
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

LAUREN SILVA ROLAN SAMPAIO

An Overview of AI-enabled Attacks:
concepts, state-of-the-art, and evaluation of

prototypes

Advisor: Prof. Dr. Mariana Recamonde Mendoza
Coadvisor: Assoc. Lect. Alain Lebret
Coadvisor: Rsr. Karel Mittig

Porto Alegre
May 2021

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Ensino (Graduação e Pós-Graduação): Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Diretora da Escola de Engenharia: Profa. Carla Schwengber Ten Caten
Coordenador do Curso de Engenharia de Computação: Prof. Walter Fetter Lages
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro
Bibliotecária-chefe da Escola de Engenharia: Rosane Beatriz Allegretti Borges

“I was taught that the way of progress

was neither swift nor easy.”

— MARIE CURIE

ACKNOWLEDGMENTS

I would like to thank my tutors Karel Mittig and Jean-François Misarsky, and my

colleagues from Orange Labs, as well as my ENSICAEN tutor Alain Lebret for their

availability, friendliness, and professionalism. Besides them, I thank my Brazilian ad-

visor Mariana Recamonde Mendoza for her availability and expertise, and professor Al-

berto Egon Schaeffer Filho for introducing me to the cybersecurity area. I also would

like to thank CAPES for the financing of my third year at École Nationale Supérieure

d’Ingénieurs de Caen, and my UFRGS tutors Fernanda Kastensmidt, Ricardo Reis and

André Reis, as well as professor Raphael Brum, for their quick responses and all the help

they gave me.

Finally, I thank my friends and family for the support that lead me to the achieve-

ment of my internship and final paper.

ABSTRACT

As new technologies appear given the evolution of computer science, unpredicted cyber

threats are created. The high performance of artificial intelligence algorithms in the most

diverse areas of knowledge gets the attention of researchers, and shows new possibilities

of intelligent network attacks. One way to avoid possible damage caused by these attacks,

which are still poorly known, is the study of available tools, and the elaboration of such

threats in a controlled environment. Thus, in this study a state-of-the-art containing multi-

ple prototypes implementing such threats was compiled, them being at both academic and

private levels. Each prototype was briefly commented, besides having a counter-measure

estimated, since the main objective is to mitigate such attacks. In addition to that, some

prototypes were selected to a deeper analysis, where the code and results were verified.

Finally, a prototype was developed by myself in a domain not much explored by other

authors, and then analyzed. I verified that all tested tools were still in early development

phase, and did not reach yet their objectives, even though they show a great theoretical

potential. My password-breaking tool prototype also did not have an optimal result, but it

had similar achievements to those of traditional password-breaking tools.

Keywords: Machine learning. artificial intelligence. cyberdefense. cyberattack. cy-

bersecurity. brute-force. CAPTCHA. phishing. natural language processing. computer

vision.

Um Resumo sobre Ataques Guiados por IA: conceitos, estado da arte e avaliação de

protótipos

RESUMO

Conforme novas tecnologias surgem com a evolução da computação, ameaças cibernéti-

cas, até então não previstas, são criadas. A boa performance de algoritmos de inteligência

artifical nas mais diversas áreas chama a atenção de pesquisadores, e abre espaço para a

criação de ataques de rede inteligentes. Uma maneira de evitar os possíveis danos destes

ataques, ainda pouco compreendidos, é o estudo das ferramentas disponíveis e a elabora-

ção de tais ameaças em ambiente controlado. Assim sendo, neste estudo coletou-se um

estado da arte contendo vários protótipos a nível acadêmico e privado que se propõem

a implementar esse tipo de ameaças. Cada protótipo foi brevemente comentado, além

de ter uma possível contra-medida estimada, uma vez que o objetivo final é impedir tais

ataques. Além disto, alguns protótipos foram selecionados para estudo mais profundo,

onde o código e resultados foram analisados. Finalmente, um protótipo de minha autoria

foi desenvolvido em uma área pouco explorada pelos outros autores, e então analisado.

Verificamos que todas as ferramentas testadas ainda estão na fase mais inicial de prototi-

pagem e ainda não alcançaram seus objetivos, embora demonstrem ter grande potencial.

O protótipo desenvolvido por mim para a quebra de senhas também não obteve resultado

ótimo, mas teve desempenho semelhante ao de ferramentas tradicionais desta área.

Palavras-chave: aprendizado de máquina, inteligência artificial, cyberdefesa, cyberata-

ques, cybersegurança, força bruta, CAPTCHA, phishing, processamento de linguagens

naturais, visão computacional, exploit.

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

NLP Natural Language Processing

PCA Principal Component Analysis

GAN Generative Adversarial Network

CNN Convolutional Neural Network

DBSCAN Density-based spatial clustering of applications with noise

TLD Top-Level Domain

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans

Apart

LSTM Long-Short Term Memory

DL Deep Learning

DoS Denial of Service

DDoS Distributed Denial of Service

OS Operational System

URL Uniform Resource Locator

LIST OF FIGURES

Figure 2.1 Representation of Q-Learning algorithm...13
Figure 2.2 Schema representing the concept of a CNN. ...14
Figure 2.3 Schema representing the concept of a LSTM network..................................15
Figure 2.4 GAN architecture...15
Figure 2.5 DDoS architecture. ..17

Figure 3.1 How each tool can be classified in the Cyber Kill Chain framework............25

Figure 4.1 Four types of CAPTCHA commonly found on the internet..........................32
Figure 4.2 Distribution and clustering of passwords given their composition. Axes

refer to PC1 and PC2. ...35
Figure 4.3 Comparing generated and original passwords. Axes refer to PC1 and PC2. 37
Figure 4.4 Four scenarios implemented. ...38
Figure 4.5 Comparing techniques by percentage and magnitude.39

LIST OF TABLES

Table 4.1 Relative numbers of each dataset. ...39

CONTENTS

1 INTRODUCTION...11
2 CONCEPT DEFINITIONS ...12
2.1 Artificial Intelligence ..12
2.1.1 Types of learning..12
2.1.2 Tasks where AI is used ..14
2.1.3 Some specific Neural Networks...14
2.2 Cybersecurity ..16
2.2.1 Some common attacks ...17
2.2.1.1 DoS and DDoS..17
2.2.1.2 Brute force ..18
2.2.1.3 Phishing ..19
2.2.1.4 Cross-Site Request Forgery and Cross-Site Scripting ..20
2.2.1.5 Ransomwares ..21
3 STATE-OF-THE-ART..22
3.1 AI applied to defense ..22
3.2 AI applied to attack ..23
3.2.1 Cyber kill chain..24
3.2.2 The academic side..25
3.2.3 The industry side..29
4 EVALUATIONS AND EXPERIMENTATIONS..31
4.1 CAPTCHA solver case study ..31
4.1.1 What are CAPTCHA ...31
4.1.2 Tools and results ..32
4.1.3 Status and perspectives ..33
4.2 Brute-force attack case study ..34
4.2.1 Dataset distribution ..34
4.2.2 Password generation ..36
4.2.3 Comparison between methods ...36
4.2.4 Status and perspectives ..38
4.3 DeepExploit ..40
4.3.1 Results..41
4.3.2 Conclusion ...41
4.4 DeepPhish ...42
4.4.1 Evaluation ..42
4.4.2 Conclusion ...43
5 SYNTHESIS ..44
5.1 Conclusion ...44
5.2 Perspective ..44
5.2.1 Intelligent spear phishing...45
5.2.2 Exploit generator..45
5.2.3 Automated network compromising..46
5.3 Resources ..46
REFERENCES...47

11

1 INTRODUCTION

From the replicants of Blade Runner to the complex military system of Skynet

in Terminator, Artificial Intelligence (AI) has been a part of popular culture since the

early years of the 20th century. Once it is usually linked to robots, most films and books

treat these two technologies as interdependent. However, in the real world, they evolve in

separated paces. Most of the current AIs are disembodied, as presented in the movie Her.

One common denominator between most of these works is the use of AI in attacks.

Indeed, with the ease of automation, such applications became evident even before their

development in real-world solutions. AI attacks are faster, stealthier, and more accurate

than human-operated ones. It did not take long before military services started observing

the benefits of developing such solutions (NSCAI, 2019; O’CONNOR, 2017; ALLEN,

2019).

Besides the impact on the military, AI is currently used in social and economic

applications, as in the decision making of some countries and companies (AHMED;

WRIGHT, 2019, Chapter 19). Data analysis combined with learning techniques allows

governments that endorse censorship to better control what is being published online in

real-time (YENALA et al., 1970; YANG, 2018).

This document aims to take an overview on the subject of cyberattacks enabled

by the use of Artificial Intelligence, from their first appearance in the global network to

the recently developed tools. This knowledge will allow us to understand better the risks

related to these threats, anticipate the possible evolution of these attacks, and, finally, give

us an idea of possible counter-measures.

Besides this theoretical study, I analyzed some tools in the prototyping phase that

relate to the concepts presented, such as CAPTCHA breaking, phish generation, and au-

tomatic exploit generation. Furthermore, I developed a set of algorithms to analyze a

database of passwords and, based on the results of such analysis, evaluate the best attack

using the acquired knowledge.

The organization of the remainder of this work is as follows: chapter 2 describes

some essential concepts and definitions in the fields of AI and cybersecurity; chapter

3 presents the state-of-the-art of AI-enabled tools, be they in the prototyping phase or

commercial phase. Chapter 4, some tools are evaluated, and one experiment involving

CAPTCHA is done. Finally, in chapter 5, our conclusions are presented, as well as possi-

ble directions for future works.

12

2 CONCEPT DEFINITIONS

This study focuses on the intersection of cybersecurity in connected networks and

artificial intelligence algorithms. This chapter describes the main concepts from these

research fields underlying this work’s goals.

2.1 Artificial Intelligence

Artificial Intelligence (AI) is the ability of a computer to perform actions that

usually would require human intelligence to solve. One of the most successful and an-

cient systems in AI is the expert systems (JACKSON, 1998). These methods emulate

the decision-making procedure of an actual human being in a sort of "question-making"

analysis. The method analyses multiple factors of a sample and attributes a class to the

sample based on prior knowledge. One limitation of this method is that it does not learn

from experience: it only applies the rules given to it. Another issue is the difficulty of

maintaining the system’s coherence over time, given that the rules accumulate and end up

conflicting with each other.

A subdomain of AI is Machine Learning (ML), where besides being able to per-

form these activities, the machine is also capable of learning from the execution of such

actions. One example of an ML algorithm is the decision tree (SHALEV-SHWARTZ;

BEN-DAVID, 2017, Chapter 18). It analyses a subset of samples and discovers which

rules must be applied to that set to obtain an ideal classification. It is similar to the expert

system since it is based on rules; however, it can be adapted to the dataset.

