UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA 3
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

ISADORA PEDRINI POSSEBON

Look-Ahead Reinforcement Learning: an
application for load balancing network
traffic

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Alberto Egon Schaeffer-Filho

Porto Alegre
August 2021

CIP — CATALOGING-IN-PUBLICATION

Possebon, Isadora Pedrini

Look-Ahead Reinforcement Learning: an application for load
balancing network traffic / Isadora Pedrini Possebon. — Porto Ale-
gre: PPGC da UFRGS, 2021.

96 f.: il.

Thesis (Master) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduagdo em Computacao, Porto Alegre, BR—
RS, 2021. Advisor: Alberto Egon Schaeffer-Filho.

1. Network traffic. 2. Reinforcement learning. 3. Network
traffic prediction. 4. Load balancing. 5. Network flow. 6. Ma-
chine learning. I. Schaeffer-Filho, Alberto Egon. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitora: Prof”. Jane Fraga Tutikian

Pré-Reitor de Pos-Graduagao: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informdtica: Prof®. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Prof*. Luciana Salete Buriol

Bibliotecdria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

“Enquanto ngo alcances Nao descanses, De nenhum fruto queiras s6 metade.”

— MIGUEL TORGA

ACKNOWLEDGEMENTS

To my advisor, Prof. Dr. Alberto Egon Schaeffer-Filho for the guidance that was
vital to the conclusion of this work. I am grateful for your patience and the time you
invested in this project, for the motivation and passion for science you inspire.

To my parents, - Agradeco aos meus pais, principalmente, por todo o esforco e
dedicagdo que tiveram comigo e na minha educagdo ao longo desses 26 anos. Voc€s me
motivaram a ir longe e, mais do que isso, me proporcionaram a possibilidade de ir longe.
Tenham a certeza de que o resultado desse trabalho é fruto de um sonho que vocés me
ajudaram a sonhar e a colocar em prética. Sem vocés, nada disso seria possivel. Essa
vitéria € nossa!

To my sister and brother for all these years of sharing and compassion. You were
always the people who understood and helped me get through difficult times. I appreciate
having you not only as siblings but also as part of my life. Together we can do remarkable
things.

To Guilherme, that started this journey with me as my boyfriend and is now my
fiance. I thank you for all your patience and companionship. Thank you for the technical
discussions, science critiques, and wine shared while working on our projects. You are
the best science/life partner I could ever ask for.

To my friends, Amanda e Victéria, who helped me with technical discussions and
motivational speeches since our first year as undergraduate students at UFRGS. It is an
honor to share these experiences and knowledge with such inspirational women.

Finally, I am grateful for all the teachers that I had at Instituto de Informética and
at UFRGS. Thanks for sharing your knowledge and inspiring me to always search for

answers. You helped me accomplish a dream I had since I was 13 years old.

ABSTRACT

Considering the growth in complexity and scale of computer networks and that the lead-
ing cause of failures is human error, there is an increasing interest in minimizing the
role of humans in network management tasks. In this context, we propose a two-step,
machine learning approach for automatically balancing network flows that can compro-
mise network performance. In particular, firstly, we rely on identifying elephant flows,
which more heavily impact network resources. Secondly, we use a reinforcement learning
mechanism to determine the best action to be performed in the network, given its current
status. The intuition for this two-step approach is to amortize the computational costs
of reinforcement learning and apply it only to flows which can cause a high impact on
network performance.

To evaluate our work, we firstly perform a functional evaluation to discuss different re-
ward functions for load balancing using reinforcement learning. Secondly, we evaluate
the elephant flow identification, discussing the impact of looking to elephant flows on
reinforcement learning strategies.

For the first set of experiments, results indicate that the RL approach is better than the
baseline (controller with no RL intervention). The reward function with better results used
a harmonic mean heuristic. This reward function was able to reduce FCT and be scalable
concerning the number of switches. For the second set of experiments, we showed the
importance of using an elephant flow intelligence: reward function with this factor was
able to reduce FCT by 91%, considering a 50/50 workload (50% mice flows, and a 50%
elephant flows proportion, with a 15 seconds interval between connections).

Our main contributions are (i) problem modeling as a function of states and actions in a
system that aims to balance network traffic and (i1) an architecture that more judiciously

uses reinforcement learning on flows of interest for load balancing.

Keywords: Network traffic. reinforcement learning. network traffic prediction. load

balancing. network flow. machine learning.

Look-Ahead Reinforcement Learning: uma aplicacao para balanceamento de

fluxos de rede usando aprendizado por reforco

RESUMO

Considerando o crescimento de complexidade e escala das redes de computadores e que
a principal causa de falhas € o erro humano, hd um interesse crescente em minimizar o
papel dos humanos nas tarefas de gerenciamento de rede. Nesse contexto, propomos uma
abordagem de aprendizado de mdquina em duas etapas para balancear automaticamente
os fluxos de rede que podem comprometer o desempenho da rede. Em primeiro lugar,
contamos com a identificagdo de fluxos de elefantes, que impactam mais fortemente os
recursos da rede. Em segundo lugar, utilizamos um mecanismo de aprendizagem por
refor¢o para determinar a melhor acdo a ser realizada na rede, dado o seu estado atual.
A intuicdo para esta abordagem em duas etapas € amortizar os custos computacionais do
aprendizado por reforco e aplicd-los apenas aos fluxos que podem causar um alto impacto
no desempenho da rede.

Para avaliar nosso trabalho, primeiramente fazemos uma avaliagcdo funcional para discutir
diferentes fungdes de recompensa usadas no balanceamento de carga com aprendizagem
por reforco. Em segundo lugar, avaliamos a identificacdo de fluxos elefante, discutindo o
impacto de observar esse tipo de fluxo nas estratégias de aprendizagem por reforco.

Para o primeiro conjunto de experimentos, os resultados indicam que a abordagem RL
€ melhor do que a solucdo de base (controlador sem RL). A funcdo de recompensa com
melhores resultados utilizou uma heuristica de média harmonica e foi capaz de reduzir
o FCT, sendo escaldvel em relagdao ao nimero de switches na topologia. Para o segundo
conjunto de experimentos, mostramos a importancia de usar uma inteligéncia de fluxos
elefantes: a funcdo de recompensa com esse fator foi capaz de reduzir o FCT em 91 %,
considerando uma carga de trabalho de 50/50 (50 % de fluxos ratos e 50 % de fluxos
elefantes, com intervalo de 15 segundos entre as conexdes).

Nossas principais contribui¢cdes sdo (1) modelagem de problemas em fungdo de estados
e acOes em um sistema que visa balancear o trafego da rede e (ii) uma arquitetura que
usa de forma mais criteriosa a aprendizagem por refor¢o nos fluxos de interesse para o

balanceamento de carga.

Palavras-chave: trifego de rede, aprendizado por refor¢o, previsao de trafego de rede,

balanceamento de carga, fluxo de rede, aprendizado de maquina.

LIST OF FIGURES

Figure 2.1 Diagram illustrating how the agent interacts with the environment............... 21
Figure 2.2 Diagram illustrating the difference between Q-Learning and Deep Q-
LLEATNINE. «.eeneiieiie ettt ettt et e e st e et e e st e e rb e e st ee e nateeenneeenaee 24
Figure 4.1 Look-Ahead Reinforcement Learning for load balancing network traffic
APPIOACH OVEIVIEW. ...eouiiiiiiiiiiiiieeiie ettt ettt e e 38
Figure 4.2 Example network topology used to model our Reinforcement Learning
AZETIE. 1ottt ettt s et e s e e a e sbneeeanees 39
Figure 4.3 Network topology for state when H1 routes workload to H2 through a,
Dy fand i TINKS. ...ooiiiiiiiiiieee e s 40

Figure 4.4 Reinforcement Learning agent steps to select the best action. The agent
iterates over each step to find the best actions. The chosen action is the one

DIGhIIZREEA. ..ot 43
Figure 4.5 Diagram showing how Deep Q-Learning approximates Q-value for the
actions based on the CUITENE STALE.coveruiirieriieiieeeee e 44

Figure 4.6 Look-Ahead Reinforcement Learning for Load Balancing architecture........45
Figure 4.7 Output generated by Flow Action Translator: OpenFlow rule for switch S149

Figure 5.1 Topology S1 used as baseline for experimental analysis. HI is the

source host, and H2 1S the target.ccceeeriieriieeiiieeiie et e 55
Figure 5.2 Topology S2 used to analyze the impact of more switches on experi-
mental results. H1 is the source host, and H2 is the target.ccccccovvercveeerreennnen. 56

Figure 5.3 Average total flow completion time results for experiments with agents
WeightedUsage, UsageHarmonicMean, UsageStandardDeviation and Flood-
light Controller. Error bars represent the standard deviation for each set of
replications. Each set of experiments considered 5 flows with the same size

(10 MB, 50 MB, 100 MB, 200 MB, and 500 MB, respectively).........cccccceevurrrnnen. 62
Figure 5.4 Memory usage results for experiments with different reward functions. 64
Figure 5.5 Total flow completion time for experiments using agents UsageHar-

monicMean and UsageHarmonicMean-EF1.ccccuooeevioiiniiiniieiinieenieeennn, 66
Figura A.1 Visido geral da arquiteura de Look-Ahead Reinforcement Learning para

balanceamento d€ CATZA.cccuuveeiiriiieiiiiiee et et e e s e e 82
Figura A.2 Arquitetura Look-Ahead Reinforcement Learning para balanceamento

de trAfe@0 e TEAE. ..eeierniiiieieeie e e 84
Figura A.3 Topologia S1 usada como base para os experimentos. H1 € o host de

origem € H2 € 0 host de deStino.coovuiiiiiiiiiiiiniiiiiceeee e 86
Figura A.4 Topologia S2 usada para analisar o impacto de switches adicionais no

resultado dos experimentos. H1 € o host de origem e H2 € o host de destino......... 87

Figura A.5 Média do tempo total de completude dos fluxos em segundos (average
total flow completion time), em fun¢cdo do tamanho dos fluxos em MBytes
(flow size). Os resultados sdo mostrados para os agentes WeightedUsage, Usa-
geHarmonicMean, UsageStandardDeviation e para o controlador Floodlight.
As barras de erro representam o desvio padrao de cada conjunto de replicacio
dOS EXPETIIMEINLOS. ... eeeiiieeireeriieeeireenteeetteesaeeestteessseeeseeessseeeseeensseesnsseesnseesnssesnnses 91
Figura A.6 Resultados de utilizacdo média de memoria em KBytes (average me-
mory usage), em fung¢do do tamanho dos fluxos em MBytes (flow size) utili-
zando agentes com diferentes fungdes de reCOMPENSa.c.ceeeveereereerieeenieeneennennn. 92

Figura A.7 Resultados de tempo total para conclusdo dos fluxos (FCT) usando os
agentes UsageHarmonicMean e UsageHarmonicMean-EF1I.cccccccceeeen... 94

LIST OF TABLES

Table 3.1 Comparison between research efforts discussed in this document. 35
Table 4.1 Representation of snapshot 1, with a SMbps flow.cccevviiiiiiiiiiiiiiiinee 39
Table 4.2 Representation of state 1, generated from snapshot 1 illustrated on Table

L T OO SO OO PR PO SUIUURUPRRRRROO 39
Table 4.3 Network statistics stored at each network snapshot, considering an active

flow between 1inks @, b, f, and Icccueeeieiiiiiiiiiieeeeee e 46
Table 4.4 Set of parameters set for each switch as the output of Flow Action Trans-

1ator MOAULE. ..ottt 49

Table 5.1 Set of different parameters used on the model and its correspondent values..57

Table 5.2 Set of different agents trained for the experiments.c..cccceveeerieiriieenneenne 60
Table 5.3 Set of different parameters for training the agents.ccccceecverveeneeniennenn. 60
Table 5.4 Experiments configuration for functional analysis...........ccecevcuerveenieniennene 61
Table 5.5 Homogeneous State repreSentation.eeeuveerveeerieeniieeerieesiieesieessieeesneeens 63
Table 5.6 Heterogeneous state repreSentation.ccveerveeerveerrieeerreessieeesseessseeessneeens 63
Table 5.7 Comparison between reward function values for each state.ccceenneee. 64
Table 5.8 Experiments configuration for EFI analysis.ccccccoviiiiiiiiniiiniiiniieeneee 65
Table 5.9 Workload distribution, where #MF is the number of mice flows, and #EF

is the number of elephant flOWS.ccocciiiiiiiiiiiii e 66
Tabela A.1 Conjunto de diferentes parametros e seus valores correspondentes. 86

Tabela A.2 Configuracio dos experimentos para a andlise funcional. Baseline cor-
responde ao uso do controlador Floodlight sem intervengdes de aprendizado
€ MAQUINA. ..eeeiiieiiie ettt ettt e et e et e st e e s beesbeeesateesnsteennseesnsaeennseas 90
Tabela A.3 Distribui¢do da carga de trabalho, onde #FR € o ntimero de fluxos ratos
e #FE € o numero de fluxos elefantes.ccocceeviiiiiiiiniiiiiiiieceee, 92

LIST OF ABBREVIATIONS AND ACRONYMS

ANN Artificical Neural Network
AR Auto-Regressive

BP Back-propagation

DC Data Center

DQL Deep Q-Learning

DQN Deep Q-Network

ECMP Equal-Cost Multi-Path

FIB Forwarding Information Base
FNN Feedforward Neural Network
GPR Guassian Process Regression
HMM Hidden Markov Model
HMM Hidden Markov Model

ISP Internet Service Providers
KBR Kernel Bayes Rule

KNN K-Nearest Neighbors

LPM Longest-Prefix Matches
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
ML Machine Learning
MLP-NNMulti-Layer Perceptron Neural Network
MSE Mean Squared-Error

NDN Named Data Networking

NN Neural Network

NNE Neural Network Ensemble

NWS Network Weather Service

oBMM Online Bayesian Moment Matching
OSPF Open Shortest Path First

PIT Pending Interest Table

QoE Quality of Experience

QoS Quality of Service

RIB Routing Information Base

RL Reinforcement Learning

RNN Recurrent Neural Network

RRMSE Relative RMSE

SARSA State-Action-Reward-State-Action
SDN Software-defined Network

SNMP Simple Network Management Protocol
SVM Support Vector Machines

TDBA Tensor-based Deep Belief Architecture
TNR True Negative Rate

TPR True Positive Rate

TSF Time Series Forecasting

CONTENTS

1 INTRODUCTION.....14
1.1 Context 14
1.2 Motivation... . .15
1.3 Objectives and contributions16
1.4 Document organization16
2 BACKGROUND 17
2.1 Traffic prediction... 17
2.1.1 Time Series Forecast Problems...........cccceiiiiiiiiiiiiiiiiiiiiiececeeeeeeeee e 18
2.1.2 Non-Time Series Forecast Problems............ccocevieriiiiiiiniiniiiiiienicnicecceceee 18
2.2 Load balancing...... . . .19
2.3 Reinforcement Learning.. 20
231 Q-LBAIMING ...coniiiiiiiiieiiieeiteeet ettt ettt ettt ettt e et e s e 22
2.3.2 Deep Q-Learning (DQL).....ccuuiiiiiiiiiieieeeiieeiee ettt 24
2.3.3 On-Policy and Off-Policy Learning..........cccoccueeeeriiieiiiiiieeeiiiee e 25
3 RELATED WORK ... 27
3.1 Machine learning for traffic prediction . . . w27
3.1.1 Traffic prediction modeled as a Time Series Forecast problem..........ccc.cccceeueeneee. 27
3.1.2 Traffic prediction modeled as a non-Time Series Forecast problem...................... 29
3.2 Traffic engineering 32
3.2.1 Traffic routing for load balancingcceccvveviieeiiieriiieiieece e 32
3.2.2 Machine learning for traffic routing..........cccceevveviiniienienienieeeeeeee e 33
3.3 Discussion .. .35
4 LOOK-AHEAD REINFORCEMENT LEARNING FOR LOAD BALAN CING 37
4.1 Approach Overview 37
4.2 Reinforcement Learning Agent Modelling... .38
A.2.1 STALE...eontieiieiieeteeee ettt et e h e bbbt be e s e e 39
4.2.2 Reward fUNCHIONcooiuiiiiiiiiiieeeiteee ettt ettt e s 40
A.2.3 ACTIONS ..ttt sttt ettt ettt ettt st b e eb e s 43
4.2.4 Deep Q-Learning AZENT.......cccueivuiiiiiiiaiieeniieeite et e siteeeiee et esieeesreesieeesaeeeas 43
4.3 Look-Ahead Reinforcement Learning Architecture 44
4.3.1 StatiStCS MANAQZETccoouviiiiiiiiiieeiieete ettt ettt e s e e 45
4.3.2 Elephant Flow Identification..............ccooiuiieriieiiiieniieeiieeiteeiee et 46
4.3.3 Reinforcement Learning AZENt...........eeovruiieeiniiieeiiiiee e eriieeeesieee e eieeeeesaeeees 48
4.3.4 Traffic Engineering RUIEscccoiiiiiiiiiiiiiiiieeeceee e 48
4.4 Summary.....49
5 PROTOTYPING AND EVALUATION 50
5.1 Prototyping.50
S.1.1 StatiSticsS MANAEETcooveeiiieiiiiieeieeeeeete ettt 51
5.1.2 Elephant flow identifiCationccueeriieeiiieniieeieeeiee e 51
5.1.3 Reinforcement Learning AZENt........ccceocveeiieriinieniiieieneenieeieee e 51
S5.1.3.1 SEP FUNCHON ..ttt ettt e e e s e e eesbee e 51
5.1.3.2 ODSEIVALION SPACE ...cuveeureeireeieeiieniiente et et siee st saeesareereesreesaneseneeneesreesanes 52
5.1.3.3 ACHON SPACE....ccuuiieritieeiiieeiieertteeite e st e et e esteeetteesateeesaeesaseeesseesnseeensseesnseesnnns 52
5.1.3.4 Reward fUNCHIONc..eiiiiiiiiiieiieee et et 53
5.1.4 Flow Action Translatorcooeeiiiriiiiiiiiiiceeeeeeee et 54
5.2 Experiments configuration . 55
5.2.1 NetWOrk tOPOIOZIESveeeeiieeiiieeiiieeite ettt ettt et e et e e e sbee e 55

5.2.2 ENVITONMENT SELUP ..eeuvieeiiieiiiiieiieeeite et et ettt ettt e st e ebteesbeesbteesbeeesbaeesaseeeaee 56

5.2.3 EXPEIIMENTS SEIUP ...eerurreeirieeiiieeriieeeiteesiteeeiteesteeestteesaseessaeesnseeensseesseesnsseesseesnnns 57

5.3 Functional analysis .61
5.4 Elephant Flow Intelligence (EFI) analysis...... . . .65
6 FINAL CONSIDERATIONS AND FUTURE WORK .68
6.1 Final considerations .68
6.2 Limitations and Future work 69
REFERENCES.. 71
APPENDIX A — RESUMO EXPANDIDO EM PORTUGUES . .. 76
A.1 Introducao..76
A.2 Background 77
A.2.1 Predic@o de trafegO......ccviviiriiiiieieeicetee e e 78
A.2.2 Balanceamento d€ CAIZa........cc.eevruieeriieriiieeniieeiieeeiteeniteesieeesiteesieeeseeesseeesaneeens 78
A.2.3 Aprendizado POT TEFOTCO ...eiiuiiieiiieiie ettt ettt e e iaeesaeeens 78
A.3 Trabalhos relacionados...79
A.3.1 Previsao de trafe0ccooviiiiieiiiieieceeeee e 79
A.3.2 Balanceamento d€ CArZa.........ccocueerieriieiieniienieeie ettt 79

A.4 Look-Ahead Reinforcement Learning for Load Balancing: abordagem de
aprendizado por reforco para balanceamento de carga de trafego de rede81

A4.T VISAO ZETAL...iiiiiiiiiiiiiiiece ettt et et et e et e b etaeeeaeeens 81
A.4.2 Agente de aprendizado pOT refOrCO....ccovvuviiiiriiiiieiiiee e 81
A.5 Prototipacao e analise experimental.. .85
A.S5.T ProtOtIPACAO ..ccuveeiiiriiiiiieniteeie ettt ettt st et 85
A.5.2 Andlise eXperimental..........cccocuiiriiieiniiiiiiieeniie ettt e s 86
A.5.2.1 Avaliag@0 fUNCIONAL.........eevvuiiiiiiieiieeiieeeee ettt e ens 89
A.5.2.2 Avaliagfo do fator EFTcocooiiiiiiiiiiiieeeeeee e 91

A.6 Consideracoes finais e trabalhos futuros 93

14

1 INTRODUCTION

In this work, we aim to explore network traffic prediction to improve load bal-
ancing techniques. In the next sections, we present the following aspects of this work:
context, motivation, objectives, contributions, and, finally, the organization of the docu-

ment that describes it.

1.1 Context

The complexity, heterogeneity, and scale of computer networks have grown be-
yond the limits of manual administration to such a degree that the leading cause of failures
in network environments is human error (DOBSON et al., 2019). Besides, the impact of
failures in network environments can be costly, compounded by the delayed reaction and
low accuracy of traditional fault tolerance methods. This triggered a change in the design
philosophy of network management systems to minimize the role of humans in the control
loop. Moreover, there is great diversity in users demands, each with different capacity re-
quirements during different periods (CHEN; HU; MIN, 2019). The dynamic nature of the
system and the existence of different requirements make it difficult to allocate resources
efficiently, which remains an open challenge (GUO et al., 2017).

In this context, network traffic engineering becomes a crucial task: how to opti-
mize the network performance by dynamically analyzing, predicting, and controlling the
behavior of data transmitted over this network? This is the goal behind traffic engineer-
ing. This method is used to achieve some operational tasks, such as balancing workload
among different paths on the network, increasing the quality of service perceived by the
user, and improving fault tolerance.

Routing network traffic is critical and involves selecting the path for transmitting
packets. The selection criteria are diverse and depend mainly on the policies and objec-
tives of the operation, such as minimizing costs, maximizing the use of links, and quality
of service (QoS) provisioning. In this context, the main challenges are the following: scal-
ability of traffic routing techniques for complex networks, identification of the correlation
between the chosen path and the quality of service or perception of improvement pro-
vided, and the ability to predict the consequences of a routing decision (BOUTABA et al.,
2018). Allied, these points motivate efforts to use machine learning to predict behavior

and balance network traffic.

15

1.2 Motivation

On the one hand, traffic prediction approaches play a crucial role in network op-
erations and management and attempt to anticipate traffic load, volume, packet size, rout-
ing, and more. This can help providers optimize network resources (NAREJO; PASERO,
2018). On the other hand, load balancing tries to infer the classification and division of
network flows to achieve the best usage of the transmission links. This is typically used
to achieve higher transfer rates and lower transmission delays, as well as for reducing
adverse effects such as retransmissions (PIZZUTTI; SCHAEFFER-FILHO, 2019).

