UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE EDUCAÇÃO FÍSICA, FISIOTERAPIA E DANÇA

Eduardo Fallavena Freitas

Effects of strength training protocols on sprint performance of soccer players: A systematic review

Porto Alegre 2021

Eduardo Fallavena Freitas

Effects of strength training protocols on sprint performance of soccer players: A systematic review

Trabalho de conclusão de curso apresentado na Escola de Educação Física, Fisioterapia e Dança da Universidade Federal do Rio Grande do Sul como requisito para aprovação no curso de Bacharelado em Educação Física.

Orientador: Professor Dr. Eduardo Lusa Cadore

Porto Alegre

2021

Eduardo Fallavena Freitas

Effects of strength training protocols on sprint performance of soccer players: A systematic review

Conceito final:

Aprovado em dede.....

BANCA EXAMINADORA

Prof. Dr. Giovani dos Santos Cunha - UFRGS

Porto Alegre – RS Novembro de 2021

AGRADECIMENTOS

Quero agradecer, em primeiro lugar, à minha mãe, Katia Oliveira Fallavena por estar sempre do meu lado me dando suporte para que eu possa realizar todos os meus sonhos e conquistar meus objetivos. Sem os esforços dela nada disso seria capaz. Uma mulher que abriu mão de tudo para me proporcionar condições financeiras e emocionais para eu ter uma vida com sentido e propósito. Também agradeço ao meu falecido vô, Antonio Soares Fallavena, por junto com minha mãe sempre ter me dado condições para me formar um ser humano com valores e princípios. Tudo o que faço hoje, é por vocês.

Agradeço aos meus amigos, que mesmo em momentos ruins estiveram ao meu lado acreditando no meu potencial como profissional e como pessoa. Especialmente ao Rafael, Thomaz e Pedro. Peças fundamentais no meu crescimento e desenvolvimento.

Por fim, agradecer ao meu orientador Professor Dr. Eduardo Cadore por me dar a oportunidade e suporte para encerrar esse ciclo muito importante na minha vida. Não esquecendo também do Rafael Grazioli que incansavelmente me ajudou a concluir esse sonho.

Muito obrigado a todos!

To never forget:

"If you can dream it, you can do it."

Walt Disney

Trabalho de conclusão de curso em modelo de artigo científico

Revista Científica: European Journal of Sport Science

Categoria do artigo: Revisão sistemática.

Título do artigo: Effects of strength training protocols on sprint performance of soccer players: A systematic review

Autores: Eduardo Fallavena Freitas¹, Rafael Grazioli¹, Filipe Veeck¹, Eduardo Lusa Cadore^{1.}

¹Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil.

Número de palavras no resumo: 242

Número de palavras no corpo do texto: 6203

Tabelas: 2

Figuras: 1

Autor correspondente:

Eduardo Fallavena Freitas

E-mail: fallavenaef@gmail.com

Escola de Educação Física, Fisioterapia e Dança – Laboratório de Pesquisa do Exercício (LAPEX) - Universidade Federal do Rio Grande do Sul (UFRGS).

Rua Felizardo, 750 – Bairro Jardim Botânico - CEP: 90690-200 - Porto Alegre – RS, Brasil.

Phone: +55 51 33085894.

RESUMO

Sprints lineares, com mudança de direção e repetidos desempenham um papel importante no futebol. Essas ações são fundamentais para os gols e as demandas em alta velocidade têm aumentado ao longo dos anos. Embora o desempenho de sprint seja crucial para o futebol moderno, os efeitos positivos encontradas por meio do treinamento de força são altamente sensíveis (ou seja, apenas 1-5% de aumentos no desempenho de sprint). Portanto, a assertividade e a tomada de decisão para um protocolo de treinamento de forca eficaz visando melhorar as habilidades de sprint de jogadores de futebol são absolutamente importantes para treinadores de força e condicionamento físico e cientistas do esporte. Também faltam estudos de revisão que produzam uma compilação sistemática de resultados a fim de identificar a eficácia dos protocolos e suas características, aumentando as habilidades de prescrição de treinadores de força e condicionamento. O objetivo do presente estudo foi revisar e integrar sistematicamente evidências sobre os efeitos do treinamento de força no desempenho de sprint linear, com mudança de direção e repetidos em jogadores de futebol. Foram identificados 34 estudos. Seis modalidades de treinamento foram encontradas com desfechos de desempenho de sprint no futebol. Treinamento de força tradicional e concorrente (11 estudos), pliometria e treinamento de potência (10 estudos), treinamento de sprints resistidos (6 estudos), treinamento excêntrico (3 estudos), treinamento Flywheel (2 estudos), treinamento baseado em velocidade (1 estudo) e eletroestimulação de corpo inteiro (1 estudo). Essas modalidades, em sua maioria, demonstraram resultados positivos importantes para o desempenho de sprint no futebol. No entanto, alta carga de trabalho de treinamento cardiorrespiratório, nível de aptidão física, doses de treinamento, volume e intensidade são fatores importantes para modular aumentos, diminuições e manutenção das habilidades de sprint.

Palavras-chave: treinamento de força; treinamento de potência; desempenho de sprint; mudança de direção; futebol.

ABSTRACT

The linear, with change of direction, and repeated sprint abilities play an important role in soccer. These actions are crucial for goals and the high-velocity demands for soccer players have been increased over the years. Although the sprint performance is crucial for modern soccer, the positive changes found through strength training are highly sensible (i.e., only 1-5% of increases in sprint performance). Therefore, the assertiveness and decision-making for an effective training protocol to improve sprint abilities of soccer players are absolutely important for strength and conditioning coaches and sport scientists. There is also a lack of review studies producing a systematic compilation of results in order to identify the effectiveness of the protocols and its characteristics, increasing the prescription skills of strength and conditioning coaches. The purpose of the present study was to review and integrate systematically evidences regarding the effects of strength training on linear, with change of direction, and repeated sprint performance in soccer players. Thirty-four studies were identified. Six training modalities were found with sprinting outcomes in soccer. Traditional and concurrent strength training (11 studies), Plyometrics and power training (10 studies), resisted sprints training (6 studies), Eccentric training (3 studies), Flywheel training (2 studies), Velocity-based training (1 study), and Whole-body electrostimulation (1 study). These modalities mostly demonstrated important positive results for sprint performance in soccer. However, highworkload of cardiorespiratory training, fitness status, training dosages, volume, and intensity are important factor to modulate increases, decreases, and maintenance of sprint abilities.

Key-words: strength training; power training; sprint performance; change of direction; soccer.

SUMMARY

INTRODUCTION	10
OBJECTIVES	11
METHODS	11
Study selection procedure	11
Intervention, controls, and outcome measures	12
Risk of bias assessment	12
Data Extraction	13
RESULTS AND DISCUSSION	14
Traditional and concurrent strength training	15
Resisted sprints training	18
Flywheel training	20
Plyometrics and power training	21
Velocity-based training	24
Eccentric training	25
Whole-body electrostimulation	26
CONCLUSION	27
REFERENCES	28

INTRODUCTION

The sprinting demands have been progressively increased in soccer during the past several years (Barnes et al., 2014). These actions are mandatory for more than half of goals scored during modern championships as well as soccer players are required to be faster over seasons (Haugen et al., 2014). During the last decade, the focus in soccerrelated research has shifted from aerobic (despite its predominance) to anaerobic demands. Elite/professional players have become faster over time while aerobic capacity has plateaued or decreased slightly (Haugen et al., 2014). Thus, the capacity of athletes to perform well and cope with these strenuous (and frequent) neuromuscular actions during matches is absolutely important. The outfield soccer players cover 9 to 12 km during a match, being 8% to 12% of high-intensity running or sprints. Wide midfielders and external defenders develop more high-intensity running and sprints compared with the other playing positions. Peak velocities during the game are 31 to 32 km/h. The players perform 17 to 81 sprints per game (i.e., >25km/h) with mean sprint duration between 2 and 4 seconds, mostly shorter than 20m. It is important to emphasize that running speed between 20 to 22 km/h is equivalent to the mean velocity in male elite endurance runners, and sub-elite sprinters run faster than 35 km/h (Haugen et al., 2014). Therefore, a well-trained soccer player can be considered untrained in terms of sprint abilities when compared to other sprint-related sports (Haugen et al., 2014). Positive training interventions diverge in terms of training-time investment and time-consuming, and this is a point to the training protocols be declined (or not) by team coaches. Taking into account these considerations, it is important to identify criteria for success to improve soccer-related sprinting skills. In this sense, sport science research has proposed diverse training protocols in order to improve sprint capabilities of soccer players (Loturco et al., 2017; Pareja-Blanco et al., 2017; Grazioli et al., 2020; Haugen et al., 2014).

It is consensus among soccer practitioners that combined strength/power training programs involving different movement patterns are able to transfer positive changes for sprinting abilities on the pitch (Silva et al., 2015). Strength/power training programs in soccer incorporate a significant number of exercises targeting the efficiency of stretch-shortening-cycle activities and soccer-specific strength-based actions (Silva et al., 2015). In addition, given the conditional concurrent nature of the sport, these components are often prescribed simultaneously with endurance requirements (i.e., small sided games,

high-intensity interval training, tactical activities) (Núñez et al., 2008; Suarez-Arrones et al., 2018), which could differently affect the neuromuscular adaptations due to aerobic interference effect (Loturco et al., 2015; Fyfe et al., 2014). However, although the sprint performance is crucial for modern soccer, the positive changes found through strength training are highly sensible (i.e., only 1-5% of increases in sprint performance) (Wong et al., 2010; Loturco et al., 2019; Grazioli et al., 2020). Therefore, the assertiveness and decision-making for an effective training protocol to improve sprint capabilities of soccer players are of utmost importance.

