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Abstract.
A meso-scaled finite element model is developed aiming at the study the mechanical properties of woven-

fibre composites regarding different weave pattern. A Representative Volume Element (RVE) is constructed and
the Uniform Displacement Boundary Conditions (UDBC) are applied in order to obtain the stiffness tensor of
such composites. Two different types of woven-fibre composites are evaluated by the introduced model - E-
glass/Vinylester plain-weave and 2/2 Twill E-glass/Epoxy. The results from computational homogenization are
compared to both experimental and numerical works from literature, showing good agreement. It is verified that
the boundary conditions applied to the RVE play a significant role in the homogenization results.

Keywords: Woven composites, Computational homogenization, Finite Element Method, Heterogeneous struc-
tures

1 Introduction

The woven-fibre modelling, aiming at mechanical properties, can be divided in two main approaches: numer-
ical methods and analytical solutions. Regarding to analytical solutions, Ishikawa [1] and Ishikawa and Chou [2]
proposed the one-dimensional Mosaic Model, the first well-known solution for woven-fiber composites, primarily
for satin weaves and hybrid composites. The Mosaic Model treats the woven either as an parallel or serial asym-
metric cross-ply laminates assemblage. It leads to upper and lower bounds of stiffness matrix. This first approach
has the disadvantage of neglecting interweaving effects, as the undulation of warp and fill strands is not modelled.
With Fiber Undulation Model, Ishikawa and Chou [3] overcame this Mosaic Model disadvantage. This last model
was idealized to predict plain-weave composites, being an extension of Mosaic Model.

Further developments were made by Sankar and Marrey [4] who presented the Selective Averaging Method
(SAM), which dealt with three-dimensional and two-dimensional textile composites and proposed a formulation
to estimate stiffness and thermal expansion coefficients. Three-dimensional composites were divided into three
microstructure levels: unit cell, slice and element, which correspond, respectively, to macro, meso and micro
stiffness. In order to obtain the coefficients of the stiffness tensor, it is assumed macro uniform strain states in
the entire domain - six states in total, encompassing each strain alone. This macro strain state is assumed to be
approximately equal in meso and micro scales, permitting an easy integration of the stiffness between micro and
meso-scales. Later, the meso scale slices are averaged assuming an isotress condition. Finally, the macrostresses
are averaged in the volume, what lets to express each column of the stiffness matrix in terms of meso and micro
strains. In case of two-dimensional composites, the textile composite is divided into repeating cells in in-plane
directions, being modelled as an homogeneous Kirchoff’s plate in macro-scale. The procedure to estimate the
plate stiffness coefficients is analogous to the three-dimensional case.

Scida [5] presented a model based in Classical Laminate Theory to predict mechanical properties of woven-
fibre composites (hybrid and non-hybrid). This model, called MESOTEX (Mechanical Simulation of Textile),
treats the woven composite as a combination of two homogeneous phases: orthotropic strands and isotropic matrix.
The undulation of strands are geometrically described by sinusoidal functions, while in other parts the path are
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considered straight. Similar approach was done by Ming [6], who proposed a method to estimate mechanical
properties for woven and braid composites. In it, the composite was divided into subelements and it was applied
an isostrain condition in each division so as to obtain their stiffness. The subelements corresponded to four layered
unidirectional composites, with two inner layers being the homogenized strands, and the two outer layers matrix.
Later, in order to assemble the subelements, isotress condition is applied.

The analytical models are really useful for a fast estimation of the (homogenised) mechanical properties.
However, numerical models can evaluate stresses distributions along the geometry, therefore giving insights about
the mechanical performance of the composite. One of the most important aspects of this approach is the correct
modeling of the composite geometry. Barbero [7] used photomicrograph measurements to model geometry cor-
rectly. The photomicrograph data was fitted with sinudoisal functions, and finally the geometry was totally built
in a commercial CAD. Although such type of approach is valid, some composite-specialized software were de-
veloped in the recent years. Verpoest and Lomov [8] developed WiseTex, an software able to calculate 2D and
3D composites, which composite geometry is described by analytical models. Furthermore, Ling [9] presented
TexGen, and open-source composite modelling software. TexGen can model 2D and 3D woven fabrics, as well
any user-defined geometry, as the software accepts Python scripts to define the geometry paths.

In this article, TexGen will be used to model the geometry of woven-fibre composites, with data available in
Scida [10]. Two woven-fibre classes will be treated - E-glass/vynilester plain-weave and E-glass/Epoxy 2/2 Twill-
weave. The homogenization is performed by choosing a set of boundary conditions that respect the Hill’s Energy
Condition. Hence, Uniform Displacement Boundary Conditions (UDBC) is applied, which leads to a linear system
that allows the complete determination of the homogenized stiffness matrix of the woven-fibre composite.

2 3D finite element modeling of RVE

2.1 Geometric Modelling

Woven-fibre composites geometry exhibits periodicity, which allows the designer to analyse only a represen-
tative element volume (RVE) in order to obtain the mechanical behaviour of the entire component / domain. The
Repetitions Unity Cell (RUC) can then be used to construct such RVE. Fig. 1 presents two examples of RUCs that
are also studied in the present work.

