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Abstract

Evaluating mineral resources requires the prior delimitation of geologically ho-
mogeneous stationary domains. The knowledge about the ore genesis and geological 
processes involved are translated into three dimensional models, essential for planning 
the production and decision-making. The mineral industry usually considers grade 
uncertainty for resource evaluation; however, uncertainty related to the geological 
boundaries are often neglected. This uncertainty, related to the location of the bound-
ary between distinct geological domains can be one of the major sources of uncer-
tainty in a mineral project, and should be assessed due to its potential impact on the 
ore tonnage, and consequently, on enterprise profitability. This study aims at present-
ing three different methodologies capable of generating multiple geomodel realizations 
and thus, assessing uncertainty. A real dataset with high geological complexity is used 
to illustrate the methodology. The results are compared to a deterministic model used 
as a reference scenario.
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1. Introduction

The geological model is one of 
the main tools used to evaluate mineral 
resources and their viability as mineral 
reserves. Comprehending geological for-
mation processes of the mineral deposit 
and translating it into the model is es-
sential for planning and decision making.

Each subsurface geological unit or 
stationary domain is characterized by 
a volume and shape. The contacts be-
tween these different geological units are 
determined by complex discontinuities 
generated by intrusions, erosions, faults or 
different depositional processes. There is 
uncertainty in the limit’s determination in 
the subsurface, which directly impacts the 
estimated ore quantity and quality. Min-
ing project success relies on the informa-
tion about ore volume and content; in this 
sense, the geological model’s uncertainty 
must be assessed.

Construction of tridimensional 
geological models begins with the inter-
pretation of the mineral deposit, studies 
on the geological formation process and 
geological data integration. Traditionally, 
geological models are created explicitly, 
from interpreted geological sections and 
surface maps. Different domains are digi-
tized in a time consuming and laborious 
process, which does not permit prompt 
model updates as new data is acquired. 
The explicit methodology transfers into 
the model the geomodeler’s judgment and 
expertise. The result is a single subjective 
model that does not allow reproduction 
(Silva, 2015). Due to the time constraint, 
it is rarely possible to create different 
explicit models to assess the uncertainty 
associated with the geological model.

Implicit methods emerged to replace 
manual digitizing with automatic pro-

cedures to overcome the disadvantages 
associated with the traditional method-
ology. Implicit methods are based on 
the creation of a continuous mathemati-
cal representation of an attribute on a 
given volume (Cowan et al., 2003). These 
methods are classified as deterministic, in 
which only one model is generated, and 
stochastic, in which multiple possible 
scenarios for the mineral deposit are 
generated. Implicit deterministic methods 
are straightforward, flexible and fast, 
drastically reducing the time required to 
construct geological models, along with 
new information incorporation being 
fast and easy. Implicit established meth-
ods are: discrete smoothed interpolation 
(Mallet, 2002), potential field method 
(Chilés et al., 2004, Calcagno et al., 
2008) and signed distance interpolation 
by radial functions (RBF) (Cowan et al., 
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2002; Cowan et al., 2003). All implicit 
methodologies share the same mechan-
ics where the only difference lies in the 
volume function.

Signed distances are by far the most 
used volume function for implicit model-
ing. Signed distances are calculated as 
the Euclidean distance between a sample 
and the nearest sample coded with an 
opposite indicator (belonging to a distinct 
lithotype), calculated distances are signed 
to indicate if the sample belongs to the do-
main being modeled. Distance values are 
interpolated to unsampled locations, and 
positive or negative values for interpolated 
distances determine whether a location 
belongs or not to a given domain. This 
method is intended to generate binary 
models in which the contact is defined 
by the zero isosurface. Silva and Deutsch 
(2012) presented an extension of this 
technique to multiple geological domains 
modelled simultaneously, by retaining the 
category responsible for the minimum 
estimated distance.

Scarce data precludes the exact 
location of the contacts. The exact loca-
tion is unknown in all its extent, and that 
is why the uncertainty of the contacts 

must be assessed. Deterministic mod-
els cannot assess contact uncertainty. 
However stochastic techniques based on 
geostatistical simulation, such as indica-
tor simulation and truncated Gaussian 
simulation (Journel, 1989; Matheron et 
al. 1987), can. These techniques require 
great computational effort and have been 
developed to build multiple outcomes for 
the geological domains.