In this rationale, although there are several experimental studies regarding strength training on sprint capacities, there is also a lack of review studies producing a systematic compilation of results in order to identify the effectiveness of the protocols and its characteristics. These findings could increase the prescription skills of strength and conditioning coaches for improving soccer athletes' sprint performance.

OBJECTIVES

The purpose of the present study was to review and integrate systematically evidences regarding the effects of strength training on linear and with change of direction sprint performance in soccer players. Current study also aimed to review the training characteristics used in those studies, in order to identify the strength training interventions effectiveness for improving sprint abilities.

METHODS

Study selection procedure

This study was undertaken in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Liberati et al., 2009), and the used method was based on the minimum criteria established by the Cochrane Back Review Group (CBRG) (Furlan et al., 2009).

The search was conducted up to June 2021, using the following electronic databases: MEDLINE, accessed through PubMed, and PEDro (Physiotherapy Evidence Database). In addition, we performed a manual search in the manuscripts reference lists to detect studies potentially eligible for inclusion. The terms used were: "Resistance

Training" OR "Training, Resistance" OR "Strength Training" OR "Training, Strength" OR "Weight-Lifting Strengthening Program" OR "Strengthening Program, Weight-Lifting" OR "Strengthening Programs, Weight-Lifting" OR "Weight Lifting Strengthening Program" OR "Weight-Lifting Strengthening Programs" OR "Weight-Lifting Exercise Program" OR "Exercise Program, Weight-Lifting" OR "Exercise Programs, Weight-Lifting" OR "Weight Lifting Exercise Program" OR "Weight-Lifting Exercise Programs" OR "Weight-Bearing Strengthening Program" OR "Strengthening Program, Weight-Bearing" OR "Strengthening Programs, Weight-Bearing" OR "Weight Bearing Strengthening Program" OR "Weight-Bearing Strengthening Programs" OR "Weight-Bearing Exercise Program" OR "Exercise Program, Weight-Bearing" OR "Exercise Programs, Weight-Bearing" OR "Weight Bearing Exercise Program" OR "Weight-Bearing Exercise Programs" OR "Plyometrics" OR "Power Training" OR "Resisted Sprint Training" OR "Sled Training" AND "Professional Soccer Players" OR "Professional Football Players" OR "Professional Footballers" OR "Professional Soccer Athletes" OR "Professional Football Athletes" OR "Elite Soccer Players" OR "Elite Football Players" OR "Elite Soccer Athletes" OR "Elite Football Athletes".

Intervention, controls, and outcome measures

This review included experimental studies that assessed the strength training programs effects with or without other components on sprint capacity outcomes among soccer players. Parameters assessed were linear sprint times (i.e., 5m to 40m), change of direction sprint times, and repeated sprint ability outcomes. The inclusion criteria were: participants should be (1) male soccer players, (2) with sprint performance measures such as linear sprint times or velocities between 5m to 40m as well as change of direction sprint times, and (3) participating in a longitudinal strength training program. The exclusion criteria were as follows: (1) the inclusion of participants with neuromuscular injuries and (2) crossover design and pilot studies.

Risk of bias assessment

The Risk of bias assessment was performed by two investigators independently (F.V. and R.G.) and took into consideration the following characteristics of the included

studies: random sequence generation, blinding of outcome assessors, concealed allocation concealment, description of losses and exclusions, and intention-to-treat analysis. Studies without a clear description of these features were considered unclear or not reported. The risk of bias is demonstrated in Table 1 (Annex 1).

Data Extraction

Titles and abstracts of all identified articles by the search strategy were independently evaluated by two researchers, in duplicate (F.V. and R.G.). Abstracts that did not provide sufficient information regarding the inclusion and exclusion criteria were selected for full-text evaluation. In the second phase, the same reviewers independently evaluated these full-text articles and selected them in accordance with the eligibility criteria. Disagreements among reviewers were solved by consensus, and if disagreement persisted, a third reviewer will be consulted.

The data extraction was performed by the same two reviewers independently via standardized form. Information about interventions, outcomes and participants was collected. Discordance between reviewers will be solved by consensus or by a third reviewer. The primary outcomes analyzed were linear sprint times (i.e., 5m to 40m), change of direction sprint times, and repeated sprint abilities. In addition, intervention period, strength training models and protocols, and adverse events were informed and extracted. The Figure 1 shows the study selection procedures.

RESULTS AND DISCUSSION

All studies aimed to investigate the effects of strength training alone, in combination of other neuromuscular stimuli, or in a concurrent training program in soccer players. Searches in the electronic databases were performed on September 2021. We retrieved 107 studies (Pub-Med and PEDro databases), and 53 studies were excluded after titles as well as abstracts assessment, and inclusion criteria analysis. Thirty-four studies were eligible and included by database search and manual search (Figure 1). Studies characteristics are presented in Table 2 (Annex 2). Six training modalities to improve sprint performance were found during this review and it was demonstrated as traditional and concurrent strength training, resisted sprint training, flywheel training, plyometrics and power training, velocity-based training, eccentric training, and whole-body electrostimulation training.

Figure 1. Studies selection flowchart.

Traditional and concurrent strength training

In relation to traditional or concurrent training, eleven studies were found. Enright et al. (2015) compared the adaptive responses to two concurrent training programs frequently used in professional soccer players who compete in the English Premier League. In addition to completing their habitual training practices, the participants were asked to alter the organization concurrent training by performing strength training either prior to or after soccer-specific endurance training for 5 weeks. The authors suggested order and recovery periods of concurrent training could modulate the changes in sprint performance, although in small magnitudes. In this context, Jullien et al. (2008) analyzed the effects of specific leg strength training on sprint and agility performances in young professional soccer players. Twenty-six players were divided into 3 groups. One group performed individual technical work only, the other one performed a circuit designed to promote agility, coordination, and balance control (together with some technical work) and the squat group performed 3 sets of 3 repetitions (at 90% of one repetition maximum -1RM) and a sprint repetition after that. These training interventions were developed 5 times a week for 3 weeks. Before the experimental session and at the end of each week, agility, shuttle test with changes of direction, and 2 sprints over 10 and 7.32 meters were assessed. The authors concluded that linear and change of direction performance were not optimized with lower limb strengthening exercise (squat) at 90% of 1RM. Sprint performance improved in all 3 groups, however, more accentuated in the technical and coordination groups.

Other similar studies such as Keiner et al. (2014) tested a high number of players (n = 112) between 13 and 18 years of age. For almost 2 years, 1 group (control group) only participated in traditional soccer training, and the other group (strength training group) participated in an additional strength training program. The change of direction sprint performance of 34 professional soccer players of the first and second divisions in Germany were measured consistently. The authors demonstrated that long-term strength training improved the change of direction abilities. Moreover, Koundourakis et al. (2014) examined the effects of three seasonal training programs, largely different in strength volume, on 10 m and 20 m sprint performance assessed prior at the beginning of the preseason period, at the middle (mid-point), and at the end of the competition period (end-point). The authors suggested that the volume of strength training combined with

intensive soccer training caused important linear sprinting improvements. The study also assessed blood samples and identify the elevation of endogenous androgens as a result of the volume of strength training. In order to explore the influence of force orientation during strength training, Los Arcos et al. (2013) compared the effects of two strength training programs involving either purely vertically oriented or combining vertically and horizontally oriented exercises on acceleration and other soccer-relevant performance variables. Players trained two times per week during all the pre-season (5 weeks) and 3 weeks of the competitive season. Sprint performances over 5 and 15m were assessed demonstrating small improvements in 5m (P < .05; ES = 0.27 and 0.25 for vertical training)and vertical plus horizontal training, respectively) and 15m sprint times (P<.05; ES = 0.19 and 0.24 for vertical plus horizontal training, respectively). One study focused on core stability and neuromuscular control, Prieske et al. (2016) investigated changes in sprint performance following core strength training performed on unstable compared with stable surfaces in youth soccer players. Thirty-nine male elite soccer players were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. There were important improvements in 10-20-m sprint time (3%, P < 0.05, d = 2.56) after training for both groups. Also comparing different surfaces, Sanchez-Sanchez et al. (2020) examined the effects of 10-week (2/week) strength training on stable vs. unstable surfaces in young male soccer national-level U19 players. To our interest, repeated sprint ability and change of direction speed (Illinois COD test) were assessed. The strength training on unstable conditions in addition to regular soccer training was effective to improve repeated sprint ability. Related to repeated sprint ability, Spineti et al. (2015) compared traditional strength training and complex contrast training on the repeated-shuttle-sprint ability in twenty-two young male elite soccer players. The complex contrast training consisted of power exercises performed before high-velocity exercises and traditional strength training based on a set-repetition format through daily, undulatory periodization. The results demonstrated that complex contrast training provided a significant improvement in the repeated sprint ability (moderate effect size), while traditional strength training was able to improve maximal strength and morphological aspects.

