmospheric conditions similar to the cloud-free Landsat image conditions, reducing the influence of
low atmospheric transmissivity during all sky conditions.
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The evaporative fraction (Λ) (Equation (15)) was used to upscale instantaneous estimates of LE
to daily ET (ET24h) (Equation (16)), assuming that Λ is constant during the daytime [26], when soil
moisture does not change significantly and advection does not occur [40].

Λ =
LE

Rn−G
(15)

ET24h =
Λ Rn24h

λ
(16)

where λ is the latent heat of vaporization of water [82].

2.6. MapBiomas Land Cover Dataset

To assess the spatial variations of surface energy and water fluxes over the main land cover
conditions in the study area, we used a land cover classification from MapBiomas version 3.1.
MapBiomas is a collaborative network to generate annual land-use and land-cover maps in Brazil with
spatial resolution of 30 m through processing of the Landsat collection (1985-2018) with a random
forest algorithm within Google Earth Engine cloud computing [88], available at http://mapbiomas.org.

2.7. MERRA-2 and SEBAL Assessment

To evaluate MERRA-2 meteorological reanalysis data and to validate SEBAL surface fluxes,
we used the performance metrics of mean absolute error (MAE) and root mean square error (RMSE)
between observed (Oi) and predicted (Pi) values (Equations (17) and (18)). Ground measurements
were used to validate a single MERRA-2 coarse pixel (for the location of the JAV site) and to validate
SEBAL, considering an average estimation for an area centered in the JAV site with a radius of 1 km.
This average was adopted based on the tower footprint, since in both wet and dry seasons, up to 75%
of the footprint flux originates within 1 km of the flux tower radius [69].

MAE =

∑
|Pi −Oi|

n
(17)

RMSE =

√∑
(Oi − Pi)

2

n
(18)

where n is the number of samples.

3. Results

3.1. Validation of MERRA-2 Reanalysis Data

To assess MERRA-2 meteorological reanalysis accuracy and uncertainties in SEBAL surface flux
estimations, we compared Ta, Rs, RH, and u to ground measurements (Figure 3). For Rs, we found
an overestimation (MAE) of 35.8 W m−2 and an error (RMSE) of 40.8 W m−2, representing 17.0% and
19.4% of the average measured Rs, respectively. Overall, MERRA-2 Rs errors are similar in range
during both wet and dry seasons. For u and RH we also found an overestimation. Whereas for u,
MAE was 1.3 m s−1 and RMSE was 1.6 m s−1, for RH we found 15.7% and 18.3%, respectively, with
higher errors during the dry season and an overestimation lag of 2 to 3 months since the beginning of
the dry season. On the other hand, for Ta we found an underestimation (MAE) of 3.9 ◦C and an RMSE
of 4.7 ◦C, with higher underestimation during the dry season, yielding RMSE up to 6.2 ◦C. During the
wet (flooded) season, MAE and RMSE decreased to 2.4 and 2.8 ◦C, respectively.

http://mapbiomas.org
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Figure 3. Comparison of hourly (average between 10:00 and 11:00 am) wind speed (u) (a),
relative humidity (RH) (b), air temperature (Ta) (c), and daily incident shortwave radiation (Rs)
(d) between MERRA-2 and meteorological measurements at the JAV site. Shaded areas represent the
climatological dry season.

3.2. Validation of SEBAL Instantaneous Surface Flux Estimates

For performance assessment, the instantaneous surface fluxes (Rn, G, H, and LE) estimated by
SEBAL-T and SEBAL-M averaged over the 1 km radius area (tower footprint) were compared against
radiative and eddy covariance measured data (at 10:30 am local time) at the JAV site. Results of nine
different quantiles of endmembers (combinations of Ts and NDVI quantiles) are shown in Figure 4.
For Rn, SEBAL-M yielded higher accuracy estimates, with MAE ranging between 11.9 and 13.3 W m−2

and RMSE ranging between 15.6 and 17.6 W m−2. SEBAL-T had a MAE between 14.8 and 17.6 W m−2

and RMSE between 18.7 and 21.2 W m−2. For both meteorological inputs, the best endmember quantile
was gVI4. For G, both methods (SEBAL-M and SEBAL-T) yielded similar overestimations, with average
MAE of 108.3 and 108.9 W m−2 and RMSE of 109.3 and 110.0 W m−2, respectively.

