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“Eternal light
These gravely digs of mine
Will surely prove a sight

Astronomy — a star”
(Astronomy — Blue Öyster Cult/Metallica)

“Um homem acredita mais facilmente no que gostaria que fosse verdade.
Assim, ele rejeita coisas difíceis pela impaciência de pesquisar;

coisas sensatas, porque diminuem a esperança;
as coisas mais profundas da natureza, por superstição;

a luz da experiência, por arrogância e orgulho;
coisas que não são comumente aceitas, por deferência à opinião do vulgo.

Em suma, inúmeras são as maneiras, e às vezes imperceptíveis, pelas quais os afetos
colorem e contaminam o entendimento.”

(Francis Bacon)





Abstract
Extremely low-mass white dwarfs (ELM WDs) are understood to be the result of binary
evolution in which a low-mass donor star — mass of the order of that of the Sun —
is stripped by its companion, leaving behind a helium-core white dwarf with a mass
below 0.2–0.3 solar masses and with surface gravity ten to a thousand times smaller
than a canonical white dwarf. The overall objective of this work is to obtain ELM
models compatible with the observed distribution of ELMs and pre-ELMs. Prior to the
interaction (i.e., the mass transfer), the binary evolution is thought to be dominated by
the magnetic braking mechanism, which is the main uncertainty in modelling such systems.
In published models of the formation of the ELM WDs orbiting millisecond pulsars in very
compact orbits (2–9 hours), a severe fine-tuning of the initial orbital period was necessary,
suggesting that standard magnetic braking formulation needs to be revised. A modification
to the traditional treatment of magnetic braking has been proposed by Van & Ivanova
(2019), named Convection And Rotation Boosted (CARB). This recipe for the magnetic
braking law includes two recent improvements in understanding stellar magnetic fields
and magnetised winds, introducing changes in the evolution of low-mass X-ray binary
(LMXB) systems due to the magnetic field strength and the rotation. Computing model
sequences using the stellar evolutionary code MESA, we apply the CARB formulation
to the formation of ELM WDs in LMXB systems and find that fine-tuning of the initial
periods is not required. In particular, we find that for initial orbital periods in the range of
4–250 days, the final product of the evolution are ELM and low mass WDs with masses in
the range 0.15–0.40 solar masses. Also, the bifurcation period — the initial orbital period
that separates the systems which, at the end of evolution, will have their components close
together or far apart — is shifted to longer ones (from 2.75–2.8 to 20–25 days) when the
CARB magnetic braking is considered. As a result, we obtain ELM white dwarf models
with masses as low as 0.26 solar mass in converging binary systems even with initial orbital
periods as long as 20 days. We expand the model grid to study the effects of different
initial parameters. The following scenarios were considered: increase of the donor star mass
from 1.0 to 1.2 times the solar mass to decrease the main sequence lifetime; study different
metallicities (Z = 0.02, 0.01 and 0.001) because there are progenitors from different parts
of the Galaxy; study high (70%) and low (20%) efficiencies in mass transfer since this is a
very uncertain parameter. We then repeat the same setups described above but considering
a massive white dwarf (0.8 solar mass) accretor, compatible with cataclysmic variable (CV)
systems. Our conclusion indicates that the CARB prescription is adequate to reproduce
the observed LMXBs and CVs properties, even in the regime of short initial orbital periods.
Comparing our models with observational data from He-WDs in binary systems with
millisecond pulsars, the use of CARB magnetic braking is shown to be compatible with
the formation of ELM WDs in LMXBs. In addition to the LMXB and CV systems, the



use of CARB magnetic braking makes it possible to form ultra-compact X-ray binaries
(UCXB) systems and wide-orbit binary millisecond pulsars, as well as detached ELM
WDs companions to neutron stars and massive white dwarfs. Nevertheless, data from
ELM WDs in systems with white dwarf companions present great dispersion in mass and
orbital period of the binary system, suggesting that other formation channels are also
present. Note that we do not simulate Common Envelope models. In addition, we found
that the observational properties such as effective temperature and surface gravity of these
new models are compatible with the majority of confirmed or candidate ELM WDs. The
combined result of the more than three hundred models we calculated makes it clear that
the final mass of ELM WDs is a highly degenerate quantity in the studied parameter
space, as there are numerous interdependencies between metallicity, hydrogen shell flash
occurrence, efficiency of mass transfer, the initial mass of the stars, initial orbital period,
and the reaction of the orbital separation regarding the mass transfer.

Keywords: white dwarfs. extremely low mass white dwarfs. magnetic braking. interacting
binaries. close binaries.



Resumo
Anãs brancas de massa extremamente baixa (ELM WDs) são entendidas como o resultado
da evolução binária na qual uma estrela doadora de baixa massa — massa da ordem da do
Sol — é despida por sua companheira, deixando para trás uma anã branca com núcleo de
hélio de massa de 0,2–0,3 massas solares e gravidade superficial de dez a mil vezes menor do
que a de uma anã branca canônica. O objetivo geral deste trabalho é obter modelos de ELM
compatíveis com a distribuição observada de ELMs e pré-ELMs. Antes da interação, (i.e.,
da transferência de massa), acredita-se que a evolução binária é dominada pelo mecanismo
do freamento magnético, o qual é a maior fonte de incertezas na modelagem desse tipo
de sistema. Nos modelos de formação de ELM WDs orbitando pulsares de milissegundos
em órbitas muito compactas (2–9 horas) publicados, um severo ajuste fino no período
orbital inicial foi necessário, sugerindo que a formulação do freamento magnético utilizado
precisava ser revisada. Uma modificação ao tratamento do freamento magnético tradicional
foi proposta por Van & Ivanova (2019), nomeada Convection And Rotation Boosted
(CARB). Essa receita para a lei do freamento magnético inclui duas novas melhorias no
entendimento dos campos e ventos magnéticos, introduzindo modificações na evolução de
sistemas binários de raios-X de baixa massa (LMXB) devido à força do campo magnético e
à rotação. Computando sequências de modelos usando o código de evolução estelar MESA,
nós aplicamos a formulação CARB em modelos de formação de ELM WDs em sistemas
binários compactos e encontramos que o ajuste fino severo no período orbital inicial não é
mais necessário. Em particular, nós encontramos que para períodos orbitais no intervalo
de 4–250 dias os produtos finais da evolução são ELMs e anãs brancas de baixa massa
com massas no intervalo 0,15–0,40 massas solares. Também, o período de bifurcação —
o período orbital inicial que separa os sistemas em que, ao final da evolução, terão seus
componentes aproximados ou afastados — é deslocado para valores maiores (de 2,75–2,8
para 20–25 dias) quando o freamento magnético CARB é levado em conta. Como resultado,
obtivemos modelos de ELM WDs com massas tão baixas quando 0,26 massas solares em
sistemas convergentes mesmo com períodos orbitais iniciais tão longos quanto 20 dias. Nós
expandimos a nossa grade de modelos para estudar os efeitos de diferentes parâmetros
iniciais. Os seguinte cenários foram considerados: o aumento da massa da estrela doadora
de 1,0 para 1,2 vezes a massa do Sol a fim de diminuir o tempo na sequência principal;
diferentes metalicidades (Z = 0.02, 0.01 and 0.001) pois há progenitores em diferentes
partes da Galáxia; e estudar alta (70%) e baixa (20%) eficiência na transferência de massa,
já que é um parâmetro bastante incerto. Nós então repetimos as mesmas configurações
descritas acima mas considerando como acretora uma anã branca massiva (0,8 massa
solar), compatível com sistemas de variáveis cataclísmicas (CV). As nossas conclusões
indicam que a prescrição CARB é adequada para reproduzir as propriedades de LMXBs
e CVs observadas, mesmo no regime de períodos orbitais iniciais curtos. Comparando



nossos modelos com dados observacionais de He-WDs em sistemas binários com pulsares de
milissegundos, o uso do freamento magnético CARB se mostra compatível com a formação
de ELM WDs em LMXBs. Em adição aos sistemas LMXB e CV, o freamento CARB
torna possível a formação de binários de raios-X ultra-compactos (UCXB) e pulsares de
milissegundos de órbita ampla, bem como ELM WDs separadas em companhia de estrelas
de nêutrons e de anãs brancas massivas. Todavia, dados de ELM WDs em sistemas com
anãs brancas apresentam grande dispersão em massa e no período orbital do sistema
binário, sugerindo que outros canais de formação também estão presentes. Nota-se que
não simulamos modelos de Envelope Comum (CE). Além disso, nós encontramos que
as propriedades observacionais como temperatura efetiva e gravidade superficial desses
novos modelos são compatíveis com a maioria das ELM WDs confirmadas ou candidatas.
Os resultados combinados dos mais de trezentos modelos que calculamos deixam claro
que a massa final das ELM WDs é uma quantidade extremamente degenerada no espaço
de parâmetros estudado, já que existem inúmeras interdependências entre metalicidade,
ocorrência de flashes de hidrogênio, eficiência na transferência de massa, a massa inicial
das estrelas, o período orbital inicial, e a reação do sistema binário quanto à transferência
de massa.

Palavras-chave: anãs brancas. anãs brancas de massa extremamente baixa. freamento
magnético. binárias interagentes. binárias próximas.
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1 Introduction

Until around the end of the XVI century, the development of science was at a
very slow pace compared to today. Then there was the development of thermodynamics,
chemistry, and electromagnetism, fundamental to the Industrial Revolution, and by the
end of the XIX century it was said that all nature was well understood (Mason, 1962;
Osada, 1972; Rocha, 2002). It was a mistake. In the last hundred years, scientific and
technological advances have taken an even greater step. In particular, we can mention
Astronomy (Herschel, 2009), which with the help of large telescopes, space missions and
great computational power, has allowed us to understand the present Universe, and also
its history, in ever greater detail, but still incomplete. Current cosmological models tell
us that for hundreds of thousands of years the Universe had nothing but radiation and
elementary particles. It is believed that the first generation of stars — the still hypothetical
population III stars — have been formed at a redshift z = 20–65, which corresponds to
∼ 1% of the age of the Universe today (e.g., Bromm; Larson, 2004; Naoz; Noter; Barkana,
2006; Bromm et al., 2009). Population III stars, with zero metallicity (Z = 0), may have
been born with up to 1000 solar masses, and contaminated the Universe with metals in a
few thousand of years after their formation. Then, a few hundred million years after the
Big Bang, the earliest generations of galaxies formed (e.g., Bromm; Yoshida, 2011).

Atoms come together to form molecules and then larger compounds. Similarly,
stars are the fundamental building blocks of the Universe: they are formed in clusters —
open or globular —, which in turn form galaxies. As the best example, we can cite our
home, the Milky Way, which contains at least 200 billion stars and probably 100 billion
planets. Although the lifespan of stars is incomparably longer than our time hosted here
on Earth, we currently know that stars are also born, evolve, and die, and are responsible
for the Universe as we see it today.

Most stars are not alone, and like humans, most of them change their behaviour by
their company. In this chapter we will introduce binary stars, going through some history,
observations, and the basic physics involved.

1.1 A bit of history of binary systems
At first glance, all stars appear to be mere points of light projected upon the surface

of the celestial sphere, not allowing us to perceive their real distances. As a result, for a
long time, there was no clear differentiation between truly gravitationally bound stars —
binary stars — and those that were only on the same line of sight, the so called double
stars.
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Although not the inventor of this tool, in 1609 Galileo Galilei (1569–1642) began his
observations with the telescope and soon greatly improved its capabilities. It was quickly
found that some stars that appear single to the naked eye are resolved into a pair of stars
by the telescope. The first historical record is a letter by Benedetto Castelli (1578–1643)
to Galileo in 1617, where he noted that Mizar (ζ Ursae Majoris, see Figure 1) was, in fact,
a double star. Galileo later observed Mizar himself and determined the angular distance
between the two stars as 15′′.

Figure 1 – Picture of the Mizar (ζ UMa) with its fainter companion Alcor (80 UMa) in
the constellation of Ursa Major on September 26, 2006. Position (J2000): RA
13h23m55.6s, Dec +54◦55′31′′. Instrument: 6′′ f/8 Newtonian reflector telescope
with 150 mm aperture and 1200 mm focal length. Eyepieces/magnification: 10
mm (120x).

Credit: adapted from Perez (2006).

In 1750 the amateur scientist Thomas Wright (1711–1786) came up with the idea
that, if the planets around the Sun form a system, the stars spread throughout space
can also form a system or a series of systems. In 1755 the philosopher Immanuel Kant
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(1724–1804) suggested that the nebulae seen in the sky were large sidereal systems and all
the these systems could be orbiting around the same common centre. These speculations
attracted the attention of the astronomer William Herschel (1738–1822) who carried out a
systematic study of the motion and distribution of stars in space and recorded 269 pairs of
stars, orbiting each other, which suggested that the force of gravity acted in both the solar
and in the sidereal space. In fact, Herschel was the first to use the term binary star to
designate the union of two stars that, by laws of gravitation, form together a single system
(see Zinnecker, 2001). On the mathematical side, in 1767 John Michell (1724–1793) began
to develop some statistics about visual binary systems that provided early indications
that the closeness of the components is not due to chance, and indeed most pair are real
physical pairs. In 1889 Edward Charles Pickering (1846–1919) announced the discovery
of the first spectroscopic binary (β Persei, a.k.a. Algol), a class defined by the periodic
shifting of spectral lines due to the variation in the radial velocity of the star(s). In fact,
this story is somewhat obscure, and it is possible to find the information that actually
Pickering only obtained evidence of this fact in 1981, and confirmation of the discovery of
Algol radial velocity variations was given in 1989 by Hermann Carl Vogel (1841–1907, see
Batten, 1989).

However, the milestone of double star astronomy can be considered the catalogue
of 81 double stars by Burnham (1873). During his decades of work, Burnham contributed
greatly to the astronomy of binary stars, including the discovery of several new spectroscopic
binaries and the demonstration that eclipsing variable stars are binary systems.

Binary stars are generally classified according to their method of detection. In a
visual binary system, each component star can be individually resolved through a telescope.
These systems tend to be relatively close to us and are characterised by having large orbital
separation, so long-term observations must be made in order to get relative positions of
the members of the system.

An eclipsing binary is a system in which the orbital plane lies nearly edge-on —
perpendicular to the plane of the sky — , so that the component stars periodically eclipse
one another and variations in the flux are observed. A light curve — the graph of apparent
brightness as a function of time, reveals the pattern of the eclipses and can be used to
deduce the size of the stars, the distance between them and how much of one star the other
covers. The shape of the light curve may also indicate the occurrence of mass transfer
between the binary components and their possible tidal deformation. Only a small fraction
(< 0.3 %, Guinan; Engle, 2006) of all binary stars are aligned to produce mutual eclipses
of their components.

The orbital period measurement in most binary system have been determined by
measuring the radial velocities variations of the components, that is, the Doppler shift
effect on their spectral lines. Such systems are called spectroscopic binaries. Although a
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very accurate method, the effect only occurs if the system’s orbital plane is not face-on
to us.1 In this case, for the star moving towards us we detect blue-shifted spectral lines;
while for the moving away star we see red-shifted lines.

Finally, we have the astrometric binary class. This method requires long-term
observations and small uncertainty in position and proper motion measurement. In fact,
this method consists in finding small periodic perturbations in the position of a star,
evidencing that it occurs due to the gravitational influence of a companion.

Readers interested in more detail about the history of astronomy and early develop-
ments in binary systems should refer to: Aitken (1935), Kopal (1959), Mason (1962), Kopal
(1978), Sahade & Wood (1978), Lipunov (1989), Sahade, McCluskey & Kondo (1993).

1.2 Basic principles of binary systems

In this section we will recall several basic facts about binary stars that will be of
most importance for understanding the following sections. In particular, we will introduce
the notation for the main physical quantities of the system, as the components masses,
the orbital period, the orbital separation, and how some dynamical events may depend on
them. Readers interested in more detailed discussions on this topic may refer to Paczyński
(1971), Batten (1973), Masevich & Tutukov (1988), Hilditch (2001), Eggleton (2006), Tout
(2006), Cherepashchuk (2013a), Cherepashchuk (2013b), Postnov & Yungelson (2014), de
Marco & Izzard (2017), Tutukov & Cherepashchuk (2020).

1.2.1 Keplerian motion of a binary star system

The simplest way to start studying motions in binary systems is to consider the
Keplerian motion. Stars in this kind of system usually have similar masses and are highly
condensed objects moving with orbital velocities much smaller than the light speed. This
allows us to assume that it is equivalent to two points of masses, M1 and M2, bound
together by gravity in a Newtonian field. Far from the system — at a distance much
greater than binary separation — the potential is determined by the total mass of the
system

MT = M1 +M2 , (1.1)

1 Edge-on systems accounts for the vast majority of binary inclinations: rotation vectors are random in
space, but orbital planes are biased toward large inclinations — i.e., more edge-on systems (Heintz,
1969; Malkov; Chulkov, 2017). It is generally assumed that the mean inclination angle for a random
stellar sample is i = 60◦ (e.g., Halbwachs et al., 2003; Willems; Kolb, 2004; Brown et al., 2010; Brown
et al., 2011a). In fact, perfectly edge-on (i = 90◦) or perfectly face-on (i = 0◦) systems are rare. Most
systems have an intermediate inclination.
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and this problem is equivalent to that of a single mass µ in a external gravitational
potential (Landau; Lifshitz, 1976), where the reduced mass is defined as

µ = M1M2

M1 +M2
= M1M2

MT
. (1.2)

As illustrated in Figure 2, each component M1 and M2 moves around the barycentre —
centre of mass — with velocities ~V1 and ~V2, being the major semi-axis of each ellipse, a1

and a2, inversely proportional to their masses

a1

a2
= −‖

~V1‖
‖~V2‖

= M2

M1
. (1.3)

The position vectors of each body in relation to the barycentre are ~r1 and ~r2, where

Figure 2 – Schematic geometry of a binary system with masses M1 and M2 governed by
Newtonian gravity. The orbital separation is a = a1 +a2 (red lines). The vectors
~r1 and ~r2 (black lines) are measured from the barycentre (BC) to the binary
members (black circles). The low eccentricity (e ≈ 0) elliptical orbits are shown
in blue.

~r = ~r1 − ~r2 is the relative position and ~V = ~V1 − ~V2 is the relative velocity.

Thus, if the reduced body µ moves in an elliptic orbit with eccentricity e and
major semi-axis a, each individual body M1 and M2 moves around the barycentre, also in
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elliptical orbits with eccentricity e, satisfying Kepler’s third law (Kepler, 1992; Kepler,
1997)

Ω2 =
(2π
P

)2
= GMT

a3 , (1.4)

where Ω is the orbital frequency, P = 2π/Ω is the orbital period, a = a1 + a2 and G is the
gravitational constant. An important consequence is that we must have MTP

2/a3 = cte.
Naturally, this relation is also valid for circular orbits.

In a generic, eccentric orbit, the orbital angular momentum vector

~Jorb = µ~V × ~r (1.5)

is perpendicular to the orbital plane. In a circular orbit (e = 0), the velocity is simply

V = Ωa =
√
GMT

a
, (1.6)

and the total orbital angular momentum of the system becomes

| ~Jorb| = Jorb = µV a = µΩa2 = M1M2

√
Ga

M1 +M2
= µ

√
GMTa . (1.7)

The total energy — kinetic plus potential — of the system is

E = −GMT

2a . (1.8)

By differentiating Equation 1.7 we obtain a general equation for the orbital evolution of a
non-eccentric system

2 J̇
J

= ȧ

a
+ 2Ṁ1

M1
+ 2Ṁ2

M2
− Ṁ1 + Ṁ2

M1 +M2
, (1.9)

which can be easily resolved to express the variation of the orbital separation ȧ or the
angular momentum J̇ .

For point and sufficiently separated sources in a circular orbit, the loss of angular
momentum is only due to gravitational radiation, and is given by the well-known expression
(see, e.g., Peters, 1964; Landau; Lifshitz, 1975)

J̇gr = − 32
5c5

(2πG
P

)7/3 (M1M2)2

(M1 +M2)2/3 , (1.10)

where c is the speed of light.

1.2.2 Equipotentials and Roche lobe

A simple classification of binary systems takes into account if one star interferes in
the evolution of the other. When the orbital separation is sufficiently large, i.e., significantly
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larger than the radius on the asymptotic giant branch (AGB, see Appendix A), each com-
ponent evolves separately, as if they were single stars, except that they are gravitationally
bound. We call this case wide binaries. On the other hand, we call them close binaries
if the evolutionary expansion of one or both components of the system leads to a mass
exchange between the stars (Paczyński, 1967c). This is also generally understood as pairs
of stars whose dimensions are not insignificant fractions of their separation (Kopal, 1956).

The Roche lobe is the geometric region around a star in a binary system, within
which orbiting material is gravitationally bound to that star. If any amount of matter is
inside the Roche lobe, the star’s gravity guarantees that it stays there; and if it is outside,
there will be overflow to the companion star or even loss from the binary system. In the
case where the two stars exceed their Roche lobes, it is possible the formation of a common
envelope (CE). The Roche lobe radius RL is defined as the radius of a sphere with the
same volume as the Roche lobe, i.e., VL = 4πR3

L/3. An expression for the Roche lobe
radius with accuracy better than 1% in the range 0 < q <∞ was suggested by Eggleton
(1983)

RL = 0.49q2/3a

0.6q2/3 + ln(1 + q1/3) , (1.11)

where q = M1/M2 is the mass ratio.

The total potential (gravitational plus centrifugal) is approximated by the Roche
potential, which takes into account the additional assumption that the components (point
of masses) of the system co-rotate with the binary orbital period in a circular orbit —
i.e., each stellar component has the same angular velocity as the orbit. The shape of the
equipotential level surface Φ = constant determines the shape of the surface of the star.
Thus, the total potential at a given point (x, y, z) in the Cartesian reference frame is

Φ = −GM1

|~r − ~r1|
+ −GM2

|~r − ~r2|
− 1

2(~ω × ~r)2

= −GM1√
x2 + y2 + z2 + −GM2√

(x− a)2 + y2 + z2
− 1

2Ω2
[
(x− µa)2 + y2

]

= −GM1√
x2 + y2 + z2 + −GM2√

(x− a)2 + y2 + z2
− 1

2
GMT

a3

(x− a

1 + q

)2

+ y2

 ,

(1.12)

whereas in the last expression the star 1 is at the origin and the star 2 at (a, 0, 0). The
centre of mass of the system is at the point (µa, 0, 0). Naturally, a massive particle in an
arbitrary position (x, y, z) will be under the effect of a force given by ~F = −∇Φ if the
particle velocity is zero in the rotation frame.

Figure 3 illustrates the Roche lobe potential in a binary system. For the study
of the evolution of close binary systems, the most important surface is the innermost
level surface that encloses the two components, defining the Roche lobe of the stellar
components. Within this limit, the matter is bound to the respective star. The points
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Figure 3 – Top left: shape of the Roche potential along the line connecting the two stars.
The potential Φ is in units of G(M1 + M2)/a and the horizontal scale is in
units of the semi-major axis a. Right: in a detached system, both stars evolve
separately. Roche lobe overflow occurs in a semi-detached system, where the
donor star fills its Roche lobe and mass is transferred to the accretor star. A
contact system occurs when the mass transfer rate is too fast to be accreted or
even when both stars fill their Roche lobe. If the mass transfer is dynamically
unstable, the accretor star is unable to accept all material, which leads to the
formation of a common envelope engulfing the companion star. Bottom left: the
equipotential lines in the x–y plane. The first three Lagrangian points (where
∇Φ = 0) are highlighted in red.

Credit: adapted from Lamers & Levesque (2017).

where a mass element in rest maintain its position relative to the large orbiting bodies
are called Lagrangian points. In these points, the net force exerted onto a test particle
corotating with the binary vanishes. The first three Lagrangian points, L1, L2 and L3, lie
on the line connecting M1 and M2; and the L1 point is through which a mass flow can
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occur from one star to another in the Roche-lobe overflow scenario (the wind mass loss
will be discussed later in the text). In fact, if enough energy is available, mass and angular
momentum can also be lost through points L2 and L3 (which are also unstable), but we
will not consider these possibilities in this work.

The Roche-lobe overflow (RLOF) occurs when the radius of one of the stars (the
donor, in our case) becomes equal to the radius of a sphere with volume equal to that of
the Roche lobe. As the stellar components are considered spherical and the Roche lobe is
not, we must compare them by volume and not directly by radius.

There is no absolute convention as to which star to call 1 or 2 as long as these are
fixed labels. Some authors often define 1 as the initially most massive star, while others
use label 1 to indicate the star that will be analysed in more detail. In most cases, 1 refers
to the primary or the most massive component at a given reference time. In observational
studies, one more nomenclature can be found. In a visual binary system, for example, the
brighter star is usually referred to as star A, and the fainter one as star B. Other possible
and valuable definitions are those of donor and accretor star, since in this way we can
have an immediate outlook of the state of the system. Thus, we will refer to the radius
and mass of the donor or accretor star as Rd, Ra, Md and Ma. This definition is especially
interesting for the present work since we are studying an evolutionary phase in which mass
transfer occurs only in one direction. However, these terms should be used with caution
when compared to the study of other evolutionary phases, as throughout their lifetime a
binary system may have the orientation of mass flow reversed several times (e.g., Postnov;
Yungelson, 2014; Tutukov; Cherepashchuk, 2020).

1.2.3 Timescales

To better understand the various processes governing the evolution of a star and
a binary star system, we must separate them according to their duration. Often, the
timescale related to one of the stars in the system ends up governing a phenomenon related
to the binary system as a whole. Therefore, we can discuss the timescales of a binary
system and its components in parallel.

From equation (2) in Kraft, Mathews & Greenstein (1962), the following expression
is obtained for the merging time due to gravitational radiation

τgwr = 47100M−5/3P 8/3 Myr , (1.13)

where the chirp mass (M, see Equation B.3) and the orbital period (P ) should be given
in solar masses and days, respectively. This is the timescale on which coalescence can be
expected to occur only due to gravitational wave radiation. The emission of gravitational
radiation can decrease the separation of the double white dwarf systems, leading to a
merger in less than Hubble time if the orbital period of the system is about 10 hours or
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less (Shore; Livio; van den Heuvel, 1994; van den Heuvel, 1994). Therefore, we can expect
this contribution to be greater at the end of evolution, when the system consists of two
compact objects.

Main sequence stars with a mass within the range 0.3–1.5 M� have a convective
envelope and a radiative core. The donor star is assumed to emit a magnetic wind, which
is forced to corotate by the magnetic field to large distances. The wind thus removes spin
angular momentum from the donor by exerting a torque, and assuming that there is tidally
coupling and synchronous rotation with the orbit, this has the effect of removing angular
momentum from the binary orbit. The characteristic timescale of the magnetised
stellar wind is given by (e.g., Tutukov; Cherepashchuk, 2020)

τmsw ' 3× 106a5MaR
−4
d M−2

T yr , (1.14)

where a and Rd are the orbital separation and the donor radius in units of solar radius, and
Ma is the mass of the accretor (in solar mass units, as well the total mass MT). Given that
we are going to deal with systems that have stellar components of very restricted masses
throughout this work, the factors that will contribute most strongly to the actuation of
this mechanism are the small orbital separation (i.e., short orbital period) and the radius
of the donor star (which grows significantly in the red giant stage, for example).

The mass transfer timescale is simply defined as

τmt = Md

Ṁ
, (1.15)

which can assume values over a wide range, as the mass transfer rate can vary by more
than a dozen orders of magnitude. Here, Md is the donor mass and Ṁ is the mass transfer
rate (usually given in M�/yr).

The dynamic timescale — also know as free-fall timescale — indicates the time
taken by the star to recover its hydrostatic equilibrium state after a perturbation. It
depends on the radius of the star (R) and on the average sound velocity in the stellar
matter cs

τdyn = R

cs
=
√

R3

2GM ≈ 0.04
(
M�
M

)1/2 ( R

R�

)3/2

days , (1.16)

where we have assumed cs to be the escape velocity,2
√

2GM/R.

Now let us consider a single photon produced in the core of the star. Taking its
motion as a random walk and considering the mean free path of the photon as `, we have
that the photon diffusion timescale is

τγ ≈
R2

`c
yr . (1.17)

2 Because the Virial theorem implies that c2
s ∼ GM/R (see, e.g., Lamers; Levesque, 2017).
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When energy loss and energy production are no longer in balance, a star reacts on
a thermal timescale — also known as Kelvin-Helmholtz timescale — given by

τth = Eth

L
≈ GM2

2LR ≈ 1.5× 107
(
M

M�

)2
R

R�

L�
L

yr , (1.18)

where Eth and L are the thermal energy and the luminosity of the star, respectively.
According to the Virial theorem, the thermal energy is half the (negative) potential energy.
Thermal timescale is the time during which gravitational contraction could sustain the
luminosity of the star at its current value. In other words, it is the time that a star would
emit its entire reservoir of thermal energy, as long as its luminosity remained constant.

Finally, the timescale in which a star uses its nuclear fuel reservoir is given by the
nuclear timescale

τnuc = 0.007Mcorec
2

L
≈ 1010 M

M�

L�
L

yr , (1.19)

where Mcore is the mass of the stellar core and the 0.007 is the fractional mass deficit from
H to He. So if we arrange our timescales considering a Sun-like star, we end up with the
inequalities:

(τnuc ≈ 1011 yr)� (τth ≈ 107 yr)� (τγ ≈ 104 yr)� (τdyn ≈ 19min) . (1.20)

1.3 White dwarfs and binaries
Since the evolution of single stars is not the main theme of this work but it is

important for the general understanding of the subject, we invite the reader to follow this
topic in Appendix A before going on.

We begin this section by highlighting the importance of binary evolution in the light
of some observational data and statistics. Then, we will look for evidence that differentiates
the evolution of single white dwarfs from those ones from binary evolution.

Several explanations of how binary and multiple stars form have been proposed,
discussed, and discarded over the years (see, e.g., Pringle, 1989; Chapman et al., 1992;
Boss, 1993; Bodenheimer, 2001; White; Ghez, 2001; Clarke, 2006). In the review, Tohline
(2002) remarks that the mechanisms proposed for forming binary stars can be divided
into three broad categories: i) capture, ii) prompt fragmentation, and iii) delayed breakup.
Recently, Tutukov & Cherepashchuk (2020) point out that two scenarios are presently
suggested as the mechanisms for the formation of binary stars: the fission of rotating
molecular gas clouds during the gravitational collapse, and the inelastic collisions of stars
during the formation of young star clusters.

The evolution of stars in binary systems can become quite different from those that
evolve as a single star. Moreover, while the evolutionary theory for single stars is already
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quite well developed and the observations reproduced by simulations,3 the evolution of
multiple systems has many open questions. This is undoubtedly a great subject for research,
since over 50% of field stars with one solar mass and above are in binaries (Duchêne; Kraus,
2013).4 Out of those, 25% will interact at least once in their lifetime (Willems; Kolb, 2004).
To improve our understanding of the evolution of binary systems, it is necessary to develop
evolutionary theories of interacting systems, and to test them against data.

The study of low-mass stars transferring mass in binary systems has also proved
useful to explain chemical anomalies among unevolved stars in globular clusters, for
example. Wei et al. (2020) study the surface abundances of the accretors in low-mass
binaries and found that the abundance patterns are significantly different from their initial
abundances or that of normal single stars, supporting the hypothesis that mass transfer
in low-mass binaries is, at least, partly responsible for the unevolved anomalous stars in
globular clusters.

Also, the detection of an enhanced abundance of α-elements in the low-mass X-ray
binary Cygnus X-2 was shown to be consistent with a scenario of contamination of the
secondary star during the supernova event (Suárez-Andrés et al., 2015); and the study of
the mass transfer in low-mass X-ray and cataclysmic variables binaries were used to make
hypotheses about C/O chemical anomalies (Schenker; King, 2002).