When devising a load balancing strategy, one must be aware of different types of
network flows. For example, elephant flows represent a large (in the number of bytes) and
continuous stream of traffic, whereas mice flows tend to be small and short-lived (HAM-
DAN et al., 2020a). Considering that elephant flows tend to occupy a network path for
much longer than mice flows, there is a risk that the number of active flows in some links
becomes imbalanced. For instance, simple heuristics that ignore flow size and distribute
flows evenly over all equal length paths often lead to congestion, and load balancing
heuristics must be used to detect and correct imbalances (POUPART et al., 2016). Fur-
thermore, detecting and preventing network abuse is becoming challenging with a grow-
ing amount of traffic and the complexity of networks.

We propose a network traffic load balancing architecture that we call Look-Ahead
Reinforcement Learning to address these issues. It combines two main insights. Firstly,
the idea of using Reinforcement Learning (RL) to balance workload. This paradigm con-
sists of programming agents based on rewards associated with each action taken by this
agent, without the need to specify how to perform a task. Thus, we use a RL agent to
identify the more suitable action to provide balanced network usage. Secondly is the idea
of adding a previous step before using RL: a phase that indicates whether the agent should
interfere in the environment or not.

We advocate that this traffic analysis is essential to ensure that there will be less
overhead for the agent’s observations. The agent will focus on specific behavior (ele-
phant flows) to balance the workload among the network. Moreover, this extra step could
be used to predict the consequences of a routing decision - for instance, avoid splitting
small workloads among several paths, reducing the cost of packet reordering. This means
that we should prevent the RL agent from being called every time - especially when the

network flow is not going to last enough time to compensate for the cost of RL agent

16

decision-making.

Therefore, the architecture we propose provides load balancing between flows that
risk the network’s performance. This architecture considers a Software Defined Network
(SDN), and is composed of two levels: elephant flow identification and reinforcement
learning for load balancing. We use the first to indicate whether it is necessary to act on a
specific flow. If so, the system uses the RL architecture to determine the best action for the
given network status. We believe this first step can absorb RL calculations’ computational

cost and latency.

1.3 Objectives and contributions

This work is a RL architecture that aims to balance the network load, providing
fewer network failures with less human intervention. We developed this architecture as a
module that an SDN controller consults. The experiments were carried out on a software-
defined network, using the OpenFlow protocol, evaluating the technique’s performance
in terms of total flow completion time. We analyzed the method in terms of (i) ability to
balance workload, (ii) scalability in terms of switches in the topology, and (iii) impact of
using an elephant flow intelligence for reinforcement learning.

Our main contributions are (i) problem modeling as a function of states and actions
in a system that aims to balance network traffic, and (ii) an architecture that more judi-
ciously uses reinforcement learning on flows of interest for load balancing. We advocate
that this two-step machine learning approach, which we call look-ahead reinforcement

learning, can reduce human errors by avoiding unnecessary interactions.

1.4 Document organization

This document is organized as follows: Chapter 2 presents the background con-
cepts and theoretical foundation for this research. Chapter 3 brings the main works related
to this topic. Chapter 4 presents details about the proposed architecture. In Chapter 5, we
detail the prototype implementation and discuss our experimental evaluation. Finally,

Chapter 7 presents the conclusions and final considerations of our work.

17

2 BACKGROUND

Considering the objectives of this work, we highlight three principal areas: traffic
prediction, load balancing, and reinforcement learning. The concept of traffic engineering
is related to methods for optimizing network performance through analysis and prediction
of network behavior. For this, one could analyze aspects such as bandwidth distribution,
network resources, quality of service, load balancing, and packet routing. In our work,
we consider traffic engineering in the context of load balancing. In the following sections,

we present the main concepts of each area.

2.1 Traffic prediction

Network traffic prediction plays a crucial role in network operations and manage-
ment for today’s increasingly complex and diverse networks (BOUTABA et al., 2018).
Advance knowledge of future events in a dynamic system can often be leveraged to
improve the system’s performance and efficiency. For instance, such knowledge could
potentially benefit many problems in data center networks, including routing and flow
scheduling, circuit switching, packet scheduling in switch queues, and transport proto-
cols. Indeed, past work on each of the above topics has explored this, and in some cases,
claimed significant improvements (DUKIC et al., 2019)

The predictability of network traffic is essential in many areas, such as dynamic
bandwidth allocation, network security, network planning, and predictive congestion con-
trol. Network traffic prediction could address several features: available bandwidth and
capacity, flow size or volume, flow time, and even application behavior (JOSHI; HADI,
2015).

Measuring available bandwidth and capacity is vital for many types of network
applications. Activities such as quality of service management (PAUL; TACHIBANA;
HASEGAWA, 2016), admission control (CAVUSOGLU; ORAL, 2014), resource pro-
visioning, and even network security (GUERRERO; LABRADOR, 2010) depend on
knowledge of one or both of the available bandwidths and capacity. The link capacity
is sometimes considered static and known a priori, but this premise cannot be guaranteed.
Currently, capacities fluctuate on mobile networks and radio networks - due to variations
in range, interference, and workload (PAKZAD; PORTMANN; HAYWARD, 2015).

In this context, two significant approaches stand out: techniques that consider traf-

18

fic prediction a Time Series Forecasting (TSF) problem and the ones that do not model it
as time series forecasting problem (Non-TSF) (BOUTABA et al., 2018). The main dif-
ference between these approaches is the characteristics of the prediction and the methods

used for it.

2.1.1 Time Series Forecast Problems

When modeled as a TSF problem, the system predicts the available bandwidth on
a given path based on characteristics observed on that path in the last sample of the obser-
vation (such as the average number of bits per second). In other words, these techniques
consider the traffic history of predicting its behavior. The objective is to construct a re-
gression model capable of drawing an accurate correlation between future traffic volume
and previously observed traffic volumes.

Time series models have three main types: autoregressive model (AR), moving
average model (MA), and autoregressive moving average model (ARMA). An autore-
gressive model predicts future behavior based on past behavior. It is used for forecasting
when there is some correlation between values in a time series and the values that precede
and succeed. It consists of a linear regression of the data in the current series against
one or more values in the same series. In contrast, a moving average is a technique to
get an overall idea of the trends in a data set; it averages any subset of numbers. Lastly,
an ARMA model is used to describe weakly stationary stochastic time series in terms of
two polynomials. The first of these polynomials is for autoregression, the second for the
moving average. ARMA model can deeply understand the structure of time series and

achieve the optimal prediction of the minimum variance (WANG; LIU; GAN, 2018).

2.1.2 Non-Time Series Forecast Problems

In contrast, when we do not use TSF to model prediction problems, we consider
other methods and characteristics; for instance, works such as (CHEN; WEN; GENG,
2016), (LI et al., 2016), and (POUPART et al., 2016). We can use different techniques
to forecast network behavior, but in this work, we highlight the approaches described by
these authors.

Chen et al. (CHEN; WEN; GENG, 2016) propose a Hidden Markov Model

19

(HMM) to describe the relationship between flow count, flow volume, and dynamic be-
havior. Li et al. (LI et al., 2016) focus on predicting incoming and outgoing traffic
volume; for this means, they propose a frequency domain-based method. Lastly, Poupart
et al. (POUPART et al., 2016) explore three different approaches to predict elephant flows
(GUO; MATTA, 2001): Gaussian Process Regression (GPR), online Bayesian Moment
Matching (0BMM), and Multi-Layer Perceptron Neural Network(MLP-NN). We discuss
these works in Chapter 3.

The main idea when using Non-Time Series Forecast techniques is not working
with stochastic data. This would be a solution to overcome the TSF limitation: only
working with predictable data (based on its history). In this context, when using non-TSF
approaches, one could choose from various methods to predict network behavior.

On the one hand, when modeled as a TSF problem, it is not easy to obtain data and
use the proposed solution in a controlled environment (such as data centers). Conversely,
when not modeled as a TSF problem, we usually obtain a low predictive power, as we
will discuss in Chapter 3. Allied, these issues raise the need for new techniques that are

highly accurate and cost-effective.

2.2 Load balancing

Load balancing refers to the efficient distribution of traffic within the network.
This technique infers the classification and division of traffic flows to achieve the best
usage of the network resources, and can minimize adverse effects such as packet retrans-
missions (PIZZUTTI; SCHAEFFER-FILHO, 2018). Load balancing has become a neces-
sity as applications become complex, user demand grows, and traffic volume increases.
This workload distribution is essential to achieve highly available infrastructures and to
optimize network performance (ALIZADEH et al., 2014).

Load balancers run as hardware appliances or are software-defined. Hardware ap-
pliances often run proprietary software optimized to run on custom processors. As traffic
increases, the vendor simply adds more load balancing appliances to handle the volume.
On the other hand, software-defined load balancers provide flexibility to adjust for chang-
ing needs and lower costs than purchasing and maintaining physical machines. In this
work, we focus on software-defined load balance. Software load balancers could provide
benefits like predictive analytics that determine traffic bottlenecks before they happen.

However, the main challenge for this approach is the possible delay while configuring

20

software during scaling activities.

We discuss load balancing schemes along two key dimensions: (i) the information
used to make load balancing decisions; and (ii) the decision granularity. Firstly, the in-
formation used for decision making might include local traffic, topology, or global traffic.
More specifically, global traffic information could be based on per-flow feedback, central-
ized controller, centralized arbiter, per-path feedback, or hop-by-hop probes. Secondly,
the decision granularity is usually in terms of a packet, flow, or flowlet (VANINI et al.,
2017). Load balancing designs that rely on global information about traffic conditions on
different paths can handle asymmetry. There are many ways to collect this information
with varying precision and complexity, ranging from transport-layer signals, centralized
controllers, and in-network hop-by-hop or end-to-end feedback mechanisms.

An example is CONGA (ALIZADEH et al., 2014), which uses explicit feedback
loops between the top-of-rack (also called leaf) switches to collect per-path congestion
information. By contrast, schemes that are oblivious to traffic conditions generally have
difficulty with asymmetry. This is the case even if different paths are weighted differently
based on the topology, as some designs ((ZHOU et al., 2014) (CAO et al., 2013)) have
proposed. Using the topology is better than nothing, but it does not address the funda-
mental problem of the optimal traffic splits depending on real-time traffic conditions.

Because we want to collect statistics and have global traffic information to make
better decisions, we use a software-defined load balancing on the SDN controller. More-
over, the granularity considered here is in terms of flows: we explore network traffic
prediction to determine which network flows represent a risk to network load balancing.
Hence, we discuss Machine Learning (ML) approaches to predict network traffic volume

and apply actions to provide balanced network usage.

2.3 Reinforcement Learning

Reinforcement Learning is an agent-based iterative process for modeling problems
for decision making (SUTTON, 2018). In order to make these decisions, this approach
considers an agent that interacts with the environment. Instead of this agent being taught
by examples, it learns by exploring the environment and exploiting the knowledge ac-
quired. The agent will then take actions, and these actions will be rewarded or penalized
based on their impact on the environment (BOUTABA et al., 2018). Therefore, the train-

ing data in RL constitutes a set of state-action pairs and rewards. We illustrate this concept

21

on Figure 2.1. At each time step, the agent acts on the environment. The environment
then returns the reward associated with this action and the resulting state after the action.

The agent will use this data to make better decisions on the next time steps.

Figure 2.1: Diagram illustrating how the agent interacts with the environment.

—> Agent

State

Environment |«

Source: the author.

Reinforcement Learning models are defined based on a set of states .S, a set of
actions A, and a set of corresponding rewards. Next, we discuss the terminology followed

by most RL algorithms.

e Environment: the world through which the agent moves. The environment takes
the agent’s current state and action as input and returns as output the agent’s reward

and its next state.

e agent: an agent takes actions and chooses the best action for the current environ-
ment state. Briefly, the agent is the algorithm that chooses what actions to take to
achieve its goal.

e set of actions (A): set of all possible moves the agent can make. Agents usually
choose from a list of possible discrete actions. When defining the set of actions the
agent could take, we need to consider how each of these actions will modify the

current state.

e state (S5): a state is a concrete and immediate situation in which the agent finds
itself, i.e., a specific place and moment, an instantaneous configuration that puts the
agent concerning other significant things. The state is defined when modeling the
problem we are trying to solve, and it should indicate how far the environment is

from its goal.

e Reward (R): a reward is a feedback by which we measure the success or failure
of an agent’s actions in a given state. This reward is used to evaluate the agent’s
action. For example, using a power-saving model, if the agent chooses an action
that makes the environment save energy, he wins a positive reward; otherwise, he

earns a negative reward. From any given state, an agent sends output in the form of

22

actions to the environment. The environment returns the agent’s new state (which

resulted from acting on the previous state) and rewards if there are any.

policy (7): the strategy that the agent employs to determine its next action based on
the current state. In other words, policy specifies an action « that is taken in a state
s; more precisely, 7 is the probability of action a being taken in a state s. In this
context, we can divide reinforcement learning algorithms into on-policy learning,
and off-policy learning. In on-policy learning, the reward function is learned from
action that we took using a policy 7(a|s) (Monte Carlo, SARSA). On the other
hand, in off-policy learning, the reward is learned from taking different actions (Q-
Learning).

Value (V): the expected long-term return, as opposed to the short-term reward R.
Value is defined as a function V7 (s), and corresponds to the expected long-term
return of the current state under policy 7.

Q-value or action-value (()): Q-value is similar to Value, except that it takes an
extra parameter: the current action a. Q-Value is defined as a function Q7 (s, a),
that refers to the long-term return of the current state s, taking action a under policy

.

An agent is then responsible for considering the current state, the set of possible

actions, and their corresponding rewards to define the best action for the problem: the

action that provides the greatest reward. In this context, an RL algorithm is an algorithm

that iterates over these actions, selecting the best to accomplish a goal (SUTTON, 2018).

The main RL algorithms are Q-Learning, State-Action-Reward-State-Action (also called
SARSA), and Deep Q-Network (DQN), discussed in the following subsections.

2.3.1 Q-Learning

Q-learning is an off-policy RL algorithm used to find the best action that an agent

should perform given a current state. This is an off-policy algorithm because the Q-

learning function learns from actions outside the current policy. More specifically, Q-

learning seeks to learn a policy that maximizes the total reward. The foundation of the

algorithm is the presented the following equation, where (s, a) is the expected value of

23

state s when taking action a.

Q(s,a) = R(s,a) + 72p0(5'|3, a)maz Q(s', a’) (2.1

s

which its stochastic version is

Q(s,a) = Q(s,a) + a(R(s,a) + mazyQ(s',d') — Q(s,a)) (2.2)

where py(s'|s, a) is the probability to the transition of s to s under action a. v is
a discount factor, and it balances immediate and future rewards. A factor of 0 will make
the agent only consider current rewards, while a factor close to 1 will make it strive for a
long-term high reward. Typically this value can range anywhere from 0.8 to 0.99.

« is the learning rate, and it determines to what extent newly acquired informa-
tion overrides old information. A factor of 0 makes the agent learn nothing (exclusively
exploiting prior knowledge). In contrast, a factor of 1 makes the agent consider only the
most recent information (ignoring prior knowledge to explore possibilities). Typically
this value is usually set in the inteval from 0.1 and 0.3.

When performing Q-learning, we create a table called Q-table. This table stores
the Q-value for each (state, action) pair - initialized to 0. After each episode (also knonw
as iteration), we update and store these Q-values. Hence, this Q-table becomes a reference
table for the agent to select the best action based on the Q-value. The equation used to

update the Q-value is presented next.

Q(St7 at) = Q(Stv at) + O‘(Rt+1 + ’YmaxaQ(StHa a) - Q(St7 at)) (2.3)

An agent interacts with the environment by exploring or exploiting. The first is to
use the Q-table to reference and view all possible actions for a given state. The agent then
selects the action based on the maximum value of those actions. This method is known as
exploiting since we use the available information to make a decision. The second way to
take action is to act randomly - called exploring. Instead of selecting actions based on the
maximum future reward, we select a random action. Random actions are vital because
they allow the agent to explore new states that otherwise may not be selected during the
exploitation process. We can then balance exploration and exploitation using an e factor

and set the value of how often we want to explore instead of exploit (SUTTON, 2018).

24

Figure 2.2: Diagram illustrating the difference between Q-Learning and Deep Q- Learn-
ing.

Q-Learning
Q-Table
State-Action | Value

0

[State }—> 0
0 |—+{Q-value |

\ Action }—» 0

0

Deep Q-Learning

Q-Value Action 1
Q-Value Action 2
Q-Value Action 3

Q-Value Action N

Source: the author.

One of the biggest challenges about RL usage is to find the balance between the
exploration of new states and the exploration of prior knowledge. That is, finding the
balance between considering previous experiences and exploring new possibilities. In
particular, concerning traffic routing, we must explore many routes until we find the op-
timal one. However, exploring new routes is extremely computationally costly and can
harm the system when evaluated by the quality of service. Works such as Arroyo-Valles
et. al (ARROYO-VALLES et al., 2007), Bhorkar et. al (BHORKAR et al., 2012), and Li
et. al (LIN; SCHAAR, 2011) seek to solve this problem in the context of traffic routing

and explore these issue.

2.3.2 Deep Q-Learning (DQL)

A major limitation of Q-learning is that it only works in environments with discrete
and finite state and action spaces. To address this issue, deep Q-learning combines rein-
forcement learning and deep neural networks. More specifically, it uses a neural network
to approximate the Q-value function. More specifically, it uses the state as input for a
neural network, and the output it the Q-value of all possible actions (FRANCOIS-LAVET
et al., 2018). We illustrate this concept in Figure 2.2.

To avoid computing the full expectation in the DQL loss, we can minimize it us-

ing stochastic gradient descent. When computing the loss using just the last transition

25

s,a,r, s, we reduce it to standard Q-Learning. This technique is called Experience Re-
play, and it is used to make the network updates more stable. At each time step of data
collection, the transitions are added to a circular buffer called replay buffer. During train-
ing, instead of using just the latest transition to compute the loss and its gradient, we
compute them using a mini-batch of transitions sampled from the replay buffer. This pro-
cess has two main advantages: better data efficiency by reusing each transition in many

updates and better stability using uncorrelated transitions in a batch (XU et al., 2018).

2.3.3 On-Policy and Off-Policy Learning

Considering that almost all reinforcement learning algorithms involve estimating
value functions, formally, a policy is a mapping from states to probabilities of selecting
each possible action. If the agent is following policy 7 at time ¢, then 7(als) is the prob-
ability that A, = a if S, = s. Reinforcement learning methods specify how the agent’s
policy is changed as a result of its experience. In this context, solving a reinforcement
learning task means finding a policy that achieves a great amount of reward over time
(SUTTON; BARTO, 2018).

With this in mind, it is important to consider two concepts: update policy (also
known as target policy) and behavior policy. The first is how the agent learns the optimal
policy, and the latter is how the agent behaves (how the agent selects an action). To
illustrate this concept, consider the following equations.

Q-Learning equation to update Q-value:

Q(S, A) « Q(S, A) + a[R + Amaz,Q(S',a) — Q(S, A)] (2.4)

equation to update Q-value:

Q(S,A) + Q(S, A) + a[R+ AQ(S',a) — Q(S, A)] (2.5)

When using Q-Learning, the agent learns optimal policy using absolute greedy
policy and behaves using other policies such as € — greedy policy. Because the updated
policy is different from the behavior policy, Q-Learning is off-policy. More specifically,
Q-learning is off-policy because it updates its Q-table using the Q-value of the following
state S” and the greedy action a. In other words, it estimates the return (total discounted

future reward) for state-action pairs assuming that a greedy policy was followed, although

26

it is not following a greedy policy.

In contrast, when using SARSA, the agent learns optimal policy and behaves using
the same policy. Because the updated policy is the same as the behavior policy, SARSA
is on-policy. It is on-policy because it updates its Q-values using the next state S" and the
current policy’s action. It estimates the return for state-action pairs assuming the current
policy continues to be followed.

In short, an off-policy learner learns the value of the optimal policy from actions
taken using the current policy. An on-policy learner learns the value of the policy being
carried out by the agent, including the exploration steps (random actions) (SCHULMAN
etal., 2017).

27

3 RELATED WORK

This chapter presents the main related work to the research presented in this doc-
ument. We highlight the following areas: machine learning for traffic prediction and
machine learning for load balancing and traffic routing. In the following subsections, we

discuss these efforts and how they lead us to the questions we address in this document.

3.1 Machine learning for traffic prediction

Network traffic prediction entails forecasting future traffic and traditionally has
been addressed via Time Series Forecasting (BOUTABA et al., 2018). However, consid-
ering that modeling a time series is not always possible, several research efforts do not
consider this a TSF problem. Instead, the authors leverage other methods and features to
address traffic prediction issues.

In the next subsections, we highlight research efforts that considered traffic pre-
diction as a TSF problem and other works that do not consider it a TSF problem. We

present their most relevant aspects concerning the work presented in this document.

3.1.1 Traffic prediction modeled as a Time Series Forecast problem

One of the approaches used for preventive control is to predict the near future traf-
fic in the network and then take appropriate actions - such as controlling buffer sizes. Sev-
eral works developed in the literature are interested in resolving the problem of improving
network traffic monitoring’s efficiency and effectiveness by forecasting data packet flow
in advance. In this context, an accurate traffic prediction model should have the ability to
capture prominent traffic characteristics.

The literature has shown that neural networks are one of the best alternatives for
modeling and predicting traffic parameters, possibly because they can approximate almost
any function regardless of their degree of nonlinearity and without prior knowledge of
its functional form (BOUTABA et al., 2018). In fact, according to Boutaba et al., Yu
et al. (YU; CHEN, 1993) were the first to apply ML in traffic prediction using Multi-
Layer Perceptron Neural Networks (MLP-NN). The primary motivation was to improve

accuracy over traditional Auto-Regressive (AR) methods. After that, several works began

28

to explore different neural networks to address network traffic forecasting.

Motivated by the issue of how to conduct network resource planning (NRP), Wu
et al. (WU et al., 2019) propose a novel time-series framework to model and forecast
traffic dynamics in machine-to-machine (M2M) communications (GAZIS, 2017). The
authors base their approach on existing research efforts that suggest that network traffic
modeling and forecasting are capable of aiding with the NRP processes to manage net-
work resources (AL-KHATIB; HARDJAWANA; VUCETIC, 2014) (KOSEOGLU, 2017).
This TSF model utilizes the statistical techniques INGARCH (p, ¢) (integer-valued gen-
eralized autoregressive conditional heteroskedasticity) and SARMA (p, ¢) (beta autore-
gressive moving average). The authors use this model to capture both the internal im-
pact factors (previous traffic dynamics, random errors, etc.) and external impact factors
(topology, bandwidth, M2M device moving speed, etc.) asynchronous and synchronous
M2M traffic dynamics over a large time scale. The proposed framework is composed
of three components: (i) Traffic Dynamics Modeling (TDM), to imitate the characteris-
tics of the asynchronous and synchronous M2M real-time traffic dynamics, by leveraging
INGARCH and SARMA; (ii) Parameter estimation, to specify values for the set of param-
eters in their scheme; and (iii) Forecasting, that provides outlooks for multiple upcoming
M2M network traffic by using conditional maximum-likelihood estimators (CMLE). To
evaluate their model, the authors performed theoretical analysis and simulations and val-
idated its forecasting efficiency. They consider two metrics: prediction accuracy and
goodness-of-fit (identifying how well the models fit their corresponding sets of observa-
tions). Experiments demonstrate that TSF achieves superior performance regarding both
metrics.