Distance function can be modified 
to assess contact uncertainty. Cárceres 
et al. (2011) present a methodology in 
which distance values are transformed 
into normal distributions conditionally 
simulated. Truncating distributions at 
locations where distance is equal to 
zero results in the contact variability. 
Wilde and Deutsch (2011) proposed the 
calibration of a parameter C to generate 
a band of uncertainty. Within this region 
(uncertainty band), uniform values are 
simulated, which are then compared 
against the interpolated values. As a re-
sult, multiple realizations of the geological 
model are generated.

Another alternative to generate 
multiple geological domain realizations, 
is based on the so-called Multipoint 

Statistics Simulation (MPS) that uses 
a training set to create conditioning 
probabilities from where scenarios of 
geological events are drawn. Each sce-
nario aims at reproducing the geological 
characteristics of the training images. 
The method was initially proposed by 
Guardiano and Srivastava (1993), but 
several variations have been developed 
based on the initial workflow, such as 
the SNESIM algorithm developed by 
Strebelle and Journel (2001) and the 
method proposed by Silva and Deutsch 
(2012) that uses multiple training im-
ages. In order to access the uncertainty 
of the contacts, Boucher et al. (2014) 
proposed the contactsim algorithm that 
allows to disturb the contacts between 
domains in a zone obtained from a 
reference model. Although efficient, the 
method demands conceptual models or 
realistic training images that require 
effort for their production or in some 
cases, they cannot be built due to the 
lack of information.

This study investigates three meth-
odologies used to assess geologic model 
uncertainty, applying them to a real iron 
ore deposit.

2. Methodologies

3. SNESIM multipoint geostatistics

Three methodologies for uncertainty 
assessment are presented. The first one 
consists of a multipoint statistics simula-

tion algorithm aiming at reproducing 
lithology proportions, spatial distribution, 
shape, volume and contact patterns. The 

other two methodologies are based on 
distance functions to generate implicit 
models and the related uncertainty.

Models of natural phenomena are 
usually done through images construct-
ed from interpretation, representation 
and modeling of these processes. In 
multipoint geostatistic methods, a train-
ing image (TI) provides information 
to serve as a repository of the spatial 
patterns and their probabilities found 
in the phenomenon.

One of the first MPS algorithms was 
presented by Guardiano and Srivastava 

(1993), based on the sequential simulation 
paradigm, in which the inference of the 
conditional probabilities from which the 
simulated values are drawn, are obtained 
through conditional proportions obtained 
scanning the TI for patterns. This train-
ing image scanning process is performed 
from a template or search neighbor-
hood τ

J
, composed of a set of J vectors  

{h
j
,j=1,…,J}, that informs which TI points 

will be considered relevant in relation to 

a central point u0 of the grid node to be 
simulated. Figure 1 presents an example of 
a two-dimensional search neighborhood 
with four vectors. The simulation draws a 
value from a conditional probability mass 
function (cpmf) at an unsampled location 
of the simulation grid. As this method 
requires scanning the training image for 
each node of the grid to be sampled dur-
ing the simulation, it generates a large 
computational demand.

Figure 1
Example of template or search neigh-
borhood with 4 vectors (Rasera, 2014).
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As an alternative, Strebelle (2002) 
proposed to scan the training image only 
once, and storing the TI patterns in a 
file structure known as the search tree. 
This file allows access to the information 
needed for simulating each unsampled 
node. The SNESIM algorithm developed 
aggregates two parts: construction of the 
search tree in which all the proportions 
taken from the training image are stored, 
and the part of the simulation in which the 
proportions are read and used to retrieve 
simulated values.

Considering a random variable S, 
which can belong to K classes {s

k
,k=1,…,K} 

in which S represents different categories. 
The training image is the representation 
of how the values of a given property s

k
 are 

distributed and connected in space (Stre-
belle, 2002). Thus, the training image is 
considered a non-conditional representa-
tion of the random function S(u), a prior 
conceptual representation of the spatial 
distribution values of the variable s

k
, which 

does not necessarily need to honor the 
location of the sample set n(u) of s

k
.