Despite similar results for Rn and G estimations using different meteorological datasets and
quantiles to select the endmembers, we found notable differences in H and LE estimations, mainly related
to the endmember selection criteria. The average H measurement without energy balance closure
was 40.9 W m−2, and the average H from SEBAL-T estimations measurements ranged between 19.0
and 45.8 W m−2 for quantiles gA–gTs4 , yielding an average of 19.1 W m−2 for quantiles gIV1 − gIV4 .
SEBAL-M estimations were slightly higher than SEBAL-T ones, ranging between 25.0 and 68.4 W m−2

for quantiles gA − gTs4 , with an average of 21.91 W m−2 for quantiles gIV1 − gIV4 . When considering
the energy balance closure, the average H measurement increased to 79.9 W m−2. Without energy
balance closure, for SEBAL-T (SEBAL-M) MAE ranged between 22.7 (21.4) and 29.9 (34.5) W m−2

and RMSE between 30.0 (30.0) and 48.9 W m−2 (56.2). The best endmember quantile for the most
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accurate estimates of instantaneous H was gTs2 for SEBAL-T and gTs 1 for SEBAL-M, with an RMSE
around 30.0 W m−2. Considering the energy balance closure, MAE and RMSE increased for SEBAL-T
(SEBAL-M), ranging between 38.7 (62.4) and 37.3 (60.5) W m−2 for MAE and between 51.3 (70.1) and
50.0 (67.9) W m−2 for RMSE, with quantile gTs4 yielding higher accuracy using both meteorological
datasets as inputs.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 24 

 

quantile was ݃௏ூସ. For ܩ, both methods (SEBAL-M and SEBAL-T) yielded similar overestimations, 
with average MAE of 108.3 and 108.9 W m−2 and RMSE of 109.3 and 110.0 W m−2, respectively. 

 
Figure 4. Comparisons of instantaneous surface energy fluxes (net radiation (ܴ௡) (a), soil heat (ܩ) (b), 
sensible heat (ܪ) (c), and latent heat (ܧܮ) (d)) between ground measurements (where in situ stands 
for measurements without energy balance closure and in situ EBC for measurements with energy 
balance closure) and SEBAL estimations driven by meteorological measurements (SEBAL-T) and 
MERRA-2 (SEBAL-M) for nine quantile groups of endmember selection at the JAV site. 

Despite similar results for ܴ௡ and ܩ estimations using different meteorological datasets and 
quantiles to select the endmembers, we found notable differences in ܪ and ܧܮ estimations, mainly 
related to the endmember selection criteria. The average ܪ measurement without energy balance 
closure was 40.9 W m−2, and the average ܪ  from SEBAL-T estimations measurements ranged 
between 19.0 and 45.8 W m−2 for quantiles ݃஺–்݃௦ସ	, yielding an average of 19.1 W m−2 for quantiles ݃ூ௏ଵ–݃ூ௏ସ	. SEBAL-M estimations were slightly higher than SEBAL-T ones, ranging between 25.0 and 
68.4 W m-2 for quantiles ݃஺–்݃௦ସ	, with an average of 21.91 W m−2 for quantiles ݃ூ௏ଵ–݃ூ௏ସ	. When 
considering the energy balance closure, the average ܪ  measurement increased to 79.9 W m−2. 
Without energy balance closure, for SEBAL-T (SEBAL-M) MAE ranged between 22.7 (21.4) and 29.9 

Figure 4. Comparisons of instantaneous surface energy fluxes (net radiation (Rn) (a), soil heat (G) (b),
sensible heat (H) (c), and latent heat (LE) (d)) between ground measurements (where in situ stands for
measurements without energy balance closure and in situ EBC for measurements with energy balance
closure) and SEBAL estimations driven by meteorological measurements (SEBAL-T) and MERRA-2
(SEBAL-M) for nine quantile groups of endmember selection at the JAV site.