Plain-weave 2/2 twill weave
Figure 1. Weave pattern draft and RUC adopted (dashed red square)

The RVE geometry is built in TexGen [9, 11], using composite data from Scida [10] (See Table 1). In the
model, there are three volume fractions to be considered, as showed in Fig. 3. The first one, V0, refers to dry volume
fraction. This is the volume occupied by fibers inside the whole composite volume. The second volume fraction,
Vg , meso-scale volume fraction, is the portion occupied by strands (fills and warps with impregnated resin). By
last, the strand volume fraction, Vs, is the volume occupied by fibers in strands. Figure 2 shows the geometry
created in TexGen.
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Plain-Weave
2/2 Twill weave

Figure 2. Weave-fibre composite models created in TexGen [9, 11]

Strand volume fraction, Vs Dry fiber volume fraction, V0 Meso-scale volume fraction, Vm
Figure 3. Composite Volume fractions

Table 1. Weave geometry parameters, Scida [10]

Material Weave class Strand width (mm) Comp. thickness (mm) Yarn Spacing∗ (mm) V0 Vs V ∗∗
m

E-glass/Vinylester Plain weave 0.6 0.1 0.625 0.55 0.8 0.6875

E-glass/Epoxy 2/2 twill weave 0.83 0.2275 1 0.38 0.75 0.5067
∗This parameter does not appear in Scida [10]. However, it is a mandatory parameter for TexGen [9, 11]. Therefore, the values
used in this work were selected to reproduce experimental Vm closest as possible.
∗∗Calculated by Vs = V0

Vm
, as stated in Barbero [7].

The correct Vm representation of the composite might be a difficult task in woven-fibre analysis. In TexGen
[9, 11], if one performs the model creation, a default increase of 10% of matrix in height is applied to the compos-
ite, creating a shallow film of matrix in lower and upper faces of the composite. Such additional matrix volume
incurs that Vm decreases in the model. If one constricts such resin surplus, the thickness of matrix above (and
below) strands would become excessively thin, requiring a finer mesh to avoid errors in modeling. As a conse-
quence, the Vm considered in the presented model does not agree with experimental values. Following Barbero [7]
methodology, one needs to carry out a meso scale volume fraction correction. Namely, the Compliance Matrix is
corrected trough eq. (1).

[S] = [S]α
V m

V αm
(1)

where V m and V αm correspond to experimental and model meso scale volume fractions, respectively, and [S]α

defines the compliance matrix [S] prior eq. (1) application. The table 2 shows the Vm obtained in this work and
the correction factor applied.

Table 2. Vm in TexGen [9, 11] and Vm correction

Material Weave class V αm
Vm

V αm

E-glass/Vinylester Plain weave 0.589 1.165

E-glass/Epoxy 2/2 twill weave 0.498 1.017

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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2.2 Boundary conditions

The Average Strain Theorem establishes an equivalence between a boundary condition as showed in eq. (2)
and strain average in the volume, as showed in Zohdi [12]. Such condition is known as uniform displacement
boundary conditions1(UDBC), in which εAij denotes an strain state applied, and xij an position vector. If the
coordinate system is in the geometrical center of the body with dimensions (2a1, 2a2, 2a3), the Fig. 4 is a rep-
resentation of a uniform strain in pure extension. This type of boundary condition satisfies the Hill’s Energy
Condition, as stated in Zohdi [12], which means that the model presents an equivalence between macro and micro
energy measurements, being a necessary condition for a heteronegenous composite homogenization.

u|∂V = εAijxj (2)

Figure 4. Boundary conditions scheme for a pure-extension state

2.3 Stiffness Tensor and Engineering Constants

Let the symbol 〈·〉 represent a quantity averaged in volume. The stress-strain relationship of averages is

〈σij〉 = Cij〈εij〉 (3)

In the current work, the Cij in eq. (3) is considered with 36 independents terms. Following Zohdi’s methodology
[12], six independent εAij are applied in the model, as illustrated in Fig. 4, through eq. (2). Each εAij applied in
model, used together with eq. (3), generates six linear set of equations. The six εAij cases, consequently, allow the
complete computation of Cij terms. Finally, the engineering constants are obtained through the compliance matrix
Sij .

3 Results

3.1 Mesh Influence in Stiffness Matrix

Firstly, one evaluates the effect of mesh size in mechanical properties. The finite element analysis was carried
out in ANSYS APDL [15], with a 3-D 10-Node Tetrahedral Structural Solid element. The mesh is generated by
TexGen [9, 11], through a general seed parameter, which corresponds to element edge size. The stiffness tensorCij
is obtained as explained in subsection 2.3. The Frobenius norm of Cij is evaluated in each mesh size, represented

1Nomenclature used by [13]. However, such boundary condition is also called Kinematic Uniform Boundary Conditions (KUBC), as stated
in Hazanov [14].
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by |C| in Fig. 5. The |C| was normalized by |C|avg, which is the average of |C| in computed in reference of all
meshes. The largest difference in Fig. 5 is lower than 2.80% among the evaluated meshes. Comparing to |C|avg ,
the largest deviation is 1.52%. Due the small advantage of using the finest meshes, the seed size applied in this
study is 0.05.
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|/|
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Figure 5. Mesh size influence in stiffness matrix |C|

3.2 Comparison with results from literature

The introduced methodology is then compared with Barbero’s numerical results [7] and Scida experimental
and analytical results [10]. The boundaries conditions applied in this work, as discussed by Espadas [13], over
estimated E1 and E2 in general, as showed in table 3a and 3b.