This algorithm can be summarized 
in a series of steps: first scan the training 
image to generate a search tree at a chosen 
size (template) τ

J
={h

α
, α=1,…,n}. Then, de-

fine a random path to visit each location  

u only once and generate a conditional 
cumulative distribution function (ccdf) 
at location u

j
 using proportions extracted 

from TI. Randomly draw one value from 
the ccdf as a possible category at location u

j
 

and use it as a conditioning value for other 
locations. Repeat the process until all grid 
nodes are visited. Multiple realizations are 
obtained by repeating the process using 
different random paths.

The image on the left in Figure 2 
shows a training image with two cat-
egories: white and black, and the search 
template for the central region in gray, 
referring to the unknown location to 
be simulated. Adjacent locations (local 
neighborhood) listed as 1 through 4 refer 
to known or unknown categorical data, 
defined as a data event. These numbers are 
the conventional order to set up the search 
tree. The modeler informs the maximum 
number of points and the geometric pa-
rameters of an ellipsoid, indirectly defin-
ing the template: dimensions in terms of 
its axes and rotation angles. The training 
image with two categories is scanned for 
the construction of the probability distri-
bution, considering the search template.

The data structure called search tree 
is defined within a neighborhood to reduce 
the size of the object searched (number of 

pixels), optimizing computational time for 
assembling cpmf, which is used to draw 
variables at a given location. The size of 
the template controls the complexity of 
the search tree and the memory and time 
spent during the simulation. The number 
of categories and the size of the TI also 
affect the size of the search tree.

Figure 2 on the right shows a 
search tree constructed from the train-
ing image and the template. Note that 
each level corresponds to a region of the 
search neighborhood. The search tree 
begins with the determination of the 
root, as an empty data event, in which 
the associated frequency corresponds to 
the overall proportion of black or white 
categories found in an eroded TI. This 
image is considered eroded by being 
equivalent to the largest subset of the 
training image, in which the template 
is fully contained. The variables B and 
P indicate the number of occurrences of 
the categories at the unknown location 
and the frequency of each pattern given 
from the eroded TI. In this way, the 
search tree stores the number of occur-
rences of each category in relation to the 
gray central node of the template, which 
results in the proportion of occurrence 
of the two categories.

Figure 2
Training image for two categories 

and search template shown on the 
left. On the right the search tree obtained 
from the training image and the template. 

(Modified from Boucher, 2009).

4. Implicit metods

4.1 Distance function

Implicit modeling techniques aim 
at assisting the geological interpreta-
tion and the construction of models, by 
demarcating the boundaries between 

domains in an objective way, allowing 
fast and accurate reproduction.

Some methodologies based on dis-
tance functions and simulations gener-

ate multiple geological models and make 
possible the uncertainty assessment.

Distance functions used to model 
geological domains are based in the 
Euclidian distance between one sample 
and another sample coded as a different 
indicator, which makes it necessary to 

previously code the database as belong-
ing or not to the geological domain be-
ing modeled. The value of the distance 
function is given by the shortest distance 
between two samples, which are coded 

as opposite indicators. If the location 
belongs to the domain being modeled, 
the value of the distance function is 
negative, otherwise positive, according 
to the equation:

df ( u
α
 ) = + ( u

α 
- u

α'
 ),   if i (u

α
) = 0 

df ( u
α
 ) = - ( u

α 
- u

α'
 ),   if i (u

α
) = 1
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There are three ways to deter-
mine the value of the C parameter: 
empirical determination, partial cali-
bration and full calibration. The em-
pirical calibration is based on sample 

spacing and on the deposit̀ s geological 
knowledge. Interpreting geological 
sections and comparing interpolated 
models enables partial calibration. 
The full calibration, which is time-

consuming and laborious, compares 
the multiple distance function inter-
polated models (reference models) to 
determine the C parameter (Karpekov 
& Deutsch, 2016).

