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Abstract: New ecosystems are being actively mined for new bioactive compounds. Because of
the large amount of unexplored biodiversity, bacteria from marine environments are especially
promising. Further, host-associated microbes are of special interest because of their low toxicity and
compatibility with host health. Here, we identified and characterized biosynthetic gene clusters
encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of
wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters
in the genomes of 22 Enterococcus strains of marine origin were predicted using antiSMASH5 and
Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound
precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were
identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative
nonribosomal peptides (NRPs). Two of the species studied, Enterococcus avium and Enterococcus
mundtti, are rare causes of human disease and were found to lack any known pathogenic determinants
but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics.
Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich
source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic
application.

Keywords: enterococci; genome-wide analysis; bacteriocins; probiotics; wild marine species

1. Introduction

Drug-resistant bacteria kill an estimated 700,000 people worldwide each year, and
the discovery of new antimicrobial drugs is urgently needed [1–3]. This is motivating
the search for new ecologies for novel natural products of potential therapeutic value.
Human-proximal terrestrial life has been screened for diverse natural products to a much
greater extent than larger but less accessible marine ecosystems. Blue biotechnology (or
marine biotechnology) is an emerging field that investigates the rich diversity of bioac-
tive molecules produced by marine organisms with potential industrial and therapeutic
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applications [4–9]. Early successes include compounds derived from a gastropod (e.g.,
ziconotide, commercial name Prialt [10]), sponge (e.g., eribulin mesylate, commercial
name Halaven [11]), cyanobacteria (e.g., dolastatin 10 [12], apratoxin A [13], and bar-
bamide [14]), fungi (e.g., penicillipyrone A and B [15], and aszonapyrone A [16]), algae
(e.g., neolaurene [17] and diphlorethohydroxycarmalol (DPHC) [18]), and bacteria (e.g.,
salinosporamide A [19], abyssomicin C [20], forazoline A [21], and farnesylquinone [22].

Recently, host-associated microbes also have drawn attention as a potential source for low
toxicity agents compatible with host health but active against pathogenic microbes [23,24]. It
was, therefore, of interest to us to explore marine animals from remote habitats for host-
associated microbes that encode novel natural product biosynthetic pathways. Further,
we focused on host-associated enterococci, a genus of gut microbes associated with all
classes of land animals studied [25], and with animals that have returned to the marine
environment [26]. Although most enterococci exist as harmless commensals, some lineages
of the species Enterococcus faecalis and Enterococcus faecium have emerged as leading causes
of multidrug-resistant hospital infection [25,27–30].

Enterococci are known to produce bacteriocins with narrow to broad antimicrobial
activity [31–33]. Bacteriocins have found use as natural antimicrobial agents so far, mainly
in the food industry but could complement traditional antibiotics in controlling important
human and animal pathogens [34,35]. Different classification schemes have been proposed
for bacteriocins produced by Lactic Acid Bacteria (LAB), although still a subject of de-
bate [33,36,37]. Class I bacteriocins are posttranslationally modified peptides with less
than 10 kDa that require enzymatic modification during biosynthesis, and thereby, the
molecules have uncommon amino acids and structures that impact their properties [36].
Class II bacteriocins are also less than 10 kDa, although they are heat stable and unmodified
peptides [36] with the exception of disulfide bridging, circularization, and methionine
formylation [33]. This class has been subclassified: IIa—pediocin-like bacteriocins; IIb—
two-peptide bacteriocins; circular bacteriocins; leaderless; and other bacteriocins that do
not fall into any of the recognized subclasses [33]. On the other hand, Class III bacteriocins
are large-molecular-weight (more than 10 kDa) and heat-labile antimicrobial proteins usu-
ally composed of different domains [36]. Divergently, some authors have been classified
circular bacteriocins as class IV [38] or as Class Ib [36] since these head-to-tail cyclized
peptides whose N- and C-termini are linked by a peptide bond, thereby rendering a circular
molecule [36].

The bacteriocins synthetized by enterococci, enterocins, are generally small molecular
weight (20–60 amino acids), often post-translationally modified peptides with cationic,
hydrophobic, and heat-stable properties [32,33,36]. They vary in their mode of action,
activity spectrum (restricted or broad), molecular mass, biochemical properties, and genetic
origin [33,39,40]. Most known enterocins are produced by E. faecium and E. faecalis, but a few
peptides have also been isolated from Enterococcus mundtii, Enterococcus avium, Enterococcus
durans, Enterococcus hirae, and Enterococcus lactis [33,38]. Most characterized enterocins
derive from enterococci associated with food, waste, feces, and gastrointestinal tract of
humans and other animals [32,33,41]. Few have been described from enterococci from wild
ecologies [8,26,42–44].

Traditionally, new bioactive compounds have been identified by screening microor-
ganism extracts for biological activity or by amplification of new genes using polymerase
chain reaction (PCR) [45–48]. These screening strategies are limited by time-consuming
and laborious test methods [24,49]. Advances in molecular biology, bioinformatics, and ge-
nomics have been providing important new tools for exploration and development [50–52].
Genome screening has identified a large pool of potential compounds encoded by biosyn-
thetic gene clusters (BGCs) in DNA databases [1,53–56]. The identification of new BGCs
may be performed by applying algorithms based on indicators (e.g., evolutionary hall-
marks, signature protein domains, and distant paralogs of primary metabolic enzymes) and
using bioinformatic tools, such as antiSMASH5 [57] and BAGEL4 [58]. High throughput
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computational technologies are being used for screening, presumptive chemical elucidation,
and understanding of activities and biological aspects of new compounds [7,24].