Wang et al. (WANG; LIU; GAN, 2018) studied how to establish a valuable and
accurate forecasting model for network traffic. The authors propose a Grey Model First
Order One Variable (GM (1,1)) model (LIU; FORREST, 2006) to improve prediction
accuracy and combine it with the Auto-Regressive Moving Average Model (ARMA).
Then, the authors propose that the reformed GM(1,1) model would generate higher pre-
diction precision. The combination weighting method is then adopted to combine the
ARMA(p,q) model with the reformed GM(1,1), resulting in a new prediction model.
The combination forecasting model is a kind of forecasting method that selects appropri-
ate weights to weigh and average the results obtained from several forecasting methods.
Overall, experiment results show the validity of the model.

Cortez et al. (CORTEZ et al., 2006) chose a NN ensemble (NNE) of five MLP-NN

29

with one hidden layer each. For training, they use resilient back-propagation (BP), and,
for data, Simple Network Management Protocol (SNMP) traffic data collected from two
different Internet Service Providers (ISP) networks. The first data represents the traffic on
a transatlantic link, while the second represents the aggregated traffic in the ISP backbone.
To complete the missing SNMP data, the authors used linear interpolation. They test
the NNE for real-time forecasting (online forecasting on a few-minute sample), short-
term (one-hour to several-hour sample), and mid-term forecasting (one-day to several-
day sample). The comparison amongst the TSF methods shows that, in general, the NNE
produces the lowest Mean Absolute Percentage Error (MAPE) for both datasets. It also
shows that NNE outperforms the other methods with an order of magnitude in terms of
time and computational complexity and is well suited for real-time forecasting.

As shown in this subsection, several research efforts model network traffic pre-
diction a TSF problem and obtain successful results. However, this approach is very
restrictive: to apply these models, we need to work with stationary data. Stationary data
is the kind of data with all statistical properties (such as mean and variance) remaining
constant over time. This need is because if we take a particular behavior over time, this
behavior must be the same in the future to forecast the series. With this in mind, several
research efforts consider traffic prediction on non-TSF models focusing on non-stationary

series. We highlight some of them in the following subsection.

3.1.2 Traffic prediction modeled as a non-Time Series Forecast problem

As explained in the previous subsection, using TSF models to predict network
traffic features is not always possible, especially because of the need for stationary data.
With this in mind, several works use different methods and characteristics to predict traffic
(CHEN; WEN; GENG, 2016) (LI et al., 2016) (POUPART et al., 2016).

In work developed by Chen et al. (CHEN; WEN; GENG, 2016), the authors inves-
tigate the possibility of reducing the cost of monitoring and collecting traffic volume by
inferring the volume of future traffic based on flow counting. For this, they propose a Hid-
den Markov Model (HMM) to describe the relationship between flow count, flow volume,
and dynamic behavior over time. To predict future traffic volume based on current flow
count, they use Kernel Bayes Rule (KBR) and Recurrent Neural Network (RNN) with
long short-term memory (LSTM). The experiments use semi-simulated data and real net-

work traffic data to demonstrate the feasibility of inferring and predicting network traffic

30

volume based on simple flow statistics such as flow counts. The authors use a normalized
dataset composed of network traffic volumes and corresponding flow counts collected ev-
ery 5 min over 24 weeks. The RNN shows a prediction mean squared error (MSE) of
0.3 at best, 0.05 higher than KBR, and twice as much as the prediction error of an RNN
fed with traffic volume instead of flow count. These results indicate that these techniques
provide useful information to predict traffic volume. However, considering that the mo-
tive was to promote flow count-based traffic prediction to lower the monitoring cost, the
experiments also show that the performance is compromised. Besides, the authors high-
light an issue as future work: the nonstationarity of the network traffic. In this context, it
would be essential to develop online learning algorithms for KBR and RNN such that the
model adjusts and adapts itself to the dynamic network traffic.

Considering that traditional inter-DC transfers suffer from both low utilization and
congestion, Li et al. (LI et al., 2016) suggest that traffic prediction is a crucial method to
optimize these transfers. To address this issue, the authors propose a frequency domain-
based method for network traffic flows instead of just traffic volume. They emphasize
practical issues in the prediction model design, especially the cost of measurements, and
show that it is possible to reduce the flow sampling overhead using interpolation methods.
The focus is on predicting incoming and outgoing traffic volume on an inter-data center
link dominated by elephant flows. Their model combines wavelet transform with Feedfor-
ward Neural Network (FNN) to improve prediction accuracy. This FNN was trained with
BP using gradient descent and wavelet transform to capture both the time and frequency
features of the traffic time series. The authors add interpolation to fill in the elephant
flows’ unknown values to reduce the amount of monitoring overhead for the elephant
flow information. In the experiments, the dataset contains the total incoming and outgo-
ing traffic collected in 30 seconds intervals using SNMP counters on the data center (DC)
edge routers and inter-DC links over six weeks. Then, they decompose the time series
using level 10 wavelet transform, leading to 120 features per timestamp. Consequently,
k-step ahead predictions feed k * 120 features into the NN and show a relative RMSE
(RRMSE) ranging from 4 to 10% for the NN-Wavelet transformation model, as the pre-
diction horizon varies 30 seconds to 20 minutes. Results show that their approach can
reduce prediction errors over existing methods (such as ARIMA (AKAIKE, 1969)) by
values between 5% and 30%. This work is vital to the context of our research because it
indicates that the use of artificial neural networks can reduce prediction errors when used

to predict network traffic characteristics.

31

Poupart et al. (POUPART et al., 2016) explore the use of different ML techniques
for flow size prediction and elephant flow detection. They propose to use data mining
to estimate each flow’s size as it starts and to detect elephant flows without modifying
any application or end host. To this end, they use three machine techniques: gaussian
processes regression (GPR), online bayesian moment matching (0BMM), and a neural
network (MLP-NN). For each flow, the authors consider seven features: source IP, des-
tination IP, source port, destination port, protocol, server versus client (if the protocol is
TCP), and the size of the first three data packets after the protocol/synchronization pack-
ets. The datasets consist of three public datasets, with over nine million flows. To detect
elephant flows, they use a flow size threshold that varies from 10KB to 1MB. The exper-
iments show discrepancies in the performance of the approaches with different datasets.
Although oBMM outperforms all other methods in one dataset with an average true posi-
tive rate (TPR) and true negative rate (TNR) very close to 100%), it fails with an average
TPR below 50% dataset. In one of the datasets, o0 BMM seems to suffer the most from class
imbalance: as the threshold increases, fewer flows are tagged as elephant flows, creating
a class imbalance in the training dataset and lower TPR. In short, 0 BMM outperforms all
other approaches in terms of average TNR in all datasets. On the other hand, NN and
GPR, have an average TPR consistently above 80%. The motive for flow size prediction
in (POUPART et al., 2016), is to discriminate elephant flows from mice flows in routing
to speed up elephant flow completion time. Mice flows are routed through Equal-cost
multi-path routing (ECMP), while re-routing elephant flows through the least congested
path. Results show that the resulting routing policy reduced the average completion time
of elephant flows while keeping the average flow completion time of mice flows roughly
the same.

The approach presented in Poupart et al. (POUPART et al., 2016) is especially
important for the work we present in this document because it addresses flow size predic-
tion to identify elephant flows and route them via a least congested path, which is also the
motivation for our work. In the context of flow size prediction, the authors show that the
use of six additional features that can be extracted from the first packet’s header provides
helpful information. They also show the benefits of elephant flow detection in routing by
assigning the least congested path to elephant flows, which is essential for our research.

The Non-TSF approaches presented in this subsection infer traffic volumes from
flow count and packet header fields. Predicting traffic volume is helpful in several con-

texts, such as traffic routing aiming load balancing. We explore this subject in the follow-

32

ing subsection.

3.2 Traffic engineering

Traffic routing technique is quite challenging because it requires that machine
learning models, when dealing with complex (and sometimes dynamic) network topolo-
gies, learn the relationship between the selected path and the perceived impact on the
network. Also, it is necessary to assess the ability to predict the consequences of rout-
ing decisions. With this in mind, two primary research efforts inspired our work: "Let It
Flow" by Vanini et al. (VANINI et al., 2017), and "Learning to route" by Valadarsky et
al. (VALADARSKY et al., 2017). We present their proposals as it follows, together with

other research efforts that address similar issues.

3.2.1 Traffic routing for load balancing

Network traffic load balancing is essential in data centers because they must pro-
vide large bisection bandwidth to support the increasing traffic demands of applications
(such as big data analytics, web services, and cloud storage). With this in mind, Vanini et
al. (VANINI et al., 2017) published a work addressing this issue. The authors present the
concept of flowlet: a burst of packets separated in time from other bursts by a sufficient
gap. Their work then shows that flowlet switching is a powerful technique for resilient
load balancing with asymmetry (link failures and heterogeneity in network equipment, for
example). Their method is called LetFlow, and it is an instance of a more general approach
to load balancing: it randomly re-routes flows with a probability that decreases as a func-
tion of the flow’s rate. However, schemes that lack visibility into path congestion have
a critical drawback: they perform poorly in asymmetric topologies. The reason is that
the optimal traffic split across asymmetric paths depends on (dynamically varying) traffic
conditions; hence, traffic-oblivious schemes are fundamentally unable to make optimal
decisions and can perform poorly in asymmetric topologies (ALIZADEH et al., 2014).
Flowlets have a remarkable elasticity property: their size changes automatically based on
traffic conditions on their path. Hence, LetFlow picks routes randomly for flowlets and
lets their elasticity naturally balance the traffic on different paths. The authors show that

LetFlow is a significant improvement over ECMP and could deploy it today to improve

33

resilience to asymmetry. This technique is trivial to implement in hardware, does not
require any changes to end-hosts, and is incrementally deployable.

This work raises the question: could we have better results if we applied an intelli-
gent routing instead of randomly re-route flows? In this context, we highlight the need for
using intelligence to route, explored in the next section (MEKINDA; MUSCARIELLO,
2016), (MAO et al., 2017), (VALADARSKY et al., 2017), and (BARROS et al., 2019)).

3.2.2 Machine learning for traffic routing

The work presented by Medkinda et al. (MEKINDA; MUSCARIELLO, 2016)
acts in the context of Named Data Networking (NDN), where routers forward Interests
for content after finding Longest-Prefix Matches (LPM) of content names in their For-
warding Information Base (FIB) (ZHANG et al., 2014). In this kind of network, scala-
bility is a challenge because of the vast global Internet namespace. Hence, they propose
a novel approach to interest forwarding that compresses the FIB data structure into NNs.
Their work investigates the consequences of training routers to "guess" paths - they qual-
ify the information retrieval via NN-FIBs as guessing because of the unpredictable nature
of the query outcome. To this aim, the control plane would access the Pending Interest
Table (PIT) for actual names, find their longest matching prefix in the Routing Informa-
tion Base (RIB) - populated by a name-based routing protocol - and find the NN-RIB in
charge. These NNs are offline trained by the control plane from the RIB and matching
interests. Finally, these NNs are made available to the data plane for interrogation. Ex-
periments show that NN-FIBs are orders of magnitude smaller and faster, with accurate
egress face guess. Conversely, it appears that supervised learning has to be carried out
offline, preferably inside the control plane, which might be local or centralized within an
SDN controller.

Mao et al. (MAO et al., 2017) propose a smart packet routing strategy with Tensor-
based Deep Belief Architectures (TDBAS) that considers multiple parameters of network
traffic. In TDBAs, they use tensors to represent the units in every layer and the weights
and biases. The proposed TDBAs can be trained to predict the whole paths for every
edge router. The packets are supposed to be generated inside the network and destined
for edge routers, while the internal routers just forward packets. Every edge router ob-
tains the traffic patterns of the other edge routers through the signaling process. Then,

the edge routers input the traffic patterns to the TDBA and construct the paths to all other

34

edge routers. The whole paths are attached to the headers of corresponding packets. Con-
sequently, other routers forward the packets according to the labeled paths. Simulation
results demonstrate that this proposal outperforms the conventional Open Shortest Path
First (OSPF) protocol regarding overall packet loss rate and average delay per hop.

More recently, Valadarsky et al. (VALADARSKY et al., 2017) investigate how
ideas and techniques from machine learning could be leveraged to generate routing con-
figurations automatically. The authors focus on the classical setting of intradomain traf-
fic engineering and observe that this context poses significant challenges for data-driven
protocol design. They study ML-guided routing by examining the environment of in-
tradomain traffic engineering (TE), that is, the optimization of routing within a single,
single-administered network. The investigation focused on two main questions: (1) How
should routing be formulated as an ML problem? Furthermore, (2) What are suitable
representations for the inputs and outputs? Their preliminary results regarding the power
of data-driven routing suggest that applying ML to this context yields high performance
and is a promising direction for further research. More specifically, they evaluate several
supervised learning schemes for predicting traffic demands. Preliminary results indicate
that supervised learning might be ineffective if the traffic conditions do not exhibit very
high regularity. Next, they focus on reinforcement learning: instead of explicitly learn-
ing future traffic demands and optimizing these demands, the goal is to learn a proper
mapping from the observed history of traffic demands to routing configurations. Results
suggest that this is a better approach. The authors leave several questions to be answered
and leveraged more deeply in future work. From these questions, we highlight (1) the
possibility of using a different objective function than minimizing max-link-utilization
(for instance, flow-completion-time) to yield better results; and (2) how scalable is the
ML approach in this context.

Lastly, Barros et al. (BARROS et al., 2019) proposes a novel mechanism for
management, orchestration, and flow control in the context of the device-to-device (D2D)
to deal with load balancing using the deep Q-learning (DQN) technique. The authors
implemented a D2D network simulation environment, using the ParticiptAct dataset to
evaluate the load of the cell towers in a region of Italy. They used Gauss-Markov and
Gilbert-Elliott models for mobility and packet loss, respectively, where it was considered
that the towers had a separate coverage area, hence forming a Voronoi space. They also
used a Gaussian process to predict the load of the towers when they receive the packet

and a DQN to perform the balance of load of the network. They consider delivery rate,

35

Table 3.1: Comparison between research efforts discussed in this document.

Traffic
Work [‘"?fﬁ.c Traf:ﬁc routm'g ?mh Machine learning techniques Network issues adressed
prediction | routing | prediction
results
INGARCH,
Wau et. al (WU et al., 2019) TSF No No Beta-ARMA, Network resource planning
CMLE
Wang et. al (WANG; LIU; GAN, 2018) TSF No No ARMA, GM(1,1) Network forecast
Cortez et. al (CORTEZ et al., 2006) TSF No No Neural Network Ensemble AN
anomaly detection
Hidden Markov Model, Reducing the cost of
Chen et. al (CHEN; WEN; GENG, 2016) Non-TSF No No Kernel Bayes Rule, network monitoring,
Recurrent Neural Networks network forecast
. ‘Wavelet transform, Congestion control,
Liet. al (LIetal., 2016) Non-TSF No No ANN clephant flow detection
Gaussian Processes Regression,
Online Bayesian Flow size prediction,
Poupart et. al (POUPART et al., 2016) Non-TSF Yes Yes Moment Matching, elephant flow prediction
MLP neural network
Vanini et. al (VANINI et al., 2017) - Yes - - Resilient asymetric
load balancing
Mekinda et. al (MEKINDA; MUSCARIELLO, 2016) - Yes - ANN Accelerate packet forwarding, NDN
Mao et. al (MAO et al., 2017) - Yes - Deep Learning with tensors Intelligent packet routing
Valadarsky et. al (VALADARSKY et al., 2017) - Yes - Deep neural networks, Intelligent packet routing
Reinforcement Learning
Barros et. al (BARROS et al., 2019) Non-TSF | Yes Yes Gaussian-Markov, Device-to-device (D2D)
Deep Q-Learning load balancing
Look-Ahead Reinforcement Learning Non-TSF Yes Yes Reinforcement Legmmg, Network fore; ast,
Deep Q-Learning load balancing

delay, and a load-balancing metric based on a custom utility function to evaluate their

proposal. Their approach presents better results than the baseline approach used in their

experiments.

3.3 Discussion

We use Table 3.1 to illustrate how the presented research efforts relate to the work

presented in this document. Existing research efforts tend to focus either on network
traffic forecast or network routing (chosing the best route for a flow). Our proposal,
however, is to consolidate both into a single architecture. In this context, we would be
able to use network traffic prediction to enhance network routing decisions. We can split
the problem into two issues: network traffic prediction and network routing with this
prediction.

Network traffic prediction. To address this issue, based on existing work on
the literature, we focus on network forecast as a non-TSF problem, mainly because we
understand the limitations of working with stochastic data. Also, recent research efforts
show that neural networks can solve this kind of problem.

Network routing. Several approaches have been proposed to monitor flows in the
network and detect elephants based on thresholds concerning the amount of data trans-
mitted so far or the bandwidth utilized. These approaches can only detect elephant flows

after they have been flowing for a while, and therefore they only permit re-routing and re-

36

scheduling. This is not ideal since congestion may occur until elephant flows are detected,
and new routes are chosen by load balancing, or the priorities of the elephant flows are
decreased to allow mice flows to complete without any delays (POUPART et al., 2016).
With this in mind, and considering that reinforcement learning showed promising results
for choosing the best routes for a given flow, we propose adding an extra step into the
reinforcement learning algorithm for routing: a detection step. This is the concept of
"look-ahead" reinforcement learning. Instead of taking action on flows and evaluate their
impact on the environment, we would look ahead for elephant flows. Then, these elephant
flows would be the subject of the routing decision.

In short, we propose a new framework for traffic routing and load balancing using
the look-ahead reinforcement learning technique. We hypothesize that this extra step
could prevent unnecessary actions in the environment. We discuss this proposal in the

next chapter.

37

4 LOOK-AHEAD REINFORCEMENT LEARNING FOR LOAD BALANCING

In this chapter, we present the Look-Ahead Reinforcement Learning architecture
for load balancing. We start with an approach overview in Section 4.1, followed by the
modeling and fundamentals of this work in Section 4.2. Lastly, in section Section 4.3,
we discuss how we integrated the presented concepts and came up with the architecture

proposed in this work.

4.1 Approach Overview

This work presents a mechanism for load balancing network flows using a strategy
based on reinforcement learning. This mechanism attempts to explore alternative paths
in the topology in order to ensure low overall bandwidth utilization. However, instead of
unwisely trying to load balance any traffic flow, our reinforcement learning agent will con-
centrate only on flows that can significantly impact bandwidth utilization, e.g., elephant
flows (HAMDAN et al., 2020b).

We advocate that adding an extra step to identify whether the flow will be an
elephant flow (since early stages) before applying a reinforcement learning algorithm to
load balance could improve routing decisions. The primary motivation is to avoid wasting
resources on rerouting flows that would not represent a risk to network traffic balance.
Secondly, we aim to improve load balancing results by only acting on the flows that have
a higher impact on bandwidth utilization.

This architecture consists of four main components: Network Monitoring, Ele-
phant Flow Identification, Reinforcement Learning Agent, and Traffic Engineering Rules,
illustrated in Figure 4.1. These components are responsible for collecting network usage
information to identify if a reinforcement learning agent should intervene in the network’s
functioning. In positive cases, we have a final component responsible for translating this
agent’s actions into network operation actions (OpenFlow rules). This architecture is es-
pecially suitable for massive traffic volumes because it can suppress latency costs when

considering elephant flows.

38

Figure 4.1: Look-Ahead Reinforcement Learning for load balancing network traffic ap-
proach overview.

‘ Traffic Engineering Rules ‘

t

‘ Reinforcement Learning Agent ‘

t

‘ Elephant Flow Identification ‘

t

‘ Network Monitoring ‘

o

$1 S2

Source: the author.

4.2 Reinforcement Learning Agent Modelling

The main goal of the reinforcement learning agent we modeled is to balance the
workload among the network resources. More specifically, to distribute the flows among
different routes to have a more homogeneous usage of the links. With this in mind, we
represent the network as a directed graph G = (V, E). V is a set of vertices (or nodes),
where each vertex corresponds to either a switch or a host. ' is the set of edges (or links)

that connect a pair of vertices defined below.

EC {{z.y}(z,y) e VP Az #£y}

Where (z,y) is an ordered pair of distinct vertices.

For example, considering the topology in Figure 4.2, we have the following sets:

e Set of vertices =V = {hy, hy, S1, So, S3, S4, S5}

o Setof edges=FE = {a,b,c,d,e, f,g,h,i}

To illustrate our approach, consider the network topology presented in Figure 4.2.
In this topology, we consider that the flow source is always HI1, and the flow target is
always H2, and that we have several concurrent (possible elephant) flows in this network.
Thus, we aim to prioritize the homogeneous use of links.

We can adapt this definition and the topology according to the network problem we
want to solve - this is where we combine the knowledge of networks with the knowledge

of machine learning. Considering that the goal of this work is to maintain a homogeneous

39

Figure 4.2: Example network topology used to model our Reinforcement Learning agent.

S5
2
d h
s1 S2 4
(A1)__2 — b = f =S8 i [H2)
- [EE=1=] -
z< 1 32 4 21 \r;
% e
X g
= s
S4
Source: the author.
Table 4.1: Representation of snapshot 1, with a SMbps flow.
Port SI.1[SI.2 [S13[S2.0 [S2.2[S23] 524 [S3.1 [53.2 [S33 [S53.4 [S4.1]S42][S43[S5.1]852

Bits-per-second | 5120 | 5120 | 0 |5120| O 0 | 5120|5120 | 5120 O 0 0 0 0 0 0

use of the topology links concerning traffic occupation, we base the created model entirely
on load balancing criteria. In this context, our objective function is to maximize the results
of the reward function.

The main components of this model are state, reward function, and actions dis-

cussed next.

4.2.1 State

As discussed in Chapter 2, the environment state should be a concrete represen-
tation of what the agent finds. We consider the state as the number of bits transferred
per second (Mbps). We calculate this value based on network statistics collected from
the network periodically. We define the state at time ¢, S;, to be an n-dimensional vector
[q,...,2,], where n corresponds to the number of switch ports and where z;, forl <
1 < n, corresponds to the number of bits being transferred per second by the ¢ — th switch
port.

To illustrate the snapshot and resulting state, consider a SMbps flow through links
a, b, f and i, as shown in Figure 4.3. Table 4.1 represents the snaspshot that captured this

moment (snapshot 1) and Table 4.2 illustrates the resulting state.

Table 4.2: Representation of state 1, generated from snapshot 1 illustrated on Table 4.1.
State |0 (1 |2|3 (45|67 8910 |11 |12 |13 |14 |15

t1) (5|{5/0(5]/0(0|5|5|5/0[{ 0|00, 00]0O0

40

Figure 4.3: Network topology for state when H1 routes workload to H2 through a, b, f
and i links.

S]]

SLLE == =) s s

Source: the author.

As shown in Table 4.2, the resulting state is the primary tool used for the agent
to identify whether the network could become overloaded. With information about the
network topology, the agent will evaluate how costly a state could be to this network. That
is, how homogeneous is the use of the topology links regarding traffic occupation. This
cost is represented as the reward function, discussed next. Naturally, when the network
has only one flow, there is a high cost involved. We consider this approach for networks

with a high amount of flows.