Once the signed distance is cal-
culated, interpolation permits obtain-
ing the distance function at all grid 
nodes. Thus, interpolating a modified 
distance function by the parameter 
C generates the uncertainty zone be-
tween values of -C and +C on the 
interpolated grid. Any interpolation 
method could be used such as: inverse 
of distance, ordinary global kriging, 
locally varying anisotropy (LVA) krig-

ing or radial basis functions produce 
satisfactory results. Global interpola-
tion algorithms generate smooth and 
artifact free models, and in this sense 
are recommended. However, due to the 
high computational demand required, 
global algorithms cannot be applied 
to all cases (Wilde & Deutsch, 2011). 
Ordinary kriging could be used as an 
alternative, which makes it necessary 
to consider a large search neighbor-

hood and great amount of data within 
this neighborhood.

The distance function variogram 
exhibits non-stationary behavior, i.e., 
it does not reach a sill. The Gaussian 
model is indicated due to its parabolic 
behavior near the origin, which con-
tributes to defining smooth boundaries 
between domains when these types of 
variograms were used combined with 
ordinary kriging.

There are two main ways to gen-
erate multiple boundary realizations: 
direct signed distance conditional simu-
lations and non-conditional simulations 
compared against interpolations in the 
uncertainty zone.

Multiple contacts generated by 
direct signed distance conditional simu-

lations in fine grids use a large search 
neighborhood and a great amount of 
data. The methodology is very sensitive 
to simulation parameters and can lead 
into unrealistic models, very softened or 
with the excessive presence of salt and 
pepper texture, which is not geologi-
cally realistic.

Non-conditional simulations gen-
erate domain limits by comparing each 
realization with the interpolated value 
within the uncertainty zone. For such 
purpose, it is necessary that the simulation 
be performed uniformly between - C and 
+ C, and the standard normal value, y' (u), 
be simulated and transformed by:

where df' ( u ) is the value of the 
simulated distance function, y' (u) is 
the standard normal value of the non-
conditional simulation, and G-1 is the 
determination of the value of the nor-
mal standard cumulative distribution 
corresponding to y' (u). To ensure that 

the values belong to the determined 
uncertainty zone, simulated values are 
multiplied by 2C and subtracted from C.

To classify a region as belong-
ing or not to the domain of interest, 
a comparison is performed between 
the interpolated and simulated values. 

Interpolated values smaller than simu-
lated values represent locations inside 
the domain, otherwise, the location is 
outside the domain. The limit is defined 
were the simulated and interpolates 
values are the same, as demonstrated 
in the Figure 3 below:

4.2 Distance function interpolation

4.3 Contact simulations

5. Case study

df' ( u ) = 2 * C * G-1 ( y' (u) ) - C      ∀u, ∀l

Figure 3
Sites classification comparing 

estimated and simulated values 
(Modified from Wilde e Deutsch, 2011a).

The case under study was conduct- ed in one of the biggest iron ore deposits in the world. The dataset comprehends 

The C parameter controls the uncer-
tainty bandwidth by increasing the differ-

ence between positive and negative distance 
function values. It works by adding C to 

positive values outside the domain and sub-
tracting from negatives inside the domain:

df ( u
α
 ) = df ( u

α 
 ) + C,   if i (u

α
) = 0 

df ( u
α
 ) = df ( u

α 
 ) - C,   if i (u

α
) = 1
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Figure 4
The figure shows the 

location of the samples; the image of 
the upper region shows the plan view of 
the drilling hole collars and geological 

sections. The bottom image shows a 
longitudinal vertical view of the data.

Figure 5
The upper figure shows 

the reference model of the iron ore 
mineralization. The zone of uncertainty 
with 200m is shown in the lower image.

The uncertainty on boundaries 
between geological domains can be as-
sessed by delimiting a region in which 
the occurrence of the contact is likely 
to occur, generating multiple possible 
scenarios at this marked location. 
There are different ways of determin-
ing the uncertainty zone. Boucher 
(2004) determines the zone of uncer-

tainty considering the limits between 
domains in the training image. Souza 
(2017) determines this region consid-
ering a coefficient U of the smallest 
signed distances, which reflects contact 
uncertainty. Another alternative sug-
gested by Munroe and Deutsch (2008) 
is to modify the distance function by a 
parameter C, interpolate this modified 

function for all nodes of the grid and 
select the region between -C and +C 
signed distance values as the uncertain 
zone. In this case study, the zone was 
delimited based on the contacts from 
the reference model, i.e. a zone within 
200m was established to access the 
model uncertainty and compare meth-
odologies fairly (Figure 5).