Therefore, genome mining may represent a fertile strategy for identifying new biomolecules
for future therapeutic and industrial applications. In this sense, the aim of the present
study was to examine 22 genomes of Enterococcus species isolated from fecal samples of 17
wild marine animals from remote ecologies for potential antimicrobial compounds and/or
probiotics strains.

2. Results
2.1. Diversity of Wild Marine Animals Associated-Enterococci

The genomes of 22 Enterococcus spp. isolated from wild sea turtles, seabirds, and
marine mammals were sequenced (Table 1). A summary of the sequencing statistics
is presented in Supplementary Table S1. The genomes sizes were between 2.6–4.5 Mb,
with GC contents ranging from 36.3% to 42.4%. All genomes share average nucleotide
identities (ANI) above 95% with known species [59], confirming designation as Enterococcus
avium (4.54%); Enterococcus casseliflavus (13.64%); Enterococcus faecalis (45.45%); Enterococcus
hirae (27.27%); Enterococcus lactis (4.54%); Enterococcus mundtii (4.54%) species (Table 1;
Supplementary Table S2).

2.2. Marine Enterococcal Genomes Harbor Diverse Biosynthetic Gene Clusters (BGCs) Coding for
Antimicrobial Compounds

Two informatic packages, antiSMASH5 [57] and Bagel4 [58], accurately predict all
known enterococcal bacteriocins whose properties have been well studied [32,33], includ-
ing bacteriocin 31, bacteriocin T8, durancin Q, enterocin 96, enterocin1071A and 1071B,
enterocin_A, enterocin B, enterocin CRL35, enterocin EJ97, enterocin SE-K4, enterocin P,
enterocin Xα and Xβ, enterolysin A, hiracin JM79, mundticin KS, and others. This also
includes the E. faecalis cytolysin, a highly divergent two-component lantipeptide-type
bacteriocin active against nearly all Gram positives [60], which also possesses lytic activity
for some eukaryotic cells [61]. Therefore, antiSMASH5 [57] and Bagel4 [58] were used to
mine the genomes of all 22 genomes for putative bacteriocin biosynthesis operons (Supple-
mentary Table S3). This analysis identified one or more gene clusters encoding a bioactive
compound precursor in each genome. In total, 73 antimicrobial compound BGCs were
predicted, including 61 (83.56%) bacteriocins, 10 (13.70%) related to terpene synthesis, and
2 (2.74%) related to putative nonribosomal peptides (NRPs). The NRPs biosynthetic gene
clusters were found only in E. lactis genome (MP10-1), whereas terpene BGCs were found
among E. casseliflavus (HT1-1, J2, J4), E. hirae (C7, DMW1-1, MP1-1, MP1-2, MP1-4, MP1-5),
and E. mundtii (MP7-18) species (Supplementary Table S3). NRP and terpene BGCs were
predicted only by antiSMASH5 [57], whereas bacteriocins were identified by both tools.
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Table 1. The description of the origin of enterococci genomes associated with wild marine animals.

Animal Common Name Scientific Name Age 1 Code 2 Collection Date Location Enterococci Genomes 3 Species Identification (ANI 5) Collection from

Sea turtles

green turtle Chelonia mydas Y 2 29-May-13 Cidreira GT3-2 E. faecalis (98.38)

Prichula et al.
(2016)

Prichula et al.
(2020)

green turtle Chelonia mydas Y 1 25-Apr-14 Tramandaií GT6-1 E. faecalis (98.53)

hawksbill turtle Eretmochelys imbricata Y 1 23-Dec-12 Tramandaií HT1-3 E. casseliflavus (98.56)

Seabirds

Magellanic penguin Spheniscus magellanicus Y 1 2-Nov-12 Cidreira

MP1-1 E. hirae (98.36)

MP1-2 E. hirae (98.37)

MP1-4 E. hirae (99.34)

MP1-5 E. hirae (98.68)

Magellanic penguin Spheniscus magellanicus Y 1 13-Nov-12 Xangri-laí MP2-6 4 E. faecalis (98.55)

Magellanic penguin Spheniscus magellanicus Y 2 27-Jul-13 Cidreira MP5-1 4 E. faecalis (98.54)

Magellanic penguin Spheniscus magellanicus Y 1 19-Sep-13 Imbeí MP7-18 E. mundtii (97.04)

Magellanic penguin Spheniscus magellanicus Y 1 14-Oct-13 Cidreira
MP8-1 4 E. faecalis (98.52)

MP8-17 4 E. faecalis (98.67)

Magellanic penguin Spheniscus magellanicus Y 1 16-Oct-13 Cidreira MP9-10 4 E. faecalis (98.52)