With an increase in H estimations (for both meteorological inputs) for quantiles gA − gTs4,
LE estimations decreased for the same quantiles and held steady for quantiles gIV1 − gIV4. Overall,
without energy balance closure, instantaneous LE was overestimated, with MAE (RMSE) ranging
between 111.6 (128.1) and 156.3 (169.9) W m−2 for SEBAL-T and between 95.8 (98.7) and 149.3
(152.0) W m−2 for SEBAL-M. When correcting instantaneous measurements of LE according to the
energy balance closure, LE increased accuracy, with an underestimation, with MAE (RMSE) ranging
between 52.3 (66.0) and 97.1 (113.1) W m−2 for SEBAL-T and between 89.5 (93.9) and 143.0 (144.5) W m−2

for SEBAL-M. As a residual of the energy balance, instantaneous estimates of LE for quantiles gA and
gIV1 − gIV4 yielded the most accurate estimates. MAE and RMSE of all estimated quantiles for Rn, G,
H, and LE are presented in Tables S1 and S2.
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3.3. Assessment of SEBAL Daily Evapotranspiration Estimates

SEBAL upscaling from instantaneous fluxes of LE to daily ET (ET24h) integrates the daily net
radiation (Rn24h ), assuming Λ as a constant indicator of energy partitioning throughout the day (from
sunrise to sunset). To investigate SEBAL upscaling, the accuracy of the estimated Λ was first assessed
in relation to the measured data for instantaneous and daily measurements (considering or not the
energy balance closure). Then, Rn24h , Λ, and ET24h estimates were evaluated (Figure 5). SEBAL based Λ
led to overestimation for the nine quantile groups when compared to instantaneous Λ computed from
measured data (at 10:30 am local time). However, when it was compared to the daily Λ computed
from measured daily averages, the accuracy increased significantly for both meteorological inputs.
For instantaneous Λ we found an average of 0.44 ± 0.14 (mean ± standard deviation), while for daily
average Λ (measured) we found 0.75 ± 0.16 (without energy balance closure) and 0.82 ± 0.05 (forcing
the energy balance closure). For SEBAL-T estimates, Λ values ranged between 0.76 and 0.96 and for
SEBAL-M, Λ ranged between 0.74 and 0.95. For the most accurate SEBAL estimates of Λ, quantile
gTs3, we found an RMSE of 0.08 (0.19) and 0.10 (0.20), with (without) daily energy balance closure,
for SEBAL-M and SEBAL-T estimations, respectively. Overall, SEBAL estimates of instantaneous Λ
were relatively close to daily ground measurements when considering the energy balance closure.
Furthermore, Rn24h estimates yielded high accuracy when driven by both meteorological inputs.
Overall, an underestimation was obtained, with an RMSE of 13.5 W m−2 for SEBAL-T and 9.8 W m−2

for SEBAL-M. MAE and RMSE of all quantiles for Λ and ET24h are presented in Tables S3 and S4.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 24 
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Figure 5. Comparison between ground measurements (where in situ inst and day stand for instantaneous
and daily measurements without energy balance closure, respectively, and in situ EBC for daily
measurements with energy balance closure) and SEBAL estimates of evaporative fraction (Λ) (a),
daily net radiation (Rn24h ) (b), and daily evapotranspiration (ET24h) (c) driven by in situ meteorological
measurements (SEBAL-T) and MERRA-2 (SEBAL-M).

Our results indicate that daily estimates of ET using the SEBAL algorithm and both meteorological
inputs were consistently accurate when compared to eddy covariance measurements. Without the
energy balance closure, SEBAL-T led to an average RMSE of 0.87 mm day−1 (for SEBAL-M we found
an RMSE of 0.85 mm day−1). On the other hand, when using the energy balance closure technique
to compute daily ET, SEBAL accuracy increased significantly, yielding an average RMSE of 0.35 mm
day−1 for both meteorological inputs (an improvement of 60%). The most accurate quantile used
for the endmember selection was gTs4, with NDVI of 5% and 10% and Ts of 0.01%, for cold and hot
endmembers, respectively, representing an error of 8.6% (RMSE compared to the average daily ET),
with errors up to 15% and 23% for the less accurate quantile of endmembers selection, for SEBAL-T
and SEBAL-M, respectively.

