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Abstract: The lack of measurement of precipitation in large areas using fine-resolution data is a
limitation in water management, particularly in developing countries. However, Version 6 of the
Integrated Multi-satellitE Retrievals for GPM (IMERG) has provided a new source of precipitation
information with high spatial and temporal resolution. In this study, the performance of the GPM
products (Final run) in the state of Paraná, located in the southern region of Brazil, from June 2000 to
December 2018 was evaluated. The daily and monthly products of IMERG were compared to the
gauge data spatially distributed across the study area. Quantitative and qualitative metrics were
used to analyze the performance of IMERG products to detect precipitation events and anomalies.
In general, the products performed positively in the estimation of monthly rainfall events, both
in volume and spatial distribution, and demonstrated limited performance for daily events and
anomalies, mainly in mountainous regions (coast and southwest). This may be related to the
orographic rainfall in these regions, associating the intensity of the rain, and the topography. IMERG
products can be considered as a source of precipitation data, especially on a monthly scale. Product
calibrations are suggested for use on a daily scale and for time-series analysis.

Keywords: remote sensing in hydrology; precipitation; performance evaluation; GPM

1. Introduction

Precipitation plays a fundamental role in the hydrological cycle. It is considered the
main water source input in the soil water balance and runoff and is used as an input
in hydrological and climatological modeling. In the management of water resources,
knowledge of the volume and intensity of precipitation is essential for the prediction
of floods and droughts, the distribution of water for urban and industrial uses, and the
planning of irrigation in agriculture and hydraulic infrastructure.

Precipitation can be measured by gauges, sensors onboard satellites, and radars [1–3].
Precipitation gauges are fundamental instruments, and their observations are considered
as a reference in many studies [4]. However, to represent spatiotemporal variability of
intensity and type of occurrence of precipitation, a dense measuring network is necessary
with long-period information, which unfortunately is not the reality in many regions of
the world [5]. In South American countries, monitoring by gauges is limited in terms of
infrastructure, maintenance, density, and frequency of observations [6,7].

Regarding indirect methods, weather radars provide precipitation estimates with high
spatial and temporal resolution but have limited accuracy in mountainous regions and cold
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climates [5,8]. On the other hand, satellite estimates of precipitation provide vast spatial
and temporal coverage and are freely available. Over the last two decades, several satellite
precipitation products have been developed, such as Tropical Rainfall Measuring Mission
(TRMM) [9]; Climate Prediction Center Morphing Method (CMORPH) [10]; Global Satellite
Mapping of Precipitation (GSMaP) [11]; Climate Hazards Group Infrared Precipitation with
Stations (CHIRPS) [12]; and Multi-Source Weighted-Ensemble Precipitation (MSWEP) [13].

The TRMM Multi-satellite Precipitation Analysis (TMPA) algorithm combines pre-
cipitation estimates from satellite systems with data measured on the Earth’s surface, to
provide a calibrated final product and results in the “best” satellite estimate [14]. A succes-
sor to TRMM, the Global Precipitation Measurement (GPM) was launched in 2014, on a
joint mission between NASA (National Aeronautics and Space Administration) and JAXA
(Japan Aerospace Exploration Agency) and continues to offer products to this day. The
GPM constellation consists of the first Dual-frequency phased array Precipitation Radar
and a GPM Microwave Imager, which represent the most advanced versions compared to
the Precipitation Radar (PR) and the TRMM Microwave Imager (TMI), onboard the TRMM
satellite [15]. Relevant improvements in the GPM products include an increase in latitudi-
nal coverage (global coverage of 60◦ N/S) and the detection of heavy rain, light rain, and
snow [5,6]. In the era of GPM, the Integrated Multi-satellite Retrievals for GPM (IMERG)
algorithm operates, intending to calibrate, unite, and interpolate satellite precipitation
estimates with data from gauges [16].

Many studies have analyzed and compared the TRMM data to those obtained by
gauge stations [6,17–20], which allowed for advances in the application of remote sensing
in determining the volume and behavior of precipitation in several countries. Given that
precipitation represents the most important parameter of the hydrologic cycle, it can directly
affect physical, chemical, and biological processes. The spatial and temporal distribution
of the precipitation is key for the understanding of hydrologic responses in watersheds,
for example, runoff, streamflow, and flooding. Thus, the accuracy of precipitation data
is essential for the good performance of hydrological models and inconsistencies in its
estimates can negatively affect the hydrologic investigation.

