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Abstract: We address and discuss some of the many fl aws exhibited by Costa et al. (2019) 
which tried to explain the twig-like camoufl age of Cladomorphus phyllinus. Given the 
lack of both empirical and theoretical underpinnings in Costa et al. (2019), we call into 
question the validity of their conclusions, in particular, that horizontal gene transfer is a 
causal mechanism for the camoufl age in C. phyllinus.
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INTRODUCTION

“Extraordinary claims require extraordinary evidence.” 
― Carl Sagan

In a recent paper, Costa et al. (2019) [from now on 
CEA] offer a report on the predation of a species 
of predatory stink bug [Supputius cincticeps (Stål, 
1860) (Hemiptera, Pentatomidae, Asopinae)] 
over a walking-stick insect [Cladomorphus 
phyllinus Gray, 1835 (Phasmatodea, Phasmatidae, 
Cladomorphinae)]. The paper presents natural 
history observations on this interaction but 
further proposes an astonishing claim: that 
the twig aspect of this species of Phasmatodea 
could have arisen through horizontal gene 
transfer (HGT) of a morph plant gene via the 
stink bug. Given that very little is known about 
the mechanisms of morphogenesis in animals, 
and in insects in particular, any hypothesis of 
evolutionary camoufl age mechanism in walking-
stick insects invoking a morphogene should be 
adequately substantiated. Here, we present 
some arguments that doubt the validity of CEA 

statements and strongly reject the notion of 
these statements being scientifi c hypotheses. 

DISCUSSION

In their paper, CEA claimed that their observations 
are the first report of predation between 
Asopinae over Phasmatodea; nonetheless 
records of predator-prey interaction between 
Asopinae and Phasmatodea go back more than 
a century (e.g., Kirkland 1898), and interactions 
between Asopinae species and their prey are 
opportunistic (de Clercq 2000). The interaction 
documented by CEA thus seems to be casual 
and uncommon given that it was carried out 
under laboratory conditions and based on a 
single observation of a S. cincticeps nymph. 

The core of CEA paper presented an 
alternative idea on how camouflage could 
have evolved in Phasmatodea, different from 
the evolution of masquerade camouflage 
(Skelhorn et al. 2010, Dias Lima & Kaminski 
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2019). The authors weave assumptions related 
to zoophytophagy, HGT, and camouflage to 
speculate a causality link between the predation 
of S. cinctipes over C. phyllinus, and the particular 
phenotype of this species of Phasmatodea. With 
such a great claim, the reader could expect 
a careful exposition of theories and correct 
use of methods and techniques designed to 
explore in-depth the morphological, behavioral, 
and molecular data involved in this predator-
prey system (e.g., Lin et al. 2016, Gao et al. 
2018). Unfortunately, this was not the case. 
Instead, CEA relied on non-supported ideas to 
substantiate their unusual claim. CEA invoked 
HGT from a plant species to a Phasmatodea 
via a Pentatomidae predator with nonexclusive 
phytophagous habit. This argumentation gravely 
suffers from various issues. The first is that they 
argue that S. cinctipes need to feed on plants to 
complete its life-cycle. Nonetheless, the results 
of experimental research using only animal 
prey (e.g., Tenebrio molitor L., Musca domestica 
L.), comparing longevity, fertility, and other 
biological parameters (e.g., Beserra et al. 1995, 
Zanuncio et al. 1997, 2005, Oliveira et al. 2003) 
do not support this claim. Supputius cincticeps 
is indeed a generalist predator that may have 
an advantage in longevity when supplementing 
their diet with plant tissue (Zanuncio et al. 2004), 
although plant feeding is not necessary for its 
development. Furthermore, S. cinctipes, as well 
as all other asopines, are predatory species 
that cause the death of their prey during its 
feeding (Martínez et al. 2016, Walker et al. 2016), 
not fulfilling the goal of HGT process, which is 
the transfer of genetic material to another non-
related organism and inserting these elements 
permanently. Therefore, the probability of S. 
cinctipes being a vector responsible for any HGT 
is very low.