3.4. Spatial Assessment of Surface Energy and Water Fluxes

Based on the combination of MERRA-2 reanalysis and Landsat images SEBAL estimations,
we computed the average of each surface energy (H and LE) and water (ET) flux component according
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to land cover, using data from MapBiomas [88]. The study area presents a large heterogeneity
in vegetation physiognomies, dominated by savanna vegetation, with an significant increase in
croplands [9,89,90]. To illustrate the spatial pattern of vegetation characteristics and surface processes,
we computed the dry season average NDVI and Ts and daily ET for 2004 (Figure 6). NDVI values
larger than zero were found over forested areas (flooded or non-flooded), which are associated to
Ts values lower (close to the minimum 24.5 ◦C values) than savanna and croplands, which reached
up to 32 ◦C and also yielded a higher H proportion in the energy partition. The largest Ts values
were obtained for croplands, while natural savanna regions reached intermediate values. There are
marked differences between tropical forest, savanna vegetation, and cropland areas with respect
to land–atmosphere exchanges. Converting forest vegetation to cropland and pasture substantially
changes surface energy (H and LE) and water (ET) fluxes (Figure 7). Taking into consideration the
average surface fluxes according to land cover classes for all analyzed images and using SEBAL-T
results from gTs4 quantile, our estimates of daily ET ranged between 2.0 and 4.2 mm day−1 for pasture
and tropical forest, while grassland, savanna vegetation, and cropland presented rates of 2.9, 3.1,
and 3.2 mm day−1, respectively. Finally, Figure 8 presents the fraction of H and LE for different tiles
across the study area (the size of each chart relates to the sum of H and LE for the year 2004 day of
the year (DOY) 200 image). While in forest areas, the main component is LE, in cropland and pasture
lands, there is a considerable increase in H and decrease in LE.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 24 
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4. Discussions

4.1. Uncertainties in the SEBAL Model Structure

Our estimates of instantaneous Rn are consistent with other studies [91], with errors lower than
5%, despite overestimations when driven by MERRA-2 and underestimations when driven by ground
measurements. However, we found considerable discrepancies in instantaneous G values, with RMSE
higher than 108 W m−2. Measured G represented only a small fraction of Rn, corresponding to
around 3% of this component (7 W m−2 on average). Results from [92] indicate that the canopy and
air-column heat storage in the Amazon during the dry season is around 80 W m−2 during mid-morning,
being much higher than G. Since canopy heat storage plays an important role on a diurnal time scale,
it cannot be neglected, despite its integration on a daily time scale only accounting for a small portion
of the available energy [93]. On a daily basis, heat gained during the daytime is released at night
through thermal radiation and evaporation [94].

The poor performance of the SEBAL in estimating G may also be related to the forest–savanna
flooding ecosystem, since the equation used to calculate G was derived for short vegetation and
non-flooded areas. The main components to calculate G using the SEBAL algorithm are Ts, NDVI,
and Rn, representing surface fluxes (including canopy and ground surface), while measured G only
accounts for ground surface. This is why the energy budget for tropical forests should be rewritten
(Equation (19)) [92].

Rn = H + LE + G + ∆S + Qp (19)

where S corresponds to changes in total heat content within the canopy and Qp corresponds to the
energy of photosynthesis. We also note that we used globally available equations in this study for
estimating the energy balance components, however, more refined parameters could be adopted in a
future work to improve algorithm performance and model structure.

4.2. Uncertainties in the SEBAL Instantaneous and Daily ET Estimates

Overall, the main SEBAL uncertainties are related to H estimates and the selection of the hot
and cold endmembers [35], yielding higher errors than the other surface energy balance components.
However, we found accurate H estimates using gTs1 − gTs4 quantile groups, especially when compared
to instantaneous measurements without energy balance closure. On the other hand, due to energy
balance components being neglected or not computed for both eddy covariance measurements and
SEBAL estimates, such as ∆S at diurnal time scale, SEBAL instantaneous LE was overestimated,
with MAE higher than 95.8 W m−2 for SEBAL-T and 111.6 W m−2 for SEBAL-M, suggesting significant
differences on the instantaneous surface energy fluxes when compared to ground measurements.
For instance, systematic biases in instrumentation and energy sources not considered in the process
(storage in the air column or biomass) could give rise to uncertainties in the energy balance as well as
losses of the turbulent fluxes at high or low frequencies [78]. Considering that SEBAL instantaneous
LE estimates were calculated as the residual of the energy balance, we also corrected measured
LE considering the energy balance closure at an instantaneous time scale. In this case, LE was
underestimated and MAE decreased significantly.