Previous studies have reported some limitations of the IMERG products [21] related
to its low performance in estimating the precipitation over North China, where snowfall
events can affect the precipitation estimates from satellite products. The authors also
reported the lower accuracy of the satellite precipitation estimates in areas of high altitudes
or in arid and semiarid climates. Evaluating the IMERG precipitation compared to ground-
based data, [22] observed a tendency for restimating the precipitation using the sub-daily
products and overestimating the maximum rainfall in monthly variations over the Indian
subcontinent. In a seasonal analysis, [21,23] found that IMERG performed better in warm
and wet seasons. In a subtropical climate, [24] concluded that IMERG performed well
for detecting precipitation events with a limitation in representing the amount of rainfall
at sub-daily scales, while in tropical climates [25,26] demonstrated that it is essential to
calibrate the IMERG products to reduce random and systematic errors.

On the other hand, studies comparing the IMERG to different satellite products,
highlighted the better accuracy of IMERG in estimating precipitation. [27] found better
performance of IMERG in estimating precipitation on a global scale compared to TMPA
products. The better performance of IMERG’s products was also observed by [28] concern-
ing the TMPA in estimating precipitation in all regions of Brazil. Recently, [29] observed
better performance of IMERG-Late version 6 products compared to IMERG-Early, GSMaP-
NRT, GSMaP-MVK, TMPA-RT, and PERSIANN-CCS products on a global scale The better
performance of IMERG in relation to other remote sensing products, reported in previous
studies, supports the analysis of the performance of its products in different climates and
geographic scales.The quality of IMERG products was improved over time by increasing
the number of passive microwave samples [30]. The latest version of the IMERG algo-
rithm (version 6), made available to the public in October 2019, combines the reanalysis of
precipitation estimated by satellites between 2000–2014 by TMPA and in the subsequent
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period by GPM, resulting in 19 years of information so far. Its products have a spatial
resolution of 0.1◦ and a 30-min temporal resolution [31]. In this way, trend analysis and
analysis of extreme events could be carried out with greater accuracy. In addition, the
performance of climatological and hydrological models could be improved with greater
detail of recent precipitation information. Thus, studies evaluating the performance of
IMERG version 6 products are important and promising at regional scales. Brazil is a
country of continental dimensions, with different micro-climates and rainfall patterns
throughout its territory. Among its states, Paraná, located in the south of the country in the
Paraná River Basin region, is the most important socio-economically hydrologic region in
Brazil [32]. This basin has the largest hydroelectric infrastructure in the country, which is
responsible for approximately 44.6% of the electric energy production and transmission
system in Brazil [33]. Thus, the determination of precipitation in this region is essential for
forecasting with hydrological and climatological monitoring models. Also, it is important
for this region to detect anomalies related to excess or deficit of precipitation, which can
compromise the supply of energy and hydraulic structures.

Thus, the purpose of this study is to provide a comprehensive assessment of IMERG
(version 6) precipitation estimates over a subtropical region, specifically the objectives of
the study are (1) to evaluate the performance of IMERG’s daily and monthly products,
and (2) to evaluate IMERG’s performance in detecting monthly anomalies in Paraná
using observations from a dense network of precipitation gauges. This study is expected
to provide a reference for the use of IMERG products in monthly and daily temporal
resolutions and further contribute to improvements of the satellite precipitation algorithm.
The remainder of this article is organized into the following topics: Section 2 describes the
study area, the precipitation data sets used, the metrics used, and the detailed methodology;
Section 3 presents the main results and the discussion, and Section 4 reports the main
conclusions of the study.

2. Material and Methods
2.1. Study Region

The study area is the state of Paraná in the south region of Brazil (Figure 1). Paraná
occupies an area of 199,315 km2 and covers 399 municipalities [34]. According to the
Köppen classification, carried out by [35], the state is in the transition from tropical and
subtropical climates where the humid subtropical Cfa (hot summer) and Cfb (warm sum-
mer) predominate across 61.7% and 37.0% of the state, respectively. Because of its extensive
area, there is a great diversity in terms of climate, soil types, vegetation, and agricultural
use. The main biomes that constitute the state are the Atlantic Forest and the Cerrado.
The predominant crops are maize, soy, and sugar cane. Most of Paraná’s relief is found at
altitudes above 600 m (Figure 1), subdivided into four Morpho-sculptural Units [36].
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Precipitation in Paraná varies spatially, with an annual average between 1300–2200 mm.
Summer is the season with the highest rainfall in South America, including the subtropical
region [37,38]. The geographic mesoregions of Paraná, demarcated by the Brazilian Institute
of Geography and Statistics (IBGE) and shown in Figure 2, were considered for the regional
analysis of the performance of the IMERG products over the study area.
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Figure 2. Mesoregions of Paraná state demarcated by the Brazilian Institute of Geography and
Statistics (IBGE).