Magellanic penguin Spheniscus magellanicus Y 1 23-Dec-13 Torres MP10-1 E. lactis (98.92)

snowy-crowned tern Sterna trudeaui A 2 4-Dec-13 Arroio do Sal ST1-20 E. faecalis (98.63)

Marine
Mammals

dwarf minke whale Balaenoptera acutorostrata Y 2 21-Jun-13 Tramandaií DMW1-1 E. hirae (98.09)

Risso’s dolphin Grampus griseus A 2 4-Jul-13 Balneaírio Pinhal RD1-1 E. faecalis (98.71)

South American fur seal Arctocephalus australis - 2 2-Aug-12 Torres B9 E. faecalis (98.81)

Santestevan et al. (2015)

South American fur seal Arctocephalus australis A 2 2-Aug-12 Xangri-laí C7 E. hirae (98.67)

South American fur seal Arctocephalus australis A 2 12-Jul-12 Palmares do Sul
J2 E. casseliflavus (98.56)

J4 E. casseliflavus (98.57)

South American fur seal Arctocephalus australis - 2 21-Jul-12 Tramandaií L8 E. avium (98.06)

1 Age of the animals: A: adult; Y: young. 2 Code based on Geraci and Lounsbury (2005). 3 Strains were sequenced in this study. GT—green turtle; HT—hawksbill turtle; MP—Magellanic penguin;
ST—snowy-crowned tern; DMW—dwarf minke whale; RD—Risso’s dolphin, and B, C, J or L—South American fur seal. 4 Genomes sequenced in a previous study (Prichula et al., 2020). 5 The enterococci species
were confirmed by pairwise comparison of their average nucleotide identity (ANI) using as reference the following genomes: Enterococcus avium ATCC14025; Enterococcus casseliflavus ATCC12755; Enterococcus
faecalis ATCC19433; Enterococcus hirae ATCC 9790; Enterococcus lactis KCTC 21015; Enterococcus mundtii ATCC 882.
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2.3. Diversity of Bacteriocins Genes among Wild Marine Animals-Associated Enterococci

A total of 30 unique bacteriocin species were identified, including 8 belonging to class I,
19 to class II, and 3 to class III (Figure 1). Although class II bacteriocins showed the greatest
diversity, class III bacteriocins were most common and widely distributed. Interestingly,
eight new putative bacteriocins with no significant identity to known peptides were found
amongst marine enterococci genomes, including two new putative lanthipeptides (I and
II) identified as class I, five unknown bacteriocins (I, II, III, IV, and V) identified as class II,
and one unknown class III bacteriocin (VI) (Figure 1; Supplementary Table S4).

The most frequent class I bacteriocins were putative sactipeptides (n = 9), followed by
unknown lanthipeptide 1 (n = 5), lasso peptides (n = 4), and thiopeptides (n = 4). Enterocin
SE-K4 (n = 5) and enterocin P (n = 3) were the most frequent class II bacteriocins. In turn,
the class III bacteriocin enterolysin A (n = 17) was the most frequent bacteriocin found in
the 22 sequenced genomes (Figure 1).

Eight enterococcal genomes belonging to E. hirae (C7, DMW1-1, MP1-5), E. avium
(L8), and E. faecalis (GT3-2, GT6-1, MP8-1, and ST1-20) species showed four or more
bacteriocin biosynthetic genes (Figure 1). Four of these genomes (C7, DMW1-1, MP1-5, and
MP8-1) encode bacteriocins belonging to three different classes (I, II, and III). Moreover,
four enterococci genomes (C7, L8, ST1-20, and MP1-2) exhibited evidence of bacteriocin
gene duplication (Figure 1; Supplementary Table S3). Because of their potentially new
bacteriocins and/or amenability large-scale synthesis, putative class II and III bacteriocins
were of special interest for further analysis.

2.4. Phylogenetic Relationship among Class II and III Bacteriocins Predicted from Wild Marine
Animal-Associated Enterococcal Genomes

To gain insights into the phylogeny of the 30 class II and 19 class III bacteriocins genes
identified, phylogenetic analysis was performed (Figure 2) to determine their relationship
(Supplementary Table S5) to 16 reference sequences in Bagel4 and Uniprot databases
(Supplementary Table S6). This identified two groups with significant branch support
(Figure 2). Group 1 included bacteriocins of both classes II and III. Class II bacteriocin
gene clusters in Group 1 could be divided into subclasses a, b, and others. Included within
each are: IIa) mundticin AT06, enterocin P, bacteriocin T8, bacteriocin 31, and enterocin
SE-K4; IIb) enterocin X chain alpha, enterocin X chain beta; II leaderless) enterocin EJ97;
II circular bacteriocin) carnocyclin A; II other subclasses) sakacin Q, enterocin 96, uviB, and
enterocin NKR-5-3D; and unknown bacteriocins I, II, III, IV, and V. Class III bacteriocins
in Group 1 included: enterolysin A, propionicin SM1, and unknown bacteriocin VI. In
contrast, phylogenetic Group 2 included only the class II bacteriocin, lactococcin 972.

