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ABSTRACT. Martensitic steels have been successfully employed in resource-based industries where 

components must endure aggressive conditions. In industrial practice, many parts of these components are 

joined by welding techniques. The aim of this work was to understand the influence of welding on the wear 

resistance of quenched and tempered carbon martensitic steel subjected to dry linear reciprocating sliding 

micro-wear tests. Weld-joints were produced using autogenous Gas Tungsten Arc Welding process (GTAW). 

Micro-wear tests were performed at base metal (BM), weld metal (WM), coarse grained heat affected zone 

(CG-HAZ) and lowest hardness region of heat affected zone (LHR-HAZ). LHR-HAZ was softened during 

welding process so plastic deformation was facilitated, and consequently adhesion, material displacement 

and micro-ploughing. WM and CG-HAZ presented a similar martensitic structure, which explain the 

similarities found on wear behavior. These regions presented the lowest worn volume average values (w). It 

was interesting to note that despite its highest microhardness value, the highest w was observed for BM. 

For some BM samples, debris had a key role promoting material loss by micro-cutting which causes great 

extent of material removal compared to other micro-wear mechanisms as micro-ploughing and adhesion. 

Due to debris action BM also presented a great dispersion in w results. The results suggest that material loss 

of welded joint and BM was strongly controlled by micro-wear mechanisms.  
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Introduction 

The usage of martensitic steels in resourced-based industries can be effective for minimizing costs 

due to wear, thus extending the service life (Mindivan, 2013). The fine grains of their martensitic 

structure create characteristics features of high strength, toughness, and resistance to abrasive wear 

(Białobrzeska, Dziurka, Żak, & Bała, 2018; Białobrzeska & Kostencki, 2015; Frydman, Konat, & Pękalski 

2008; Mendez et al., 2014). These properties are obtained through a specific combination of 

thermomechanical processes and a strictly selected chemical composition that includes low quantities of 

phosphorus and sulphur (Białobrzeska & Kostencki, 2015). Mishra et al. (2019), highlighted that the 

addition of low quantities of boron in martensitic steels promotes grain refinement, thus improving 

strength levels and toughness. In order to improve the wear resistance, these martensitic low -alloyed 

steels are generally tempered to modify the balance between mechanical properties, and in particular to 

improve toughness and ductility while keeping a relatively high hardness (Xu, Zwaag, & Xu, 2016).  

A significant amount of studies on wear resistance of martensitic steels were also developed 

(Białobrzeska & Kostencki, 2015; Hacısalihoğlu, Yildiz, & Çelik, 2018; Hernandez, Hardell, Winkelmann, 

Ripoll, & Prakash, 2015; Mindivan, 2013; Pawlak, Białobrzeska, & Konat, 2016;). Białobrzeska and 

Kostencki (2015) investigated the abrasive wear characteristics of selected low alloy boron steels in both 

field experiments and laboratory tests. The obtained results showed that hardness had a secondary role 

in controlling the wear rate. Results also indicated that abrasive wear rate depends strongly on the 

predominant mechanism of wear, which in turn is dependent on the microstructure. The authors 

highlighted that in their study, micro-cutting was the predominant micro-wear mechanism in material 

removal. 
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Welding techniques are widely used in industrial practice. The quality of welded joints mainly depends 

on mechanical properties of the weld zone and HAZ, which in turn is influenced by chemical composition 

and metallurgical variations of the weld zone. In other words, the quality of welded joints depends on 

welding process (Pujari, Patil, & Mewundi, 2018). Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc 

Welding (GMAW) are the most used welding processes. However, GMAW offers problems such as melt 

and distortion, especially for thin workpieces (Pujari, Patil, & Mewundi, 2018). The welded joint between 

thin plates are typically made by GTAW. One of its main advantages is its relatively shallow penetration 

achievable during autogenous welding (Vasantharaja, Vasudevan, & Parameswaran, 2019).  