2.2. Data
2.2.1. Observed Data: Ground Gauge

The precipitation data used were acquired from 511 gauges (Figure 1) of the National
Water Agency (ANA), through the Hidroweb Portal (http://www.snirh.gov.br/hidroweb/
serieshistoricas, accessed on 1 March 2020), which is available to the public after consistency
checks. The analysis of consistency of precipitation data is aimed at the identification
and correction of errors related to data collection, as well as filling gaps in the monthly
precipitation series. All available daily data were used for analysis on a daily scale, while,
for analysis on a monthly scale, monthly totals were excluded when there were more than
5% of daily failures in the corresponding month. The daily data were accumulated (totaled)
to produce the monthly information. The analyzed time series was from 1 June 2000 to 31
December 2018.

2.2.2. Satellite Data: IMERG

Precipitation data from remote sensing were acquired as daily and monthly tem-
poral resolution and 0.1◦ spatial resolution, from the satellite constellation of the GPM,
IMERG version 6 product, distributed by Goddard Earth Sciences Data and Informa-
tion Services Center Distributed Active Archive Center (GES DISC DAAC), available
online on http://mirador.gsfc.nasa.gov/com, accessed on 15 March 2020. The daily and
monthly products “Final Run” were used, and the time series analyzed was coincident
with that of the gauges (1 June 2000 to 31 December 2018). The IMERG algorithm operates
to intercalibrate, merge, and interpolate all satellite microwave precipitation estimates,
microwave-calibrated infrared estimates, gauge observations, and other data from po-
tential sensors from the TRMM and GPM eras [31]. The “Final Run” product includes
microwave-infrared estimates without gauge adjustment and the calibrated product based
on the Global Precipitation Climatology Centre monthly gauge analysis [30]. In general,
the “Final Run” products present bias correction and more accurate results than the other
products supplied in near real-time (Early and Late Run) [39].

http://www.snirh.gov.br/hidroweb/serieshistoricas
http://www.snirh.gov.br/hidroweb/serieshistoricas
http://mirador.gsfc.nasa.gov/com


Remote Sens. 2021, 13, 906 5 of 18

2.2.3. Performance Analyses

The IMERG products were compared to ground-based gauge using statistical indices.
For this, the IMERG data were sampled at the exact location of the gauge stations. The
performance of the IMERG products assessed using the coefficient of determination (R2),
the Kling-Gupta efficiency index (KGE), the error skewness (SK), the mean error (MBE),
the mean absolute error (MAE), and the root of the mean square error (RMSE). The data
qualitative assessment was performed using the categorical skills metrics: probability of
detection (POD), false alarm ratio (FAR), and critical success index (CSI). Such metrics
are used in several studies to assess the performance of satellite products [19,39–41]. The
equations for the metrics used are shown in Table 1. The rainfall threshold was considered
as amounts higher than 1 mm day−1, as used by [42].

Table 1. Summary of statistical indices used to evaluate the satellite precipitation products.

Index Unit Equation * Best Value

Determination coefficient (R2) - R2 =
{∑n

i=1(Pi−P)(Oi−O) } 2

∑n
i=1( Pi−P)

2
∑n

i=1(Oi−O)
2

1

Mean error (MBE) mm MBE = 1
n

n
∑

i=1
(Pi−Oi) 0

Mean absolute error (MAE) mm MAE = 1
n

n
∑

i=1
|Pi−Oi| 0

Root of the mean square error (RMSE) mm RMSE =

√
1
n

n
∑

i=1
(Pi−Oi)

2 0

Kling–Gupta Eficiency (KGE) - KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 1

Coefficient of skewness (SK) - SK =
3 ( P–Mo)

σ
0

Probability of detection (POD) - POD = Hits
Hits+Misses 1

Critical success index (CSI) - CSI = Hits
Hits+FalseAlarm+Misses 1

False alarm ratio (FAR) - FAR = FalseAlarm
Hits+FalseAlarm 0

* where, Oi is the observed data of gauges of order i; Pi is the estimated order data (IMERG) of order i; r = rPearson, α is the ratio between
simulated variance and observed variance, and β is the ratio between simulated mean and observed mean; P is the average of the estimated
data (IMERG); O is the average of the observed data (gauges); Mo is the median error of satellite precipitation estimates; Hits are the days
when IMERG and the station recorded rain; FalseAlarm are the days when IMERG recorded rain, but the gauges did not; Misses are the
days when IMERG did not register rain, but the gauges did.