On the other hand, results indicate that the SEBAL slightly overestimated daily ET when compared
to eddy covariance measurements, which is in accordance with other studies [51,55,61,95–97], with errors
ranging between 0.3-0.4 mm day−1 when compared to measurements forced by energy balance closure
techniques, and 0.6-0.8 mm day−1 when compared to measurements without energy balance closure.
A better performance of the SEBAL at a daily time scale is possibly related to the small fraction of G
and ∆S on a daily time scale [92,94], closely relying on the accurate estimates of Λ and Rn24h . The use of
the Λ for upscaling instantaneous to daily surface fluxes based on remote sensing estimates is reliable,
with assessments indicating a difference of less than 12% when compared to measured Λ, evidencing
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the agreement between SEBAL estimates and eddy covariance measurements [98], in close accordance
with our findings.

4.3. The SEBAL Sensitivity to Meteorological Inputs

Overall, MERRA-2 provides more self-consistent meteorological data than its previous versions
at large scale [68,99]. Although some validations of the recent MERRA-2 surface and atmospheric
reanalysis have been published [100,101], there is a lack of comprehensive assessment at regional scales.

Meteorological reanalysis uncertainties are mainly related to model structure and
parameterization [102–104], since it is a theory-based calculation [105]. Therefore, the coarse
spatial resolution can result in an increased likelihood of discrepancies between meteorological
reanalysis and ground measurements, since they usually have limited spatial representativeness [102].
Meteorological reanalysis only provides large scale averages and does not represent the subgrid
(misrepresenting local meteorological processes), therefore it suffers from biases especially over
heterogeneous surfaces [106]. Thus, despite the moderate accuracy and biases at regional scales,
as found at the JAV site, land data assimilation and reanalysis are becoming important sources of
meteorological inputs for ET estimations [107].

Our results indicate that the use of ground measurements or global reanalysis data (MERRA-2)
as meteorological inputs leads to low sensitivity on SEBAL accuracy to estimate surface energy and
water fluxes. Only a few studies addressed the influence of meteorological inputs on SEBAL estimates,
pointing out the small [108] to moderate sensitivity [109] of u. Considering Ta and RH, used as inputs
to compute downward longwave radiation and atmospheric transmissivity, respectively, the low
sensitivity is related to the small fraction of these components in the surface energy balance during
clear-sky days. On the other hand, Biggs et al. [17] reported a lower accuracy for the SEBAL driven by
the use of MERRA-1 Land global climate data, especially for daily Rn, when compared to estimates
driven by ground measurements. Indeed, errors in radiation (Rs or Rn) can cause large errors in LE
and ET estimations, e.g., Kich [109] demonstrated that an error of 10% in Rn can cause an error up to
25% in LE.

Our findings confirm that temperature-based models rely on Ts and dT, with a high sensitivity of
Λ and Rn24h to upscaling instantaneous to daily fluxes [108,110,111], while vegetation-based models
depend on vegetation conditions and reanalysis data from global climate grids, with a higher sensitivity
to meteorological inputs [17,112]. Since our estimates of Λ and Rn24h yielded a high accuracy for both
meteorological inputs, the most accurate daily ET estimates were for SEBAL-T and SEBAL-M when
compared to vegetation-based model estimates in the Amazon biome [112,113].

4.4. The SEBAL Sensitivity to Endmember Selection

Endmember selection was assessed by using different quantiles of Ts and NDVI. Our results
clearly show that the selection of both hot and cold extreme endmembers result in high sensitivity to
H, LE, and ET, playing a key role in the magnitude of surface fluxes estimates. Choragudi [108] and
Long et al. [35] evaluated the sensitivity of the endmember selection, reporting a higher sensitivity for
the hot endmember selection, where Ts itself plays a secondary role in LE and ET estimations [35,57].
In contrast, changes in NDVI quantiles showed a lower sensitivity when compared to Ts, which is
expected since the endmember selection is closely related to dT [108].