Interestingly, the 17 Class III enterolysin A-related sequences occurring in Group 1
could be grouped into three subclades. The first and second branches included sequences
derived from E. hirae strains C7, MP1-1, MP1-2, MP1-4, MP1-5, DMW1-1, while the third
branch included enterolysins A from E. faecalis strains GT3-2, ST1-20, MP8-1, RD1-1,
MP5-1, MP9-10, and B9. The alignment of enterolysin A sequences within each branch
(Supplementary Figures S1–S3) shows high similarity among them, although they have few
conserved amino acids compared to the enterolysin A reference sequences (Supplementary
Figure S4).

The alignment of the other bacteriocin sequences with reference sequences was per-
formed (Supplementary Figures S5–S10). Among identities found were conserved motifs
such as YGN and cysteine residues (all class IIa bacteriocins can be found in Supplementary
Figure S6), and GxxxG or AxxxA motifs among class IIb and circular bacteriocin members
(Supplementary Figures S7 and S8).
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Figure 1. Biosynthetic bacteriocins genes were found within 22 Enterococcus spp. genomes from wild marine animals. The 
Enterococcus genomes are represented in the external circle (grey). Diversity of bacteriocin genes within 22 Enterococcus 
spp. genomes are represented by color gradients: Class I (green gradient) and Class II (blue gradient), and Class III (pur-
ple). * Genomes showing duplicated bacteriocin genes (rectangles indicate the number of these genes). The illustration 
was designed using a D3 and Adobe Illustrator. 

Figure 1. Biosynthetic bacteriocins genes were found within 22 Enterococcus spp. genomes from wild marine animals. The
Enterococcus genomes are represented in the external circle (grey). Diversity of bacteriocin genes within 22 Enterococcus spp.
genomes are represented by color gradients: Class I (green gradient) and Class II (blue gradient), and Class III (purple).
* Genomes showing duplicated bacteriocin genes (rectangles indicate the number of these genes). The illustration was
designed using a D3 and Adobe Illustrator.
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Figure 2. The phylogenetic relationships among bacteriocins (Class II and III) predicted for wild marine animals-associated
enterococci genomes. The different groups are represented by grey colors (light grey: Group 1 and dark grey: Group 2).
Class II is represented in blue and class III in purple (bold purple are enterolysins A from E. hirae, and regular purple are
enterolysins A from E. faecalis). Unknown bacteriocins are highlighted in bold blue (I, II, III, IV, and V) and bold purple (VI).

New putative bacteriocins I, II, and VI showed greater similarity to carnocyclin A, while
the unknown bacteriocins III, IV and V were more closely related to enterocin X chain alpha
(Xα) (Figure 2). Alignment of unknown bacteriocins with carnocyclin A and Enterocin Xα
reference sequences allowed detection of conserved amino acid residues and motifs such as
GxxxG or AxxxA (Figure 3). Putative novel bacteriocins I, II, VI and carnocyclin A showed
only 1.3% overall amino acid sequence identity (Figure 3A), whereas bacteriocins I and II share
55.22% identity between them (Figure 3B). Putative bacteriocins III, IV, and V, which were
closely related to enterocin Xα, have 9.2% overall amino acid sequence identity (Figure 3C);
and bacteriocins III and V share 43.4% identity between them (Figure 3D). Structural modeling
of these putative class II and III bacteriocins using the I-TASSER [62] package to build models
using a combination of fragment and ab initio model building [63] is shown in Figure 4.
Insights into structural features are important for the biosynthesis, mode of action, and
biological activity of bacteriocins. The molecular models are in agreement with the expected
protein folds (mostly alpha-helices with coil regions). Likewise, the most divergent model
(Bacteriocin VI) is also isolated in its group in the phylogenetic reconstruction, supporting its
uniqueness among other unknown bacteriocins.
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Figure 3. The alignment of putative unknown Class II bacteriocins and reference sequences using Clustal Omega software. (A) Alignment among I, II, VI, and carnocyclin A (reference) 
(Identity (*): 1.3%; Strongly similar (:): 2.2%; Weakly similar (.): 4.4%]. (B) The alignment between I and II [Identity (*): 55.22%; Strongly similar (:): 11.94%; Weakly similar (.) 10.45%]. 
(C) Alignment among III, VI, V, and enterocin Xα (reference) [Identity (*): 9.2%; Strongly similar (:): 11.8%; Weakly similar (.): 9.2%]. (D) Alignment between I and II [Identity (*): 43.4%; 
Strongly similar (:): 14.5%; Weakly similar (.) 11.8%). Identical residues are shaded in grey, and GxxxG or AxxxA motives are represented in red color. (-) Gaps introduced to optimize 
alignments. (*) Positions with a single conserved residue. (:) Conservation between groups with strongly similar properties. (.) Conservation between groups with weakly similar 
properties. 