R2 measures how much of the variability of one variable can be explained by the other
variable. KGE is an objective index which assesses error in terms of correlation, variability,
and bias. MBE is a simple average of the error and informs if the estimate on average
over- or underestimate the observed data. MAE and RMSE are error metrics in the same
units as the observed variable and represent the average magnitude of the error. In this
case, RMSE penalizes large errors by squaring the differences between those observed
and those estimated. SK represents the distributions of errors. A positive [negative]
SK value indicates a median error is smaller [larger] than the mean error, i.e., there is a
higher frequency of errors smaller [larger] than the mean error. If the mean error (MBE)
is centered close to 0, a positive [negative] SK value can indicate a higher frequency of
underestimations [overestimations]. Errors were calculated by subtracting observed from
predicted values. POD indicates the fraction of rain events detected correctly with the total
number of events detected by satellite; FAR measures the fraction of occurrences of unreal
events among the total number of events detected by satellite; CSI denotes the proportion
of rain events correctly detected by satellite to the total number of observed events.

Additionally, the IMERG’s performance for estimating the precipitation was evaluated
using a confusion matrix, for the daily and monthly products. The columns in this matrix
shows the frequency distribution of IMERG precipitation amount within each ground
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gauge precipitation amount class. In the perfect scenario, the matrix should be antidiagonal
and present a value equal to 1 along the antidiagonal line and 0 for the all the other
elements [43].

2.2.4. Analysis of Anomalies

For the analysis of anomalies, the monthly values of the gauges and the monthly
products of IMERG were used. The investigation of the volume of precipitation for each
month concerning its average (2000–2018), was carried out by calculating the normalized
anomalies of precipitation with standard deviation (Equation (1)) [44].

XAnomaly=
(X i − X2000–2018)

σ2000–2018
(1)

where, Xi is the month of the year analyzed, X is the monthly average of the 2000–2018 series,
and σ is the monthly standard deviation of the time series. The mean (X) and standard
deviation (σ) were calculated using Equations (2) and (3), respectively.

σ =

√
∑n

i=1
(
X− X

)2

n
(2)

X =
∑n

i=1(X i)

n
(3)

Significant anomalies (95% confidence interval) were XAnomaly values ranging between
±1.96 as adopted by [45–47]. Thus, a XAnomaly > |1.96| gives us a 95% confidence to assume
the observations as an anomaly, i.e., different than the historical mean.

A schematic diagram is presented in Figure 3, with the data and performance for the
overall evaluation process of this study.
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3. Results
3.1. Temporal and Spatial Distribution of Precipitation

Figure 4 shows the average monthly precipitation (mm month−1) observed by gauges
and estimated by IMERG, between June 2000 and December 2018. The volume and spatial
distribution of observed and estimated precipitation were consistent over all months of the
year. The rainfall distribution density curve, which relates the precipitated volume to the
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observation frequency, had a similar distribution of the observed data from the gauges and
those estimated by IMERG.
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The highest frequency of precipitation observations occurs between 125–200 mm month−1

from October to March which is the wet season and is spatially well distributed in Paraná
(Figure 4). In January and February, precipitation above 300 mm month−1 occurs in the
coastal area. In October, the same behavior is observed in the southwest of the state.
The IMERG data overestimated the high values of monthly precipitation recorded by the
gauges, presenting a higher frequency of the monthly precipitation peaks in the wet season
(Figure 4).

The dry season occurs between April and September, during which the precipitation
decreases from the south to the north across the state, towards the Tropic of Capricorn,
with a greater frequency observed between 0–125 mm month−1. In this period, the months
of July and August stand out as the driest months of the year, reaching a frequency of
observation close to 0 mm month−1.