1.3.1 White dwarfs

According to Russell (1944), the first person who reported the existence of white
dwarfs was Williamina Fleming (1857–1911), publishing her discovery in 1910. A typical
white dwarf is half as massive as the Sun and only slightly bigger than the Earth. This
makes them part of the so called compact objects, along with neutron stars and black
holes. The extremely dense and hot nature of white dwarfs (WDs) makes them excellent
astrophysical laboratories, where we can test our understanding of energy transport,
quantum processes, cooling processes, opacity of elements, crystallisation, equation of
state, behaviour of atoms under very strong magnetic fields and more.

White dwarf stars are the most common outcome of single star evolution. Up to

3 Some exceptions can be cited, however. For instance, it is still unclear whether the mass-radius relation
anomaly in low main sequence stars seen in detached binaries is a (hidden) binarity effect or is it
intrinsic to all low mass main sequence stars (Hoxie, 1970; Hoxie, 1973; Torres; Andersen; Giménez,
2010; Feiden; Chaboyer, 2012). We may also cite stellar pulsation theory (Dupret, 2019), pulsating
white dwarfs (Winget; Kepler, 2008; Córsico et al., 2019), solar composition (Serenelli et al., 2009),
helioseismology (Serenelli, 2016), and solar neutrinos (Orebi Gann et al., 2021). A general review
of some current problems in stellar evolution — including micro- and macro-physics ingredients,
convection, overshooting, semi-convection, rotation, chemical evolution, age scales, and mass loss —
can be found in Weiss (2002), Buldgen (2019).

4 The binary fraction in globular clusters is much lower (∼ 2–20%) than in the field. The binary fraction
strong correlates with the globular cluster mass. See, e.g., Romani & Weinberg (1991), Milone et al.
(2008), Gratton, Carretta & Bragaglia (2012), Lucatello et al. (2015).
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97–99% of Milky Way stars are believed to end up as WDs (Fontaine; Brassard; Bergeron,
2001; Winget; Kepler, 2008; Lauffer; Romero; Kepler, 2018). Although the main variable
defining the fate of a newly formed star is its mass, several other factors can modify its
end. Examples include chemical abundance, rotation, off-centre burning, and episodes of
accretion or mass loss to the environment. Unfortunately, we do not have enough time
to observe the complete evolution of a star, and what we know about it depends on
numerical simulation models, laboratory experiments, and astronomical data. Thus, one
may say that WDs are the final observable stage of stars with initial mass up to 6–11.8 M�
(García-Berro; Isern; Hernanz, 1997; Poelarends et al., 2008; Siess, 2010; Langer, 2012;
Doherty et al., 2014; Woosley; Heger, 2015; Lauffer; Romero; Kepler, 2018).

Studying the population of white dwarfs reveals important information about stellar
formation processes and evolution (Winget et al., 1987; Tremblay et al., 2014; Campos et
al., 2016). Because they are among the oldest objects in the Galaxy (e.g., García-Berro;
Oswalt, 2016), they can be used to determine the age of the stellar population where they
reside, e.g., set a lower limit of 9.5 Gyr on the age of the Galactic disk (Winget et al., 1987;
Oswalt et al., 1996), resolving age discrepancy for individual open clusters (García-Berro
et al., 2010), and calculating the age of local field (inner) halo stars to be 11.4± 0.7 billion
years (Kalirai, 2012). Also, a pulsating white dwarf is the most stable optical clock known
(Kepler et al., 2021).

White dwarfs have run out of thermonuclear fuel, and most of them have burned H
and He in their interiors and are believed to have C-O cores, containing ∼ 99% of the total
mass, a thin He mantle (∼ 1%), and a thinner but opaque H envelope (. 0.01%). In the
case that, for some reason, the star loses the outermost layers before the start of helium
burning, it may happen that the white dwarf forms with a helium core and a hydrogen
envelope. Using data from the Sloan Digital Sky Survey, spectral analysis indicates that
the majority (82%) of the white dwarfs in the sample have an atmosphere dominated by
hydrogen (Kepler et al., 2019; Kepler et al., 2021). As they are compact cooling bodies in
hydrostatic equilibrium, they evolve at almost constant radius.

1.3.2 The lower mass limit

On the other hand, the minimum mass of a present-day white dwarf coming from
single star evolution is around 0.45 M�, and smaller masses can only be obtained by
invoking extreme winds in high metallicity environments (Kilic; Stanek; Pinsonneault,
2007; Tremblay et al., 2016; Pelisoli; Vos, 2019). This is because a progenitor star that
would become an even lower mass white dwarf has main sequence evolution time larger
than the present age of the Universe.

White dwarf stars in the mass range 0.20–0.45 M� are generally referred to as
low-mass white dwarfs. The discovery of white dwarfs in detached close binaries supports
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the notion that evolution within a binary star is needed to obtain white dwarfs with masses
below 0.45 M�.5 Thus, low mass WDs are most likely a product of interacting binary star
evolution (Marsh; Dhillon; Duck, 1995; Marsh, 1995). Using both radial velocities and
infrared photometry to study 21 WDs with M 6 0.45 M�, Brown et al. (2011) found that
the fraction of single low-mass WDs is 6 30%, but their sample was limited to orbital
period 6 117 h. As we will see below, although the first extremely low-mass white dwarfs
were discovered in company with pulsars (i.e., neutron stars), the most recently discovered
ones have another white dwarf as companions.

In parallel, white dwarfs in binary systems with masses even smaller (M < 0.2 M�)
began to be discovered. By means of spectroscopy, van Kerkwijk, Bergeron & Kulkarni
(1996) inferred the white dwarf companion of the millisecond radio-pulsar PSR J1012+5307
to have a mass of 0.16± 0.02 M�; and Liebert et al. (2004) interpreted SDSS J123410.37-
022802.9 to be a very low-mass WD with a core composed of helium, with mass ∼
0.18–0.19 M�, and probably belonging to a binary system. The surface gravity of an object
is given by g = GM/R2. Using optical spectroscopy, Kilic et al. (2007) found the lowest
gravity/mass WD until then, with log(g) = 5.48 ± 0.03 (g in cm/s2) and an estimated
mass of M = 0.17 M�.

This gave rise to surveys to search for the so-called extremely low-mass white dwarfs
(ELM WDs),6 such as the ELM Survey (Brown et al., 2010) containing 88 identified ELMs
with surface gravity 4.71 6 log(g) 6 7.76, effective temperature 7, 940 6 Teff/K 6 34, 270,
and masses 0.142 6 M1/M� 6 0.497 (Brown et al., 2016). These ELMs are in systems
with orbital period 0.00886 6 P/d 6 2.16489, companion masses 0.07 6M2/M� 6 1.21,
and are located at distances in the range 0.104 6 d/kpc 6 9.187. The ELM Survey found
that all ELM WDs in their sample belong to double WD binaries (Brown et al., 2020),
considering the survey limited targeting (only North Hemisphere) and selection effects
(only short P 6 36 h orbital period systems). In a search for pulsars at the positions of
eight low-mass white dwarfs that have orbital parameters suggesting that their unseen
companions are either massive white dwarfs or neutron stars, Athanasiadis et al. (2021a),
Athanasiadis et al. (2021b) found no significant pulsar signals and infer 6 0.10 for the
fraction of neutron stars orbiting ELM WDs, although ELM WDs are also found as
companions to pulsars (see subsection 1.3.3).

In evolutionary terms, ELM WDs are connected with cataclysmic variables — CVs

5 Actually, the exact limit is not well defined. We can cite as an example the mass loss in the asymptotic
giant branch — AGB (e.g., Bloecker, 1995b; Bloecker, 1995a), which is a complex dynamic phenomenon
that is still poorly understood (see Höfner; Olofsson, 2018 for a review). Mass loss can take away
significant amount of matter, depending on the star’s initial mass, and thus significantly modify the
subsequent evolution of the star (Cummings et al., 2018).

6 There are several definitions for the upper mass limit for the class in the literature, e.g., 0.18 M� (Sun;
Arras, 2018), 0.20 M� (Kawka; Vennes, 2009; Althaus; Miller Bertolami; Córsico, 2013; Chen et al.,
2017), 0.25 M� (Hermes et al., 2013b; Hermes et al., 2013a), 0.30 M� (Li et al., 2019; Pelisoli; Vos,
2019).
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(e.g., Ivanova et al., 2006, Giovannelli, 2008, Knigge; Baraffe; Patterson, 2011, Knigge,
2012, Zorotovic; Schreiber, 2020, Belloni; Rivera, 2021, El-Badry et al., 2021a, El-Badry
et al., 2021b), and low-mass X-ray binaries — LMXBs (e.g., Patterson, 1984, Ritter; Kolb,
2003, Liu; van Paradijs; van den Heuvel, 2007, Ivanova et al., 2008, Charles, 2011, Sazonov
et al., 2020), as the former is one of the possible evolutionary continuations of the latter.
The mass transfer observed in CVs and LMXBs systems occurs from the pre-ELM to a
white dwarf or neutron star accretor, respectively. As such, not all CVs or LMXBs systems
will host ELM WDs in the subsequent evolutionary stages.

1.3.3 Low-mass white dwarfs in binary systems with pulsars

Pulsars are high-rotating and highly magnetised neutron stars that emit beams
of intense radiation at radio wavelengths. They were theoretically predicted in 1933
(Baade; Zwicky, 1934) and discovered in 1968 (Hewish et al., 1968) by observing pulses
separated by 1.33 seconds that originated from the same location in the sky. Since then,
the number of known pulsars in our Galaxy increased to almost 2800. The most famous
application was the first indirect observational evidence for gravitational waves in the
first binary pulsar discovered, the so-called Hulse–Taylor pulsar (Hulse; Taylor, 1975).
The most important quantities in the study of pulsars is the spin period and its temporal
derivative. The known pulsars have spin period 0.001396 ≤ Ps (s) ≤ 23.535378 and
5.83×10−22 ≤ Ṗs (s/s) ≤ 5.49×10−10, and 38 of them have Ṗs < 0. The fraction of pulsars
that have well-determined Ṗs is 82% of the known total. Different values of Ps and Ṗs imply
different magnetic fields strengths and ages for a pulsar. In a rough theoretical approach,
we can consider the relations B ∝

√
PsṖs and τPSR = Ps/2Ṗs for these quantities, where

τPSR is the characteristic age of the Pulsating Source of Radio (Harding, 2013; Kaspi,
2017). An important class of pulsars are the so-called millisecond pulsars (MSP) that, as
the name suggests, complete a rotation within a fraction of a second (there are 465 MSPs
with Ps < 0.01 s in the version 1.66 of the ATNF Pulsar Catalogue, Manchester et al.,
2005).

About 80% of the MSPs are in known binary systems. MSPs are thought to have
originally been members of the rotation powered pulsar population (with 1012 . B/G .
1013 and 10−1 . Ps/s . 100), spun down (101 . Ps/s . 102) for tens of Myr and then spun
up (108 . B/G . 1010 and 10−3 . Ps/s . 101) by accretion from a binary companion
(Backus; Taylor; Damashek, 1982; Alpar et al., 1982). A common scenario are the X-ray
binary systems, where an initially low-spinning neutron star accretes matter from an early-
stage donor star and, due to angular momentum gain, becomes an MSP (Bhattacharya;
van den Heuvel, 1991). These pulsars are then said to be recycled (Papitto et al., 2013;
Campana; Salvo, 2018; Papitto; de Martino, 2020; Patruno; Watts, 2021). In this scenario,
the X-ray emission originates as a result of the conversion of the gravitational binding
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energy of the accreted mater into kinetic energy. For a typical neutron star mass and
radius, the energy released by the infalling matter into the deep gravitational potential
well is up to ∼ 1020 erg/g. This is a tenth of the rest-mass energy, ∼ 0.1c2 (where c is the
speed of light), making accretion an ideal source of power. Each unit of accreted mass
that reaches the neutron star surface releases an amount of gravitational potential energy
given by GM/R. Thus, a typical accretion rate of 10−9 M�/yr generates a luminosity of
∼ 1037 erg/s. See a more complete discussion in Kylafis (1995), Wang (2016), D’Antona &
Tailo (2020), Di Salvo & Sanna (2020), Bhattacharyya (2021), Dall’Osso & Stella (2021),
Bhattacharyya & Roy (2021).

Figure 4 shows the distribution of masses and companion type to known pulsars as a
function of the orbital period of the system. The data was taken from the ATNF (Australia
Telescope National Facility) pulsar catalogue (Manchester et al., 2005). Currently, this
catalogue has 2796 entries, of which 10% have identified companions. The figure shows 41
CO WD, 137 He WD, and 54 ultra-light companions (UL), in a total of 256 pulsars with
identified low-mass companions. As we discussed earlier, the formation of white dwarfs
with masses below 0.45 M� most likely depends on the mass transfer to the compact
companion (a neutron star in this case). On the other hand, main sequence stars in short
orbital period systems should transfer mass to the neutron star after leaving the main
sequence.

Depending on the nature of the companion star, there is a possibility that recycled
pulsars are formed from low-mass X-ray binaries. Low-mass X-ray binaries (LMXBs,
Iben; Tutukov; Yungelson, 1995b)7 are binary systems in which one star is a neutron
star (or a black hole) and the other star is a low-mass main sequence, a white dwarf or
a red giant that transfers matter onto the compact object via Roche lobe overflow (see
subsection 1.2.2). Since the total number of LMXBs and their collective luminosity are
directly proportional to the stellar mass of a given galaxy, they can be used as a stellar
mass indicator for the host galaxy (see, e.g., Gilfanov, 2004). Despite the rarity of LMXBs,
they completely dominate the X-ray emission of the old stellar population of the Milky
Way (Fabbiano, 2006; Schatz; Rehm, 2006; Sazonov et al., 2020).

Figure 5 shows the possible evolutionary path of the PSR B1855+09 system, often
used to compare the ages predicted by white dwarf’s formation and cooling theories with
the pulsar’s accretion and rotation ones (Althaus; Serenelli; Benvenuto, 2001a; Althaus;
Serenelli; Benvenuto, 2001b; Benvenuto; De Vito, 2005). PSR B1855+09 consists of a
0.258 M� white dwarf with Teff = 4800± 800 K and a 1.50 M� MSP in a 12.3 day circular
orbit (Segelstein et al., 1986; van Kerkwijk et al., 2000). In the models, at age zero, a wide
orbit binary system consisting of a high mass star (15 M�) plus a low mass star (1.6 M�) is

7 Their most massive equivalents are the intermediate-mass X-ray binaries (IMXB, Podsiadlowski;
Rappaport; Pfahl, 2002; Pfahl; Rappaport; Podsiadlowski, 2003) and the high-mass X-ray binaries
(HMXB, Iben; Tutukov; Yungelson, 1995a).
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Figure 4 – Distribution of known pulsars in binary systems with CO/ONeMg WD, He WD,
main sequence (MS), and ultra-light/planet (mass < 0.08 M�) companions in
the orbital period–mass plane.

Credit: data taken from the ATNF pulsar catalogue (Manchester et al., 2005).

put together. The larger mass star evolves first, growing beyond its gravitational boundary
and initiating the non-conservative mass transfer — i.e., some mass is also lost from the
system — to the lowest mass star. Depending on the stability of the mass transfer, a
common envelope phase may occur. A common envelope is gas that contains a binary
star system. In this sense, common envelope evolution is a phase in the life of a binary
star during which two stars orbit inside a single, shared envelope (Ivanova et al., 2013).
After the end of the mass transfer — and the ejection of the envelope, the initially more
massive star is now a naked helium star8 (i.e., a star of spectral class O or B with strong
helium lines). In the model, this star explodes in a supernova event, leaving behind a
young (15 Myr) neutron star of mass 1.3 M�. The system now has only 17% of its initial

8 This is a typical scenario where a Be/X-ray binary with B-star mass in the range 8–20 M� underwent
a case B or case C mass transfer (see subsection 1.4.2), giving rise to a helium star with mass of
1.5–6.7 M� in a binary system with a 1.4 M� neutron star companion (see, e.g., Dewi et al., 2002). In
its turn, Be/X-ray binaries are systems where a hot star, with a B spectral type, non supergiant, whose
spectrum presents hydrogen emission (Jaschek; Egret, 1982), donates mass to a compact companion,
generating X-ray emission (see Reig, 2011 for a review).
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mass. The next steps correspond to the evolution of the initially less massive star and
last about 99% of the time of all evolution. The neutron star accretes matter from its
companion that has become a giant in a low mass X-ray binary system. The final state of
the system is a millisecond pulsar plus a low mass white dwarf in a 12 days orbit.

Figure 5 – An illustration showing the theoretically predicted evolutionary stages the
PSR B1855+09 system has gone through, from the ZAMS stage to how we see
it today. Note that the first six evolutionary stages — up to the formation of
the NS — are extremely fast compared to the rest of evolution.

Credit: Tauris & van den Heuvel (2006).

A comprehensive review of the main evolutionary paths that a binary system can
follow — from the main sequence to the formation of the compact objects — can be
found in Han et al. (2020). The major problems in the theory of evolution of LMXB and
LM/ELM WDs (low-mass and extremely low-mass white dwarfs, respectively) will be
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discussed in section 1.5.

1.4 Mass transfer

1.4.1 Conservative mass transfer in close binaries

Once mass transfer occurs in close binary systems, the final state of a star in such
a system no longer depends only on its mass at the zero-age main sequence (ZAMS). Now,
the final state of the compact remnants strongly depends on parameters such as the initial
orbital separation, which can easily be translated to the initial orbital period, Pi, and the
mass ratio q.

We must keep in mind that this is not a specific case in close binary systems. Since
the shrinking of the orbit due to angular momentum loss and the expansion of the stars
due to nuclear reactions are a natural result of the evolution, the ratio R/RL must increase
with time.

From detailed calculations on a model of gas flowing through the L1 point,9 it is
well known that there is a strong dependence of the mass transfer rate Ṁ on the radius
excess of the donor, ∆R = Rd − RL (e.g., Pringle; Wade, 1985), that is, the amount by
which the star’s radius overfills its Roche lobe. As an example, for stars with convective
envelopes, i.e red giants or low-mass main-sequence stars, we have the relation

Ṁ ∝
(

∆R
Rd

)3

. (1.21)

A more accurate equation can be found applying Bernoulli’s law and assuming a polytropic
star, yielding

Ṁ = −AMd

P

(
∆R
Rd

)3

, (1.22)

where A is an numerical constant of order ∼ 10–20 that depends on the interior density
distribution of the star, equation of state, and on the geometry of the mass flow (Paczyński;
Sienkiewicz, 1972; Savonije, 1978; Webbink, 1985). A rough estimate using Rd = 10R�,
Md = 1M� and P = 5 day with a radius excess of the donor of only 1% results in a mass
transfer rate of Ṁ = 10−6M�/day, i.e., the transfer of the entire donor mass in about
a hundred thousand orbits, a thousand years. Going further, if Rd exceeds RL by 10%,
mass transfer will occur on a dynamic timescale. This alone is not a problem but rather
the accretor’s capability to accommodate such amount of matter. It follows that for a
semi-detached system in which we observe a steady and slow mass transfer, the donor star
9 In fact, on a more realistic model, it is as if the stream of matter were passing through a nozzle of

width ∼ 0.1Pcs, where cs is the speed at which pressure disturbances travel through the gas (see, e.g.,
Frank; King; Raine, 2002).
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only overfills its Roche radius by a small fraction. Thus, in this case, it is valid to a very
good approximation that Rd = RL and Ṙd = ṘL.

Although a friable phenomenological assumption, the study of conservative mass
transfer helps us better understand the dynamics of this type of system. We define
the conservative mass transfer as the case in which the total mass and orbital angular
momentum of the binary are conserved, i.e., Ṁa = −Ṁd and J̇ = 0. Therefore, Equation 1.9
becomes

ȧ

a
= 2Ṁd

Md

(
Md

Ma
− 1

)
, (1.23)

where Ṁd < 0 by definition. So assuming mass transfer from donor to accretor, we find
that:

a) if Md > Ma, the orbit will shrink (ȧ < 0);

b) if Md < Ma, the orbit will expand (ȧ > 0);

c) regarding conservative mass transfer, the minimum orbital separation occurs
when Ma = Md.

A simple integration of Equation 1.23 give us

a(MaMd)2 = constant , (1.24)

and, using Kepler’s law
Ṗ

P
= 3Ṁd

Md

(
Md

Ma
− 1

)
. (1.25)

This is useful because, knowing the derivative of the period and the mass of the components,
we can estimate the mass transfer rate — if it is conservative — or to have some insight
into non-conservative mass transfer.

1.4.2 Non-conservative mass transfer and mass transfer cases

Observationally there is evidence for both conservative and non-conservative mass
transfer in evolving binaries systems. This is easy to understand since mass transfer depends
on the mass ratio, the evolutionary state of each of the components, the composition
of the matter in the mass current, and so on. While modelling conservative is trivial,
modelling non-conservatively mass transfer is quite complicated and often depends on
extra assumptions. Here we will indicate just some general aspects of this kind of evolution,
and more details will be provided in subsection 2.2.2.

Let us suppose the situation in which the donor star is losing mass and only a
fraction βacc of the transferred mass is accreted by the companion star. We have then

Ṁa = −βaccṀd (1.26)
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and
Ṁa + Ṁd = (1− βacc)Ṁd . (1.27)

Obviously, the lost material also takes away angular momentum. So we should take the
specific angular momentum of the ejected matter to be γeje times the specific angular
momentum of the binary and find

J̇

J
= γeje(1− βacc)

Ṁd

Md +Ma
, (1.28)

and the expression for the change in the orbital separation becomes

ȧ

a
= −2Ṁd

Md

[
1− βacc

Md

Ma
− (1− βacc)(γeje + 1/2) Md

Ma +Md

]
. (1.29)

In practice, it is quite complicated to choose values for parameters γeje and βacc. When
considering specific systems, observations may suggest some appropriate ranges for these
parameters, but exact values should depend on a number of factors such as the q ratio
between masses, the environment the system is in, the evolutionary stage of each star, and
more.

Another common classification of the different cases of mass transfer — which is
independent of mass conservation hypothesis — is due to the nuclear evolutionary state
of the donor star when the RLOF starts (Kippenhahn; Kohl; Weigert, 1967; Lauterborn,
1970):

a) Case A: during core hydrogen burning (i.e., the star is still on the main sequence);

b) Case B: after hydrogen core exhaustion but before helium ignition (i.e., the star
left the main sequence but has not reached the tip of the giant branch);

c) Case C: after helium core exhaustion, i.e., the star left the horizontal branch.

1.4.3 Stability of mass transfer

Once Roche-lobe overflow (RLOF) starts, the stability of the mass transfer depends
on three factors. The first is the response of the donor’s radius to the mass loss, which
depends mainly on which evolutionary phase the star is in. The second is the orbit response
to the mass transfer. As we saw in subsection 1.4.1, the increase or decrease in orbital
separation depends on the mass of each star. The variation of the masses also changes
the ratio q, and thus also the Roche lobe radius RL. Third and last, the stability of the
mass transfer also depends on how — or if — the accretor star is capable of receiving the
transferred material.

The stability of mass transfer is normally understood in terms of three derivatives of
radii with respect to the mass of the donor star (e.g., Webbink, 1985; Soberman; Phinney;
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van den Heuvel, 1997; Tout et al., 1997),

ζL =
(
∂ lnRL,d

∂ lnMd

)
, (1.30)

ζth =
(
∂ lnRd

∂ lnMd

)
th

, (1.31)

ζad =
(
∂ lnRd

∂ lnMd

)
ad

, (1.32)

where ζL is the response of the Roche lobe to the mass loss, and ζth and ζad are the
thermal-equilibrium and the adiabatic-hydrostatic responses, respectively. Following are
three possible scenarios.

a) If ζL < ζth, ζad, the mass transfer is stable and occurs on the nuclear timescale of
the donor or on the angular momentum loss timescale of the system, whichever
is shorter.

b) If ζth < ζL < ζad, the mass transfer is stable and self-regulating, i.e., driven by
the thermal readjustment of the donor.

c) If ζL > ζth, ζad, the star cannot maintain the hydrostatic equilibrium and mass
loss proceeds unstable, on a dynamical timescale. In this case, the adiabatic
response of the donor is unable to retain the star inside the Roche lobe, leading
to a dramatic increase of the mass transfer and probably leading to the common-
envelope case.

Since the thermal timescale is much longer than the dynamic timescale (see
subsection 1.2.3), there cannot be ζth > ζad.

1.5 The magnetic braking problem
In this section we will look at the main problems related to the theory of evolution

of LMXB and LM/ELM WDs systems. The loss of angular momentum in the evolution of
binary systems giving rise to ELM WDs can be roughly divided into three contributions.
The most obvious is the loss of mass, as all matter lost by the system takes away angular
momentum. The other one is gravitational waves (GW), which are disturbances in the
curvature of spacetime, generated by accelerated masses, and that transport energy as
gravitational radiation. This mechanism generally predominates in very compact systems,
with orbital periods on the order of hours or a few days.

In addition to these two already well understood processes, there is another impor-
tant physical mechanism responsible for the removal of orbital angular momentum. This
is magnetic braking (MB), which is thought to be effective for main sequence and red
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giant convective envelopes, i.e., G to M spectral class donor stars, approximately in the
mass interval 0.3–1.2 M�. The concept of magnetic braking was introduced by Verbunt &
Zwaan (1981) when it became evident that momentum loss by GWs alone is unable to
explain the observed mass-transfer rates in close binary systems.

The basic idea behind angular momentum loss by magnetically-coupled stellar wind
is that the stellar wind is compelled by magnetic field to co-rotate with the star to rather
large distances, where it carries away large specific angular momentum, making it possible
to take away substantial angular momentum without evolutionary significant mass-loss by
the wind. This phenomenon was theoretically anticipated by Schatzman (1962), Brandt
(1966), and Weber & Davis (1967); and then inferred by Kraft (1967) and Skumanich
(1972) in nearby stars.

In the original formalism, an empirically-derived formula was obtained through
observations of the spin-down of rotation of single G-dwarfs in stellar clusters. The formula
then expresses the phenomenological dependence of the equatorial rotational velocity on
age (Skumanich, 1972). When applying this to a binary, tidal locking between the stellar
axial rotation and orbital motion is assumed.

Considering that stars of different spectral types on the main sequence have different
rotational speeds, Schatzman (1962) was the first to suggest that the convective envelope
could be the reason for some stars to have low rotation velocities. He suggested that
in convective stars the high magnetic field forces that ejected matter spinning along
with the star, even at very high distances, carries a large amount of angular momentum
per unit mass. The first numerical estimate came from Skumanich (1972), who showed
that the equatorial rotation velocities of G-type main sequence stars decrease with time,
suggesting the empirical dependence Ω ∝ t−1/2, currently known as “Skumanich law”.
Here, Ω is the stellar rotational angular velocity. What followed was a wide variety of
suggested parameterizations in the same form of Ω ∝ t−α, but considering stars in different
evolutionary stages and different masses (e.g., see Mestel, 1968; Mestel; Spruit, 1987),
giving rise to various possible relations between J̇ and Ω.

Many computations on the formation of low-mass binaries with millisecond pulsars
that took into account the magnetic braking in orbital angular momentum loss simply
considered the extension of the Skumanich law to the binary system with a synchronised
rotation of the primary (e.g., Muslimov; Sarna, 1993).

A more elaborate expression appeared in the seminal work of Rappaport, Verbunt &
Joss (1983), where the mass, radius, and rotation of the star are time dependent quantities
and the expression is parameterized by the so-called magnetic braking index γmb. We will
present this equation and more details of this prescription in subsection 2.2.2, along with
the modifications we have implemented in our work. As we will show in the next chapters,
despite being a major breakthrough, this formalism seems to be limited to reproduce the
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evolution of binary systems containing ELM WDs.

Unfortunately the exact behaviour of magnetic fields and magnetic braking is
considerably more complicated. It is well known that magnetic fields play an important
role at all stages of stellar evolution, from star formation to the end-products. Even
more, magnetic fields have been detected in most (if not all) types of stars across the
Hertzsprung-Russell diagram (HRD), modifying both the stellar surface and the interior.
For an overview of the subject and for a complete discussion of the results presented below,
we refer the reader to Maeder et al. (2008), Donati (2010), Dudorov & Khaibrakhmanov
(2015), Martin (2018). It is believed that there are two main mechanisms capable of
explaining the magnetic fields in stars. They are the dynamo process and the fossil fields.
Fossil fields are simply magnetic fields inherited from the earlier stages of a star’s life.
On the other hand, the dynamo theory describes the process through which a rotating,
convecting, and electrically conducting fluid acts to maintain a magnetic field. Magnetic
fields are ubiquitous to all stars with significant outer convection zone, and there is
strong observational evidence that magnetic fields of cool stars are generated through
dynamo processes. Differently, the fossil field hypothesis finds little support either from
observations and theory since these fields should be dissipated by convection in photon
diffusion timescales or even less. These results are of great importance since we are
interested in main sequence donor stars of spectral types F and G.

Next, we will briefly review some models present in the literature. It is noteworthy
that the aforementioned Rappaport empirical equation is, by far, the most used form
for calculating the contribution of magnetic braking in the angular momentum evolution
— despite variations in the γmb parameter. Occasionally, some variations based on the
original equation also appear.

1.6 Review of the literature models

One of the first systematic studies on the evolution of close binaries dates back
to the 1960s. Paczyński (1966) focused on the stages of mass transfer when a primary
star evolves first and fills its Roche lobe during the hydrogen burning. In his models,
the total mass and angular orbital momentum are conserved. Paczyński (1967a) seeks to
understand the effects of considering different amounts of hydrogen in main sequence stars
with masses in the range 4 6M/M� 6 16. In Paczyński & Ziółkowski (1967) it is shown
that the mass loss modifies the mass ratio of the binary system and this should affect
the observed luminosity. In Paczyński (1967b) a Henyey-type code10 was used to confirm
the different evolutionary stages and their duration during the mass transfer. Several
10 Because the structure equations of stellar evolution have to be solved simultaneously with the energy

transport equations, Henyey-type codes employ an iterative implicit technique instead of a direct
integration (Henyey; Forbes; Gould, 1964).
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updates in the code were presented in Ziółkowski (1970a), focusing on the mass exchange.
Then, Ziółkowski (1970b) focused on low and intermediate-mass stars for the first time.
He found that the cases A and B of mass transfer are very similar, and the models keep
almost constant position on the HRD during the mass transfer. Finally, in Paczyński &
Sienkiewicz (1972) the authors studied the case when the donor star has a deep convective
envelope during the mass transfer. They found that a considerable fraction of mass is
transferred on a dynamical time scale.

Muslimov & Sarna (1993) studied the formation of low-mass (< 0.3 M�) red dwarfs
with millisecond pulsars. They considered donors with initial masses of 0.5 M� and 1 M�,
and the beginning of the mass transfer when the orbital period of the system is 4.5 h and
9.4 h, respectively. One of the main points of the study is the consideration of the NS
magnetic field and its effect on the donor’s evaporation. They found that the radiation
energy converted into thermal energy in the photosphere is not catastrophic but merely
activates the process of mass loss.

Driebe et al. (1998) presented a grid of seven evolutionary tracks for low-mass white
dwarfs with helium cores, solar composition, in the mass range from 0.179 to 0.414 M�.
They did not take into account element diffusion and did not model the binary system.
Instead, they apply a large mass loss rate in 1.0 M� donors to emulate the RLOF. They
found hydrogen shell flashes to take place only in the mass interval 0.21 < M/M� < 0.3.
Assuming the same conditions, they further expanded the study to focus on thermal
instabilities11 (Driebe et al., 1999), and comparing the cooling age of WDs with the
characteristic (spin-down) ages of pulsars (Schönberner; Driebe; Blöcker, 2000).