The first method applied consists in 
quantifying the uncertainty by using the 
SNESIM algorithm within the uncertainty 
zone. It is necessary to erode the geological 
reference model in the uncertainty region 
and use the training image to acquire 
domain patterns within this region. Mul-
tiple contacts are generated simulating the 
categorical property inside the region using 
the patterns obtained previously. For each 
realization of the geological model, it is 

necessary to merge the SNESIM realiza-
tion with the frozen blocks, outside the 
uncertainty zone.

In order to facilitate the comparison 
between the methodologies, similar param-
eters were used for all the methodologies. 
In this sense, the search strategy parameters 
and grid characteristics are shown in Table 
1. As a result of the simulations, 20 visually 
satisfactory realizations were generated, 
realistically reproducing the domains of 

each category.
Figure 6 shows the visual validation 

for realization #15, in which sample points 
are confronted with three sections from 
the model evidencing that the data were 
honored during the simulation. In addition, 
the fluctuation of the proportions of each 
geological domain remained similar to the 
reference model.

Implicit models aim at providing ob-
jective, flexible models that allow reproduc-

6924 samples obtained from 718 core 
samples and 44236 data points obtained 
from interpreted geological sections. 
Different lithotypes present in the de-
posit were grouped into four categories 

that represent the main aspects of the 
mineralization: hematite in category 1, 
structural laterite in category 2, jaspelite 
in category 3 and waste in category 0 
(Figure 4). The deterministic model was 

made available by the iron ore mine staff 
and was used as reference and as the 
training image (Figure 5). It was con-
structed from mixed methods combining 
indicator kriging and explicit modeling.



648

Assessing geologic model uncertainty – a case study comparing methods

REM, Int. Eng. J., Ouro Preto, 72(4), 643-653, oct. dec. | 2019

Conditional simulation is performed 
within the zone of uncertainty using the 
calculated distances as conditioning data. 
The Sequential Gaussian Simulation meth-

od (Goovaerts, 1997) was selected for the 
process, which resulted in twenty distance 
function realizations for each category in 
the total of eighty realizations performed 

using the GSLIB software (Deutsch & 
Journel, 1992). The parameters used in the 
simulation are shown in Table 1.

Figure 6
Easting slices from realization #15 
demonstrating that the data points ma-
tched with SNESIM model. Note that the 
transitional zones also respect the data 
points. In the images, the dark blue repre-
sents waste, the light blue hematite, the 
yellow superficial laterite and red jaspillite.

Table 1
Main parameters used in simulation and kriging: search radius, rotation, number of samples and grid dimensions.

Table 2
Summary of spatial continuity of data sets. In the upper table, the models adopted for the variography of the signed distances for the 

direct signed distance simulation methodology are presented. The signed distances calculated for each category are represented by the 
data sets SD-0, SD-1, SD-2 and SD-3. The table below presents the models adopted for the boundary simulation methodology. The 

three subsets created by the hierarchical approach are represented by G-I, GII and G-III.

Number of samples Kriging Grid Dimension

Max. Min. Oct. Az Dip Rake Radius Max. Radius Int. Radius Min. Dim. X Dim. Y Dim. Z

45 3 3 90 0 0 2000 1500 1000 25 25 15

Number of samples Simulation Grid Dimension

Max. Min. Oct. Az Dip Rake Radius Max. Radius Int. Radius Min. Dim. X Dim. Y Dim. Z