Styles et al. (2016) examined if a simple in-season strength training program would result in 5, 10, and 20m improvements after a 6-week (2/week) in-season strength

training (85-90% 1RM) intervention. There were small yet significant improvements in sprint performance over 5 m (p \le 0.001, d = 0.55), 10 m (p \le 0.001, d = 0.45), and 20 m $(p \le 0.001, d = 0.31)$. This study highlighted the importance of developing maximal strength to improve short sprint performance. Using a concurrent approach, Wong et al. (2010) examined the effect of high-intensity running interval training and strength training. Thirty-nine players participated in the study, where both the experimental group and control group participated in 8 weeks of regular soccer training, with the experimental group receiving additional strength training and high-intensity interval training twice per week. The strength training consisted of 4 sets of 6RM (repetition maximum) of highpull, jump squat, bench press, back half squat, and chin-up exercises. The high-intensity interval training consisted of 16 intervals each of 15-second sprints at 120% of individual maximal aerobic speed interspersed with 15 seconds of rest. The improvements were significantly higher (p < or = 0.01) in the experimental group compared to control for 10m and 30m sprint times, demonstrating that high-intensity strength training additionally to cardiorespiratory training was able to improve acceleration. Zouita et al. (2016) observed the effect of strength training in fifty-two elite young soccer players (13-14 years) which were divided into experimental group and control group. For the experimental group, 2 to 3 sessions of strength training were introduced weekly in their training program for 12 weeks (4×3 weeks separated by 1-week recovery). Sprint tests (10-20-30 m) before and after training were tested and, compared to control group, the experimental group performed significantly better in sprint running after training (p < p0.01). In conclusion, the majority of studies involving traditional strength training showed important enhancements in linear and change of direction sprint performances of soccer players during pre-season or even in season.

Resisted sprints training

Currently, one of the most used specific strength training method to improve sprint abilities in soccer has been resisted sprints through sled towing or pushing. It was found six studies applying resisted sprints training in soccer. Firstly, Grazioli et al. (2020) investigated the effects of a 11-week moderate-to-heavy sled training intervention on 10m and 20m sprint times. Seventeen players were randomly allocated into 2 groups, based on different velocity losses: 10% of velocity decrease and 20% of velocity decrease. The velocity-based sled training consisted of 20-m resisted sprints with a progressive loading increase from 45 to 65% of body-mass throughout the intervention. Two-way repeated measures analysis of variance revealed a significant time-effect for decreases in 10m and 20m sprint times (p = 0.018 and p = 0.033, respectively), but without a time-group interaction, although greater magnitude-based inference was found for 10% of velocity decrease group. This study demonstrated that resisted sprint training with moderate-toheavy loads improved linear sprints in professional soccer players, specially using lower volume of sprints from lower velocity loss magnitudes (i.e., 10%). In other survey, Brahim et al. (2020) evaluated the effects of 6-week combined strength and resisted sprint training using both sled and weight vest compared with regular soccer training in thirtyfour male soccer players randomly assigned into a resisted sprint training group, using both weight vest and sled, and a control group. Sprinting ability (5 m and 20 m) were assessed and significant changes were observed (p < 0.01; ES = 0.97 for 20m sprint times). The authors concluded that strength training combined with resisted sprint training were more effective to improve sprint abilities in comparison to control group. Also comparing methods, De Hoyo et al. (2016) demonstrated the effects of 3 different low/moderate load strength training methods (full-back squat, resisted sprint with sled towing, and plyometric and specific drills training, 2/week during 8 weelks) on linear and with change of direction abilities in thirty-two soccer players. The full-back squat protocol consisted of 2-3 sets \times 4-8 repetitions at 40-60% 1 repetition maximum while the resisted sprint training was composed by 6-10 sets \times 20-m loaded sprints (12.6% of body mass). The plyometric and specific drills training was based on 1-3 sets \times 2-3 repetitions of 8 plyometric and speed/agility exercises. It was tested 20m sprint (10m split time) and a 50m sprint (30mm split time) as well as change of direction test (i.e., Zig-Zag test). Improvements in 30-50m sprints (ES = 0.45 - 0.84) were found in all groups in comparison to pretest results. Moreover, players in Plyometric and specific drills and Full back squat groups also showed substantial enhancements (likely to very likely) in 0-50 m (ES= 0.46-0.60). In addition, 10-20 m was also improved (very likely) in the Full back Squat group (ES= 0.61). Between-group outcomes showed that improvements in 10-20m (ES= 0.57) and 30-50 m (ES= 0.40) were likely greater in the full back squat group than in the Resisted sprint with sled towing group. Also, 10-20 m (ES= 0.49) was substantially better in the full back squat group than in the Plyometric and specific drills group. Plyometrics and traditional strength training were more effective than low-intensity resisted sprint to improve acceleration in soccer players.

Gil et al. (2018) compared a resisted sprint training with overload control versus an unresisted sprint training program in eighteen elite soccer players during 6 weeks. Both groups improved linear and change of direction sprinting abilities at all distances evaluated (Linear: 5m, 10m, 15m, 20m, 25m) and change of direction. Their findings support the effectiveness of a short-term training program involving resisted and unresisted sprint exercises to improve acceleration of soccer players. Recently and using heavier loads, Lahti et al. (2020) investigated 9 weeks of resisted sprints training in two soccer teams (control and experimental) while the experimental team was matched into two heavy resisted sled training subgroups based on their sprint performance. Subgroup one trained with a resistance that induced a 60% velocity decrement from maximal velocity and subgroup two used a 50% velocity decrement. Both heavy resistance subgroups improved significantly all 10-30-m split times (p < 0.05, d = -1.25; -0.62) and post-hoc analysis showed that 50% of velocity decreases improved significantly more compared to control group in 0-10m split-time (d = 1.03). Also using moderate-to-heavy loads, McMorrow et al. (2019) investigated the effect of resisted sprint training during the competitive season on sprint and change of direction performance in professional soccer players during 6 weeks (in-season). The resisted sprint group at a sled load of 30% body mass performed a total sprinting distance of 800m, whereas an unresisted sprint training group performed the same distance of unresisted sprinting. A 20m maximal sprint with split times measured at 5, 10, and 20 m and the sprint 9-3-6-3-9 m with 180° turns change of direction test were performed before and after the intervention. Sprint performance was improved in both groups over 5m (likely moderate magnitudes), 10m (very likely moderate and very likely large magnitudes for unresisted and resisted groups,

respectively), and 20m (likely moderate and very likely moderate for unresisted and resisted groups, respectively). Change of direction was improved in both groups (URS, most likely large and most likely moderate for unresisted and resisted groups, respectively), without differences between groups. Both interventions were similarly effective at improving sprint and change of direction performances. Although consistently applied, the resisted sprint training compared to unresisted sprints are not completely defined as an optimized method. Their effects seem to depend of training dosages, volume, and intensity.

Flywheel training

The present review found two studies regarding flywheel training to improve sprint performance. Raya-González et al. (2021) investigated the effects of a weekly flywheel strength training session over a 10-week period in twenty young soccer players assigned to an experimental or control group. Linear sprint times at 10m, 20m, and 30m and change of direction sprint test in 5 + 5m and 10 + 10m were performed before and after flywheel training period. Significant within-group differences were found in control group for change of direction sprint test 10 + 10m (p = 0.01; ES = large while differences in experimental group were observed in all change of direction sprint variables (p = 0.001-0.04; ES = large). Also, between-groups analysis revealed differences favorable to the experimental groups in change of direction sprint variables (p = 0.001-0.05). Moreover, De Hoyo et al. (2014) analyzed the effect of an eccentric-overload training program (i.e., half-squat and leg-curl exercises using flywheel ergometers) in thirty-six young players assigned to an experimental or control group. The training program consisted of 1 or 2 sessions/wk (3-6 sets with 6 repetitions) during 10 weeks. The sprint performance was assessed through 10m and 20m linear sprint times. A substantial better improvement (likely to very likely) was found in 20m sprint time (ES= 0.37), 10m flying-sprint time (ES=0.77) compared to control group, and substantial improvements were obtained in 20m sprint time (ES=0.32), 10m flying-sprint time (ES=0.95) in experimental group. In these two studies, the findings suggest a weekly flywheel training session is suitable to improve change of direction as well as linear sprint abilities abilities in young soccer players.

Plyometrics and power training

Plyometric and power training are strategies widely used in team-sports to enhance sprint-related capabilities. For this topic, it was founded ten studies. First, Otero-Esquina et al. (2017) showed the effects of a combined power and strength training in thirty-six elite young soccer players randomly allocated in experimental groups or a control group and also examined the effects when this training was performed one or two days per week. Performance was assessed through a 20m linear sprint test with split-times at 10m, and a change of direction test 1 week before starting the training and also 1 week after performing the intervention. The experimental group that performed two sessions of training per week achieved better improvements in 20m (ES= 0.48-0.64) than the group that performed one session per week and control group. Also, two sessions per week showed greater enhancements in 10m (ES=0.50) and change of direction tests (ES=0.52) than one session per week. Thus, depending on the possibilities and congested schedule of soccer, two sessions of power and strength training per week showed greater benefits on sprint performances. In order to compare the effects of explosive strength vs. repeated shuttle sprint training on repeated sprint ability, Buchheit et al. (2010) assessed fifteen young elite soccer players who trained once a week for a total of 10 weeks. Repeated shuttle training consisted of 2-3 sets of 5-6 \times 15- to 20m repeated shuttle sprints interspersed with 14 seconds of passive or 23 seconds of active recovery. Explosive strength training consisted of 4-6 series of 4-6 exercises (e.g., maximal unilateral countermovement jumps, calf and squat plyometric jumps, and short sprints). Before and after training, sprint performance was assessed by 10 and 30m sprint times as well as repeated sprint ability test. After training, except for 10m (p = 0.22), all performances were significantly improved in both groups. Relative changes in 30 m (-2.1 \pm 2.0%) were similar for both groups (p = 0.45). Improvements in the repeated sprint ability test were only observed after repeated shuttle training. Both groups were efficient at enhancing maximal sprinting. Testing different surfaces on which plyometrics were applied, Granacher et al. (2015) investigated the effects of plyometric training on stable vs. highly unstable surfaces in twenty-four male sub-elite soccer players that were allocated to 2 groups performing plyometric training for 8 weeks (2 sessions/week). The plyometric training on stable group conducted plyometrics on stable and the highly unstable surfaces group on unstable surfaces. There were significant main effects in 10m sprint time