Podsiadlowski, Rappaport & Pfahl (2002) carried out a systematic study of low
and intermediate-mass X-ray binaries consisting of 100 binary evolutionary sequences.
They considered the accretor to be a neutron star and the donor to be a normal star
with the initial mass in the range 0.6 to 7 M�. They studied systems with initial orbital
period from 4 hr to 100 d and pointed out that the evolution of this kind of system is
much more complex than previously believed. In particular, they indicated discrepancies
between observed and calculated luminosity, in addition to the orbital period distribution
of millisecond pulsars.

Lin et al. (2011) present probably the largest grid of models of low and intermediate-
mass X-ray binaries, totalizing 42,000 tracks. Despite this, they considered varying only
two parameters: the initial orbital period (in the range 10–250 h) and the donor mass
(in the range 1–4 M�). They focus on explaining the then newly discovered radio pulsar
PSR J1614-2230 and found that considering an initial canonical-mass neutron star (i.e.,
1.4 M�) fails to produce the observed 1.97 M� NS with a 0.5 M� WD companion in a 8.7

11 I.e., the occurrence of hydrogen-shell flashes due to unstable hydrogen burning via CNO cycling. See
also chapter 3.
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day orbit.

Several theoretical models for LM and ELM WDs in binaries has been made to
date. Serenelli et al. (2002) focused on low metallicity models where the low-mass He WDs
were obtained by applying mass-loss rates to a 1 M� stellar model in such a way that
the stellar radius remains close to the Roche lobe radius. Panei et al. (2007) obtained 11
sequences of models of white dwarfs with helium or oxygen cores. Although they used
adequate physics to treat the donor star, they did not indicate how they evolved the binary
system. Althaus et al. (2009) focused on high metallicity models, again without modelling
the evolution of the binary system.

De Vito & Benvenuto (2010) built model sequences for low-mass WD in binary
systems. For the evolution of the angular momentum of the binary system, they considered
mass loss, gravitational radiation, and magnetic braking. For the donor, diffusion of
elements was taken into account; and it was assumed that the accretor was able to retain
50% of the material received. They focused on studying the dependence of accretor star
(NS) mass on the evolution of the system. They selected donors of mass between 0.5
and 3.5 M�, and accretors between 0.8 and 1.4 M�. They found that the evolution of
systems heavily depends upon the mass of the neutron star, which may be the determining
factor for the formation of an ultra-compact system or widely separated objects. On the
other hand, they found that the final orbital period vs. white dwarf mass relation is fairly
insensitive to the initial neutron star mass value. Using very similar premises, De Vito &
Benvenuto (2012) expanded the study to analyse the influence of accretion efficiency on
the formation of these systems. They found a weak dependence of the final donor star mass
on the accretion efficiency. Likewise for the final orbital period, that exhibits moderate
changes of approximately 25%, depending on the initial configuration.

Althaus, Miller Bertolami & Córsico (2013) presented models considering the
evolution of the binary system, where they took into account the loss of angular momentum
due to loss of mass, gravitational radiation, and magnetic braking. The accreting star
was considered to be a point of mass with 1.4 M� and no magnetic field, and the donor
with initial mass of 1 M�. They obtained 14 He WD models of masses down to 0.155 M�.
Istrate et al. (2014) focused on the thermal evolution and the contraction phase towards
the WD cooling track and investigated how this evolution depends on the white dwarf
mass. In Istrate et al. (2016) the joint effects of diffusion and rotation in the donor star
were considered for the first time. Four different metallicities were considered. Adequate
treatment of the binary system was considered, as well as the interior of the donor star.
They considered a donor star of mass 1.0 and 1.4 M�, and the accretor as being a NS
of mass in the range 1.2 and 1.4 M�, producing white dwarfs with masses between
0.16–0.45 M�.

Considering ELMs progenitors in the range 1–1.5 M� and accreting companions
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within the range 0.4–0.9 M�, Sun & Arras (2018) modified the Rappaport, Verbunt &
Joss (1983) magnetic braking formula in order to smooth the braking when the convective
zone becomes thin. Sun & Arras (2018) concluded that the formation of an ELM white
dwarf with M . 0.18–0.20 M� by unstable mass transfer or a common-envelope (CE)
event is unlikely.

Also, Li et al. (2019) found that ELM WDs with M . 0.3 M� in double degenerate
systems may be formed either from a stable mass transfer process or common-envelope
ejection, although the Roche-lobe formation channel has a greater contribution to the
formation of He WD with mass . 0.22 M�, and the common envelope channel for higher
masses.

He, Meng & Chen (2019) focused on studying accreting millisecond X-ray pulsars
(AMXP), a subclass of low-mass X-ray binaries. They consider a 1.4 M� NS accreting
mass from donors in the range 1–1.3 M� and found that AMXPs with main sequence
donors may ultimately evolve into extremely low-mass He WD donors.

Procedures similar to those used for modelling ELMWDs are also used for modelling
sdB (Wu et al., 2018) and sdA (Yu et al., 2019) stars.

In general, the models were able to reproduce with good accuracy the physical
parameters observed in white dwarfs, such as rotation, chemical abundance, final mass,
effective temperature, and surface gravity; and they also agree with the theory of stellar
evolution regarding the occurrence of shell flashes and cooling time.

Despite these successes, there was still a big unresolved problem. A severe fine-
tuning in the initial orbital period was necessary to reproduce the observed MSPs in tight
binaries with He WD companions. Istrate, Tauris & Langer (2014), Istrate et al. (2016)
showed that the empirical treatment of the magnetic braking by Rappaport, Verbunt &
Joss (1983) leads to a fine-tuning of the order of a dozen minutes in the initial orbital period
to reproduce the observed orbital periods of millisecond pulsars in compact (2 < P/h < 9)
binaries with He WD companions of mass . 0.20 M�. To be more precise, they found that
all ELM WDs within the mass range 0.167 6 M/M� 6 0.205 formed in LMXB system
via RLOF must have come from systems with initial orbital period within the range
3.345 6 Pi/d 6 3.42. Fine-tuning is not prohibited — in fact, it occurs in nature. However,
philosophical arguments generally agree that this phenomenon is not to be expected (e.g.,
Walker; Ćirković, 2006; Weinberg, 2015; Sloan et al., 2020; de Vuyst, 2020). Since the
Pi–Md,f relation is expected to follow a log-normal orbital period distribution (Duquennoy;
Mayor, 1991; Raghavan et al., 2010; Duchêne; Kraus, 2013; Tutukov; Cherepashchuk, 2020),
it was suggested that something needed to be modified or was missing in the standard
input physics of LMXB modelling.

Since most angular momentum loss mechanisms are reasonably well understood
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and apparently works properly, the problem seems to fall on the magnetic braking. (Li;
Wickramasinghe, 1998) show, for example, that allowing an oblique inclination of the
dipoles in the plane linking the two rotational axes of the binary components can have a
dramatic effect on the braking rate. Also, studies considering the spinning, mass transfer,
and accretions rate of specific binary systems found it difficult to construct theoretical
models that reproduce the observational data when the standard magnetic braking is
considered (e.g., see Xing; Li, 2019). Combining a binary population synthesis code and
detailed stellar evolutionary calculations, Shao & Li (2015) confirmed the discrepancies
between theoretical predictions and observations concerning mass transfer rates and orbital
periods of LMXB systems, pointing out that something linked to the orbital angular
momentum loss was likely missing in the modelling.

It has been shown that, for LMXBs, there is a critical initial orbital period — called
the bifurcation period (Tutukov et al., 1987; Pylyser; Savonije, 1988; Pylyser; Savonije,
1989; Podsiadlowski; Rappaport; Pfahl, 2002; van der Sluys; Verbunt; Pols, 2005) — that
separates the systems in converging and diverging. The converging systems are the ones
that, after the RLOF, evolve with decreasing orbital period — the components approach
each other — until the donor star becomes degenerate, and an ultra-compact binary is
formed. The diverging systems are the ones that, after the RLOF, evolve with increasing
orbital period — the components move away from each other — and a wide detached
binary is formed (Pylyser; Savonije, 1988; Pylyser; Savonije, 1989). Furthermore, this
important bifurcation period depends on the strength of the magnetic braking (e.g., Tauris;
van den Heuvel, 2006). A systematic study made by Ma & Li (2009) comparing several
formalisms of magnetic braking law and mass loss mechanisms found that the strength
of the magnetic braking is the dominant factor in determining the value of bifurcation
periods compared to mass loss.

In general, the different contributions to the evolution of the angular momentum of
binary systems have been studied quite irregularly over the years. The most recent models
take into account the loss of angular momentum by gravitational radiation, loss of mass,
and magnetic braking. Despite that, there is no consensus on the ideal treatment, especially
when it comes to mass loss and magnetic braking. In our models, we will combine the
most recent improvements in the understanding of the magnetic braking of binary systems
(see subsection 2.2.3) with one of the most robust and modern stellar evolution codes (see
section 2.2).

1.7 Overview and aims

As we have already pointed out, at least half of the stars do not evolve as a single,
isolated star. In fact, data from numerous surveys indicate that the properties of the binary
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population (the binarity frequency, the mass distribution, the orbital period distribution,
etc., and see summary in Herczeg, 1984) are a function of the spectral type of the primary
star. For example, almost all stars with spectral type O, B and A are found in binary
or multiple systems (e.g., Mason et al., 1998; Kobulnicky; Fryer, 2007; Kouwenhoven et
al., 2007). At the other end, the estimated binary fraction among M-type stars is 30–40%
(e.g., Fischer; Marcy, 1992; Leinert et al., 1997).

Furthermore, the Eggleton & Tokovinin (2008) catalogue of multiplicity among
bright stellar systems identified that 40% of the 4559 targets are not single;12 and the
Raghavan et al. (2010) survey searching for multiplicity of solar-type stars found that 44%
of the 454 stars in the sample are not single. Compiling all stars and brown dwarfs within
10 pc observable by Gaia, Reylé et al. (2021) found a multiplicity frequency of around
27%. Earlier, Abt & Levy (1976) studied 123 solar-type, bright field stars and found that
58% of those are not single stars.

Binarity gives rise to new astrophysical phenomena otherwise absent from the life
of single stars. One such example of exotic objects resulting only from binary interactions
are low and extremely low-mass white dwarfs (LM WDs and ELM WDs, respectively).
Since the Universe is not old enough for these M < 0.45 M� helium-core WDs to have
been formed through single-star evolution, the most likely hypothesis is that ELM WDs
are born in a binary system either as a result of a common-envelope phase or after a
stable Roche-lobe overflow episode (e.g., Istrate et al., 2016; Li et al., 2019). The currently-
observed binarity rate of known ELM WDs — close to 100% — supports these channels.
Their companions include millisecond pulsars, main sequence stars, and more commonly
canonical mass WDs (e.g., Tauris; Langer; Kramer, 2012; Brown; Kilic; Gianninas, 2017).

Figure 6 shows thousands of ELMs — confirmed (Brown et al., 2016) or candidate
(Pelisoli; Kepler; Koester, 2018a; Pelisoli et al., 2018b; Pelisoli et al., 2018c) — in the
log(g)–Teff plane (also known as Kiel Diagram, KD), along with the evolutionary track of a
1 M� star that ends as a normal 0.53 M� WD. The surface gravity is given by g = GM/R2

and log(g) is around 4 for stars in the main sequence and around 8 for white dwarfs. It
becomes clear that the evolution of a low-mass single star is not adequate to explain the
inferred effective temperatures and surface gravities for this class of stars at all, especially
if the model age is greater than 13 Gyr at 10,000 K.

At this point, an important observation should be made. Progenitors of ELM WDs
are expected to have initial mass in the range 0.8–1.5 M� (e.g., Sun; Arras, 2018), most
likely in the range 1.0–1.2 M� (see also chapter 3). However, the evolution of single stars
of these masses does not deviate far from the 1.0 M� evolutionary track shown in Figure 6.

12 The definition of “single stars” here should be understood as stars having no other stars as a companion.
However, even if not mentioned by the studies, most of them probably have planets orbiting, due to
the conservation of the angular momentum of the molecular cloud.
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Figure 6 – The log(g)–Teff plane showing confirmed or candidate ELMs from different
surveys (coloured signs). The evolutionary track of a 1 M� single star is also
shown (solid black line) down to L = 10−4 L� (age 17.8 Gyr). Four blue
large–amplitude pulsators (BLAPs) are also shown (red “4” signs).
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Credits for observational data: ELM WDs candidates from the sdA selection (Pelisoli;
Kepler; Koester, 2018a; Pelisoli et al., 2018b; Pelisoli et al., 2018c); candidates and
confirmed ELM WDs from the Gaia DR2 (Pelisoli; Vos, 2019); clean sample of the ELM
Survey (Brown et al., 2020); BLAPs (Pietrukowicz et al., 2017). Gaia DR2 data were
corrected by reddening following Gentile Fusillo et al. (2019).

Furthermore, lower metallicity causes the end of the main sequence to occur at slightly
higher temperatures, but still far from contemplating the presented observational data.
Thus, evolutionary tracks of other masses and other metallicities in the log(g)–Teff plane
do not improve compatibility with the presented observational data in Figure 6.

As remnants of binary evolution, ELMs can shed light into the poorly understood
yet crucial phase of common-envelope evolution (Nelemans et al., 2000) and are ideal
laboratories for studying the physics of tides (Fuller; Lai, 2013).

Additionally, most known ELMs will merge in less than a Hubble time resulting
in new exotic objects such as R Corona Borealis stars (e.g. Webbink, 1984; Zhang et al.,
2014), under luminous supernovae (e.g. Bildsten et al., 2007; Brown et al., 2011b), and
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type Ia supernovae (e.g. Iben; Tutukov, 1984). Low-mass and ELM WDs are also often
related to AM CVn (e.g. Warner, 1995; Solheim, 1995; Nelemans, 2005; Solheim, 2010;
Breedt et al., 2012; Piersanti; Yungelson; Tornambé, 2015; Brown et al., 2016; El-Badry et
al., 2021b; Wong; Bildsten, 2021) and EL CVn (e.g. Maxted et al., 2011; Maxted et al.,
2014a; Maxted et al., 2014b; Chen et al., 2017; van Roestel et al., 2018; Wang et al., 2020;
Lagos et al., 2020) systems.

As strong sources of low-frequency gravitational wave radiation, WD+NS and
WD+WD binary systems will have an important contribution to the signal detected
by LISA (Laser Interferometer Space Antenna, see e.g., Nelemans; Yungelson; Portegies
Zwart, 2001; Nelemans et al., 2001; Nelemans et al., 2001; Nissanke et al., 2012; Kupfer et
al., 2018; Li et al., 2020; Korol et al., 2020), since Galactic binaries comprise primarily
white dwarfs (Amaro-Seoane et al., 2017; Baker et al., 2019a). LISA will open the mHz
band of gravitational waves and will represent an important step in the multi-messenger
astronomy, crucial in a number of important astrophysical processes, ranging from the
structure formation in the early Universe to the evolution of stellar remnant binaries in
the Milky Way (Baker et al., 2019b). As an example, it is expected that accurate detection
of a WD in a tight orbit with a neutron star could give accurate indications of the mass
and constrains the state equation of the neutron star (Tauris, 2018).

As ultra-compact binaries, tens of millions of these systems are predicted to exist
within the Galaxy, emitting gravitational waves at mHz frequencies and, combined with
electromagnetic surveys (like Gaia and LSST, see e.g. Korol et al., 2017), should enable
measurements of masses, radii, and orbital dynamics parameters far beyond what can be
achieved by independent electromagnetic or gravitational waves studies (Shah; Nelemans;
van der Sluys, 2013; Littenberg et al., 2019). In short, the era of multi-messenger Astronomy
— along with computer simulations and modelling on low-mass binaries — is expected
to bring advances in our understanding of various areas and topics such as common-
envelope evolution, tidal interactions, mass transfer, X-ray sources, accretion physics,
double degenerates and supernova survivors (e.g. Amaro-Seoane et al., 2012; Kupfer et al.,
2019; Toloza et al., 2019).

There are less than 120 spectroscopically confirmed ELMs (see Pelisoli; Vos, 2019),
and they were almost all discovered following-up objects from the Sloan Digital Sky Survey
(SDSS, Brown et al., 2016; Pelisoli et al., 2018b; Pelisoli et al., 2018c). The ELM Survey
selection criteria targeted objects hotter than 8500 K, introducing a strong bias. Only 18%
of the confirmed ELMs show Teff < 8500 K, even though the evolutionary models predict
much longer timescales below 8500 K. Although these objects are fainter, their longer
lifetimes imply that 20–50% of the observed ELMs should be cooler than 8500 K (Pelisoli;
Kepler; Koester, 2017). These observational biases prevent meaningful comparisons with
the models and barred our progress in the binary evolution field.
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Figure 7 shows the observational HR diagram from Gaia Data Release 2 highlighting
the ELMs candidates considering predictions from theoretical models and analysing the
properties of the known sample. That is a valuable asset for testing binary evolution
models, since we need to further improve the agreement between observations and models.
The sample in Figure 7 contains 5672 ELM candidates down to Teff ≈ 5000K. They were
selected according to strict criteria. The first one is that only objects with parallax over
error greater than 5 were included (see colour-scale on the right). Next, proper colour cuts
were done in order to exclude canonical WD (black branch in the bottom), hot subdwarfs
(black branch in the top), and main sequence stars (grey area on the right side). Also
excluded from the sample were all objects identified from their spectra as cataclysmic
variables stars, WD + MS, quasars, or F stars. See details in Pelisoli & Vos (2019).

Figure 7 – Gaia DR2 observational HR diagram showing the selected clean sample of
ELM candidates. Using predictions from theoretical models and analysing the
properties of the known sample, a final sample of 5762 ELM candidates down
to Teff ≈ 5000K was selected.

Credit: Pelisoli & Vos (2019). Data from Gaia Collaboration et al. (2018).
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If on one hand the evolution of a single star depends mainly on its mass, the
necessary parameters to describe the evolution of a binary system are the masses of both
star components, the initial orbital separation, and the eccentricity. Going further, the
way in which the system loses angular momentum (J̇) is especially important, as this will
dictate how soon the stars will approach and possibly interact. The main mechanisms
by which a binary system loses angular momentum are gravitational waves, mass loss,
spin-orbit coupling, and magnetic braking. Of these mechanisms, the one with the greatest
uncertainty is the magnetic braking (e.g., Ivanova; Taam, 2003). Magnetic braking is
thought to be the fundamental mechanism responsible for orbital angular momentum
loss in a number of classes of close binaries, especially when providing a mechanism for
promoting mass transfer from the low-mass donor to its more massive compact companion.

The origin of magnetic fields in white dwarfs remains a fundamental unresolved
problem in stellar astrophysics (see, e.g., Ferrario; de Martino; Gänsicke, 2015, García-Berro;
Kilic; Kepler, 2016, García-Berro; Kilic; Kepler, 2018, Ferrario; Wickramasinghe; Kawka,
2020). There are currently at least four scenarios that have been suggested for the origin
of magnetic fields in white dwarfs. They are the fossil field scenario, the common envelope
dynamo scenario, the double degenerate scenario, and the rotation- and crystallisation-
driven dynamo scenario (see discussion in Bagnulo; Landstreet, 2021 and Belloni et al.,
2021 and references therein).

Tout et al. (2008) hypothesised that the class of the single high-field magnetic white
dwarfs, with magnetic fields within the range 106–109 G, had their high fields generated
in merging binary systems while in a common envelope stage. More recently, Briggs et al.
(2018) and Briggs (2019) carried out population synthesis calculations in order to study
the dynamo mechanism due to differential rotation during stellar mergers and showed that
the observed high fields in isolated WDs and in WDs in magnetic cataclysmic variables
are consistent with stellar interaction during common envelope evolution.

Belloni & Schreiber (2020) studied the dynamo process during common envelope
evolution and found that the model fails to explain the absence of young, close detached
WD+M-dwarf binaries harbouring hot magnetic WDs. Also, they found that the model
predicts that the overwhelming majority of WDs in close binaries should be strongly
magnetic, which is in serious conflict with the observations.

Schreiber et al. (2021) presented binary star evolutionary models that include
the spin evolution of accreting white dwarfs and crystallisation of their cores, as well as
magnetic field interactions between the stars. The authors showed that the crystallisation-
and rotation-driven dynamo model can generate strong magnetic fields in the white dwarfs
in cataclysmic variables, which explains their large fraction among the observed population.

Even more, Belloni et al. (2021) found that the observed paucity of bright interme-
diate polars in globular clusters is a natural consequence of the newly proposed rotation-
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and crystallisation-driven dynamo scenario.

Observationally, Bagnulo & Landstreet (2021) checked almost the entire population
of about 152 WDs within 20 pc from the Sun for the presence of magnetic fields, and
find that 33 WDs of the local 20 pc volume are magnetic. They point out that both the
suggested strong increase of the dynamo efficiency, and the necessary rapid stellar rotation
are still to be demonstrated. Therefore, the connection of the increased frequency with the
core crystallisation must remain speculative at present. Thus, although the crystallisation
dynamo may explain the general rise in the frequency of magnetic fields (i.e., the ratio
between the number of magnetic WDs and the number of all WDs), this possibility needs
further study before being accepted as an important mechanism. The authors conclude
that the latest data suggest in fact that more than one channel for field formation in WDs
exists.

Although the literature presents a significant amount of ELM WDs models, they
focus on: the dependence of the final state of the ELM on its mass and on the occurrence
of diffusion processes (e.g., Althaus; Serenelli; Benvenuto, 2001a; Panei et al., 2007); mass
and age determinations (e.g., Althaus; Miller Bertolami; Córsico, 2013; Istrate et al., 2014);
the role of rotational mixing (e.g., Istrate et al., 2016; Istrate et al., 2016); the pulsating
properties of LM WDs and ELM WDs (e.g., Córsico; Althaus, 2014b; Córsico; Althaus,
2014a; Córsico; Althaus, 2016; Córsico et al., 2016; Calcaferro; Córsico; Althaus, 2017a;
Calcaferro; Córsico; Althaus, 2017b; Calcaferro et al., 2018); formation channels (e.g.,
Sun; Arras, 2018, Li et al., 2019). To our knowledge, there are no studies focused on the
evolution of the angular momentum problem in ELM binary systems (Istrate; Tauris;
Langer, 2014).

Our main objective is to obtain ELM WD models compatible with the observational
data, in particular in the observational HRD and in the Kiel Diagram, i.e., produce models
compatible with the observational data in Figure 6. In addition, another objective is to
obtain ELM WDs models that do not require severe fine-tuning in the initial orbital period
to approach the lower limit of mass observed. To achieve this goal, we implement an
enhanced recipe for the magnetic braking — namely, the one proposed by Van, Ivanova
& Heinke (2018), Van & Ivanova (2019) — in the system’s angular momentum loss to
attenuate the current severe fine-tuning required to obtain ELM WDs in the low-mass
binaries simulations (e.g., Istrate; Tauris; Langer, 2014; Istrate et al., 2016).

In addition, we will use the state-of-the-art equations of state, opacities, nuclear
rates and reactions, chemical abundances, processes of radiation and convection, rotation,
overshooting and thermohaline mixing, etc. In chapter 2 we present a brief review of the
theory of stellar evolution and the code we use to run simulations and obtain our ELM
WDs models. In chapter 3 we present our results and discuss them. Our main findings
are summarised in chapter 4. Estimates of gravitational wave and X-ray emission are in
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Appendix B, and our model grid is in Appendix C. Our main publication is presented in
Appendix D, and a secondary publication is shown in Appendix E.





61

2 Theory and Methods

The way evolutionary codes create stellar models follows the theory of stellar
evolution itself. Thus, we will first introduce the basic equations of the stellar structure,
and the details will be discussed in the sections concerning the code and the simulations
themselves.

2.1 Basics of stellar evolution theory
We call stellar evolution the process by which a star changes over the course of

time. The lifetime of a single star — that can range from a few million years to trillions
of years — and its production of chemical elements, ranging from sole hydrogen and
helium to heavier elements such as iron, depend only on the star’s initial mass and its
initial chemical distribution — metallicity. A detailed description of nuclear astrophysics
and nuclear burning stages in stars can be found in, e.g., Arnould & Takahashi (1999),
Basdevant et al. (2005), Iliadis (2007), Liccardo et al. (2018). A comprehensive review of
nucleosynthesis in low- and intermediate-mass stars can be found in Karakas & Lattanzio
(2014). Also, we recall the seminal Burbidge et al. (1957) paper on the synthesis of the
elements in stars. A great review of both theoretical and experimental nuclear physics can
be found in Bethe & Bacher (1936), Bethe (1937), Livingston & Bethe (1937).

Although energy production in a star is very large, the approximation to a hy-
drostatic equilibrium state is valid for most of their lifetimes. The state-of-the-art of
current stellar evolution theories can be found in numerous excellent books, e.g., Cox
& Giuli (1968), Clayton (1983), de Loore & Doom (1992), Hansen, Kawaler & Trimble
(2004), Kippenhahn, Weigert & Weiss (2012), Iben (2013a), Iben (2013b). Here we will
just summarise some of the central points needed to continue our studies.

Using mass as variable, mr is the mass contained within a radius r, and dmr is
the mass element in a concentric shell at radius r. So considering spherical symmetry and
being the pressure P , the density ρ, the temperature T , the luminosity Lr, follow the
equations for the hydrostatic equilibrium

dP
dmr

= −Gmr

4πr4 , (2.1)

mass continuity (or mass conservation)
dr
dmr

= 1
4πr2ρ

, (2.2)

energy transport
dT
dmr

= −GmrT

4πr4P
∇T , (2.3)
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and energy generation
dLr
dmr

= εnuc + εgrav − εν,th , (2.4)

where εnuc is the total nuclear reaction specific energy generation rate minus the nuclear
reaction neutrino-loss rate;1 εgrav is the specific rate of change of gravitational energy due
to contraction or expansion; εν,th is the specific thermal neutrino — and axion, if they
exist — loss rate. ∇T is the temperature gradient ∂ lnT/∂ lnP , being that ∇T = ∇rad

if ∇rad ≤ ∇ad — corresponding to radiative transport — and ∇T = ∇ad if ∇rad > ∇ad

— corresponding to adiabatic convection. More precisely, in the latter case, the rise of a
bubble of gas is assumed to occur adiabatically. When it stops, it spreads out and mixes
with the surrounding material, delivering its heat to the environment.

Here, Equation 2.1 and Equation 2.2 describe the mechanical structure of the
star, while Equation 2.3 and Equation 2.4 describe the thermal and energetic structure,
and that is enough to describe a star in both hydrostatic and thermal equilibrium. Even
though several stages in the evolution of a star the equilibrium hypothesis is not strictly
satisfied, the variations usually occur on a very long time scale, making these assumptions
a reasonable approximation, but the time evolution term is added in the code for the fast
evolutionary phases. These equations are coupled to each other through the fact that, for
a general equation of state (EoS), P is a function of both ρ and T .

Now we shall evaluate when a given region of the star is stable against convection
— i.e., all the energy is transported by radiation. Defining the gradient of mean molecular
weight µ as∇µ = ∂ lnµ/∂ lnP , we have that in chemically homogeneous layers∇µ = 0, and
the criterion for instability, i.e., for convection to occur is simply the so called Schwarzschild
criterion: ∇rad > ∇ad (Schwarzschild, 1906). On the other hand, if we also take into account
a possible variation in composition we have to define the following derivatives

χT =
(
d lnP
d lnT

)
ρ,µ

, χµ =
(
d lnP
d lnµ

)
ρ,T

, (2.5)

and the result is that at least one of the following conditions must be satisfied for convection
to occur2

∆µ < 0 , ∇rad > ∇ad −
χµ
χT
∇µ ≡ ∇L , ∇rad > ∇ad , (2.6)

where the ∆µ is the difference in molecular weight between a given delimited region and
its surroundings and ∇L is the Ledoux gradient. Of course, the medium is always unstable
if ∆µ < 0. Considering heavier elements are usually synthesised by nuclear reactions in
the central regions of the star, ∇µ ≥ 0 in general. An exception that can be cited is the
carbon burning, which begins outside the centre. The second possibility is the so-called
Ledoux criterion (Ledoux, 1947). In this relation, the ratio χµ/χT is positive if ∇µ is also
1 Assuming neutrinos are lost, not valid in the supernova phase.
2 This is also know as Hurwitz criterion (e.g., see Kato, 1966).
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positive. Thus, if the gradients satisfy the Ledoux criterion, the Schwarzschild criterion is
automatically satisfied.

These combinations give rise to four possible situations, which are summarised in
Figure 8. The diagram in this figure shows that the only stable region is where ∇µ ≥ 0
and ∇rad < ∇ad. If ∇µ ≥ 0 and ∇ad < ∇rad < ∇L the instability is called semiconvection;
and if ∇rad −∇ad < 0 but ∇µ < 0 we have thermohaline mixing (also known as fingering
convection, Garaud, 2018).

Figure 8 – Sketch of the ∇µ – (∇rad −∇ad) stability plane with the four possible different
regimes: radiative, convective, thermohaline, and semiconvective. The diagonal
line dividing into half the top left and bottom right diagrams denotes ∇L. The
only stable region is the bottom left quadrant.

Credit: Salaris & Cassisi (2017).

2.2 The MESA code
The numerical simulations presented in this thesis were performed using the Modules

for Experiments in Stellar Astrophysics (mesa) code (Paxton et al., 2011; Paxton et al.,
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2013; Paxton et al., 2015; Paxton et al., 2018; Paxton et al., 2019), release version 11701 and
sdk 20190503. MESA is a suite of open source, robust, efficient, thread-safe libraries written
in Fortran 95 language for a wide range of applications in computational stellar astrophysics.
Using a one-dimensional stellar evolution module — therefore assuming spherical symmetry,
it combines many of the numerical and physics modules for simulations of a wide range of
stellar evolution scenarios ranging from very low mass to massive stars, including advanced
evolutionary phases. MESA solves the fully coupled structure and composition equations
(2.1–2.4) simultaneously using adaptive mesh refinement and appropriate timestep controls.
State-of-the-art modules provide equation of state, opacity, nuclear reaction rates, element
diffusion data, and atmosphere boundary conditions. Among the main advantages of
the code are the following: openness, modularity, wide applicability, modern techniques,
microphysics, and performance.

The MESA evolutionary code has been extensively used to perform calculations on
merging massive black holes (Marchant et al., 2016); presupernova stellar cores (Sukhbold;
Woosley, 2014); core-collapse supernovae (Shiode; Quataert, 2014); supernova of electron-
capture origin (Hiramatsu et al., 2021); hydrogen burning on accreting white dwarfs
(Wolf et al., 2013); asteroseismology on rotating pulsating MS stars (Moravveji et al.,
2015); stellar oscillations (Ball; Gizon, 2014); evolutionary sequences of massive white
dwarfs (Lauffer; Romero; Kepler, 2018; Schwab, 2021a); extremely low-mass white dwarfs
(Istrate et al., 2016; Sun; Arras, 2018); pulsating extremely low-mass white dwarfs (Istrate;
Fontaine; Heuser, 2017); hybrid C/O/Ne white dwarfs and Type Ia SN progenitors (Jones
et al., 2013; Denissenkov et al., 2013b; Chen et al., 2014; Farmer; Fields; Timmes, 2015;
Brooks et al., 2017b); accreting white dwarf binaries with C/O core (Brooks et al., 2016;
Wang; Podsiadlowski; Han, 2017), and O/Ne core (Schwab; Bildsten; Quataert, 2017;
Brooks et al., 2017a; Lauffer; Romero; Kepler, 2018); isochrones and stellar tracks extending
across all evolutionary phases for a wide range of masses and metallicities (Dotter, 2016;
Choi et al., 2016; Pignatari et al., 2016; Ritter et al., 2018); dark matter (Lopes; Lopes,
2021); mass transfer in extreme mass ratio binaries (Miller et al., 2021a); accretor stars
in massive binaries (Renzo; Götberg, 2021); gravitational waves from stripped binaries
(Götberg et al., 2020b); cosmic reionization of hydrogen and helium (Götberg et al., 2020a);
massive contact binaries (Menon et al., 2021); pulsational pair-instability supernovae
(Marchant et al., 2019); fossil magnetic fields (Keszthelyi et al., 2021); irradiation-driven
winds (Han; Jiang; Chen, 2021); merger remnant of C/O WDs (Schwab, 2021b); and
brown dwarfs (Forbes; Loeb, 2019; Brandt et al., 2021), for example.

