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Abstract – This work presents the studies of kinetic polymerization of castor oil-based polyurethane using 

thermal analysis by isothermal of small amplitude oscillatory shear rheometry. The gelation time was 

determined by the crossover between modulus storage (G’) and loss (G”). Arrhenius equation was used to plot 

a graph of ln(tgel) vs. 1/T. The angular coefficient was obtained using a linear fit, and this was used to calculate 

the activation energy of polymerization. The experimental data were analyzed using neural network NN using 

Bayesian regularization. The activation energy measured for the castor oil-based polyurethane resin was 49.98 

kJ/mol for experimental data and 50.41 kJ/mol for NN simulation. A high level of reliability of the predicted 

rheometry curves was obtained due to an excellent agreement between experimental and simulated results. 
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Introduction  

 

Polyurethane-based systems are an extremely versatile material used in various applications 

that vary from linear polymers to thermosetting plastics [1]. The polyurethane (PU) structure is 

comprised of soft and hard blocks, and its properties can be tuned to satisfy particular material 

requirements. The soft segments, derived from a polyol, confer elastic characteristics to the polymer, 

whereas the hard is commonly formed by isocyanates and extenders [2]. 

The vegetable castor oil has been widely applied in the chemical industry as a raw material 

for paints, coatings, inks, and lubricants. It is also used as a biomaterial in implants and therapeutics 

agents, even in optics and electronic devices [3] It is considered appropriate for application in 

isocyanate reactions to produce polyurethane elastomers, millable, castables, adhesives, coatings, and 

foam. Some semirigid foams used as thermal insulation are produced through castor oil/polyether and 

toluene diisocyanate reactions. Castor oil, a non-food vegetable oil, contains hydroxyl groups (163 

mg KOH/g). It is used to produce bio-based polyurethane because of its numerous advantages such 

as low toxicity and biodegradability and high purity [4]. Castor oil-based polyurethanes usually have 

a good balance of properties and resistance to hydrolytic degradation. 

The cure mechanism and kinetics determine the network morphology, which dictates the 

cured product's physical and mechanical properties. Therefore, knowledge of the kinetic parameters 

of a reactive resin is essential for the design and processing of polymer and composite technologies. 

Many characterization methods have been used to monitor the kinetics of polymerization reactions[5]. 

One relevant parameter for the study of the curing process is the storage modulus (G′), which is 

proportional to the crosslinking density of the network being formed by chemical bonds [6].  
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There are many different methods and mathematical models for determining the kinetic 

characteristics of the polymerization process of polyurethane [7]. However, not all kinetics models 

can accurately describe the change in the kinetic function for each specific type of polymer. To 

simplify the simulation, it is proposed to use neural networks (NN), which are currently widely used 

for forecasting and approximation in many technical and humanitarian sciences fields.  

Neural networks are self-learning systems that effectively build non-linear dependencies that more 

accurately describe sets of experimental data. The main advantage of neural network modeling is the 

training and synthesis of accumulated information based on a selection of experimental data [8]. 

In this context, the main purpose of this work is to obtain the activation energy (Ea) during 

polymerization of castor oil-based polyurethane using the dynamic rheology method and verify the 

possibility of using a neural network to predict the activation reaction energy. 
 

Experimental  

 

Polymeric diphenylmethane diisocyanate (MDI, purchased from Polysystem 31wt.% of free 

isocyanate). The castor oil (hydroxyl number 188, functionality 2.7, supplied by Alpha Quimica Ltda, 

Brazil) has a water removal process (for 8 hours at 100ºC under vacuum) to polymerize. The 

polymerization kinetics of the castor oil polyurethane sample was studied from isothermal 

experiments in an oscillatory rheometer, at temperatures of 40, 50, 60, 70 and 80ºC at an oscillation 

frequency of 1Hz, shear stress of 2Pas, parallel plates of 25 mm in diameter, distancing between 0.5 

mm plates, in an Anton Paar Physica MCR 101 rheometer. The polymerization activation energy (Ea) 

was determined using the Arrhenius equation by performing the logarithm (Equation 1), assuming 

𝑡𝑔𝑒𝑙 as the time in witch the storage module G' is equal to the loss module, G ” [9]. Thus, a graph of 

ln(tgel) vs 1/T allows to obtain a straight line whose angular coefficient is equal to: 

ln( 𝑡𝑔𝑒𝑙) = ln(A ) −  
−𝐸𝑎

𝑅𝑇
   (1) 

 

Where A is the frequency factor (1/s), 𝐸𝑎 is the activation energy of the cure reaction (kJ/mol), R is 

the universal gas constant (8.32 J/mol K), and T is the temperature (K). The graphic ln k versus 1/T 

shows a straight line where the activation energy and the frequency factor are obtained by the angular 

and linear coefficient of the straight line, respectively. A minimum of three isothermal experiments 

in different temperatures is necessary to obtain these parameters [9]. 