Finally, Deep Learning (DL) is a set of specific algorithms based on the concept

of deep neural networks. Multiple nodes of calculus – neurons – are interconnected in a

fashion that it is possible to extrapolate complex functions from it. DL is usually applied

to problems where we do not need to explain the process that took us to a particular

conclusion mathematically. Some applications are image and text classification, as well

as image and text generation.

2.1.1 Types of learning

An ML algorithm can be classified into four types:

13

Supervised learning, where each sample has a label indicating the class to which

it belongs, and the model is trained based on the database labels. One example of an

algorithm that uses supervised learning is the decision tree, as cited before in (SHALEV-

SHWARTZ; BEN-DAVID, 2017, Chapter 18).

Unsupervised learning, in which there is no labeled sample, and the objective

of the algorithm is to group the samples into classes that share similarities observed in

their attributes or better understand how the attributes relate to each other. The k-means

algorithm (STEINLEY, 2006) is one example of such type of learning, and its naive

version consists of verifying the positions of the k centroids given as input. Iteratively the

algorithm recalculates the position of a centroid until there is no big change in its position.

Semi-supervised learning, in which some samples are labeled while others are

not. It is seen as a middle-term between the two previous methods and has a classification

objective. Generative models (ZHU, 2008) can be used for this purpose, where it is possi-

ble to learn the distribution of the unlabeled data based on knowledge of the labeled data.

We intend to discover the conditional probability of an attribute X given that its sample

belongs to a class Y (mathematically described as P (X|Y = y)).

Reinforcement learning, where an algorithm performs an action into the world

and receives a reward or a punishment, depending on the consequences of its acts (KAEL-

BLING; LITTMAN; MOORE, 1996). One example is the Q-Learning algorithm (WATKINS;

DAYAN, 1992), in which the agent acts on the environment, receives a reward, and up-

dates a table (Q-Table) containing all the combinations of states and possible actions. An

example is shown in Figure 2.1.

Figure 2.1 – Representation of Q-Learning algorithm.

Source: the author

14

2.1.2 Tasks where AI is used

AI algorithms can solve multiple tasks, which can be grouped in the following:

Classification, in which an agent decides to which class a specific unlabeled sam-

ple belongs. One common application is image classification, in which an input image has

to be identified as belonging to a particular category (VISHAL et al., 2016). These tech-

niques rely upon separating the input space into regions, such that each region represents

a class.

Regression, were given a data distribution, the model has to estimate the relation-

ship between the attributes of the samples. Financial forecasting (GATELY, 1995) is one

sample where a regression model is used to predict the behavior of the market given its

past states.

Clustering consists of grouping samples into similar clusters of data. It can be

based on the continuity of a cluster, its density, or its center (RAI; SINGH, 2010). Clus-

tering is used when we try to understand the similarities between different data samples

and usually do not rely on labeled data.

2.1.3 Some specific Neural Networks

There are multiple architectures of DL, each having a better performance when

applied to a certain problem. An example is the Convolutional Neural Networks (CNN)

(LIU et al., 2016), which combine multiple layers of convolutions and subsampling before

passing the information to a fully connected network in order to process images, as shown

in Figure 2.2.

Figure 2.2 – Schema representing the concept of a CNN.

Source: the author

On the other hand, Long Short-Term Memory networks (LSTM) (HOCHREITER;

SCHMIDHUBER, 1997) can "remember" words and letters, and therefore are used in

15

text processing (Figure 2.3). In a translation context, each input cell in Figure 2.3 can be

interpreted as a word from the original language and the output cells as words from the

target language.

Figure 2.3 – Schema representing the concept of a LSTM network.

Source: the author

The most common method in adversarial learning is the Generative Adversarial

Networks (GAN) (GOODFELLOW et al., 2014), which are composed of a pair of net-

works called generative (G) and discriminative (D). The objective of network G is to cre-

ate synthetic examples that cannot be differentiated by network D from actual examples.

One schema in Figure 2.4 shows the basic architecture of such a network.

Figure 2.4 – GAN architecture

Source: the author

The database, in a cybersecurity scenario, could be represented by the collection

of different traces of previously registered attacks. These attacks would be used as input

of the network G, which would generate similar examples following the database distri-

bution. The output of G would be used as input of the network D, mixed with some real

16

samples. The objective of network D is to tell apart the samples that were generated by G

from the real samples.

2.2 Cybersecurity

First used by the science-fiction writer William Gibson, the word cyberspace (an

amalgam of "cybernetics" and "space") describes a "graphic representation of data ab-

stracted from the banks of every computer in the human system" (SINGER; FRIEDMAN,

2014). The Internet is seen as the most successful and complete type of cyberspace we

know nowadays, but it was not the first to be invented.

Between 1960-1969, the ARPANET (Advanced Research Projects Agency Net-

work) led the way in defining the basic aspects of the Internet’s network topology and

some of its initial protocols, such as NCP (Network Control Protocol, which later would

be substituted by TCP/IP).

In 1990 ARPANET was decommissioned, and the Internet started being devel-

oped, with HyperText Transfer Protocol (HTTP) and Hypertext Markup Language (HTML),

which are used until today (even though in upgraded versions). Some protocols, however,

are not used anymore since the WorldWideWeb was introduced, as the telnet protocol

(CARR, 1969). Developed in a trustworthy environment, this protocol did not encrypt the

transmitted data and had no authentication procedure.

Some of these bugs were known by the epoch, and in 1988 the first worm was

created by Robert Morris (FBI, 2018). Worms are self-replicating programs that can

spread through the network without any specific target software, unlike viruses, which

must have a host program. Morris worm, as it got known, launched a Distributed Denial

of Service (DDoS), and during several days the entire Internet – composed of around

60,000 computers – was clogged up (MURPHEY, 2019).

Since then, cybersecurity became an official preoccupation to researchers and In-

ternet users. After the Morris attack, the Computer Emergency Response Team (CERT)

(CMU, 2021), which is still working in the field, was created to prevent such events from

happening again.

17

2.2.1 Some common attacks

In this section, we are going to investigate some of the most common attacks on

networks, from their first appearance in the network to more complex and elegant forms

developed through the years.

There are relevant cyber threats that are not specified in this section. These types

of attacks were considered out of the scope of this study, given the fact none of the tools

found implemented them.

2.2.1.1 DoS and DDoS

Attacks of Denial of Service (DoS) have as objective to overload the capacity of

response of a victim in such a way it can no longer respond to legitimate demands. There

are two main types of DoS attacks (RUSSELL et al., 2001): (i) resource consumption,

where the attacker targets bandwidth by using a number of packets that exceed the victim’s

capacity (known as flooding), and (ii) malformed packet attacks, which uses the fact

that some operating systems are not able to process malformed headers, and may enter an

unstable state.

Figure 2.5 – DDoS architecture.

Source: the author

One example of resource consumption is the SYN flood attack, in which the at-

tacker takes advantage of a characteristic of the TCP three-way handshake, in which a

server must wait for an answer from a client before establishing a connection. If the client

18

does not respond, a timeout is set, and the connection is closed. An attacker could send

several packets using a fake source address (spoofed), and the server would try to connect

to a non-existing host, wasting time and resources.

Malformed packets can occur in different layers and with different protocols. An

attacker may send a package larger than the supported size (as it happens in Ping of

Death attacks), or in a fashion that, during reassembly, the target system will not be able

to reassemble the package (as happens with Teardrop and IP packets, and as Boink and

UDP datagrams).

A Distributed DoS attack (DDoS) combines all the vulnerabilities cited above with

a large network of controlled computers called zombies. A DDoS network has the struc-

ture shown in Figure 2.5, where an attacker sends commands to compromised computers

called "masters" that, in turn, send commands to the "zombie" computers. The latter

launches the attack against a specific target.

2.2.1.2 Brute force

The objective of brute force attacks is to find a password, passphrase, or another

type of personal identification in order to get access to a system in a further operation.

It also can be used to lockout an account since some services define a limited number of

tries to access them before blocking any further attempts.

There are three types of brute force attacks, accordingly with (IBM, 2012): (i)

dictionary-based attacks, which use a dictionary file to generate possible combinations

of login and password, (ii) search attacks, which use all possible combinations of charac-

ters and lengths, and (iii) rule-based search attacks, which use a set of rules to generate

possible passwords.

Some measures can be used to prevent this type of attack, accordingly with (COM-

MUNITY, 2020a):

• Add a pause in between authentication tries, once most brute force attacks are time-

based.

• Insert key-phrases in HTML comments to fool automated analysis. Modifying the

phrase used to inform the user the password is invalid at each attempt is also possi-

ble.

• Use a CAPTCHA (Completely Automated Public Turing test to tell Computers and

Humans Apart, (AHN et al., 2003a)), which are AI hard problems used to prevent

19

automated attacks.

• Allow login from a specific IP address, or assign unique URLs to some sets of users,

so not all of them can access the service from the same URL.

Combining these methods is highly recommended, as well as not locking out com-

pletely an account, but rather limiting the user access.

2.2.1.3 Phishing

Phishing consists of sending fake messages to a target in order to obtain interac-

tion, usually to spread malware and steal sensitive information (KNOWBE4, 2017). The

most common method is spam emails, which are unwanted messages promoting some

type of service or even pretending to be from a certain trustworthy company, but it can

take other formats, such as a bogus login web page or a completely fake bank site (ALER-

OUD; ZHOU, 2017).

The authors of (ALEROUD; ZHOU, 2017) identify three phases in a phishing

attack:

(i) attack preparation, when the attacker chooses the media they are going to use and

the target devices. Based on that, they choose the ideal attack technique and prepare

the material (forged website, email format) it is going to be used.

(ii) attack execution, in which there is material distribution, data collection, and finally

target resource penetration.

(iii) attack results exploitation, when the collected credentials are used to impersonate

the victim.

The authors also identified the following media as possible attack vectors: (i)

emails, (ii) websites, (iii) instant messaging, (iv) online social networks, (v) blogs and

forums, (vi) mobile apps, and (vii) voice over IP. Websites and forums, for instance, have

a passive role, while emails and other active media are used to lead users to these com-

promised domains. Mobile apps can use some intrinsic frailties of a certain operational

system, such as floating attacks in Android, where an application may have its UI on top

of another, using this to steal sensitive data like login information.

One subgroup of phishing attacks is spear phishing. This technique aims at spe-

cific organizations and uses the personnel’s personal data in order to obtain sensitive in-

formation. It can collect information from social networks and, from there, create an

20

attack vector that looks legitimate, as an email impersonating a superior. It is possible to

use Natural Language Processing (NLP) to convince victims to rely on malicious content

(SHROPSHIRE, 2018). This technique is based on taking a large text sample of a target

and mimicking their writing style.