4.2.2 Reward function

A reward function should let the agent know how close it is to its goal. We address
load balance issues; therefore, we want to evaluate each network state regarding resource
usage. More specifically, considering that we define the state of our problem as the num-
ber of bits transferred among the network, we need to evaluate how to distribute the work-
load. To address this issue, we propose three different reward functions. These functions
have a different foundation: weighted switch ports usage, switch ports usage harmonic
mean, and switch ports usage standard deviation. Considering that each reward function
creates a different agent, we call the generated agents WeightedUsage, UsageHarmon-
icMean, and UsageStandardDeviation, respectively. We selected these three functions to
measure how homogenous is the use of the network resources. Then, one way of defining

the reward R,, at time ¢, is in terms of an application and context-dependent function, f,

41

as follows:

R,(Sy) = f(S)u 4.1)

where f is defined by a designer depending on the specific criterion that they wish to
optimize when trying to maintain a more homogeneous use of the topology links: to seek
homogeneity by distribution traffic according to (1) weighted usage of switch ports; (2)
harmonic mean of switch ports usage; or (3) usage standard deviation switch ports usage.
Finally, in Equation 4.1, y is defined as the sum of bits transferred by the source host
output port and the target host input port. Intuitively, p is an additive reward penalty
reflecting whether possible loops exist in the network.

With regards to loop control, we consider the factor presented in Equation 4.2.
This factor is the sum of bytes transferred by the source host (5,) with the bytes received
by the target host (5;). We then multiply it by the result of the Equation 4.1. With this
factor, we can penalize the agent for choosing actions that might lead to a loop state, where
the source is sending a large amount of data, and the target is having trouble receiving it.

Equation 4.2 represent how to calculate the discount factor for all agents.

1= B,+ B, 4.2)

In addition to these equations, each reward function has its specific heuristic to
calculate how far the agent is from its final goal. WeightedUsage uses Equation 4.3, Us-

ageHarmonicMean uses Equation 4.4, and UsageStandardDeviation uses Equation 4.5.

F(S) = Zp(xi) (4.3)

where p(x;) = 2x; if x > 1, and 1 if z <= 1. An € factor is used to address
division by 0 issues.

Weighted usage heuristics: Equation 4.3 presents the weighted usage heuristics,
where we consider the final reward function as the sum of all switch ports. This function
aims to give higher rewards to states that use more resources (switch ports) because we

would be spreading the traffic and reducing the total flow completion time intuitively.

n
1 1 1
$1+x2+"'+xn

f(S) = (4.4)

Harmonic mean usage heuristics: Equation 4.4 present the switch ports usage

42

harmonic mean, used to identify homogenous network usage. Thus, we consider all n
switch ports in the topology and calculate the harmonic mean of the number of bits trans-

ferred by all ports.

f(x) =0, 4.5)

Standard deviation usage heuristics: Equation 4.5 corresponds to the switch
ports usage standard deviation. In this function, we consider the standard deviation of
the number bits x transferred by each of the n ports. Once again, we use this value in
Equation 4.1 to calculate the final reward for state S;.

To better understand these functions, consider the network state presented in Table

4.2. 1 has the same value for all heuristics:

it = By + By, = 5120 + 5120 = 10240

Considering the weighted usage heuristics (Equation 4.3), we calculate the reward

as it follows.
n

F@) =2 gw): = (65 (255) + 105 (1)) = 70

1=0

Reward(S,) = f(x)* u = 70 % 10240 = 716800

In the same way, Equation 4.4 would yield the following reward:

16

= 1 1
6+ 5 + 10 * 550001

f(x) = 1.66x¢”

Reward(S;) = f(z) % u = 1.66 * ¢~* * 10240 = 0.1638398

where 0.00001 is the epsilon used for minimum values.

Lastly, Equation 4.5 would yield the following reward:

0., = 2.5354576932600215

Reward(s;) = 2596.31 % 10240 = 2658621440

43

4.2.3 Actions

Since our goal is to balance network traffic, our actions should allow the agent
to do so. Hence, we define the set of possible actions as the set of tuples in the format
< switch_id, in_port,out_port >. Thus, an action is an OpenFlow rule to be installed
on a switch. switch_id corresponds to the switch where a rule will be installed; in_port
is the port from where the flow will be coming; and out_port is the port to where the flow
will be routed.

As an example, consider a flow F'1 starting on host A1 to host H2 in the topology
illustrated in Figure 4.2. A possible action for this topology would be 52, 1, 2, indicating
that a flow coming into port 1 on switch S2 should use output port 4.

Combining state, actions, and reward function, we have our RL agent. This agent
is responsible for interacting with the environment and choosing the best action to ac-
complish its goal. In this context, the RL agent will use an RL algorithm to analyze the
network state and choose the best action. Figure 4.4 illustrates this process.

Figure 4.4: Reinforcement Learning agent steps to select the best action. The agent iter-
ates over each step to find the best actions. The chosen action is the one highlighted.

Snapshot| 0 | 1 | 2 3 4 5 6 7 8 9 10 | 11 12 | 13 14 15
1 S1510 5 0 0 5 5 5 0 0 0 0 0 0 0

!

State

Q-Value Estimator

Action | Q-Value Action | Q-Value Action | Q-Value
Rule X 50 Rule Y 400 Rule Z 100

Action and Q-Value Pairs

Source: the author.

With the definition of a reinforcement learning problem, an agent is then respon-
sible for considering the current state, the set of possible actions, and their corresponding
rewards for defining the best action for the problem. That is the action that provides the

greatest reward: the one that will maintain a more homogeneous use of the topology links.

4.2.4 Deep Q-Learning Agent

A significant limitation of Q-learning is that it only works in environments with

discrete and finite state and action spaces. One solution for extending Q-learning to more

44

complex environments is to apply function approximators to learn the value function.
This function would take states as inputs instead of storing the full state-action table -
often infeasible. Since deep neural networks are powerful function approximators, several
works in the literature often adapt neural networks for this role. This technique is known
as Deep Q-Network or Deep Q-Learning, as discussed in Chapter 2 (YU et al., 2018).

Since the number of bits in each port is unbounded, there is a possibly infinite
(but countable) number of possible states in the system. For this reason, applying tab-
ular versions of standard reinforcement learning algorithms, such as tabular Q-Learning
(SUTTON, 2018), is infeasible given that we cannot store a Q-table defined over infinite
states.

Therefore, we rely on a Deep Q-Learning agent (YU et al., 2018), which uses a
neural network to approximate the Q-value for the set of possible actions based on the
current state. The current state is the input value for this neural network. The output is
the Q-Value for the set of possible actions so that the agent can choose the most suitable
one, as illustrated in Figure 4.5.

Figure 4.5: Diagram showing how Deep Q-Learning approximates Q-value for the actions

based on the current state.
Source: the author.

Reinforcement Learning Agent

i [Q-value Rule X | i
1 | Q-ValueRuleY | i
State(t) —»i | Q-Value Rule W ‘_>’ Rule = max(Q-Value) H»’ Rule Y ‘

’ Q-Value Rule Z \

4.3 Look-Ahead Reinforcement Learning Architecture

Based on what we discussed in previous chapters and the definitions discussed
in Section 4.2, we developed the architecture illustrated in Figure 4.6. This figure illus-
trates the main modules that make up the proposed technique: (1) Statistics Manager, (2)
Elephant Flow Identification, (3) Reinforcement Learning Agent, and (4) Traffic Engi-
neering Rules. Together, these modules represent an architecture capable of collecting,
processing, and analyzing network data to predict whether a flow represents a risk to load
balance. In case of an affirmative answer, an RL agent would be responsible for, based

on the current network state (composed of collected statistics), suggest the best action for

45

this specific flow. Lastly, the Flow Action Translator module would get this action and
translate it into rules that the control plane would understand and install. In the following
subsections, we discuss each of these modules.

Figure 4.6: Look-Ahead Reinforcement Learning for Load Balancing architecture.

Reinforcement Learning

Traffic Engineering Rules

Reinforcement Learning Agent

le

Actions B | state T
A

E[P Networkstate }

R || snapshot | BO | Bl | B2 | B3 | B4 | BS || Bits Flow
q g 4 ! transferred
Data Modelin o Network 0 0 1 01010100 igg-= table
ata Modeling i statistics || 1 1010 0 0 | 50! pergsecend I

,,,,,,,,,,,) ! 20 | 20 o 0 0 100]! on port X rules

i n 150 [15 15| 0 | 15!

e e e e e !

Network Monitoring
El Control Plane EI Statistics Manager E’ Elephant Flow Identification

Controller i i Network data ! 1 Size

i
i - : :
__ REST APl e ?ﬁta"s“"s ! ‘threshold : threshold || 1. oo o
””c’”’il ””” rF’”””;”_”(anager [N ¥ 1 1 l 1
I | I
. ontroller | Lea E'{risf e E'?[‘J 1 ‘ EF Detection ‘1 1 ‘ EF Prediction !
I I

Source: the author.

4.3.1 Statistics Manager

The Statistics Manager is responsible for asking for a network snapshot periodi-
cally, for example, every 10 seconds. However, we can adjust this frequency according
to each network infrastructure’s needs. This snapshot comprises network features such as
active flows, bits received by switch port per second, and bits transferred by a switch port
per second. Next, these statistics are grouped by flow and stored.

We consider flow as a 5-tuple consisting of the source IP address, destination IP
address, TCP/UDP source port, TCP/UDP destination port, and transport protocol iden-

tification. It is important to emphasize that we can also adjust this tuple according to

46

Table 4.3: Network statistics stored at each network snapshot, considering an active flow
between links a, b, f, and i.

Snapshot (t) | Switch Port | Bits-transferred-per-sec

S1.1 10 Mbits
S1.2 10 Mbits
S1.3 0
S2.1 10 Mbits
S2.2 0
S2.3 0
S2.4 10 Mbits

0 S3.1 10 Mbits
S3.2 10 Mbits
S3.3 0
S3.4 0
S4.1 0
S4.2 0
S4.3 0
S5.1 0
S5.2 0

each network infrastructure’s needs. We could also adjust the requested statistics accord-
ing to the network needs. However, we only consider statistics derived from switch flow
tables and controller information. Regarding flow table statistics, our proof-of-concept
prototype only considers bits per second received by each switch port.

Table 4.3 illustrates how these statistics are stored. For each snapshot, we store
the number of bits received per second by each switch port. In the case illustrated in the
table, consider that at time 0, we have got the first snapshot of a flow originated on H1
targeting H2. This flow took the path from links a, b, f, and i - Figure 4.3. The first
snapshot registered the flow transferring 100 Mbits through ports S1.1, S1.2, S2.1, S2.4,
S3.2, and S3.1

These statistics will be used in the following stages (Elephant Flow Identification
and Reinforcement Learning Agent) to identify elephant flows and model the problem as

a reinforcement learning problem.

4.3.2 Elephant Flow Identification

The Elephant Flow Identification is a component that attempts to determine whether
a flow is an elephant or not. A flow is considered an elephant flow if it is a large continu-

ous flow that can occupy an unbalanced share of the total bandwidth over time - that is, if

47

it has a long duration and generates a significant amount of traffic (GUO; MATTA, 2001).
With this in mind, elephant flow identification is crucial when optimizing network usage
resources and performance. In this context, managing elephant flows involves adequate
identification and eventually rerouting such flows to more appropriate locations, minimiz-
ing the possible negative impact on the other flows (KNOB et al., 2017). Previous studies
show that detecting and rerouting elephant flows effectively can lead to a 113% improve-
ment in aggregate throughput compared with the traditional routing (LIU et al., 2017).
With this in mind, this module is responsible for identifying if a flow is an elephant flow.
One could use two different approaches for this identification: elephant flow prediction
or elephant flow detection.

Elephant flow prediction identifies this kind of flows in the early stages. To achieve
this, one could use traffic prediction techniques, as discussed in Chapter 2. In most cases,
these techniques would use the statistics gathered by the Statistics Manager. The problem
with this technique is that we need a controlled environment to correctly predict, in the
early stages, if a given flow will be an elephant flow. This would be a good approach
for applications where we have an expected behavior, such as datacenters. For instance,
a data center that has scheduled backup processes every Friday 10 PM. In this case, an
elephant flow prediction would be helpful. Otherwise, we would only rely on network
statistics without having the history or expected traffic behavior.

On the other hand, elephant flow detection identifies this kind of flows when they
are already happening (LIU et al., 2017). According to network necessities, it is possible
to identify elephant flows by defining volume and size thresholds for these flows. For
instance, the network operator could determine that the threshold for a flow to be consid-
ered elephant is 10MB for size and 10 seconds for time. In this context, whenever a flow
reaches the size of 10MB or has been active for at least 10 seconds, it would be considered
an elephant flow, similar to research efforts presented in Silva et al. (SILVA et al., 2018).

We base the decision of whether to use elephant flow detection or prediction on
network needs. The architecture presented in this work accepts either one. However, the
final output should be an indication of whether this flow could harm the network balance
or not. Thus, if the current flow is considered an elephant flow, its features would be the
input for the next stage: the reinforcement learning agent. This stage will consult the

agent’s best action for the current network scenario.

48

4.3.3 Reinforcement Learning Agent

This module is responsible for gathering all data and format it as a reinforcement

learning problem. In this step, we use the model defined in Section 4.2:

e State (5): current network usage, represented by the number of bits transferred by

each switch port on the topology.

e Set of actions (A): set of all possible actions to install a path from H1 to H2. More
specifically, the set of all possible rules necessary to install a path from H1 to H2.

We obtain all these possible paths by consulting the controller.

e Reward (R): Reward(s,) is a function of S,.

The reinforcement learning agent is responsible for running its learning algorithm
and selecting the best action for the current state. More specifically, this module receives
the current state as input, normalizes the state values and outputs the best action to apply
on the network.

To choose this action, the agent runs the algorithm with its pre-defined parameters
and selects the action that provides the best reward. Next, we send this action to the Flow

Action Translator.

4.3.4 Traffic Engineering Rules

This module is responsible for translating the selected action to a flow rule and
installing it in the flow table of a subset of switches. This module identifies which switches
are related to the chosen action and maps to flow routing rules. After installing a rule, we
observe its impact in the new network state (in terms of how homogeneous link usage
is) and calculate the reward for this new state, which will indicate whether the action
contributed to our goal or not.

The input for this module is the chosen rule, and the output is the payload used for
installing this OpenFlow rule through the Controller. Figure 4.7 illustrates an example of
this payload, and Table 4.4 illustrates the meaning of each parameter in this payload.

This step is the final step of the cycle that we repeat according to the network

needs.

49

Figure 4.7: Output generated by Flow Action Translator: OpenFlow rule for switch S1

{
switch: S1,
name: flow-match,
priority: 32768,
ingress-port: 1,
active: true,
actions: output=3

Table 4.4: Set of parameters set for each switch as the output of Flow Action Translator
module.

Parameter | Description

switch ID of the switch (data path) that this rule should be added to

name Name of the flow entry. This is the primary key, so it must be unique
The priority of this rule. Maximum value is 32767,

which indicates that this rule cannot be overwritte

ingress-port | Switch port on which the packet is received

active Indicates if this is an active rule

Specify multiple actions using a comma-separated list (<key>=<value>).
Specifying no actions will cause the packets to be dropped

priority

actions

4.4 Summary

In this chapter, we discussed the architecture proposed in this work. This architec-
ture comprises the following modules: Statistics Manager, Elephant Flow Identification,
Reinforcement Learning Agent, and Traffic Engineering Rules. This model is used to
create a prototype and execute experiments to evaluate the architecture proposed in this

work.

50

S PROTOTYPING AND EVALUATION

In this chapter, we discuss the prototype and experimental results. In Section 5.1
we explain the prototype developed, in Section 5.2 we present the experiments configura-

tion, and in Sections 5.3 and 5.4 we discuss the experimental results.

5.1 Prototyping

Considering the proposal of our work, we highlight the following as the main goals

of the prototype.

e To validate the model proposed for reinforcement learning - discussed in Section
5.3;
e Evaluate if the model achieves load balancing and which reward function yields

satisfactory results;

e Evaluate if the additional machine learning step we propose (look-ahead) could
yield a more intelligent agent and, hence, better network resource usage for balanc-

ing the workload;

e Analyze the scalability of the agents.

In the context of this work, a flow is represented by the tuple <ip_src, ip_dst,
port_src, port_dst, protocol>,whereip_srcand ip_dst are the IP adress-
eses source and destination, respectively, port_src is the source port and port_dst
is the destination port; protocol indicates the protocol.

For prototyping, we used the Mininet VM to emulate the SDN topology, Flood-
light controller on version 1.2, and a docker application with Python 3.7 to run the appli-
cation with statistics collection, elephant flow identification, and reinforcement learning
agent. In the following subsections, we explain how we implemented each of these com-
ponents work.

Following, we discuss the main stages of prototyping. Section 5.1.1 details the
Statistics Manager module. Section 5.1.2 is about how the Elephant Flow Identification
module works. Section 5.1.3 describes the reinforcement learning agents used. Finally,

Section 5.1.4 details the Flow Action Translator module.

51

5.1.1 Statistics Manager

To collect statistics from the switches, we used the Floodlight Statistics module'.
By default, Floodlight starts a thread that updates the switch ports statistics every 10 sec-
onds. We changed this value to every 5 seconds to emulate a real-time application. In this
context, we use Floodlight REST API endpoint for bandwidth
/wm/statistics/bandwidth/<switchId>/<portId>/json. We collectthe
bits-per-second-tx of each switch port to update our statistics. We call this end-
point every time we need to update the network snapshot and derive the environment state

(discussed in Section 5.1.3.2).

5.1.2 Elephant flow identification

Considering that we do not have historical data or pre-defined behavior of the
workload in our network, we chose to use elephant flow detection for prototyping. We

used a size threshold defined by the parameter ef_threshold.

5.1.3 Reinforcement Learning Agent

For the reinforcement learning agent, we developed an OpenAl gym environment
that would allow us to test our agent with different reinforcement learning algorithms. We
chose this tool because it is widely used among works with Machine Learning research
(MNIH et al., 2013).

In our experiments, we chose the algorithms made available by Stablebaselines’.
An OpenAl gym environment is essentially composed of four components: a step func-

tion, an observation space, an action space, and a reward function, discussed next.

5.1.3.1 Step function

We show the pseudocode of a reinforcement learning agent on Listing 5.1 to un-

derstand better how the step function works.

! https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343539/Floodlight+REST+API
2https:// gym.openai.com
3https:// stable-baselines.readthedocs.io/en/v2.3.0/guide/quickstart.html

&)

1

4

6

52

model = loadTrainedAgent ()
state = env.getState()

for step in range (timesteps) :
action = model.predict (state)

state, reward = env.step(action)

Listing 5.1 — Reinforcement learning algorithm pseudo-code.

As shown in the excerpt above, the agent only looks to the current state and
chooses the best action. The step function only accepts the action parameter, applies
it to the environment, and returns the updated state and the generated reward. This means
that using the model proposed in Chapter 4 we can not apply an action for a specific flow
(call env.step(action, flow)). Instead, the agent should look to the state and
identify which flow should be rerouted (env.step (action)). We discuss how we

adapt our model to this implementation in the action space subsection.

5.1.3.2 Observation space

The observation space is the state, which in our case is the network state: the
number of bits transferred by each switch port. In the context of this work, we want
to evaluate how network resources (switches and links) are used. Thus, we use switch
port statistics to indicate how much data each switch port is transferring. For example,
considering S1 Topology (Figure 5.1) the state is a 16-dimensioned array containing the
bits-per-second-tx of each switch port. Using the Statistics Manager module, this
state is updated: we collect the statistics using the Floodlight Statistics module and model

it as the expected array.

5.1.3.3 Action space

As discussed in Chapter 4, the ideal approach would implicate using the step func-

tion as it follows on on Listing 5.2.

model = loadTrainedAgent ()

» state = env.getState ()

for flow in active_flows:
if isElephantFlow (flow) :
action = model.predict (state)

state, reward = env.step(action, flow)

53

else:

continue

Listing 5.2 — Reinforcement learning algorithm pseudo-code choosing an action for all active

flow considered elephant.

However, as we showed in Section 5.1.3.1, the step function only accepts an
action for an already defined flow. To overcome this issue, we adapt our model to con-
sider the rule and the flow for which the rule will be installed. This means that our new
action for this prototype will be the tuple <switch_id, in_port, out_port,
flow_match. This new model implicates having a pre-established set of flows so that
each agent can install an OpenFlow rule. Thus, we consider the network can manage a
maximum of a given number of concurrent flows - we call this parameter
max_sim_flows.

Besides, we had to adapt pre-processing a flow to identify if it is an elephant or
mice flow only to apply actions for elephant flows. Because we can no longer do this, we
use the reward function to penalize actions that act on mice flows.

Furthermore, considering that a continuous action space is a more challenging
problem due to computational resources and available algorithms, we implemented this
action space as a discrete and finite action space. This means that we mapped every
possible path and every possible rule that had to be installed for these paths. Next, we
mapped these rules (tuple configuration) to a number.

Lastly, note that we need to apply the action for calculating the reward of a given
action, installing the rule. So, besides installing a rule, the step function waits for a given
time (in seconds) to collect the resulting state and then calculate the generated reward.
This value is set by the parameter install_wait_time. We have to wait so the
controller can install new rules, and these rules reflect on the traffic. After this time, we

evaluate the new state with the reward function, as we discuss next.

5.1.3.4 Reward function

As discussed previously, in the context of the OpenAl gym environment, the agent
should only observe the state’s environment and choose the best action for it. We cannot
observe the state and choose the best action for a given flow match. Consequently, we
understand that it is not possible to add an extra step before calling the reinforcement
learning. Instead, we use the reward function to penalize the agent when it chooses to

install rules for mice flows because we advocate that we should only use the reinforcement

54

learning actions to act on elephant flows. In this context, we adapt our reward function
to this behavior and expect that the agent will learn to concentrate on routing elephant
flows after a few iterations. We introduce the Elephant Flow Intelligence (EFI), which
will be summed to the reward function. The E/F'] factor is a parameter defined for each
experiment, and it is essential because it is how we penalize the agent for choosing actions
for mice flows. Thus, the final reward functions used in this prototype have the format

presented in Equation 5.1.

Reward(S;) = f(z)* p+ EFI (5.1

Lastly, for our prototype, we used the Deep Q-Learning algorithm from Stable
Baselines’. We chose this algorithm because literature has shown remarkable results with

it (MNIH et al., 2013).

5.1.4 Flow Action Translator

This is the final step in our architecture. Here, we translate the chosen action to an

OpenFlow rule, using the tuple <switch_id, in_port, out_port, flow_match>.

We describe an example rule below, as Floodlight Controller expects.

{

"name": "rule_name",
"switch": "S1",
"active": "true",
"eth_type": "0x0800",
"ipv4_src": "10.0.0.1",
"ipv4_dst": "10.0.0.2",
"ip_proto": "0x06",
"tcp_src": "46110",
"tcp_dst": "5201",
"actions": "output=3",
"idle_timeout": "60",

"hard_timeout": 10

The values of idle_timeout and hard_timeout are parameters defined for

each experiment. As explained before, after sending the install request to the controller,

4https:// stable-baselines.readthedocs.io/en/master/modules/dgn.html

55

we wait for a given amount of seconds to check the resulting state. The resulting state is

then presented to the agent, and the cycle continues.