The welding heat input may cause degradation of the favorable mechanical properties of these steels by 

changing their microstructure, these changes are particularly likely to affect the morphology and size of the 

martensite or bainite needles (Białobrzeska & Kostencki, 2015) resulting in hardness drops. This phenomenon is 

known as heat affected zone softening (HAZ softening). Past researches have shown that HAZ softening on welded 

joints of martensitic steels was observed mostly in the inter-critical and sub-critical heat affected zone 

(respectively IC-HAZ and SC-HAZ) (Biro, McDermid, Vignier, & Zhou, 2014; Hokkirigawa & Kato, 1988; Krishnan, 

Toppo, Basak, & Ray, 2006; Lu, Peer, Abke, Kimchi, & Zhang, 2018; Pandey, Mahapatra, Kumar, Daniel, & 

Adhithan, 2019; Pouranvari, Sobhani, & Goodarzi, 2018; Wang, Yang, Sun, Liu, & Li, 2016).  

Despite its significance in wear behavior, the effect of weld resulting microstructure and HAZ 

softening has not received adequate attention. In this study, worn volume and micro-wear mechanisms 

were evaluated in the weld metal (WM), coarse grained heat affected zone (CG-HAZ), lowest hardness 

region of the heat affected zone (LHR-HAZ) and base metal (BM) of a wear-resistant steel welded joint. 

This work aims to analyze the influence of weld resulting microstructure on the wear resistance of a 

selected martensitic steel subjected to a reciprocating sliding micro-wear test. 

Experimental details 

The chemical composition of the base material used in this study and its carbon equivalent (CE) 

according to International Institute of Welding (IIW) is presented in Table 1 and Equation 1, respectively. 

Its microstructure is fully composed by small grains of tempered martensite as showed in Figure  1. CE 

formula is used to estimate the weldability of steels; it determines if preheat or post-welding heat 

treatments are necessary. For the selected martensitic steel used in this work preheat and post -welding 

treatments was not necessary (SSAB, 2019).  

Table 1. Chemical composition of the selected martensitic steel. 

Elements 

(max wt%) 
C Si Mn P S Cr Ni Mo B Fe CEIIW 

BM 0.184 0.215 1.187 0.018 0.015 0.037 0.035 0.001 0.003 Bal. 0.389 

 

𝐶𝐸𝐼𝐼𝑊 =
𝑀𝑛

6
+

𝐶𝑟+𝑀𝑜+𝑉

5
+

𝐶𝑢+𝑁𝑖

15
    (1) 

 

Figure 1. Typical microstructure of the base metal steel in the received condition obtained by: a) optic microscopy (OM); and b) 

scanning electron microscopy (SEM). 
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The weld-joint was produced by single pass butt-welding of 1 mm thick samples of approximately 300 

x 100 mm, using   a MA1400 Yaskawa welding robot and a Trans Plus Synergic 4000R power source.  The 

joints were produced using autogenous GTAW, which is a high-quality joint process employed in thin 

workpieces where the usage of filler metal is not required. The welding parameters used in this work and 

the corresponding welding energy (E) are listed in Table 2. E can be determined by Equation 2 (SSAB, 

2019), where arc efficiency (𝜂) was considered to be 0.7 (Hackenhaar, Mazzaferro, Gonzalez, & Machado, 

2016). The welding was performed using direct current electrode negative (DCEN) and the shielding gas 

adopted was pure argon. The welding parameters were selected through several experiments until the 

weld joint was acceptable (low distortions, full penetration, and absence of discontinuities). To minimize 

distortion the plates were held in position by clamping devices during the welding.  

Table 1. Welding parameters employed in this study. 

Welding parameters 

Current (𝑼) 180 A Electrode diameter (EWTh2) 2.4 mm 

Voltage (𝑰) 11 V Electrode tip angle 60° 

Welding speed (𝒗) 20 mm s-1 Welding energy (𝐸) 69.30 J mm-1 

Distance electrode tip-work 3 mm Argon flow 15 l min-1 

 

𝐸 =  𝜂 ∙
𝑈∙𝐼

𝑣
   (2) 

A schematic drawing of the welded joint is presented in Figure 2. The welding was performed in the 

same direction of rolling. The normal, transversal and longitudinal directions of the rolling process are 

referred as ND, TD and LD, respectively. Macro and micro observations, sliding wear tests and 

microhardness measures were executed in samples prepared with standard metallographic practice, 

followed by etching in 10% Nital.  