2.2.1.4 Cross-Site Request Forgery and Cross-Site Scripting

Accordingly, with the OWASP Top Ten of 2020 (COMMUNITY, 2017), Cross-

Site Scripting (XSS) is in seventh place in a list of most common web application security

risks. It is an improvement, once it was given second place in 2010 by the same orga-

nization, (SENTAMILSELVAN, 2013). In this same classification in 2010, Cross-Site

Request Forgery (CSRF) was also identified as a menace, being given fifth place.

Frequently seen as the same type of attack, XSS and CSRF use, in fact, different

techniques. CSRF forces a victim to perform unwanted actions on a logged site without

their knowledge. The most common CSRF technique is to use an HTML tag, such a

 with a modified source, to pass to the server some type of command. Let’s say a

user is connected to an email provider called samplemail.com and access the attacker’s site

attacker.com/attack.html. The HTML of attacker.com/attack.html consists of multiples

tags, from which one is the following:

When the page attacker.com/attack.html is loaded, the password is changed with-

out the knowledge of the user. It takes advantage of a characteristic of the HTTP protocol,

which is sending a cookie to the user once they are logged in to a server. This cookie is

then used by the attacker to forge a request and have the victim’s access right to the web-

site’s sensitive functions.

Cross-Site Scripting, on the other hand, is more of an active attack since it uses

injected scripts to execute privileged functions (COMMUNITY, 2021). There are three

types of XSS (COMMUNITY, 2020b):

• Stored XSS (Persistent/Type I) which happens when the user input is stored in the

server (as in a database) and then rendered on the browser.

• Reflected XSS (Non-persistent/Type II) which returns the user input directly in

an error message or in another form of response and is shown in the browser as-is.

• DOM Based XSS (Type 0), where the dataflow happens entirely on the browser,

21

and the source of malicious data and the method that processes these data are in the

same DOM tree.

2.2.1.5 Ransomwares

This malware (malicious software) has as objective to deny the access of a user to

the data stored in a hard drive, giving access back only after ransom payment. It can be

done in two ways (RICHARDSON; NORTH, 2017): (i) encrypting data or (ii) locking

the computer.

Crypto ransomware encrypts important files on the victim’s computer, so the user

has no access to them. However, it is still possible to execute some basic services.

Lockers, on the other hand, prevent the victim from accessing their devices, rendering

them useless. That is the reason why locker ransomware usually charges their ransom

by voucher systems (RICHARDSON; NORTH, 2017), while crypto ones use Bitcoin

(BöHME et al., 2015) for its anonymity and difficulty to trace.

Some of the most common infection vectors are phishing emails, websites, and

web applications (RUBENS, 2017). Other methods include malvertising (advertisements

that deliver malware when interacted with), social media and messaging apps, and exploit

kits.

22

3 STATE-OF-THE-ART

This chapter contains a brief description of two critical concepts further discussed

in the state-of-the-art: the application of AI in a defense context and the usage of AI in

attacking. Once these concepts are defined, the state-of-the-art is separated into an aca-

demic side, based on papers published by researchers, and an industrial side, where tools

developed by individuals and enterprises are aggregated. These tools were not designed

as weapons but are included here, instead, by their potential to cause harm.

The tools presented here were first selected based on my advisors’ initial set of

papers due to their relevance to this research. Based on the references of these papers,

as well as further analysis in research databases such as IEEE Xplore (IEEE, 2017), I

gathered the collection of works contained in this study. It is important to note that the

literature review is focused on articles that explicitly described cyberattacks enabled by AI

algorithms. Many results focused on defense techniques rather than the attack structure;

these articles were not included in this state-of-the-art description.

3.1 AI applied to defense

As soon as the computer networks started being used, the need for protection

was noticed. Simple authentication systems were not enough, as some administrators

discovered, and more complex techniques started being used. One of the first methods was

the Intrusion Detection System (IDS), developed by Dorothy Denning and Peter Neumann

in 1986 (BRUNEAU, 2001). It consisted of a rule-based expert system and served as a

basis for the Next-Generation Intrusion Detection Expert System (NIDES).

First theorized in 1949 by John von Neumann in his paper Theory of Self-Reproducing

Automata (SCHWARTZ; NEUMANN; BURKS, 1967), viruses only started circulating

on computer systems in 1971, with the Creeper virus. Immediately after its release, Ray

Tomlinson was able to create a program responsible for deleting Creepers, called The

Reaper (COREWAR, 1971). It was the first known prototype of an antivirus. However,

the first commercial antivirus was developed by G DATA Software in 1987 and targeted

Atari ST systems (GDATA, 2020).

However, none of these solutions were artificially intelligent: they were based on

a static set of rules and could not adapt to the data. This scenario changed in 2002 when

Paul Graham created the first spam detector, based on a Bayesian system (GRAHAM,

23

2002). It was able to detect with a 99.5% accuracy rate, with a rate of false positives near

zero.

Current defense systems already use Machine Learning (ML) techniques to di-

agnose and avoid common virtual attacks, as botnet detection (CHIGOZIE-OKWUM;

AJAH, 2019), ransomware detection (VINAYAKUMAR et al., 2019; CHEN et al., 2018)

and intrusion detection (KHAN et al., 2019). These solutions are based on the analysis

of previous data. They can be of two types: anomaly based, where unusual behavior

is reported as a possible threat, and pattern based, when a situation is compared with

previous attacks registered.

In some cases, the fragility of AI systems can be used against itself, as happens

with CAPTCHA tests (AHN et al., 2003b). These tests are based on the current difficulty

of identifying images using machine learning algorithms and are considered a reliable

system to differentiate between users and automated tools. However, with the advance-

ment of technology and techniques, machines are obtaining higher scores in detecting

such images, which leads us to believe that sooner this type of protection will not be

enough.

ML techniques can also be used in an indirect way to detect attacks. One example

is shown in (CHAMBERS; FRY; MCMASTERS, 2018), where a Natural Language Pro-

cessing (NLP) algorithm analyzes social media texts to detect denial-of-service attacks.

This technique takes into account the symptom stage, when users observe anomalies on

the service; the inference stage, when some guesses about the symptoms are presented;

the confirmation phase, where the website confirms the attack; and the resumption

phase, when the service is restored.

3.2 AI applied to attack

It did not take a long time before attackers could see the potential of AI-enabled

attacks. Automation has always been one of the most used techniques by attackers, es-

pecially when dealing with large-scale attacks. However, automation may not be enough

when dealing with complex systems or unknown environments: some intelligence and

analysis are needed.

In the early days of AI applied to cybersecurity, a self-learning worm was pro-

posed in (CHEN; JI, 2005). It was based on importance scanning and learned about the

environment in which it was without exchanging information with other infected hosts.

24

Due to this rogue behavior, the authors propose distributed detection systems to detect it

during the learning phase and disable the server before the importance scanning.

Nowadays, with the advance of AI, new solutions targeting these same systems

are appearing. For example, intelligent botnets can use Genetic Algorithms (GA) to

create strategies that cannot be easily identified by the defender system (HENRIQUES;

DANZIGER, 2017). Furthermore, AI is starting to return relevant results when ap-

plied to tasks designed to fool machines, such as CAPTCHAs (SIVAKORN; POLAKIS;

KEROMYTIS, 2016; GOLLE, 2008).

In the following subsections, we will examine some of the studies done by the

academy and the industry. We will compare some of their basic features, such as the ML

model used if they aimed at attack or evasion and if the tools developed are open to being

accessed by the public.

Before that, however, we present the Cyber Kill Chain framework to localize each

solution during an attack better.

3.2.1 Cyber kill chain

A cyberattack can be divided into several steps, and each of them is classified

by the Cyber Kill Chain framework, developed by Lockheed Martin (MARTIN, 2021).

There are seven steps in this framework: (i) reconnaissance, where the attacker gathers

information about the target; (ii) weaponization, where an exploit is coupled with a pay-

load; (iii) delivery of the payload to the victim through an attack vector; (iv) exploitation

of the vulnerabilities on the victim’s system; (v) installation of the malware; (vi) com-

mand and control (C2), where a command channel is created to remotely manipulate the

victim’s system; and (vii) actions on objectives, when the intruder can accomplish their

original goal.

Using this framework, we can classify the following tools into the categories

shown in Figure 3.1.

We verify that the further we are in the framework, the rarest are intelligent tools

available. I particularly did not find any Action and Objectives tools, only some proto-

types that were not fully developed, or just papers without source code available. Nev-

ertheless, some of these tools were tested by me, as marked in sections 4.2, 4.1, 4.3 and

4.4.

25

Figure 3.1 – How each tool can be classified in the Cyber Kill Chain framework.

Source: the author

3.2.2 The academic side

In this subsection, we will explore some techniques proposed by researchers in

the cyber defense area that can be used in an attack.

DeepExploit (TAKAESU, 2018)

• What: a framework that chooses the best combination of payloads to be sent to a

target based on previous training.

• How: there are two phases: the training phase, where multiple exploits are used

against an exploitable system; and the test phase, where the best exploits selected

previously are sent to the target in an HTTP request.

• Counter-measures: since this tool is based on attacking open ports available for

HTTP/HTTPS protocols, a basic sanitization protocol should be enough. Keeping

the OS updated to the later fixes provided by the distribution must also be a habit.

Also, this tool replicates learned attacks on vulnerable systems. Therefore honey-

pots could be used to detect this abnormal behavior quickly.

MalGAN (HU; TAN, 2017)

• What: a generative adversarial network trained on samples of malware to bypass a

black-box detector based on ML techniques.

• How: the system consists of a generative network trained on a database of malware

binaries and a substitute detector, which provides gradient information necessary to

train the generator. The generative network creates adversarial malware examples

that are fed to the black-box detector, as well as benign samples. This detector

26

outputs each sample’s labels that will feed the substitute detector in supervised

learning.

• Counter-measures: adopting ML techniques that cannot have its derivative calcu-

lated, such as random forests and decision trees, slightly improve the true positive

rate. The authors also propose some solutions, such as retraining the models to

deal with adversarial input (LI; VOROBEYCHIK; CHEN, 2016) and using auto-

encoders to clean up the data (GU; RIGAZIO, 2014).

PassGAN (HITAJ et al., 2017)

• What: a generative adversarial network whose objective was to generate passwords

that matched a distribution.

• How: the generative network was trained on two databases of leaked passwords

and had an equivalent performance of the state-of-the-art. It could generate a larger

quantity of passwords with a higher quality (human-likeness) than other methods.

• Counter-measures: most passwords generated were easily deducible (e.g. 12345,

and first names). Therefore, using more complex passwords with a combination of

numbers, lower and uppercase letters, and special characters are the best alternative.

Mitch (CALZAVARA et al., 2019)

• What: an ML tool to detect Cross-Site Request Forgery (CSRF) vulnerabilities. It

focuses on visibly sensitive HTTP requests such as social media actions and online

transactions.