 

Figure 3. The alignment of putative unknown Class II bacteriocins and reference sequences using Clustal Omega software. (A) Alignment among I, II, VI, and carnocyclin A (reference)
(Identity (*): 1.3%; Strongly similar (:): 2.2%; Weakly similar (.): 4.4%]. (B) The alignment between I and II [Identity (*): 55.22%; Strongly similar (:): 11.94%; Weakly similar (.) 10.45%]. (C)
Alignment among III, VI, V, and enterocin Xα (reference) [Identity (*): 9.2%; Strongly similar (:): 11.8%; Weakly similar (.): 9.2%]. (D) Alignment between I and II [Identity (*): 43.4%;
Strongly similar (:): 14.5%; Weakly similar (.) 11.8%). Identical residues are shaded in grey, and GxxxG or AxxxA motives are represented in red color. (-) Gaps introduced to optimize
alignments. (*) Positions with a single conserved residue. (:) Conservation between groups with strongly similar properties. (.) Conservation between groups with weakly similar
properties.
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2.5. Detection of Genes Associated with Enhanced Enterococcal Virulence

Among the 22 genomes evaluated, E. avium (L8) and E. mundtii (MP7-18) were found
to be devoid of determinants that have mainly been identified in E. faecalis and E. faecium
strains associated with enhanced virulence (Figure 5A,B). All other enterococci strains
possessed at least one potential virulence-associated trait (Figure 5B). As expected, these
were most common in E. faecalis, where they have been most thoroughly studied. Some
of these traits are encoded within the core genomes [25,26]. The unique E. lactis harbored
efaAfm and acm genes, while all E. faecalis contained several genes associated with adhesion
(ace, efaAfs), biofilm production (ebpA, ebpB and ebpC), proteases (gelE and srtA), protection
against oxidative stress (tpx), and quorum sensing and sex pheromone (cad, camE, cCF10,
cOB1, and fsrB). Enterococcus faecalis genomes varied in the presence of hyaluronidase genes
(hylA and hylB) and adhesion-associated gene (ElrA).
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biotechnological application and generation of new drug leads and potential probiotic application. (A) Scheme showing the
main marine enterococci biotechnological applications suggested in this study. (B) Virulence markers analysis revealed
potential probiotic enterococci from wild marine animals. Determinants of resistance (light yellow) and virulence (dark
yellow) were associated with the results of in silico screening by bacteriocins (green, blue, and purple colors). * Genomes
showing duplicated bacteriocin genes (rectangles are representing the number of these genes). Blue dash representing the
potential probiotic candidate strains (L8 and MP7-18). The illustration was designed using D3, R software, and Adobe
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Mar. Drugs 2021, 19, 328 12 of 21

Resistome analysis (Figure 5B) revealed that all E. casseliflavus genomes (n = 3) pos-
sessed genes related to low-level vancomycin resistance (vanRC and vanXYC), as expected
since these are part of the core genome for that species [64]. All E. faecalis genomes (n = 10)
contained genes within the core genomes [26] conferring resistance to trimethoprim (dfrE);
to macrolide, fluoroquinolone, and rifamycin (efrA and efrB); to pleuromutilin, lincosamide,
and streptogramin (lsaA); and have a multidrug and toxic compound extrusion transporter
(emeA). On the other hand, the unique E. lactis genome possessed genes related to the
resistance to aminoglycosides (aac(6′)-Ii); to macrolide, lincosamide, streptogramin, tetra-
cycline, oxazolidinone, phenicol, pleuromutilin (eatAv); and to macrolide, lincosamide,
streptogramin (msrC). In addition, E. hirae genomes harbored genes related to aminoglyco-
side (acc(6′)-Iid; n = 6), and tetracycline [tet(W/N/M), n = 2; tet(L); n = 1] resistance.

3. Discussion

Microbes associated with marine animals from remote ecologies may be important
sources for new tools to manage human and/or microbial interactions. In this study, we
explored Enterococcus strains from the microbiota of wild sea birds, sea turtles, and marine
mammals that range from the Antarctic to the coast of Brazil to identify potentially novel
BGCs. These prospective BCGs were found in generalist species E. faecalis, as well as less
common and less studied species, including E. avium, E. casseliflavus, E. hirae, E. lactis, and
E. mundtii.

Putative bacteriocin genes were present in all enterococcal strains investigated, high-
lighting the competitive nature of the gut niche. Bacteriocin-encoding genes are known to
be widely disseminated among enterococci species of different origins [33,54,55]. However,
likely because of the novel environmental source of these strains, we found considerable
diversity and novelty (Figure 1), with eight genomes possessing four or more bacteriocin
gene clusters. This may be driven by variation in wild marine animal diets along migratory
routes, combined with selection pressure for factors to control population structure and
niche control in the host gut.

Enterococcal bacteriocins are of interest because of their antimicrobial activities, with
activity against different Gram-positive and Gram-negative bacteria, including species of
Listeria, Clostridium, Staphylococcus, Streptococcus, Cutibacterium, Pseudomonas, and
Salmonella [6,33,34,65]. Enterocins have also been described as effective agents against
antibiotic-resistant bacteria such as vancomycin-resistant enterococci (VRE) and methicillin-
resistant Staphylococcus aureus (MRSA) [35,46]. Furthermore, antiviral activities have been
reported against herpes simplex viruses (HSV-1 and HSV-2), polio virus (PV3), measles
virus, and influenza virus [41,66]. Immunomodulatory and anticancer properties of ente-
rocins have not been widely explored but may also be of potential interest [67–69].