 

Figure 1. Schematic drawing (not to scale) of the welded joint and reciprocating micro-wear tests area. 

The microhardness measurements were carried out on ND plane (normal direction of rolling 

process) using a semi-automatic microhardness tester. These tests were performed at a load of 300g 

during 10s using a Vickers pyramid micro indenter. Microhardness profiles were determined by taking 

microhardness readings along lines perpendicular to the welded joint as shown in Figure  2. These 

profiles were used to identify the gradient of microstructures (HAZ sub-zones) and the locations where 

reciprocating sliding micro-wear tests were later performed. Microhardness measures were carried out 

as per ASTM E384-17. The microhardness value obtained for as-received condition was 499 ± 6 HV. 

In order to evaluate the influence of the weld resulting microstructure and HAZ softening on wear 

resistance, reciprocating sliding micro-wear tests were performed at BM, WM, CG-HAZ and LHR-HAZ 

sub-zone using a tribometer developed at Welding & Related Techniques Laboratory of Federal 

University of Rio Grande do Sul. The reciprocating micro-wear tests were performed on ND plane using 

Al2O3 balls with 4.762 mm diameter in ball-on-flat configuration. The tribometer device was able to 
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record the coefficient of friction (CoF) continuously during micro-wear tests. CoF medium values 

reported in this work were calculated excluding first 15 minutes data, to provide that Al 2O3 balls have 

settled on the worn surface. All tests were carried out in dry condition under 10 N load. The linear sliding 

speed was 4 mm/s and the reciprocating stroke was set as 2 mm, with oscillation frequency of 1 Hz.  The 

reciprocating micro-wear tests were performed during 2 h totaling a sliding distance of 28.8 m.  The 

reciprocating micro-wear tests were repeated at least three times for each area. 

After the wear tests, the worn tracks developed on the surface of the samples were analyzed by a 3D-

profilometry, SEM and OM. In this study, the wear test results were quantified in terms of worn volume, which 

was calculated by integrating the area across the wear scar profile, and then multiplying the length of the 

tracks. Each worn trail had 10 cross-sectional profiles evaluated. ImageJ was used for computing the worn 

volumes of Al2O3 measuring the area of worn surfaces on OM images as per ASTM G133-05. 

Results and discussion 

Welded joint: microscopy and hardness 

The macrostructures of welded joint on TD and ND (polished and etched) planes are presented in 

Figure 3. The samples were successfully autogenous welded in full penetration. Some distortions along 

the weld bead were observed. No weld defects such as pores and cracks were found.  

 

Figure 3. Macrostructure of the welded joint on: a) transversal direction (TD) and; b) normal direction (ND) of rolling process. On ND plane 

two different regions of the weld-joint, weld metal (WM) and the lowest hardness region of the heat affected zone (LHR-HAZ) is shown. 

The microhardness profile across the weld-joint is shown in Figure 4. The highest microhardness 

average value was obtained on BM (499 ± 6 HV) followed by WM (452 ± 10 HV) and CG-HAZ (419 ± 9 HV). 

At LHR-HAZ microhardness value was 253 ± 6 HV, where hardness reduction reached a range of 50% 

compared to BM. HAZ extension was approximately 11 mm. BM structure is fully martensitic which is a 

thermally unstable phase, because of that it will tend to transform during welding, resulting in 

microstructural changes and softening of the local microstructure along the welded joint.  

The microstructure of WM is composed by martensite - in this region the initial structure (BM) was 

melted and rapidly re-solidified resulting in a homogenous distribution of martensite presented in Figure 

5. The microstructure of CG-HAZ was also martensite – this region is located immediately adjacent to 

the fusion boundary and was heated to temperatures high enough to enable the austenitic 

transformation, the generated austenite transforms to microstructures with less imperfect density and 

coarser grain size (Hochhauser, Ernst, Rauch, Vallant, & Enzinger, 2012). During subsequent cooling the 

coarse austenite is transformed into the martensitic structure presented in Figure 6. The presence of 

martensite at WM and CG-HAZ is controlled by cooling rate, which decreases while moving from the weld 

bead center. The martensite structure in these regions are coarser than BM, the hardness reduction on 

WM and CG-HAZ were respectively 10 and 16%. 
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Figure 4. Microhardness profile across the welded joint. 