• How: Mitch is a browser extension based on Random Forests that must be used in

two stages: (i) the attack stage, where the security tester navigates the target website

searching for sensitive requests, and (ii) the victim stage, where the security tester

logs in as another user and Mitch exploits the prior knowledge as to replicate a

CSRF attack. If a request made by the victim matches the one received by the

attacker, a vulnerability is reported.

• Counter-measures: typical defenses against CSRF can be applied to the website,

as well as developing these tools considering possible security flaws.

DeepLocker (KIRAT; JANG; STOECKLIN, 2018)

27

• What: the victim downloads this ransomware as a benign conference application,

and it behaves like so until the webcam identifies the target. When activated, the

ransomware acts like some other famous viruses, encrypting the victim’s hard disk.

• How: The virus processes the image into an encryption key using a Deep Neural

Network (DNN) and uses this key to activate the ransomware. The authors do not

consider DeepLocker as an AI-enabled attack, but rather an AI-embedded attack

once the trained model is sent to the victim with the application.

• Counter-measures: There is not yet a known method to avoid this type of attack,

rather than being cautious on choosing which applications will have access to the

webcam. One solution could be the use of adversarial noise automatically added to

the real-time image, such that no software can identify the victims’ image.

DeepPhish (BAHNSEN et al., 2018a)

• What: A DL solution to create more effective phishing URLs.

• How: It uses a Long Short-Term Memory Network to learn from previous success-

ful phishing attacks and, from there, generate its URLs. The algorithm was able to

improve the effectiveness of an attack on both scenarios analyzed.

• Counter-measures: this is a passive attack, where the attacker lures the victim with

a sound-looking URL. There are two possible ways to avoid this attack: detecting

these forged URLs as quickly as possible and blacklisting them. It can be done by

an URL classifier, based on machine learning or not.

Malboard (FARHI; NISSIM; ELOVICI, 2019)

• What: method that captures the user keystroke pattern and reproduces it.

• How: It uses a clustering technique that analyzes the behavior of a user and, after

a short period, can reproduce it. It is used in keystroke injection attacks and is

difficult to identify due to its human-like speed.

• Counter-measures: Once this device is read as a legitimate keyboard, one possi-

ble solution is to have a two-factor authentication system. Detecting the abnormal

behavior of the user can also be indicative that an attack is occurring.

MaskDGA (SIDI; NADLER; SHABTAI, 2019)

28

• What: a neural network tool that adds adversarial noise to a generated domain

name, evading detection.

• How: instead of generating domain names from scratch, MaskDGA adds a mask

to previously obtained names. These names are issued from a specific Domain

Generation Algorithm (DGA).

• Counter-measures: as shown in DeepDGA, this tool itself could be used as a

counter-measure. However, the authors further indicate that the algorithm could use

other features besides character-level information to train a more robust detector.

DeepDGA (ANDERSON; WOODBRIDGE; FILAR, 2016)

• What: a domain name generator neural network designed to trick deep learning

detection tools.

• How: first, an auto-encoder is trained on a database of domain names. After train-

ing, the auto-encoder is reassembled in a generative (encoder) and discriminative

(decoder) network in a GAN fashion.

• Counter-measures: DeepDGA is, by itself, a counter-measure. The authors iden-

tify the fact that the algorithm could use a database containing legitimate domain

names and synthetic ones to train a detector. This detector was proven to have high

accuracy when trained with the hardened version of the dataset (from 68% to 70%).

CharBot (PECK et al., 2019)

• What: another domain name generator based on adversarial approach.

• How: unlike DeepDGA and MaskDGA, this tool does not use a simple algorithm

to generate a DGA based on typosquatting (when some characters are randomly

changed). It tries to minimize an adversary cost function at each step.

• Counter-measures: the authors have proven that CharBot could not be used to

enlarge the training dataset to build a more robust detector. Instead, the authors

proposed two feasible solutions: using a white-list system, where a domain is only

accessed if permitted, and using side-information to train a detector, such as IP

address, how often the IP is queried, etc.

29

3.2.3 The industry side

In this subsection, we analyze some approaches taken by the industry.

Lyrebird (LYREBIRD, 2017)

• What: a speech processing tool able to clone the voice of a target;

• How: attacks that depend on the execution of voice commands could use this tool.

One example is the article Using AI to Hack IA: A New Stealthy Spyware Against

Voice Assistance Functions in Smart Phones (ZHANG et al., 2019), where the voice

of a target is used to unlock private data from their phone. With the augmentation

of voice assistants, this type of attack is likely to increase.

• Counter-measures: there are two possible solutions when dealing with such at-

tacks: avoiding suspicious downloads that may contain this malware and use two-

factor authentication to access certain functionalities and data.

angr (UCSB; ASU, 2015)

• What: a framework for analyzing binaries, enabling the user to find vulnerabilities

and generate exploits.

• How: developed in Python, it can load a binary, disassemble it, execute it symboli-

cally and analyze its control-flow and data-dependency.

• Counter-measures: angr can be used, in fact, as a defense tool if the binary is

analyzed by it before its release.

Grover (GROVER, 2019)

• What: a neural tool for generating and detecting automatically generated fake

news.

• How: the researchers understood that the best neural network for detecting artificially-

generated news is, in fact, a generator of such content. Therefore, Grover can tell

apart the great majority of human-written and machine-written news.

• Counter-measures: tools as Grover can be used against themselves once it is

demonstrated that it can identify this type of text.

30

Social Mapper (WILKIN, 2018)

• What: an intelligence tool used to gather information on social networks of a target

given their image. Teaming operations can use it in reading, and it produces reports

that a human reader can understand.

• How: works in three stages: (i) target parsing, where the target’s image and name

are furnished, (ii) social media search, when the previous data is used in several

social media to find the best matches, and (iii) report generation, when all data is

compiled in a CSV or HTML file.

• Counter-measures: it is recommended to keep the quantity of information about

yourself in social networks to a minimum.

PoC Orange CAPTCHA (CHENU, 2019)

• What: a NodeJS application specifically designed to break the Orange CAPTCHA.

This CAPTCHA consists of clicking, in the right sequence, the corresponding im-

ages.

• How: it uses two APIs: Google Vision to identify the correct class of each image

displayed, and Puppeteer, which allows the manipulation of a web page as a human

would through a browser.

• Counter-measures: the addition of adversarial noise on the images, as proposed in

the DeepLocker counter-measure, is one manner to avoid this type of attack.

Forced Evolution (SOEN, 2013)

• What: a tool that finds the best string to apply in a SQL/command injection attack.

• How: it uses a genetic algorithm that identifies, at each new epoch, the best string

to launch an injection attack against a target.

• Counter-measures: classical defenses against SQL and command injections must

be applied to all implementations, as is recommended by common digital hygiene.

These defenses are input validation, parameterized queries, and escaping tech-

niques;

31

4 EVALUATIONS AND EXPERIMENTATIONS

This chapter dedicates itself to analyzing seven different projects developed in

three distinct areas of AI-enabled cybersecurity. Five of them are grouped in the CAPTCHA

breaking domain, and I chose them based on documentation and accessibility.

A second area analyzed was the intelligent malware generation, represented by

a promisor algorithm called DeepExploit. I selected this tool based on the impact its

presentation had on the BlackHat Europe Conference in 2018.

The third area, phishing generation, is represented by DeepPhish and is one of

the first algorithms that use adversarial learning, without a GAN, to generate convincing

phishing URLs. It also had a significant impact on this same conference and is considered

the state-of-the-art in this domain.

Given the current stage of such technologies, most tools are still prototypes and

can have lower accuracy than predicted.

Besides these tools, created by other authors and researchers, I prototyped an ex-

perimental tool on password breaking and natural language processing. The idea was to

explore an area of AI-enabled attacks that I had not seen in any articles that I had analyzed,

which is password guessing based on a password distribution.

4.1 CAPTCHA solver case study

This section analyzes several intelligent tools designed to break CAPTCHA to

verify if an AI-enabled attack is feasible in this domain.

Firstly, we explain the concept of CAPTCHA, and different types of tests will be

presented. Each type of test requires a specific machine learning solution with distinct

algorithms. Then, we show the results of each tool and synthesize a conclusion on the

state of such attacks.

4.1.1 What are CAPTCHA

CAPTCHA (Completely Automated Public Turing Test to Tell Computers and

Humans Apart) are tests developed to prevent scripts and other types of automatic attacks

from accessing specific pages and data. The most common type of these tests is the visual

32

Figure 4.1 – Four types of CAPTCHA commonly found on the internet.
(a) Identify images (b) Math problem

(c) Check click

(d) Identify phrase

Source: the author

CAPTCHA, which asks the user to identify objects in a noisy image. However, not all

users can solve this type of test since some are visually impaired.

Based on that, the system gives alternative audio CAPTCHA. Since voice recogni-

tion is an area of machine learning that is highly developed, these tests are easily bypassed

by automatic tools.

There are also several alternatives used in such tests (as seen in Figure 4.1), as

math problems or word recognition (when a user is prompted to decipher a given text).

These problems were once hard to solve by a computer but nowadays have fallen in disuse

due to technological advances.

4.1.2 Tools and results

I tested five tools in this context, and I will further resume them in this Subsection.

Puppeteer reCAPTCHA Solver (GATIS, 2020) is a tool developed by Daniel

Gatis, using an API called Wit. He took advantage of the fact that reCAPTCHA can

use an audio test instead of a visual one since audio recognition algorithms have higher

efficacy than image recognition. He used a JavaScript framework called Puppeteer to

automatically choose the audio challenge, fill it up and submit. The API used can convert

audio to text, and it is free.

However, I was able to realize only one successful test. The Google reCAPTCHA

probably identified that my connection was automatized (using other means) and refused

33

all further tries to access the challenge.

unCAPTCHA (ECTHROS, 2018) is a tool specifically designed for an older ver-

sion of reCAPTCHA present on the login page of Reddit. Since this page was deactivated,

and the Wayback Machine version does not support external party software, I could not

test it correctly.

reBreakCAPTCHA (EASTEE, 2017), developed by Yair Mizrahi from East-Ee,

has a similar approach to the one taken by Puppeteer reCAPTCHA Solver: it selects and

solves the audio challenge instead of the visual one. However, as happened with the

previous tool, Google reCAPTCHA was able to detect the automatic connection by other

means, and the algorithm could not solve any challenge.

captcha-break (LIU, 2018) is a set of 6 programs developed by Kalen Liu to

break different visual CAPTCHA. These challenges consist of a string of letters and

numbers modified in a way that a simple character recognition algorithm cannot detect

all the symbols. The broken CAPTCHA are csdn, jikexueyuan, submail, weibo.cn and

weibo.com. The algorithm used a basic image of characters for comparison.