(p<0.05, f=0.58) and change of direction (p<0.01, f=1.15), without different between groups. Thus, after 8 weeks, similar sprint performances adaptations were observed in the highly unstable surfaces and plyometric training on stable groups. Testing exercises order effect, Hammami et al. (2016) examined the effect of sequencing balance and plyometric training in twenty-four young elite soccer players who trained twice per week for 8 weeks either with an initial 4 weeks of balance training followed by 4 weeks of plyometric training or 4 weeks of plyometric training preceded by 4 weeks of balance training. Preand post-training sprint testes were 10m, 20m, and 30m linear sprints as well as change of direction. Both groups improved similarly the sprint capabilities, without significant effect of plyometric exercises order. Since plyometrics are able to be applied using or not overloads, Kobal et al. (2017) investigated the effects of loaded and unloaded plyometric training strategies during 6 weeks in twenty-three elite young soccer players. The athletes were pair-matched in two training groups: loaded vertical and horizontal jumps using an haltere type handheld with a load of 8% of the athletes' body mass and unloaded vertical and horizontal plyometrics. Sprint performances (velocity) at 5m, 10m, and 20m, were evaluated. Using magnitude-based inferences, an almost certainly decrease in the sprinting velocities along the 20m course were found in the loaded vertical and horizontal jumps group. In the unloaded vertical and horizontal jumps likely to very likely decreases were observed for all sprinting velocities tested. In this study, both plyometric strategies failed to produce worthwhile improvements in maximal speed, which is possible related to the interference of concurrent training effects (i.e., soccer players are often exposed to high-workload aerobic and anaerobic stimulus through traditional soccer training). In other very interesting approach, Loturco et al. (2017) compared the effects of two different mixed training programs (optimum power load + resisted sprints and optimum power load + vertical/horizontal plyometrics) in eighteen elite soccer players during a short-term training preseason. Sprint performances at 5m, 10m, 20m, and 30m as well as change of direction speed before and after 5 weeks of training. Both groups showed improvements in the change of direction speed for both training groups. Moreover, meaningful decreases were observed in all sprint times. Therefore, both mixed strategies (i.e., optimum load training added to resisted sprints or plyometrics) were able to improve speed capabilities. Given the modern importance of prescribing optimum power load in plyometrics and power training, Loturco et al. (2016) also investigated changes in sprint performances in response classic strength-power periodization or optimum power load in twenty-three professional soccer players during 6 weeks (in-season, 3 times per week). Strength-power periodization involved half squats or jump squats, depending on the respective training block, while optimum power load involved only jump squats at the optimum power load. Both groups demonstrated similar significant gains in change of direction speed and linear sprinting speed. Furthermore, delta change scores demonstrated a superior effect of optimum power load to improve 10m and 20m speed. It seems, therefore, that optimum power load using plyometrics exercises such as jump squat are more effective to improve linear sprint abilities. Since jump squat and half-squat are the most used exercises in soccer practices to improve power-related tasks on the pitch, Loturco et al. (2015) tested these two types of exercises (i.e., jump squat or half squat) throughout a preseason (4 weeks) twenty-three soccer players which were randomly allocated into two groups with one of these exercises. Both groups improved linear acceleration from 5 to 10 m (ES = 0.52). However, jump squat was more effective at reducing the acceleration decrements over 0-5m (ES = -0.38 vs. -0.58, for jump squat and half squat, respectively). Here, similar to Kobal et al. (2017), the high-workload of cardiorespiratory training during pre-season was mandatory to sprint changes. Thus, it is of utmost importance that training strategies during this period are minutely prescribed to find the optimal dosage in order to improve sprint abilities or even reduce impairments. Using approaches based on velocity or intensity, Loturco et al. (2013) investigated the effects of two power training loading schemes in thirty-two elite soccer players during 6 weeks. Sprint performance were evaluated before and after two weeks. The two randomly training groups were velocity- or intensity-based. After the individual determination of the optimal power load, both groups completed a 3-week traditional strength training period. After, the velocity group performed 3 weeks of power-oriented training with increasing velocity and decreasing intensity (from 60 to 30% 1RM) throughout the training period, whereas the intensity-based group increased the training intensity (from 30 to 60% 1RM) and thus decreased movement velocity throughout the power-oriented training period. The 10m sprint (velocity group: -4.3%; intensity group: -1.6%) improved in both groups, but the 30m sprint time showed no improvements for both groups. The authors concluded that similar sprint performance changes occurred when training intensity manipulation is performed around only a small range within the optimal power

training load. Comparing power training with sprinting exercises, Mujika et al. (2009) examined the effects of 2 sprint-based or power training with soccer drills as transferring exercises on 15m sprint speed, and change of direction speed in twenty elite junior soccer players during 7 weeks that were randomly allocated to either a contrast (power and soccer drills) or sprint group. The contrast protocol consisted of alternating heavy-light loads (15-50% body mass) with soccer-specific drills (small-sided games or technical skills). Sprint training protocol was linear 30m sprints (2-4 sets of 4 x 30 m with 180 and 90 seconds of recovery, respectively). A time x training group interaction was found for 15m sprint performance (velocity) with the contrast group showing significantly greater improvements than the sprint group. Therefore, this study pointed out that, when linear sprint is preferred to be enhanced, perhaps contrast protocols (power training added to soccer drills) are more indicated. Finally, Ronnestad et al. (2011) examined a combination of strength and plyometric training with strength training alone (7 weeks) in twenty-one professional soccer players. The players were randomly positioned into 2 groups. Group strength performed heavy strength training twice a week and the group strength plus power performed a plyometric training program in addition to the same maximal strength training as the strength group. There was also a control group. Sprint acceleration, peak sprint velocity, and total time on 40m sprint were assessed in this study. There were no significant differences between the "strength plus power group" and "strength group". There were significant improvements in sprint acceleration, peak sprinting velocity, and total time on 40m sprint. In fact, the results of this investigation emphasized that no additional gain is obtained when plyometrics is added to maximal strength training on sprinting capabilities. Therefore, summarizing this topic, the plyometrics and power training methods are consistent to improve sprint abilities in soccer players. Some important factors are important to consider such as the high-workload of cardiorespiratory training added to these neuromuscular stimuli, since this seems to be a factor for improvements, decrements or even maintenance of sprint abilities specially during pre-

seasons.

Velocity-based training

The velocity-based approaches (i.e., in which velocity loss during repetitions are monitored and sets are finished when a given threshold is achieved) have been consistently studied and applied in practical scenarios. In relation to sprint changes in soccer players, one study was found. Pareja-Blanco et al. (2016) analyzed the effects of 2 strength training programs that used the same relative loading but different repetition volume, using the velocity loss during the set as the independent variable: 15% vs 30% of velocity loss. Sixteen professional soccer players were randomly assigned to 2 groups (15% or 30%), following a 6-week velocity-based program in squat exercise, controlling the repetition velocity in the whole intervention. The sprint times of 30m was reported. Although greater benefits were found for 15% group in vertical jump, for example, the sprint performance adaptations were unclear/unlikely for both groups. Since this is an isolated study, further investigation is needed to develop more consistent evidence about velocity-based training adaptations in soccer players regarding sprinting capabilities.

Eccentric training

Eccentric training was found to be one method to improve sprint abilities in soccer. The Nordic Hamstring Exercise was the most frequent approach and three studies were identified in this topic. Firstly, Krommes et al. (2017) tested nineteen male soccer players to perform Nordic Hamstring Exercise during 27 sessions at pre-season, or to control group. Sprint performance (30m with 5m and 10m split times) was measured before the mid-seasonal break and again after 10 weeks of performing the Nordic Hamstring Exercise protocol. Sprint performance on the short distances improved for most players in the Nordic Hamstring Protocol (5m: - 0.068 s; 10m: - 0.078 s), while control group showed no changes. In the same line, Suarez-Arrones et al. (2019) examined the consequence of implementing a Nordic Hamstring exercise protocol during the first 15 to 17 weeks of the season on sprint capacity in fifty professional football players divided in two intervention groups (with and without experience in Nordic Hamstring Exercise) and one control. Linear sprint at 5m, 10m, and 20m were assessed before and after training. Sprint times were substantially improved in all groups (ES from -2.24 ± 0.75 to -0.60 ± 0.37). The improvements in 20m were substantially greater in the group with high experience in Nordic Hamstring Exercise vs. the group without experience, and there were no differences in sprint performance changes between the group without experience and control group. Finally, Suarez-Arrones et al. (2018) examined the changes in sprint performance (40m linear sprint) in response to an entire

competitive season of football training with two inertial eccentric-overload training sessions a week. The eccentric-overload training consisted of 1-2 sets of 10 exercises of upper-body and core (Day 1) and lower-body (Day 2), during the entire competitive season (27 weeks). There was a substantial increase in 40m sprint performance (from 1.1% to 1.8%, ES from -0.33 to -0.44) after the intervention. These evidences suggested that Nordic Hamstring Exercise could be an interesting tool to improve sprint abilities in soccer players, independently of the increases in hamstring eccentric strength.

Whole-body electrostimulation

The whole-body electrostimulation is a controversy training modality. It was found one study using this approach to observe changes in sprint performance of soccer players. Thus, Filipovic et al. (2016) investigated the effect of a 14-week dynamic Whole-Body Electrostimulation training program on sprint abilities in twenty-two players which were assigned to 2 groups: Whole-Body-Electrostimulation group or jump-training only group. The training programs were conducted twice a week concurrent to 6-7 soccer training sessions during the second half of the season. The findings were that a 14-week in-season Whole-Body Electrostimulation program significantly improved linear sprinting (5m: 1.01 vs. 1.04s, p=0.039) as well as sprinting with change of direction (3.07 vs. 3.25s, p = 0.024). The results bring insights that two sessions of a dynamic whole-body electrostimulation training in addition to 6-7 soccer players. However, since this is an isolated study, further investigations are needed for consensus.