 

Figure 5. Martensitic structure of the weld metal: a) optic microscopy (OM); and b) scanning electron microscopy (SEM). 

 

Figure 6. Martensitic structure of the coarse-grained heat affected zone: a) optic microscopy (OM); and b) scanning electron  

At LHR-HAZ the microstructure was prevailingly over tempered martensite (M) with a mixture of ferrite (F) and 

carbides (C), as presented in Figure 7. These microstructure features indicate that heating during welding provoked 

the intensification of carbides precipitation from the initial tempered martensite (BM). Still during heating these 

carbides coalesced and some of them were dissolved to originate small austenite grains, which during cooling 

decompose to ferrite (Unfried, Garzon, & Giraldo, 2009). Softening phenomena was observed in this region, which 

is located at IC-HAZ/SC-HAZ interface. This result is in agreement with other authors who showed in their works 

that HAZ softening in martensitic steel weld-joints was predominantly controlled by over tempering of martensite 
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and formation of fresh ferrite in the SC-HAZ and in IC-HAZ (Biro et al., 2014; Frydman, Konat, & Pękalski, 2008; 

Guzman-Aguilera et al., 2018; Krishnan et al., 2006; Lu et al., 2018; Pandey et al., 2019; Pouranvari et al., 2018; 

Wang et al., 2016). 

 

Figure 7. Microstructure of the lowest hardness region of the heat affected zone with over-tempered martensite (M), carbides (C) and 

ferrite (F): a) optic microscopy (OM); and b) scanning electron microscopy (SEM). 

Sliding micro-wear behaviour 

Table 3 presents the worn volumes of trails (wt) and Al2O3 balls (wb) used in the respective 

reciprocating sliding micro-wear tests.  For the welded joint, the lowest worn volume average value was 

found in WM, followed by BM and CG-HAZ. The highest worn volume among the welded regions was 

obtained in LHR-HAZ. At this region the wear mechanisms related to plastic deformation were facilitated, 

which increased material removal by adhesion.  

Table 2. Worn volumes (x10-5 mm3) of trails (wt) and Al2O3 balls (wb). 

 wt wb 

WM 2.78 ± 0.33 4.02 ± 0.19 

CG-HAZ 3.41 ± 0.13 4.18 ± 0.21 

LHR-HAZ 

BM 

9.24 ± 0.36 

3.36 ± 0.63  

3.95 ± 0.14 

4.07 ± 0.07 

 

The WM worn trail surface is presented in Figure 8 and 9a. In this region the material loss is mostly 

due to abrasion. Some detachment sites were also identified in Figure 8, however, adhesion occurred in 

much less pronounced form. The worn surface of the Al2O3 balls used in the reciprocating micro-wear 

tests in WM is presented in Figure 9b, the balls presented a circular smooth worn surface delimited by 

debris. The cross-sectional profile of the worn trail indicates that most of the abrasion grooves was 

shallow and their density per unit area was low, as showed in Figure 9c. According to Bhushan (2000) and 

Stachowiak and Batchelor (1993), these features suggest that most abrasive wear occurs on micro-

ploughing form. Compared to micro-cutting, micro-ploughing leads to discreet wear damage, which 

resulted in the lowest worn volume. In this case, most of material removed from the grooves was only 

shifted to its borders, and then plastically deformed and dislocated.   

The CG-HAZ worn trail surface is presented in Figure 10 and 11a. On this region material removal was due 

mostly to abrasion and adhesion. Similarly, to WM, the Al2O3 balls used in the reciprocating micro-wear tests, 

also presented a circular smooth worn surface delimited by debris, as showed in Figure 11b. The cross-

sectional profile of the worn surface presented in Figure 11c shows shallow abrasion grooves, suggesting that 

abrasive wear occurred on micro-ploughing form.   