PoC Orange Captcha (CHENU, 2019), developed by Thibeault Chenu, was used

to attack a CAPTCHA system designed by Orange. This system consists of clicking, in

the correct order, the images indicated by tags. The algorithm to solve this system used

two Google services (Google Vision and Google Translate) first to classify all pictures,

translate their tag to a set of french synonyms, and, finally, trigger the correct order of

tags.

This PoC was developed for version 2 of Orange CAPTCHA. However, I was able

to adapt it to version 3. It has 100% accuracy and takes a couple of seconds to solve the

challenge.

4.1.3 Status and perspectives

I identified multiple tools and publications concerning the CAPTCHA breaking

subject, and some of them have already some years since their first publication. Based on

these facts, we can conclude that AI already has a practical application in these types of

attacks, which needs only to be refined and adapted in some instances.

There are some CAPTCHA breaking services available, and they usually use hu-

man labor to solve these tests. Knowing about the constant evolution in this field, we

predict that soon similar services will be available, this time using artificial intelligence.

34

4.2 Brute-force attack case study

The database BreachCompilation contains more than 1.5 billion tuples (email,

password) obtained in multiple breaches throughout the years. This database allowed

me to analyze different distributions on the passwords, given that each Top-Level Domain

(TLD, the name that comes after ’@’ in an email) refers to a specific country and a specific

language and culture.

The first part of this study dedicates itself to analyzing the distribution of the

raw data; in the second part, synthetic passwords were generated using two methods

(an LSTM network and a random generator); finally, in the third part, the performance

of the generated passwords was compared to HashCat (STEUBE; GRISTINA, 2015), a

password cracking tool. The objective of this study was to verify if an AI-based approach

could be more effective than traditional methods.

4.2.1 Dataset distribution

In this phase, I selected two subsets belonging to the database: the one referring

to orange.fr TLD and the one referring to ufrgs.br TLD. The first one belongs to a French

telecommunications company, and the second one is from UFRGS. These TLDs were

chosen by the fact that they belong to different countries (France and Brazil). Therefore,

if the users create passwords containing words from their mother tongues, the password

distribution would vary between TLDs from different countries.

Furthermore, these TLDs identify these institution’s users but do not indicate that

the breaches come from them. Many users utilize their professional/educational emails

on other services (like social media), which can be breached.

To acquire features, I did a pre-processing treatment on these data, and 28 features

were identified as best-performing: length, whether a password begins with a digit, the

number of vowels, consonants, digits, hexadecimal and special characters, the size of

the biggest stream of vowels, consonants, digits, hexadecimal and special characters, the

Shannon / minimal / collision entropies, the Gini and Simpson indexes applied to 1, 2,

and 3-grams). These features were pre-selected based on a previous study conducted by

a colleague.

A PCA was used to obtain a visual representation of the data, converting this

28-dimension dataset into cardinal points in a plane. PCA is a method that projects high-

35

dimensionality data to a lower-dimensional space by maximizing the variance of each

dimension. It finds the two ”best-fitting lines” representing the data, which builds an

orthogonal basis (the principal components).

After applying the PCA, a DBSCAN clustering algorithm was used on the result-

ing data, obtaining different cluster formations and identifying outliers. A cluster contains

points that have at least n-neighbors (core points) or are reachable by these points given

a minimum distance. The other instances are considered outliers (noise).

In Figure 4.2 the distribution of the dataset composed by orange.com passwords

are presented, and four types of passwords are compared: letters only (e.g. mypassword),

digits only (e.g. 123456), alphanumeric passwords (e.g. mypassword123), and symbols

only (e.g. $!**&@). We verify that the alphanumeric and letters only passwords follow a

natural language-like distribution, while the numeric passwords tend to be more sequen-

tial. Finally, the symbols only passwords do not show a significant distribution, and look

random.

Figure 4.2 – Distribution and clustering of passwords given their composition. Axes refer to PC1
and PC2.

(a) Automatic, 4 neighbors, alphanumeric. (b) Automatic, 4 neighbors, digits.

(c) Automatic, 4 neighbors, letters. (d) Automatic, 4 neighbors, symbols.

Source: the author

36

4.2.2 Password generation

At this stage, an LSTM model was used to generate synthetic passwords that fol-

lowed the distribution of the original dataset. I used the two previous datasets, and the

difference was latent. When I converted the data to a low-dimensional form using PCA,

the plotted results showed that the LSTM model had the most similar distribution, unlike

the random generation.

I used two algorithms for password generation:

1. the first three symbols of one random sample in the training dataset were taken as

a seed. For instance, if the password 123456 were in the training set, a viable seed

to generate a new password would be 123. In the following analysis, I call this

"constant seed";

2. analysis the frequency of each letter, and random suggestion constrained by proba-

bility. One example would be the following: a has a frequency of 0.75, b of 0.15 and

c of 0.10. A possible seed would be a random choice considering these probabilities

(such as aba). In this section, this is called "random seed."

There was no significant difference between these two implementations, the first

one being slightly better than the second. To verify if there was indeed a difference

between the LSTM output and random strings, I plotted these two scenarios in comparison

to the original data, as seen in Figure 4.3.

4.2.3 Comparison between methods

In this phase, I chose two dictionaries: the RockYou dataset (ROCKYOU, 2020),

with approximately 14 million passwords; and the output of an LSTM model trained on a

subsample of the target database.

There were four ways of generating data, as seen in Figure 4.4:

• Scenario 1: the attacker uses their knowledge on the distribution of passwords

(represented by n% of the database) and uses an LSTM to generate fake passwords.

The output is passed to HashCat as a dictionary, which then uses a hybrid attack to

find matches.

• Scenario 2: the attacker has the same information about the distribution and applies

37

Figure 4.3 – Comparing generated and original passwords. Axes refer to PC1 and PC2.

(a) PCA of random strings and original data.

(b) PCA of constant seed-generated strings and
original data.

(c) PCA of random seed-generated strings and
original data.

Source: the author

it to the same LSTM. However, the output of the LSTM is directly compared with

the rest of the database.

• Scenario 3: using the RockYou database, the attacker tries to find matches between

the original passwords and the ones contained in this database.

• Scenario 4: once again, the attacker uses the RockYou database as a dictionary in

a hybrid attack. The rules of this attack are the same as Scenario 1.

I tested two types of cracking: direct collisions, where both dictionaries were

used as-is, hashed, and then had their hashes compared to the target set; and HashCat

dictionary-based hybrid attacks, where the dictionaries would be combined to some rules

(such as adding integers at the end of the original password or modifying the case of some

letters), using the HashCat tool as a middleman.

When testing in an extensive database, like the one provided by the TLD orange.fr,

I took a small fraction of the original set (0.001%). However, when training the neural

38

Figure 4.4 – Four scenarios implemented.
(a) Scenario 1: LSTM output as dictionary

(b) Scenario 2: LSTM output for direct comparison

(c) Scenario 3: RockYou for direct
comparison

(d) Scenario 4: RockYou as
dictionary

Source: the author

network with a smaller dataset as the ufrgs.br, I used a more significant sample (5%). The

idea, in both situations, was to have a basis on the distribution of data.

When comparing the number of samples generated by the LSTM and the number

of entries in the RockYou database, we verify that the former is significantly smaller than

the latter. Nevertheless, when comparing their performance on the four scenarios, the

direct comparison of LSTM outputs (Scenario 2, Figure 4.4b) was proportionally more

effective than the RockYou database used as a dictionary (Scenario 4, Figure 4.4d). Still,

analyzing the numerical results, the RockYou dictionary provided more collisions when

used with HashCat.

4.2.4 Status and perspectives

Brute-force attacks have two possible forms: online attacks and offline attacks. An

offline attack allows the exhaustive search of the correct passwords, while online attacks

may be interrupted after a certain number of tries. It is safe to assume, based on the results

39

shown in Figure 4.5, that an online attack would benefit from both the machine learning

technique presented here, given that the distribution of the passwords is known and a large

static dataset such as RockYou. However, in offline attacks, dictionaries can still have a

more significant impact.

Figure 4.5 – Comparing techniques by percentage and magnitude.

(a) Percentage relative to each dataset and
technique.

(b) Absolute magnitude of each dataset and
technique.

Source: the author

In Table 4.1 we can verify the data represented in the graphic above. As we can

see, the RockYou database is almost six times larger than the dataset containing unknown

passwords, while the LSTM outputs represent only 20% of the total.

Table 4.1 – Relative numbers of each dataset.
Unkown

passwords
RockYou

passwords
RockYou

direct
matches

RockYou
dictionary
matches

LSTM
passwords

LSTM
direct

matches

LSTM
dictionary
matches

Absolute
number

2,514,030 14,344,383 1,141,618 116,122 503,400 36,276 137

% of successful
tries

- 100% 8.00% 0.81% 100% 7.2% 0.03%

% relative to
original dataset

100% 570.57% 45.41% 4.61% 20.02% 1.44% 0.005%

Source: the author

It is essential to notice some critical points in the algorithm implementation: I

trained the LSTM model on passwords with fixed size (in this study, eight characters).

Given that passwords with different lengths tend to have different patterns, this constraint

could limit the model’s efficiency. Therefore the results seen here could have been im-

proved by a more dynamic model.

Future works could apply several improvements to the algorithm, the main ones

being:

• Combining other NLP techniques with the LSTM generation, since most of the

passwords are alphanumerical and, as seen in Figure 4.2a, these passwords tend to

40

have a natural language-like distribution.

• Using a variable sequence length LSTM during training. Therefore, passwords

containing few characters would be as precise as passwords containing multiple

characters. During the training phase, I used a sequence length of 8, given that

most passwords in the sample had this size, even though it could vary from 1 up to

32.

• Using a different set of features. The 28 features identified were proposed by a

former colleague that worked on a similar project. However, none of us had previ-

ous knowledge of natural language processing, so a better combination of features

could be more effective.

• Using another AI-based algorithm to select the ideal features for a given dataset

automatically. Some of the most common algorithms used in this type of selection

are genetic algorithms and Random Forest classifiers.

• Using algorithms to identify the best hyperparameters for the LSTM. The original

network comprises an LSTM containing 256 units, a dropout layer with a dropout

rate of 0.2, and a dense layer containing one unit per selected feature. Other hyper-

parameters were left as the Keras default once the idea of the project was to analyze

the feasibility of such technique rather than optimize it. Creating a more refined

network using well-tuned parameters will certainly increase accuracy and precision

metrics and its F1-score.

• Combining several breaches. In this study, only one TLD was used to generate

passwords. However, if we used more than one TLD from the same region, the

number of matches would increase once the training set would be larger. TLDs from

the same region should work in this case once they usually share the same language.

For instance, we could combine the breaches of ufrgs.br and edu.pucrs.br, since

both organizations are based in Porto Alegre/RS, Brazil.