2.2.1 Micro and macrophysics

Figure 9 shows a schematic of how MESA calculates its cell and boundary variables
to solve the structure of a given model. Depending on how these parameters vary from one
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layer to its neighbour, the mesh parameter is adjusted and the next model will have more
or less layers. Different routines get called at different points during MESA execution.

Figure 9 – Schematic of relevant cell and face (boundary) variables relevant for hydro-
dynamics in MESA. For example, for a given cell/face k in a given radial
coordinate rk we have: the luminosity (Lk), the Lagrangian mass coordinate
(mk), the pressure (Pk), the baryon mass density (ρ), the velocity (vk), the
mass associated with cell face (dmk), and so on.

Credit: Paxton et al. (2015)

Figure 10 is a flowchart summarising this. All simulations start with the code by reading
the input files written by the user. These files are called inlists. Inlist files have two main
parts: the first is where one chooses the conditions and characteristics of the first model
— such as initial mass, metallicity, rotation, net of elements, etc; and in the second one
indicates which physics should be used throughout evolution - overshooting, convection,
diffusion, etc. In addition, there is a specific inlist file for binary systems, which controls
the evolution of the angular momentum, mass transfer, orbital synchronisation, etc. After
reading the regular inlist files, the code searches for extra control files. Here is where one
can add modifications not present in the original code. This can include both a different
treatment of any of the items above as well as modifications to the way the code writes
the output files and additional criteria for a simulation to proceed.

The MESA equation of state (EoS) is a blend of the OPAL (Rogers; Nayfonov, 2002),
SCVH (Saumon; Chabrier; van Horn, 1995), PTEH (Pols et al., 1995), HELM (Timmes;
Swesty, 2000), and PC (Potekhin; Chabrier, 2010) EoSs. Radiative opacities are primarily
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Figure 10 – A flowchart summarising how different routines get called at different points
during MESA execution. The extra_controls routine is particularly impor-
tant: it is the place where one tells MESA exactly which subroutines it should
call for all of the rest of its hooks. The core of MESA is the grey “take step”
box, which contains all of the machinery by which MESA evaluates and solves
the equations of stellar structure at each step.

Credit: adapted from Schwab & Wong (2019).

from OPAL (Iglesias; Rogers, 1993; Iglesias; Rogers, 1996), with low-temperature data from
Ferguson et al. (2005) and the high-temperature, Compton-scattering dominated regime
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by Buchler & Yueh (1976). Electron conduction opacities are from Cassisi et al. (2007).
Nuclear reaction rates are from JINA REACLIB (Cyburt et al., 2010) plus additional
tabulated weak reaction rates (Fuller; Fowler; Newman, 1985; Oda et al., 1994; Langanke;
Martínez-Pinedo, 2000). Screening is included via the prescription of Chugunov, Dewitt &
Yakovlev (2007). Thermal neutrino loss rates are from Itoh et al. (1996). The p-p chain
and the CNO cycle burning are guaranteed by using a network that accounts for the
following 21 isotopes: 1H, 3He, 4He, 12C, 13C, 13N, 14N, 15N, 14O, 15O, 16O, 17O, 18O, 17F,
18F, 19F, 18Ne, 19Ne, 20Ne, 22Mg and 24Mg. Higher reaction rates are available in the code,
but require large computational facilities.

Convection is considered by using the mixing length theory (MLT, Böhm-Vitense,
1958) as presented by Henyey, Vardya & Bodenheimer (1965). This modified MLT option
allows the convective efficiency to vary with the opaqueness of the convective element, an
important effect for convective zones near the outer layers of stars. αMLT = 2 is adopted as
the mixing length parameter by us. It should be noted, however, that this is a simplification
with respect to the use of theory since 3D hydrodynamic studies on the calibration of
the mixing length theory for white dwarfs (see, e.g., Tremblay et al., 2013a; Tremblay et
al., 2013b; Cukanovaite et al., 2019) show that this parameter is not constant along the
star’s structure nor throughout the evolution of the star, introducing inaccuracy in Teff
and log(g) estimates.

In order to decide whether a region is dynamically stable or not, we consider the
Ledoux criterion, which takes into account the influence of composition gradients on
mixing. In regions unstable to Schwarzschild but stable to Ledoux, semiconvection acts via
a time-dependent diffusive process with a diffusion coefficient Dsc and efficiency parameter
αsc = 0.001 as shown in the equation (Langer; Fricke; Sugimoto, 1983)

Dsc = αsc
1
6
K(∇T −∇ad)
ρCP (∇L −∇T ) , (2.7)

where K in the radiative conductivity and CP is the specific heat at constant pressure.

Thermohaline mixing arises in the presence of an inversion of the mean molecular
weight in regions that are stable according to the Ledoux criterion. Thermohaline mix-
ing is treated in a diffusion approximation with coefficient (Ulrich, 1972; Kippenhahn;
Ruschenplatt; Thomas, 1980)

Dth = αth
3
2

KB

ρCP (∇T −∇ad) , (2.8)

where we use αth = 1 for the efficiency parameter.

Semiconvection and overshooting have distinct implementations in MESA. Over-
shooting is implemented using an exponential decay of the convective diffusion coefficient
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beyond the boundary of convection (Herwig, 2000)

Dov = D0 exp
(
− 2∆r
fovλP

)
, (2.9)

where D0 is the diffusion coefficient at the convective border, ∆r is the overshooting
distance, and λP is the local pressure scale height. The dimensionless parameter fov
then determines the extent of the overshooting region. For the each burning/non-burning
core/shell region, MESA includes an exponential overshoot below and above the interface
limit by the distance of fov = 0.005 pressure scale heights. An extra step overshooting of
fov = 0.2 above the burning H core is also included.

Particle diffusion and gravitational settling (Michaud; Alecian; Richer, 2015) are
implemented by solving Burger’s equations (Burgers, 1969) and using the method and
diffusion coefficients of Thoul, Bahcall & Loeb (1994). The transport of material is
computed using the scheme described by Iben & MacDonald (1985). While settling due to
gravity and thermal effects tends to establish composition gradients, diffusion tends to
smooth out such gradients (including those from nuclear reactions).

We adopt the Reimers (1975) mass loss for red giants. In this scheme, the mass
loss is parametrised by simple relations of the stellar parameters luminosity L, radius R,
and mass M,

ṀRGB = 4× 10−13ηRGB
LR

M
[M�/yr] . (2.10)

Following Van & Ivanova (2019), we adopt ηRGB = 1 for the scaling factor, despite some
studies often suggest lower values (e.g., McDonald; Zijlstra, 2015). This factor is constant
throughout evolution. Furthermore, it is expected that RGB mass loss should correlate
with metallicity (Tailo et al., 2021), and a more realistic ηRGB scaling factor must increase
with the metallicity (Tailo et al., 2020), which we do not consider. That said, we point out
that in our study the mass loss processes do not depend directly on metallicity. However,
as metallicity influences radius, luminosity, photosphere conditions as mean molecular
weight, density, temperature (see also subsection 2.2.2 ahead), etc., its effects are indirectly
taken into account.

The effects of rotation are included by following Heger, Langer & Woosley (2000),
Heger, Woosley & Spruit (2005), where we include the effects for four different rotation-
ally induced mixing processes: Goldreich-Schubert-Fricke instability, Eddington-Sweet
circulation, secular shear instability and dynamical shear instability. Since this is a very
extensive topic, we referred the reader to Section 6 of Paxton et al. (2013) for details on
the implementation. More details about rotation, rotational element transport mechanisms,
and angular momentum transport in stellar interiors can be found in the reviews of Salaris
& Cassisi (2017) and Aerts, Mathis & Rogers (2019).

The Spruit-Tayler dynamo transports angular momentum and chemicals by mag-
netic fields. Here we must set two efficiency factors to calibrate the diffusion coefficients:
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the contribution of the rotationally induced instabilities to the diffusion coefficient is
reduced by the factor fc = 1/30, and the sensitivity of the rotationally induced mixing is
fµ = 0.05. These values follow Istrate et al. (2016). See Heger, Langer & Woosley (2000)
for a discussion of these calibration parameters.

For the atmosphere boundary conditions we consider the simple photosphere option
(do not integrate, just estimate Teff for optical depth τ = 2/3) for the pre-WD phase and
the hydrogen atmosphere tables for cool white dwarfs from Rohrmann; Althaus; Kepler
(2011) for Teff < 10 kK and log10(L/L�) < −2.

Even with all the advances in the stellar modelling area, we must emphasise that
there are still numerous uncertainties and inaccuracies. Most uncertainties are related
to the initial parameters, and most inaccuracies occur when we treat parameters that
are variable throughout evolution as constants. For example, see Bahcall, Serenelli &
Basu (2006), Weiss et al. (2007), Weiss & Schlattl (2008), Mowlavi et al. (2012), Serenelli
(2016), Serenelli et al. (2021), Christensen-Dalsgaard (2021). Furthermore, different stellar
evolution codes show somehow different results from each other,3 even when considering
the same input physics and initial parameters (Martins; Palacios, 2013; Stancliffe et al.,
2016; Weiss; Aguirre; Christensen-Dalsgaard, 2018). Not to mention, of course, that the
vast majority of stellar evolution studies are carried out using codes that consider only
one-dimensional treatment.

2.2.2 Binaries

In addition to the initial masses (accretor and donor), the initial orbital period
(Pi) is another of the initial parameters of each simulation. The orbital separation (a) is
automatically adjusted via Kepler’s third law (see Equation 1.4). Before evolution begins,
a relaxation routine causes the angular frequency of the donor to equal the orbital angular
frequency, forcing synchronicity on a viscous dissipation time scale. Tidal interaction is
modelled by adjusting the model of Hut (1981) to include the case of differentially rotating
stars. The time evolution of the angular frequency for each component is

dΩi,j

dt = Ωorb − Ωi,j

τsync,j
, (2.11)

with
1

τsync,j
= 3

(qjrg,j)2

(
k

T

)
c,j

(
Rj

a

)6
, (2.12)

where j = 1, 2 is the index of each star; Ωi,j is the angular frequency at the face of cell i
toward the surface; r2

g,j = Ij/(MjR
2
j ) is the radius of gyration (with Ij being the moment

of inertia of each star); and (k/T )c,j is the ratio of the apsidal motion constant to the
3 We are referring to quantitative differences, such as evolution time and chemical abundances, for

example. Qualitative differences in results occur only in very specific cases.
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viscous dissipation timescale for convective envelopes, computed as in Hurley, Tout & Pols
(2002). The synchronisation mode is uniform, such that each layer is synced independently
given the synchronisation timescale τsync. Thus, tides act mostly on the outer layers, and
whether the core synchronises or not depends on the coupling between the core and the
envelope.

Roche lobe radii in binary systems are computed using the fit of Eggleton (1983),
cf. Equation 1.11. Mass transfer rates in Roche lobe overflowing binary systems are
determined following the “Kolb scheme” prescription of Ritter (1988), Kolb & Ritter
(1990).4 In this formalism the mass transfer rate via RLOF, ṀRLOF, is an exponential
function of ∆R = Rd −RL,d, so that there may be mass flow via L1 even if Rd 6 RL,d. In
this case, the expression reads

ṀRLOF = −Ṁ0 exp
(

∆R
HP/γ

)
, (2.13)

where γ is a fitting function that depends on the mass ratio, HP is the pressure scale height
at the photosphere of the donor, and Ṁ0 is a smooth function of the donor structure

Ṁ0 = 2π√
eF

R3
L,d

GMd

(
kBTeff
mpµph

)3/2

ρph , (2.14)

where kB is the Boltzmann constant, mp is the proton mass, and µph and ρph are the mean
molecular weight and density at the photosphere of the donor.

In turn, if Rd > RL,d,

ṀRLOF = −(Ṁ0 + fRLOF)

= −Ṁ0 − 2πF
R3

L,d

GMd

PL∫
Pph

Γ1/2
1

( 2
Γ1 + 1

)(Γ1+1)/(2Γ1−2) ( kBT
mpµ

)1/2

dP ,
(2.15)

where fRLOF is a function that, similarly, depends on the donor radius and its Roche lobe
radius; the pressure scale height at the inner Lagrange point (L1, that is linked to the
pressure scale height at the star surface); the donor star mass; the pressure at L1 (PL) and
at the stellar photosphere (Pph); a fitting function (F) that depends on the mass ratio (i.e.,
the Roche geometry); the first adiabatic exponent (Γ1); and the mean molecular weight,
the density and temperature of the donor between the photosphere and the Roche lobe.

The fitting functions are

γ =

0.954 + 0.025 log(q)− 0.038 [log(q)]2 if 0.04 . q 6 1 ,

0.954 + 0.039 log(q) + 0.114 [log(q)]2 if 1 6 q . 20 ,
(2.16)

4 A discussion of the impact of the chosen mass transfer schemes on the mass–orbital period relation
can be found in Zhang et al. (2021).
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and
F = 1.23 + 0.5 log(q), 0.5 . q . 10 . (2.17)

Outside the ranges of validity, these functions are evaluated using the value of q at the
edge of their respective ranges. Note that both γ and F have an order of magnitude ∼ 1.

The evolution of the orbital angular momentum of the system is considered by
computing the rate of change of orbital angular momentum considering the contributions
of gravitational waves radiation, mass loss, magnetic braking and spin–orbit (LS) coupling

J̇orb = J̇gr + J̇ml + J̇mb + J̇ls . (2.18)

The expression for J̇gr is simply Equation 1.10. The spin-orbit coupling term, that describes
the exchange of angular momentum between the orbit and the donor star due to its
expansion or contraction, is given by

J̇ls = −1
δt

(
δS1 − S1,lost

Ṁ1,w

Ṁ1
+ δS2 − S2,lost

)
. (2.19)

where δS1 and δS2 are the changes in spin angular momenta of each binary component,
and S1,lost and S2,lost are the amounts of spin angular momentum removed in a step (with
timestep δt) from each star due to mass loss (including RLOF and winds). In the absence
of RLOF only the wind term contributes, and then Ṁ1,w/Ṁ1 = 1. Equation 2.19 should
be seen simply as a statement about the conservation of angular momentum, since it does
not depend on how tides and angular momentum work. In this sense, we have that tidal
interaction and mass transfer modify the spin angular momentum of the stars in a binary
system, acting as both sources and sinks for orbital angular momentum. Tauris & van den
Heuvel (2006) points out that this effect is most efficient for binaries with 2 < P/d < 5.
The spin-orbit coupling has a major effect in systems of uneven masses, i.e., q � 1. Since
we are dealing with systems with initial mass ratios q ∼ 1, its effect is minimal. Therefore,
we refer the reader to Paxton et al. (2015) for more details.

Now we must consider a more realistic situation for mass transfer and mass loss.
Considering that both stars can gain/lose mass either by the RLOF as by winds, we have
the following new expressions for Ṁ

Ṁd = Ṁd,w + ṀRLOF (2.20)

and
Ṁa = Ṁa,w − fmtṀRLOF , (2.21)

where the stellar wind mass loss rates are Ṁa,w and Ṁd,w, and ṀRLOF is the mass transfer
rate from RLOF. The factor fmt represents the efficiency of mass transfer in absence of
winds and is given by

fmt = (1− αmt − βmt − δmt) , (2.22)
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where αmt, βmt and δmt are the fractions of mass transferred that is lost from the vicinity
of the donor, accretor and circumbinary toroid, respectively. In MESA the outer Lagrange
point (L2) can be modelled as a circumbinary toroid with radius Rtoroid = γ2

mta following
Pennington (1985), but we are not taking this into account. Thus, the case of an escaping
gas with energy beyond the gravitational potential of the accretor should be included
within the βmt term.

Finally, the angular momentum change due to the mass loss is computed using

J̇ml =
[
(Ṁd,w + αmtṀRLOF)M2

d + (Ṁa,w + βmtṀRLOF)M2
a

] a2

(Md +Ma)2
2π
P

+ γmtδmtṀRLOF

√
G(Md +Ma)a ,

(2.23)

where γ2
mta is the radius of the toroid. In MESA, constants αmt, βmt, δmt, and γmt are

fixed throughout evolution. Since we are dealing with low-mass stars in the subgiant or
in the giant phase in binary system with q ∼ 1, is quite reasonable to assume that there
is no mass lost from the donor as fast winds, so we adopt αmt = 0. Therefore, we do not
consider possible irradiation induced winds effects in our simulations. Still, a simple study
on the effects of donor irradiation is presented in section 3.8.

As we are not going to consider the mass loss through the Lagrangian point L2,
we also have that δmt = 0 and γmt = 0. For the fraction of mass lost from the vicinity of
the accretor as fast wind, we adopt βmt = 0.3 and 0.8. The reason for these values will
be presented in due course, but we advance that this choice makes little difference in the
overall result.

We are going to ignore the magnetic field of the accretor (either a neutron star
or a massive white dwarf) throughout this thesis. Mass loss due to surface flashes, nova
explosions, jets, discs, hot spots, etc., are also not considered since we are treating the
accretor as a point of mass. Obviously, these events could contribute to mass and angular
momentum losses, since they change the dynamics of the system. For example, if a certain
fraction of matter is accreted by the accretor and this leads to a nova explosion to occur,
some of that matter is actually lost rather than absorbed. Although this can bring small
changes in the results of a given binary system, it does not affect the general results that we
will present in this work. More discussions on this topic will be presented in subsection 3.5.4,
where we will evaluate the extreme cases of accretion efficiency — maximum (βmt = 0),
and null (βmt = 1).

When accretion is limited by the Eddington limit, ṀEdd, the efficiency of accretion
is given by

fmt = min(1− αmt − βmt − δmt, |ṀEdd/ṀRLOF|) , (2.24)

where the Eddington limit is the maximum luminosity a star can achieve when there is
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balance between the radiation and gravitational forces. The Eddington limit is given by

ṀEdd = 4πcRa

κe
≈ 3.4

1 +X
10−8 M�/yr , (2.25)

where κe is the Thomson electron scattering opacity, κe = 0.19(X + 1) cm2/g, and X is
the hydrogen mass fraction in the material transferred from the donor. The estimate in
Equation 2.25 takes into account the radius of a neutron star of 11.5 km. This is, therefore,
a much smaller threshold than for white dwarfs, which are much larger.

The default and most commonly magnetic braking recipe used in binary systems
modelling is (Skumanich, 1972; Rappaport; Verbunt; Joss, 1983)

J̇mb = −6.82× 1034
(
Md

M�

)(
Rd

R�

)γmb
(

1 d
P

)3

. (2.26)

This is also the default option in the MESA code. Although this expression represents
an advance in the modelling of binary systems since it lets the stellar quantities vary in
time, it is nothing but an empirical fit that takes into account the star’s radius, mass, and
rotational angular frequency. In order to reproduce the results of Istrate et al. (2016) and
validate our approach, our initial calculations used this prescription. Following this work,
we chose the magnetic braking index to be γmb = 4.

2.2.3 Implementation of a different magnetic braking

Considering the discussion presented in the section 1.5, in subsequent models
(chapter 3) we adopted the recent CARB (Convection And Rotation Boosted)5 prescription
of Van, Ivanova & Heinke (2018) and Van & Ivanova (2019), that combines the recent
improvements in understanding stellar magnetic fields and magnetised winds. Motivated
by the discrepancies between the observed mass transfer rates and the theoretical models of
LMXBs, the authors showed that the default form of the braking law (i.e., Equation 2.26)
is not suitable to explain most of the observed persistent LMXBs. On the other hand,
they found that considering the dependence of the Alfvén radius on the donor’s rotation
rate, and the dependence of the magnetic field strength on the outer convective zone, does
a better job reproducing transient and persistent LMXBs. We also derived the equations
obtained by the authors,6 but now we will show only the main steps.

The Alfvén surface is the surface where the ram pressure7 is equal to the magnetic
pressure (Mestel; Spruit, 1987). This is the maximum distance at which the stellar wind is
5 <https://doi.org/10.5281/zenodo.3647683>
6 In fact, there are two typos in the published work. The first is that, in equation (5) of Van & Ivanova

(2019), the exponential argument of Ṁ should read −1/3 instead of 1/3. The second is in the code
available online (<https://zenodo.org/record/3543922/files/reville_mb.f?download=1>), where the
argument 2/3 of the exponential in line 320 should be 1/3 in order to make it correctly fit in the
corresponding equations in the paper. This typo was confirmed by the author.

7 Ram pressure is a pressure exerted on a body moving through a fluid medium, caused by relative bulk
motion of the fluid. It causes a drag force to be exerted on the body (Clarke; Carswell, 2007).

https://doi.org/10.5281/zenodo.3647683
https://zenodo.org/record/3543922/files/reville_mb.f?download=1
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still in corotation with the star; at larger distances, the mass is assumed to be lost from
the star. Spherical symmetry is assumed, which results in the angular momentum lost by
magnetic breaking through an Alfvén surface to be (Weber; Davis, 1967; Mestel, 1968)

J̇mb = −2
3ΩṀWR

2
A , (2.27)

where Ω is the rotation rate, ṀW is the wind mass-loss rate, and RA is the Alfvén radius.
The assumed isotropic wind mass-loss rate can be described using the following equation

ṀW = 4πR2
AρAvA , (2.28)

where ρA and vA are the density and the velocity of the mass flux through the Alfvén
surface. The Alfvén radius is the distance where the magnetic energy density is equal to
the kinetic energy density (Belenkaya; Khodachenko; Alexeev, 2015). When including the
effects of rotation, the expression for the Alfvén radius reads (Matt et al., 2012; Réville et
al., 2015)

RA = R

B4
sR

4

Ṁ2
W

(
v2
esc + 2ΩR2

K2
2

)−1
1/3

, (2.29)

where vesc =
√

2GM/R is the escape velocity and K2 = 0.07 is a constant obtained via
simulations (Réville et al., 2015). Bs is the surface magnetic field, assumed as (Ivanova,
2006; Van; Ivanova; Heinke, 2018)

Bs = τconvΩ

= τconv
P

,
(2.30)

where
τconv =

∫ Rtop

Rbot

dr
vconv

(2.31)

is the turnover time of convective eddies. vconv is the local convective velocity and the
integration limits, Rbot and Rtop, are the bottom and the top of the outer convective zone,
respectively. Thus, this description assumes the total magnetic field is generated by the
convection eddies, i.e., no fossil fields.

Substituting Equation 2.30 into Equation 2.29 and then Equation 2.29 into Equa-
tion 2.27 one obtains the CARB modified magnetic braking prescription

J̇mb,CARB = −2
3ΩṀ−1/3

W R14/3
(
v2
esc + 2ΩR2

K2
2

)−2/3

Ω�B8/3
�

(
Ω

Ω�

)11/3 (
τconv
τ�,conv

)8/3

.

(2.32)
Finally, the last terms of the Equation 2.32 is normalised according to solar calibration,
resulting in Ω� ≈ 3 × 10−6 s−1 and τ�,conv = 2.8 × 106 s (Van; Ivanova, 2019). Here we
again emphasise that the prescriptions of Rappaport and Van differ essentially by the fact
that the former is an empirical fit, and the latter is obtained through a self-consistent
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deduction considering wind mass lost, rotation, and that the magnetic field is generated
due to motion in the convective zone.

We again draw attention to the fact that the CARB model is still considerably
simplified — only radial magnetic fields are considered and the dipole approximation is
used, the Alfvenic surface estimated does not depend on the polar angle, and the wind is
considered isotropic (i.e., the rotation axis is assumed aligned to the magnetic field axis).

An example of our inlist files is shown in Appendix F. Comparisons between other,
less-used recipes for the magnetic braking in different types of stars and systems can
be found in, e.g., Knigge, Baraffe & Patterson (2011), Deng et al. (2021), Gossage et al.
(2021).





77

3 Results and discussions

The main publication related to the work of this thesis is presented in Appendix D.
A secondary publication by the author is shown in Appendix E.

The results presented in this chapter were obtained using the star and binary
mesa modules. Moreover, in order to describe the results, we shall use new indices to refer
to the initial and final states of the system. For example, the initial orbital period of the
system is Pi; the final donor star mass is Md,f, etc.

3.1 Rappaport vs CARB magnetic braking in the formation of ELM
WDs

With the exception of the modification of magnetic braking — and hence also the
evolution of orbital angular momentum —, our models are very similar to those defined
as “basic” in Istrate et al. (2016). Istrate’s basic models consider, for Z=0.02, the initial
binary configuration with a 1.4 M� donor star and a 1.2 M� neutron star accretor. For
Z=0.01, the models were calculated with a 1.0 M� donor star and a 1.4 M� neutron star.
The neutron star was treated as a point mass with no magnetic field. The models followed
the detailed binary evolution of the donor star from the zero-age main sequence (ZAMS)
until it reached the model age of 14 Gyr.1 The nuclear network used takes into account the
p-p and CNO burning with 21 isotopes, from H to Mg. Proper treatment of radiative and
conductive opacities are considered. Convective regions are treated using the mixing-length
theory. The rate of change of orbital angular momentum accounts for contributions from
gravitational wave radiation, mass loss, and magnetic braking. It is assumed that 30% of
the transferred mass is ejected (βmt = 0.3) from the neutron star as a fast wind carrying
its specific orbital angular momentum. We previously reproduced the models presented
by Istrate to validate our approach and the results obtained in the present work. We will
not discuss these models in detail here, but the main results will be presented in several
figures in the next sections for comparison purposes.

Taking the Istrate models with the standard Rappaport magnetic braking as a
starting point, we build up models considering the CARB magnetic braking of Van &
Ivanova (2019). The main differences are that we allow rotation and mass loss by winds
to take place in the donor star, which are mandatory features of the CARB prescription.
1 Two important remarks: i) the elapsed time of a massive progenitor star (∼ 8–25 M�) to become a

neutron star (NS) is very short (few Myr, see, e.g., de Loore; Doom, 1992; Fortin et al., 2016) compared
to the evolution time of the progenitor of the ELM WD; ii) the evolution of this massive star until the
formation of the NS is supposed not to influence the less massive companion prior to its ZAMS.
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Following Van & Ivanova (2019), we adopt the Reimers (1975) wind mass loss scheme
in the red giant branch. We first consider the initial donor/accretor star masses to be
Md,i = 1.2 M� and Ma,i = 1.4 M�, respectively. This is justified because for initial stellar
mass below 0.8 M� the main sequence life time for solar metallicity is longer than 15 Gyr
and therefore the WD cannot reach the WD cooling phase within a Hubble time (e.g., Sun;
Arras, 2018). That is, a low-mass He WD with solar metallicity in the cooling track cannot
have being formed from a progenitor with a mass less than 0.8 M� if single evolution is
assumed. It should be noted, however, that for a 0.85 M� model with Z = 0.001, the
main sequence duration is 11.885 Gyr, and it reaches its maximum Teff ∼70 kK at age
13.322 Gyr (Renedo et al., 2010; Romero; Campos; Kepler, 2015). In addition, 1.4 M�
is the average neutron star mass (e.g., Lattimer, 2012; Özel; Freire, 2016). The internal
structure of the accretor star has not been modelled — i.e., the neutron star is considered
to be a point of mass.2 Z = 0.02 initial metallicity is adopted in this chapter for all models,
compatible with the fact that only 35% of the ELM WDs are in the halo (Brown et al.,
2020). Computations considering a more massive donor star, a less massive accretor star,
and other metallicities will be discussed from section 3.4 onwards. To better compare
our results with those of Istrate et al. (2016), we first choose βmt = 0.3 in Equation 2.22,
indicating that 30% of the total amount of mass going towards the neutron star is lost
from the vicinity of the accretor as fast wind. There is however observational evidence
that mass transfer during the LMXB phase is extremely inefficient (Jacoby et al., 2005),
corresponding to accretion efficiencies of only ∼ 5–40 % (Antoniadis et al., 2012; Antoniadis
et al., 2013; Antoniadis et al., 2016). The effects of low accreting efficiency (with βmt = 0.8)
will be considered from section 3.4 onwards.

In the code, during the Roche-lobe overflow (RLOF), the rate of mass transfer is
recomputed for each model, increasing or decreasing progressively. Its value is given in
units of log(M�/yr). For reference, the Sun wind mass loss is around 3 × 10−14 M�/yr
(Carroll; Ostlie, 2017); and beyond 10−4 M�/yr the mass transfer is generally assumed
to be unstable and a common envelope phase will proceed (Ivanova et al., 2013). Thus,
when analysing the results, it is convenient to define a threshold to indicate whether or
not there is RLOF in a model. In our analysis, RLOF is considered to take place when
the mass transfer rate exceeds the value of Ṁ = 10−10 M�/yr. That is, we will refer to
the start and end of mass transfer when this limit is crossed. We stress that this is just an
arbitrary limit to flag the occurrence of mass transfer and guide our analysis, having no
role in the simulations themselves.

Figure 11 shows the evolutionary tracks for two systems with Pi = 20 d in the

2 In fact, MESA is able to model both stars through the evolve both stars option. Obviously, this
makes the simulations considerably slower. In fact, to date, it is not possible to find in the literature
simulations of the formation of ELM WDs in LMXBs modelling the two stars of the binary system.
We will comment a little more about this possibility at the end of this work (chapter 4).
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HRD, an example of the formation of an ELM WD through the LMXB channel. The only
difference between the tracks is the magnetic braking prescription used to compute J̇mb.
The blue dashed line considers the standard Rappaport, Verbunt & Joss (1983) recipe, i.e.,
Equation 2.26, and the black solid line is considering the CARB prescription of Van &
Ivanova (2019) — i.e., Equation 2.32. Md,i = 1.2 M� and Ma,i = 1.4 M� for both tracks.
These two evolutionary sequences will be considered in the discussion through the end of
this subsection.

Figure 11 – Hertzsprung-Russel diagram showing the formation and cooling of a 0.26 M�
and a 0.32 M� helium WD, similar to those produced in LMXB systems.
One of the systems is evolved considering the standard magnetic braking
by Rappaport; Verbunt; Joss, 1983 (R83, blue dashed line) and does not
undergo a hydrogen shell flash. The other system takes into account the
CARB magnetic braking (black solid line) produced in the rotating convection
zone prescription by Van & Ivanova (2019) and undergoes a hydrogen shell
flash. Both systems consider the initial progenitor mass Md,i = 1.2 M�, the
neutron star mass Ma,i = 1.4 M�, and the initial orbital period Pi = 20 d.
Start and end of mass transfer phases are indicated with green triangle and
purple squares, respectively. Key points are indicated with red dots and are
discussed in the text. See Table 1 for ages and masses at each stage of the
CARB system.

Evolutionary sequences are computed from the ZAMS (point 1) until the donor
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star reaches the maximum model age of 14 Gyr (point 12 in the black solid track). For
points from 1 to 4 the evolutionary path in the HRD is the same for both models. This
occurs because, from ZAMS up to this point, the NS does not interfere in the evolution of
the companion because of our no magnetic field point mass assumption. For each track,
the green triangles and the purple squares indicate the beginning and end of the mass
transfer (MT), respectively.