The worn surfaces of the trails at LHR-HAZ are presented in Figure 12 and 13a. On this region the main wear 

mechanisms were adhesion and abrasion on micro-ploughing form, as showed in the cross-sectional profile of the 

worn surface presented in Figure 13c. The Al2O3 balls used as counter body presented a smooth circular surface 

delimited by debris, as showed in Figure 13b. LHR-HAZ was severely softened during welding, the ferrite 
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transformation and the over-tempering process of the initial martensitic structure increased ductility, which 

facilitated the wear mechanisms associated to plastic deformation.  LHR-HAZ suffered massive adhesive damage 

that resulted on a worn volume over 70% greater than WM. 

 

Figure 8. Worn trail surface of weld metal after reciprocating micro-wear test (SEM). 

 

Figure 9.2 Weld metal: OM of a) worn trails and b) Al2O3 balls, and c) example of a cross-sectional profile of the worn trail obtained by 

surface profilometry, showing different micro-wear mechanisms. 

 

Figure 10. Worn trail surface of coarse-grained heat affected zone after reciprocating micro-wear test (SEM). 
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Figure 11. Coarse grained heat affected zone: OM of a) worn trails and b) Al2O3 balls; and c) example of a cross-sectional profile of the 

worn trail obtained by surface profilometry, showing different micro-wear mechanisms.  

 

Figure 12. Worn trail surface of the lowest hardness region of heat affected zone after reciprocating micro-wear test (SEM). 

 

Figure 13. Lowest hardness region of heat affected zone: OM of a) worn trails and b) Al2O3 balls, and c) example of a cross-sectional 

profile of the worn trail obtained by surface profilometry, showing different micro-wear mechanisms. 
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For the BM most of the specimens presented a slight amount of material loss (𝑤𝑡 = 3.36 𝑥 10−5𝑚𝑚3) 

caused by micro-ploughing. The abrasion grooves were shallow and no evidence of wear damage by three-

body abrasion was found, as showed in Figures 14 and 15a and c. Figure 15b shows the Al2O3 balls surface. 

For these tests, the balls presented a smooth worn surface where no traces of debris were found.  

 

Figure 14. Slightly worn trail surface of base metal after reciprocating micro-wear test (SEM). 

 

Figure 15. Base metal with slight and uniform abrasive wear damage: OM of a) worn trails and b) Al2O3 balls, and c) example of a cross-

sectional profile of the worn trail obtained by surface profilometry, showing different micro-wear mechanisms.  

Even though BM presents high hardness, some samples presented regions were massive wear damage 

by abrasion occurred. Compared to the BM samples where abrasion damage is uniform and slight along 

the full length of the trails, the material loss is up to 9 times greater. Figures 16 and 17a present the 

regions where severe wear damage occurred. According to other works (Guzman-Aguilera et al., 2018; 

Saroj, Sahoo, Tijo, Kumar, & Masanta, 2017), these deep grooves (Figure 17a) are usually caused by the 

presence of hard particles (debris) that slide over the surface causing the removal of material along its 

path. 

Debris increase abrasive wear resulting in deeper grooves and massive wear damage. Besides that, 

according to Kirk, Shipway, Sun and Bennett (2019) debris can also adhere to the surfaces contributing 

to adhesive wear, which could explain the large detachments sites in Figure 16.  The worn surface of the 

Al2O3 balls presented in Figure 17b also shows evidences of debris action. In fact, these features indicate 
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that abrasion occurred on three-body mode, which causes greater material loss (Bhushan, 2000; 

Stachowiak & Batchelor, 1993). 

 

Figure 16. Severely worn trail surface of base metal after reciprocating micro-wear test (SEM). 

 

Figure 17. Base metal with massive micro-cutting wear damage: OM of a) worn trails and b) Al2O3 balls, and c) example of a cross-

sectional profile of the worn trail obtained by surface profilometry, showing different micro-wear mechanisms. 