4.3 DeepExploit

DeepExploit is a proof-of-concept tool developed by Isao Takaesu, presented at

the BlackHat Europe 2018 conference. This framework selects the best payload combi-

nation to launch an attack against a target after some training on a server.

41

The training phase of this algorithm happens against an exploitable system to

which the attack has full access, such as a Metasploitable machine. After identifying

the main frailties of this system, the attacker uses this knowledge to launch a specific

attack against the final target. A Nmap scan is done to determine open ports, and the

algorithm sends the chosen payload through an HTTP request to the target.

In this study, three scenarios were analyzed. The results and conclusions are in

the following section.

4.3.1 Results

In this study, four machines were used: (i) a Metasploitable machine, which is

a 32-bit Debian deigned to have multiple exploitable features; (ii) a Microsoft Windows

8.1 Pro, x64-based; (iii) a 64-bit Ubuntu 16; and (iv) a 64-bit Kali Linux, which was the

attack launcher.

The first scenario consisted of training the framework on the Metasploitable ma-

chine and testing it on Windows 8. Multiple frailties were found in the Metasploitable

machine during the training phase, as expected, but when testing, only five of them suited

the Windows OS. The attack could not be launched against Windows 8, even though all

targeted ports were open to connections. The framework failed the first scenario.

The second scenario trained and tested the framework on the same Windows 8

machine. Once again, the Nmap identified all open ports, but the framework could not

attack the system, even during the training phase. We conclude this framework is not

ready to deal with Windows OS.

Finally, the third scenario was represented by a training phase on a Metasploitable

and an attack phase on a Ubuntu 16. The training worked as predicted, but the attack

phase failed at first because the open ports allowed only TCP connections instead of HTTP

connections. After fixing the configurations on Ubuntu 16 to accept HTTP connections,

the attack failed once again.

4.3.2 Conclusion

Even though some researchers have indeed found and fixed some bugs in the code

of this framework, obtaining favorable results after that, I could not test the features of

42

this tool once it failed all tests.

The premise of this framework is interesting. However, it is counter-intuitive to

assume that training on an OS that is finally different from the actual target will lead to

successful exploitation. An exploit that works in a Debian 32-bit will most probably not

work on a Windows 64-bit machine.

One possible application of such a framework would be its application on com-

pany networks, where there is usually a standard on the choice of OS and protocols.

Suppose one machine in this network was vulnerable to external access. In that case, the

attacker could use its configurations in a training server and then launch an attack against

the entirety of the network.

DeepExploit is a new, non-mature approach to this type of challenge and should

be further explored.

4.4 DeepPhish

This tool also had its first appearance in BlackHat Europe 2018, and the briefing

had the same name as its paper (DeepPhish: Simulating Malicious AI (BAHNSEN et al.,

2018b)). DeepPhish acts in four steps: (i) scores URLs contained in a phishing database

from 0.0 (safe) to 1.0 (phishing); (ii) trains an LSTM using these URLs and scores; (iii)

LSTM outputs URLs following a similar distribution to low-scored inputs; and (iv) the

generated URLs are evaluated, and the accuracy of the tool is calculated.

4.4.1 Evaluation

I tested the demo available in (BAHNSEN, 2018), but I was not able to run the

code as-is once it used a paid third-party software to classify the URLs in safe/phishing.

I chose a free version, CheckPhish (CHECKPHISH,). The latter is still in a development

phase, and its results were not suitable for this experiment.

CheckPhish classified all URLs as safe. This anomaly led to a 100% acceptance

rate of the URLs produced by DeepPhish since the detection algorithm used to tune the

LSTM was incorrect. Therefore, I could not verify the actual efficiency of DeepPhish.

Using the original external service, the authors had shown that 0.69% and 4.91%

of the original URLs from two threat actors were effective. They improved these rates up

43

to 20.9% and 36.28%, respectively, by training DeepPhish on these datasets.

Such improvements, up to 30 times the initial accuracy, indicate that this approach

is functional and practical.

4.4.2 Conclusion

Two solutions are possible: develop a personal URL classifier or find a paid ver-

sion with higher accuracy. This study was, in fact, a quick analysis of this tool. Therefore

I did not implement any of these solutions.

There are two possible counter-measures to this type of attack: URL analysis, as

proposed by the paper, and a deep analysis of the page’s content. The first one is quicker

but less accurate than the second.

Still, on the URL analysis, one could implement a simple system of black- and

white-lists, only allowing the user to access specific URLs (white-list) or preventing them

from accessing other (black-list). Another possibility would be training detectors by using

the outputs of such attacking tools in an adversary methodology.

44

5 SYNTHESIS

5.1 Conclusion

The question to be answered by this study was if one could use artificial intel-

ligence to propel cyberattacks, and if so, how to take measures against such threats. I

found multiple tools, and some were successfully tested, indicating that this type of at-

tack is possible. Many vulnerabilities were found in these threats, also, which gives us

indications of possible patches.

We verified that the farther we are in the Cyber Kill Chain framework (from Re-

connaissance to Action & Objectives), the fewer prototypes are available for testing, even

when considering ongoing prototypes. Such scarcity indicates how early in developing

such technologies are.

Another point noticed is that the great majority of tools found are, in fact, in their

early development stages. They contain several bugs and inefficiencies and cannot be

applied as-is in real situations. It could indicate two possible cases: these tools are being

developed by private companies that are not releasing their findings, or most solutions are

in their infancy.

5.2 Perspective

A possible improvement to this study would be prototyping a countermeasure to

one of the case studies, such as the brute-force attack on BreachCompilation. Even though

the goal of conducting this work was to analyze these tools, the main objective of such

study is, in the end, to be able to design and improve defense systems against these types

of attacks.

Several domains were identified as possible study subjects, but three domains, in

particular, were identified as more promising for consideration in further research, given

their state-of-the-art.

45

5.2.1 Intelligent spear phishing

Previous works have proven that the generation of phishing emails is possible

using ML techniques if the correct features are selected. Then, it is possible to extend this

technique to cover more directed attacks such as spear phishing. A possible improvement

to this study would be prototyping a countermeasure to one of the case studies, such as

the brute-force attack on BreachCompilation. Even though the goal of conducting this

work was to analyze these tools, the main objective of such study is, in the end, to be able

to design and improve defense systems against these types of attacks.

Several domains were identified as possible study subjects, but three domains, in

particular, were identified as more promising for consideration in further research, given

their state-of-the-art.

A tool such as Social Mapper could be used as information gathering, and a Natu-

ral Language Generator could use these data as input to generate a targeted phishing mail.

The exercise here would combine the information obtained by the information gathering

tool and the text generated by the Natural Language Generator algorithm convincingly.

Authors of (DAS; VERMA, 2019) did an initial study on this subject, but the

performance of such a tool was not very relevant. However, if combined with the text

analysis done in (YAO et al., 2017), many improvements could be made. (YAO et al.,

2017) demonstrates a text generation technique that a natural text can easily mistake.

The connection between a tool such as Social Mapper and a text generator in a

manner it could generate tricky texts is a subject that can be a source of a complete study.

5.2.2 Exploit generator

One possible application of genetic algorithms is the generation of exploits adapted

to a particular environment. The environment would be considered a combination of the

machine’s configurations, and the building blocks of each exploit would be the genome.

The example of the genetic algorithm given by Forced Evolution (SOEN, 2013),

as mentioned above, could be used as a basis. However, instead of using a string to launch

an injection attack, this tool would convert a string to a set of building blocks.

A first try has been done with the development of AEG (Automatic Exploit Gen-

erator), as explained in (AVGERINOS et al., 2011). However, AEG is environment-

centered, which means finding a bug and generating a specific exploit to it. A possible

46

approach would be to expand the attack surface of such methods.

5.2.3 Automated network compromising

This mechanism would identify the best attack route inside a network, given it

had access to one machine belonging to it. It can be thought of as a virus that infects

a network and keeps communication between infected devices to exchange data about

possible forms of expansion.

It would be a Command & Control solution once the algorithm would do the in-

fection of the network in an automatized manner. The basis algorithm could be a genetic

algorithm, as proposed previously, or a reinforcement learning type, as Q-learning. The

idea is to have some software able to adapt itself to each machine according to its config-

urations.

The authors of (FANG et al., 2019) use Deep Reinforcement Learning to evade

anti-malware detection systems. Still, the idea here would mainly infect other computers,

with a possible concern about detection systems. A study on hivenets could be an entry

to this subject, as proposed by Fortinet in 2018 (MANKY, 2017). Even two years later,

not a single academic article about such an attack has been widely available.

5.3 Resources

Some sections of this document were based in previous documents I wrote. The

links to the original versions are available in:

• Section 4.1, CAPTCHA solver case study, is available at (SAMPAIO, 2021a);

• Section 4.2, Brute-force attack case study, is available at (SAMPAIO, 2021b);

• Section 4.3, DeepExploit, and section 4.4, DeepPhish, are available at (SAMPAIO,

2021d).

I also implemented the parsing, analysis, and visualization tools to be applied in

BreachCompilation, which are kept in a public GitHub repository (SAMPAIO, 2021c).

Thus, this study will make it possible to investigate new research tracks, as fore-

seen in the initial objective.

47

REFERENCES

AHMED, S.; WRIGHT, N. D. Artificial intelligence, China, Russia, and the global
order: technological, political, global, and creative perspectives. Alabama, USA: Air
University Press, 2019.

AHN, L. von et al. Captcha: Using hard ai problems for security. In: BIHAM, E. (Ed.).
Advances in Cryptology — EUROCRYPT 2003. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003. p. 294–311. ISBN 978-3-540-39200-2.

AHN, L. von et al. Captcha: Using hard ai problems for security. In: BIHAM, E. (Ed.).
Advances in Cryptology — EUROCRYPT 2003. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003. p. 294–311. ISBN 978-3-540-39200-2.

ALEROUD, A.; ZHOU, L. Phishing environments, techniques, and countermeasures: A
survey. Computers Security, v. 68, p. 160 – 196, 2017. ISSN 0167-4048. Disponível
em: <http://www.sciencedirect.com/science/article/pii/S0167404817300810>.

ALLEN, G. C. Understanding China’s AI Strategy. 2019. Disponível em:
<https://www.cnas.org/publications/reports/understanding-chinas-ai-strategy>.

ANDERSON, H. S.; WOODBRIDGE, J.; FILAR, B. Deepdga: Adversarially-tuned
domain generation and detection. Proceedings of the 2016 ACM Workshop on
Artificial Intelligence and Security - ALSec ’16, 2016.

AVGERINOS, T. et al. Aeg: Automatic exploit generation. In: NDSS. Proceedings of
the Network and Distributed System Security Symposium, NDSS 2011. San Diego,
California, USA, 2011. v. 57.

BAHNSEN, A. C. DeepPhish Demo. 2018. Disponível em: <https://github.com/
albahnsen/DeepPhish_BlackHat_Demo>.