5.2 Experiments configuration

In this section, we detail the experiments configuration. Firstly, network topolo-
gies used during our analysis, followed by the environmnet setup for running the experi-

ments, and lastly, the parameters used for the experiments.

5.2.1 Network topologies

For these experiments, we consider a specific topology to facilitate modeling, test-
ing, and evaluation. We discuss the chosen topologies in this section.

Figure 5.1 presents the baseline topology used for modeling this prototype. We
chose S1 topology as the baseline topology for the experiments because it has fewer
switches, resulting in minor action and observation spaces. This topology was created
to facilitate listing all possible paths between the two hosts and consider the possibility
of inserting rules that could generate a loop. Note that 50 Mbps is the highest bandwidth,
located at the topology ends, to induce a bottleneck effect.

Figure 5.1: Topology S1 used as baseline for experimental analysis. H1 is the source host,
and H2 is the target.

S5
2
d h
S1 S2 .
] — b . 483 : ﬁ
%’ . 1 2 1 1 ! 2 1 I \TH-Z
% e
2 g
=) 3
S4

Source: the author.

We also consider a second topology in our prototype. This second topology was
used to evaluate the impact of adding extra switches in the topology. We call this second
topology S2, illustrated in Figure 5.2. We kept the 50 Mbps end links to reproduce the

bottleneck effect on a larger scale. We discuss the result of the experiments using these

56

topologies in Sections 5.3 and 5.4.

Figure 5.2: Topology S2 used to analyze the impact of more switches on experimental
results. H1 is the source host, and H2 is the target.

S7 S6 S5
=g Homee
1 2, 2
S1l¢ > 183
H1) H2
- 12 1342 21 \r'
2
i —]
o [T
4

Source: the author.

These simplifications allowed us to use a broader range of algorithms to test our
agent. However, it is essential to highlight that we should use a continuous action space

for a dynamic topology.

5.2.2 Environment setup

We executed all experiments presented in this chapter on a MacBook Pro Mid
2014, processor 2,6 GHz Dual-Core Intel Core i5, with 8 GB 1600 MHz DDR3 memory.
To reproduce the experiments presented in this chapter, one would need the components

listed below.

e Mininet VM® ;

e Floodlight Controller® on version 1.2, running on Mininet VM;
e Flow Switch Monitor’ debugging project;

e Docker Python3.7 image® (with all necessary dependencies);

e The Look-Ahead RL application’, running on the Docker Python3.7 image.

> http://mininet.org/download/#option-1-mininet-vm-installation-easy-recommended

6https ://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview ?homepageld=1343545
! https://github.com/guilhermealles/floodlight-switch-monitor

8 https://github.com/ippossebon/docker-look-ahead-rl

9https ://github.com/ippossebon/floodlight-api-look-ahead-rl

57

To reproduce the experiments we presented, one needs to set the environment with

the dependencies listed above and follow the steps below.

1. On Mininet VM, run the Floodlight controller version 1.2;

2. On Mininet VM, run Mininet with the desired topology (S1 or S2, both under the
directory floodlight—-api-look—-ahead-rl/topologies/;

3. Initialize flow statistics adding static entries that send the flows to the controller.
This can be done by REST API requests to Floodlight REST API. The data for
these requests is available at

floodlight—-api-look—-ahead-rl/initial_flow_entries.csv;

4. For running the experiments considering the topology S1, on Docker Python3.7 im-
age, use the script
floodlight—-api-look—ahead-rl/run-experiments-s5.py. Onthe
other hand, for considering S2 topology, use the script

floodlight-api-look—-ahead-rl/run—-experiments-sl0.py;
5. Create traffic between the hosts (e.g. using iperf);

6. Use floodlight-switch-monitor to analyze switch traffic.

Since all mentioned projects are open source, further details can be found at all

repositories README . md file.

5.2.3 Experiments setup

Considering the model defined on the previous chapter, Table 5.1 shows the pa-

rameters configuration for this model on our experimental evaluation.

Table 5.1: Set of different parameters used on the model and its correspondent values.

Parameter Value
max_sim_flows 16 flow matches
install wait_time 7 seconds

ef threshold_duration 10 seconds

ef_threshold_size 100 MBytes

idle_timeout 60 seconds

hard_timeout 10 seconds

EFI 100

The number of simultaneous flows the agent knows (max_sim_flows) was set

to 16 due to time restriction. Considering the link bandwidth on the network topologies,

58

we needed to have a significant amount of mice and elephant flows that would finish in
a reasonable amount of time. Our time was limited because we understood the need of
reproducing each set of experiments several times to observe the variation of the results.
Also, because Floodlight only provides statistics for previously installed flows, our proto-
type had to initially install the set of flow matches that would be used on our experiments.
More specifically, we install an initial rule for each flow match the controller will analyze
that would send this flow match through the default route suggested by Floodlight. This
means that for a flow routed through a path of n switches, we would have to install n rules.
The total number of initial rules to be installed in the agent initialization would be n * m,
where m would be the number of flow matches. Since the topologies we used for these
experiments had 5 and 10 switches (n = 5 and n = 10), to minimize the initial setup time
and still evaluate the model with elephant flows, we considered 16 simultaneous flows
appropriately value.

As explained previously, Floodlight has a thread for collecting statistics periodi-
cally. We set this time to be every 5 seconds because we wanted to get the most updated
values possible - to have an accurate network state. We tested this thread getting statistics
every 1 and 2 seconds, but we did not get satisfactory results: the counters were inaccu-
rate. However, when setting this time to 5 seconds, we were able to get accurate results
for our experiments, so we set Floodlight to update the statistics counters every 5 seconds.
Because we needed some time between installing a rule, routing packets through this rule,
and observe its impact on the network statistics, we added a 2 seconds threshold, resulting
inatotal install wait_time of 7 seconds.

For the elephant flow duration threshold (ef_threshold_duration), we used
the same value used on SDEFIX (KNOB et al., 2016) and IDEAFIX (SILVA et al.,
2018). Because we consider a 10 seconds duration and the topologies used for the ex-
periments had the majority (bottlenecks) links with 10 Mbps capacity, we considered
(ef_threshold_size) as 100 MBytes. We considered this value appropriate as
threshold size because we also needed the flows to be (i) big enough to observe the impact
of the agent’s choices and (ii) small enough considering the time restriction we had to run
experiments. More specifically, regarding the time needed to complete the experiments,
we had two major factors: install_wait_time and the number of timesteps needed
for the agent to complete its task. Considering install_wait_time as 7 seconds, in
the worst-case scenario, we would need 7 * num_timesteps to complete an experiment.

Yet, the number of timesteps needed depends on the number of flows and the size of these

59

flows - the higher the values, the higher the number of timesteps. Preliminary experiments
showed that we needed an average of 700 timesteps to complete all five flows (considering
5 flows with the same total flow byte count - 10 MBytes, 50 MBytes, 100 MBytes, 200
MBytes, and 500 MBytes) for an experiment configuration using a reinforcement learning
agent. This implicates that we needed 7700 = 4900 seconds to complete one experiment
- for the worst case. Considering at least five replications for this experiment (to analyze
mean and standard deviation values), we needed 4900 x 5 = 24500 seconds to complete
one experiment with its replications. Moreover, considering that we executed these ex-
periments for 22 scenarios (for functional evaluation: 3 agents for functional evaluation
+ 1 baseline, and for EFI evaluation: 2 agents 3 workloads *3 intervals = 18 scenarios),
our worst-case scenario involved needing 24500 * 18 = 441000 seconds = 122, 5 hours.
This assuming that none of the experiment scenarios would have to be executed again due
to some inconsistency or error. In short, considering all these factors, a flow is considered
an elephant flow based ona ef_threshold_size of 100 MBytes.

The idle_timeout parameter is used for installing a rule on a switch. This
value indicates how long a rule should remain active after it is no longer being used. The
default value for this parameter is 0, but we set this value to 60 seconds for all rules
installed. We use this value because we want to make sure the agent is learning the best
rules for our goal. Because it is not feasible to increment the priority of every new rule (so
this would be used instead of the previously installed rule for the exact flow match), we
use the timeout as an alternative. Suppose the agent understands this rule as an action that
will collaborate to more homogeneous resource usage. In that case, the agent will keep
choosing this action and renovating its active time. If not, the rule would be removed
because it is no longer being used.

The hard_timeout parameter is also used for installing a rule on a switch.
However, this value indicates for how long this rule is valid, despite being used or not.
The default value for this parameter is also 0, but we set it to 10 seconds for one rule: the
controller rule. The controller rule should only be chosen by the agent in extreme cases:
loop control. This means that if the agent could not learn a good path for a given flow
and, instead, installed rules that generate a loop on the network, the controller rule can be
used to recover from this loop state, as explained previously. Because we understand this
rule should only be used in extreme cases (due to its overhead of sending packets to the
controller), we set a hard timeout of 10 seconds, which would be enough time for a flow

to recover from a loop state. We also tested this rule with 5 and 20 seconds, but with 10

60

seconds, we got the best results.

Lastly, EF I parameter is used for penalizing the agent when it chooses actions for
mice flows, as explained previously. The value used in our experiments was £ F'I = 100
because of the range of possible reward values. More specifically, considering the values
on Table 5.1 and that the base reward function used for EFI evaluation experiments was
harmonic mean usage, we have the maximum reward value explained next.

Consider max H Mean as the maximum harmonic mean usage value for topology
S1, which was calculated considering the usage of all links. max H Mean Reward is the

maximum value a state could yield using this reward function.

maxHMean = 0.05292
maxrH MeanReward = 5.29

For EFI experiments, the minimum reward value was set to min E'F' [Reward =
—1*maxH MeanReward, which in this case would be minE F I Reward = —5.29. We
set this as the minimum value because experiments using the minimum value calculated
by the harmonic mean usage heuristic were not low enough for the agent to learn how bad
this state would be. Considering that we had rewards varying from -5.29 to 5.29, the EFI
factor should be high enough to potentialize the choice of using an action for an elephant
flow. That is why we used FF'I = 100, so the reward values could vary from -5.29 to
105.29.

Considering we analyze three different reward functions, we trained a different
agent for each reward function, resulting in the agents described in Table 5.2. We describe
the training parameters for each of these agents on Table 5.3.

Table 5.2: Set of different agents trained for the experiments.

Agent Flows for | Learning Gamma Initial | Epsilon | Final | Buffer | Batch Number Reward Topology Training
training rate Epsilon | decay | Epsilon | Size Size | of ti fi i time
WeightedUsage t 5 0.05 0.95 1.0 0.9 0.01 56 50 700 Weighted usage S1 01:03:06.168
UsageHarmonicMean 5 0.05 0.95 1.0 0.9 0.01 56 50 700 Harmonic Mean S1 00:33:07.165
UsageStandardDeviation. 5 0.05 0.95 1.0 0.9 0.01 56 50 700 Standard deviation S1 00:34:00.839

Table 5.3: Set of different parameters for training the agents.

Parameter Description
Learning rate | Parameter used in neural networks training that controls how quickly the model adapts to the problem
Gamma Discount factor

Initial epsilon | Intial probability of agent choosing a random action
Epsilon decay | raction of entire training period over which the epsilon is annealed
Final epsilon | Final probability of agent choosing a random action
Buffer size | Size of the replay buffer used to enhance the performance training
Batch size Size of a batched sampled from replay buffer for training
Timesteps Considering a continuous learning, indicates the number of timesteps for running the algorithm

61

5.3 Functional analysis

This first set of experiments aims to evaluate if an RL agent can effectively balance
workload, considering the different reward functions discussed earlier, namely: weighted
usage, usage harmonic mean, and usage standard deviation. We compare the perfor-
mance of these variations with a baseline approach, which is the use of the Floodlight
controller without using any load balancing method. In this set of experiments, we con-
sider EF'I = 0.

To compare these alternatives, we consider the total flow completion time (FCT)
as the metric we want to minimize. Intuitively, when elaborating these reward functions,
we want more switches being used to carry all traffic sent by the source to the destination.
Splitting traffic among different paths would then use more resources for less time, yield-
ing lower total flow completion time. We run each experiment configuration five times to
analyze average and standard deviation values. We calculate total flow completion time
as the sum of all flows completion time. We use this metric to evaluate (i) if the agent can
balance workload, (ii) if there is one reward strategy that can balance this workload better
compared to a default route provided by the Floodlight controller, and (iii) scalability in
terms of the number of flows. On the other hand, memory usage is the metric we use to
evaluate the computational costs of each agent. We illustrate the configuration of these
experiments on Table 5.4. We illustrate the results of these experiments regarding total

flow completion time in Figure 5.3, and memory usage in Figure 5.4.

Table 5.4: Experiments configuration for functional analysis.

Agent Reward Function | Number of EF | Topology
WeightedUsage Usage heuristics 5 S1
UsageHarmonicMean Harmonic mean 5 S1
UsageStandardDeviation | Standard deviation 5 S1
Baseline - 5 S1

In our work, we consider effective a load balance strategy if this strategy could use
network resources for less time - that is, if the total flow completion time is less than an
approach that was not using a load balance approach. In the context of our experiments,
Floodlight Controller was not using any load-balancing method, and all flows were using
the same default route. Intuitively, this would result in a higher total flow completion time
because all flows were disputing for the same resources. Splitting traffic among different

paths would then use more resources (paths, i.e., switches) for less time, which would

62

Figure 5.3: Average total flow completion time results for experiments with agents
WeightedUsage, UsageHarmonicMean, UsageStandardDeviation and Floodlight Con-
troller. Error bars represent the standard deviation for each set of replications. Each
set of experiments considered 5 flows with the same size (10 MB, 50 MB, 100 MB, 200
MB, and 500 MB, respectively).

4 flows 8 flows 16 flows
28000
27000
70004

26000 -

25000 -

20004 24000

60004 23000

22000

21000

— 20000
(s}

2 5000 1 19000 4

© 18000 4
£

= 170004
c

S 16000 4

k) 4000+ 15000 -
[=%

£ 14000
o

o 13000 1

E 10001 12000 4

5 30007 11000

2 10000 4

S 90001
<

g 20004 goco

< 70004

6000 4

5000 1

1000 40007

30004

2000+

1000 A

oA Hitne, 0- L oA e,

10 50 100 200 500 10 50 100 200 500 10 50 100 200 500
Flow size (MBytes)

Reward function . WeightedUsage . UsageHarmonicMean. UsageStandardDeviation. Baseline

Source: the author.

yield a shorter total flow completion time.

4 simultaneous flows. The agents were not able to balance the workload effec-
tively - except for 4 simultaneous 100 MB flows, which had an average total flow com-
pletion time shorter than the default Floodlight route. A possible explanation for these
results is that the overhead of choosing the best action (a rule that could generate a state
of homogenous resource usage) does not pay off for small flows. That is, we need bigger
flows to compensate for the time spent chosing the best action.

8 simultaneous flows. Regarding flows smaller than 200 MB, the agents were not
able to provide shorter total flow completion time. In fact, for this set of experiments,
the default route for every flow simultaneously on the network was faster than using the
rules chosen by the agents. Again, we believe this is because these flows are too short

to overcome the overhead of eventual explorations of the agent - which might need some

63

time to recover from evetual failures. When we look to 8 simultaneous 500 MB flows,
on the other hand, we see that the default Floodlight route was slower than the resulting
paths chosen by the agents. Specially agent UsageHarmonicMean, which was able to get
the fastest combination of paths, resulting on the shorter average total flow completion
time.

16 simultaneous flows. Considering this set of experiments, the threshold for
agents yielding better results was shorter: 100 MB. Flows bigger than 100 MB were able
to use the agents to be rerouted to paths that generated a shorter total completion time -
again, we highlight agent UsageHarmonicMean, with the shortest total flow completion
time. Once again, we attribute these results to the fact that smaller flows are not able to
overcome the overhead of chosing the best action and cope with any failures.

Considering the results shown in Figure 5.3, we consider agent UsageHarmon-
icMean as the best agent for solving the problem proposed in this work. This agent chose
the best set of paths that generated the fastest routes and, consequently, the shortest aver-
age total flow completion time for flows bigger than 100 MBytes. We believe this might
be associated with the fact that the difference of rewards between a good and a bad state is
lower when using UsageHarmonicMean than when using the other rewards functions. For
instance, consider a homogeneous state sO on topology S1, illustrated in Table 5.5 - this
would happen in a case where two 5 MB flows would use the route a-b-f-i. Also, consider
a heterogeneous state s1 on the same topology, illustrated on Table 5.6 - this would happen
in a case where two 5 MB flows would use each one of the two routes: a-b-f-i and a-c-g-
i. The reward function for each agent is illustrated on Table 5.7, where we illustrate the
difference between a good and a bad state on the column Difference(s0,s1), and Usage-
HarmonicMean has the lowest value. However, we also believe additional experiments

could help understanding if this difference impacts the results.

Table 5.5: Homogeneous state representation.

[Switchport | SI.T | 812 [SI13] 821 [S22[S23] S24 | S31 | S32 [S33]S34[S41[S42[S43][S51[852]
| Bits transferred | 10383360 | 10383360 | 0 | 10383360 | 0 | 0 [10383360 | 10383360 | 10383360 | 0 | 0 | 0 [0 | 0 | 0 [0 |

Table 5.6: Heterogeneous state representation.

[Switchport | SI.I_| SI2 | SI3 | S21 [S22[S23] S24 | S31 | S32 | S33 [S34] S41 [S42] S43 [S5.1]852]
| Bits transferred | 10383360 | 5191680 | 5191680 | 5191680 | 0 | 0 | 5191680 | 10383360 | 5191680 | 5191680 | 0 | 5191680 | 0 | 5191680 | 0 | 0 |

Lastly, we also analyze memory usage to evaluate the scalability of the agent,
considering the two topologies discussed. We collected the memory usage using trace-

malloc" Python module.

10https ://docs.python.org/3/library/tracemalloc.html

64

Table 5.7: Comparison between reward function values for each state.

Reward function Reward(s0) Reward(s1) Difference(s0,s1)
WeightedUsage 2.58754 % 10" | 2.58754 % 10" | 8.306688 10°
UsageHarmonicMean 3,322675 % 10" | 5.537792 % 10" | 2.215117 % 10'°
UsageStandardDeviation | 1.043906 x 10"° | 7.131237 %« 10" | 3.307825 % 10"

As shown in Figure 5.4, the memory usage as we increase the number of flows
is very low. We use more memory for agents that need more steps to complete the flow
due to continuous learning. We have some outliers (especially for four flows of 50 MB),
showing a higher memory usage because of this - i.e., there were needed more time steps

to complete all active flows.

Figure 5.4: Memory usage results for experiments with different reward functions.

4 flows 8 flows 16 flows

w

N

Average memory usage (KBytes)

Reward function

WeightedUsage

[iN

WeightedUsage S2
UsageHarmonicMean
UsageHarmonicMean S2

UsageStandardDeviation

10 50 100 200 500 10 50 100 200 500 10 50 100 200 500
Flow size (MBytes)

Source: the author.

Considering that agent UsageHarmonicMean reduced the FCT and is scalable
concerning the number of switches, we use this agent as the baseline for the elephant

flow intelligence analysis, discussed next.

65

5.4 Elephant Flow Intelligence (EFI) analysis

The previous analysis showed that the agent with a reward function that uses har-
monic mean managed to achieve reduced FCT without a significant impact on memory
usage. Thus, we use this agent (which we call UsageHarmonicMean-EFT) as the baseline
for the experiments in this section, assessing the EFI factor. For this analysis, we per-
formed the experiments by analyzing two variables: workload and interval between con-
nections (PIZZUTTI; SCHAEFFER-FILHO, 2018). We used three different workloads:
25/75, 50/50, and 75/25 as mice and elephant flow proportion; three different intervals

between connections: 5, 10, and 15 seconds.

Table 5.8: Experiments configuration for EFI analysis.

Agent Interval | Workload | Topology | Timesteps
UsageHarmonicMean 5 25775 S1 600
UsageHarmonicMean 5 50/50 S1 700
UsageHarmonicMean 5 75/25 S1 1500
UsageHarmonicMean 10 25/75 S1 600
UsageHarmonicMean 10 50/50 S1 700
UsageHarmonicMean 10 75125 S1 1000
UsageHarmonicMean 15 25775 S1 600
UsageHarmonicMean 15 50/50 S1 700
UsageHarmonicMean 15 75125 S1 1000

UsageHarmonicMean-EFI 5 25/75 S1 600
UsageHarmonicMean-EFI 5 50/50 S1 700
UsageHarmonicMean-EFI 5 75125 S1 1500
UsageHarmonicMean-EFI 10 25/75 S1 600
UsageHarmonicMean-EFI 10 50/50 S1 700
UsageHarmonicMean-EFI 10 75125 S1 1000
UsageHarmonicMean-EFI 15 25/75 S1 600
UsageHarmonicMean-EFI 15 50/50 S1 700
UsageHarmonicMean-EFI 15 75125 S1 1000

We illustrate these experiments configuration on Table 5.8. We executed the ex-
periments with all possible combinations, considering topology S1. Because we did not
have enough time, we could not execute the experiments for topology S2 - on average,
a 700 timesteps experiment runs in 2 hours. The number of timesteps used for each ex-
periment configuration is based on several executions, where we observed which would
be the appropriate number. Note that this number may vary according to the workload
and interval between connections: the higher the number of elephant flows, the higher is

the number of timesteps necessary to complete all flows. Similarly, the higher the inter-

66

val between connections, the higher the number of time steps. Table 5.9 shows how we
distributed the workload.

Table 5.9: Workload distribution, where #MF is the number of mice flows, and #EF is the
number of elephant flows.

Workload | #MF | #EF Flow sizes
25/75 2 6 | 50 MB, 80 MB, 100 MB, 200 MB, 300 MB, 400 MB, 800 MB, 1024 MB
50/50 4 4 50 MB, 60 MB, 80 MB, 90 MB, 100 MB, 400 MB, 800 MB, 1024 MB
75125 6 2 50 MB, 60 MB, 70 MB, 80 MB, 90 MB, 95 MB, 100 MB, 1024 MB

The workload values shown in Table 5.9 indicate 25/75 as 25% of the flows in
the network as mice flows and 75% as elephant flows. Similarly, 50/50 corresponds to
50% mice flows and 50% elephant flows, and 75/25 to 75% mice flows and 25% elephant
flows.

Figure 5.5: Total flow completion time for experiments using agents UsageHarmon-
icMean and UsageHarmonicMean-EF1.

75% Elephant Flows
11722
10859 10051
10000 -
5000 -
1551 1292 1337
L P
- 0-
(8]
;8/ 50% Elephant Flows
g
= 10827
S 10000 - 9743
2 7839
Q
S
€ 5000 -
8 1665
= 906 e 868
o °
= 0+
% 25% Elephant Flows
|_
10000 -
5000 - 4899 3528 4442
2128
530 731 et L4
@---mmmmmmmmmmmseeeeeeeeeeen ®---"""
0 L T T T
5 10 15
Interval between connections (sec)
Reward function UsageHarmonicMean © UsageHarmonicMean + EFI

Source: the author.