3.2. Daily and Monthly Evaluation of IMERG Products

The relationship between IMERG daily and monthly precipitation and the data ob-
served by gauges are presented in Figure 5. For the daily values, it is observed that IMERG
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overestimates the values, with a low coefficient of determination (R2 = 0.19). At the monthly
scale, precipitation values are closer to those observed, with R2 of 0.73.
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Based on the general summaries of the metrics used in this study, presented in Figure 6,
IMERG showed better performance for estimating monthly precipitation, compared to the
daily product. The high KGE value (0.81) indicates a strong correlation between the monthly
products of IMERG and the precipitation gauge data, which shows its ability to quantify
monthly precipitation in the humid subtropical region. A lower accuracy is observed for
daily products (KGE = 0.43), indicating a lower correlation between satellite precipitation
data and pluviometers. This is due mainly to the high variability of precipitation over
small areas on a daily scale. Our findings indicate that both IMERG products (daily and
monthly) overestimate the observed precipitation, with a bias (MBE) of 0.19 and 5.98 mm,
in the daily and monthly products, respectively. Regarding the errors, IMERG presented
MAE of 5.64 and 35.90 mm and accuracy (RMSE) of 13.10 and 50.12 mm for daily and
monthly products, respectively.
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Regarding the ability to detect rain at the monthly resolution, IMERG had a nearly
perfect performance, with POD equal to 1, CSI of 0.99, and FAR of 0.01 (very close to ideal,
0). In a daily resolution, IMERG demonstrated a limited performance to detect rain events,
with CSI of 0.39, a detection probability of 64%, and the risk of false alarm of 50%.

To better understand the accuracy of the IMERG products in different ranges of
precipitation observations, a confusion matrix is shown in Figure 7. At the daily scale,
the IMERG generally underestimate rainfall events, as seen by a large number of rainfall
events greater than 1 mm) predicted in the range 0–1. This agrees with the positive SK
value at daily scale (Figure 6). Considering the positive values of the error metrics showed
in Figure 6 (MBE, MAE and RMSE), the positive errors of IMERG daily products could
offset its negative errors.
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In contrast, monthly precipitation estimates of the IMERG generally overestimate
events as observed in gauge stations (negative SK in Figure 6). Only for months with
higher rainfall rates (>200 mm) the IMERG product underestimates observed data. The
underprediction at both daily and monthly scale can be attributed to the IMERG spatial
and temporal resolution. Heavy rainfall events usually occur in shorter time intervals and
small areas. Thus, sparse heavy rainfall events can be underestimated in the daily scale
and not be accounted for in the monthly scale, even though the “Final run” relies on the
calibration using monthly observations.

The spatial distribution of the metrics for the Paraná regions (Figure 2) at daily and
monthly scale are summarized in Table 2. Less accuracy was observed in the Southwest,
West, Central-West, and Metropolitan regions in daily and monthly products.

Table 2. Summary of error metrics on a daily and monthly scale of the satellite precipitation products
in Paraná regions. The metrics were calculated based on mean areal precipitation.

Region
RMSE MAE MBE RMSE MAE MBE

(mm day−1) (mm month−1)

Central-South 13.70 6.19 0.02 48.50 36.30 0.83
Central-West 13.40 5.79 0.14 51.20 37.80 4.44
Central-East 11.90 5.24 0.18 43.20 31.90 5.52
Metropolitan 13.10 5.99 0.44 56.90 41.80 13.20

Northwest 12.40 5.14 0.31 50.50 36.90 9.37
Central-North 12.20 5.17 0.14 44.40 32.10 4.25
Pioneer-North 11.30 4.66 0.26 46.90 33.40 7.75

West 14.30 6.12 0.08 55.40 39.50 2.38
Southeast 12.60 5.58 0.31 41.60 31.10 9.41
Southwest 14.80 6.50 0.17 48.20 35.80 5.54
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The spatial distribution of the error metrics for estimating daily and monthly rainfall
by IMERG, for each gauge in the state of Paraná, are shown in Figure 8. Corroborating
the results presented in Table 2, the MBE and MAE values are spatially well distributed in
the study area with close values to the averages shown in Figure 5, for daily and monthly
data. However, less accurate metrics were observed in the coastal areas (eastern part
of the state), where IMERG presents, greater disagreements in some stations. Since the
IMERG pixel covers an extensive area, large variability in precipitation is masked in areas
where orographic effects are prevalent. This is evident near the coastal region for the daily
monthly products and over the southwest region for daily products where there are abrupt
changes in elevation (Figure 1). The SK presented homogeneous spatial distribution in a
daily scale, and a greater number of negative values over the west region (ranging between
0 and −0.5), which suggest an overestimation of precipitation in this area. The KGE was
also homogeneous across Paraná, with values close to 0.43 for the daily and 0.81 for the
monthly products, as shown in Figure 8.
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The distribution of POD, CSI, and FAR (Figure 9) showed good performance of
IMERG’s products in detecting monthly rain events throughout Paraná, with values very
close to ideals in the entire area. The performance of IMERG’s products in estimating daily
rainfall also was homogeneous across the state area, with the worst performance on the
coast, in agreement with the statistical metrics.
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Concerning the daily and monthly RMSE, higher values are found in the southwest
and coastal areas of Parana, which correspond to areas with high volumes of rain in the
autumn and summer, respectively, and the highest volumes of annual rainfall in Paraná
(Figure 4). Thus, the precipitation estimates by IMERG performed better in the drier areas
of the state. This behavior is better confirmed by a seasonal assessment of the errors. In
Figure 10 the performance metrics for the monthly IMERG product grouped by seasons are
presented. For example, IMERG showed better metrics in the winter (JJA = June, July, and
August), which is the period with lowest rainfall rates. Likewise, the monthly predictions
during autumn (MAM = March, April, and May) and spring (SON = September, October,
and November) showed better scores than during summer (DJF = December, January,
and February).