BAHNSEN, A. C. et al. Deepphish : Simulating malicious ai. 2018.

BAHNSEN, A. C. et al. Deepphish : Simulating malicious ai. In: BlackHat Europe
2018. London, United Kingdom: BlackHat, 2018.

BRUNEAU, G. The History and Evolution of Intrusion Detection. 2001.
Disponível em: <https://www.sans.org/reading-room/whitepapers/detection/
history-evolution-intrusion-detection-344>.

BöHME, R. et al. Bitcoin: Economics, technology, and governance. Journal
of Economic Perspectives, v. 29, n. 2, p. 213–38, May 2015. Disponível em:
<https://www.aeaweb.org/articles?id=10.1257/jep.29.2.213>.

CALZAVARA, S. et al. Mitch: A machine learning approach to the black-box detection
of csrf vulnerabilities. In: . Stockholm, Sweden: IEEE, 2019.

CARR, C. S. Network subsystem for time sharing hosts. 1969. Disponível em:
<https://tools.ietf.org/html/rfc15>.

http://www.sciencedirect.com/science/article/pii/S0167404817300810
https://www.cnas.org/publications/reports/understanding-chinas-ai-strategy
https://github.com/albahnsen/DeepPhish_BlackHat_Demo
https://github.com/albahnsen/DeepPhish_BlackHat_Demo
https://www.sans.org/reading-room/whitepapers/detection/history-evolution-intrusion-detection-344
https://www.sans.org/reading-room/whitepapers/detection/history-evolution-intrusion-detection-344
https://www.aeaweb.org/articles?id=10.1257/jep.29.2.213
https://tools.ietf.org/html/rfc15

48

CHAMBERS, N.; FRY, B.; MCMASTERS, J. Detecting denial-of-service attacks from
social media text: Applying nlp to computer security. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans,
Louisiana, USA: Association for Computational Linguistics, 2018. p. 1626–1635.

CHECKPHISH. Url Scanner to Detect Phishing in Real-time. Bolster. Disponível em:
<https://checkphish.ai/>.

CHEN, L. et al. Towards resilient machine learning for ransomware detection. 2018.

CHEN, Z.; JI, C. A self-learning worm using importance scanning. Proceedings of the
2005 ACM workshop on Rapid malcode - WORM 05, 2005.

CHENU, T. PoC Orange CAPTCHA. 2019. Disponível em: <https://github.com/
tchenu/poc-orange-captcha>.

CHIGOZIE-OKWUM, C.; AJAH, I. Botnet identification using machine learning
techniques: A survey. 07 2019.

CMU, C. M. U. The CERT Division. 2021. Accessed on 28.04.2021. Disponível em:
<https://sei.cmu.edu/about/divisions/cert/index.cfm>.

COMMUNITY, O. OWASP Top Ten. 2017. Accessed on 28.04.2021. Disponível em:
<https://owasp.org/www-project-top-ten/>.

COMMUNITY, O. Blocking Brute Force Attacks. 2020. Accessed on 28.04.2021.
Disponível em: <https://owasp.org/www-community/controls/Blocking_Brute_Force_
Attacks>.

COMMUNITY, O. Types of Cross-Site Scripting. 2020. Accessed on 28.04.2021.
Disponível em: <https://owasp.org/www-community/Types_of_Cross-Site_Scripting>.

COMMUNITY, O. XSS. 2021. Accessed on 28.04.2021. Disponível em: <https:
//owasp.org/www-community/attacks/xss/>.

COREWAR. Core War: Creeper and Reaper. 1971. Accessed on 28.04.2021.
Disponível em: <https://corewar.co.uk/creeper.htm>.

DAS, A.; VERMA, R. Automated email generation for targeted attacks using natural
language. 2019.

EASTEE. reBreakCAPTCHA repository. 2017. Disponível em: <https://github.com/
eastee/rebreakcaptcha>.

ECTHROS. unCAPTCHA repository. 2018. Disponível em: <https://github.com/
ecthros/uncaptcha>.

FANG, Z. et al. Evading anti-malware engines with deep reinforcement learning. IEEE
Access, v. 7, p. 48867–48879, 2019.

FARHI, N.; NISSIM, N.; ELOVICI, Y. Malboard: A novel user keystroke
impersonation attack and trusted detection framework based on side-channel analysis.
Computers Security, v. 85, p. 240 – 269, 2019. ISSN 0167-4048. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0167404818309957>.

https://checkphish.ai/
https://github.com/tchenu/poc-orange-captcha
https://github.com/tchenu/poc-orange-captcha
https://sei.cmu.edu/about/divisions/cert/index.cfm
https://owasp.org/www-project-top-ten/
https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks
https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://corewar.co.uk/creeper.htm
https://github.com/eastee/rebreakcaptcha
https://github.com/eastee/rebreakcaptcha
https://github.com/ecthros/uncaptcha
https://github.com/ecthros/uncaptcha
http://www.sciencedirect.com/science/article/pii/S0167404818309957

49

FBI. The Morris Worm. 2018. Disponível em: <https://www.fbi.gov/news/stories/
morris-worm-30-years-since-first-major-attack-on-internet-110218>.

GATELY, E. Neural Networks for Financial Forecasting. USA: John Wiley Sons,
Inc., 1995. ISBN 0471112127.

GATIS, D. Puppeteer reCAPTCHA Solver repository. 2020. Disponível em:
<https://github.com/danielgatis/puppeteer-recaptcha-solver>.

GDATA. About G DATA. 2020. Disponível em: <https://www.gdatasoftware.com/
about-g-data>.

GOLLE, P. Machine learning attacks against the asirra captcha. In: Proceedings of the
15th ACM Conference on Computer and Communications Security. New York,
NY, USA: Association for Computing Machinery, 2008. (CCS ’08), p. 535–542. ISBN
9781595938107. Disponível em: <https://doi.org/10.1145/1455770.1455838>.

GOODFELLOW, I. J. et al. Generative adversarial nets. In: Proceedings of the 27th
International Conference on Neural Information Processing Systems - Volume 2.
Cambridge, MA, USA: MIT Press, 2014. (NIPS’14), p. 2672–2680.

GRAHAM, P. A plan for spam. 2002. Disponível em: <http://www.paulgraham.com/
spam.html>.

GROVER. Grover: a State-of-the-Art Defense against Neural Fake News. 2019.
Accessed on 28.04.2021. Disponível em: <https://rowanzellers.com/grover/>.

GU, S.; RIGAZIO, L. Towards Deep Neural Network Architectures Robust to
Adversarial Examples. 2014.

HENRIQUES, M.; DANZIGER, M. Attacking and defending with intelligent botnets.
In: . São Pedro, São Paulo, Brazil: SBRT, 2017.

HITAJ, B. et al. PassGAN: A Deep Learning Approach for Password Guessing. 2017.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural
Computation, v. 9, n. 8, p. 1735–1780, 1997. Disponível em: <https://doi.org/10.1162/
neco.1997.9.8.1735>.

HU, W.; TAN, Y. Generating Adversarial Malware Examples for Black-Box Attacks
Based on GAN. 2017.

IBM. IBM Docs: Brute force attacks. 2012. Accessed on 28.04.2021. Disponível em:
<https://www.ibm.com/docs/en/snips/4.6.0?topic=categories-brute-force-attacks>.

IEEE. 2017. Accessed on 28.04.2021. Disponível em: <https://ieeexplore.ieee.org/
Xplore/home.jsp>.

JACKSON, P. Introduction to Expert Systems. 3rd. ed. USA: Addison-Wesley
Longman Publishing Co., Inc., 1998. ISBN 0201876868.

KAELBLING, L. P.; LITTMAN, M. L.; MOORE, A. W. Reinforcement Learning: A
Survey. 1996.

https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-110218
https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-110218
https://github.com/danielgatis/puppeteer-recaptcha-solver
https://www.gdatasoftware.com/about-g-data
https://www.gdatasoftware.com/about-g-data
https://doi.org/10.1145/1455770.1455838
http://www.paulgraham.com/spam.html
http://www.paulgraham.com/spam.html
https://rowanzellers.com/grover/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ibm.com/docs/en/snips/4.6.0?topic=categories-brute-force-attacks
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp

50

KHAN, R. et al. An improved convolutional neural network model for intrusion detection
in networks. In: 2019 Cybersecurity and Cyberforensics Conference (CCC). [S.l.:
s.n.], 2019. p. 74–77.

KIRAT, D.; JANG, J.; STOECKLIN, M. P. DeepLocker: Concealing Targeted Attacks
with AI Locksmithing. 2018.

KNOWBE4. What Is Phishing? 2017. Accessed on 28.04.2021. Disponível em:
<https://www.phishing.org/what-is-phishing>.

LI, B.; VOROBEYCHIK, Y.; CHEN, X. A General Retraining Framework for
Scalable Adversarial Classification. 2016.

LIU, K. captcha-break. 2018. Disponível em: <https://github.com/nladuo/
captcha-break>.

LIU, W. et al. A survey of deep neural network architectures and their applications.
Neurocomputing, v. 234, 12 2016.

LYREBIRD. 2017. Accessed on 28.04.2021. Disponível em: <https://www.descript.
com/lyrebird>.

MANKY, D. Fortinet FortiGuard Labs 2018 Threat Landscape Predictions.
2017. Disponível em: <https://www.fortinet.com/blog/business-and-technology/
fortinet-fortiguard-2018-threat-landscape-predictions>.

MARTIN, L. Cyber Kill Chain®. 2021. Accessed on 28.04.2021. Disponível em:
<https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html>.

MURPHEY, D. A history of information security - IFSEC Global: Security
and Fire News and Resources. IFSEC Global | Security and Fire News and
Resources, 2019. Disponível em: <https://www.ifsecglobal.com/cyber-security/
a-history-of-information-security/>.

NSCAI. National Security Comission on Artificial Intelligence Interim Report.
2019. Disponível em: <https://www.nscai.gov/wp-content/uploads/2021/03/
Full-Report-Digital-1.pdf>.

O’CONNOR, T. Russia is building a missile that can makes its
own decisions. 2017. Disponível em: <https://www.newsweek.com/
russia-military-challenge-us-china-missile-own-decisions-639926>.

PECK, J. et al. CharBot: A Simple and Effective Method for Evading DGA
Classifiers. 2019.

RAI, P.; SINGH, S. A survey of clustering techniques. International Journal of
Computer Applications, v. 7, n. 12, p. 1–5, Oct 2010.

RICHARDSON, R.; NORTH, M. M. Ransomware: Evolution, Mitigation and
Prevention. Kennesaw, Georgia, United States: Faculty Publications, 2017. 4276 p.