CONCLUSION

The present study aimed to review and integrate systematically evidences regarding the effects of strength training on linear, with change of direction, and repeated sprint ability in male soccer players. Current study also aimed to exposed the training characteristics used in those studies, in order to identify the strength training interventions effectiveness for improving sprint abilities. Six training modalities were found with sprinting outcomes in soccer. Traditional and concurrent strength training (11 studies) was the most investigated and, therefore, the majority of studies involving traditional strength training showed important enhancements in linear and change of direction sprint performances of soccer players during pre-season or even in season. Plyometrics and power training (10 studies) was also highly investigated and this method is consistent to improve sprint abilities in soccer players. Some important factors are important to consider such as the high-workload of cardiorespiratory training in addition to these neuromuscular stimuli, since this seems to play a role for improvements, decrements or even maintenance of sprint abilities specially during pre-seasons. Moreover, resisted sprints training (6 studies) was a frequent modality of training demonstrated to improve sprinting performance, however, compared to unresisted sprints, resisted sprints training is not completely defined as an optimized method for soccer players. Their effects seem to depend of fitness status, training dosages, volume, and intensity. Further experimental studies are important to be developed in soccer. The Eccentric training (3 studies) was mostly applied in form of the Nordic Hamstring Exercise and this exercise could be an interesting strategy to improve sprint abilities in soccer players, independently of the increases in hamstring eccentric strength. The Flywheel training (2 studies) was showed to be suitable for improving change of direction as well as linear sprint abilities in young soccer players. The Velocity-based training (1 study) and Whole-body electrostimulation (1 study) showed only one evidence and further investigation is needed to develop more consistent data about sprint adaptations in soccer players from these modalities.

REFERENCES

- Ben Brahim M, Bougatfa R, Makni E, Gonzalez PP, Yasin H, Tarwneh R, Moalla W, Elloumi M. Effects of Combined Strength and Resisted Sprint Training on Physical Performance in U-19 Elite Soccer Players. J Strength Cond Res. 2020 Oct 15. doi: 10.1519/JSC.000000000003829. Epub ahead of print. PMID: 33065708.
- Buchheit M, Mendez-Villanueva A, Delhomel G, Brughelli M, Ahmaidi S. Improving repeated sprint ability in young elite soccer players: repeated shuttle sprints vs. explosive strength training. J Strength Cond Res. 2010 Oct;24(10):2715-22. doi: 10.1519/JSC.0b013e3181bf0223. PMID: 20224449.
- de Hoyo M, Gonzalo-Skok O, Sañudo B, Carrascal C, Plaza-Armas JR, Camacho-Candil F, Otero-Esquina C. Comparative Effects of In-Season Full-Back Squat, Resisted Sprint Training, and Plyometric Training on Explosive Performance in U-19 Elite Soccer Players. J Strength Cond Res. 2016 Feb;30(2):368-77. doi: 10.1519/JSC.000000000001094. PMID: 26813630.
- de Hoyo M, Pozzo M, Sañudo B, Carrasco L, Gonzalo-Skok O, Domínguez-Cobo S, Morán-Camacho E. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int J Sports Physiol Perform. 2015 Jan;10(1):46-52. doi: 10.1123/ijspp.2013-0547. Epub 2014 Jun 6. PMID: 24910951.
- Enright K, Morton J, Iga J, Drust B. The effect of concurrent training organisation in youth elite soccer players. Eur J Appl Physiol. 2015 Nov;115(11):2367-81. doi: 10.1007/s00421-015-3218-5. Epub 2015 Jul 19. PMID: 26188880.
- Filipovic A, Grau M, Kleinöder H, Zimmer P, Hollmann W, Bloch W. Effects of a Whole-Body Electrostimulation Program on Strength, Sprinting, Jumping, and Kicking Capacity in Elite Soccer Players. J Sports Sci Med. 2016 Dec 1;15(4):639-648. PMID: 27928210; PMCID: PMC5131218.
- Furlan AD, Pennick V, Bombardier C, et al. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine 2009; 34(18): 1929-41.
- 8. Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables.

Sports Med. 2014 Jun;44(6):743-62. doi: 10.1007/s40279-014-0162-1. PMID: 24728927.

- Gil S, Barroso R, Crivoi do Carmo E, Loturco I, Kobal R, Tricoli V, Ugrinowitsch C, Roschel H. Effects of resisted sprint training on sprinting ability and change of direction speed in professional soccer players. J Sports Sci. 2018 Sep;36(17):1923-1929. doi: 10.1080/02640414.2018.1426346. Epub 2018 Jan 15. PMID: 29334309.
- Granacher U, Prieske O, Majewski M, Büsch D, Muehlbauer T. The Role of Instability with Plyometric Training in Sub-elite Adolescent Soccer Players. Int J Sports Med. 2015 May;36(5):386-94. doi: 10.1055/s-0034-1395519. Epub 2015 Feb 9. PMID: 25665004.
- Grazioli R, Loturco I, Lopez P, Setuain I, Goulart J, Veeck F, Inácio M, Izquierdo M, Pinto RS, Cadore EL. Effects of Moderate-to-Heavy Sled Training Using Different Magnitudes of Velocity Loss in Professional Soccer Players. J Strength Cond Res. 2020 Oct 1. doi: 10.1519/JSC.000000000003813. Epub ahead of print. PMID: 33009351.
- Hammami R, Granacher U, Makhlouf I, Behm DG, Chaouachi A. Sequencing Effects of Balance and Plyometric Training on Physical Performance in Youth Soccer Athletes. J Strength Cond Res. 2016 Dec;30(12):3278-3289. doi: 10.1519/JSC.000000000001425. PMID: 27144955.
- 13. Jullien H, Bisch C, Largouët N, Manouvrier C, Carling CJ, Amiard V. Does a short period of lower limb strength training improve performance in field-based tests of running and agility in young professional soccer players? J Strength Cond Res. 2008 Mar;22(2):404-11. doi: 10.1519/JSC.0b013e31816601e5. PMID: 18550954.
- Keiner M, Sander A, Wirth K, Schmidtbleicher D. Long-term strength training effects on change-of-direction sprint performance. J Strength Cond Res. 2014 Jan;28(1):223-31. doi: 10.1519/JSC.0b013e318295644b. PMID: 23588486.
- Kobal R, Pereira LA, Zanetti V, Ramirez-Campillo R, Loturco I. Effects of Unloaded vs. Loaded Plyometrics on Speed and Power Performance of Elite Young Soccer Players. Front Physiol. 2017 Sep 26;8:742. doi: 10.3389/fphys.2017.00742. PMID: 29018362; PMCID: PMC5623051.
- Koundourakis NE, Androulakis N, Spyridaki EC, Castanas E, Malliaraki N, Tsatsanis
 C, Margioris AN. Effect of different seasonal strength training protocols on

circulating androgen levels and performance parameters in professional soccer players. Hormones (Athens). 2014 Jan-Mar;13(1):104-18. doi: 10.1007/BF03401326. PMID: 24722138.

- Krommes K, Petersen J, Nielsen MB, Aagaard P, Hölmich P, Thorborg K. Sprint and jump performance in elite male soccer players following a 10-week Nordic Hamstring exercise Protocol: a randomised pilot study. BMC Res Notes. 2017 Dec 4;10(1):669. doi: 10.1186/s13104-017-2986-x. PMID: 29202784; PMCID: PMC5716363.
- Lahti J, Huuhka T, Romero V, Bezodis I, Morin JB, Häkkinen K. Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players. PeerJ. 2020 Dec 15;8:e10507. doi: 10.7717/peerj.10507. PMID: 33362970; PMCID: PMC7747683.
- 19. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339: b2700.
- 20. Los Arcos A, Yanci J, Mendiguchia J, Salinero JJ, Brughelli M, Castagna C. Shortterm training effects of vertically and horizontally oriented exercises on neuromuscular performance in professional soccer players. Int J Sports Physiol Perform. 2014 May;9(3):480-8. doi: 10.1123/ijspp.2013-0063. Epub 2013 Apr 9. PMID: 23579053.
- 21. Loturco I, Kobal R, Kitamura K, Cal Abad CC, Faust B, Almeida L, Pereira LA. Mixed Training Methods: Effects of Combining Resisted Sprints or Plyometrics with Optimum Power Loads on Sprint and Agility Performance in Professional Soccer Players. Front Physiol. 2017 Dec 12;8:1034. doi: 10.3389/fphys.2017.01034. PMID: 29311968; PMCID: PMC5732948.
- 22. Loturco I, Nakamura FY, Kobal R, Gil S, Pivetti B, Pereira LA, Roschel H. Traditional Periodization versus Optimum Training Load Applied to Soccer Players: Effects on Neuromuscular Abilities. Int J Sports Med. 2016b. Dec;37(13):1051-1059. doi: 10.1055/s-0042-107249. Epub 2016 Oct 5. PMID: 27706551.
- 23. Loturco I, Pereira LA, Kobal R, Kitamura K, Ramírez-Campillo R, Zanetti V, Abad CC, Nakamura FY. Muscle Contraction Velocity: A Suitable Approach to Analyze the Functional Adaptations in Elite Soccer Players. J Sports Sci Med. 2016a. Aug 5;15(3):483-491. PMID: 27803627; PMCID: PMC4974861.