The orographic effect of the coastal region is not captured in any of the seasons.
Only in winter (JJA) the errors were smaller because of the lower rainfall rates. Higher
RMSEs were already expected during the wet season, because of the higher magnitude in
rainfall rates. However, summer (DJF), also showed the highest positive bias, i.e., IMERG
overestimates rainfall observed in gauge stations. The SK presented an overall tendency
of median errors higher than the mean error (negative SK). This can be attributed to the
IMERG product generally overestimating monthly rainfall rates (Figure 7) and resulting in
negative SK, especially in seasons or regions with MBE closer to 0.

3.3. Rainfall Anomalies between 2000 and 2018

The spatial distribution of the performance of IMERG’s monthly resolution prod-
ucts in detecting anomalies observed by the gauges is shown in Figure 11. In general,
IMERG showed a limited performance for detecting anomalies across the state, consid-
ering +/−1.96 monthly standard deviation. The best performance was observed in the
south-central region of Paraná, with POD above 0.75, CSI above 0.50, and FAR below 0.50.
The worst performance occurred in the northeast region, the region with the lowest annual
rainfall, and in the coastal and southwest regions, which correspond to the regions with
the highest annual rainfall in the state (Figure 1), agreeing with the worst performance of
the daily and monthly product metrics (Figure 8).
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In the analysis of the boxplot of the metrics (POD, CSI, and FAR) used to assess the
performance of IMERG in detecting anomalies, a relative deviation from the mean and
extreme values of CSI and FAR were observed (Figure 11). Therefore, eight stations were
selected randomly, in different regions of the state, to detect anomalies by the gauges and
by IMERG, between the years 2000 and 2018, shown in Figure 12.

Positive anomalies were detected by IMERG monthly products and gauges stations in
all regions. In general, the gauges stations detected the anomalies with greater magnitude
compared to those estimated by remote sensing. On the other hand, only IMERG detected
negative anomalies, for example in the gauge stations 2349036, 2449040, and 2452062.
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4. Discussion
4.1. Temporal and Spatial Distribution of Precipitation

During the summer months, the Paraná State region typically receives a humidity
air mass that moves from the Amazon to the southwestern Atlantic region, defined as
the South Atlantic Convergence Zone (SACZ) [48], which is directly connected to the
South American monsoon system along a northwest–southeast axis. The precipitation
observed in the southwest region in October, on the other hand, is related to convective
and frontal complexes [32,49]. The definition of the summer as the wet season and the
spatial and temporal distribution in the study area presented here is corroborated by
previous studies [32,49–51], confirming the precipitation estimates by IMERG through
remote sensing approaches.