Two major differences can be noted by analysing Figure 11. First: after leaving
the main sequence, mass transfer (MT) episodes occur with different luminosity and
effective temperature. This was expected because the change in the treatment of angular
momentum evolution alters the evolutionary stage the star is in when it begins to lose
mass. Since in the HRD the stellar radius grows towards the upper right, the radius of
each model at the beginning of the MT is also quite different. RLOF begins at the moment
when Rd ≈ 14.3 R� for the Rappaport magnetic braking and Rd ≈ 6.7 R� for the CARB
magnetic braking. Second: after MT, the model with Rappaport magnetic breaking (blue
dashed line model) immediately raises its temperature by ∼43 kK at constant luminosity
and then enters the cooling track as a WD. On the other hand, for the model with CARB
magnetic breaking (black solid line), a hydrogen shell flash occur after the MT — the
counterclockwise loop in the plot — before cooling to temperature and brightness similar
to the previous model. The physical reason for the flash or its absence is related to the size
of the envelope and the amount of hydrogen burning in the shell. Less massive hydrogen
envelopes prevent hydrogen burning from being a major source of energy.3 In fact, at
maximum Teff just after the RLOF, the envelope mass and the hydrogen total mass are
1.8 and 1.9 times greater in the CARB (black solid line) model than in the blue dashed
line model, respectively.

Now we shall analyse the model that uses the boosted J̇mb,CARB in more detail (i.e.,
the model shown in black solid line). For each point discussed, some important quantities
are shown in Table 1, which will be presented in more detail later. Between points 1
and 2 the nuclear burning in the nucleus increases, reaching about 40% (by mass) of
the model. At this point, the envelope is convective only in a small fraction (. 4%, by
mass) near the surface. At point 3 the envelope becomes fully convective, and nuclear
reactions occur only in a thin shell around the nucleus. Just before RLOF begins (point
4), the envelope mass is 0.98 M� and the total masses of 1H and 4He are 0.66 M� and
0.50 M�, respectively. The RLOF reduces the envelope mass to just 0.016 M�, and the
donor now has only Md = 0.269 M�. Therefore, most of the mass is lost in this relatively
short phase (see also Table 1). Precisely, this is the stage at which the system can be

3 Historically, Kippenhahn, Thomas & Weigert (1968) were the first to find a hydrogen shell flash in a
low-mass star model. Several nomenclatures are used equivalently in the literature: thermal pulses,
thermal flashes, CNO flashes, hydrogen shell flashes. See Gautschy (2013) for a recent discussion of the
topic.
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observed as a low-mass X-ray binary (LMXB, see, e.g., Truemper; Lewin; Brinkmann,
1986; van den Heuvel; Rappaport, 1992; Giovannelli; Sabau Graziati, 1993; Lewin; van der
Klis, 2006; Bhattacharyya, 2009; Charles, 2011; Sazonov et al., 2020). After the first RLOF
(point 5), the pre-WD goes through a phase of contraction at almost constant luminosity
but increasing effective temperature (to point 6). At this point the total mass of 4He is
0.26 M�, and the surface is composed (by mass) of about 68% 1H and 30% 4He. From that
point on, the temperature in the burning shell is too low to sustain CNO burning, and at
point 7 the intermediate layer between the surface and the nucleus has already burned
much of its H into He. In the loop between points 6 and 7 is when the burning of hydrogen
in the shell abruptly intensifies. The density–temperature profile inside the model is no
longer approximately a straight line (in log) and now has a large peak in temperature at
the base of the envelope. At point 7 we can easily distinguish three zones inside the model:
the helium core; the mixed shell around the core, where nuclear reactions are at maximum
energy production; and the envelope, mostly composed of hydrogen. In the low luminosity
part after point 7, the convective zone is fully developed, and the hydrogen shell flash is
about to begin. Around point 8 few convective regions remain, but thermohaline mixing
acts efficiently. On the way to a significant increase in radius, at point 9, the Roche lobe
is now filled again and a new episode of RLOF occurs between points 9 and 10. This
second mass transfer episode reduces the total mass by 0.001 M�, and the hydrogen shell
flash makes helium now more abundant than hydrogen in every part of the model. Point
11 indicates the highest effective temperature reached during all evolution of the model
with the CARB magnetic braking, log(Teff/K) ≈ 4.59 at age 6.34 Gyr. At this point the
ELM WD is completely formed and will then enter its cooling track. At point 12 the
model reaches 14 Gyr years, and we stop our simulation. An 0.263 M� ELM WD with
Teff ≈ 6, 400 K and log(L/L�) ≈ −3.2 is formed as the end-product of this evolution.

Table 1 shows the time interval for each of the above described phases. The envelope
mass, the total mass, and the total mass of 1H and 4He are also shown. Point 1 sets
the zero age main sequence (ZAMS). Point 2 marks the end of the main sequence (MS),
when hydrogen runs out in the nucleus. The interval between points 2 and 3 is called the
subgiant branch (SGB). From point 3 on, the model ascends the red-giant branch. The
mass transfer — via Roche lobe overflow (RLOF) — takes place between points 4 and 5.
After mass transfer and before entering the cooling track, the donor star is called pre-ELM
WD (i.e., between points 5 and 11). At point 6 the model starts to cool down, but in the
loop between points 6 and 7 the energy production via the CNO cycle is intensified in
the shell around the core. Near point 7 the energy production at the base of the envelope
reaches its maximum. The location of point 8 strongly depends on metallicity: for smaller
metallicities, the abrupt increase in luminosity occurs at higher temperatures. Between
points 9 and 10, the donor star has its radius increased to such a point that it ends up
filling its Roche lobe again, losing a small fraction of its mass again. Point 11 marks
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entry into the cooling track. Point 12 indicates the end of the evolution of the sequence of
models.

Table 1 – Evolution as a function of time for a starting model of Md,i = 1.2 M� and
Ma,i = 1.4 M� in a Pi = 20 d orbit binary. The CARB magnetic braking is
considered. The ZAMS is at point 1, and the terminal age (14 Gyr) is at point
12. In MESA the envelope mass is considered to be the total mass minus the
He-core mass.

point age (Gyr) donor
mass (M�)

envelope
mass (M�)

total 1H
mass (M�)

total 4He
mass (M�)

1 0 1.200 1.200 0.838 0.337
2 4.97 1.195 1.120 0.722 0.448
3 5.80 1.193 1.043 0.689 0.479
4 6.17 1.189 0.976 0.659 0.505
5 6.28 0.269 0.016 0.010 0.253
6 6.30 0.264 0.003 0.002 0.257
7 6.34 0.264 0.003 0.002 0.257
8 6.34 0.264 0.003 0.002 0.257
9 6.34 0.264 0.003 0.002 0.257
10 6.34 0.263 0.002 0.001 0.257
11 6.34 0.263 0.002 9× 10−4 0.257
12 14.00 0.263 0.002 4× 10−4 0.257

It is worth noting that, between points 6 and 7 (Figure 11), the models have an
effective temperature and luminosity very similar to that of the final cooling track (between
points 11 and 12). In fact, the time spent between points 6 and 7 is much longer than
between points 7 and 8. So we might wonder if we are not seeing some fraction of ELM
WDs in the hydrogen shell flash phase. And the answer is yes. As such, the use of the
term “(pre-)ELM WDs” helps to expose our ignorance of this fact. However, as we will
see later, other parameters can be used to try to solve this plurivocity.

Regarding the dynamics of the binary systems for each magnetic braking prescrip-
tion,4 we found that they begin the mass transfer episodes for different reasons. When the
Rappaport magnetic braking is used, the binary separation and the Roche lobe radius of
the donor star remain constant from the ZAMS until the beginning of the RLOF. In other
words, the donor star starts overflowing only because its radius increases as a result of
nuclear evolution. On the other hand, when the CARB magnetic braking acts, the decrease
in orbital separation, and consequently the Roche lobe, due to loss of angular momentum
is the main reason for the start of the RLOF. As we already saw, another reason that
leads to different end products is that the modification of the magnetic braking alters the
way the orbital separation of the system reacts to mass loss, leading to a greater amount
of mass transferred to the accretor or lost from the system, depending on the efficiency
factor.
4 Important to note, we do not turn the magnetic braking on and off depending on the evolutionary

phase, as is often found in the literature. Magnetic braking is always on in our models, although it can
assume virtually null values depending on the evolutionary phase.
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Figure 12 – Comparison between the empirical fit of Rappaport; Verbunt; Joss, 1983 (R83,
upper panel) and the Convection And Rotation Boosted (CARB, Van; Ivanova,
2019, lower panel) magnetic braking prescriptions. The CARB prescription
takes into account the dependence of the Alfvén radius on the donor’s rotation
rate, and the dependence of the magnetic field strength on the outer convective
zone. The size of the donor radius (purple solid line), donor Roche lobe radius
(red dashed line), the binary separation (green solid line), and the mass
transfer rate (black dashed line) as a function of age at the time of the RLOFs
are shown. Characteristic sizes correspond to the left y-axis. Mass transfer
rate correspond to the right y-axis, in log scale. The initial configuration is
Md,i = 1.2 M�, Ma,i = 1.4 M� and Pi = 20 d for both models. From the
ZAMS until an age of 6 Gyr, the donor Roche lobe radius and the binary
separation is almost constant for both models. The top panel shows that the
mass transfer begins as a natural consequence of the donor’s increase in radius
due to nuclear evolution. On the other hand, the bottom panel shows that
the main reason for the RLOF to begin is the proximity of the accreting star.
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Figure 12 shows the behaviour of the radii of the star and the Roche lobe when
orbital separation decreases due to angular momentum losses, leading to mass transfer
episodes. The two configurations compared here are the same as those presented in
Figure 11. Before an age of 6 Gyr, all quantities vary insignificantly. When the standard
Rappaport magnetic braking is used (upper panel in Figure 12), the binary separation and
the donor Roche lobe radius remain unchanged until the beginning of the RLOF. In this
case, the donor star starts to lose mass because its radius reaches the Roche lobe. During
the RLOF the donor star radius keeps increasing, and the orbital separation increases
drastically. The RLOF ends when the donor star contracts because it no longer has a
convective envelope. When the outer part of a convective envelope is lost, the star tends
to increase in radius, maintaining the mass loss. On the other hand, if a radiative envelope
loses mass, the star tends to maintain its radius and the mass loss stops. The orbital
period becomes constant from this point on.

When the CARB magnetic braking is used (lower panel in Figure 12), the donor
radius increases smoothly and the orbital separation decreases from a ≈ 42 R� to a ≈ 20R�
before the RLOF begins. This is because of the larger angular momentum loss. This leads
to a decrease in the Roche’s lobe, getting closer and closer to the donor’s radius. Around
age 6.1 Gyr the orbital angular momentum loss is such that the binary separation decreases
by ≈ 20 R� in just 0.2 Gyr. This causes the RL,d also to decrease (see Equation 1.11)
until it becomes equal to Rd. As long as RL,d is equal to Rd, RLOF is occurring. The first
RLOF is the longest, and it removes the envelope, preventing the donor from increasing
in radius. In this case, the RLOF remains with Rd almost constant, and it lasts longer
than when the standard magnetic braking is used. At age 6.29 Gyr, the donor contracts,
ceasing the RLOF. From that point on, RL,d and a will remain practically constant. The
last RLOF episode can be noticed during the very short phase of hydrogen shell flash,
when the donor expand its radius again during 123 yr and loses about 0.001 M�. This
causes a slight increase in orbital separation, equivalent to ∼5 h increase in the orbital
period.

3.2 Different braking scenarios

We now vary the initial orbital period, searching for representative cases of different
evolutionary scenarios.

Figure 13 shows the orbital period evolution as a function of the donor mass for
three systems, with Md,i = 1.2 M� and Ma,i = 1.4 M�, and for three different initial
orbital periods, Pi = 3 (green), 20 (red), and 100 (blue) days. Each configuration is shown
for both Rappaport; Verbunt; Joss, 1983 (dashed lines) and CARB (Van; Ivanova, 2019,
solid lines) magnetic braking, totalizing six evolutionary sequences. The evolution of the
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main physical quantities that govern magnetic braking are shown in Figure 14 for the
cases of Pi = 3 and 100 days. All other parameters are identical for all sequences. All
sequences produce detached He-core ELM white dwarf + neutron star binaries as output.

Figure 13 – The evolution of orbital period as a function of decreasing donor mass. Two
prescriptions for magnetic braking are compared: Rappaport; Verbunt; Joss,
1983 (dashed lines) and the CARB prescription of Van; Ivanova, 2019 (solid
lines). For each prescription, three initial orbital periods are analysed: 3
(green), 20 (red), and 100 (blue) days. Initial masses are Md,i = 1.2 M� and
Ma,i = 1.4 M� for all sequences.
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From short to long initial orbital periods, the final masses for CARB (Rappaport)
sequences are 0.173 (0.205), 0.263 (0.325), and 0.371 (0.377) solar masses, respectively.
The respectively final orbital periods are 0.64 (2.55), 22 (152), and 424 (481) days.

Figure 13 shows the existence of two different evolutionary scenarios when we
compare the prescriptions of Rappaport and CARB for magnetic braking. The first
scenario corresponds to intermediate and long initial orbital periods (∼20–100 days),
where the evolution of the donor mass star has similar shapes for the two prescriptions of
magnetic braking. The orbital period increases as the donor star loses mass, regardless of
the adopted magnetic braking. The second scenario corresponds to the case of short initial
orbital periods (∼3 days), and is characterised by a decrease in the orbital period at the
end of the evolution of the sequences that consider the CARB prescription.
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Figure 14 – The evolution of key parameters during the mass transfer epoch. Two pre-
scriptions for magnetic braking are compared: Rappaport; Verbunt; Joss, 1983
(dashed lines) and Van; Ivanova, 2019 (solid lines). For each prescription, two
initial orbital periods are analysed: 3 (green) and 100 (blue) days. Initial
masses are Md,i = 1.2 M� and Ma,i = 1.4 M� for all sequences. Magnetic
braking (first panel); mass transfer rate (second panel); surface rotational
velocity at the equator (third panel); wind mass loss (fourth panel); and radius
of the donor star (fifth panel) are shown.
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Also, for intermediate and long initial orbital periods, the binary components do
not come closer before RLOF begins if the Rappaport magnetic braking is considered.
When the CARB magnetic braking is considered, the components get closer before the
beginning of the RLOF, and the difference in relation to the prescription of R83 is as large
as the shorter the Pi. Finally, in the case of short initial orbital periods, both prescriptions
for magnetic braking (Rappaport and CARB) considerably decrease the separation of
the binary components before the RLOF begins. In summary, the effect of magnetic
braking increases with the decreasing of orbital periods for both prescriptions, but it alters
differently along initial orbital periods for each prescription.

For Pi = 100 d, both Rappaport and CARB prescriptions results in diverging
systems; and for Pi = 3 d, they both converge. The relation between the initial and final
orbital periods for each magnetic braking prescription is, however, completely different.
Looking for the limit that separates the converging from the diverging systems (i.e, Pi = Pf),
we find ∼ 3 d for the Rappaport magnetic braking but 20 d if the CARB prescription
is used. With the only exception of the Pi = 100 d models, in all other cases the use of
the CARB prescription causes the mass transfer to start earlier when compared to the
Rappaport prescription (second panel in Figure 14). Also, the duration of the mass transfer
is longer for shorter Pi. In fact, for Pi = 100 d the mass transfer phase is so fast that we
can barely distinguish it in the figure.

We now examine how the variables that determine the intensity of magnetic
braking evolve. During most of the evolution, the Rappaport prescription results in
stronger magnetic braking than the CARB prescription (first panel in Figure 14). The
exception occurs during mass transfer, where the CARB braking prescription becomes
more intense. This inversion can occur up to about 500 Myr before the mass transfer begins.
Although these two prescriptions for magnetic braking differ for systems of any initial
orbital period, their effects are much more intense in systems of short and intermediate
orbital periods (Pi ∼ 3–50 d) than in long orbital periods (Pi ∼ 100 d). Note that the
CARB prescription compensates exactly when braking is most intense, and the scale is
logarithmic. Therefore, the net value of CARB braking over the course of evolution may
be greater and the exact value must be studied on a case-by-case basis.

The Pi = 100 d sequences show minimal differences in the evolution of the orbital
period and donor mass (Figure 13). This occurs because the rotation rate, the radius of
the donor, and the donor mass evolve in a very similar way in both prescriptions, for this
initial orbital period (third and fifth panels in Figure 14). The small difference in the
orbital period behaviour during the evolution of these sequences is due to the role of the
size of the convective zone in the CARB prescription, which, in turn, affects the magnetic
braking (first panel in Figure 14). For the Pi = 100 d sequence with the CARB formula,
the convective zone at the beginning of the RLOF accounts for ∼ 0.82 M� of the model.
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Finally, the angular momentum loss from magnetic braking has a very limited impact on
the evolution of binaries with long orbital periods. During the pre-RLOF evolution of the
Pi = 100 d systems, magnetic braking has an almost null contribution in both prescriptions.
On the other hand, for Pi = 3 d, magnetic braking is the dominant mechanism in the
Rappaport prescription; and has an increasing contribution in the CARB prescription,
dominating from 2 Gyr before RLOF onwards.

In the second scenario, Pi = 3 d, the mass transfer begins when the donor star has
just left the main sequence and the convective zone is not extended enough (∼ 0.25 M�
in the CARB sequence) to contribute significantly with magnetic braking. Thus, the
consideration of the size of the convective zone foreseen by the CARB prescription has
little effect. Until the beginning of the RLOF, the wind mass loss and the radius of the
donor star behave similarly in both prescriptions, assuming values of 10−11.5 M� yr−1 and
2 R� immediately before the beginning of the mass transfer, respectively (fourth and fifth
panels in Figure 14). On the other hand, the rotation rate in the CARB (Rappaport)
prescription is 32 km/s (59 km/s) at age 5.2 Gyr (third panel in Figure 14). Since the donor
mass and the donor radius behave similarly in this case, contributions are limited to the
rotation rate, the wind mass loss, and the convection turnover time in this case. These are
the contributions that make the mass transfer start when the system has an orbital period
of 1.1 days (CARB) and 0.9 days (Rappaport). When the Rappaport prescription is used
in the Pi = 3 d system, the rotation rate, the radius of the donor star, and the donor mass
react smoothly to the mass loss (third and fifth panels in Figure 14). Thus, the magnetic
braking in this case also remains approximately constant log10(|J̇mb,Rapp|) = 35 during a few
Gyr after the mass transfer (first panel in Figure 14). On the other hand, when the CARB
prescription is considered, the donor star contracts, and the wind mass loss decays after the
end of the RLOF, causing the magnetic braking to be reduced to log10(|J̇mb,CARB|) = 28.
In the case where Pi = 3 d, although the Rappaport prescription results in a considerably
longer RLOF, the CARB prescription reaches ṀCARB = 10−7 M� yr−1, while Rappaport’s
only ṀRapp = 10−8.2 M� yr−1. In addition, the moment the mass transfer ends, the
system using the Rappaport prescription has an increasing orbital period, while the CARB
prescription has a decreasing orbital period. At this point, the contributions of magnetic
braking and mass loss to the total angular momentum loss are around 88 (98) and 12
(2) per cent for Rappaport (CARB), respectively. Gravitational radiation will dominate
the angular momentum loss only about 2 Gyr after the RLOF terminates. Furthermore,
at this point, the donor star has a radius about 2.3 times larger for Rappaport than for
CARB. In both cases the donor radius remains close to the Roche lobe after the end of
the mass transfer, but for Rappaport these two quantities are increasing, and for CARB
they are decreasing. The analysis of these factors makes it clear that the evolution of the
donor star and the binary system combine differently for each prescription of magnetic
braking, which will be presented in more detail in the next section.
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Although the Pi = 20 d sequences behave similarly to the Pi = 100 d sequences,
they differ in the evolution of the orbital period before the RLOF. For Pi = 20 d, the RLOF
starts when P = 18 d in the case of Rappaport magnetic braking and when P = 5.7 d
in the case of the CARB prescription (see Figure 13). This means that the entire mass
transfer takes place with the stars much closer together when CARB magnetic braking
is considered. This reinforces the fact that each magnetic braking prescription leads to a
different shrinkage of the orbit, and therefore to a different evolutionary stage of the donor
and orbital separation at the onset of the mass transfer. Both the radius of the donor
star and the loss of mass by winds reach higher values (around 60 R� and 10−8 M� yr−1,
respectively) during mass transfer when Rappaport braking is considered. On the other
hand, when CARB braking is considered, the radius of the donor star remains stable
around 9 R� during mass transfer. In addition, the loss of mass by winds intensifies in this
case and remains around 10−9.5 M� yr−1 for about 1.5 Gyr. For both braking prescriptions,
these two variables drop dramatically as soon as the RLOF ends. The consequence is
that the mass transfer lasts about three times longer when the CARB prescription is
considered.

For any Pi, the CARB magnetic braking is more intense than the Rappaport
prescription at a time when the mass transfer rate is maximum (first panel in Figure 14).
In addition, for any initial orbital period, the CARB magnetic braking is less intense than
the Rappaport prescription braking after mass transfer.

Here is an important caveat. The field configuration is at the heart of the most
sensitive variable in the problem — the braking torque. There is one underlying assumption
regarding the magnetic field: Equation 2.29 includes an undisturbed magnetic dipole scaling
from the surface field to the Alfvén radius. The bipolar geometry for the magnetic field
stimulates torque as it allows coupling over longer distances. In fact, there are several
examples where the field geometry is far from a dipole field (the field in the solar corona
for instance). And it is even more structured in less massive main sequence stars than
it is in the Sun. Therefore, the CARB prescription represents a maximum efficiency
scenario for braking when compared to more complex field geometries. As we will show
throughout this work, the CARB prescription seems more realistic than the Skumanich
and Rappaport, Verbunt & Joss (1983). However, precautions on the exact predicted
quantities are advisable given that they are highly sensitive to the braking prescription.
In this sense, a study on what happens with the expected field dwarf rotation period
distribution if we compare Skumanich and Rappaport, Verbunt & Joss (1983) against
CARB taking into account different field configurations seems necessary, which we will
not evaluate in this work.
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3.3 Orbital period evolution and period bifurcation
From this subsection onwards, we will study only sequences of models that consider

the CARB magnetic braking. In this section, we expand our model grid using the CARB
prescription of the magnetic braking into the initial orbital period parameter space.

Figure 15 – The evolution of the orbital period as a function of age for selected models
between 2.7 6 Pi/d 6 300. Initial orbital periods, from top to bottom: 300,
200, 150, 100, 70, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3.5, 3.25, 3.2, 3 and
2.7 days. The bifurcation period occurs between 20 and 25 d. The extra-thick
line marks the first convergent system. Above it, all systems are divergent. The
beginning and end of the mass transfer are indicated by green triangles and pink
squares, respectively. The colour of each line indicates the mass of the donor
at the end of the mass transfer. The sequence shown in grey never becomes
detached. The initial configuration is Md,i = 1.0 M� and Ma,i = 1.4 M� for
all sequences. The CARB magnetic braking is considered. Convergent binaries
will continue to contract their orbits, forming a cataclysmic variable or an
ultra-compact X-ray binary system. Divergent binaries will become relatively
wide systems containing a recycled NS and a He or CO WD.
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Figure 15 shows the evolution of the orbital period as a function of age for the
CARB prescription, for initial masses Md,i = 1.0 M� and Ma,i = 1.4 M�. As the donor is
now initially less massive (in the previous section we considered 1.2 M�), its time in the
main sequence is ∼ 5.5 Gyr shorter, as well as the mass transfer occurring earlier. The
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initial orbital periods range from 2.7 to 300 days. No model shows a significant orbital
period change before a model age of 10 Gyr. The shorter the Pi, the sooner the systems
starts mass transfer. Up to this point, we are only discussing models without element
diffusion. However, we draw attention to the fact that this does not affect the main results
discussed so far, as diffusion has a small effect on the quantities studied.

Using the Rappaport magnetic braking, Istrate et al. (2016) found that the bifurca-
tion period that separates the converging systems from the diverging ones occurs between
2.75 and 2.8 days if Md,i = 1.0 M� and Ma,i = 1.4 M�. Considering the CARB magnetic
braking prescription of Van & Ivanova (2019), a Pi = 20 d system with the same initial
masses is still a convergent system. This corresponds to a 0.255 M� ELM white dwarf —
the thickest line in Figure 15. Green triangles and pink squares mark the beginning and
the end of mass transfer, respectively. We note that, for diverging systems, these points
are so close to each other that we can barely distinguish between them.

We should emphasise that we define the lower limit to the initial orbital period of
our model grid in such a way that our models are completely detached at a model age of
14 Gyr. That is, simulations considering even shorter initial orbital periods still have a
small rate of mass transfer (Ṁ < 10−10 M� yr−1) at the final computed age, and therefore
are not part of our model grid. In such cases, the donor star is expected to be completely
consumed, i.e., transfer all its mass to the neutron star within a few billion years — or they
may merge due to emission of gravitational radiation, similar to the known ultra-compact
binaries (bottom three sequences in Figure 15).

The bifurcation period is shifted to longer ones (from 2.75–2.8 to 20–25 days) when
the CARB magnetic braking is considered. Therefore the CARB magnetic braking allows
us to get ELM WDs models with masses as low as 0.26 M� in converging binary systems
even with initial orbital periods as long as 20 days, which is not possible with the magnetic
braking of Rappaport. This is important because it shows that the entire extension of
low-mass and ELM WDs in systems with pulsars can be obtained via RLOF evolution
from a more uniform distribution of initial orbital periods (on a logarithmic scale), without
favouring only the most massive He-WDs.

Although not the focus of this work, the upper and lower sequences in Figure 15
show that the use of CARB magnetic braking makes it possible to form ultra-compact
X-ray binaries (UCXB) systems and wide-orbit binary millisecond pulsars, which is not
possible with the Van, Ivanova & Heinke (2018) prescription,5 as was shown by Chen et al.
(2021).

At this point, we should consider whether there are new problems appearing
with the use of CARB, since even the binaries with Pi = 20 d can produce ELM WDs

5 Do not confuse Van, Ivanova & Heinke (2018) with Van & Ivanova (2019). The first is a less elaborate
version of the second (CARB), and has 3 free parameters. Still, much of the formalism is the same.
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in millisecond pulsar systems. In fact, the analysis of Istrate, Tauris & Langer (2014)
indicates with a high level of confidence that the distribution of orbital periods of observed
recycled pulsars with He WD companions in the Galactic field is not compatible with
the simulations that use the Rappaport prescription. They pointed out that the range of
initial orbital periods that lead to the formation of this type of system must be expanded.
In addition, the Pi–Md,f relation we found (see also section 3.4) is much closer to the
expected log-normal orbital period distribution (Raghavan et al., 2010; Duchêne; Kraus,
2013; Tutukov; Cherepashchuk, 2020) than when using the Rappaport prescription. Thus,
the results we found using the CARB prescription are encouraging, and a study comparing
these results with simulations of binary population synthesis looks promising.

3.4 ELM WD companions to neutron stars
In this section, we expand our study of systems with point mass accretors of 1.4 M�.

All results presented in this section refer to sequences of models that take into account
rotation and diffusion. The main properties of these models are presented in Appendix C:
Table 5, Table 6, and Table 7 for Md,i = 1.0 M�; and Table 8, Table 9, and Table 10 for
Md,i = 1.2 M�. We emphasise that in our models the accretor mass never exceeds the
limit of the most massive neutron stars observed (e.g., Antoniadis et al., 2013; Cromartie
et al., 2020; Fonseca et al., 2021).

3.4.1 Initial orbital period and final mass

In this subsection we show how the relation between the initial orbital period
and the final white dwarf mass (Pi–Md,f) is modified when we change the initial mass of
the donor star and the metallicity. Considering that LMXBs are also found in relatively
low metallicity environments (e.g., Cadelano et al., 2015; Rivera-Sandoval et al., 2015;
Cromartie et al., 2020), we compute models with three different metallicities: Z = 0.02,
0.01, and 0.001.

In Figure 16 we depict the relation between the initial orbital period (y-axis)
and the low-mass/ELM WD final mass (x-axis). Green squares, red triangles, and blue
circles correspond to metallicities of Z = 0.02, 0.01, and 0.001, respectively. Dark colours
represent 1.0 M� donors, and light colours are for 1.2 M� donors. For comparison, Istrate
et al. (2016) LMXB models using the Rappaport, Verbunt & Joss (1983) magnetic braking
prescription are shown in black “×” signs. Our models also considering the Rappaport
magnetic braking (see section 3.1) are shown in “+” black signs.

As we already mentioned in section 1.6, the empirical treatment of the magnetic
braking by Rappaport, Verbunt & Joss (1983) leads to a fine-tuning of the order of a
dozen minutes in the initial orbital period to reproduce the observed orbital periods of
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Figure 16 – The relation between the initial orbital period and the ELM WD mass at the
end of 14 Gyr evolution for different setups. Istrate et al. (2016) LMXB models
using the Rappaport, Verbunt & Joss (1983) magnetic braking prescription
are shown in black “×” signs. Our models also considering the Rappaport
magnetic braking (see section 3.1) are shown in “+” black signs. Green squares,
red triangles, and blue circles correspond to metallicities of Z = 0.02, 0.01, and
0.001, respectively. Dark colours represent 1.0 M� donors, and light colours
are for 1.2 M� donors. All configurations take into account both rotation and
diffusion and have Ma,i = 1.4 M� and βmt = 0.8.
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millisecond pulsars in compact (2 < P/h < 9) binaries with He WD companions of mass
. 0.20 M� (Istrate; Tauris; Langer, 2014).

Also importantly, Istrate, Tauris & Langer (2014) studied systems with donors
initially as massive as 1.6 M� and found that the problem of fine-tuning persists, although
it somewhat alters the occurrence of hydrogen shell flashes (Istrate et al., 2014).

It is notable that each prescription for magnetic braking has a completely different
pattern in the Pi–Md,f plane. For final donor masses between 0.17 and 0.25 M�, we can
see in Figure 16 that the range of corresponding initial orbital periods is extremely narrow
(between 2 and 4 days) for the prescription of Rappaport. On the other hand, when the
CARB formulation is considered, the same range of final masses is obtained for initial
orbital periods between 2 and 20 days. Thus, the use of the CARB prescription does not
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require a fine-tuning of initial periods for the formation of ELM white dwarfs. Using initial
masses Md,i = 1.0 M� and Ma,i = 1.4 M�, we were able to produce detached white dwarf
systems within the range 4 6 Pi/d 6 300, which corresponds to ELM and low-mass WDs
with masses in the range 0.1504 6Md,f/M� 6 0.4102.

Now we compare the case of high metallicity (Z = 0.02), where Md,i = 1.0 M�
against an initially more massive donor, with 1.2 M� (dark and light green squares in
Figure 16, respectively). There is a systematic shift of the final mass towards larger
masses, for the same initial period Pi, in comparison to the case when the donor mass is
Md,i = 1.0 M�. The difference in final masses increases for shorter initial orbital periods.
For example, for Pi = 5 d, we find the final donor mass to be 0.1751 M� if Md,i = 1.2 M�,
but 0.1586 M� if Md,i = 1.0 M�. For Z = 0.02, all sequences undergoes hydrogen shell
flashes, regardless of the initial mass of the donor.

Using a Md,i = 1.2 M� donor instead of 1.0 M� does not significantly affect the
binary evolution. The difference in the ELMs final mass is due to the more massive model
being able to burn more H into He before mass transfer begins. For example, for the
Pi = 20 d case with Z = 0.02, this is reflected in the He core to be 0.0052 M� more
massive for the initially more massive donor. This difference increases to 0.015 M� for
Pi = 300 d. Note that for this metallicity (Z = 0.02) and Md,i = 1.0 M�, because of the
long main sequence lifetime (Renedo et al., 2010; Romero; Campos; Kepler, 2015), it is
difficult to produce (pre-)ELMs in less than 10–11 Gyr. Thus, younger (pre-)ELMs require
either lower metallicity or initially more massive donors.