- 24. Loturco I, Pereira LA, Kobal R, Zanetti V, Gil S, Kitamura K, Abad CC, Nakamura FY. Half-squat or jump squat training under optimum power load conditions to counteract power and speed decrements in Brazilian elite soccer players during the preseason. J Sports Sci. 2015;33(12):1283-92. doi: 10.1080/02640414.2015.1022574. Epub 2015 Mar 16. PMID: 25772972.
- 25. Loturco I, Ugrinowitsch C, Tricoli V, Pivetti B, Roschel H. Different loading schemes in power training during the preseason promote similar performance improvements in Brazilian elite soccer players. J Strength Cond Res. 2013 Jul;27(7):1791-7. doi: 10.1519/JSC.0b013e3182772da6. PMID: 23085970.
- 26. McMorrow BJ, Ditroilo M, Egan B. Effect of Heavy Resisted Sled Sprint Training During the Competitive Season on Sprint and Change-of-Direction Performance in Professional Soccer Players. Int J Sports Physiol Perform. 2019 Sep 1;14(8):1066-1073. doi: 10.1123/ijspp.2018-0592. PMID: 30702366.
- Mujika I, Santisteban J, Castagna C. In-season effect of short-term sprint and power training programs on elite junior soccer players. J Strength Cond Res. 2009 Dec;23(9):2581-7. doi: 10.1519/JSC.0b013e3181bc1aac. PMID: 19910815.
- Otero-Esquina C, de Hoyo Lora M, Gonzalo-Skok Ó, Domínguez-Cobo S, Sánchez H. Is strength-training frequency a key factor to develop performance adaptations in young elite soccer players? Eur J Sport Sci. 2017 Nov;17(10):1241-1251. doi: 10.1080/17461391.2017.1378372. Epub 2017 Sep 24. PMID: 28944722.
- Pareja-Blanco F, Sánchez-Medina L, Suárez-Arrones L, González-Badillo JJ. Effects of Velocity Loss During Resistance Training on Performance in Professional Soccer Players. Int J Sports Physiol Perform. 2017 Apr;12(4):512-519. doi: 10.1123/ijspp.2016-0170. Epub 2016 Sep 6. PMID: 27618386.
- 30. Prieske O, Muehlbauer T, Borde R, Gube M, Bruhn S, Behm DG, Granacher U. Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability. Scand J Med Sci Sports. 2016 Jan;26(1):48-56. doi: 10.1111/sms.12403. Epub 2015 Jan 6. PMID: 25559249.
- 31. Raya-González J, Castillo D, de Keijzer KL, Beato M. The effect of a weekly flywheel resistance training session on elite U-16 soccer players' physical performance during the competitive season. A randomized controlled trial. Res Sports

Med. 2021 Jan 5:1-15. doi: 10.1080/15438627.2020.1870978. Epub ahead of print. PMID: 33401975.

- 32. Ronnestad BR, Kvamme NH, Sunde A, Raastad T. Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. J Strength Cond Res. 2008 May;22(3):773-80. doi: 10.1519/JSC.0b013e31816a5e86. PMID: 18438241.
- 33. Rønnestad BR, Nymark BS, Raastad T. Effects of in-season strength maintenance training frequency in professional soccer players. J Strength Cond Res. 2011 Oct;25(10):2653-60. doi: 10.1519/JSC.0b013e31822dcd96. PMID: 21873897.
- 34. Sanchez-Sanchez J, Raya-González J, Ramirez-Campillo R, Chaabene H, Petisco C, Nakamura FY. The Increased Effectiveness of Resistance Training on Unstable vs. Stable Surfaces on Selected Measures of Physical Performance in Young Male Soccer Players. J Strength Cond Res. 2020 May 13. doi: 10.1519/JSC.000000000003590. Epub ahead of print. PMID: 32412970.
- 35. Silva JR, Nassis GP, Rebelo A. Strength training in soccer with a specific focus on highly trained players. Sports Med Open. 2015;1(1):17. doi: 10.1186/s40798-015-0006-z. Epub 2015 Apr 2. PMID: 26284158; PMCID: PMC5005570.
- 36. Spineti J, Figueiredo T, Bastos DE Oliveira V, Assis M, Fernandes DE Oliveira L, Miranda H, Machado DE Ribeiro Reis VM, Simão R. Comparison between traditional strength training and complex contrast training on repeated Sprint ability and muscle architecture in elite soccer players. J Sports Med Phys Fitness. 2016 Nov;56(11):1269-1278. Epub 2015 Nov 26. PMID: 26609969.3
- Styles WJ, Matthews MJ, Comfort P. Effects of Strength Training on Squat and Sprint Performance in Soccer Players. J Strength Cond Res. 2016 Jun;30(6):1534-9. doi: 10.1519/JSC.00000000001243. PMID: 26473518.
- 38. Suarez-Arrones L, Lara-Lopez P, Rodriguez-Sanchez P, Lazaro-Ramirez JL, Di Salvo V, Guitart M, Fuentes-Nieto C, Rodas G, Mendez-Villanueva A. Dissociation between changes in sprinting performance and Nordic hamstring strength in professional male football players. PLoS One. 2019 Mar 14;14(3):e0213375. doi: 10.1371/journal.pone.0213375. PMID: 30870442; PMCID: PMC6417736.
- Suarez-Arrones L, Saez de Villarreal E, Núñez FJ, Di Salvo V, Petri C, Buccolini A, Maldonado RA, Torreno N, Mendez-Villanueva A. In-season eccentric- overload

training in elite soccer players: Effects on body composition, strength and sprint performance. PLoS One. 2018 Oct 16;13(10):e0205332. doi: 10.1371/journal.pone.0205332. PMID: 30325935; PMCID: PMC6191107.

- 40. Wong PL, Chaouachi A, Chamari K, Dellal A, Wisloff U. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. J Strength Cond Res. 2010 Mar;24(3):653-60. doi: 10.1519/JSC.0b013e3181aa36a2. PMID: 19816215.
- 41. Zouita S, Zouita AB, Kebsi W, Dupont G, Ben Abderrahman A, Ben Salah FZ, Zouhal H. Strength Training Reduces Injury Rate in Elite Young Soccer Players During One Season. J Strength Cond Res. 2016 May;30(5):1295-307. doi: 10.1519/JSC.000000000000920. PMID: 26918277.

ANNEX 1

Study	Random sequence generation	Concealed allocation	Blinding of outcome assessor	Description of losses and exclusions	Intention-to- treat analysis
Raya-González et al. (2021)	Ν	-	-	-	
Lahti J et al. (2020)	Ν	-	-	-	-
Ben Brahim et al. (2020)	Y	Y	-	-	-
Grazioli et al. (2020)	Y	Y	-	Y	-
Sanchez-Sanchez et al. (2020)	Y	Y	-	-	-
Suarez-Arrones et al. (2019)	Ν	-	-	-	-
McMorrow et al. (2019)	Ν	-	-	-	-
Suarez-Arrones et al. (2018)	Ν	-	-	-	-
Gil et al. (2018)	Y	Y	-	-	-
Loturco et al. (2017)	Y	Y	-	-	-
Krommes et al. (2017)	Y	Y	-	-	-
Kobal et al. (2017)	Ν	Y	-	-	-

 Table 1. Risk of bias assessment.

Otero-Esquina et al. (2017)	Y	Y	-	-	-
Filipovic et al. (2016)	Y	Y	-	-	-
Loturco et al. (2016a)	Ν	Ν	Ν	Y	-
Loturco et al. (2016b)	Y	Y	-	Y	-
Pareja-Blanco et al. (2017)	Ý	Y	-	-	-
Hammami et al. (2016)	Y	Y	-	-	-
Zouita et al. (2016)	Y	Y	-	-	-
de Hoyo et al. (2016)	Ν	Y	-	-	-
Spineti et al. (2016)	Y	Y	-	Y	-
Styles, Matthews and Comfort (2016)	Ν	Ν	-	-	-
Enright et al. (2015)	Ν	Y	-	-	-
Loturco et al. (2015)	Y	Y	-	-	-
Granacher et al. (2015)	Y	Y	-	-	-
Prieske et al. (2016)	Y	Y	-	-	-
de Hoyo et al. (2015)	Y	Y	-	Y	-
Koundourakis et al. (2014)	Ν	Y	-	-	-

Keiner et al. (2014)	Ν	Y	-	-	-
Los Arcos et al. (2014)	Y	Y	-	-	-
Loturco et al. (2013)	Y	Y	-	-	-
Rønnestad, Nymark and Raastad (2011)	Y	Y	-	-	-
Buchheit et al. (2010)	Y	Y	-	-	-
Mujika, Santisteban and Castagna (2009)	Y	Y	-	-	-
Wong et al. (2010)	Y	Y	-	-	-
Jullien et al. (2008)	Y	Y	-	-	-
Ronnestad et al. (2008)	Y	Y	-	-	-

Study	Ν	Level	Intervention	Time	Group	Main outcomes
Raya-	20	U-16 elite	Weekly flywheel	10-week	10 control vs. 10	-
González et			resistance training		intervention	
al. (2021)						
Lahti J et al.	32	Professional	Resisted sprint	11-week	Control vs. resistance that	Both heavy resistance
(2020)			training based on		induced a 60% velocity	subgroups improved
			decrement from		decrement from maximal	significantly all 10-30-m
			maximal velocity		velocity vs. subgroup two	split times (p < 0.05, d = - 1.25;
					used a 50%	-0.62).
					velocity decrement	Post-hoc analysis showed that
					resistance based on	HS50%
					individual load-velocity	improved significantly more
					profiles.	compared to CON in 0-10-m
						split-time ($d = 1.03$)
Ben Brahim	34	U-19 elite	Resisted sprint	6-week	Randomly assigned into a	Within-group interactions
et al. (2020)			training group		resisted sprint training	showed significant combined
					group using	muscular strength and

Table 2. Studies characteristics: sample size, level of sample, intervention type, intervention time, group, and main outcomes.