An example of endmember candidates based on the nine quantile groups of Ts and NDVI is
presented in Figure 9 for the year 2004 DOY 200. Histograms of Ts used for internal calibration are
also presented. It is clear that the endmember selection based on Ts and NDVI for different quantiles
has a low sensitivity on the cold and a high sensitivity on the hot selection. For quantiles gTs1

− gTs4
,

with changes in Ts quantiles (keeping NDVI quantiles fixed), there is a decrease of 0.65K for Ts at the
cold endmember and an increase of 2.4K for Ts at the hot endmember. On the other hand, for quantiles
gIV1 − gIV4 , with changes in NDVI quantiles (keeping Ts quantiles fixed), we found small changes in
Ts for both cold and hot endmembers (increase of 0.90 K and a decrease of 0.15 K for the hot and cold
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endmembers, respectively). Our findings are in agreement with Long et al. [35], indicating a higher
sensitivity for Ts rather than NDVI on H and LE estimates.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 24 
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Figure 9. Example of endmember pixel selection for the year 2004 DOY 200 (center). Ts cold (left) and
Ts hot (right) represent the hot and cold endmember candidates for each quantile group, respectively,
while the black line indicates the selected endmember Ts. For each column chart, the y-axis represents
pixel frequency while the x-axis represents Ts.

This higher sensitivity on the hot and dry endmember candidates was originally demonstrated
by Bastiaanssen [53] and also observed by previous studies [58,114], where the endmembers play
a key role in the SEBAL’s internal calibration. The strong and accurate performance of the SEBAL
and other surface energy balance models in heterogeneous areas was also demonstrated by other
studies [115,116] also considering wet and dry climate conditions [61,95]. The importance of the
selection of the endmembers for ET estimation was also highlighted [35,57,114], however, our results
indicate that the influence of pixel selection is more relevant than the meteorological data used to force
the model, making reanalysis data such as from MERRA-2 useful for surface energy balance models.

4.5. Spatial Assessment of Surface Energy and Water Fluxes

Our study area is located in a transitional zone between forest and savanna in Central Brazil.
Our estimates of energy partition (sensible and latent heat) for different land uses are in accordance
with Restrepo-Coupe et al. [117], who showed that converted areas (forest to cropland and pasture)
presented a different behavior with relative reductions in dry season ET, consistent with increasing
water limitation due to loss of deep roots that can access soil water. They are also in agreement
with Oliveira et al. [118] and Dias et al. [4], who conducted studies in the southwest (Ji-Paraná River
basin) and southeast (Xingu River basin) Amazon on the conversion between forest vegetation and
cropland and pasture, showing substantial changes on surface energy (H and LE) and water (ET)
fluxes. Furthermore, changes in β reflect alterations on surface energy fluxes partitioning between H
and LE. For instance, for forest areas we found a β of 0.19, while pasture areas presented a β of 0.60.
In this context, land cover conversion leads to an increase of β, with an associated increase in H and
decrease in LE, causing an increase of Ta and decrease in ET, mainly due to deforestation resulting in
less vegetation being available to transpire water to the atmosphere [119].

5. Conclusions

Recent techniques of remote sensing and reanalysis data have improved our understanding of
surface energy and water fluxes in the tropics. In this study, we presented an assessment of the SEBAL
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algorithm to estimate H, LE and ET driven by ground measurements and MERRA-2 reanalysis data.
The comparison between SEBAL estimates against ground measurements yielded high accuracy for
Rn, however, we found a high bias for G, suggesting a regional calibration. For H and LE, eddy
covariance measurements corrected with energy balance closure techniques yielded more accurate
results when using both meteorological inputs in comparison to the non-closure measurements.
Overall, SEBAL daily ET estimates presented higher accuracy than instantaneous fluxes. Furthermore,
the automatic selection of endmembers was evaluated considering different TS and NDVI quantiles.
Although daily ET estimates were less sensitive to the meteorological data, the endmember selection
for SEBAL’s internal calibration played a key role in estimations of surface fluxes. TS quantiles showed
a higher sensitivity than NDVI quantiles, indicating its high influence on H and LE estimates on
tropical biomes. Indeed, the strength of the SEBAL algorithm consists in the endmembers selection,
while meteorological inputs have a lower impact on ET accuracy, providing consistent surface-energy
partitioning at multiple land cover conditions independent of low accuracy input datasets.

The analyses reported here suggest that the SEBAL algorithm can capture surface fluxes for different
land cover conditions at a regional scale within an acceptable accuracy, with significant potential for
spatial and temporal monitoring based on MERRA-2 global reanalysis data and Landsat images in
data-limited areas. In future research, long-term changes of surface fluxes across different land covers
will be addressed, aiming to understand the impact of deforestation on land–atmosphere exchanges.
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