In this study, we identified known bacteriocins, natural variants of known bacteriocins,
and potentially new bacteriocins distributed among different enterococcal species. The
potency and spectrum of bacteriocins against important pathogens vary according to the
peptide subclass [34,35,66,70]. Class I bacteriocins were identified in our in silico screening,
with sactipeptides, new lanthipeptides I, lasso peptides, and thiopeptides being found in
high numbers (Figure 1). Sactipeptides are produced mainly by Gram-positive organisms,
and according to previous studies, the sactipeptides from Bacillus subtilis (subtilisin A) and
Bacillus thuringiensis (Thuricin CD) have broad and narrow antimicrobial activity spectra,
respectively [34,71]. A previous study also identified sactipeptide BGC in Enterococcus
mudtii QU25 [36], similar to one found in this study. Lantibiotics and thiopeptides are
most active against Gram-positive pathogens, including MRSA, VRE, and Clostridium
difficile [23,34]. In contrast, most lasso peptides show activity against Gram-negative
pathogens, e.g., bacteriocin MccJ25, which is active against some strains of Escherichia coli
and Salmonella spp. [34].

The present study provides further evidence of the significant biodiversity of BGCs
for class II, 19 bacteriocins, including five new putative bacteriocins (Figures 1 and 2; Sup-
plementary Table S4). Class II bacteriocins are of special interest as potential therapeutic
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agents and have been proposed on a larger scale production, whether in the food industry
or in human health and veterinary medicine [72–74]. Because they consist of unmodified
peptides, they do not require enzymes for their maturation and are small structures, less
than 10 kDa [36,73], that may subject to low-cost production than other classes by chemi-
cal synthesis [73]. Complementing the recombinant technologies, chemical synthesis of
bacteriocins may allow further molecular engineering for enhanced potency, improved
pharmacological properties, increased stability and modified spectra of activity [73]. Class
II bacteriocins and analogs thereof have been successfully prepared by chemical synthe-
ses, such as aureocin A53 (AucA), durancin A5-11, enterocin CRL35, lactococcin MMFII,
leucocin A, pediocin PA-1, curvacin A, lacticin Q (LnqQ), mesentericin Y105, and sakacin
P [72–74].

In general, the class II bacteriocins are most active against Gram-positive pathogens,
especially the class IIa bacteriocins, which are active against L. monocytogenes and other
Gram-positive pathogens [33,34,72,75]. Enterocin SE-K4 and enterocin P were the most
frequent class II bacteriocins in this study (Figure 1). Enterocin SE-K4 has been reported to
exhibit antimicrobial activity against Gram-positive bacteria, B. subtilis, Clostridium beijer-
inckii, E. faecium, E. faecalis, and L. monocytogenes [40]. In contrast, enterocin P has a broad
antimicrobial spectrum that includes activity against food-borne pathogens, C. botulinum,
C. perfringens, L. monocytogenes, and S. aureus [64], as well as clinical strains, L. monocyto-
genes, Salmonella (S.) typhi, Salmonella paratyphi C, Shigella dysenteriae, vancomycin-resistant
enterococci (VRE), and carbapenem-resistant Pseudomonas aeruginosa [75,76].

It is also important to highlight that class III bacteriocins were most common and
widely distributed from wild marine animals and also included the unknown bacteriocin
VI (Figure 1). Furthermore, three different enterolysin A sequences were verified among
enterococci species, with two of them from E. hirae genomes that are reported for the first
time in this species. Enterolysin A is a cell wall-degrading bacteriocin first reported to be
produced by E. faecalis isolated from fish in Iceland [77]. Despite class III bacteriocins are
large proteins (more than 10 kDa) and complex produced by chemical approaches [61],
enterolysin A have been reported as broad-spectrum activity against pathogenic and
nonpathogenic bacteria; acting on cleave the peptide bonds within the stem peptide as well
as in the interpeptide bridge of Gram-positive bacterial cell walls [33,78].