HGT is the acquisition of genes from 
organisms other than a direct ancestor (Crisp 

et al. 2015). These transfers are common 
within Bacteria, Archaea, and between them 
(e.g., Ochman et al. 2000, Gophna et al. 2004). 
HGT involving Eukarya is more uncommon 
than compared to prokaryotes (Syvanen 2012). 
Although it is a highly complex process, given 
that the transmitted genes must be introduced 
in germline cells (Blaxter 2007), successful 
HGT cases have been documented in Animalia 
(e.g., Moran & Jarvik 2010, Walsh et al. 2013), 
Plantae (e.g., Baidouri et al. 2014), and Fungi 
(e.g., Novikova et al. 2010). However, even genes 
successfully transmitted and integrated into an 
organism are not necessarily transcribed in the 
recipient cell (Nikoh et al. 2008). A few instances 
of HGT involving retroelements of plants and 
arthropods are known, involving genomic 
elements from arthropods to spermatophytes 
(Lin et al. 2016, Gao et al. 2018), as well as from 
plants or fungi into arthropods (e.g., Moran & 
Jarvik 2010, Altincicek et al. 2012, Zakharov 2016). 
In all instances of HGT involving arthropods, 
there is no consensus as to how the process was 
achieved (e.g., Wybouw et al. 2012), but always 
involved genes only with particular metabolic 
functions (Grbić et al. 2011, Wybouw et al. 2012, 
Nováková & Moran 2012). Thus, it is assumed 
that HGT in arthropods will correspond to very 
specific gene functions.

The most critical and flawed argument of 
CEA paper is that the camouflage exhibited by C. 
phyllinus is the result of HGT “of plant-derived 
genetic material leading to development of a 
form resembling a tree stem”. This assumption 
is highly problematic in several respects. First, 
very little is known about the control of plant 
morphology. A fundamental question in plant 
biology is how different plant phenotypes arise 
based on particular genetic information, and how 
the environment interacts with this information 
to produce distinct phenotypes. Although this 
question is just starting to be answered (e.g., 
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Schlichting & Pigliucci 1993, Yang et al. 2014, 
Casacuberta et al. 2016, Gaudinier & Brady 
2016, Honkanen et al. 2016), it is clear, as recent 
research suggests, that plant phenotypes are the 
result of polygenic control (Ogura & Busch 2016, 
Bucksch et al. 2017), and thus must be assumed 
that several loci are responsible in producing 
particular phenotypes on specific parts of plants. 
CEA did not provide a plausible explanation as to 
how all these genetic elements were transferred 
and inserted into the insect. This is also highly 
problematic because they failed to provide a 
theoretical underpinning that might help explain 
how the whole suite of genes involved in plant 
morphogenesis might adequately function in 
another organism with radically different genetic 
control mechanisms. Thus, the failure is twofold, 
lacking both empirical evidence and theoretical 
support that might allow other researchers to 
test these ideas. 

Finally, CEA implicitly expand the HGT 
process to other Phasmatodea, wrongly 
assuming that all species in the order are twig-
like, which is not the case. Phasmatodea exhibit 
various body types, resembling various plant 
forms such as twigs, leaves, or moss (Bradler & 
Buckley 2020), and thus are probably the result 
of various evolutionary selective pressures, as 
evidenced by the various phylogenetic patterns 
recovered (Whiting et al. 2003, Bradler et al. 2014, 
Robertson et al. 2018). If HGT is responsible for 
the twig-like appearance of C. phyllinus, then it 
should have been explained how other species 
of Phasmatodea also present similar plant-
looking body types, another idea that was never 
properly discussed in their paper.

CONCLUSIONS

A single observation of S. cinctipes feeding to 
C. phyllinus, lacking additional empirical and 

theoretical support, prevents to postulate 
HGT as the driving mechanism explaining the 
camouflage in this phasmatodean species. In 
a broad sense, scientific evidence is something 
that gives a scientist a good reason to consider 
a hypothesis true (Achinstein 2008), being 
this evidence filtered through a personal 
judgment and then interpreted as strong, weak, 
incomplete, redundant, inconclusive, plausible, 
and so on (Schum 2001). Scientific evidence 
gains its value not from using empirical data 
alone, but from how the evidence was produced, 
and to which theories the conclusions based on 
this evidence are compared to (Bogen 2017). The 
zenith of evolutionary biology is the building 
of narratives based on evidence. However, the 
mere concatenation of evidence in a coherent 
sequence attributing causality between them is 
not subject to confirmation or disconfirmation 
(Abbott 1992, Mink 1987). Regrettably, CEA paper 
lacks both empirical data and theoretical 
postulates to properly advance a scientific 
theory with regard to Phasmatodea camouflage. 
Finally, all this argumentation calls for a stronger 
peer-review process of our ideas submitted to 
scientific journals, in order to produce better 
science. 
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