45 3 3 90 0 0 850 500 350 12.5 12.5 12.5

Direct signed distance simulation

Data
Structures Range

N. E. Gauss 1 Gauss 2 R1 90|00 R1 00|00 R1 00|90 R2 90|00 R2 00|00 R2 00|90

SD-0 0.00 0.67 0.33 6686.58 1461.14 1005.81 6710.41 1461.14 1029.30

SD-1 0.00 0.01 0.99 6397.99 1759.88 1181.48 6397.99 1759.88 1181.48

SD-2 0.00 0.22 0.78 10625.10 1809.18 568.64 10710.09 5480.20 568.64

SD-3 0.00 0.34 0.66 6508.65 1366.44 1119.57 6521.02 1366.44 1826.35

Boundary Simulation

Data Structures Range

N. E. Gauss 1 Gauss 2 R1 90|00 R1 00|00 R1 00|90 R2 90|00 R2 00|00 R2 00|90

G-I 0.00 0.33 0.67 11782.11 1245.42 513.78 11990.13 15168.39 513.95

G-II 0.00 0.99 0.01 5683.50 1200.42 784.80 5723.59 1201.06 779.10

G-III 0.00 0.42 0.58 964.95 1021.68 614.65 22448.82 10181.35 533.14

ibility. Both of the next techniques are based 
on distance functions to generate multiple re-
alizations for the contacts between domains.

The first implicit technique directly 
simulates the signed distances within the 
region of interest. First, it is necessary to 

calculate the signed distances for all sample 
locations and for each category. A spatial 
continuity analysis is needed for the cal-
culated distances, and the results obtained 
are shown in Table 2. The signed distance 
variogram shows, as expected, nonstationar-

ity behavior. Thus, the variogram tends to 
increase exponentially with the pair’s sepa-
ration distance. This feature may make the 
definition of the variogram distance function 
model somewhat arbitrary, primarily in the 
definition of its range.
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Each realization within the uncer-
tainty zone is constructed by selecting 
the lowest (most negative) value for the 
simulated distance functions on each 
block. Considering, for example, the first 
realization of each simulated distance 
function, for each grid node distance 
function, the simulated value is compared 
and the category that represents the most 

negative value assigned to the node results 
in one realization of the model in the 
uncertainty zone.

As before, to obtain each realization 
of the geological model, it is necessary to 
merge the direct signed distance simula-
tion realization with the pre-defined 
(frozen) blocks outside the uncertainty 
zone. Twenty realizations obtained real-

istically reproduced the domains of each 
category. Visual validation of realizations 
demonstrated that the sampling points 
were honored during the simulations. 
Realization #10 validation is shown in 
Figure 7. The fluctuation of the propor-
tions of each geological domain remained 
similar to the reference model, presenting 
small difference among models.

In the second methodology of 
boundary simulation, the signed dis-
tance interpolation is compared against 
non-conditional simulations within the 
uncertainty region, resulting in multiple 
realizations. In the previous method-
ology, the calculation of the signed 

distances is straightforward; however, 
the unconditional methodology using 
parameter C requires a hierarchical 
approach when dealing with multiple 
lithologies (Amarante et al., 2018). 
Normally, this hierarchical approach 
is done geochronologically, that is, the 

domains are constructed from the oldest 
to the most recent.  However in this case, 
hierarchy was established by the amount 
of information and structural patterns. 
In this way, the categories were divided 
into subsets according to the hierarchy 
shown in Figure 8.

Figure 7
Easting slices from realization #10 demons 
trating that the data points matched with 
direct signed distance simulation realiza-

tion. All data points are honored in the mo-
del realization. Note that even the isolated 

data were represented in small structures in 
the model. In the images, the dark blue re-
presents waste, the light blue hematite, the 
yellow superficial laterite and red jaspillite.

Figure 8
The hierarchical division of the database 

and construction of boundary realizations.

The same 200 m value, selected for 
the size of the uncertainty zone, was used 
as parameter C. Consequently, the dis-
tance functions previously obtained were 
modified, adding C on samples outside the 
domain and subtracting C from samples 
inside the domain.

Spatial continuity analysis from 
the modified distance functions were 
performed individually for each data set. 
Each data group has different variograms 
in order to realistically represent the spa-
tial continuity of the domains represented 
by each group. Table 2 summarizes the 
directional variograms obtained, adopt-
ing the direction of greater continuity 
N90º / dip 00º.

As the contact is simulated, it is rec-
ommended to use a Gaussian model vario-
gram for the non-conditional simulations, 
as it allows the short-range continuity to 
be reproduced (Wilde & Deutsch, 2011). 

Also, it is recommended to use a small 
nugget effect to stabilize the mathemati-
cal calculation. Contact roughness can be 
controlled by the variogram range.