Barbero [7] applied periodic boundary conditions (PBC), which is a distinct set of boundary conditions from
those applied herein (explained in eq. (2)). PBC estimates the properties of an infinite periodic structure, assuming
that both strain and stress are periodic. Such approach requires a full coupling between the degrees of freedom
of nodes lying on boundaries, as proposed by Luciano [16]. Another requirement of PBC is mesh periodicity.
The main advantage of PBC approach is to simulate strain and stress fields of an infinite body by just modeling
one RUC. On other hand, the methodology applied here only imposes a set homogenized strains fields without
any periodicity requirements. It has a great advantage of using a mesh-free approach in the model, but the results
were slightly different from experimental data, as showed in table 3a. However, the model could not reproduce the
geometry with precision. The table 2 shows that the current model reached V αm with 16.5% of difference from Vm,
which influenced the results, as the eq. (1) is not exact.

In contrast, the results from this work showed good agreement with experimental data for 2/2 Twill E-glass
twill weave, as can be see in table 3b. In this particular case, it was possible to reach a V αm closer to Vm from
experimental data. The geometry, therefore, could be reproduced with quite good accordance with Scida [10] data,
leading to a stress distribution that was closer to what is encountered in real woven-fibre.

3.3 Resulting stress fields in woven composite

One of the main advantages of developing a numerical tool to generate the stiffness matrix of a RUC / RVE is
the possibility of observing the stresses on the domain. However, rather than evaluating the absolute stress value,
it is important to study the stress relationships between resin and strand regions. In both Fig. 6 and Fig. 7 the
stress field σxz in resin increases in regions where the distance between strands decreases. The stresses in this
areas are 4 times greater to the center of resin elements group. It is clear that this stress jumps follow the weave
pattern, as demonstrated in Fig. 6 and Fig. 7. Such stress increase does also appears in strands elements group.
The stresses jumps, however, are less severe (∼ 200% larger). The maximum stress, in other hand, is dominant in
strand elements. In both cases, the stress peak is larger – about 200% – in comparison to the resin elements group.
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Table 3. Comparison with experimental and numerical studies

(a) E-glass/vinylester plain-weave

Properties Present work Barbero [7] Scida [10]

E1 [Gpa] 26.135 24.439 24.8

E2 [Gpa] 26.718 24.534 24.8

E3 [Gpa] 10.872 10.253 8.5

G12 [Gpa] 5.132 5.515 6.5

G23 [Gpa] 3.043 3.151 4.2

G31 [Gpa] 3.335 3.159 4.2

ν13 0.366 0.382 0.28±0.07

ν23 0.305 0.380 0.28±0.07

ν12 0.141 0.126 0.11±0.01

(b) 2/2 twill E-glass/epoxy woven fabric

Properties Present Work Scida [10]

E1 [Gpa] 19.223 19.2±0.2

E2 [Gpa] 19.337 19.2±0.2

E3 [Gpa] 8.290 10.92∗

G12 [Gpa] 3.464 3.6±0.1

G23 [Gpa] 2.071 3.78∗

G31 [Gpa] 2.222 3.78∗

ν13 0.440 0.33∗

ν23 0.392 0.33∗

ν12 0.134 0.13±0.007
∗ Analytical solution results from Scida [10]
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Figure 6. Stress σxz distributions of E-glass/vinylester plain-weave under εxz strain state
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Figure 7. Stress σxz distributions of 2/2 twill E-glass/epoxy weave under εxz strain state
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4 Conclusions

In this article, Uniform Displacement Boundary Conditions (UDBC) were applied in order to obtain mechan-
ical properties of two woven-fibre composites: E-glass/vinylester plain weave and 2/2 Twill E-glass epoxy weave.
The properties obtained showed good agreement with results from literature. It was verified that both boundary
conditions and geometry had influenced the results. Therefore, it must be further investigated how to overcome the
difficulty of real woven-fibre geometry representation, as well how others boundaries conditions types can perform
the same task. An important point highlighted by the present work is that the use of Classical Laminate Theory
hides loss of information that happens due to the reduction of the constitutive tensor, and many analytical models
are based on it. In the literature, these models showed good performance for in-plane mechanical properties, al-
though they present inferior performance for out-of-plane properties. As a consequence, further investigation may
be carried applying distinct plate theory in analytical models. Namely, first- or higher-order shear deformation
plate theories could possibly lead to good results in out-of-plane properties.
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