To analyze the rheological experimental data, the ANNs modeling was used. The method 

evaluated was Bayesian regularization, where the algorithm typically requires more time but can 

result in good generalization for difficult, small, or noisy datasets. Training stops according to 

adaptive weight minimization (regularization). The simulation was carried out in the MATLAB 

environment using the fitting neural network tools plugin, which will allow setting the number of 

neurons in the hidden layer and changing the percentage of training, test, and test samples. 

 
Figure 1: Block diagram of a neural network 

 

The number of neurons in the hidden layer was set in the amount of 50 pieces. The training 

set was 70%, the validation and testing was 15%, with 11, 2, and 2 samples respectively Fig. 1. The 

neural network was trained using the “with the teacher” algorithms. Three vectors were specified - 

input values (INPUTS), target output values (OUTPUTS), and test. The experimental array of data 

with modulus G’ and G” in 5 temperatures was used as an input vector. 
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Results and Discussion  

 

Viscosity increase is the most common method to identify the gel point, one of the essential 

rheological parameters in processing a crosslinked polymer. Strictly, the gel point is where the 

viscosity takes on an infinite value [10]. However, it is not possible to measure this accurately. One 

method is to apply a small amplitude oscillatory shear during polymer cure using a oscillatory 

rheometer. Initially, the loss modulus G” (pseudo viscous liquid) is high, while the storage modulus 

G’ is still negligible. Subsequently, as the degree of conversion increases, G" increases and G' 

increases sharply until it crosses and exceeds G" presenting a pseudo solid elastic behavior [11].  

According to ASTM D7750, in this type of test with small amplitude oscillatory shear, the gel 

time can be interpreted as the crossover point between G’ and G” (tan delta = 1.0). Fig 2 shows the 

results of the storage modulus (G') and loss modulus (G”) during the polymerization of castor oil 

polyurethane as a function of time at temperatures of 40,50,60,70 and 80ºC studied in the oscillatory 

rheometer.  

 
 

The symbol dots represent the experimental results, while the solid lines are the fits derived 

from the NN mathematical approach for each isothermal. For better visualization of the graph, the 

curves G’and G” of temperature 50 and 70ºC will not be required in Fig 2. 

 
Drastic structural changes occurred in the samples, which became solid-like viscoelastic 

polymers by intermolecular and intramolecular cross-linking [4]. From the Fig. 2 is possible see, that 

temperature has significant impact on the reaction rate of the polymerization process. The curves of 

G′ and G′′ crossed over at a time point, which greatly differed at different curing temperatures, 

according to Table 1 results.  
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As the reaction polymerization temperature rise, the time until the crossover of modules G’ 

and G” (tgel) decreases. This occurs because there is a greater probability of -NCO and -OH groups 

reacting due to increased mobility and effective collisions. The increase in the reaction temperature 

increases the monomer entropy, and consequently, the reaction rate is increased, as shown in Fig. 

2[13]. 

Based on the data assigned in Table 1, the natural logarithm of the tgel for the polymerization 

of castor oil polyurethane was found, and the graph was plotted as a function of the inverse of the 

absolute temperature (1/T), as shown in Fig. 3. From the linear fits, the polymerization activation 

energy value is determined using an Arrhenius equation (Eq. 1). Generally, chemical reactions present 

activation energy from 30 to 100 kJ/mol [14].  

The Ea of the castor oil-based polyurethane experimental found was 49.98 kJ/mol and 

50.41kJ/mol that can indicate a relatively high reactivity system[9]. The values found for the 

activation energy are consistent with other studies found in the literature (45-56 kJ/mol, in which the 

polymerization kinetics of polyurethane systems was studied by other techniques such as attenuated 

total reflection Fourier transform infrared spectroscopy (ATR) - FTIR)[7], Differential Scanning 

Calorimetry (DSC) [15-16]. The Ea values found showed excellent agreement between experimental 

and simulated results. 

 

 
 

As can be seen from Fig. 4, the highest NN performance is achieved when training the network 

using the Bayesian regularization method, with values of correlation coefficients bigger than 0.999. 

The best performance of the model occurs in the last 896th epoch of the learning iteration cycle, with 

an associated final mean squared error of approximately 8,176 × 10−7, which is significantly lower 

than the target MSE value of 1 × 104, indicating that the best-fit function of the training targets was 

perfectly estimated. 

 

Conclusions  
In this study was possible to obtain the Ea during the polymerization of castor oil-based 

polyurethane using oscillatory rheometer. It was possible to evaluate the experimental result using NN 

simulation with a high level of reliability. The results of Ea found studied system was (49.98 and 

50.41) kJ/mol for experimental and simulation respectively. The results presented contribute to 

optimizing polymerization reactions and future applications of this type of resin in the production of 

composites based on castor oil polyurethanes.  
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