4.2. Daily and Monthly Evaluation of IMERG Products

Intensity and volume on a daily scale provide important information in hydrolog-
ical applications, such as frequency analysis, daily precipitation event detection, and
irrigation planning. The overestimation by IMERG daily products compared to ground
data was observed by [29] when evaluating IMERG, GSMaP, and PERSIANN products
over the whole globe (~26, 44, and 23% of bias, respectively). However, the authors ob-
served higher correlation for IMERG products (~0.6) compared to GSMaP and PERSIANN
(~0.5 and 0.4, respectively). Also, [28] related the overestimation of TMPA, IMERG-F,
and GSMaP over South Brazil, but a slightly lower values of RMSE and mean error
(0.86 and 0.09 mm day−1, respectively) for GSMaP compared to TMPA (1.31 and 0.99 mm
day−1, respectively) and IMERG (1.31 and 1.01 mm day−1, respectively). Regarding the
underestimation of light precipitation and overestimation of heavy precipitation by IMERG
presented in this study, [22] observed a tendency of IMERG daily products underestimate
the frequency of rainfall events (<1 mm day−1) and overestimate the frequency of intense
rainfall events (>10 mm day−1) across the Tibetan Plateau region. In this way, due to the
limited performance of the daily products, the use of this data requires attention by the
user and previous calibrations of the products at this temporal scale.
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Regarding the comparison of the precipitation estimate on a monthly and daily
scale, [18] also observed better performance of the monthly estimates of the precipita-
tion when analyzing the TRMM products in Brazil. According to the authors, the monthly
estimates are less affected by systematic errors than daily estimates. The IMERG products
are calibrated using monthly data of in-situ gauging stations of the Global Precipitation
Climatology Centre (GPCC) network [52], which can also explain the better performance
of products on a monthly basis as compared to the daily scale. The better performance
of the monthly precipitation product throughout Brazil also was confirmed by [20]. The
authors observed an average of CC of 0.93 and RMSE of 23.20 mm when comparing IMERG
version 5 in the state of Paraná. The better performance observed by [20], compared to
that found in this study, may be due to the methods used for interpolation of observed
capture data when assimilating them to the IMERG forecast fields. Typically, interpolation
methods do not capture a large spatial variability of rain and the estimation is complex
due to the spatial discontinuity [53]. The interpolation leads to the smoothing of high
and low peaks of precipitation in a region, improving the relationship between observed
and modeled values. With respect to the performance of IMERG for estimating seasonal
precipitation, [22] showed different performance of the estimative in dry and wet seasons
over sub-regions of Mainland China. The authors showed greater correlation of IMERG’s
products and ground gauges over the dry season for two sub-regions, as observed in this
study, and the opposite for the other six. Thus, the investigation of the performance of
satellites products in a regional scale is very relevant.

However, the IMERG overestimated the rainfall over regions of heavy rainfall as well
as moderate rainfall. In coastal areas, even the difference of a short distance between the
ocean and coastal mountains can induce failure of the satellite sensor to discriminate be-
tween the adjacent pixels of land and water, generating signal contamination and resulting
in poor performance in estimating precipitation [17]. The limitation of the precipitation es-
timates by satellites (Global Precipitation Climatology Project–GPCP) in orographic regions
was also observed in the Andes by [54]. According to the authors, the spatial resolution
(2.5◦) and dependence on passive microwaves and infrared precipitation recoveries used
by satellites may imply the worst performance of representing precipitation in locations
with orographic-type precipitation. Despite presenting higher spatial resolution (0.1◦),
IMERG products also showed less accuracy for estimating rainfall in orographic regions.

The estimative of the precipitation in the mountainous region tends to be underesti-
mated towards the ocean (east area), where orographic rains occur. On the opposite side,
after the sudden elevation change, it tends to overestimate the precipitation. Corroborating
these results, [55] also observed trends of underestimation of precipitation by the TRMM
(2A25 version 7) product in regions of orographic rainfall and overestimation in regions
of valleys or flat areas in the southeastern Appalachians. According to the authors, this
behavior occurs due to the spatial resolution and the correction of soil disorder made by
the satellite. Another possibility for underestimating precipitation in the coastal region is
that precipitation occurs while the top of the cloud is still relatively warm. Satellites are
unable to fully identify rain, as heat exceeds infrared thresholds and the lower amount of
ice in the air makes detection by passive microwave sensors difficult, and thus satellite
products detect only part of the precipitation [2,56,57].

In addition, in mountainous regions, precipitation is extremely variable and there are
changes in rainfall distribution over short distances [58], which can result in a represen-
tation of precipitation with less accuracy in these areas, since satellite products have the
limitation of estimating precipitation considering the pixel size, when compared to gauges
that measure the precipitation in-situ.