The modified distances were in-
terpolated by ordinary kriging using the 
same grid of the reference model. Non-
conditional simulations were performed 
within the zone of uncertainty, using the 
Sequential Gaussian Simulation (Goo-
vaerts, 1997) implemented at GSLIB 
(Deutsch & Journel, 1992). Although the 
simulation is not distance conditioned, the 
simulation used the same spatial search 
strategy used in the previous methods. 
The parameters used in kriging of each 
set of data and used in the non-conditional 
simulation are shown in Table 1.

In this last method multiple realiza-
tions were obtained by classifying each 
grid node within the uncertainty zone by 
comparing interpolated and simulated 

values. When the interpolated value is less 
than the simulated value, the location is 
assigned as internal to the domain, and if 
the interpolated value is greater than the 
simulated value, the location is assigned as 
external to the domain. This classification 
is performed for all grid nodes in the zone, 
contemplating all contacts between the 
lithologies separated in pairs.

The construction of the boundary 
realizations follows the same criteria 
established before, grouping lithologies 
in one model following the hierarchy 
and generates the realization within the 
uncertainty zone. Each realization of 
the geological model is constructed by 
merging the boundary realization with 
the frozen blocks outside the uncer-
tainty zone. Realization #15 validation 
is shown in Figure 9 and demonstrates 
that the sampling points were honored 
during the simulation.
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Figure 9
Easting slices from 
realization #15 showing 
that data points match with boundary 
realization. Note that even in transition 
zones, the model generated honors the 
data. In the images, the dark blue repre-
sents waste, the light blue hematite, the 
yellow superficial laterite and red jaspillite.

Figure 10
The image graph shows the variability 
obtained by comparing realizations of 
each methodology. The smaller and larger 
volumes of blocks of each category obtai-
ned using the different methodologies are 
compared with the reference model Lito 4.

The spatial continuity from the 
geological domains directly affects the 
evaluation of mineral resources, since 
it determines the volume of ore avail-
able. Thus, the impact is significant in 
estimating the ore tonnage above cutoff, 
leading to biased forecasts, errors in 
mine planning, unexpected costs in the 
operation and deviations in expected rev-
enues (Srivastava, 2005). The bar graphs 
(Figure 10) describe the volumetric vari-
ability obtained with the several realiza-
tions constructed by the three methods:  
SNESIM, direct signed distance simula-
tion and boundary simulation.

The volumetric variability obtained 
in the simulation can be evaluated by 
comparing the maximum and minimum 
number of blocks for each category in the 
zone of uncertainty, as shown in Figure 
10. The deterministic geological model 
is used as reference for model propor-
tions within the uncertainty zone. Table 
3 presents the maximum and minimum 

number of blocks for each category as well 
as the values of the difference obtained in 
the simulations.

The volumetric variability obtained 
when applying SNESIM is represented 
by the red bars. Waste and jaspilite show 
a small relative variability of 1.59% 
and 2.43%, respectively while hematite 
and laterite presented higher variability 
of 2.54% and 2,76%, respectively. A 
distinct behavior was observed in the 
waste and laterite, where the variability 
obtained in the realizations is far from 
the volume presented in the reference 
model. The process systematically over-
estimated waste over laterite, which was 
underestimated in all realizations.

The green bars represent the val-
ues obtained in the direct signed dis-
tance simulation methodology, which 
shows the smallest volumetric differ-
ence obtained when comparing the 
realizations and the reference model. 
The four categories presented a small  

variability among realizations, the highest  
variability obtained belongs to the lat-
erite of only 0.17%. When comparing 
the difference between realizations with 
the reference model, it is noted that the 
difference among realizations is smaller 
than the difference between these and 
the reference model.

The results of the boundary simu-
lation methodology are shown by the 
blue bars, in which the significant dif-
ference between max / min values is 
noted, reaching a variation of 31.18% 
for laterite and 22.96% for jaspilite, and 
a smaller variability for waste of 17.37% 
and hematite of 18.5%. This variability 
demonstrates the need to evaluate the 
uncertainty and the possible impact of 
this variability on the mineral project. 
It is noteworthy that the volume of each 
reference model domain belongs to the 
range of variability of the realizations, 
which makes the variability consistent 
for the evaluation of the uncertainty.