In addition to bacteriocins, a wide variety of novel gene clusters encoding putative
terpenes, NRPs, polyketides, and other active compounds have been uncovered by in silico
analysis, creating new opportunities for drug development [23,24,49,79]. NRPs and ter-
penes have been reported with activity against several antibiotic-resistant strains [80–85].
A small library of predicted NRP peptides was chemically synthesized, based on the
primary sequence of NRP clusters in the human microbiome, and a potent anti-MRSA
(methicillin-resistant Staphylococcus aureus) peptide with a new mechanism of action, named
humimycin, was identified [80]. The antitubercular agent levesquamide is a new polyketide-
nonribosomal peptide (PK-NRP) hybrid of a marine natural product (BGC) identified and
isolated from Streptomyces sp. [84]. Furthermore, the antibacterial activity of 33 free ter-
penes commonly found in essential oils was evaluated, with 16 compounds showing
antimicrobial activity, including eugenol, which exhibited rapid bactericidal action against
Salmonella enterica serovar Typhimurium. Further, terpineol showed excellent bactericidal
activity against S. aureus strains, and carveol, citronellol, and geraniol were rapidly bac-
tericidal for E. coli [81]. In this study, we also found terpene biosynthesis-related clusters
in E. casseliflavus, E. hirae, and E. mundtii species. Terpenes are secondary metabolites
found in plants, bacteria, and fungi and have been shown to act as antibiotics, hormones,
flavor or odor constituents, and pigments [86–88]. Beukers and collaborators [89] also
identified putative genes or operons involved in terpene synthesis in E. hirae, E. villorum,
E. gallinarum, E. durans, and E. casseliflavus strains isolated from bovine feces. The role
of terpenes in enterococcal biology, including their possible involvement as bacteriocins,
remains unclear [89].
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Previous studies have examined the probiotic potential of enterococci from the marine
environment [43,90,91]. Marine probiont strains have been used in finfish aquaculture due
to their health beneficial effect and low potential to transfer antibiotic resistance genes to
pathogens through horizontal gene transfer [92]. The potential of 13 enterococci isolated
from wild seals was evaluated in a previous study from our group, and five (36.46%)
showed activity against L. monocytogenes ATCC 35152 in the double-agar layer test, and
one of them should be a good candidate for probiotic application [43]. In the present study,
genome screening for bacteriocins highlighted potential probiotic enterococcal strains
lacking known virulence or resistance traits (Figure 5A, B). In particular, the E. avium
(L8) genome contained gene clusters for bicereucin BsjA1 and BsjA2, enterocin NKR-5-3D,
mundticin AT06, and unknown bacteriocin I; and the E. mundtii genome (MP7-18) encoded
sacpeptide and mundticin AT06 variants. Members of the genus Enterococcus have not yet
obtained the status of generally recognized as safe (GRAS), although some are already
being used as probiotics and in the production of animal food additives to prevent diseases
or to improve growth [93,94]. New regulations for probiotics that distinguish between safe
and potentially harmful strains are needed [35]. The application of genomic approaches in
probiotic research would improve the understanding of the molecular mechanisms that
endow the genera with safe and favorable traits [95].

Host-associated microbes are a rich source of factors that regulate community structure
in a manner compatible with host health [96,97]. Our findings show a considerable novelty
of biosynthetic pathways to be found by exploring the genomes of wild marine-animals-
associated microbes in remote ecologies with the potential to shape host-associated micro-
bial population structures. The novel compounds and natural bacteriocin variants were
discovered to provide the first leads for deriving new approaches for managing human-
microbe interactions in health and disease. Besides, this data will inform and broaden the
limits of known structural variation, knowledge of how structure relates to activity, and
synthetic biology. In this context, as a perspective for further studies, the data generated
here may be associated with recombinant technologies, chemical synthesis, molecular
engineering, and other strategies to increase the biological potency, stability, and pharma-
cological properties in order to guarantee or modify the antimicrobial activity. Therefore,
our results may contribute to promote the future development of bacteriocin-based drugs
for potential use in managing animal and human health and as food preservatives.

4. Materials and Methods
4.1. Bacterial Strains

Twenty-two enterococci strains previously described [26,98,99] were evaluated in
the present study. Briefly, the collection includes Enterococcus species isolated from fecal
samples (cloacal/anal swabs or intestinal content) collected from 17 wild marine animals.
These animals, including sea turtles (n = 3), seabirds (n = 8), and marine mammals (n = 6),
were found along the North Coast of Rio Grande do Sul, Southern Brazil, from Torres Beach
(29◦21′32.2′ ′ S; 49◦44′10.3′ ′ W) to Dunas Altas Beach, Palmares do Sul (30◦23′58.75′ ′ S;
50◦17′24.73′ ′ W), between July 2012 and April 2014 (Table 1). The enterococci collection
was stored frozen at −20 ◦C in skim milk supplemented with 20% glycerol, and cultures
were routinely grown in brain heart infusion (BHI) at 37 ◦C for 18 h.

4.2. Genomic DNA Preparation, High-Throughput Sequencing, Assembly, and Annotation

The Enterococcus spp. strains were grown in BHI at 37 ◦C for 18 h. Genomic DNA
was extracted using a commercial kit (QIAGEN DNeasy Blood & Tissue Kit, San Luis,
MO, USA). Manufacturer instructions were followed with minor modification, namely, the
addition of 50 µL of lysozyme (50 mg/mL) and 10 µL mutanolysin (2500 U/mL, Sigma-
Aldrich, Germantown, MD, USA) for 30 min at 37 ◦C before the addition of 20 µL proteinase
K (20 mg/mL). Extracted DNA was quantified using the Qubit double-stranded DNA
(dsDNA) high-sensitivity (HS) assay kit (Life Technologies, Carlsbad, CA, USA). Libraries
for genome sequencing were prepared using the Nextera XT DNA kit and index primers
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(Illumina), and reads were generated by HiSeq/MiSeq reagent kit version 2 with 250 cycles
on an Illumina HiSeq/Miseq platforms. Reads were subjected to de novo assembly using
the CLC genomics workbench v8.0.3, and open reading frames (ORFs) were predicted
using the NCBI Prokaryotic Annotation Pipeline—PGAP [100]. The enterococci species
assignment was confirmed by pairwise comparison of their average nucleotide identity
(ANI) using JSpeciesWS [101] and the following reference genomes available from GenBank
(https://www.ncbi.nlm.nih.gov (accessed on 15 December 2020): Enterococcus avium ATCC
14025; Enterococcus casseliflavus ATCC 12755; Enterococcus faecalis ATCC 19433; Enterococcus
faecium Aus0004 (Clade A1); Enterococcus faecium EnGen0007 (Clade A2); Enterococcus
faecium Com12 (Clade B); Enterococcus hirae ATCC 9790; Enterococcus lactis KCTC 21015;
Enterococcus mundtii ATCC 882. The GenBank accession number of reference strains is
presented in Supplementary Table S2.