					both weight vest and sled,	resisted sprint training effects
					and a control group.	were observed for all the tests'
						measurements
						(effect sizes = 0.97 for 20-m
						sprint). However,
						significant increases of
						performances were observed
						for 5-m and 20-m sprinting
						time (= 0.25, p < 0.01 and =
						0.22, p < 0.01, respectively)
						in RSTG with large effect size.
Grazioli et al.	17	Professional	The velocity-	11-week	Two groups, based on	Two-way repeated measures
(2020)			based resisted		different magnitudes of	analysis of variance revealed a
			sprint training		velocity	significant
					loss: 10% of velocity	time-effect for decreases in 10-
					decrease and 20% of	and 20-m sprint times (p =
					velocity decrease.	0.018 and $p = 0.033$,
						respectively), but without a
						time-group interaction. The
						G10 showed greater

						beneficial effects than G20 for
						both 10-m (-5.5 \pm 3.3%,
						magnitude-based
						inference [MBI]: possibly vs
						$1.7 \pm 5.9\%$, MBI: possibly
						trivial) and 20-m (-2.5
						\pm 2.1%, MBI: possibly vs1.4
						\pm 3.7%, MBI: likely trivial)
						sprint times.
Sanchez-	65	U-19	Resistance	10-week	Resistance training group	A significant main effect of
Sanchez et al.		national-	training on stable		(uRT) or a	time was observed for Hop
(2020)		level	vs. unstable		stable resistance training	non-D, RSAbest, and
			surfaces		group (sRT).	RSAmean (p = 0.003-0.06,
						effect size [ES] = 0.06-0.15).
						Furthermore, significant group
						\times time interactions were shown
						for RSAbest (p =
						0.007, ES = 0.13) and
						RSAmean ($p = 0.002$, ES =
						0.2). Post hoc analysis revealed

						significant pre- to post-training
						improvements for RSAbest (p
						= 0.002, ES =
						0.35) and RSAmean (p =
						0.0002, ES = 0.36) in the uRT.
						In the sRT, however, no
						significant pre-post
						performance changes were
						observed in RSAbest and
						RSAmean.
Suarez-	50	Professional	Nordic	17-week	Nordic-Group1 (NG-1) and	Sprint times were substantially
Arrones et al.					Nordic-Group2 (NG-2,	improved in all groups (ES
(2019)					extensive experience in	from -2.24±0.75 to 0.60±0.37).
					NHE)] and 1 team as a	The improvements in T20-m
					control-group (CG).	were substantially greater in
						NG-2 vs. NG-1, and there were
						no differences in sprint
						performance changes between
						NG-1 and CG. Changes in
						sprinting performance and

						NHEs were unrelated. Results
						indicate that the improvements
						in sprint are not dependent on
						the NHEs changes, with no
						relationships between NHEs
						and sprint performance, and
						between sprint changes and
						changes in NHEs.
McMorrow et	13	Professional	Resisted sled	6-week	RSS training group	Sprint performance (mean,
al. (2019)			sprinting (RSS)		performed RSS at a	95% confidence limits,
					sled load of 30% body mass	qualitative inference)
					for a total program running	was improved in both groups
					distance of 800 m,	over 5 m (URS, 5.1%, -2.4 to
					whereas an unresisted sprint	12.7, likely moderate;
					(URS) training group	RSS, 5.4%, 0.5-10.4, likely
					performed the same distance	moderate), 10 m (URS, 3.9%, -
					of unresisted sprinting.	0.3 to 8.1, very likely
						moderate; RSS, 5.0%, 1.8-8.0,
						very likely large), and 20 m
						(URS, 2.0%, -0.6 to

					4.5, likely moderate; RSS,
					3.0%, 1.7-4.4, very likely
					moderate). COD was
					improved in both groups (URS,
					3.7%, 2.2-5.2, most likely
					large; RSS, 3.3%,
					1.6-5.0, most likely moderate).
					Between-groups differences
					were unclear.
40	Young elite	Inertial eccentric-	27-week	-	There was a substantial
		overload training			increase in sprint performance
					(from 1.1% to 1.8%, ES from -
					0.33 to -0.44).
18	Elite	Resisted sprint	6-week	Resisted sprint training with	Both groups improved
		training		overload control versus an	sprinting ability at
				unresisted sprint training	all distances evaluated (5m:
				Program.	UR = 8%, RST = 7%; 10m:
	40	40 Young elite18 Elite	 40 Young elite Inertial eccentric- overload training 18 Elite Resisted sprint training 	40Young eliteInertial eccentric- overload training27-week18EliteResisted sprint training6-week	 40 Young elite Inertial eccentric- overload training 18 Elite Resisted sprint 6-week Resisted sprint training with training 6-week Resisted sprint training with overload control versus an unresisted sprint training Program.

	UR = 4%, RST = 4%; 20m:
	UR = 3%, RST = 3%; 25m:
	UR = 2%, RST = 3%;), COD
	(UR = 6%; RST = 6%), SJ
	(UR = 15%; RST = 13%) and
	CMJ (UR = 15%; RST = 15%).
	Meaningful improvements
ing	were observed in the COD
PL	speed test for both training
	groups comparing pre- and
	post-measures. In both
	unloaded and resisted sprints,
	meaningful decreases were
	observed in the sprinting times
	for all distances tested. This
	study shows that a mixed
	training approach which
	comprises exercises and
	workloads able to produce
	positive adaptations in different

Loturco et al. (2017) load [OPL] + resisted sprints [RS] and OPL + vertical/horizontal plyometrics [PL])

pair-matched in two traini groups: OPL + RS and Ol + PL.

The athletes were

5-week

18 Professional Optimum power

						phases of sprinting can be a
						very effective strategy in
						professional soccer players.
Krommes et	19	Elite	Nordic Hamstring	10-week	NHP during pre-season or	Sprint performance on the short
al. (2017)			Protocol (NHP)		control group (CG).	split distances improved for
						most players in the NHP (6
						out of 9 improved, median
						changes for 5 m split: - 0.068 s;
						10 m split: - 0.078 s), but not
						CG (2 out of 5 improved,
						median changes for 5 m split:
						+ 0.1 s; 10 m split: CG:
						+ 0.11 s), but both groups had
						small declines at 30 m sprint
						(NHP: 7 out of 9 declined,
						median changes: + 0.116 s;
						CG: 4 out of 5 declined,
						median changes: + 0.159 s).
Kobal et al.	23	U-17 elite	Loaded and	6-week	The athletes were pair-	An almost certainly decrease in
(2017)			unloaded		matched in two training	the sprinting velocities along
					0	

			plyometric		groups: loaded vertical and	the 20-m course were found in
			training strategies		horizontal jumps using an	the LJ group (00/00/100
					haltere type handheld with a	for all split distances tested).
					load of 8% of the athletes'	Meanwhile, in the UJ likely to
					body mass (LJ) and	very likely decreases were
					unloaded vertical and	observed for all sprinting
					horizontal plyometrics (UJ).	velocities tested (03/18/79,
						01/13/86, and 00/04/96, for
						velocities in 5-, 10-, and 20-m,
						respectively).
Otero-	36	U-17 and	Strength-training	6-week	Experimental groups	Within-group analysis showed
Esquina et al.		U-19 elite	programme		(EXP1: 1 s w-1; EXP2: 2 s	substantial improvements in
(2017)					w-1) or a control group	COD (ES: 0.70 and 0.76) in
					(CON).	EXP1 and EXP2, while
						EXP2 also showed substantial
						enhancements in all linear
						sprinting tests (ES:
						0.43-0.52). Between-group
						analysis showed that EXP2

						achieved a substantial better
						performance in 20-m (ES:
						0.48-0.64) than EXP1 and
						CON. Finally, EXP2 also
						showed greater enhancements
						in 10-m (ES: 0.50) and V-cut
						test (ES: 0.52) than EXP1.
Filipovic et	22	Elite	Dynamic Whole-	14-week	WB-EMS group (EG),	Improved linear sprinting (5m:
al. (2016)			Body		jump-training group (TG).	1.01 vs. 1.04s, p=0.039) and
			Electrostimulation			sprinting with direction
			(WB-EMS)			changes (3.07 vs. 3.25s, p =
						0.024) performance.
Loturco et al.	22	Elite		8-week		We could verify
(2016a)			-		-	decrements in the 20-m and
						COD sprint performances,
						which were rated as very likely
						and almost certainly,
						respectively.

Loturco et al.	23	Professional	Classic strength	6-week	Classic strength-power	Results revealed that both
(2016b)			power		periodization (TSP) or	groups presented similar
			periodization		optimum power load (OPL)	significant (P<0.05)
			(TSP) or optimum			improvements in change of
			power load (OPL)			direction speed. In addition,
						although both groups
						reported significant increases
						in sprinting speed (P<0.05);
						delta change scores
						demonstrated a superior effect
						of OPL to improve 10- and 20-
						m speed.
Pareja-Blanco	16	Professional	Resistance-	6-week	VL15 or VL30 velocity-	The effects on T30
et al. (2017)			training (RT)		based squat-training	performance were
					program.	unclear/unlikely for both
						groups.
Hammami et	24	Young elite	Balance and	8-week	Initial 4 weeks of balance	Similar changes for
al. (2016)			plyometric training		training followed	both groups.

					by 4 weeks of plyometric	
					training (BPT) or 4 weeks	
					of plyometric training	
					proceeded by 4 weeks of	
					balance training (PBT).	
Zouita et al.	52	Young elite	Strength training	12-week	Experimental group (EG)	Compared to CG, EG
(2016)					and control group (CG).	performed significantly
						better in sprint running (p <
						0.01).
de Hoyo et al.	32	U-19 elite	Strength training	8-week	3 different low/moderate	Substantial improvements
(2016)					load strength training	(likely to almost certainly) in
					methods (full-back squat	30-50 m (ES: 0.45-0.84) were
					[SQ], resisted sprint with	found in every group in
					sled towing [RS], and	comparison to pretest results.
					plyometric and specific	Moreover, players in PLYO
					drills training [PLYO]).	and SQ groups also showed
						substantial enhancements
						(likely to very likely) in 0-50 m
						(ES: 0.46-0.60). In

							addition, 10-20 m was also
							improved (very likely) in the
							SQ group (ES: 0.61).
							Between-group analyses
							showed that improvements in
							10-20 m (ES: 0.57) and 30-50
							m (ES: 0.40) were likely
							greater in the SQ group than in
							the RS group. Also,
							10-20 m (ES: 0.49) was
							substantially better in the SQ
							group than in the PLYO group.
Spineti et al.	22	U-20 elite	Traditional	-	CCT	or TST.	After statistical analysis
(2016)			strength training				(P<0.05), the results
			(TST) and				demonstrated that the
			complex contrast				specific CCT regimen provided
			training (CCT)				a significant improvement in
							the DCCA memory descent and

(moderate effect size).