Results shown in Figure 5.5 demonstrate that the elephant flow identification (EFI)
factor has a significant influence on reducing total flow completion time. The UsageHarmonicMean-

EFI agent yielded the lowest FCT in all scenarios compared to the baseline harmonic

67

mean agent. We understand these results as proof that when using RL approaches, the
agent should concentrate on elephant flows as they represent the main risk when balanc-
ing workload among network resources. The RL agent will concentrate on balancing
these flows and ignore the less relevant flows in our approach.

In all scenarios, the impact of using EFI is significant: in the worst case, we can
reduce the FCT on 52% (25% workload with a 15 seconds interval between connections).
This indicates that even considering the smallest amount of EF and the most extensive
time interval between connections, we could reduce FCT when using EFI. Our most suit-
able scenario was considering a 50/50 workload and a 10 seconds interval between con-
nections, which could reduce FCT by 91%. Still, the scenario where intuitively it would
be needed more time (75% of EF workload and 15 seconds interval between connections)

yielded excellent results: an 87% reduction on FCT.

68

6 FINAL CONSIDERATIONS AND FUTURE WORK

This dissertation presented an approach for load balancing using reinforcement
learning and analyzing the impact of adding logic to penalize actions that reroute mice
flows instead of actions that reroute elephant flows. We discuss our final considerations

in Section 6.1 and future work on Section 6.2.

6.1 Final considerations

We advocate that using RL techniques to reroute mice flows can be inefficient
because these are low-impact flows in terms of network usage, and the overhead for man-
aging them would not pay off. Thus, we proposed a two-step approach based on rein-
forcement learning and network traffic prediction to balance network flows and ensure
efficient network resource usage. The first step is network traffic prediction and is used
to determine which flows have the highest impact on network resources and may cause
network imbalance. The second step is composed of a reinforcement learning agent and
is used to re-establish this balance, focusing on making the best usage of resources given
the current state of the network.

Our main contributions are (i) problem modeling as a function of states and ac-
tions in a system that aims to balance network traffic and (ii) an architecture that more
judiciously uses reinforcement learning on flows of interest for load balancing. We ad-
vocate that this two-step machine learning approach, which we call look-ahead reinforce-
ment learning, can reduce human errors regarding the management of the network by
preventing unnecessary interactions.

We evaluate our research using two analysis groups: functional analysis and ele-
phant flow intelligence analysis. For the first analysis, we consider the same model with
three different reward functions: network usage heuristics, harmonic mean heuristics, and
standard deviation heuristics. We then evaluate whether the proposed model could bal-
ance the workload among the network and, if so, which of the reward functions would
give better results. The second analysis consisted of evaluating the impact of adding an
Elephant Flow Intelligence (EFI) to the reward function of this model. This modification
would allow the agent to receive higher rewards when choosing a rule for an elephant flow
and lower rewards when choosing a rule for a mice flow.

Experimental results show that in all scenarios, the impact of using EFI is signif-

69

icant. Our worst result reduced the flow completion time (FCT) by 52%, considering a
75/25 workload (75%mice flows, and 75% elephant flows proportion, with a 15 seconds
interval between connections). As our best result, the EFI reduced FCT by 91%, consid-
ering a 50/50 workload (50% mice flows, and a 50% elephant flows proportion, with a 10
seconds interval between connections).

We believe the results showed in this research prove the importance of only consid-
ering elephant flows on reinforcement learning architectures for load balancing network

traffic.

6.2 Limitations and Future work

The proposed solution aims at simplicity in terms of implementation. However,
some conditions are limiting for the proper functioning of real networks. This is the case
for three factors on our implementation, namely: (1) model based on a static topology, (2)
mice flows can still be using an action chosen by the agent, and (3) the limited number of
active flows considered on the topology. In this section, we discuss some suggestions for
addressing each of these limitations.

Regarding the prototype based on a static topology, a possible alternative would be
still use the model proposed in this work (state represented by the links occupation) and
use the controller to get information about the topology. Our prototype already uses the
Floodlight topology discovery module to discover the network topology and its possible
paths. The challenge would be using a dynamic OpenAl gym environment to represent
the links and possible actions.

Concerning still being able to reroute mice flows, we believe this would require a
change in the prototype. To apply a specific action for a specific flow, the flow that needs
to be routed should be part of the environment state. In other words, if the agent only
looks at the state for choosing the best action (considering the step function of OpenAl
environments), this means the state should be the flow that needs to be rerouted. Hence,
the state would represent the active elephant flows on the network at a given time. If there
are no active elephant flows in the network, the agent would not install a new rule; it
would simply continue with the currently installed rules. This indicates that we were first
thinking about our prototype without considering the agent model; we could get the same
results with this modification. We believe a most suitable approach would be choosing

an action for a given flow - if this is an elephant flow, choose a reroute action; if not,

70

continue.

Since the limitation of only looking at a pre-defined number of active flows is
related to our prototype, we believe that if we consider a machine learning tool that allows
us to consider a dynamic state, this would no longer be a problem. With this feature, every
elephant flow could be a candidate for being rerouted by the agent.

Additional research opportunities involve changing the model state to (i) the num-
ber of flows passing through a switch and (ii) only consider the hosts involved as the state.
For the first, a possible state of being studied would be considering how many flows are
active on each switch - so we could maximize the number of flows passing through each
switch instead of maximizing the number of links used. The state would be represented as
the set of active elephant flows, its correspondent routes, and statistics for the second. We
would change the model to only look at elephant flows and do not consider mice flows.

Finally, our experimental results demonstrate that our hypothesis of only consid-
ering elephant flows on a reinforcement learning approach for load balancing network
traffic is valid (using EFI). Hence, to answer the question we raised when we started our
work - how to optimize the network performance by dynamically analyzing, predicting,
and controlling the behavior of data transmitted over this network? - we highlight the use
of an elephant flow intelligence approach. It is crucial to identify which flows can harm
the balance of the network and use this knowledge to better use the network resource.

We believe a good research opportunity would be using the model proposed in our
work to network environments where the traffic is predictable, such as data centers. We
believe our approach could significantly improve network resource usage and reinforce-

ment learning agent performance in this scenario.

71

REFERENCES

AKAIKE, H. Fitting autoregressive models for prediction. Annals of the Institute of
Statistical Mathematics, Springer Science and Business Media LLC, v. 21, n. 1, p.
243-247, dec. 1969. Available from Internet: <https://doi.org/10.1007/bf02532251>.

AL-KHATIB, O.; HARDJAWANA, W.; VUCETIC, B. Traffic modeling for machine-
to-machine (M2M) last mile wireless access networks. In: 2014 IEEE Global
Communications Conference. [S.1.: s.n.], 2014. p. 1199-1204.

ALIZADEH, M. et al. Conga: Distributed congestion-aware load balancing for
datacenters. SIGCOMM Comput. Commun. Rev., Association for Computing
Machinery, New York, NY, USA, v. 44, n. 4, p. 503-514, aug. 2014. ISSN 0146-4833.
Available from Internet: <https://doi.org/10.1145/2740070.2626316>.

ARROYO-VALLES, R. et al. Q-probabilistic routing in wireless sensor networks. In:
2007 3rd International Conference on Intelligent Sensors, Sensor Networks and
Information. [S.I.: s.n.], 2007. p. 1-6.

BARROS, P. H. et al. Load balancing in d2d networks using reinforcement learning.
In: 2019 IEEE Symposium on Computers and Communications (ISCC). [S.1.: s.n.],
2019. p. 1-6.

BHORKAR, A. A. et al. Adaptive opportunistic routing for wireless ad hoc networks.
IEEE/ACM Transactions on Networking, v. 20, n. 1, p. 243-256, Feb 2012. ISSN
1063-6692.

BOUTABA, R. et al. A comprehensive survey on machine learning for networking:
evolution, applications and research opportunities. Journal of Internet Services and
Applications, v. 9, n. 1, p. 16, Jun 2018. ISSN 1869-0238. Available from Internet:
<https://doi.org/10.1186/s13174-018-0087-2>.

CAQO, J. et al. Per-packet load-balanced, low-latency routing for clos-based data center
networks. In: Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies. New York, NY, USA: Association for Computing
Machinery, 2013. (CoNEXT ’13), p. 49-60. ISBN 9781450321013. Available from
Internet: <https://doi.org/10.1145/2535372.2535375>.

CAVUSOGLU, B.; ORAL, E. A. Estimation of available bandwidth share by
tracking unknown cross-traffic with adaptive extended kalman filter. Computer
Communications, v. 47, p. 34-50, 2014.

CHEN, Y.-T.; LI, C.-Y.; WANG, K. A fast converging mechanism for load balancing
among sdn multiple controllers. In: 2018 IEEE Symposium on Computers and
Communications (ISCC). [S.1.: s.n.], 2018. p. 00682—-00687.

CHEN, Z.; HU, J.; MIN, G. Learning-based resource allocation in cloud data center
using advantage actor-critic. In: ICC 2019 - 2019 IEEE International Conference on
Communications (ICC). [S.1.: s.n.], 2019. p. 1-6.

https://doi.org/10.1007/bf02532251
https://doi.org/10.1145/2740070.2626316
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1145/2535372.2535375

72

CHEN, Z.; WEN, J.; GENG, Y. Predicting future traffic using hidden markov models. In:
2016 IEEE 24th International Conference on Network Protocols (ICNP). [S.1.: s.n.],
2016. p. 1-6.

CORTEZ, P. et al. Internet traffic forecasting using neural networks. In: The 2006 IEEE
International Joint Conference on Neural Network Proceedings. [S.1.: s.n.], 2006. p.
2635-2642. ISSN 2161-4393.

DOBSON, S. et al. Self-organization and resilience for networked systems: Design
principles and open research issues. Proceedings of the IEEE, v. 107, n. 4, p. 819-834,
2019.

FRANCOIS-LAVET, V. et al. An introduction to deep reinforcement learning.
Foundations and Trends®) in Machine Learning, Now Publishers, v. 11, n. 3-4, p.
219-354, 2018. Available from Internet: <https://doi.org/10.1561%2F2200000071>.

GAZIS, V. A survey of standards for machine-to-machine and the internet of things.
IEEE Communications Surveys Tutorials, v. 19, n. 1, p. 482-511, 2017.

GUERRERO, C. D.; LABRADOR, M. A. Traceband: A fast, low overhead and accurate
tool for available bandwidth estimation and monitoring. Comput. Netw., Elsevier
North-Holland, Inc., New York, NY, USA, v. 54, n. 6, p. 977-990, abr. 2010. ISSN
1389-1286. Available from Internet: <http://dx.doi.org/10.1016/j.comnet.2009.09.024>.

GUO, J. et al. Energy-efficient resource allocation for multi-user mobile edge computing.
In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference. [S.1.: s.n.],
2017. p. 1-7.

GUO, L.; MATTA, I. The war between mice and elephants. In: Proceedings Ninth
International Conference on Network Protocols. ICNP 2001. [S.I.: s.n.], 2001. p.
180-188.

HAMDAN, M. et al. Flow-aware elephant flow detection for software-defined networks.
IEEE Access, v. 8, p. 72585-72597, 2020.

HAMDAN, M. et al. Flow-aware elephant flow detection for software-defined networks.
IEEE Access, v. 8, p. 72585-72597, 2020.

JOSHI, M.; HADI, T. H. A review of network traffic analysis and prediction techniques.
ArXiv, abs/1507.05722, 2015.

KNOB, L. A. D. et al. Sdefix — identifying elephant flows in sdn-based ixp networks. In:
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium.
[S.L: s.n.], 2016. p. 19-26.

KNOB, L. A. D. et al. Mitigating elephant flows in sdn-based ixp networks. In: 2017
IEEE Symposium on Computers and Communications (ISCC). [S.1.: s.n.], 2017. p.
1352-1359.

KOSEOGLU, M. Pricing-based load control of m2m traffic for the lte-a random access
channel. IEEE Transactions on Communications, v. 65, n. 3, p. 1353-1365, 2017.

https://doi.org/10.1561%2F2200000071
http://dx.doi.org/10.1016/j.comnet.2009.09.024

73

LI Y. et al. Inter-data-center network traffic prediction with elephant flows. In: NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management Symposium. [S.1.:
s.n.], 2016. p. 206-213. ISSN 2374-9709.

LIN, Z.; SCHAAR, M. van der. Autonomic and distributed joint routing and power
control for delay-sensitive applications in multi-hop wireless networks. IEEE
Transactions on Wireless Communications, v. 10, n. 1, p. 102-113, January 2011.
ISSN 1536-1276.

LIU, S.; FORREST, J. Grey Information:Theory and Practical Applications
Springer-Verlag, Londun Ltd,2006. [S.1.: s.n.], 2006. ISBN -10:1-85233-995-0.

LIU, Z. et al. An adaptive approach for elephant flow detection with the rapidly changing
traffic in data center network: An approach for elephant flow detection with the changing
traffic. International Journal of Network Management, p. €1987, 07 2017.

MAQO, B. et al. A tensor based deep learning technique for intelligent packet routing. In:
.[S.1.: s.n.], 2017. p. 1-6.

MEKINDA, L.; MUSCARIELLO, L. Supervised machine learning-based routing
for named data networking. In: 2016 IEEE Global Communications Conference
(GLOBECOM). [S.1.: s.n.], 2016. p. 1-6. ISSN null.

MNIH, V. et al. Playing Atari with Deep Reinforcement Learning. 2013.

NAREJO, S.; PASERO, E. An application of internet traffic prediction with deep
neural network. In: . Multidisciplinary Approaches to Neural Computing.
Cham: Springer International Publishing, 2018. p. 139-149. ISBN 978-3-319-56904-8.
Auvailable from Internet: <https://doi.org/10.1007/978-3-319-56904-8{_}.>

PAKZAD, F.; PORTMANN, M.; HAYWARD, J. Link capacity estimation in wireless
software defined networks. 2015 International Telecommunication Networks and
Applications Conference (ITNAC), p. 208-213, 2015.

PAUL, A. K.; TACHIBANA, A.; HASEGAWA, T. Implementation design of
available bandwidth measurement scheme: A proxy based approach. In: Adjunct
Proceedings of the 13th International Conference on Mobile and Ubiquitous
Systems: Computing Networking and Services. New York, NY, USA: ACM, 2016.
(MOBIQUITOUS 2016), p. 257-262. ISBN 978-1-4503-4759-4. Available from
Internet: <http://doi.acm.org/10.1145/3004010.3004047>.

PIZZUTTI, M.; SCHAEFFER-FILHO, A. E. An efficient multipath mechanism based
on the flowlet abstraction and p4. In: 2018 IEEE Global Communications Conference
(GLOBECOM). [S.1.: s.n.], 2018. p. 1-6.

PI1ZZUTTI, M.; SCHAEFFER-FILHO, A. E. Adaptive multipath routing based on hybrid
data and control plane operation. In: IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications. [S.1.: s.n.], 2019. p. 730-738.

POUPART, P. et al. Online flow size prediction for improved network routing. In: 2016
IEEE 24th International Conference on Network Protocols (ICNP). [S.1.: s.n.], 2016.
p. 1-6.

https://doi.org/10.1007/978-3-319-56904-8{_}.
http://doi.acm.org/10.1145/3004010.3004047

74

SCHULMAN, J. et al. Proximal policy optimization algorithms. CoRR, abs/1707.06347,
2017. Available from Internet: <http://arxiv.org/abs/1707.06347>.

SILVA, M. V. B. da et al. Ideafix: Identifying elephant flows in p4-based ixp networks.
In: 2018 IEEE Global Communications Conference (GLOBECOM). [S.1.: s.n.],
2018. p. 1-6.

SUTTON, R.; BARTO, A. Reinforcement Learning: An Introduction. MIT Press,
2018. (Adaptive Computation and Machine Learning series). ISBN 9780262039246.
Available from Internet: <https://books.google.com.br/books?id=6DKPtQEACAAJ>.

SUTTON, R. S. Reinforcement Learning: An Introduction (Adaptive Computation
and Machine Learning series). A Bradford Book, 2018. ISBN 0262039249. Available
from Internet: <https://www.xarg.org/ref/a/0262039249/>.

DPUKIC, V. et al. Is advance knowledge of flow sizes a plausible assumption? In: 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
19). Boston, MA: USENIX Association, 2019. p. 565-580. ISBN 978-1-931971-49-2.
Available from Internet: <https://www.usenix.org/conference/nsdil9/presentation/
dukic>.

VALADARSKY, A. et al. Learning to route. In: Proceedings of the 16th ACM
Workshop on Hot Topics in Networks. New York, NY, USA: Association for
Computing Machinery, 2017. (HotNets-XVI), p. 185-191. ISBN 9781450355698.
Available from Internet: <https://doi.org/10.1145/3152434.3152441>.

VANINI, E. et al. Let it flow: Resilient asymmetric load balancing with flowlet
switching. In: 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). Boston, MA: USENIX Association, 2017. p. 407-420.
ISBN 978-1-931971-37-9. Available from Internet: <https://www.usenix.org/conference/
nsdil7/technical-sessions/presentation/vanini>.

WANG, Y.; LIU, Y.; GAN, Y. Research on combination network traffic forecasting
model. In: 2018 IEEE International Conference on Automation, Electronics and
Electrical Engineering (AUTEEE). [S.1.: s.n.], 2018. p. 311-314.

WU, Y. et al. Modeling and forecasting of timescale network traffic dynamics in m2m
communications. In: 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). [S.1.: s.n.], 2019. p. 711-721.

XU, Z. et al. Experience-driven networking: A deep reinforcement learning
based approach. In: IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications. [S.L.: s.n.], 2018. p. 1871-1879.

YU, E. S.; CHEN, C. Y. R. Traffic prediction using neural networks. In: Proceedings of
GLOBECOM ’93. IEEE Global Telecommunications Conference. [S.1.: s.n.], 1993.
p- 991-995 vol.2.

YU, W. et al. Historical best g-networks for deep reinforcement learning. In: 2018 IEEE
30th International Conference on Tools with Artificial Intelligence (ICTAI). [S.1.:
s.n.], 2018. p. 6-11.

http://arxiv.org/abs/1707.06347
https://books.google.com.br/books?id=6DKPtQEACAAJ
https://www.xarg.org/ref/a/0262039249/
https://www.usenix.org/conference/nsdi19/presentation/dukic
https://www.usenix.org/conference/nsdi19/presentation/dukic
https://doi.org/10.1145/3152434.3152441
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini

75

ZHANG, L. et al. Named data networking. SIGCOMM Comput. Commun.
Rev., Association for Computing Machinery, New York, NY, USA, v. 44,
n. 3, p. 6673, jul. 2014. ISSN 0146-4833. Available from Internet: <https:
//doi.org/10.1145/2656877.2656887>.

ZHOU, J. et al. Wemp: Weighted cost multipathing for improved fairness in data centers.
In: Proceedings of the Ninth European Conference on Computer Systems. New
York, NY, USA: Association for Computing Machinery, 2014. (EuroSys ’14). ISBN
9781450327046. Available from Internet: <https://doi.org/10.1145/2592798.2592803>.

https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1145/2592798.2592803

76

APPENDIX A — RESUMO EXPANDIDO EM PORTUGUES

This appendix presents a extended summary of the work in the Portuguese lan-
guage. The structure of this appendix is the same of the English document.
Neste apéndice € apresentado um resumo expandido do trabalho na lingua portu-

guesa. A estrutura deste apéndice € a mesma do documento na lingua inglesa.

A.1 Introducio

A complexidade, heterogeneidade e escala das redes de computadores cresceram
além dos limites da administracdo manual, a tal ponto que a principal causa de falhas
em ambientes de rede € o erro humano (DOBSON et al., 2019). Além disso, o impacto
de falhas em ambientes de rede pode ser caro, agravado pelo tempo de reagdo atrasado
e baixa precisdo dos métodos tradicionais de tolerancia a falhas. Isso desencadeou uma
mudanca na filosofia de design dos sistemas de gerenciamento de rede para minimizar o
papel dos humanos no circuito de controle. Aliados, esses pontos motivam os esforcos
para usar o aprendizado de maquina para prever o comportamento e equilibrar o trafego
da rede.

Por um lado, as abordagens de previsao de trafego desempenham um papel crucial
nas operagdes e gerenciamento de rede e tentam antecipar a carga, o volume, o tamanho
do pacote, o roteamento e muito mais do trafego. Isso pode ajudar os provedores a oti-
mizar os recursos de rede (NAREJO; PASERO, 2018). Por outro lado, o balanceamento
de carga tenta inferir a classificacdo e divisao dos fluxos da rede para obter o melhor
aproveitamento dos links de transmiss@o. Isso normalmente € usado para atingir taxas de
transferéncia mais altas e atrasos de transmissao menores, bem como para reduzir efeitos
adversos, como retransmissoes (PIZZUTTI; SCHAEFFER-FILHO, 2019).

Ao conceber uma estratégia de balanceamento de carga, deve-se estar ciente dos
diferentes tipos de fluxos de rede. Por exemplo, os fluxos elefantes representam um
grande (em numero de bytes) e um fluxo continuo de trafego, enquanto os fluxos ratos
tendem a ser pequenos e de curta duragdo (HAMDAN et al., 2020a). Considerando que
os fluxos elefantes tendem a ocupar um caminho de rede por muito mais tempo do que
os fluxos ratos, existe o risco de que o nimero de fluxos ativos em alguns links fique
desequilibrado. Por exemplo, heuristicas simples que ignoram o tamanho do fluxo e dis-

tribuem fluxos uniformemente em todos os caminhos de comprimento igual geralmente

77

levam ao congestionamento, e heuristicas de balanceamento de carga devem ser usadas
para detectar e corrigir desequilibrios (POUPART et al., 2016). Além disso, detectar e
prevenir abusos na rede estd se tornando um desafio com o crescente volume de trafego e
a complexidade das redes.

Neste trabalho, exploramos a previsado de trafego de rede para melhorar as técnicas
de balanceamento de carga, quando usadas em conjunto. Existem vdrias abordagens de
previsdo de trafego de rede. Podemos dividir essas abordagens em duas categorias prin-
cipais: métodos de previsdo de série temporal (Time Series Forecast - TSF) e métodos de
previsdo nao-série temporal (non-TSF).

Em particular, propomos uma abordagem em duas etapas com base no aprendi-
zado por reforco e previsao de trafego de rede para equilibrar os fluxos de rede e garantir
o uso eficiente dos seus recursos. Em primeiro lugar, a previsao do trafego de rede € usada
para determinar quais fluxos t€m o maior impacto nos recursos da rede e podem causar
o seu desequilibrio. Em segundo lugar, a aprendizagem por reforco € usada para restabe-
lecer esse equilibrio, com foco em fazer o melhor uso dos recursos, dado o estado atual
da rede. Nossas principais contribui¢cdes sio (i) modelagem do problema em func¢do de
estados e acOes em um sistema que visa balancear o trafego da rede e (ii) uma arquitetura
que usa de forma mais criteriosa a aprendizagem por refor¢o nos fluxos de interesse para
o balanceamento de carga. Defendemos que essa abordagem de aprendizado de maquina
em duas etapas, que chamamos de aprendizado por refor¢o antecipado (Look-Ahead Rein-

forcement Learning), pode reduzir os erros humanos evitando interagdes desnecessdrias.