 Boundary Simulation Direct signed distance simulation SNESIM

 Max. Min. Difference Max. Min. Difference Max. Min. Difference

Waste 243889 203575
40314 

(17.37%)
226512 226409 103 (0.04%) 223159 219459

3700 
(1.59%)

Hematite 173394 145371
28023 

(18.5%)
158867 158688 179 (0.12%) 158845 154995

3850 
(2.54%)

Laterite 70933 53678
17255 

(31.18%)
61188 61096 92 (0.17%) 67123 65593

1530 
(2.76%)

Jaspelite 230412 181207
49205 

(22.96%)
206867 206705 162 (0.08%) 210759 205556

5203 
(2.43%)

Table 3
Summary of categories volume variability obtained in each methodology.
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The geological sections presented in 
Figure 11 and Figure 12 allow to compare 
models generated by the three methods 
and the Lito 4 reference model. The main 
objective in the construction of geological 
models is to obtain meaningful representa-
tions from the geobodies and subsurface 
structures. The realizations generated 
by all methodologies presented realistic 

structures, as demonstrated in the easting 
section slice #50 (Figure 11) and northing 
sections slice #180 (Figure 12).

Note in Figure 11 that in region 
1, demarcated by the circle, there is the 
lack of intrusive rocks present in the 
reference model and absent in the other 
models. The models generated by signed 
distances were insensitive to some small 

structures present in the reference model, 
such as small intrusions and jaspelite 
lenses demonstrated in circle 2. In order 
to reproduce small-scale structures, 
SNESIM generates innumerable intru-
sive bodies shown in circle 3, however, 
many of them are without geological 
meaning as isolated geobodies and scat-
tered blocks.

Figure 11
The image presents 

the comparison between 
easting model sections slice #50 

and the reference model, the first 
image on top. The second image represents 

the boundary simulation #15 realization, 
the third image the direct signed distance 
simulation #15 realization, and the image 

below the SNESIM #15 realization.

Figure 12
The image presents the comparison be-

tween northing model sections slice #180 
and the reference model, the first image 
on top right. The second image on top left 
represents the boundarysimulation #10 
realization, the third image on bottom 
right the direct signed distance simulation 
#10 realization, and the SNESIM #10 
realization on the bottom left image.

Figure 12 shows northing section 
slice #180 of the reference model and 
realization #10 of each method. Note 
in 1 that the intrusive rock structure 
present in the reference model is not 

reproduced by any of the methodolo-
gies. Most of the geological structures 
of the reference model were well re-
produced, however a few structures 
generated during the simulation do 

not present realistic geological char-
acteristics for this deposit, such as the 
laterite discontinuous on the surface 
at 2, waste isolated and dispersed 
blocks at 3.

It is possible to construct maps 
or probability models from multiple 
geological domain realizations. In these 
models, we can identify the probability 
of a given location, belonging or not to 
a particular geological domain. Figure 
13 shows the probability models gener-
ated using realizations from the three 
methods, one image for each category 
varying from 0% in blue to 100% in 
red as the probability of that category.

Note in the upper row of waste 

on the left image the presence of the 
intrusive rock in the SNESIM model, a 
feature that is absent in the realizations 
from other methodologies. In the sec-
ond row, the variability of the hematite 
is depicted. It is worth mentioning the 
irregular variability within the domain 
present in the SNESIM methodology 
in the right image. The images present 
in the third row show the variability 
of the laterite, highlighting the high 
variability shown by the boundary 

simulation methodology in the right 
image. The bottom row shows the vari-
ability of the jaspilites that makes clear 
the presence of the intrusive rocks that 
crosscut the reference model but in the 
realizations, it only appears evidently 
in the base of the models. The images 
of the central column referring to the 
direct signed distance simulation real-
izations demonstrate the small differ-
ence obtained by the direct simulation 
of the signed distances.
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Figure 13
The figure shows sections of probability 
maps for geological contacts in which each 
column represents a given methodology. 
Each line represents a distinct category, star-
ting from waste in the upper images, follo-
wed by the hematite and the laterite, ending 
with the three images from jaspilites. The 
color scale represents the associated pro-
bability of occurrence of a certain category, 
varying from 0% in blue to 100% in red.
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