In the coastal area, the highest peak of precipitation occurs in the summer and is related
to the predominant role of the Atlantic Tropical Mass [59], which finds the mountain as a
physical barrier, culminating in orographic rains, with great volume over a short duration
interval. Such an event may not be fully captured by satellites, as observed by [60] on
the west coast of the United States, in the analysis of the precipitation of six satellite
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products (AFWA, TMPA–3B42, TMPA–3B42RT, CMORPH, PERSIANN, and NRL) and [33]
in China, with IMERG version 5 products. Despite notable improvements in version 6 of
IMERG’s algorithm over previous versions as detailed by [30,58] observed lower accuracy
of IMERG version 6 for estimating rainfall on the coastline of the Adriatic Sea in Europe,
due to complex orography terrain. Additionally, [61] related the limitation of estimating
precipitation in the Ebro River basin in Spain, in an area where the weather was dominated
by the advection of wet maritime air masses. Thus, the measurement of the precipitation
over coastal locations continues to be a challenge and deserves further research.

4.3. Rainfall Anomalies between 2000 and 2018

The northeastern area of the state is concentrated in the central part of the Paraná
River basin, close to the climate transition line (subtropical and tropical) that separates
several active climate systems in an area of greater atmospheric instability [32]. Thus, the
precipitation estimate by the satellite may present a greater limitation (overestimation or
underestimation) in this area due to atmospheric conditions.

As previously mentioned, high-intensity orographic rainfall occurs along the coast,
which is estimated with less accuracy by satellite-based algorithms, resulting in poor
performance in detecting anomalies. The southwestern region of Paraná has favorable
conditions for the formation of severe storms and hail, which occur very quickly [62–64].
In September and October, the highest amounts of hail formation are observed in days
per month [64], which exactly coincides with the period of greatest rainfall in the region
(Figure 3). Thus, as on the coast of Paraná, the sensitivity of IMERG in detecting anomalies
in this region may have lower performance compared to other regions.

According to [38], positive anomalies in rainfall can occur during the summer under
conditions of El Niño Southern Oscillation (ENSO) in the south of Brazil. Over the years
considered in this study, two El Niño events classified as “moderate,” between 2002–2003
and 2009–2010, and one classified as “strong,” between 2015–2016 (Golden Gate Weather
Services, 2020) occurred. During these periods, positive anomalies were detected by
IMERG, and gauges in all stations shown in Figure 12.

In the other years, IMERG and gauges detected some anomalies in all nine sta-
tions analyzed. However, only IMERG detected negative anomalies. [39] reported that
IMERG version 5 products tend to underestimate precipitation amounts for rainfall rates
40–75 mm day−1, but overestimate precipitation amounts for high rainfall rates
(>80 mm day−1). Thus, the anomalies detected in this study by the satellite could oc-
cur due to the under or overestimation of rain events. Thus, the use of IMERG products in
anomaly studies should consider their variable performance for this purpose, requiring
calibrations and prior data assessments.

5. Conclusions

In this study, the performance of IMERG version 6 products in estimating daily and
monthly precipitation were evaluated in comparison with the data observed by 511 gauges
distributed in the state of Paraná in Brazil. The results showed better metrics for monthly
precipitation. In summary, the main findings of this study were as follows:

i. The volume and spatial distribution of observed and estimated rainfall are consis-
tent across all months of the year in the monthly products of IMERG version 6, with
similar rainfall distribution density curves.

ii. IMERG version 6 has a good relationship between precipitation estimates and those
observed by gauges on the monthly time scale, with high correlation and accuracy,
and low errors in statistical metrics. However, a lower performance was observed
in estimating rainfall in regions with abrupt changes in topography along the coast,
related to the lower accuracy when estimating orographic affected rainfall.

iii. The monthly products of IMERG version 6 performed very close to perfect consid-
ering qualitative assessments for the detection of rainfall events in this time scale
throughout the study area.
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iv. The daily estimates of IMERG version 6 were limited in representing the rainfall
observed by the gauges, with little correlation between the data and low values
of rain event detection rates. Although the gauges are direct observations and
considered references, it is known there is great spatial variability in daily data,
which is the probable cause of the low performance.

v. The detection of anomalies by the monthly products of IMERG version 6 showed
limited performance over the years analyzed and the study area, probably due to
the topography and rainfall regime in the northeast, coast, and southeast.

Based on the results presented here, IMERG version 6 can be used as a source of
monthly precipitation data over the territory of Paraná. However, on a daily scale, prior
calibration of the product is recommended to ensure the positive performance of the
estimate on this time scale, especially for mountainous areas. Future improvements to
IMERG version 6 products may increase its accuracy and favor its application for the
detection of rain in coastal areas and anomalies. Also, studies that consider seasonal
analyses and other time scales (hourly and half-hourly), areas with complex topographies,
and the other products of IMERG version 6 (Early and Late Run) are recommended.
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