A.2 Background

No contexto deste trabalho, destacamos trés conceitos principais: previsao de tra-
fego, balanceamento de carga e aprendizado por refor¢o. Utilizamos ideias de previsao
de trafego para identificar antecipadamente fluxos que podem representar um risco para o
equilibrio da rede (dado que o objetivo da arquitetura proposta € balanceamento de carga).
O conceito de aprendizado por reforgo, por sua vez, € utilizado na modelagem do sistema

de aprendizado de maquina.

78

A.2.1 Predicao de trafego

As técnicas de predicao de trafego de rede podem ser divididas em duas categorias
amplas: predicdo como um problema de previsao de série temporal (em inglés, Time
Series Forecast, ou TSF) e predi¢do como um problema nao linear (em inglés, non-TSF).
O objetivo no TSF € construir um modelo de regressdo capaz de tracar uma correlagdo
precisa entre o volume de trafego futuro e os volumes de trafego previamente observados
(BOUTABA et al., 2018). Em contraste com o TSF, podemos prever o trifego de rede
usando outros métodos, chamados de abordagens nao lineares. As equacdes dindmicas
nao lineares geram séries temporais ndo lineares. Eles exibem caracteristicas que nao
podem ser modeladas por processos lineares, como variagdo de mudanga de tempo, ciclo
assimétrico, limites e quebras. Este modelo é geralmente usado para prever o trafego de

rede com técnicas como redes neurais e 1dgica fuzzy.

A.2.2 Balanceamento de carga

O balanceamento de carga se refere a distribui¢do eficiente do trafego na rede. Esta
técnica infere a classificacdo e divisdo do fluxo de trafego para obter o melhor aprovei-
tamento dos recursos da rede e pode minimizar efeitos adversos como retransmissoes de
pacotes (PIZZUTTI; SCHAEFFER-FILHO, 2018). Esta distribui¢do de carga de trabalho
¢ essencial para obter infraestruturas altamente disponiveis e otimizar o desempenho da

rede (ALIZADEH et al., 2014).

A.2.3 Aprendizado por reforco

A aprendizagem por reforco (em inglés, Reinforcement Learning, ou RL) depende
de um agente cujo comportamento é definido com base em estados, um conjunto de acdes
e um conjunto de recompensas correspondentes (SUTTON, 2018). Nesse contexto, um
estado € uma configuracio que relaciona o agente a outros elementos do ambiente. Uma
acdo € um movimento possivel que um agente pode fazer para atingir seu objetivo. Por
fim, uma recompensa é um feedback pelo qual medimos o sucesso ou o fracasso das
acoes de um agente em um determinado estado. Dessa forma, um agente é responsdvel

por considerar o estado atual, as acdes possiveis e as recompensas correspondentes para

79

definir o melhor movimento para a solu¢do do problema.

A.3 Trabalhos relacionados

Nesta secdo, destacamos os principais trabalhos da literatura relacionados ao tra-
balho proposto neste documento. Assim, discutimos sobre trabalhos na area de previsao

de trafego e trabalhos na 4rea de balanceamento de carga.

A.3.1 Previsao de trafego

O trabalhado apresentado por Chen et al. (CHEN; WEN; GENG, 2016) modela a
relacdo entre o volume de trafego e estatisticas de fluxo usando um modelo de Markov.
Assim, é possivel evitar a metrificacao direta do volume de trafego através de estimativas.
Os resultados experimentais demonstram a viabilidade e eficacia do método proposto.

Poupart et al. (POUPART et al., 2016) descreve como formular um problema
de previsdo de traifego como uma tarefa de aprendizado de mdquina online, para que o
modelo seja adaptado continuamente as mudangas no fluxo de trifego. Com isso, 0s
autores: (i) avaliam a natureza preditiva de um conjunto de recursos e a precisao de trés
técnicas de predi¢do online e (ii) demonstram como usar esses preditores online para
melhorar o roteamento. Os autores consideram sete estatisticas que estdo disponiveis
para cada fluxo: IP de origem, IP de destino, porta de origem, porta de destino, protocolo,
indicagdo de servidor ou cliente e os tamanhos dos trés primeiros pacotes de dados. Os
resultados experimentais mostram que o método de roteamento resultante reduziu o tempo
médio de conclusdo dos fluxos elefantes, enquanto manteve o tempo médio de conclusio

de fluxos ratos.

A.3.2 Balanceamento de carga

O trabalho feito por Vanini et al. (VANINI et al., 2017) introduz o conceito de
flowlet: uma rajada de pacotes separados de outras rajadas por um intervalo no tempo.
Os autores mostram que o uso de flowlets € uma técnica poderosa para balanceamento
de carga com assimetria (falhas de link e heterogeneidade em equipamentos de rede).

O método € uma abordagem mais geral para o balanceamento de carga: redirecionar os

80

fluxos aleatoriamente, permitindo que sua elasticidade equilibre naturalmente o trfego.
Essa técnica ¢ uma melhoria significativa em relacdo ao ECMP.

Pizzutti et al. (PIZZUTTI; SCHAEFFER-FILHO, 2018) apresenta uma aborda-
gem que se baseia na abstracao do flowlet para gerenciar a divisdo e o0 monitoramento dos
fluxos da rede. Os autores adicionam uma func¢do que monitora e atua dinamicamente no
plano de dados para encontrar o intervalo minimo possivel que permite a alternancia de
um fluxo entre as rotas sem causar efeitos adversos. Eles avaliam seu trabalho usando
P4 e destacam que estratégias que identificam classes de fluxo podem ser aplicadas para
liberar caminhos especificos que sofram com gargalos.

Barros et al. (BARROS et al., 2019) propde um mecanismo de gerenciamento,
orquestracao e controle de fluxo no contexto de dispositivo a dispositivo (D2D) para lidar
com o balanceamento de carga, usando a técnica de Deep Q-Learning (DQN). O traba-
lho usa aprendizagem por refor¢o para minimizar a chance de mover a carga para um né
que provavelmente ficard sobrecarregado em um futuro proximo. Os autores usam um
processo gaussiano para prever a carga de um n6é em uma rede D2D e comparar o mé-
todo proposto com uma abordagem de base. Os resultados mostram que a abordagem
proposta promove um equilibrio adequado entre desempenho de balanceamento de carga
e velocidade.

Chen et al. (CHEN; LI; WANG, 2018) considera o problema do tempo de con-
vergéncia do balanceamento de carga. Para isso, os autores propdem um mecanismo de
balanceamento de carga de convergéncia rdpida. A abordagem € baseada em algoritmos
genéticos e, de acordo com os resultados experimentais, a simulagdo convergiu 20,7 %
mais rdpido que os outros mecanismos, conseguindo assim um melhor desempenho de
equilibrio de carga.

Diferimos desses trabalhos em dois fatores: (i) diferentemente das técnicas apre-
sentadas, usamos uma etapa adicional para identificar fluxos de alto impacto (ou seja
fluxos elefantes) e determinar se a possivel sobrecarga desses fluxos compensaré os cus-
tos de uma abordagem com aprendizado por refor¢o; (ii) usamos a técnica de aprendizado

por reforco, que captura o estado instantdneo da rede, para balancear a carga de trabalho.

81

A.4 Look-Ahead Reinforcement Learning for Load Balancing: abordagem de apren-

dizado por reforco para balanceamento de carga de trafego de rede

Apresentamos agora 0 mecanismo proposto para balanceamento de carga de flu-
xos de rede usando aprendizado por refor¢o. Esse mecanismo tenta explorar caminhos

alternativos na topologia da rede para garantir a baixa utilizacdo geral da largura de banda.

A.4.1 Visao geral

Em vez de balancear qualquer fluxo de tradfego, nossa abordagem depende de um
agente de aprendizado por reforco que se concentrard apenas nos fluxos elefantes (HAM-
DAN et al., 2020b), o que tende a impactar a utiliza¢do da largura de banda de forma mais
significativa. Defendemos que adicionar esta etapa extra pode melhorar as decisdes de ro-
teamento. A motivacao principal € evitar o desperdicio de recursos no redirecionamento
de fluxos que ndo representem um risco para o equilibrio do trafego da rede. Em segundo
lugar, nosso objetivo € melhorar os resultados do balanceamento de carga atuando apenas
nos fluxos que podem impactar significativamente a utilizacao da largura de banda.

Em nossa abordagem, coletamos informagdes de utilizac@o da rede para identificar
se um agente de aprendizado por refor¢co deve intervir nas decisdes de roteamento padrao
do controlador. Em casos positivos, as acdes do agente sio traduzidas em agdes de redire-
cionamento de trafego (regras OpenFlow para determinados fluxos). Nossa abordagem ¢é
especialmente adequada para grandes volumes de trafego porque pode suprimir os custos
de laténcia ao considerar os fluxos elefantes. A visdo geral dessa arquitetura estd ilustrada

na Imagem A.1.

A.4.2 Agente de aprendizado por reforco

Modelamos o problema de balanceamento de carga de trafego de rede como um
problema de aprendizagem por reforco que visa manter uma ocupag¢do homogénea dos
enlaces da topologia. Os principais componentes desse modelo sdo os seguintes: estado,
fun¢do de recompensa e conjunto de agdes.

Representamos o estado pelo nimero de bits transferidos por cada porta de switch

na topologia considerada, que € calculado com base nas estatisticas coletadas da rede. O

82

Figura A.1: Visao geral da arquiteura de Look-Ahead Reinforcement Learning para ba-
lanceamento de carga.

Regras para Engenharia de Trafego
Agente de aprendizado por reforco

t

Identificacao de Fluxos Elefantes

t

Monitoracéo da rede

Fonte: a Autora.

estado resultante ¢ um vetor com n valores, correspondendo ao nimero de portas de switch
na topologia da rede. Cada posicdo do vetor corresponde ao nimero de bits transferidos
por segundo pela porta em questdo. O estado resultante € a principal ferramenta usada
pelo agente para identificar se a rede pode ficar sobrecarregada. Com as informagdes
disponiveis sobre a topologia da rede, o agente avaliard o quao custoso um estado pode
ser para esta rede. Ou seja, quao homogéneo € o uso dos enlaces da topologia.

Uma fung¢do de recompensa deve modelar recompensas por meio de feedback con-
tinuo e deixar o agente saber o qudo perto estd de seu objetivo. Portanto, queremos avaliar
cada tupla estado-acdo da rede em termos de uso de recursos. Mais especificamente, con-
siderando que definimos um estado em nosso problema como o uso de portas de switch em
um momento especifico, precisamos avaliar como podemos distribuir melhor o trafego.
Intuitivamente, queremos valores de recompensa mais altos para estados que represen-
tam o uso homogéneo de portas de switch. Nosso agente oferece uma gama de fungdes
de recompensa diferentes para avaliar como o trafego € distribuido: média ponderada
da utilizacdo dos enlaces, média harmodnica da utilizagcdo dos enlaces e desvio padrao da
utilizacdo dos enlaces.

Definimos o estado no tempo t, .S;, como um vetor n-dimensional [z,...,x,],
onde n corresponde ao nimero de portas de switch e onde x;, paral < i < n, corresponde

ao numero de bits sendo transferidos por segundo pela porta do switch de indice 7. Assim,

83

uma maneira de definir a recompensa R;, no momento ¢, ¢ em termos de uma aplicacdo e

funcdo dependente do contexto, f, como segue:

Ry(Sy) = f(S)u (A.1)

onde f é definido por um designer dependendo do critério especifico que deseja otimizar
ao tentar manter um uso mais homogéneo dos links de topologia: buscar homogeneidade
pelo trafego de distribuicdo de acordo com (1) uso ponderado de portas de switch; (2)
média harmonica do uso das portas do switch; ou (3) uso de portas de switch de desvio
padrdo. Finalmente, em A.1, i € definido como a soma dos bits transferidos pela porta de
saida do host de origem e a porta de entrada do host de destino. Intuitivamente, ;2 é uma
penalidade de recompensa aditiva que reflete se existem possiveis loops na rede.

De acordo com a estratégia de recompensa, definimos equacdes especificas para
calcular a que distdncia um agente estd de seu objetivo final (estas serdo comparadas e
avaliadas na sec@o de prototipacao e andlise experimental).

A Equacgdo A.2 corresponde a média ponderada de utiliza¢do das portas dos swit-
ches, onde consideramos a func¢io de recompensa final como a soma de todas as portas

do switch. n

F(S0) = pl) (A2)

i=1
onde p(z;) =2z;sex > l,elsex <= 1.

A Equagdo A.3 corresponde a média harmonica de utilizag@o das portas do switch:

n

A3
%+é+...+é (A-3)

f(St) =

A Equacdo A.4 corresponde ao desvio padrao de utilizagdo das portas do switch.

f(z) =0, (A.4)

n

Por fim, também definimos uma a¢do em nosso modelo como a tupla
< switch_uid,in_port,out_port >. O agente resultante é responsavel por interagir com
o ambiente e escolher a melhor agdo para cumprir seu objetivo. O agente usard um al-
goritmo de aprendizado por refor¢co para analisar o estado da rede e determinar o melhor
movimento. Isto €, a acdo que oferece a maior recompensa: aquela que mantera um uso
mais homogéneo dos enlaces da topologia.

Como o numero de bits em cada porta € ilimitado, existe um nimero possivelmente

infinito (mas contdvel) de estados possiveis no sistema. Por esta razdo, a aplicacdo de

84

Figura A.2: Arquitetura Look-Ahead Reinforcement Learning para balanceamento de

trafego de rede.

Aprendizado por Refor¢co

le

Engenharia de trafego

77777777777 : : ‘Melhor agdo = MaxRecompensa (Ag&o) ! 1
3 Acéo | ‘Estado da' S
Repositorio | =~ : . rede
de Acdes L—— Melhor agéo Regras
J OpenFlow
77777777777777777777777777777777777 .
E-)]] Estado da rede :
—— || snapshot | BO | B1 | B2 | B3 | B4 | B5 |! Bits Regras
Modelagem dos i isticasda. | 0 0o T o o o 0 | 0]! pytrensferidos para
i ~
dados | rede P 1 10100 |0 o0]50] PO SOEEREie fl
B ! 20 1 20 o 0 0 100! pela porta X uxos
i n 150 [15 15[0 | 15!
T T e P

Monitoracao da rede

Gerenciamento de estatisticas E’ Identificacdo de Fluxos Elefantes

recarassao fee---------- | il R |
1 RESTAPIdo | | Dados da rede ! UiLimiar de: | Limiarde || ' esrioe termmnraic ‘0
! i : ‘| 1. Séries temporais |
i __Controlador || b e ™ Gir;';z,':t?:;:e i ‘tamanho | | duragdo | i LT ‘p ,,,,,,,,, ;
,,,,,,,,,,,,,,,,,,,,,,,,,, e R S R R |
| Controlador | | cas | : N_¥ Do i
,,,,,,,,,,,,, | _selecionadas _| 1 ‘ Detecdo ‘; 1 Previsdo ‘ !
e e |

S1

a

S

Fonte: a Autora.

versOes tabulares de algoritmos de aprendizagem por refor¢co padrdao, como Q-Learning
tabular (SUTTON, 2018), € invidvel, uma vez que ndo podemos armazenar uma tabela
definida com um nimero infinito de estados. Portanto, contamos com um agente de Q-
Learning profundo (Deep Q-Learning) (YU et al., 2018), que usa uma rede neural para
aproximar o valor () para o conjunto de acdes possiveis com base no estado atual. O es-
tado atual € o valor de entrada para esta rede neural. A saida é o Q-Valor para o conjunto
de acdes possiveis para que o agente escolha a mais adequada. Para a implementagdo
do agente de aprendizagem por reforco, desenvolvemos um ambiente de OpenAl '. O
algoritmo Deep Q-Learning de Stable Baselines > com 2 camadas ocultas mostra 6timos
resultados para aplicacdes semelhantes na literatura (MNIH et al., 2013), e por isso opta-

mos pela implementagdo deste algoritmo neste trabalho.

1https://gyrn.openai.com
2https ://stable-baselines.readthedocs.io/en/master/modules/dqn.html

85

A.5 Prototipacao e analise experimental

Nesta secdo, descrevemos o protétipo implementado e apresentamos uma avali-
acdo inicial. Em particular, avaliamos a capacidade da abordagem de aprendizado de
reforco para balancear a carga do trafego de rede, analisamos a escalabilidade do prot6-
tipo e avaliamos se a identificacao de fluxos elefantes produz um melhor uso da rede para

balancear a carga de trabalho.

A.5.1 Prototipacao

Considerando a proposta do nosso trabalho, destacamos 0s seguintes como princi-
pais objetivos do protétipo: (i) validar o modelo proposto para aprendizagem por reforco,
(i1) avaliar se o modelo é capaz de balancear a carga de trifego na rede e qual funcao
de recompensa apresenta melhores resultados, (iii) avaliar se a etapa adicional de identi-
ficar fluxos elefantes (look-ahead) poderia gerar um agente mais inteligente e, portanto,
melhorar o uso de recursos de rede para balancear a carga de trabalho, e (iv) analisar a
escalabilidade dos agentes.

Para a prototipagem, usamos o Mininet VM para emular a topologia SDN, o con-
trolador Floodlight na versdao 1.2 e um aplicativo docker com Python 3.7 para executar a
aplicacao de coleta de estatisticas, identificacdo de fluxo elefante e agente de aprendizado
por reforco. Os principais componentes do prototipio sdo os seguintes: Statistics Manager
(gerenciador de estatisticas), Elephant Flow Identification (identificacao de fluxos elefan-
tes), Reinforcement Learning Agent (agente de aprendizado por reforco), e Flow Action
Translator (tradutor de a¢des para fluxos).

Executamos todos os experimentos em um MacBook Pro Mid 2014, processa-
dor 2,6 GHz Dual-Core Intel Core 15, com 8 GB de memoéria DDR3 de 1600 MHz. Para
reproduzir os experimentos apresentados neste capitulo, seriam necessdrios 0s componen-
tes listados abaixo. Todos os projetos mencionados sdo de cédigo aberto, e mais detalhes

podem ser encontrados no arquivo README . md do repositério no GitHub.

86

Tabela A.1: Conjunto de diferentes parametros e seus valores correspondentes.

Parametro Valor
max_sim_flows 16 flow matches
install _wait_time 7 segundos
ef_threshold_duration 10 segundos
ef threshold_size 100 MBytes
idle_timeout 60 segundos
hard_timeout 10 segundos
EFI 100

A.5.2 Analise experimental

Para a andlise experimental, utilizamos 2 topologias diferentes. A Figura A.3
apresenta a topologia de base usada no protétipo. Essa foi a configuracdo escolhida por-
que possui um nimero menor de rotas possiveis, gerando menores conjuntos de estado
e acdo. Esta topologia foi criada para facilitar a listagem de todos os caminhos possi-
veis entre os dois hosts e considerar a possibilidade de inserir regras que possam gerar um
loop. Observe que 50 Mbps € a largura de banda mais alta, localizada nas extremidades da
topologia, para induzir um efeito de gargalo. Também consideramos uma segunda topolo-
gia em nosso prototipo, para avaliar o impacto da adicdo de switches extras na topologia.

Chamamos essa segunda topologia de S2, ilustrada na Figura A 4.

Figura A.3: Topologia S1 usada como base para os experimentos. H1 € o host de origem
e H2 € o host de destino.

S5
Uﬂﬂzﬂl
d h
S1 S2 4 .
HT) 2 e P o e HZ
S 1 T - =
(% e
2 g
ey 3
s4

Fonte: a Autora.

A Tabela A.5.2 apresenta os parametros € os valores de cada um deles utilizados
nos experimentos. O nimero de fluxos simultaneos que o agente conhece
(max_sim_flows) foi definido como 16 devido a restricao de tempo. Considerando a
largura de banda do enlace nas topologias de rede, precisdvamos ter uma quantidade sig-

nificativa de fluxos ratos e elefantes que terminariam em um periodo de tempo razoavel.

87

Figura A.4: Topologia S2 usada para analisar o impacto de switches adicionais no resul-
tado dos experimentos. H1 € o host de origem e H2 € o host de destino.

S7 S5
=F L
1 2, 12
8114 5 183
H1 Vam— — — H2
- 12 luuuu4 pJCEEEI gy -
5| 3 282 3 s
2
—73
EEEE]
-S4

Fonte: a Autora.

Nosso tempo foi limitado porque entendemos a necessidade de reproduzir cada conjunto
de experimentos vdrias vezes para observar a variacao dos resultados. Além disso, como
o Floodlight sé fornece estatisticas para fluxos instalados anteriormente, nosso prototipo
teve que instalar inicialmente o conjunto de fluxos que seriam usados em nossos experi-
mentos. Mais especificamente, instalamos uma regra inicial para cada fluxo que o contro-
lador analisaria, essa regra enviava os pacotes dos fluxos pela rota padrdo do controlador.
Isso significa que para um fluxo roteado por um caminho de n switches, terifamos que
instalar n regras. O nimero total de regras iniciais a serem instaladas na inicializa¢do do
agente seria n*m, onde m seria o nimero de fluxos. Como as topologias que usamos para
esses experimentos tinham 5 e 10 switches (n = 5 e n = 10), para minimizar o tempo
de configuracdo inicial e ainda avaliar o modelo com fluxos elefantes, consideramos 16
fluxos simultaneos um valor adequado.

Conforme explicado anteriormente, o Floodlight executa uma thread para coletar
estatisticas periodicamente. Definimos esse tempo para ser a cada 5 segundos porque
queriamos obter os valores mais atualizados possiveis - para ter um estado preciso. Tes-
tamos este valor como 1 e 2 segundos, mas ndo obtivemos resultados satisfatorios: os
contadores estavam imprecisos. Ao definir esse tempo para 5 segundos, conseguimos ob-
ter resultados precisos para nossos experimentos. Como precisdvamos de algum tempo
entre a instalacdo de uma regra, o roteamento de pacotes por meio desta regra e ainda
observar o impacto nas estatisticas da rede, adicionamos 2 segundos extras, resultando

emum install_wait_time total de 7 segundos.