Styles,	17	Professional	Strength training	6-week	Strength training	Strength training resulted in
Matthews and					(85-90% 1RM)	small yet significant
Comfort						improvements in sprint
(2016)						performance over 5 m (before
						= 1.11 ± 0.04 seconds, after =
						1.05 ± 0.05 seconds, $p\leq0.001,$
						Cohen's d = 0.55), 10 m
						(before = 1.83 ± 0.05 seconds,
						after = 1.78 ± 0.05
						seconds, $p \le 0.001$, Cohen's $d =$
						0.45), and 20 m (before = 3.09
						± 0.07 seconds,
						after = 3.05 ± 0.05 seconds, $p\leq$
						0.001, Cohen's d = 0.31).
Enright et al.	50	Youth elite	Concurrent	5-week	Concurrent training by	No effects for 30 m sprint
(2015)			training		performing strength (S)	performance (P < 0.05).
					training either	
					prior to $(S + E)$ or after	
					(E + S) soccer specific	
					endurance training (E).	

Loturco et al.	23	Elite	Strength training	4-week	Jump squat (JS) or half-	Both groups improved
(2015)					squat (HS).	acceleration (ACC) from 5 to
						10 m (ES = 0.52). JS was more
						effective at reducing the ACC
						decrements over 0-5 m
						(ES = -0.38 vs0.58, for JS
						and HS, respectively).
Granacher et	24	Sub-elite	Plyometric	8-week	Plyometric training	Statistical analysis revealed
al. (2015)			training		on stable (SPT) vs. highly	significant main effects of time
					unstable surfaces (IPT).	for 0-10-m sprint time
						(p<0.05, f=0.58). Following 8
						weeks of training,
						similar improvements in speed
						in the two groups.
Prieske et al.	32	Elite	Core strength	9-week	Core strength training	Statistical analysis revealed
(2016)			training		performed on unstable	significant main effects of test
					(CSTU) compared with	(pre vs post) for 10-20-m sprint
					stable surfaces (CSTS).	time (3%, $P < 0.05$, $d = 2.56$).

de Hoyo et al.	36	U-17 to U-	Eccentric-	10-week	Experimental (EXP) or	Regarding muscle
(2015)		19 elite	overload training		control group (CON).	performance, a substantial
						better improvement (likely to
						very likely) was found in 20-m
						sprint time (ES: 0.37), 10-m
						flying-sprint time (ES: 0.77)
						for EXP than for CON. Within-
						group analysis showed an
						unclear effect in each variable
						in CON. Conversely,
						substantial improvements were
						obtained in 20-m sprint time
						(ES: 0.32), 10-m flying-sprint
						time (ES: 0.95), and injury
						severity (ES: 0.59) in EXP.
Koundourakis	67	Professional	Strength training	-	Strength intensity of the	All performance parameters
et al. (2014)					training programs were	increased significantly until
					assessed as high (for Team-	mid-point in all teams
					A), moderate (for Team-B),	(p<0.001). However,
					and low (for Team-C).	

					performance was further
					increased only in Team-A
					only for sprinting ability
					between end-point vs mid-
					point (p<0.001). An effect of
					the training program of Team-
					A on TT levels was evident
					exhibiting significant
					differences between at all
					point-measurements
					(baseline/mid-point:p=0.024,
					baseline/end-point:p<0.001,
					mid/end-point:p=0.008), while
					a marginally significant effect
					(p=0.051) was detected within
					Team-B and a non-significant
					effect in Team-C.
Keiner et al	Professional	Strength training.	2-years	2 groups with 4 subgroups	Our data show that additional
(2014)				(A = under 19 years of age,	strength training over a period
				B = under 17 years of age,	of 2 years significantly affects

					and C = under 15 years of	the performance in the COD.
					age). For approximately 2	The STG in all subcohorts
					years, 1 group	reached significantly (p < 0.05)
					(control group [CG]) only	faster times in the COD than
					participated in routine	did the CG. The STG
					soccer training, and the	amounted up to 5% to nearly
					other group (strength	10% better improvements in
					training group [STG])	the 10-m sprint times compared
					participated in an additional	with that of the CG.
					strength training program	Furthermore, our data show
					with the routine soccer	significant (p < 0.05) moderate
					training.	to high correlations ($r = -0.388$
						to -0.697) between the SREL
						and COD. Our data show that a
						long-term strength training
						improves the performance of
						the COD.
Los Arcos et	22	Professional	Strength and	8-week	Vertical strength (VS) and	Both groups obtained
al. (2014)			conditioning		vertical and horizontal	significant small practical
			programs		strength (VHS).	improvements in 5-m- (P $< .05$;

						ES = 0.27 and 0.25 for VS and
						VHS, respectively) and 15-m-
						sprint time (P < .05; ES = 0.19
						and 0.24 for VS and VHS,
						respectively).
Loturco et al.	32	Elite	Power training	9-week	Velocity-based (VEL) or	The 2 groups also presented
(2013)					intensity-based (INT).	significant improvements
						(within-group comparisons) in
						all of the variables. However,
						no between-group differences
						were detected. The 10-m
						sprint (VEL: -4.3%; INT: -
						1.6%) was also improved in
						both groups at T2. Curiously,
						the 30-m sprint time (VEL: -
						0.8%; INT: -0.1%) did not
						significantly improve for both
						groups.

Rønnestad,	14	Professional	Strength training	12-week	1 strength maintenance	The preseason strength training
Nymark and					training session per week	resulted in an increased sprint
Raastad					(group $2 + 1$), whereas the	(p < 0.05). During the first 12
(2011)					other group performed 1	weeks of the in-season, the
					session every second week	initial gain in strength and 40-
					(group 2 + 0.5).	m sprint performance was
						maintained in group 2 + 1,
						whereas both strength and
						sprint performance were
						reduced in group $2 + 0.5$ (p <
						0.05).
Buchheit et	15	Young elite	Explosive	10-week	Explosive strength (ExpS)	After training, except for 10 m
al. (2010)			strength (ExpS)		vs. repeated shuttle sprint	(p = 0.22), all performances
			and repeated		(RS)	were significantly improved in
			shuttle sprint (RS)			both groups (all p's < 0.05).
						Relative changes in 30 m
						$(-2.1 \pm 2.0\%)$ were similar for
						both groups ($p = 0.45$). RS
						training induced greater
						improvement in RSAbest (-

						2.90 ± 2.1 vs0.08 ± 3.3%, p =
						0.04) and tended to enhance
						RSAmean more (-2.61 ± 2.8)
						vs0.75 \pm 2.5%, p = 0.10,
						effect size $[ES] = 0.70$) than
						ExpS.
Mujika,	20	Elite junior	Sprint and power	7-week	Contrast vs. sprint.	At baseline no difference
Santisteban			training			between physical test
and Castagna						performance was evident
(2009)						between the 2 groups (p $>$
						0.05). A time x training group
						effect was found for Sprint-
						15m performance with the
						CONTRAST group showing
						significantly better scores than
						the SPRINT group (7.23 +/-
						0.18 vs. 7.09 +/- 0.20 m.s, p <
						0.01). In light of these findings
						CONTRAST training should
						be preferred to line sprint

						training in the short term in
						young elite soccer players
						when the aim is to improve
						soccer-specific sprint
						performance (15 m) during the
						competitive season.
Wong et al.	39	Professional	Concurrent	8-week	Experimental group (EG)	Within-subject improvement
(2010)			muscular strength		and control group (CG)	was significantly higher (p < or
			and high-intensity			= 0.01) in the EG compared
			running interval			with the CG for 10-m and 30-m
			training			sprint times.
Jullien et al.	26	U-17 to	Strength training	3-week	The reference group (Re)	Our results indicate that in the
(2008)		U-19			performed individual	short sprints or shuttle sprint
					technical work only, the	with changes in direction,
					coordination group (Co)	lower limb strengthening did
					performed a circuit designed	not improve performance.
					to promote agility,	
					coordination, and balance	
					control (together with some	
					technical work) and the	

					Squat group (Sq) underwent	
					3 series of 3 squat	
					repetitions (at 90% of the	
					individual maximum value)	
					and a sprint.	
Ronnestad et	21	Professional	Strength (ST) and	8-week	Group ST vs. group ST+P	No significant differences
al. (2008)			plyometric (P)		vs. control group.	between the ST+P group and
			training			ST group. Thus, the groups
						were pooled into 1 intervention
						group. The intervention group
						significantly improved in sprint
						acceleration, peak sprint
						velocity, and reduced total time
						on 40-m sprint. However, a
						significant difference between
						groups was not observed in
						sprint acceleration, peak
						sprinting velocity, and total
						time on 40-m sprint.