Looking at other metallicities, the configurations with Md,i = 1.2 M� always need
a shorter initial orbital period in order to obtain an ELM WD with a given final mass.
Similarly, for a given initial orbital period and donor mass, higher metallicities always lead
to less massive ELM WDs. This difference is noticed at the end of the mass transfer epoch.
That is, at the end of the mass transfer, donors with lower metallicity always have a mass
a little larger than higher metallicity donors, given an initial donor mass and initial orbital
period. This can be understood since the mass transfer rate depends on several factors
related to the structure of the donor star, such as the pressure at the photosphere and at
the inner Lagrange point, the radius, the Roche lobe radius, the mean molecular weight,
the density in the donor’s photosphere, and the effective temperature (see Equation 2.13
and Equation 2.15). These quantities, in turn, change with metallicity.

Finally, we note that the minimum mass obtained for the ELM WDs are different
for each metallicity: around Md,f = 0.151 M� for Z = 0.02, Md,f = 0.165 M� for Z = 0.01,
and Md,f = 0.196 M� for Z = 0.001. Each of these cases represents the sequence with the
shorter initial orbital period, for a given initial configuration. Sequences with a shorter
initial orbital period will not detach. That is, for a even shorter initial orbital period, the
mass transfer is maintained and the accretor star tends to consume all the mass of the
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donor star before the model age of 14 Gyr. For Z = 0.001 and Md,i = 1.2 M�, however, the
sequence with Pi = 0.3 d cannot be started as there is RLOF already in the ZAMS (i.e.,
in the first model), and this would require adaptations in the mass transfer parameters.

3.4.2 Initial and final orbital period

Figure 17 – The relation between the final (Pf) and the initial orbital period (Pi). Green
squares, red triangles, and blue circles correspond to metallicities of Z = 0.02,
0.01, and 0.001, respectively. Dark colours represent 1.0 M� donors, and light
colours are for 1.2 M� donors. All configurations take into account both
rotation and diffusion and have Ma,i = 1.4 M� and βmt = 0.8. The purple
dot-dashed line serves as an indicator to distinguish between convergent
and divergent systems (i.e., Pf = Pi). For comparison, Istrate et al. (2016)
LMXB models using the Rappaport, Verbunt & Joss (1983) magnetic braking
prescription are shown in black “×” signs. Our models also considering the
Rappaport magnetic braking (see section 3.1) are shown in “+” black signs.
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In Figure 17 we show the final orbital period (y-axis) as a function of the initial
orbital period (x-axis), with all models taking into account rotation and diffusion. We set
βmt = 0.8 andMa,i = 1.4 M� in all models. We compare systems with different metallicities
and accretor mass. Green squares, red triangles, and blue circles correspond to metallicities
of Z = 0.02, 0.01, and 0.001, respectively. Dark colours represent 1.0 M� donors, and



96 Chapter 3. Results and discussions

light colours are for 1.2 M� donors. The purple dot-dashed line serves as an indicator to
distinguish between convergent and divergent systems, i.e., Pi = Pf.

The division between convergent and divergent systems is around Pi ≈ 20 d for
Z = 0.02, and Pi ≈ 16 d for Z = 0.01. For Z = 0.001, however, no system converges. All
systems with Pi & 30 d will diverge, regardless of the initial metallicity and donor mass.

Figure 17 also shows that different metallicities and initial donor masses affects the
Pi–Pf relation mainly in the short orbital period region, and above Pi = 30 d all setups
shown are practically indistinguishable. Furthermore, for a given initial orbital period
and metallicity, a Md,i = 1.0 M� donor always leads to a more compact system than the
Md,i = 1.2 M� donor case. This behaviour can be understood by analysing the intensity
of magnetic braking and the evolution of the binary system in the pre-RLOF period. For
example, for Pi = 5 d, in the sequence with a less massive donor, the orbital period is
about 0.5 days shorter by 0.1 Gyr before RLOF than in the case where the donor is more
massive.

Finally, it is evident from Figure 17 that the Pi–Pf relation is also strongly affected
when considering the CARB magnetic braking instead of the Rappaport one. The results
from CARB and Rappaport agree only for systems with Pf > 500 d, where magnetic
braking has reduced impact (see section 3.2). For models that use Rappaport braking,
convergent systems are obtained only for Pi . 3 d. Furthermore, CARB braking predicts
the existence of systems originated with Pi 6 1 d for low (Z = 0.001) and intermediate
(Z = 0.01) metallicities, which does not occur in the case where Rappaport braking is
considered.

3.4.3 Final mass and orbital period

The determination of relations between the orbital period and the mass of low-mass
and ELM WDs in systems with neutron stars is of great interest because this relation can
be used to examine the evolutionary channel for such a binary. These relations allow the
estimation of the masses of ELM WDs from the orbital period of the binary system, which
is, in general, easier to measure and independent of the Teff and log(g) determinations.

The cores masses and radii of low-mass stars in the red giant branch follow a
tight, well-known relation (Refsdal; Weigert, 1971; Webbink; Rappaport; Savonije, 1983;
Joss; Rappaport; Lewis, 1987). For a red giant donor in a binary system, its radius is
approximately equal to its Roche lobe radius during the mass transfer phase. The latter,
in turn, depends on the binary separation and on the mass ratio. At the end of the mass
transfer phase, the H-rich envelope is almost completely removed, and the final mass of
the donor star is approximately the mass of its He core. Therefore, the final mass of a
degenerate-core donor and the orbital period are correlated quantities.
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Figure 18 – The relation between the final orbital period (Pf) and the final donor mass
(Md,f). Green squares, red triangles, and blue circles correspond to metallicities
of Z = 0.02, 0.01, and 0.001, respectively. Dark colours represent 1.0 M�
donors, and light colours are for 1.2 M� donors. All configurations take into
account both rotation and diffusion and have Ma,i = 1.4 M� and βmt = 0.8.
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Figure 18 shows the final mass of donor vs. final orbital period (Md,f –Pf) relation
for all computed model sequences that takes into account rotation and diffusion and
that have a 1.4 M� accretor. Although the CARB prescription for the magnetic braking
completely changes the relation between Pi and Md,f, the relation between the final orbital
period (Pf) and final donor mass (Md,f) is much less affected when compared to the models
calculated with the Rappaport magnetic braking formalism.

The use of the CARB prescription produces models that maintain agreement
with other theoretical adjustments and also with observational data. Our results for high
(Z = 0.02) and intermediate (Z = 0.01) metallicity are in good agreement with the Lin
et al. (2011) theoretical fit, which is based on low and intermediate-mass X-ray binaries
models computed with gravitational radiation, mass loss, and the Rappaport magnetic
braking contributions to the angular momentum loss. For low metallicity (Z = 0.001), our
results for Md,f & 0.30 M� are in excellent agreement with the fit from Tauris & Savonije
(1999) for Population II stars (TS99 Pop. II in Figure 18). For Md,f . 0.23 M�, we found
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orbital periods slightly longer than Lin et al. (2011), for a given mass. We note that this
is probably due to the effects of diffusion, since our models without diffusion of elements
(not shown in the figure) are much closer to the fit of Lin. The diffusion effects are less
significant in the Md,f –Pf relation for Md,f & 0.24. Between Md,f = 0.23 and 0.29 M�, our
models are in good agreement with both Lin et al. (2011) fit and Tauris & Savonije (1999)
fit for Population I stars. It is important to note that these fits were made based on a
broader initial donor masses distribution than we are considering here.

In Appendix D we present the same Md,f –Pf relation, but comparing the results of
our theoretical models against observational data of pulsar + He WD systems.

3.5 ELM WD companions to massive white dwarfs

Although most of the first ELMs discovered had neutron stars as companions (van
Kerkwijk; Bergeron; Kulkarni, 1996; van Kerkwijk et al., 2005), none of the ELMs in the
clean sample of the ELM Survey was proven to have an neutron star as a companion
(Brown et al., 2020; Athanasiadis et al., 2021a; Athanasiadis et al., 2021b). Motivated by
this result, we next consider the accreting star as having Ma,i = 0.8 M�, equivalent to a
massive WD.

When modeling binary systems with accreting WDs, besides the change made in
the accretor mass, several differences regarding the NS case are worth attention. With
much shallower potential well, they differ when not considered as point sources. Possibly
the most relevant difference for these models are nova explosions, whose frequency depends
on Ṁ and the white dwarf mass itself. The accretor mass may even decrease with time due
to nova shell ejections. Nova shells not only affect βmt, making its value highly uncertain
and variable with time, but also carry and remove orbital angular momentum by dynamical
friction.

The accretion efficiency on the surface of WDs is uncertain and depends heavily
on chemical composition, surface temperature and accretion rate. For a massive WD, the
simulations that best fit the observations suggest small (. 50%) values for this parameter
(Wu et al., 2017; Liu; Li, 2016; Piersanti; Tornambé; Yungelson, 2014; Piersanti; Yungelson;
Tornambé, 2015; Wijnen; Zorotovic; Schreiber, 2015; Starrfield, 2014; Meng; Chen; Han,
2009). We chose here to keep βmt = 0.8 (i.e., accretion efficiency of 20%) to facilitate the
comparison with the results from the previous section.

Taking all of the above caveats into account, in this section we will again consider
the accretor as a point of mass, neglecting all effects of its non-zero size, nova explosions,
time-varying accretion efficiency, chemical abundance in the atmosphere, etc.

The main properties of these models are presented in Appendix C: Table 11,
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Table 12, and Table 13. We emphasise that in our models the accretor mass never exceeds
the limit of the most massive white dwarfs observed (e.g., Cummings et al., 2016; Hollands
et al., 2020; Pshirkov et al., 2020; Caiazzo et al., 2021; Kilic et al., 2021a; Miller et al.,
2021b; Fleury; Caiazzo; Heyl, 2021).

3.5.1 Initial orbital period and final mass

In this subsection, we show how the relation between the initial orbital period and
the final white dwarf mass (Pi –Md,f) is modified when we change the initial mass of the
accretor star to Ma,i = 0.8 M�, consistent with a massive white dwarf.

In Figure 19 we depict the relation between the initial orbital period (y-axis) and
the low-mass/ELM WD final mass (x-axis). Green squares, red triangles, and blue circles
correspond to metallicities of Z = 0.02, 0.01, and 0.001, respectively. All configurations
take into account both rotation and diffusion, and have Ma,i = 0.8 M� and βmt = 0.8. For
comparison, corresponding models for NS accretors are also show in tiny symbols.

In this case, we find that there is a systematic shift towards final lower masses, given
a Pi, when compared to that the NS accretor case. The difference in mass is 0.0052 M� for
Pi = 5 d and reaches 0.0243 M� for Pi = 40 d. This result can be easily understood, since
the evolution of the orbital separation depends on the mass ratio (see subsection 1.4.1 and
Equation 1.23). When the donor star has a more massive companion, a NS, the orbital
separation between them tends to increase when the mass transfer begins. When the
companion is less massive, a WD, the stars tend to get closer. As a consequence, the mass
transfer episodes last longer with the WD accretor, which causes the donor star to end
up with a smaller mass, given an initial orbital period. In addition, our results show that
the maximum value of the mass transfer rate is higher in cases where the accreting star is
less massive. The mass loss increases from 10−6.5 M� yr−1 to 10−4 M� yr−1 in some cases.
Combined, these two facts explain the difference in the final mass of the donor stars when
the mass of the accreting star changes.

Leaving aside the shift to low masses described in the previous paragraph, it is
noteworthy that the way the points are distributed in the Pi–Md,f plane shown in Figure 19
is very similar between NS and WD accretors, for a given metallicity. That is, it still holds
that higher metallicities lead to less massive ELM WDs, given an initial setup. This occurs
because the duration of the RLOF is shorter for smaller metallicities. Furthermore, for
Z = 0.02, the lowest ELM mass obtained is approximately the same, regardless of the
accretor; but for Z = 0.01 we obtained Md,f = 0.1560 M�, considerably less than in the
case of an NS accretor (Md,f = 0.1671 M�).

Moreover, in the low metallicity case, even for Pi = 1 d we find it difficult to obtain
ELMs with masses below 0.21 M�. This is because the metallicity primarily affects nuclear



100 Chapter 3. Results and discussions

Figure 19 – The relation between the initial orbital period and the ELM WD mass at
the end of 14 Gyr evolution for systems with massive white dwarf accretors.
Green squares, red triangles, and blue circles correspond to metallicities of
Z = 0.02, 0.01, and 0.001, respectively. Donors have 1.0 M� in all cases.
All configurations take into account both rotation and diffusion, and have
Ma,i = 0.8 M� and βmt = 0.8. For comparison, corresponding models for NS
accretors are also show in tiny symbols.
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burning in the pre-RLOF evolution, but it also affects the occurrence of hydrogen shell
flashes after the mass transfer since it changes the amount of hydrogen burning in the shell
at the base of the envelope. For example, if Pi = 6 d, we find two, three, or four hydrogen
shell flashes, depending on metallicity. Although it is difficult to qualify all the effects of
the change in metallicity in a single form, it is possible to conclude that it strongly affects
the evolution of ELM WDs.

3.5.2 Initial and final orbital period

In Figure 20 we show the final orbital period (y-axis) as a function of the initial
orbital period (x-axis) for binary systems containing ELM WDs and massive white dwarf
accretors. All models take rotation and diffusion into account. We set βmt = 0.8 and
Md,i = 1.0 M� to better compare the effects of changing other parameters. The purple
dot-dashed line serves as an indicator to distinguish between convergent and divergent
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systems. For comparison, corresponding models for NS accretors are also show in tiny
symbols.

Figure 20 – The relation between the final (Pf) and the initial orbital period (Pi) for
binary systems containing ELM WDs and massive white dwarf accretors.
Green squares, red triangles, and blue circles correspond to metallicities of
Z = 0.02, 0.01, and 0.001, respectively. All configurations take into account
both rotation and diffusion and haveMa,i = 0.8 M� and βmt = 0.8. The purple
dot-dashed line serves as an indicator to distinguish between convergent and
divergent systems. For comparison, corresponding models for NS accretors are
also show in tiny symbols.
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Again, in the case of massive WD accretors, the general behaviour is quite similar
to that of NS accretors. The biggest difference is that, for a given initial orbital period and
metallicity, systems with WD accretors have a shorter final orbital period. Once again,
this is because the mass transfer phase is longer in these cases, and the loss of mass for a
less massive star tends to decrease orbital separation.

In general, the division between convergent and divergent systems is around
Pi = 20-30 d, i. e., all systems with Pi & 35 d will diverge, regardless of the initial
configuration. The case of low metallicity (Z = 0.001, blue circles) is peculiar due to the
fact that these systems will never be convergent. Still, we find that Pf ≈ Pi if Pi ≈ 10 d,
which does not happen in the case where the accretor is an NS.
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Note that almost all objects in the ELM Survey (Brown et al., 2020) — mainly
by selection effects — have P < 1 d; probably have another WD as a companion; and
are located in the Galactic disk, indicating high metallicity progenitors. Even more,
such close systems are strong candidates to be observed in both gravitational waves
and electromagnetic radiation (Li et al., 2020). Simple estimates of the amplitude, the
characteristic strain, and the frequency of the gravitational waves emitted by our models
at final age are described in Appendix B and presented in Appendix C.

We also found a clear relation between the final orbital period and the rotation
rate of the white dwarf. Systems with a short initial orbital period present greater
synchronisation with the orbit, at the end of the evolution. For example, for metallicities
of Z = 0.02 and Z = 0.01, the lower-mass ELM WDs models present almost perfect
synchronisation between the rotation of the star and the orbital period of the binary
system. More generally, the ratio between the rotation rate of the ELM WD and the orbital
period of the system assumes values between 1 and 0.1 for almost all short orbital period
(Pf . 10 d) systems. On the other hand, this ratio in Pf & 50 d systems is Prot/Pf ' 0.1–
10−3, indicating white dwarfs rotating more slowly than the orbital period. For systems
between these two period intervals, the exact behaviour depends on masses and metallicity.
Looking at the Pi –Pf diagram in Figure 20, we notice that this value of the initial orbital
period (20–30 d) coincides with the bifurcation period. Thus, convergent systems are more
likely to have synchronisation between the rotation of the white dwarf and the orbit. This
occurrence might be a tool to observationally estimate the convergence period. Even for
systems with a shorter initial orbital period, we find that from ∼1 Gyr after the end
of RLOF onwards, the time needed for synchronisation exceeds the age of the Universe.
This means that we should not expect tidal forces to change the rotation of the newly
formed low-mass/ELM WDs. Important to note, this analysis holds for both WD and NS
accretors.

3.5.3 Final mass and orbital period

Figure 21 shows the final mass of donor vs. final orbital period (Md,f –Pf) relation
for all computed model sequences that takes into account rotation and diffusion and
that have a 0.8 M� accretor. Green squares, red triangles, and blue circles correspond to
metallicities of Z = 0.02, 0.01, and 0.001, respectively. All configurations take into account
both rotation and diffusion and have initially 1.0 M� donors and 0.8 M� accretors.

An important result is that the relation between the orbital period and the mass of
ELM WDs is not significantly affected when we consider a massive-WD accretor instead
of an NS (i.e., comparing Figure 21 with Figure 18). This is in line with the results found
by De Vito & Benvenuto (2010), De Vito & Benvenuto (2012). It still holds that for low
metallicities (Z = 0.001) always lead to closer systems, for a given mass; and intermediate
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Figure 21 – The relation between the final orbital period (Pf) and the final donor mass
(Md,f). Green squares, red triangles, and blue circles correspond to metallicities
of Z = 0.02, 0.01, and 0.001, respectively. All configurations take into account
both rotation and diffusion and have Md,i = 1.0 M�, Ma,i = 0.8 M�, and
βmt = 0.8. Observational data: ELM WDs from the ELM Survey (Brown et
al., 2020) are shown in black asterisks, and the confirmed ELMs compiled by
Pelisoli & Vos (2019) are shown in black dotted-circles.
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(Z = 0.01) and high metallicities (Z = 0.02) present very similar results. In addition, it
is known that different initial donor masses also modifies this relation (Istrate; Tauris;
Langer, 2014), which can also be noticed by analysing the Figure 18. However, it should
be noted that even considering all these variations (initial donor mass and metallicity), the
theoretical models occupy only a small part of the parameter space shown in Figure 21.

Considering this, we also show in Figure 21 observational data, which include the
ELM WDs from the ELM Survey (black asterisks, Brown et al., 2020), and the list of
confirmed ELMs compiled by Pelisoli; Vos, 2019 (black dotted-circles). It is clear that the
observational data is widely dispersed, moving away from the theoretical RLOF models for
both sides of the diagram. This seems to indicate that objects that are not in the region
of the quoted theoretical models should have been formed via evolutionary channels other
than stable mass transfer, such as common envelope, mergers, triple systems, etc.
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Of course, the model also has its limitations and may not be a perfect representation
of the physical mechanism considered. However, we emphasise that, in the Md,f –Pf plane,
the results obtained for the Rappaport and for the CARB prescriptions are very similar.
Furthermore, different metallicities, initial masses, and accretion efficiencies only slightly
affect the results, supporting the idea that the distribution of results in the Md,f –Pf plane
does not have a strong dependence on the prescription for the magnetic braking used. In
summary, we do not see evidence that adjustments in the initial parameters would be able
to explain the ELM WDs of mass Md,f & 0.25 M� formed via RLOF in binary systems
with orbital periods Pf . 1 d.

On the other hand, the fact that the different theoretical models present small
dispersion can be used to indicate the stable mass transfer as the formation channel of the
systems that fit well to the curve, as well as a reliable estimate of the mass of ELM WDs
from the orbital period measurements. More generally, this reinforces the idea that the
formation of WD in binary interacting systems is an extremely degenerate phenomenon,
with no univocality between the currently observed systems and their respective progenitor
systems.

3.5.4 Effects of different accretion efficiencies

When we modify the efficiency in the accretion of matter on the surface of the white
dwarf, the results are different for different initial orbital periods, although the overall
results are that the ELM WD final mass hardly changes. For Pi > 50 d, low efficiency
in accretion (20% instead of 70%) results in ELMs with only a slightly higher final mass
(∼ 0.0015–0.0045 M�), for a given Pi. However, the effect is reversed for the interval
10 6 Pi/d 6 30. This can be understood by the fact that the peak in the mass transfer
rate and the duration of the mass transfer behave differently in this case. For all Pi we
found that the peak in the mass transfer rate is higher if the mass accretion efficiency in
the WD is lower. On the other hand, the duration of the mass transfer depends on the Pi:
for short Pi, it lasts longer when βmt is smaller; but it lasts less time in the case of large
Pi and same βmt. Combined, these two facts explain the difference in the final mass of the
donor stars when we modify the mass transfer efficiency to the accreting star.

In a more extreme case, we make a comparison between βmt = 0 and βmt = 1. If
Pi = 5 d, we find that the final mass is equal (0.1518 M�) in both cases, as a different
number of hydrogen shell flashes occurs in each sequence of models. On the other hand,
the final orbital period is Pf = 0.612 d if βmt = 0 and Pf = 0.520 d if βmt = 1.

Moreover, for Pi = 50 d, we find Pf = 96.2 d and Md,f = 0.3075 M� if βmt = 0; and
Pf = 105.8 d and Md,f = 0.3108 M� if βmt = 1.

Therefore, we conclude that different accretion efficiencies have only a very small
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effect on the final orbital period (<5–8%) and final mass of the ELM WDs (<0.003 M�)
in our models. However, this parameter is the main one to regulate the final mass of the
accretor.

3.6 Chemical profiles

Figure 22 shows the chemical profiles in terms of the outer mass fraction at the
terminal age for different initial configurations. Hydrogen (dashed lines) and helium (solid
lines) mass fractions (y-axis) are normalised to one. The outer mass fractions (x-axis) are
in log-scale, with the zero in the scale representing the centre of the model. All models
have Md,i = 1.0 M� and take into account rotation and diffusion of elements.

The top and the middle panels compare models with the same metallicity (Z=0.02),
but that have evolved in companion to different accretors, a NS (top panel) or a massive
WD (middle panel). Note that for each of the lines in the plot, the initial mass of the
accreting star is the only modified parameter. Also note that, in the top and middle panels,
although the initial orbital periods are the same, the final masses are not. This indicates
that changes in the dynamics of mass transfer can strongly modify the final chemical
profile. Obviously, this occurs indirectly, as the intermediate steps are the different masses
of the donors after the mass transfer phase and also the number of hydrogen shell flashes.
At the limit of the lowest initial orbital period, and therefore less massive ELM WDs,
we find that considering the accreting star as a massive WD decreases the number of
hydrogen shell flashes during the evolution of the ELM WD. This, in turn, modifies the
chemical profile, since in addition to going through a phase of intense burning of H into
He at the base of the envelope, the donor loses part of its outer layers again in another
episode of RLOF.

Taking into account the caveats described above, if we compare two models that
have suffered the same number of hydrogen shell flashes, the chemical profiles are similar.
More interestingly, in the case of a lower initial orbital period of the middle panel (Pi = 4 d,
black line), no hydrogen shell flash occurs. This leads to a very different chemical profile
than when one or more hydrogen shell flashes occur. In this case, hydrogen and helium
are already well mixed in the outer four per cent in mass of the star. When hydrogen shell
flashes occur, they are only mixed in the outer 0.01 per cent.

The non-flashing model is the only one with a large hydrogen envelope, reaching
up to 3% of the total mass of the model. The envelopes of the flashing models, on the
other hand, hardly sums 0.1%. Another striking fact of systems that do not suffer from
hydrogen shell flashes is that the surface of the models can have a considerable amount of
helium, about 10 per cent.

Finally, in the lower panel we see that for low metallicity (Z = 0.001), the occurrence
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Figure 22 – Chemical profiles in terms of the outer mass fraction at terminal age (14 Gyr)
on the cooling sequence for different initial configuration. The top and middle
panels show models with initial metallicity Z = 0.02, and the bottom panel
considers Z = 0.001. The top panel considers a neutron star as an accretor,
and the middle and bottom panels a massive white dwarf. In each panel, we
chose some key initial orbital periods (Pi) to show. The number of hydrogen
shell flashes (#HSF) suffered during the whole evolution is also indicated.
Rotation and diffusion of elements are considered in all models.
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(or not) of hydrogen shell flashes has less influence on the chemical profile. As a general rule,
less massive ELM WDs have a greater amount of hydrogen on the surface. The transition
between the hydrogen- and the helium-dominated regions occurs aroundMr/M = 0.996019
for the less massive model (Md,f ≈ 0.21 M�) and around Mr/M = 0.999684 for the more
massive one (Md,f ≈ 0.40 M�).

At this point, we might be wondering how close the low metallicity, Pi = 1 d model
(bottom panel of Figure 22, black line) is to undergo a hydrogen shell flash. In fact, the
answer is not simple and must be analysed on a case-by-case basis. This is because there
are two conditions for a flash to occur: i) the shell must be thin enough to ensure that the
pressure reaction during expansion remains sufficiently weak so that the temperature in the
shell continues to grow, ii) but it must be not too thin in order for the heat perturbation
to remain contained in the shell (see discussion in Gautschy, 2013). Let us use two cases
from the bottom panel (Figure 22) as an example. If we compare the models of Pi = 1 d
and Pi = 2 d at the maximum effective temperature right after the RLOF, we will find
that, in fact, the hydrogen envelope of the Pi = 1 d model is more massive (0.011 against
0.009 M�). This is because the Pi = 2 d model had more time to burn H into He before
the mass loss begin. Thus, great caution is needed when comparing the initial orbital
period with the envelope mass and the number of hydrogen shell flashes.

3.7 Kiel diagram and comparison with observational data

3.7.1 General remarks on different metallicities and accretor masses

Figure 23 shows the Kiel diagram, i.e., the Teff – log(g) plane, featuring selected
evolutionary tracks and observational data of confirmed or candidate ELM WDs from
different surveys. Evolutionary tracks are for Pi = 5 d (black dotted lines), 15 d (orange solid
lines) and 100 d (red dashed lines). Each panel compares a different initial configuration
regarding the nature of the accreting star and the metallicity. The top and middle panels
show models with initial metallicity Z=0.02, and the bottom panel considers Z=0.001. The
top panel considers a neutron star as an accretor, and the middle and bottom panels a
massive white dwarf.Md,i = 1.0 M� in all cases. Observational data: ELM WDs candidates
from the sdA selection (green multiplication signs, Pelisoli; Kepler; Koester, 2018a; Pelisoli
et al., 2018b; Pelisoli et al., 2018c); ELM WDs candidates from the Gaia DR2 (blue dots,
Pelisoli; Vos, 2019); clean sample of the ELM Survey plus other confirmed ELM WDs
(purple plus signs, Brown et al., 2020, Pelisoli; Vos, 2019); BLAPs (dark blue triangles,
Pietrukowicz et al., 2017). Gaia DR2 data were corrected by reddening following Gentile
Fusillo et al. (2019). We draw attention to the fact that these data have great uncertainty,
especially in the log (g) determination of the sdA stars. For example, Pelisoli et al. (2018b)
points out an uncertainty of 5% for Teff and 0.5 dex for log (g).
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Figure 23 – Kiel diagram featuring selected evolutionary tracks and observational data.
Different metallicities and initial accretor mass are compared in each panel,
which one has three evolutionary tracks. See text for a complete description.
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In a Kiel diagram (KD), the ZAMS is in the upper-right corner of the plot, i.e.,
in the region of low effective temperature and low surface gravity. From the ZAMS until
the start of the RLOF, all models move towards even lower surface gravities and effective
temperatures in the KD. During mass transfer, donors get hotter and also with higher
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surface gravities. Counterclockwise loops indicate hydrogen shell flashes. At the end of
the cooling track, models are typically around log(g) ∼ 7 and Teff ∼ 10 kK. All models
shown take into account rotation and diffusion of elements. We find that when elements
diffusion is taken into account, hydrogen shell flashes take place in almost all pre-ELM
WDs, regardless of specific mass ranges. The only exceptions are some models of the lowest
mass for each initial setup.

Both the top and the middle panels show models with Z = 0.02, but they differ
regarding the nature of the accretor: NS and massive WD, respectively. For Pi = 5 d, despite
both configurations ending up as ELM WDs of very similar masses (Md,f ≈ 0.15 M�), the
evolutionary tracks are slightly different. In the case where the companion is a NS, the
pre-ELM reaches lower log(g) during hydrogen shell flashes. In addition, the number of
hydrogen shell flashes is different in each case: three if the companion is a NS and two if it
is a massive WD. In this case we also find that the effective temperature at the end of
the evolution is about 1800 K cooler when the accretor is a NS. This is because the extra
hydrogen shell flash decreases the amount of hydrogen in the envelope, accelerating cooling.
In the case where Pi = 15 d, the difference in the final masses increases: Md,f = 0.221 M�
if the accretor is a NS and Md,f = 0.205 M� if it is a massive WD. On the other hand,
the number of hydrogen shell flashes is the same (four), and the final temperatures are
practically identical (≈ 5040 K).

In Figure 23 we also compare the cases where the accreting star is a massive WD
but the metallicity is different, Z = 0.02 (middle panel) and Z = 0.001 (bottom panel).
For Z = 0.001, we note that the evolutionary tracks avoid the upper right region of the
graph during the hydrogen shell flash inflation epoch. In fact, in many cases, RLOF does
not happen during hydrogen shell flashes in the case of low metallicity. In other words, in
cases of low metallicity, the increase in luminosity during hydrogen shell flashes occurs in
a way that the models increase the radius less (and therefore have a higher temperature)
when compared to models with higher metallicity. Also, the low metallicity case is clearly
the one that the models can cool to lower temperatures in the same 14 Gyr. As we have
already pointed out, this is directly linked to the fact that low metallicity stars leave
the main sequence much faster. In the bottom panel, the three ELM WDs models finish
the evolution with masses 0.23, 0.27 and 0.40 M�, with Teff = 3475, 3703 and 4537 K,
respectively.

Although only three evolutionary tracks are represented on each panel of Figure 23,
note that they fit very well the ELM Survey objects (purple “+” signs), either at the final
cooling epoch or before a hydrogen shell flash.

From Figure 23 we can see that these tracks pass through (when in the pre-ELM
stage) the region of ELM candidates marked as “Pelisoli sdA” (green “×” signs) — subdwarf
stars with spectral type A (Pelisoli; Kepler; Koester, 2018a; Pelisoli et al., 2018b; Pelisoli
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et al., 2018c). This corresponds to the highly populated region around Teff ≈ 8, 000 K
and 3.5 . log(g) . 5. In the cooling epoch, near the terminal age, our tracks fit well the
majority of the confirmed ELM WDs (Brown et al., 2020; Pelisoli; Vos, 2019) in the range
8, 800 . Teff/K . 21, 500 and 5.5 . log(g) . 7.1.

Tracks corresponding to the most massive models, i.e., longer initial orbital period,
in this figure end the cooling epoch with log(g) > 7, matching the most populated area of
ELM candidates from the Gaia DR2 mission (light blue “·” signs, Pelisoli; Vos, 2019). These
more massive models also pass through the region of the BLAPs (dark blue “N” signs),
which are extremely rare blue pulsators characterised by light variations with periods in the
range of 20–40 min and amplitudes of 0.2–0.4 mag in the optical pass-bands (Pietrukowicz
et al., 2017). They have Teff ≈ 30 kK and their estimated masses are M ≈ 0.30–0.35 M�
(e.g., Romero et al., 2018, Byrne; Jeffery, 2018). In our models, this mass range corresponds
to 20d . Pi . 100d, depending on the metallicity.

The occurrence of hydrogen shell flashes is related to the size of the hydrogen-
burning shell at the base of the envelope. When combined with temperatures of the order
of 1.5× 107 K, this leads to the CNO burning becoming dominant and a phase of unstable
nuclear burning. Moreover, a large hydrogen envelope makes it difficult for the star to
cool, affecting the cooling time.