88

Para o limite de duracdo do fluxo elefante (ef_threshold_duration), usa-
mos o mesmo valor usado em SDEFIX e IDEAFIX (KNOB et al., 2016) e IDEAFIX
(SILVA et al., 2018). Como consideramos uma duracao de 10 segundos e as topologias
usadas para os experimentos tinham a maioria (gargalos) de links com capacidade de 10
Mbps, consideramos (ef_threshold_size) como 100 MBytes. Consideramos esse
valor apropriado como tamanho limite porque também precisdvamos que os fluxos fossem
(i) grandes o suficiente para observar o impacto das escolhas do agente e (ii) pequenos o
suficiente considerando a restri¢do de tempo que tinhamos para executar os experimentos.
Mais especificamente, em relagdo ao tempo necessario para completar os experimentos,
tivemos dois fatores principais: install_wait_time e o numero de passos de tempo
necessarios para o agente completar sua tarefa. Considerando install_wait_time
como 7 segundos, no pior cendrio, precisariamos de 7 x num_timesteps para comple-
tar um experimento. No entanto, o nimero de passos de tempo necessarios depende do
ndmero de fluxos e do tamanho desses fluxos - quanto mais altos os valores, maior o nud-
mero de passos de tempo. Experimentos preliminares mostraram que precisdvamos de
uma média de 700 passos de tempo para completar todos os cinco fluxos (10 MBytes,
50 MBytes, 100 MBytes, 200 MBytes e 500 MBytes) para uma configuracdo de expe-
rimento usando um agente de aprendizagem por reforco. Isso implica que precisamos
de 7 % 700 = 4900 segundos para concluir um experimento - para o pior caso. Consi-
derando pelo menos cinco repeticdes para este experimento (para analisar os valores de
média e desvio padrdo), precisdvamos de 4.900 * 5 = 24.500 segundos para completar
um experimento com suas replicagdes. Além disso, considerando que executamos esses
experimentos para 22 cendrios (para avaliacdo funcional: 3 agentes para avaliacio funci-
onal + 1 linha de base e para avaliacdo EFI: 2 agentes *3 cargas de trabalho *3 intervalos
= 18 cendrios), nosso pior cendrio envolveu a necessidade de 24.500 x 18 = 441.000
segundos = 122, 5 horas. Isso assumindo que nenhum dos cendrios do experimento teria
que ser executado novamente devido a alguma inconsisténcia ou erro. Resumindo, con-
siderando todos esses fatores, um fluxo é considerado um fluxo elefante baseado em uma
ef_threshold_size de 100 MBytes.

O parametro idle_timeout € usado para instalar uma regra em um switch.
Este valor indica quanto tempo uma regra deve permanecer ativa depois de ndo estar
mais sendo usada. O valor padrdo para este parimetro é 0 °, mas definimos esse valor

para 60 segundos para todos regras instaladas. Usamos esse valor porque queremos ter

3 https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343518/Static+Entry+Pusher+API

89

certeza de que o agente estd aprendendo as melhores regras para nosso objetivo. Como
ndo € vidvel incrementar a prioridade de cada nova regra, usamos o tempo limite como
alternativa. Suponha que o agente entenda essa regra como uma acao que colaborard para
o0 uso de recursos mais homogéneo. Nesse caso, o agente continuard escolhendo esta agao
e renovando seu tempo ativo. Caso contrario, a regra seria removida porque ndo estd mais
sendo usada.

O pardmetro hard_timeout também € usado para instalar uma regra em um
switch. Porém, este valor indica por quanto tempo essa regra ¢ valida, independente de
ser usada ou ndo. O valor padrao para este parametro também € 0, mas nds o definimos
para 10 segundos para uma regra: a regra do controlador. A regra do controlador s6
deve ser escolhida pelo agente em casos extremos: controle de loop. Isso significa que
se 0 agente ndo conseguiu aprender um bom caminho para um determinado fluxo e, em
vez disso, instalou regras que geram um loop na rede, a regra do controlador pode ser
utilizada para se recuperar deste estado de loop, conforme explicado anteriormente. Como
entendemos que essa regra s6 deve ser usada em casos extremos (devido a sobrecarga de
envio de pacotes para o controlador), definimos um tempo limite rigido de 10 segundos,
0 que seria tempo suficiente para um fluxo se recuperar de um estado de loop. Também
testamos essa regra com 5 e 20 segundos, mas com 10 segundos, obtivemos os melhores
resultados.

Por fim, o parametro EF I € utilizado para penalizar o agente na hora de escolher
acoOes para os fluxos ratos, conforme explicado anteriormente. O valor usado em nossos

experimentos foi £ F'I = 100 por causa da gama de valores de recompensa possivelis.

A.5.2.1 Avaliagdo funcional

Este primeiro conjunto de experimentos visa avaliar se um agente pode equilibrar
efetivamente a carga de trabalho, considerando as diferentes fun¢des de recompensa dis-
cutidas anteriormente. Comparamos o desempenho dessas variagdes com uma abordagem
base, que € o uso do controlador do Floodlight sem usar nenhum método de balancea-
mento de carga.

Para comparar essas alternativas, consideramos o tempo total de conclusdo do
fluxo (em inglés, Flow Completion Time, ou FCT) como a métrica que queremos mi-
nimizar. Intuitivamente, ao elaborar essas funcdes de recompensa, queremos que mais
switches sejam usados para transportar todo o trafego enviado pela origem ao destino.

Dividir o trafego entre caminhos diferentes usaria mais recursos por menos tempo, resul-

90

Tabela A.2: Configuracdo dos experimentos para a andlise funcional. Baseline corres-
ponde ao uso do controlador Floodlight sem intervenc¢des de aprendizado de maquina.

Agente Funcio de recompensa Nuamero de FE | Topologia
WeightedUsage Média ponderada da utilizacdo dos enlaces 5 S1
UsageHarmonicMean | Média harmonica da utilizacdo dos enlaces 5 S1
UsageStandardDeviation | Desvio padrao da utilizagdo dos enlaces 5 S1
Baseline - 5 S1

tando em menor tempo de conclusdo do fluxo total. Executamos cada configuracdo de
experimento cinco vezes para analisar os valores de média e desvio padrdo. Calculamos
o tempo total de conclusdao do fluxo como a soma de todos os tempos de conclusao dos
fluxos. Usamos essa métrica para avaliar (i) se o agente pode equilibrar a carga de traba-
lho, (i1) se hd uma estratégia de recompensa que pode equilibrar essa carga de trabalho
melhor em comparacao com uma rota padrao fornecida pelo controlador Floodlight e (iii)
escalabilidade em termos de o nimero de fluxos. Por outro lado, a utilizacdo de memoria
¢ a métrica que usamos para avaliar os custos computacionais de cada agente. Ilustramos
a configuragdo desses experimentos na Tabela A.2.

Em nosso trabalho, consideramos uma estratégia de balanceamento de carga eficaz
se essa estratégia puder usar recursos de rede por menos tempo - ou seja, se 0 tempo
total de conclusdao do fluxo for menor do que uma abordagem que ndo estava usando
uma abordagem de balanceamento de carga. No contexto de nossos experimentos, 0O
controlador Floodlight ndo estava usando nenhum método de balanceamento de carga e
todos os fluxos estavam usando a mesma rota padrio. Intuitivamente, isso resultaria em
um tempo de conclusdo de fluxo total mais alto porque todos os fluxos estavam disputando
os mesmos recursos. Dividir o trdfego entre caminhos diferentes usaria mais recursos por
menos tempo, o que resultaria em um tempo de conclusdo de fluxo total mais curto.

Considerando os resultados apresentados na Figura A.5, consideramos o agente
UsageHarmonicMean como o melhor agente para resolver o problema proposto neste
trabalho. Esse agente escolheu o melhor conjunto de caminhos que gerou as rotas mais
rapidas e, consequentemente, o menor tempo médio de conclusdo do fluxo total para
fluxos maiores que 100 MBytes. Acreditamos que isso pode estar associado ao fato de
que a diferenca de recompensas entre um estado bom e um estado ruim é menor ao usar
o UsageHarmonicMean do que ao usar as outras fun¢des de recompensa.

Por fim, também analisamos o uso de memoria para avaliar a escalabilidade do
agente, considerando as duas topologias discutidas. Conforme mostrado na Figura A.6,

o uso de memoria conforme aumentamos o nimero de fluxos é muito baixo. Usamos

91

Figura A.5: Média do tempo total de completude dos fluxos em segundos (average to-
tal flow completion time), em fun¢do do tamanho dos fluxos em MBytes (flow size). Os
resultados sdo mostrados para os agentes WeightedUsage, UsageHarmonicMean, Usa-
geStandardDeviation e para o controlador Floodlight. As barras de erro representam o
desvio padrao de cada conjunto de replicacdo dos experimentos.

4 flows 8 flows 16 flows
28000
27000
70004
26000 -
25000 -
20004 24000
60004 23000
22000
21000
— 20000
(s}
2 5000 1 19000 4
© 18000 4
£
= 170004
c
S 16000 4
k) 4000+ 15000 -
[=%
£ 14000
o
o 13000 1
E 10001 12000 4
5 30007 11000
2 10000 4
S 90001
<
g 20004 goco
< 70004
6000 4
5000 1
1000 40007
30004
2000+
1000 A
oA Hitne, 0- L oA e,

10 50 100 200 500 10 50 100 200 500 10 50 100 200 500
Flow size (MBytes)

Reward function . WeightedUsage . UsageHarmonicMean. UsageStandardDeviation. Baseline

Fonte: a Autora.

mais memoria para agentes que precisam de mais etapas para concluir o fluxo devido
ao aprendizado continuo. Temos alguns outliers (especialmente para quatro fluxos de
50 MB), mostrando um maior uso de memdria por causa disso - foram necessadrios mais
passos de tempo para completar todos os fluxos ativos.

Considerando que o agente UsageHarmonicMean reduziu o FCT e € escaldvel em
relagdo ao ndmero de switches, usamos este agente como base para a andlise de inteligén-

cia de fluxo elefante (fator EFI), discutida a seguir.

A.5.2.2 Avaliagao do fator EFI

A andlise anterior mostrou que o agente com funcdo de recompensa que usa média
harmonica conseguiu atingir FCT reduzida sem um impacto significativo no uso de me-

moria. Assim, usamos este agente (que chamamos de UsageHarmonicMean-EFI) como

92

Figura A.6: Resultados de utilizacdo média de memoéria em KBytes (average memory
usage), em funcdo do tamanho dos fluxos em MBytes (flow size) utilizando agentes com
diferentes fun¢des de recompensa.

4 flows 8 flows 16 flows

w

N

Average memory usage (KBytes)

Reward function

WeightedUsage

[N

WeightedUsage S2
UsageHarmonicMean
UsageHarmonicMean S2

UsageStandardDeviation

10 50 100 200 500 10 50 100 200 500 10 50 100 200 500
Flow size (MBytes)

Fonte: a Autora.

Tabela A.3: Distribui¢do da carga de trabalho, onde #FR € o ntimero de fluxos ratos e #FE
¢ o niimero de fluxos elefantes.

Carga de trabalho | #FR | #FE Tamanho dos fluxos
25/75 2 6 | 50M, 80M, 100M, 200M, 300M, 400M, 800M, 1024M
50/50 4 4 50M, 60M, 80M, 90M, 100M, 400M, 800M, 1024M
7525 6 2 50M, 60M, 70M, 80M, 90M, 95M, 100M, 1024M

base para os experimentos desta secdo, avaliando o fator EFI. Para esta andlise, realizamos
os experimentos analisando duas varidveis: carga de trabalho e intervalo entre conexdes
(PIZZUTTI; SCHAEFFER-FILHO, 2018). Usamos trés cargas de trabalho diferentes:
25775, 50/50 e 75/25 como propor¢ao de fluxos ratos e elefantes; trés intervalos diferen-
tes entre as conexdes: 5, 10 e 15 segundos. Os valores de carga de trabalho mostrados na
Tabela A.3 indicam 25/75 como 25 % dos fluxos na rede como fluxos ratos e 75 % como
fluxos elefantes. Da mesma forma, 50/50 corresponde a 50 % fluxos ratos e 50 % fluxos
elefantes, e 75/25 a 75 % fluxos ratos e 25 % fluxos elefantes.

Executamos os experimentos com todas as combinagdes possiveis, considerando a

topologia S1. Como ndo tivemos tempo suficiente, nao pudemos executar os experimentos

93

para a topologia S2 - em média, um experimento de 700 passos de tempo é executado em
2 horas. O ndmero de passos de tempo usados para cada configuracdo de experimento €
baseado em vérias execugdes, onde observamos qual seria o nimero adequado. Observe
que esse numero pode variar de acordo com a carga de trabalho e o intervalo entre as
conexdes: quanto maior o nimero de fluxos elefantes, maior € o niimero de passos de
tempo necessdrios para completar todos os fluxos. Da mesma forma, quanto maior o
intervalo entre as conexdes, maior o nimero de etapas de tempo. A tabela A.3 mostra
como distribuimos a carga de trabalho.

Os resultados mostrados na Figura A.7 demonstram que o fator de identificagao de
fluxo elefante (EFI) tem uma influéncia significativa na redu¢do do tempo de conclusdo
do fluxo total. O agente UsageHarmonicMean-EFI rendeu a FCT mais baixa em todos os
cendrios em comparacdo com o agente média harmonica base. Entendemos esses resul-
tados como prova de que ao usar abordagens RL, o agente deve se concentrar nos fluxos
elefantes, pois eles representam o principal risco ao equilibrar a carga de trabalho entre
os recursos da rede. O agente RL se concentrard em equilibrar esses fluxos e ignorar os
fluxos menos relevantes em nossa abordagem.

Em todos os cendrios, o impacto do uso de EFI € significativo: no pior caso, pode-
mos reduzir o FCT em 52 % (25 % de carga de trabalho com um intervalo de 15 segundos
entre as conexdes). Isso indica que mesmo considerando a menor quantidade de fluxos
elefantes e o intervalo de tempo mais extenso entre as conexdes, poderiamos reduzir a
FCT ao usar o EFI. Nosso cendrio mais favordvel ao uso do fator EFI foi considerar uma
carga de trabalho de 50/50 e um intervalo de 10 segundos entre as conexdes, o que poderia
reduzir a FCT em 91 %. Ainda assim, o cendrio em que intuitivamente seria necessario
mais tempo (75 % da carga de trabalho EF e intervalo de 15 segundos entre as conexdes)

produziu excelentes resultados: uma reducio de 87 % no FCT.

A.6 Consideracoes finais e trabalhos futuros

Defendemos que o uso de técnicas de aprendizado por refor¢o para redirecionar
os fluxos ratos pode ser ineficiente porque sdo fluxos de baixo impacto em termos de uso
da rede e a sobrecarga para gerencid-los ndo compensaria. Assim, propusemos uma abor-
dagem em duas etapas com base no aprendizado por refor¢o e na previsao do trafego da
rede para equilibrar os fluxos da rede e garantir o uso eficiente dos recursos da rede. A

primeira etapa € a previsao do trafego da rede e € usada para determinar quais fluxos t€m

94

Figura A.7: Resultados de tempo total para conclusdo dos fluxos (FCT) usando os agentes
UsageHarmonicMean e UsageHarmonicMean-EFI.

75% Elephant Flows

11722
10859 10051
10000 -
5000 -
1551 1292 1337
L L L L LT L L TR P PP PR [}
-~ O i
(&)
\qr{)‘/ 50% Elephant Flows
g
i 10827
£ 10000 - 9743
2 7839
Q
S
€ 5000-
S 1665
= 96 ... P 868
<] ° °
= 0+
% 25% Elephant Flows
'_
10000 -
4
5000 8§99 3528 4442
2128
530 731 s °
@- - -mmmmmesmmmsmssem—a———— &o--"""
O L T T T
5 10 15
Interval between connections (sec)
Reward function UsageHarmonicMean ® UsageHarmonicMean + EFI

Fonte: a Autora.

0 maior impacto nos recursos da rede e podem causar desequilibrio na rede. A segunda
etapa € composta por um agente de aprendizagem por refor¢o e € utilizada para restabe-
lecer esse equilibrio, com foco em fazer o melhor uso dos recursos dado o estado atual da
rede.

Nossas principais contribui¢des sao (i) modelagem do problema em func¢ao de es-
tados e acdes em um sistema que visa balancear o trafego da rede e (ii) uma arquitetura
que usa de forma mais criteriosa a aprendizagem por refor¢o nos fluxos de interesse para
o balanceamento de carga. Defendemos que essa abordagem de aprendizado de maquina
em duas etapas, que chamamos de aprendizado por refor¢o antecipado (Look-Ahead Rein-
forcement Learning), pode reduzir erros humanos relacionados ao gerenciamento da rede,
evitando interacdes desnecessdrias.

Avaliamos nossa pesquisa usando dois grupos de andlise: andlise funcional e ané-
lise de inteligéncia de fluxo elefante. Para a primeira andlise, consideramos o mesmo

modelo com trés fungdes de recompensa diferentes: média ponderada da utilizacdo dos

95

enlaces da rede, média harmonica da utilizacdo dos enlaces da rede e desvio padrdao da
utilizacdo dos enlaces da rede. Em seguida, avaliamos se o modelo proposto poderia
equilibrar a carga de trabalho entre a rede e, em caso afirmativo, qual das fun¢des de re-
compensa daria melhores resultados. A segunda andlise consistiu em avaliar o impacto
da adi¢do de um uma inteligéncia de fluxos elefante (Elephant Flow Intelligence ou EFI)
a fungdo de recompensa deste modelo. Essa modificagdo permitiria ao agente receber re-
compensas maiores ao escolher uma regra para um fluxo elefante e recompensas menores
ao escolher uma regra para fluxos rato.

Os resultados experimentais mostram que em todos os cendrios, o impacto do uso
de EFI € significativo. Nosso pior resultado reduziu o tempo de conclusdo de fluxo (FCT)
em 52 %, considerando uma carga de trabalho de 75/25 (75 % de fluxos ratos e 75 %
de propor¢ao de fluxos elefantes, com um intervalo de 15 segundos entre as conexdes).
Como nosso melhor resultado, o EFI reduziu a FCT em 91 %, considerando uma carga
de trabalho de 50/50 (50 % de fluxos ratos e 50 % de fluxos elefantes, com um intervalo
de 10 segundos entre as conexoes).

A solucao proposta visa a simplicidade em termos de implementacdo. No entanto,
algumas condig¢des sdo limitantes para o bom funcionamento de redes reais. Este € o caso
de trés fatores em nossa implementagdo: (1) protétipo baseado em uma topologia estatica,
(2) fluxos ratos ainda podem estar usando uma agao escolhida pelo agente e (3) o niimero
limitado de fluxos ativos considerados na topologia.

Em relacdo ao protdtipo baseado em topologia estatica, uma possivel otimizagdo
seria alterar o estado apenas para considerar os hosts envolvidos. Nesse caso, ainda usa-
riamos 0 modelo proposto (estado representado pela ocupacdo dos enlaces) e usariamos
o controlador para obter informagdes sobre a topologia. Nosso protétipo ja usa 0 médulo
de descoberta de topologia do Floodlight para descobrir a topologia de rede e seus cami-
nhos possiveis. O desafio seria usar uma estrutura dindmica da ferramenta OpenAl para
representar os enlaces e possiveis acoes.

Em relacdo a ainda ser capaz de redirecionar os fluxos ratos, exigiria uma mu-
danca no protétipo. Para aplicar uma agdo especifica para um fluxo especifico, o fluxo
que precisa ser roteado deve fazer parte do estado do ambiente. Em outras palavras, se o
agente apenas olha o estado para escolher a melhor a¢do, isso significa que o estado deve
ser o fluxo que precisa ser redirecionado. Portanto, o estado representaria os fluxos ele-
fantes ativos na rede em um determinado momento. Se ndo houver fluxos elefantes ativos

na rede, o Como a limitacio de olhar apenas para um nimero predefinido de fluxos ativos

96

estd relacionada ao nosso protétipo, acreditamos que, se considerarmos uma ferramenta
de aprendizado de maquina que nos permite considerar um estado dindmico, isso nao se-
ria mais um problema. Com esse recurso, todo fluxo elefante pode ser um candidato a ser
redirecionado pelo agente.

Finalmente, nossos resultados experimentais demonstram que nossa hipétese de
considerar apenas os fluxos elefantes em uma abordagem de aprendizado por reforco para
balanceamento de carga de trafego de rede € vélida (usando EFI). Assim, acreditamos que
uma boa oportunidade de pesquisa seria utilizar o modelo proposto em nosso trabalho para
ambientes de rede onde o trafego € previsivel, como data centers. Acreditamos que nossa
abordagem pode melhorar significativamente o uso de recursos de rede e o desempenho
do agente de aprendizagem de reforco neste cendrio.

Oportunidades de pesquisa adicionais envolvem alterar o estado do modelo para
(1) nimero de fluxos que passam por um switch e (i) considerar apenas os fluxos ativos
no estado. Para o primeiro, um possivel estado a ser estudado seria considerar quantos
fluxos estdao ativos em cada switch - entdo poderiamos maximizar o nimero de fluxos
que passam por cada switch, ao invés de maximizar o nimero de links usados. Para o
segundo, o estado seria representado como o conjunto de fluxos elefantes ativos, suas
rotas e estatisticas correspondentes. Com isso, mudariamos o modelo para olhar apenas

os fluxos elefantes, desconsiderando fluxos ratos.

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives and contributions
	1.4 Document organization

	2 Background
	2.1 Traffic prediction
	2.1.1 Time Series Forecast Problems
	2.1.2 Non-Time Series Forecast Problems

	2.2 Load balancing
	2.3 Reinforcement Learning
	2.3.1 Q-Learning
	2.3.2 Deep Q-Learning (DQL)
	2.3.3 On-Policy and Off-Policy Learning

	3 Related work
	3.1 Machine learning for traffic prediction
	3.1.1 Traffic prediction modeled as a Time Series Forecast problem
	3.1.2 Traffic prediction modeled as a non-Time Series Forecast problem

	3.2 Traffic engineering
	3.2.1 Traffic routing for load balancing
	3.2.2 Machine learning for traffic routing

	3.3 Discussion

	4 Look-Ahead Reinforcement Learning for Load Balancing
	4.1 Approach Overview
	4.2 Reinforcement Learning Agent Modelling
	4.2.1 State
	4.2.2 Reward function
	4.2.3 Actions
	4.2.4 Deep Q-Learning Agent

	4.3 Look-Ahead Reinforcement Learning Architecture
	4.3.1 Statistics Manager
	4.3.2 Elephant Flow Identification
	4.3.3 Reinforcement Learning Agent
	4.3.4 Traffic Engineering Rules

	4.4 Summary

	5 Prototyping and Evaluation
	5.1 Prototyping
	5.1.1 Statistics Manager
	5.1.2 Elephant flow identification
	5.1.3 Reinforcement Learning Agent
	5.1.3.1 Step function
	5.1.3.2 Observation space
	5.1.3.3 Action space
	5.1.3.4 Reward function

	5.1.4 Flow Action Translator

	5.2 Experiments configuration
	5.2.1 Network topologies
	5.2.2 Environment setup
	5.2.3 Experiments setup

	5.3 Functional analysis
	5.4 Elephant Flow Intelligence (EFI) analysis

	6 Final considerations and future work
	6.1 Final considerations
	6.2 Limitations and Future work

	References
	Appendix A — Resumo Expandido em Português
	A.1 Introdução
	A.2 Background
	A.2.1 Predição de tráfego
	A.2.2 Balanceamento de carga
	A.2.3 Aprendizado por reforço

	A.3 Trabalhos relacionados
	A.3.1 Previsão de tráfego
	A.3.2 Balanceamento de carga

	A.4 Look-Ahead Reinforcement Learning for Load Balancing: abordagem de aprendizado por reforço para balanceamento de carga de tráfego de rede
	A.4.1 Visão geral
	A.4.2 Agente de aprendizado por reforço

	A.5 Prototipação e análise experimental
	A.5.1 Prototipação
	A.5.2 Análise experimental
	A.5.2.1 Avaliação funcional
	A.5.2.2 Avaliação do fator EFI

	A.6 Considerações finais e trabalhos futuros