4.3. Genome Mining for Antimicrobial Compounds

Putative biosynthetic gene clusters (BGCs) were predicted using antiSMASH (an-
tibiotics and Secondary Metabolite Analysis Shell 5.0) [57] and Bagel4 (bacteriocins and
RiPP—Ribosomally synthesized and Post-translationally modified Peptides) [58] using the
default parameters. The bacteriocin classification is in accordance with previous proposals
for enterococci [33] and lactic acid bacteria [36] that accommodate the novel subclasses
that are appearing over the last years, based on the biosynthesis mechanism and biological
activity.

4.4. Phylogenetic Analysis

Amino acid sequences corresponding to bacteriocin genes (class II and class III)
found in this work, along with reference sequences identified by AntiSMASH 5.0 [57] and
Bagel4 [58], and Uniprot databases were aligned using MAFFT [102]. Guidance2 [103]
was used to filter unreliable positions and generate a mega alignment encompassing 5
alternative alignments for the sequences. The mega alignment was used to infer the
evolutionary history of these proteins by using the Maximum Likelihood method, based
on the VT model [104]. A discrete Gamma distribution was used to model evolutionary
rate differences among sites, and the rate variation model allowed for some sites to be
evolutionarily invariable [105]. Significance was assessed via aLRT [106]. All evolutionary
analyses were conducted in PhyML 3.0 [107]. Tree visualization and annotation were
performed on Interactive Tree Of Life (iTOL) v [108].

4.5. Molecular Modeling

The structural modeling of unknown bacteriocins (I, II, III, IV, and VI) was per-
formed using the I-TASSER package [62,63] since they were not suitable for traditional
comparative modeling, requiring a combination of fragment and ab initio model building.
UCSF Chimera [109] was used to visualize and edit the new bacteriocin structural models.
Physico-chemical parameters were calculated with ProtParam [110].

4.6. Potential Virulence Markers

The comprehensive antibiotic resistance database (CARD/RGI-2017) [111] and Res-
finder 3.2 [112] were used to identify antimicrobial resistance genes with default parameters
and identification threshold of 60% identity over a length of 60% coverage, respectively. Vir-
ulence genes were predicted using VirulenceFinder [113], with a threshold of 85% identity
over a length of 60%.

4.7. Figures Design

Figures were designed using D3 (or D3.js, a JavaScript library for visualizing data
using web standards) [114], R software (R Development Core Team, 2019) [115], and Adobe
Illustrator.

https://www.ncbi.nlm.nih.gov
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5. Conclusions

Our findings show that there is a considerable novelty to be found through exploring
the genomes of host-associated microbes from animals in remote ecologies for biosynthetic
pathways with the potential to shape host-associated microbial population structures. The
novel compounds and natural bacteriocin variants discovered provide first leads for the
derivation of new approaches for managing human-microbe interactions in health and
disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md19060328/s1, Table S1: Sequencing statistics, genome sizes, fold coverage, G+C content, of
the Enterococcus spp. sequenced. Table S2: Reference genomes used to confirm the enterococci species.
Table S3: Putative antimicrobial compounds biosynthesis gene clusters (BGCs) data predicted with
antiSMASH5 and Bagel4 software. Table S4: Class I, class II, and class III unknown bacteriocins
BGCs data that were not previously identified in antiSMASH5 and Bagel4 databases. Table S5: Class
II and class III bacteriocin sequences predicted with antiSMASH5 and Bagel4 software. Table S6:
Reference sequences from Bagel4 and Uniprot databases. Figure S1: The alignment of putative
enterolysin A (class III) sequences (first branch) from E. hirae genomes using Clustal Omega software.
Figure S2: The alignment of putative enterolysin A (class III) sequences (second branch) from E. hirae
genomes using Clustal Omega software. Figure S3: The alignment of putative enterolysin A (class
III) sequences (third branch) from E. faecalis genomes using Clustal Omega software. Figure S4:
The alignment of four different enterolysin A (class III) and three different references (Bagel 62.3:
E. faecalis LMG 2333; Bagel 63.3: E. faecalis; and Bagel 64.3: Lactobacillus acidophilus) using Clustal
Omega software. Figure S5: The alignment of putative propionicin SM1 (class III) and reference
sequence using Clustal Omega software. Figure S6: The alignment of putative Class IIa bacteriocins
and reference sequences using Clustal Omega software. Figure S7: The alignment of putative class
IIb bacteriocins and reference sequences using Clustal Omega software. Figure S8: The alignment
of putative class II circular bacteriocin carnocyclin A and reference sequence using Clustal Omega
software. Figure S9: The alignment of putative class II leaderless bacteriocin enterocin EJ97 and
reference sequence using Clustal Omega software. Figure S10: The alignment of putative class II
other bacteriocins and reference sequences using Clustal Omega software.
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