During reciprocating sliding micro-wear tests debris are formed with different sizes depending on the 

tribological conditions (Bhushan, 2000; Hokkirigawa, & Kato, 1988).  It is likely that during reciprocating 

sliding some debris particles were trapped on the contact surface and hardened, increasing debris 

abrasiveness and promoting massive wear damage on micro-cutting form along contact surface. Al2O3 

balls and steel possess poor chemical affinity; because of that balls wear is due only to abrasion. However, 

debris accumulation on the worn surface can increase chemical affinity with worn trails surface, thus 

increasing adhesive wear on trails. Note that debris may increase materials loss due to adhesion and 

abrasion simultaneously.  

Hardness is often used to predict the wear resistance of materials exposed to abrasion (Frydman et al., 

2008; Mindivan, 2013; Sundström, Rendón, & Olsson, 2001) and according to Bhushan (2000) abrasive 

wear is proportional to the sliding distance and inversely proportional to the hardness of the wearing 

material. However, many authors (Dalbert et al., 2019; Mindivan, 2013; Sundström et al., 2001; Trevisiol, 

Jourani, & Bouvier, 2017) state that hardness must be used with caution when it comes to predicting the 
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wear resistance of materials exposed to abrasion. Wear resistance of a material in a given tribosystem is 

strongly influenced by the system parameters as well as toughness, work-hardening ability, ductility, 

microstructure, wear mechanism, etc. (Atkins, 2009; Shah & Bakshi, 2018; Sundström et al., 2001; 

Trevisiol et al., 2017). 

In this study, wear resistance seems to be controlled by hardness. BM, WM and CG-HAZ presented a 

similar martensitic structure that was responsible for the discreet wear damage of trails. At LHR-HAZ the 

microstructure was severely softened leading to a greater material loss by plastic deformation related 

mechanisms.  

Coefficient of friction 

Coefficients of friction (CoF) values of the BM, WM, CG-HAZ and LHR-HAZ are presented in Table 4. 

Figure 18 shows the relationship between CoF values of the regions of interest on the welded joint and 

BM. CG-HAZ had the lowest CoF average value, followed by BM. WM and LHR-HAZ presented quite 

similar CoF, in the range of 0.43 - 0.44. CoF is minimized by region with the highest volume fraction of 

martensite (CG-HAZ) where less plastic deformation occurred. The highest CoF was reached for the 

softest sample. 

It is shown in Figure 18 that the initial stage of the friction is unstable, and the CoF value continuously 

increases during this stage with fluctuations. According to Li, Deng, Huang, Ji and Wang (2019), these 

fluctuations on CoF values at the beginning of sliding wear tests is due to the fact that the upper and 

lower friction pairs are uneven surfaces in the running-in process. The interaction between the friction 

pairs causes the settlement of the Al2O3 balls on metal surface, which increases CoF. As the number of 

reciprocating slides increases, the CoF values begin to stabilize.   

Table 4. Coefficient of friction of the welded joint regions. 

 CoF 

BM 0.40 ± 0.01 

WM 0.43 ± 0.01 

CG-HAZ 0.37 ± 0.02 

LHR-HAZ 0.44 ± 0.02 

 

Figure 18. Examples of evolution of the coefficient of friction during reciprocating micro-wear tests. 

Conclusion 

In this study, the influence of welding on the reciprocating sliding wear under dry condition of 

quenched and tempered carbon martensitic steel was investigated. The main results are summarized as 

follow: 

• Microstructure features, debris action, hardness and toughness seem to have an important role on micro-

wear mechanisms which in turn are key factors controlling material removal; 

• For the welded joint, the lowest worn volume average value was found in WM, followed by CG-HAZ, and 

both presented a similar martensitic structure after welding. For these regions, most material removal was 

due mostly by micro-ploughing; 

• In a very narrow area at IC-HAZ/SC-HAZ interface, HAZ softening was observed, caused by a degradation 

of the initial martensitic structure after welding process. The microhardness reduction reached 50% in 

comparison with BM. This region in the welded joint showed the highest volume loss during sliding wear 

tests;  
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• Related to BM, debris had a key role on wear resistance. In some BM samples, debris acted as a third-body 

and promoted material loss by micro-cutting mechanism, which increased material loss in some regions. For 

those tests where only micro-ploughing was observed, worn volume value was smaller because most of the 

deformed material was smashed back into worn trails surface, decreasing material removal. 
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