Physically, hydrogen shell flashes are characterised by a period of expansion fol-
lowed by a period of high Teff. These maxima in Teff occur approximately in the range
5 . log(g) . 6. In the Kiel diagram (and also in the HR diagram), each hydrogen
shell flash is shaped like a loop, always counterclockwise. Notably, the left side of the loop
(log(g) increasing, higher Teff) occurs on much longer timescales than the right side of the
loop (log(g) decreasing, lower Teff). See also Figure 24. Especially for low metallicities,
unstable hydrogen burning via pp nuclear reactions can also occur, characterised by smaller
loops during the main loop (see Serenelli et al., 2002 for more details).

During each flash, some models may reach 30–100 kK. This is the region of
the observed sdBs and sdOs, subdwarf stars with spectral type B and O, respectively,
understood as central He burning stars (Heber, 2009; Heber, 2016). But i) the observational
data, using Gaia astrometry, shows the mass distribution of hot subdwarf extends down to
at least 0.3 M� (Schneider et al., 2019); ii) the discovery of an ultra-compact hot subdwarf
binary as part of the Zwicky Transient Facility survey (Kupfer et al., 2020); iii) the discovery
of an eclipsing binary containing a cool, low mass subdwarf star (M = 0.1501 M�) with
a white dwarf companion (Rebassa-Mansergas et al., 2019); and iv) the bright low-mass
sdB/pre-ELM WD with unusual position in the KD (Teff = 21, 500 K and log(g) = 5.66,
Latour et al., 2016) point to possible different evolutionary channels. That is, our (pre-
)ELM WDs models have several points in compatibility with these peculiar subdwarfs;
and since we cannot be sure about the core composition of the subdwarfs, we point out
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that more detailed studies in this regard seem to be promising (see also Chen et al., 2013).

3.7.2 Halo objects?

We should emphasise that hydrogen shell flashes are very rapid phenomena
(∼500 Myr in total, a little more than the thermal timescale) and a much longer time
must be spent in the cooling track (∼1.5 Gyr if Z = 0.02, ∼9 Gyr if Z = 0.001). Still, the
time spent during the flash is not negligible, affecting the estimated cooling time of the
WDs (e.g., Althaus; Miller Bertolami; Córsico, 2013).

In Figure 24, we present nine evolutionary tracks in the Kiel diagram, now focusing
on the low Teff region and showing points every 30 Myr. Three key models are presented
for each metallicity, where the symbols and colours are distinct for each subset: green
squares (Z = 0.02), red triangles (Z = 0.01), blue circles (Z = 0.001). Confirmed ELM
WDs from Brown et al. (2020), Pelisoli & Vos (2019) are shown in orange crosses.

In addition to the Pi = 100 d models, for each metallicity we show in Figure 24
the two models with the shortest initial orbital period. Note that the shortest Pi model of
each metallicity does not undergo hydrogen shell flashes. These three models reach very
similar Teff (between 8000 and 8300 K) at final age (14 Gyr), but their surface gravities at
this age differ by a factor greater than twenty.

Although for each metallicity the evolutionary tracks do not cross each other in
the cooling epoch, when considering different metallicities it is not possible to relate a
final mass with only a single initial configuration. As a general rule, the lower the initial
metallicity, the cooler the ELM WD will be at the end of the cooling track, for the same
total age. In addition, except for the case of low metallicity, the vast majority of objects in
the ELM Survey are not compatible with the few models that do not suffer from flashes.
Thus, we point out that these objects have gone or will undergo episodes of hydrogen shell
flashes.

In Figure 23 we can clearly notice the formation of two branches by the observational
data. They are in the region of 10 . Teff/kK . 20 and 3.5 . log(g) . 5.5. The observational
data in this region is from the ELM candidates from Pelisoli; Kepler; Koester, 2018a
(188 objects) and Pelisoli et al., 2018c (9 objects). We found that mainly the pre-ELM
WDs with low metallicity (Z = 0.001) and that undergo hydrogen shell flashes spend
significant time in this region. We then search for the tangential and radial velocities for
these 197 objects in the Gaia DR2 and SDSS DR16, respectively. Selecting only objects
with parallax_over_error > 3, we find that 19/35 (∼ 54 per cent) of these objects have
a total velocity greater than 200 km/s, indicating that they are most probably halo objects
and therefore should have low metallicity. In this way, we have shown that approximately
half of the (pre-)ELM WDs candidate objects that are in the KD branches are compatible
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Figure 24 – Isochronous Kiel diagram of theoretical models with different metallicities
along with observational data. In the theoretical tracks, the coloured symbols
are spaced in 30 Myr intervals. In total, nine models are presented, three for
each metallicity: Z = 0.02 (green squares, Pi = 4, 5 and 100 d); Z = 0.01
(blue circles, Pi = 2, 3 and 100 d); and Z = 0.001 (red triangles, Pi = 1, 2 and
100 d). Here, the least massive models for each metallicity do not undergo
hydrogen shell flashes. Confirmed ELM WDs from Brown et al. (2020), Pelisoli
& Vos (2019) are shown in orange crosses.
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with low-metallicity pre-ELM WDs models.

Finally and equally importantly, we found that the use of the CARB prescription
for magnetic braking instead of the Rappaport, Verbunt & Joss (1983) prescription does
not affect the behaviour of (pre-) ELM in the log(g) –Teff plane. That is, our models have
both log(g) and Teff fully compatible with observational data. This was expected and
required. It was expected because magnetic braking only affects the dynamics of the binary
system, altering the loss of angular momentum, but the impact on the stellar components
occurs indirectly, via RLOF, etc. Lastly, as highlighted in the introduction, it is one of the
required objectives of this work.
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3.8 Donor irradiation by accretion of matter in the neutron star
Whether the radiation emitted by the accretion of matter in a NS can influence the

properties (temperature, radius, luminosity, mass, etc.) of the donor star and, consequently,
the evolution of the binary system, has been studied for a long time (Ruderman et al.,
1989; Podsiadlowski, 1991; Hameury et al., 1993; Harpaz; Rappaport, 1994; Hameury;
Ritter, 1997; Ritter; Zhang; Kolb, 2000; Ritter, 2008).

We then choose a representative evolutionary sequence to test the aforementioned
effects, namely: Md,i = 1.0 M�, Ma,i = 1.4 M�, Pi = 5 d, βmt = 0.3, and Z = 0.02.
We follow the simple approach of Quintin (2013), Goodwin & Woods (2020). For steady
spherical accretion onto a neutron star, neglecting the magnetic field, one has the X-ray
luminosity

LX = GMNSṀacc

RNS
ηX , (3.1)

where MNS is the neutron star mass, Ṁacc is the accretion rate — that is, the total mass
transfer rate times the accretion efficiency βmt—, RNS is the (assumed constant) radius of
the neutron star, set to 13 km following the recent result of Adhikari et al., 2021, Reed et
al., 2021, and ηX is the X-ray efficiency term.

Assuming that the X-rays are emitted isotropically, the irradiating flux at the
surface of the donor star can be written as

Firr = LX

4πa2 εirr , (3.2)

where a is the binary separation (as in subsection 1.2.1), LX is given by Equation 3.1, and
εirr is the irradiation efficiency term.

Energy from irradiation will be deposited in the outer 4πR2
dCdepth grams of the

donor star. Cdepth is a free parameter representing the column depth, given in units
of g/cm2. However, we do not consider any change in the boundary conditions of the
atmosphere or in the opacities treatment due to irradiation. That is, it is treated in the
same way as described in chapter 2.

Following the studies mentioned above, we set Cdepth = 0.1, 1, 10, and 100 g/cm2.
We chose ηX = 1 and εirr = 1, not limiting the X-ray and irradiation efficiency terms.
Instead, we limit Firr to Firr,max = 1× 109, 5× 109, and 1× 1010 erg/(cm2 s).

We look for significant differences in the quantities of temperature, radius, mass
transfer rate, orbital period, and donor mass, especially during the mass transfer and its
states at the end of the evolution. We do not find any significant change in these quantities
during the evolution or at the end of the simulations.

Our conclusion is that, up to the maximum limit of Firr,max = 1× 1010 erg/(cm2 s),
there is no significant change in the evolution of an ELM WD in a Pi = 5 d binary system
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with an NS accretor. For systems with a longer initial orbital period, the orbital separation
a increases, so the effects of irradiation decrease.

However, we draw attention to the fact that the studies cited above indicate much
lower values for the efficiency terms, namely, ηX ≈ 0.2, and εirr ≈ 0.01 (for instance, these
are the same values that we chose to estimate X-ray luminosities in Appendix B). We
note that even considering these lower efficiency values, Firr in Equation 3.2 may reach
values as high as 2.5× 1011 erg/(cm2 s) during the peak of the mass transfer rate. We also
note that Goodwin & Woods (2020) set Firr,max = 3× 109 erg/(cm2 s) in their simulations,
therefore a stricter limit compared to what we use in our work. Thus, we point that a more
detailed investigations in this regard should be considered in modelling the irradiation
due to accretion in the formation of ELM WDs in companion to neutron stars.

In mesa version release r11701, these results can be achieved using the following
commands, for example:

accretion_powered_irradiation = .true.

max_F_irr = 1d10 [erg/(cm2 s)]

accreteor_radius_for_irrad = 1.3d6 [cm]

col_depth_for_eps_extra = 1 [g/cm2]

3.9 Effects of different microphysics

To test the effects of how elements are grouped together in diffusion calculations,
we created some models lumping elements into 10 element classes, as in Istrate et al.
(2016). We found that the difference is minimal. When compared to the case where the
full net is used, the final ELM mass changes by ≤ 0.001 M�, the final orbital period by
. 0.8 per cent, and the number of hydrogen shell flashes remains the same. Moreover, we
did not find significant difference in computing time. Therefore, we encourage the use of
the full net for such calculations.

We also compare the results in the case where the diffusion coefficients of Paquette
et al. (1986) or Stanton & Murillo (2016) are considered. Again, the effects on the orbital
period and final mass are not significant. Nevertheless, when the initial metallicity is low,
we find that differences in the mass of the envelope and in the total mass of 1H can appear.
For example, for the case of Z = 0.001, a model of 0.25 M� has an envelope of mass
3.30× 10−3 when considering the Iben & MacDonald (1985) coefficients, and this value
changes to 4.51× 10−3 and 2.12× 10−3 when the Paquette et al. (1986) and Stanton &
Murillo (2016) coefficients are used, respectively. Also, the total 1H mass is 4.69× 10−4

when we consider the Iben coefficients, being ∼ 25 per cent higher for the Paquette et al.
(1986) coefficients and ∼ 66 percent lower for Stanton & Murillo (2016).
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We also explore the effects of considering more intense overshooting mixing. We
doubled the values of the overshooting coefficients, as mentioned in subsection 2.2.1, and
found that the effects on the final ELM WDs are insignificant. This is not surprising since
overshooting is expected to be more decisive in forming the core of intermediate and high
mass stars, leading to big differences in behaviour on the subgiant and giant phases.

Unlike Althaus et al. (2009), Althaus, Miller Bertolami & Córsico (2013), Istrate
et al. (2016), we found that, except for a few models with a mass of ≈ 0.15 M�, all
models undergo at least one hydrogen shell flash during evolution when considering the
rotation and diffusion of the entire network of elements. In addition, the maximum number
of hydrogen shell flashes of our models is four, regardless of metallicity or mass; while
Althaus, Miller Bertolami & Córsico (2013) and Istrate et al. (2016) points out that up to
ten and twenty flashes can occur in some configurations, respectively. However, we found
no evidence that this could be related to the chosen magnetic braking recipe. It is more
likely to have to do with the details of the chosen microphysics, or the numerical treatment
of diffusion in each code/version. In any case, our results agree with the well-known fact
that hydrogen shell flashes strongly depends on how diffusion is considered, in addition to
altering the structure of the models and directly influencing their cooling. Our models also
confirm that it is possible to obtain ELM WDs as cold as Teff = 5000 K within Hubble
time, and even cooler for low metallicity.

We do confirm that the time spent at the bottom of the hydrogen shell flash loops
(see Figure 24) is not negligible (e.g., Althaus et al., 2009); and that the shell flashes are
less intense (see Figure 23) as the metal content is decreased (e.g., Serenelli et al., 2002).
As was shown by previous works (e.g., Althaus; Miller Bertolami; Córsico, 2013), there
is a degeneracy in the log(g) –Teff plane in the sense that, given a log(g) and Teff, there
are multiple solutions for the stellar mass. That is, since the evolutionary tracks cross
each other in this region of the Kiel diagram, knowing the log(g) and the Teff of a star
is not enough to guarantee a unique solution in terms of mass and age. Even more, this
degeneracy of solutions increases with metallicity, since tracks of different metallicities also
overlap. On the other hand, our models indicate that there are several quantities that are
affected by hydrogen shell flashes, such as the amounts of 1H and 4He in the surface, the
chemical profile, the rotation velocity, and also its synchronisation with the orbital period.
In this way, the degeneracy problem could be alleviated if sufficient accurate measurements
could provide us such information. On the other hand, we find that there is a region in
the low-Teff and high-log(g) corner of the Kiel diagram Figure 23 which is sufficiently far
from the loops region and can allow, in principle, a more precise determination of the
parameters mentioned above, as long as the metallicity is known. This region is widely
populated by the ELM candidates from the Pelisoli & Vos (2019) selection.
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4 Conclusions

Below we list the main conclusions of this work.

• The CARB (Convection And Rotation Boosted) magnetic braking prescription was
obtained by Van & Ivanova (2019) through a self-consistent deduction considering
wind mass loss, rotation, and the magnetic field is generated due to motions in
the convective zone. Although the CARB model is still considerably simplified —
only radial magnetic fields are considered and the dipole approximation is used,
the Alfvenic surface estimated does not depend on the polar angle, and the wind
is considered isotropic (i.e., the rotation axis is assumed aligned to the magnetic
field axis) — it has a consistent physical deduction (see subsection 2.2.3) and we
find that it presents more plausible results (the distribution in the initial orbital
period–final mass plane, for example) compared to the Rappaport, Verbunt & Joss
(1983) magnetic braking when modelling ELM WDs in binary systems.

• The use of the CARB magnetic braking prescription strongly modifies the loss of
the total angular momentum of the binary systems and, as a natural consequence,
also the relation between Pi and MWD becomes completely different. In particular,
fine-tuning the initial orbital period is not required to produce ELM WDs. A large
range of final masses for the ELM WDs (0.15–0.25 M�) can be obtained from a wide
range of initial orbital periods (1–25 d). See section 3.1 and section 3.2.

• Furthermore, using the CARB braking we obtained low-mass WDs of 0.40 M� from
systems with an initial orbital period of about 300 days. In the relation between
the initial orbital period of the system and the final mass of the low-mass WDs,
the 0.40 M� region is the only one that has some similarity between the results of
Rappaport, Verbunt & Joss (1983) and CARB (Van; Ivanova, 2019). See section 3.1
and section 3.2.

• The bifurcation period is shifted to longer ones (from 2.75–2.8 to 20–25 days) when
the CARB magnetic braking is considered. That is, the CARB magnetic braking
allows us to get ELM WDs models with masses as low as 0.26 M� in converging
binary systems even with initial orbital periods as long as 20 days, which is not
possible with the magnetic braking of Rappaport. See section 3.3.

• For a given initial orbital period and donor mass, higher metallicities always lead
to less massive ELM WDs. This is valid for both neutron stars and massive white
dwarf accretors. See subsection 3.4.1 and subsection 3.5.1.
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• The effects of element diffusion on the final mass of the ELM WDs are especially
important for short initial orbital periods, which produce less massive ELM WDs.
Also, calculating the diffusion considering all elements independently rather than
lumping them into classes does not significantly increase processing time, so we
encourage its use.

• When taking into account rotation and diffusion, virtually all model sequences go
through at least one hydrogen shell flash. The number of hydrogen shell flashes is
greater in the Md,f range 0.16–0.22 M� if Z = 0.02, and 0.23–0.26 M� if Z = 0.001.

• The main parameters that govern the ELM WD age are the metallicity and the
initial donor mass — here taken to be 1.0 or 1.2 M�. If metallicity is known, the
ELM WD mass indicates the initial orbital period of the system, and its age indicates
its initial mass.

• ELM WDs in converging systems seem to have a rotation rate closer to the orbital
period, while the diverging systems are not so synchronised. See subsection 3.5.2.

• The relation between the orbital period of the system and the ELM WD mass
remains in line with observations of pulsars with He-WD companions when using
CARB magnetic braking. See section 3.4.

• On the other hand, data from ELM WDs in systems with white dwarf companions
present great dispersion in mass and orbital period of the binary system, suggesting
that other formation channels are also present. See section 3.5.

• Different accretion efficiencies have a little effect on the binary evolution and in the
final ELM WD mass and final orbital period. However, this parameter is the most
important to regulate the final mass of the accretor star. See subsection 3.5.4.

• The use of the CARB prescription (Van; Ivanova, 2019) for magnetic braking instead
of the Rappaport, Verbunt & Joss (1983) prescription does not affect the behaviour
of (pre-) ELM in the Teff – log(g) plane. That is, our models have both log(g) and
Teff fully compatible with observational data. See subsection 3.7.1.

• Looking at the ELM WD candidates in the Teff – log(g) plane, we note the formation
of two branches. We find that ∼ 54% of these objects have a total velocity greater
than 200 km/s, indicating that they are most probably halo objects and therefore
should have low metallicity. We show that approximately half of the (pre-) ELM WDs
candidate objects that are in the KD branches are compatible with low-metallicity
pre-ELM WD models. See subsection 3.7.2.

• Up to the maximum limit of Firr,max = 1× 1010 erg/(cm2 s) of the donor irradiation
by accretion of matter in the neutron star, there is no significant change in the
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evolution of an ELM WD in a Pi = 5 d binary system with an NS accretor. See
section 3.8.

• Gravitational waves from the nearest ELM WDs will have a chance of being detected
by ASTROD-GW since the pre-ELM phase, especially considering the extended
operating time of the detector. See Appendix B.

• Systems with an even shorter initial orbital period (. 0.4–4 days, depending on the
metallicity) give rise to UCXBs, whose X-ray emission from the second mass transfer
phase is likely to be observed along with gravitational waves by LISA and TianQin
detectors with high signal-to-noise. See Appendix B.

• Tables with the main properties of our model grid are presented in Appendix C.

• Papers published by the author during the course are presented in Appendix D and
Appendix E.

• Input data to reproduce the results obtained in this work and the models generated as
output can be obtained by asking directly from the author or will be made available
online elsewhere. A preliminary version of the inlist and extras files can be found
in Appendix F.

• A press release, written in Portuguese, is presented in Appendix G.

The writing and development of this work also yielded insights into possible advances and
improvements. Therefore, suggestions for future work or an upcoming project include:

• To evolve both stars (i.e., also model the accretor star). An important limitation
regarding the computational modelling of ELM WDs in binary systems with neutron
star companions is that there is no stellar evolutionary code capable to model a
binary system from the ZAMS of both stars until the cooling track of the stellar
remnants. This is because the evolution of this kind of system involves at least one
supernova explosion episode (see Figure 5 as an example). These are very fast and
extremely energetic events, and therefore need special codes and extra computational
power. Nevertheless, nothing prevents us from modelling the structure of both stars of
the binary system considering some point after the occurrence of supernova explosion.
The most immediate step in this direction is to create a cool WD model via a single
evolution and then start the evolution of a binary system consisting of this WD as the
accretor plus a ZAMS donor. The accretor star being an object with finite size (and
not a point of mass) should modify the details of the mass transfer episodes. This is
also a unique opportunity to study the changes in the accretor’s structure after the
mass transfer episodes. A rapid examination of this scenario allows us to anticipate
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that we will have three limiting factors for the timestep: the evolution of the donor,
the evolution of the accretor, and the evolution of the binary. Unfortunately, the
evolution of the accretor during the nova flashes, for example, takes a long processing
time in order to simulate only a few seconds or years of evolution (José; Hernanz,
2007; Wolf et al., 2013; Denissenkov et al., 2013a; Denissenkov et al., 2014; Wu et al.,
2017; José; Shore; Casanova, 2020). Thus, some simplifications should be assumed
(e.g., block the nuclear reactions on the surface of the accretor) if we are willing to
evolve a star from the ZAMS until the ELM WD cooling track.

• As already mentioned, the CARB magnetic braking also has its limitations. The
field configuration is at the heart of the most sensitive variable in the problem
— the braking torque. There is a lot of evidence (the Sun, for example) that the
magnetic field structure in low-mass stars is much more complex than the dipole
approximation. One suggestion is to study how the Alfvén radius changes when we
change the structure of the magnetic field. A possible way to do this would be to
parameterise the magnetic field geometry and coupling on CARB prescription.

• In our models we do not consider the possible magnetic field of the accretor star.
Most pulsars in binaries have magnetic fields in the range 107–1012 G (Manchester
et al., 2005; Jawor; Tauris, 2021). Magnetars — a type of neutron star — are known
to have magnetic fields of up to 1015 G (Harding, 2013; Beskin et al., 2016; Kaspi,
2017), and magnetic white dwarfs of up to 109 G (Kepler et al., 2013; García-Berro;
Kilic; Kepler, 2016; García-Berro; Kilic; Kepler, 2018; Ferrario; Wickramasinghe;
Kawka, 2020). Including torques due to these fields in the evolution of LMXBs and
CVs systems is another suggestion for future work.
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APPENDIX A – Overview of stellar
evolution of single stars

Since the evolution of single stars is not the main theme of this work, but it is
important for the general understanding of the subject, we will present here only an
overview of the topic.

Stars form inside primordial clouds of cool gas which are composed mostly of
the lightest elements — hydrogen and helium — that were created just after the Big
Bang. These clouds are initially huge (from tenths to dozens of parsecs) and, as a natural
adjustment between pressure and gravity, fragments into small and more compact clumps
of matter. In fact, the details of how this occurs depends on a number of factors, such as
the total gas mass, temperature, particle density, and the type of gas considered. This was
shown in the work of Jeans (1902), which introduced the concepts that we know today as
Jeans mass and Jeans length, so that the Jeans mass is the mass contained in a volume
with radius the Jeans length. Therefore, the Jeans mass is such that perturbations larger
than the Jeans length will collapse the cloud under their own gravity. Metallicity also
plays a role. Hydrodynamic simulations found that there is no critical metallicity below
which fragmentation is impossible. Nevertheless, there is a clear change in the behaviour
of the clouds at very low metallicity (Z . 10−5 Z�), indicating that fragmentation takes
longer to occur (Dopcke et al., 2013).

This process repeats until the point that a clump of matter has the mass of a
star (something between tenths and tens of times the mass of the Sun), giving rise to the
so-called protostar. If this object has a mass greater than ∼ 0.08 M�, the temperature at
its centre will reach ∼ 107 K and the hydrogen will begin to fuse into helium. A new star
has been born. The stage at which the star begins to ignite hydrogen is known as Zero
Age Main Sequence (ZAMS). As long as hydrogen is available for burning in the core, the
star will be in the so-called Main Sequence (MS).

The empirical function that describes the initial distribution of masses for a given
population of stars is called initial mass function, and it indicates that there are many
more low mass stars being born than massive ones. In fact, the most widely used initial
mass function today is that of Salpeter (1955) (dN/dM ∝M−2.35), which shows that we
have N = 300 stars of M = 1 M� for each star of M = 10 M�.

Several criteria are used in the classification of stars, whether indicating their
possible composition, their kinematics, current evolutionary stage, or the way we see it
from Earth. However, the main factor determining the evolutionary path a star will follow
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is the mass with which it forms (e.g., see Serenelli et al., 2021 for an extensive, fresh
review). Other factors that also have some importance are chemical composition, rotation,
and mass loss by winds. Figure 25 illustrates the different possible paths for the evolution
of a star, depending on the protostar’s initial mass.

Figure 25 – An artistic depiction of the main evolutionary paths of a single star. Time
evolves from left to right. Sizes and time are not to scale.

Credit: Courtesy NASA/JPL-Caltech (Jet Propulsion Laboratory, 2019).

From a theoretical point of view, stars are usually divided into three categories,
according to their initial mass:

a) low-mass stars: 0.08 .M/M� . 2.0;

b) intermediate-mass stars: 2.0 .M/M� . 10.0;

c) high-mass stars: M & 10.0M�.

A more detailed classification for the initial mass can be found in Figure 26, where
the sequence of evolutionary phases (y-axis) as a function of the initial mass (x-axis) is
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shown. Substellar objects formed with a mass less than ∼ 0.08 M� cannot fuse hydrogen
at the centre, and are therefore called brown dwarfs rather than stars.

Figure 26 – A schematic showing how the initial stellar mass (x-axis) determines the main
nuclear burning phases of different elements (y-axis) at solar metallicity, as
well as the type of the final remnant.

Credit: Karakas & Lattanzio (2014).

Details of the evolution of stars with a mass between 1 and 15 M� were presented
in depth in the seminal works of Iben (1965b), Iben (1965a), Iben (1965c), Iben (1966a),
Iben (1966b), Iben (1966c), Iben (1967b), Iben (1967c), Iben (1967d), Iben (1967a), Iben
(1991).

Observationally, one of the best ways to study stars is by measuring their lumi-
nosities and colours. The colour of a star reflects the temperature on its surface, the
photosphere. The effective temperature (Teff) of a star is the temperature of a black body
that would emit the same total amount of electromagnetic radiation as such a star, i.e., the
temperature of a black body with the same luminosity per surface area as the star. The
luminosity L is the power of the star, the total amount of energy it radiates per unit of
time. In good approximation, these quantities are related, considering the approximation
of black body radiation in the equation

L = 4πσR2T 4
eff , (A.1)

where R is the radius of the star. L is the luminosity and σ is the Stefan-Boltzmann
constant. This relation shows that both the radius and the temperature influence the
luminosity of the star.

The diagram that presents these quantities is called an Hertzsprung–Russell diagram
(HRD, see Figure 27), proposed by Ejnar Hertzsprung (1873–1967), in 1911, and Henry
Norris Russell (1877–1957), in 1913. In general, an HRD is presented as having the
luminosity on the vertical axis and the temperature on the horizontal axis. It is also
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common to present the spectral classification next to the effective temperature since much
of the information about the physical properties of stars is obtained directly or indirectly
from their spectra (temperatures, densities, compositions, etc). The stars are classified
by decreasing temperature according to the following order: O, B, A, F, G, K and M,
corresponding to the range 35,000–3,000 K.

Placing all the stars of a given sample into an HRD gives us an excellent idea of the
properties of the population. The most striking feature of an HRD of any star population
is that stars tend to fall only into certain regions of the diagram, being the diagonal the
most prominent one. This region represents precisely the main sequence (MS), which
is the stage in which the stars spend most of their lifetime. For low-mass stars, a good
approximation of this time is given by

tMS ≈ 1010
(
M

M�

)−2

yr , (A.2)

whereM� is the mass of the Sun. See Hurley, Pols & Tout (2000) for a more comprehensive
analytic formulae.

Figure 27 shows the theoretical path of a 1 M� star in the HRD diagram from
ZAMS to its end as a white dwarf. A 1 M� star will spend about 1010 years on the MS, for
metallicities similar to the Sun. When the hydrogen in the core is exhausted, the central
temperature is not high enough for helium to fuse into heavier elements in low mass stars.
At this point the internal pressure will not be enough to avoid gravitational collapse and
the core slowly starts to contract. According to the Virial theorem, half of the gravitational
energy released by the contracting core is balanced by an increase in the thermal energy,
while the other half will be lost by radiation from the surface. This causes the outer layers
of the star to expand. On the other hand, the centre is getting hotter, and so the hydrogen
burning will restart, but this time only in a shell surrounding the helium core. As the
star is now bigger, this burning phase will make the star shine brighter than before. The
energy coming from the burning shell is transferred to the envelope, causing it to expand
and cool. The radius of the star expands 10 to 100 times its original size during this phase.
At this stage, the star is very bright, very large and cold (that is, red). Hence, the name
red-giant phase. In low-mass stars, the core becomes degenerate during this phase. This
means that the electron degeneracy pressure is stronger than the thermal pressure. The
main difference of this configuration is that the pressure is a function only of the density,
while for an ideal gas it also depends on the temperature. The high central temperature
causes more efficient and energetic nuclear reactions to occur, so the ignition of helium
occurs explosively in a phenomenon called helium core flash (Shu, 1982; Carroll; Ostlie,
2017; Seeds; Backman, 2018; Hansen; Kawaler; Trimble, 2004). This is an extremely rapid
— of the order of few seconds or minutes — and high energetic — the local luminosity
is comparable to that of an entire galaxy — event (Ryden; Peterson, 2020; Kippenhahn;
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Figure 27 – An illustration of the theoretical path of a solar-mass star in the HRD. Note the
MS in the diagonal, the current evolutionary state of the Sun. The illustration
highlights some important points of evolution, such as the increase of radius
in the red giant phase, the start of helium burning, the burning of elements
in the outer shells, the ejection of the planetary nebula, and the white dwarf
cooling track.

Credit: Bennett et al. (2017).

Weigert; Weiss, 2012). However, almost nothing of this energy reaches the surface, since it
is absorbed by expansion of the non-degenerate layers above. Low-mass stars ignite helium
in their cores essentially at the same core mass of 0.45 M�.

With the centre even hotter, new nuclear reactions — namely, triple alpha — take
place, and the core becomes dominated by carbon and oxygen. In low-mass stars, the
helium core flash marks the beginning of the helium burning into carbon, which is followed
by a decrease in luminosity. Then the star settles in the horizontal branch, where the core
now is burning helium under non-degenerate conditions and is already enriched in carbon
by ∼ 5%. Oxygen is a by-product of the same nuclear process: newly formed carbon reacts
with existing helium and forms oxygen. Thus, the core of the star becomes rich in carbon
and oxygen nuclei, and the surface temperature goes up while the star moves towards the
horizontal branch in the HRD.

Now helium forms a shell around the core and the hydrogen is in the envelope of
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the star. The reactions in the centre will cease, occurring only on the outer layers. An
expansion and cooling phase similar to the previous one occurs again, this time called
asymptotic giant branch — AGB. In this phase, the interior structure of the star is
characterised by an inert core of carbon and oxygen, a shell where helium is undergoing
fusion to form carbon, another shell where hydrogen is undergoing fusion forming helium,
and a very large envelope where no nuclear reactions are occurring. Finally, the helium
burning will become unstable and will cause the thermal pulses, which will eject the
outer layers, potentially forming a planetary nebula. Actually, the shapes of most of the
planetary nebulae are not spherically symmetric. Thus, there is a strong debate over what
makes and shapes the circumstellar gas of these evolved, intermediate mass stars. The
most debated hypothesis by the community in the last decades is that single stars cannot
trivially manufacture planetary nebulae with nonspherical shapes, and a binary companion
might be needed in a majority of cases. However, this theoretical conjecture has not been
tested observationally. We refer to de Marco (2009) for a recent review. In one way or
another, the end product of this wonderful event is called white dwarf: a core of carbon
and oxygen with a hydrogen and helium mantle in the form of an extremely dense object
the size of the earth. If the progenitor star had a mass larger than 6–10 M�, the central
temperature reaches 6× 108 K and carbon burning starts. For masses smaller than about
10.5 M�, forming a O-Ne core white dwarf.

Intermediate and high-mass stars are hotter and more luminous than their lighter
companions, thus occupying the upper left region of the HRD while in the main sequence.
Massive stars are rarer and evolve very fast when compared to low-mass stars, making
their studies more complicated. Its evolution differs in many aspects when compared to
less massive stars, just to name a few, wind mass loss, rotation, transport of angular
momentum, and internal mixing processes (de Loore, 1980). More details can be found
in the recent reviews of Smartt (2009), Langer (2012), Nomoto, Kobayashi & Tominaga
(2013). Roughly speaking, the vast majority of stars with intermediate initial mass will
become white dwarfs, where the central composition will depend on the initial mass.
Massive stars will become neutron stars (NS) or black holes (BH).