ROCKYOU. Wikimedia Foundation, 2020. Disponível em: <https://en.wikipedia.org/
wiki/RockYou>.

https://www.phishing.org/what-is-phishing
https://github.com/nladuo/captcha-break
https://github.com/nladuo/captcha-break
https://www.descript.com/lyrebird
https://www.descript.com/lyrebird
https://www.fortinet.com/blog/business-and-technology/fortinet-fortiguard-2018-threat-landscape-predictions
https://www.fortinet.com/blog/business-and-technology/fortinet-fortiguard-2018-threat-landscape-predictions
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.ifsecglobal.com/cyber-security/a-history-of-information-security/
https://www.ifsecglobal.com/cyber-security/a-history-of-information-security/
https://www.nscai.gov/wp-content/uploads/2021/03/Full-Report-Digital-1.pdf
https://www.nscai.gov/wp-content/uploads/2021/03/Full-Report-Digital-1.pdf
https://www.newsweek.com/russia-military-challenge-us-china-missile-own-decisions-639926
https://www.newsweek.com/russia-military-challenge-us-china-missile-own-decisions-639926
https://en.wikipedia.org/wiki/RockYou
https://en.wikipedia.org/wiki/RockYou

51

RUBENS, P. Understanding Ransomware Vectors Key to Preventing Attack. 2017.
Disponível em: <https://www.esecurityplanet.com/malware/prevent-ransomware-attack.
html>.

RUSSELL, R. et al. Chapter 2 - ddos attacks: Intent, tools, and defense. In: RUSSELL,
R. et al. (Ed.). Hack Proofing Your E-Commerce Site. Rockland: Syngress,
2001, (The Only Way to Stop a Hacker is to Think Like One). p. 45 – 118. ISBN
978-1-928994-27-5. Disponível em: <http://www.sciencedirect.com/science/article/pii/
B9781928994275500055>.

SAMPAIO, L. S. R. Analysis of some audio CAPTCHA-breaking tools. 2021.
Accessed on 28.04.2021. Disponível em: <https://github.com/LaurenRolan/TCC/blob/
main/documents/CAPTCHA_Analysis.pdf>.

SAMPAIO, L. S. R. Analyzing BreachCompilation passwords and training
an LSTM with them. 2021. Accessed on 28.04.2021. Disponível em: <https:
//github.com/LaurenRolan/TCC/blob/main/documents/Breach_Analysis.pdf>.

SAMPAIO, L. S. R. GitHub repository. 2021. Accessed on 28.04.2021. Disponível em:
<https://github.com/LaurenRolan/TCC>.

SAMPAIO, L. S. R. Verification of DeepPhish and DeepExploit. 2021. Accessed
on 28.04.2021. Disponível em: <https://github.com/LaurenRolan/TCC/blob/main/
documents/DeepPhish_DeepExploit.pdf>.

SCHWARTZ, J. T.; NEUMANN, J. V.; BURKS, A. W. Theory of self-reproducing
automata. Mathematics of Computation, v. 21, n. 100, p. 745, 1967.

SENTAMILSELVAN, K. Survey on cross site request forgery (an overview of csrf).
In: IEEE - International Conference on Research and Development Prospects
on Engineering and Technology (ICRDPET 2013). IEEE, 2013. Disponível
em: <https://www.researchgate.net/publication/281583832_Survey_on_Cross_Site_
Request_Forgery_An_Overview_of_CSRF>.

SHALEV-SHWARTZ, S.; BEN-DAVID, S. Understanding machine learning: from
theory to algorithms. Cambridge, United Kingdom: Cambridge University Press, 2017.

SHROPSHIRE, J. Natural language processing as a weapon. In: WISP 2018
Proceedings. Alabama, USA: SIGSEC, 2018. p. 26.

SIDI, L.; NADLER, A.; SHABTAI, A. MaskDGA: A Black-box Evasion Technique
Against DGA Classifiers and Adversarial Defenses. 2019.

SINGER, P.; FRIEDMAN, A. Cybersecurity: What Everyone Needs to Know. OUP
USA, 2014. (What Everyone Needs To Know). ISBN 9780199918096. Disponível em:
<https://books.google.fr/books?id=f_lyDwAAQBAJ>.

SIVAKORN, S.; POLAKIS, J.; KEROMYTIS, A. D. I’m not a human: Breaking the
google recaptcha. In: . Marina Bay Sands, Singapore: BlackHat, 2016.

SOEN. Forced Evolution: Evolving Exploits through Genetic Algorithms.
2013. Accessed on 28.04.2021. Disponível em: <https://github.com/soen-vanned/
forced-evolution>.

https://www.esecurityplanet.com/malware/prevent-ransomware-attack.html
https://www.esecurityplanet.com/malware/prevent-ransomware-attack.html
http://www.sciencedirect.com/science/article/pii/B9781928994275500055
http://www.sciencedirect.com/science/article/pii/B9781928994275500055
https://github.com/LaurenRolan/TCC/blob/main/documents/CAPTCHA_Analysis.pdf
https://github.com/LaurenRolan/TCC/blob/main/documents/CAPTCHA_Analysis.pdf
https://github.com/LaurenRolan/TCC/blob/main/documents/Breach_Analysis.pdf
https://github.com/LaurenRolan/TCC/blob/main/documents/Breach_Analysis.pdf
https://github.com/LaurenRolan/TCC
https://github.com/LaurenRolan/TCC/blob/main/documents/DeepPhish_DeepExploit.pdf
https://github.com/LaurenRolan/TCC/blob/main/documents/DeepPhish_DeepExploit.pdf
https://www.researchgate.net/publication/281583832_Survey_on_Cross_Site_Request_Forgery_An_Overview_of_CSRF
https://www.researchgate.net/publication/281583832_Survey_on_Cross_Site_Request_Forgery_An_Overview_of_CSRF
https://books.google.fr/books?id=f_lyDwAAQBAJ
https://github.com/soen-vanned/forced-evolution
https://github.com/soen-vanned/forced-evolution

52

STEINLEY, D. K-means clustering: A half-century synthesis. British Journal of
Mathematical and Statistical Psychology, v. 59, n. 1, p. 1–34, 2006. Disponível em:
<https://onlinelibrary.wiley.com/doi/abs/10.1348/000711005X48266>.

STEUBE, J.; GRISTINA, G. HashCat: Advanced Password Recovery. 2015. Accessed
on 28.04.2021. Disponível em: <https://hashcat.net/hashcat/>.

TAKAESU, I. DeepExploit. 2018. Accessed on 28.04.2021. Disponível em:
<https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/DeepExploit>.

UCSB; ASU. angr. 2015. Disponível em: <https://angr.io/>.

VINAYAKUMAR, R. et al. Ransomware triage using deep learning: Twitter as a case
study. In: 2019 Cybersecurity and Cyberforensics Conference (CCC). [S.l.: s.n.],
2019. p. 67–73.

VISHAL, T. V. et al. A survey and comparison of artificial intelligence techniques
for image classification and their applications. International Journal of Science and
Research (IJSR), v. 5, n. 4, p. 187–193, May 2016.

WATKINS, C. J. C. H.; DAYAN, P. Q-learning. Machine Learning, v. 8, n. 3, p. 279–292,
May 1992. ISSN 1573-0565. Disponível em: <https://doi.org/10.1007/BF00992698>.

WILKIN, J. Mapping Social Media with Facial Recognition: A New
Tool for Penetration Testers and Red Teamers. 2018. Disponível
em: <https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/
mapping-social-media-with-facial-recognition-a-new-tool-for-penetration-testers-and-red-teamers/
>.

YANG, Y. Artificial intelligence takes jobs from Chinese web cen-
sors. Financial Times, 2018. Disponível em: <https://www.ft.com/content/
9728b178-59b4-11e8-bdb7-f6677d2e1ce8>.

YAO, Y. et al. Automated crowdturfing attacks and defenses in online review
systems. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. New York, NY, USA: Association for Computing
Machinery, 2017. (CCS ’17), p. 1143–1158. ISBN 9781450349468. Disponível em:
<https://doi.org/10.1145/3133956.3133990>.

YENALA, H. et al. Deep learning for detecting inappropriate content in text.
Springer International Publishing, 1970. Disponível em: <https://link.springer.com/
article/10.1007/s41060-017-0088-4>.

ZHANG, R. et al. Using ai to attack va: A stealthy spyware against voice assistances in
smart phones. IEEE Access, v. 7, p. 153542–153554, 2019.

ZHU, X. Semi-supervised learning literature survey. Comput Sci, University of
Wisconsin-Madison, v. 2, 07 2008.

https://onlinelibrary.wiley.com/doi/abs/10.1348/000711005X48266
https://hashcat.net/hashcat/
https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/DeepExploit
https://angr.io/
https://doi.org/10.1007/BF00992698
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/mapping-social-media-with-facial-recognition-a-new-tool-for-penetration-testers-and-red-teamers/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/mapping-social-media-with-facial-recognition-a-new-tool-for-penetration-testers-and-red-teamers/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/mapping-social-media-with-facial-recognition-a-new-tool-for-penetration-testers-and-red-teamers/
https://www.ft.com/content/9728b178-59b4-11e8-bdb7-f6677d2e1ce8
https://www.ft.com/content/9728b178-59b4-11e8-bdb7-f6677d2e1ce8
https://doi.org/10.1145/3133956.3133990
https://link.springer.com/article/10.1007/s41060-017-0088-4
https://link.springer.com/article/10.1007/s41060-017-0088-4

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Concept definitions
	2.1 Artificial Intelligence
	2.1.1 Types of learning
	2.1.2 Tasks where AI is used
	2.1.3 Some specific Neural Networks

	2.2 Cybersecurity
	2.2.1 Some common attacks
	2.2.1.1 DoS and DDoS
	2.2.1.2 Brute force
	2.2.1.3 Phishing
	2.2.1.4 Cross-Site Request Forgery and Cross-Site Scripting
	2.2.1.5 Ransomwares

	3 State-of-the-art
	3.1 AI applied to defense
	3.2 AI applied to attack
	3.2.1 Cyber kill chain
	3.2.2 The academic side
	3.2.3 The industry side

	4 Evaluations and Experimentations
	4.1 CAPTCHA solver case study
	4.1.1 What are CAPTCHA
	4.1.2 Tools and results
	4.1.3 Status and perspectives

	4.2 Brute-force attack case study
	4.2.1 Dataset distribution
	4.2.2 Password generation
	4.2.3 Comparison between methods
	4.2.4 Status and perspectives

	4.3 DeepExploit
	4.3.1 Results
	4.3.2 Conclusion

	4.4 DeepPhish
	4.4.1 Evaluation
	4.4.2 Conclusion

	5 Synthesis
	5.1 Conclusion
	5.2 Perspective
	5.2.1 Intelligent spear phishing
	5.2.2 Exploit generator
	5.2.3 Automated network compromising

	5.3 Resources

	References