Regarding the production of elements in massive stars, the main difference is
that they will be able to synthesise increasingly heavy elements according to their mass.
Table 2 summarises the main nuclear processes that can take place in stellar interiors.
The threshold temperature must be compared to the temperature of the centre of the
star for a reaction to occur. Massive stars continue to have nuclear reactions through
several other stages of nuclear fusion until iron is synthesised in the nucleus. In fact, it is
believed that all elements between atomic number 8 (oxygen) and 37 (rubidium) came
from either exploding massive stars or white dwarfs (Johnson, 2017). Massive stars will
end their life in an extremely energetic explosion called a supernova. It is believed that
elements heavier than iron require a supernova for their formation (Greenwood; Earnshaw,
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Table 2 – Summary of the nuclear reactions and their end products that can take place
inside a star. In a low-mass star the core temperature is relatively low, so only
p-p chain and CNO cycle act significantly. As a result, we should not expect
significant amounts of elements heavier than hydrogen and helium in these stars.

Nuclear
fuel Process Threshold

temperature (K)
Comparative
efficiency Produtcs

H p-p chain ∼ 4× 106 εp-p ∝ T 4 He
H CNO cycle 15× 106 εCNO ∝ T 20 He
He 3 α 100× 106 ε3α ∝ T 40 C, O
C C + C 600× 106 O, Ne, Na, Mg
O O + O 1000× 106 Mg, S, P, Si
Si Disintegration 3000× 106 Co, Fe, Ni

2012). Supernovae are so energetic that during a few weeks their luminosity is comparable
to the luminosity of the whole galaxy in which they are located. The remaining object
of a supernova will also have different characteristics. When exceeding the limit mass of
∼ 1.4 M� — called the Chandrasekhar limit — the degenerate electron pressure will no
longer be able to withstand the gravity of the star and the nucleons will be disrupted. The
only remaining possibility to sustain gravity is via degenerate neutron pressure, giving
rise to a neutron star (NS). The main process in the neutronization is the inverse β-decay
(e−+p→ n+νe), that acts consuming electrons and protons and generating neutrons. The
temperature of a newborn NS is around 1012 K and they have a mass of about 1–2 M�
compressed into a sphere of radius of about 10 km. An extreme case occurs if the object
cannot sustain itself, becoming a completely collapsed object called a black hole (BH).
Table 3 shows the three possible types of compact objects predicted by stellar evolution,
depending on the initial mass.

Table 3 – End products comparison between single versus binary stellar evolution as
a function of the initial mass. In the case of white dwarfs, the most likely
composition at the end of evolution is indicated. These are rough estimates.
Exact values depend on a number of other factors as discussed in the text.

Final product
Initial mass (M�) He-core mass (M�) Single star Binary star

< 2.3 0.45 CO WD He WD
2.3–6 0.6–1.9 CO WD CO WD

6–8 1.9–2.1 O-Ne-Mg WD or
C-deflagration SN O-Ne-Mg WD

8–12 2.1–2.8 NS O-Ne-Mg WD
12–25 2.8–8 NS NS
> 25 > 8 BH BH

Credit: Tauris & van den Heuvel (2006).
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APPENDIX B – Gravitational waves and
X-ray emission from systems containing

(pre-) ELM WDs

In contrast to electromagnetic (EM) waves, gravitational waves (GW, Press; Thorne,
1972; Misner; Thorne; Wheeler, 1973; Hawking; Israel, 1989) observations provide mea-
surements of the amplitude of the waves rather than the energy flux. This implies that the
observed GW signals scales as 1/d rather than 1/d2, allowing to generally detect sources
in GWs at larger distances than in the traditional EMs observational bands (Wilhelm et
al., 2021). Furthermore, GW radiation hardly interacts with matter, and therefore retains
its original properties even far from the emitting source (Camp; Cornish, 2004). Along
with photons (EM radiation), neutrinos and cosmic rays, gravitational waves now join
multimessenger astronomy (Bartos; Kowalski, 2017; Burns et al., 2019; Bailes et al., 2021).
In particular, double WD systems emit GWs in the mHz band and should also contribute
to the multimessenger astronomy (Baker et al., 2019b). For an extensive review of the
impact of space experiments on our knowledge of the physics of the universe, we refer the
reader to Giovannelli & Sabau-Graziati (2004), Sathyaprakash & Schutz (2009).

The Milky Way is expected to containO(107) semi-detached double WDs (Nelemans
et al., 2001) and O(108) close detached systems (Nelemans et al., 2001). The shortest period
ELM WD binaries will serve as multimessenger laboratories (Korol et al., 2017; Kupfer
et al., 2018). In particular, Brown et al. (2020) discovered the first He+He WD LISA1

verification binary, a dominant LISA source along with He-CO double WDs (Lamberts et
al., 2019). Very recently, Kilic et al. (2021b) discovered the two brightest detached binary
white dwarfs with periods less than an hour. These systems are characterized by 0.230
and 0.209 M� ELM WDs in companion to more massive WDs. The merger rate of disc
ELM WD binaries in the Milky Way is approximately 4× 10−5 yr−1 (Brown et al., 2011b).
Even more, Ruiter et al. (2010) found that > 99% of remnant binaries that have orbital
periods within the LISA sensitivity range are WD binaries.

The LISA sensitivity band frequency is from 10−1 to 10−5 Hz, with a peak around
4 mHz. We can approximate the frequency of the gravitational wave emitted by the binary
systems as

fGW = 2
P

, (B.1)

indicating that systems of ELM WDs with lower mass will populate the region of the
1 LISA: Laser Interferometer Space Antenna, <https://lisa.nasa.gov/>.

https://lisa.nasa.gov/
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greatest sensitivity. In order to estimate the gravitational radiation emitted by our models,
we adopt the same approach as in Kupfer et al. (2018), Tauris (2018), Seto (2019), Li
et al. (2020), Korol et al. (2020). The signal-to-noise ratio is directly proportional to
the dimensionless gravitational wave amplitude, that after averaging over inclination,
sky-location and amplitude reads2

A = Ξπ2/3G
5/3

c4
M5/3f

2/3
GW

d
, (B.2)

where
M = (MdMa)3/5

(Md +Ma)1/5 (B.3)

is the chirp mass and d is the distance of the binary system to the Sun. For an inspiralling
binary system that emits monochromatic radiation, the characteristic strain is

hc = A
√
Ncycle , (B.4)

where
Ncycle = fGWTobs (B.5)

give us the total orbital periods observed over the detector’s operation time. For the
purpose of facilitating comparisons and conversions, unless otherwise indicated, in this
work we fix the distances to d = 1 kpc and adopt the nominal LISA mission duration time
of Tobs = 4 yr.

In Figure 28, Figure 29, and Figure 30, we plot the characteristic strain (hc,
Equation B.4) of some of our selected models along with sensitivity strain noise curves
(hn), which are taken from: TianQin (Huang et al., 2020), LISA (Schmitz, 2021), and
ASTROD-GW (Kuroda; Ni; Pan, 2015). They are shown in purple, green, and orange
dashed lines, respectively.

In Figure 28 we show evolutionary tracks of four system with different initial orbital
periods between 3.25 and 10 days. All systems have Md,i = 1.0 M� and Ma,i = 1.4 M�.
The observational time and the source distance are fixed to 4 years and 1 kpc for all tracks.

We find that, with this configuration, no system will produce gravitational waves
intense enough to be detected by the LISA and TianQin detectors. However, the ASTROD-
GW detector will have greater sensitivity at lower frequencies, and will be able to detect
signals from the more compact systems, with Pi . 3 d, after the mass transfer phase (i.e.,
with the ELM WD already formed).

Since systems with lower metallicity or more massive donors have longer final
orbital periods, we do not address these variations here.
2 The Ξ factor depends on the definitions of variables averaging, and different authors point values from

2 to 4. One can find: Ξ = 2 (Kupfer et al., 2018; Li et al., 2020; Korol et al., 2020); Ξ =
√

32/5 ≈ 2.52
(Evans; Iben; Smarr, 1987; Nissanke et al., 2012; Tauris, 2018; Zou; Zhou; Huang, 2020); Ξ = 8/

√
5 ≈

3.57 (Seto, 2019); Ξ = 4 (Creighton; Anderson, 2011; Shah; van der Sluys; Nelemans, 2012). We adopt
Ξ = 2.
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Figure 28 – Evolutionary tracks of four (pre-)ELM WDs with a 1.4 M� NS accretor and
a 1.0 M� main sequence donor in the characteristic strain amplitude vs. GW
frequency diagram. The initial orbital periods are: Pi = 3.25 (red), 3.5 (blue),
4 (green), and 10 (black) days.
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In Figure 29 we show five evolutionary tracks with fixed initial orbital period
(Pi = 3.25 d) but different observational time and source distance. The solid black line
serves as a reference for comparison with the configuration in the previous figure (Figure 28),
i.e., d = 1 kpc and Tobs = 4 yr.

If we consider the extended observation time (Tobs = 10 yr, green solid line), we
find that the GW signal would be observed by ASTROD-GW right after the end of the
mass transfer.

The blue (red) line considers the nominal (extended) observation time of Tobs = 4 yr
(Tobs = 10 yr) and the distance to the nearest ELM WD (d = 0.185 kpc) according to
the ELM Survey (Brown et al., 2020). In these cases, the model sequences presented are
above the ASTROD-GW detection limit even before the mass transfer phase, and reach
the LISA detection limit at the end of evolution.

X-ray binaries are binary stars luminous in X-rays. The X-rays are produced from
the energy released during accretion of matter from the donor component onto the accretor,
an NS in our case. X-ray binaries with NSs accretors may evolve to become millisecond
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Figure 29 – Evolutionary tracks of five (pre-)ELM WDs with a 1.4 M� NS accretor and
a 1.0 M� main sequence donor with Pi = 3.25 in the characteristic strain
amplitude vs. GW frequency diagram. Different observation times and distance
from the source are presented.
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pulsars. Such high-energy binaries may reach X-ray luminosities much greater than the
luminosity of the donor star, especially in cases of the shorter initial orbital period.

We then follow the evolution of the ELM WDs through the ultra-compact X-ray
binary (UCXB) stage. These systems are characterised by the fact that the mass transfer
does not cease or begin again in advanced ages of evolution. In other words, we have a
second phase of mass transfer, from the already formed ELM WD to the NS. Systems of
this type are not part of our model grid, but as they present more intense emission of
gravitational waves, we will present them here along with estimates of the X-ray emission.

To calculate the X-ray emission, we adopted the approach already described in
section 3.8, i.e., the X-ray luminosity is given by

LX = GMNSṀacc

RNS
ηX , (B.6)

where MNS is the neutron star mass, Ṁacc is the accretion rate (that is, the total mass
transfer rate times the accretion efficiency βmt), RNS is the (constant) radius of the neutrons
star (setted to 13 km following the recent result of Adhikari et al., 2021, Reed et al., 2021),
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and the X-ray efficiency term is fixed to ηX = 0.2. Since we have set βmt = 0.3 in the
models presented in this section, we have that only 6% of the mass lost by the donor
contributes to the X-ray luminosity.

Figure 30 – Evolutionary tracks of four UCXB systems with a 1.4 M� NS accretor and a
1.0 M� main sequence donor in the characteristic strain amplitude vs. GW
frequency diagram. Observational data from eight UCXB systems, from which
we derive the value of hc, are also presented. See also Table 4.
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In Figure 30 we again set back d = 1 kpc and Tobs = 4 yr. The Pi = 3 d track
serves as a reference and is the only one that forms a detached ELM WD. The other
three evolutionary tracks resume the mass transfer and therefore represent UCXB systems
(Wang et al., 2021).

Figure 30 shows the important result that systems containing (pre-)ELM WDs are
strong candidates to be observed as sources of gravitational and electromagnetic waves
simultaneously. As we have highlighted before, this represents an invaluable opportunity
within multimessenger astronomy.

Some of the systems that will become UCXB are above the sensitivity of ASTROD-
WD even at the time of the first mass transfer. On the other hand, during the UCXB
epoch, the systems will have intense X-ray emission at the same time that the emission of
gravitational waves will have a frequency in the region of greater sensitivity in detectors,
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including LISA and TianQin.

In a diagram of frequency versus characteristic strain, the signal-to-noise is given
by the ratio between the signal (hc) and the sensitivity curve (hn). Therefore, Figure 30
anticipates that we will be able to detect GWs with a signal-to-noise of about 100 at the
same time as the maximum intensity of X-ray emission.

Our results concerning UCXBs are similar to those found by Chen, Liu & Wang
(2020), despite they pointed out that an extreme fine-tuning of the initial orbital period is
necessary to produce these LISA sources. Given that they used the Rappaport, Verbunt &
Joss (1983) magnetic braking in their study, we point out that the investigation of the
formation of UCXB systems using CARB magnetic braking is a topic of great interest.

Table 4 – The observed and derived parameters of eight UCXBs. hc and fGW were derived
considering Ma = 1.6 M�, as in Chen, Liu & Wang (2020).
Mass (M�) P (d) d (kpc) hc fGW Reference

0.069 0.007928 7.6 9.0224E-21 2.9198E-03 1, 2
0.046 0.01181 12 2.4040E-21 1.9600E-03 3, 4
0.038 0.01431 8.2 2.3267E-21 1.6176E-03 5
0.035 0.01569 10.4 1.5186E-21 1.4753E-03 3, 6
0.018 0.03028 9.6 3.9427E-22 7.6447E-04 7, 8
0.018 0.03042 9.6 3.9215E-22 7.6095E-04 9
0.016 0.03472 9.0 3.1880E-22 6.6671E-04 10
0.015 0.03542 3.2 8.2141E-22 6.5353E-04 11, 12

Credit: Observational data: (1) Stella, Priedhorsky & White (1987), (2) Güver et al. (2010),
(3) Harris (1996), (4) Zurek et al. (2009), (5) Homer et al. (1996), (6) Dieball et al. (2005),
(7) Heinke, Edmonds & Grindlay (2001), (8) in’t Zand, Jonker & Markwardt (2007), (9)
Deutsch, Margon & Anderson (2000), (10) White & Swank (1982), (11) Nelemans et al.
(2004), (12) Shahbaz et al. (2008).
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APPENDIX C – Model tables

In this section we present our LM/ELM WDs model grid. The CARB magnetic
braking (Van; Ivanova, 2019) is considered in all cases. Both rotation and diffusion are
included in all models. Values quoted refer to the final age, i.e., 14 Gyrs.

Models considering neutron star accretors are presented in the following tables:
Table 5, Table 6, Table 7.

Table 5 – Models for Md,i = 1.0 M�, Ma,i = 1.4 M�, Z = 0.02.

metallicity (Z) initial/final
Md(M�)

initial/final
Ma(M�)

initial/final
P (d)

hydrogen
shell flash

rotational velocity
at equator (km/s)

0.02 1.0/0.4102 1.4/1.451 300/847 1 0.0900
0.02 1.0/0.3936 1.4/1.465 200/648 1 0.0948
0.02 1.0/0.3648 1.4/1.486 100/386 1 2.07
0.02 1.0/0.3492 1.4/1.496 70/277 1 0.598
0.02 1.0/0.3312 1.4/1.507 50/183 1 1.25
0.02 1.0/0.3165 1.4/1.515 40/124 1 0.745
0.02 1.0/0.2876 1.4/1.528 30/56.2 2 2.32
0.02 1.0/0.2706 1.4/1.535 25/31.3 2 3.00
0.02 1.0/0.2550 1.4/1.541 20/17.6 2 0.807
0.02 1.0/0.2502 1.4/1.542 19/14.7 2 0.822
0.02 1.0/0.2454 1.4/1.544 18/12.1 2 3.26
0.02 1.0/0.2405 1.4/1.545 17/10.0 2 3.28
0.02 1.0/0.2341 1.4/1.548 16/8.60 2 2.34
0.02 1.0/0.2219 1.4/1.551 15/7.73 3 1.02
0.02 1.0/0.2151 1.4/1.553 14/6.31 3 1.83
0.02 1.0/0.2082 1.4/1.555 13/5.09 3 1.99
0.02 1.0/0.2020 1.4/1.556 12/4.06 3 3.57
0.02 1.0/0.1967 1.4/1.558 11/3.19 3 3.38
0.02 1.0/0.1914 1.4/1.559 10/2.53 3 2.67
0.02 1.0/0.1852 1.4/1.560 9/2.03 3 2.79
0.02 1.0/0.1809 1.4/1.561 8/1.59 3 3.47
0.02 1.0/0.1698 1.4/1.564 7/1.40 4 2.94
0.02 1.0/0.1697 1.4/1.564 6/1.00 3 4.84
0.02 1.0/0.1586 1.4/1.566 5/0.815 3 4.68
0.02 1.0/0.1504 1.4/1.568 4/0.489 2 7.57

The following tables refer to models with initially more massive donors: Table 8,
Table 9, Table 10.

The following tables refer to massive white dwarf accretors: Table 11, Table 12,
Table 13.
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Table 6 – Models for Md,i = 1.0 M�, Ma,i = 1.4 M�, Z = 0.01.

metallicity (Z) initial/final
Md(M�)

initial/final
Ma(M�)

initial/final
P (d)

hydrogen
shell flash

rotational velocity
at equator (km/s)

0.01 1.0/0.4078 1.4/1.461 200/617 1 0.0263
0.01 1.0/0.3957 1.4/1.470 150/508 1 0.3468
0.01 1.0/0.3787 1.4/1.482 100/378 1 0.5508
0.01 1.0/0.3632 1.4/1.492 70/280 1 0.7303
0.01 1.0/0.3464 1.4/1.501 50/197 1 0.9221
0.01 1.0/0.3331 1.4/1.508 40/143 1 1.4912
0.01 1.0/0.3087 1.4/1.521 30/75.2 1 2.0771
0.01 1.0/0.2760 1.4/1.533 20/29.4 2 0.7645
0.01 1.0/0.2498 1.4/1.543 15/11.8 2 1.2312
0.01 1.0/0.2061 1.4/1.555 10/4.96 4 1.4314
0.01 1.0/0.2035 1.4/1.556 9/3.80 4 1.9760
0.01 1.0/0.1974 1.4/1.557 8/3.08 4 1.8769
0.01 1.0/0.1910 1.4/1.559 7/2.53 4 2.0178
0.01 1.0/0.1873 1.4/1.560 6/1.99 4 2.5167
0.01 1.0/0.1835 1.4/1.561 5/1.56 3 3.0766
0.01 1.0/0.1756 1.4/1.562 4/1.27 3 3.6200
0.01 1.0/0.1680 1.4/1.564 3/0.942 3 4.4660
0.01 1.0/0.1671 1.4/1.564 2/0.395 0 9.0567

Table 7 – Models for Md,i = 1.0 M�, Ma,i = 1.4 M�, Z = 0.001.

metallicity (Z) initial/final
Md(M�)

initial/final
Ma(M�)

initial/final
P (d)

hydrogen
shell flash

rotational velocity
at equator (km/s)

0.001 1.0/0.4087 1.4/1.479 70/244 1 0.3826
0.001 1.0/0.3903 1.4/1.489 50/181 1 0.4934
0.001 1.0/0.3759 1.4/1.497 40/140 1 0.6182
0.001 1.0/0.3580 1.4/1.505 30/99.8 1 0.8956
0.001 1.0/0.3253 1.4/1.518 20/51.2 2 0.5811
0.001 1.0/0.3021 1.4/1.527 15/30.3 2 0.9692
0.001 1.0/0.2704 1.4/1.538 10/18.2 3 1.1038
0.001 1.0/0.2642 1.4/1.540 9/16.2 4 0.7975
0.001 1.0/0.2607 1.4/1.541 8/14.0 4 1.0113
0.001 1.0/0.2561 1.4/1.543 7/12.3 4 1.0359
0.001 1.0/0.2523 1.4/1.544 6/10.7 4 1.1952
0.001 1.0/0.2482 1.4/1.545 5/9.40 4 1.3862
0.001 1.0/0.2448 1.4/1.546 4/8.12 4 1.4668
0.001 1.0/0.2409 1.4/1.547 3/6.98 4 1.6646
0.001 1.0/0.2348 1.4/1.549 2/5.78 5 1.7058
0.001 1.0/0.2187 1.4/1.553 1/3.03 1 2.6079
0.001 1.0/0.2184 1.4/1.553 0.9/2.57 0 2.4300
0.001 1.0/0.2150 1.4/1.554 0.8/2.20 0 3.1121
0.001 1.0/0.2108 1.4/1.555 0.7/1.81 0 3.5135
0.001 1.0/0.2052 1.4/1.556 0.6/1.39 0 4.0430
0.001 1.0/0.1941 1.4/1.558 0.5/0.822 0 5.3848
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Table 8 – Models for Md,i = 1.2 M�, Ma,i = 1.4 M�, Z = 0.02.

metallicity (Z) initial/final
Md(M�)

initial/final
Ma(M�)

initial/final
P (d)

hydrogen
shell flash

rotational velocity
at equator (km/s)

0.02 1.2/0.3938 1.4/1.509 150/648 1 0.0048582
0.02 1.2/0.3751 1.4/1.522 100/469 1 0.1246
0.02 1.2/0.3577 1.4/1.533 70/332 1 0.2833
0.02 1.2/0.3386 1.4/1.544 50/216 1 0.4740
0.02 1.2/0.3225 1.4/1.553 40/145 1 0.7420
0.02 1.2/0.2922 1.4/1.567 30/64.5 2 0.6024
0.02 1.2/0.2602 1.4/1.579 20/21.6 2 1.4069
0.02 1.2/0.2332 1.4/1.588 15/8.58 2 1.2335
0.02 1.2/0.1991 1.4/1.597 10/3.24 3 1.4653
0.02 1.2/0.1948 1.4/1.598 9/2.60 3 1.9370
0.02 1.2/0.1895 1.4/1.599 8/2.14 3 2.2122
0.02 1.2/0.1853 1.4/1.600 7/1.74 3 2.6998
0.02 1.2/0.1794 1.4/1.602 6/1.45 3 2.6893
0.02 1.2/0.1751 1.4/1.603 5/1.18 3 3.0599
0.02 1.2/0.1699 1.4/1.604 4/0.952 3 3.8866
0.02 1.2/0.1601 1.4/1.606 3/0.757 3 4.5196
0.02 1.2/0.1523 1.4/1.608 2/0.323 1 7.0409

Table 9 – Models for Md,i = 1.2 M�, Ma,i = 1.4 M�, Z = 0.01.

metallicity (Z) initial/final
Md(M�)

initial/final
Ma(M�)

initial/final
P (d)

hydrogen
shell flash

rotational velocity
at equator (km/s)

0.01 1.2/0.4090 1.4/1.504 150/627 1 0.005367
0.01 1.2/0.3900 1.4/1.517 100/460 1 0.06263
0.01 1.2/0.3728 1.4/1.528 70/337 1 0.1285
0.01 1.2/0.3547 1.4/1.538 50/233 1 0.1974
0.01 1.2/0.3399 1.4/1.546 40/167 1 0.3705
0.01 1.2/0.3132 1.4/1.559 30/84.6 1 0.7546
0.01 1.2/0.2809 1.4/1.572 20/34.8 2 0.5633
0.01 1.2/0.2547 1.4/1.581 15/14.3 2 0.5260
0.01 1.2/0.2138 1.4/1.593 9/4.96 3 1.4372
0.01 1.2/0.2089 1.4/1.595 8/4.06 3 1.6887
0.01 1.2/0.2038 1.4/1.596 7/3.35 3 1.8387
0.01 1.2/0.1994 1.4/1.597 6/2.76 3 2.1087
0.01 1.2/0.1918 1.4/1.599 5/2.39 4 1.8422
0.01 1.2/0.1902 1.4/1.599 4/1.91 3 2.6610
0.01 1.2/0.1848 1.4/1.600 3/1.59 3 2.9306
0.01 1.2/0.1753 1.4/1.602 2/1.33 4 2.9894
0.01 1.2/0.1640 1.4/1.605 1/0.267 0 1.0872
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Table 10 – Models for Md,i = 1.2 M�, Ma,i = 1.4 M�, Z = 0.001.

metallicity (Z) initial/final
Md(M�)

initial/final
Ma(M�)

initial/final
P (d)

hydrogen
shell flash

rotational velocity
at equator (km/s)

0.001 1.2/0.4011 1.4/1.526 50/214 1 0.4312
0.001 1.2/0.3858 1.4/1.533 40/165 1 0.4552
0.001 1.2/0.3674 1.4/1.541 30/117 1 0.4867
0.001 1.2/0.3338 1.4/1.555 20/61.4 2 0.3487
0.001 1.2/0.3134 1.4/1.563 15/38.0 2 0.5672
0.001 1.2/0.2848 1.4/1.574 10/25.6 3 0.6418
0.001 1.2/0.2804 1.4/1.575 9/23.1 3 0.8244
0.001 1.2/0.2761 1.4/1.577 8/20.9 3 0.8010
0.001 1.2/0.2726 1.4/1.578 7/18.7 3 0.8489
0.001 1.2/0.2690 1.4/1.579 6/16.6 3 0.9524
0.001 1.2/0.2633 1.4/1.581 5/15.2 4 0.7289
0.001 1.2/0.2604 1.4/1.582 4/13.3 4 0.8536
0.001 1.2/0.2571 1.4/1.583 3/11.5 4 1.0935
0.001 1.2/0.2474 1.4/1.586 2/8.91 4 1.1112
0.001 1.2/0.2292 1.4/1.590 1/4.59 4 1.8159
0.001 1.2/0.2201 1.4/1.592 0.8/3.12 2 2.4387
0.001 1.2/0.2163 1.4/1.593 0.7/2.30 0 3.6714
0.001 1.2/0.2098 1.4/1.595 0.6/1.72 0 3.7899
0.001 1.2/0.2064 1.4/1.596 0.5/1.47 0 4.2465
0.001 1.2/0.1990 1.4/1.597 0.4/1.03 0 4.7374

Table 11 – Models for Md,i = 1.0 M�, Ma,i = 0.8 M�, Z = 0.02.

metallicity (Z) initial/final
Md(M�)

initial/final
Ma(M�)

initial/final
P (d)

hydrogen
shell flash

rotational velocity
at equator (km/s)

0.02 1.0/0.4016 0.8/0.862 300/736 1 0.889
0.02 1.0/0.3809 0.8/0.878 200/519 1 1.11
0.02 1.0/0.3671 0.8/0.888 150/401 1 1.89
0.02 1.0/0.3483 0.8/0.899 100/271 1 2.37
0.02 1.0/0.3306 0.8/0.909 70/179 1 1.03
0.02 1.0/0.3107 0.8/0.919 50/105 1 3.05
0.02 1.0/0.2922 0.8/0.927 40/64.5 2 2.19
0.02 1.0/0.2645 0.8/0.938 30/24.7 2 1.84
0.02 1.0/0.2557 0.8/0.941 25/17.7 2 2.92
0.02 1.0/0.2348 0.8/0.948 20/9.49 2 2.58
0.02 1.0/0.2249 0.8/0.950 19/8.70 3 1.36
0.02 1.0/0.2195 0.8/0.952 18/7.43 3 1.52
0.02 1.0/0.2151 0.8/0.953 17/6.19 3 1.42
0.02 1.0/0.2087 0.8/0.955 16/5.25 3 1.92
0.02 1.0/0.2052 0.8/0.956 15/4.25 3 2.54
0.02 1.0/0.1996 0.8/0.957 14/3.52 3 1.99
0.02 1.0/0.1946 0.8/0.958 13/2.93 3 2.62
0.02 1.0/0.1911 0.8/0.959 12/2.37 3 3.24
0.02 1.0/0.1874 0.8/0.960 11/1.93 3 2.41
0.02 1.0/0.1830 0.8/0.961 10/1.60 3 3.20
0.02 1.0/0.1765 0.8/0.962 9/1.37 3 3.56
0.02 1.0/0.1729 0.8/0.963 8/1.11 3 4.24
0.02 1.0/0.1654 0.8/0.965 7/0.953 3 4.04
0.02 1.0/0.1639 0.8/0.965 6/0.702 2 6.42
0.02 1.0/0.1534 0.8/0.967 5/0.528 2 7.58
0.02 1.0/0.1513 0.8/0.968 4/0.154 0 39.1
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Table 12 – Models for Md,i = 1.0 M�, Ma,i = 0.8 M�, Z = 0.01.

metallicity (Z) initial/final
Md(M�)

initial/final
Ma(M�)

initial/final
P (d)

hydrogen
shell flash

rotational velocity
at equator (km/s)

0.01 1.0/0.3960 0.8/0.873 200/509 1 0.317
0.01 1.0/0.3624 0.8/0.895 100/275 1 0.729
0.01 1.0/0.3449 0.8/0.904 70/189 1 0.896
0.01 1.0/0.3261 0.8/0.914 50/120 1 0.921
0.01 1.0/0.3102 0.8/0.921 40/78.2 1 1.66
0.01 1.0/0.2840 0.8/0.931 30/37.6 2 1.04
0.01 1.0/0.2740 0.8/0.934 25/27.1 2 0.776
0.01 1.0/0.2551 0.8/0.941 20/14.2 2 1.26
0.01 1.0/0.2494 0.8/0.943 19/12.7 2 2.33
0.01 1.0/0.2391 0.8/0.946 18/11.7 3 0.899
0.01 1.0/0.2335 0.8/0.948 17/10.1 3 1.05
0.01 1.0/0.2280 0.8/0.949 16/8.66 3 1.23
0.01 1.0/0.2227 0.8/0.951 15/7.29 3 1.77
0.01 1.0/0.2171 0.8/0.952 14/6.14 3 1.69
0.01 1.0/0.2125 0.8/0.954 13/5.09 3 1.79
0.01 1.0/0.2077 0.8/0.955 12/4.21 4 1.68
0.01 1.0/0.2005 0.8/0.957 11/3.63 4 1.58
0.01 1.0/0.1986 0.8/0.957 10/2.92 3 2.21
0.01 1.0/0.1948 0.8/0.958 9/2.42 3 2.55
0.01 1.0/0.1882 0.8/0.960 8/2.09 4 2.52
0.01 1.0/0.1856 0.8/0.960 7/1.71 3 3.04
0.01 1.0/0.1792 0.8/0.962 6/1.46 3 3.19
0.01 1.0/0.1743 0.8/0.963 5/1.20 3 3.69
0.01 1.0/0.1664 0.8/0.964 4/0.988 3 4.12
0.01 1.0/0.1604 0.8/0.966 3/0.691 2 5.76
0.01 1.0/0.1560 0.8/0.967 2/0.163 0 19.1
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Table 13 – Models for Md,i = 1.0 M�, Ma,i = 0.8 M�, Z = 0.001.

metallicity (Z) initial/final
Md(M�)

initial/final
Ma(M�)

initial/final
P (d)

hydrogen
shell flash

rotational velocity
at equator (km/s)

0.001 1.0/0.4518 0.8/0.854 200/441 0 0.0033
0.001 1.0/0.4099 0.8/0.881 100/247 1 0.36
0.001 1.0/0.3892 0.8/0.892 70/176 1 0.547
0.001 1.0/0.3674 0.8/0.903 50/119 1 0.734
0.001 1.0/0.3519 0.8/0.909 40/87.6 1 0.739
0.001 1.0/0.3314 0.8/0.916 30/57.6 2 0.577
0.001 1.0/0.3171 0.8/0.922 25/41.4 2 0.913
0.001 1.0/0.2938 0.8/0.931 20/30.3 3 0.542
0.001 1.0/0.2890 0.8/0.932 19/27.9 3 0.990
0.001 1.0/0.2845 0.8/0.934 18/25.7 3 1.09
0.001 1.0/0.2803 0.8/0.935 17/23.4 3 1.49
0.001 1.0/0.2764 0.8/0.937 16/21.2 3 0.916
0.001 1.0/0.2727 0.8/0.938 15/19.2 3 1.07
0.001 1.0/0.2692 0.8/0.939 14/17.2 3 1.23
0.001 1.0/0.2656 0.8/0.940 13/15.4 3 1.28
0.001 1.0/0.2606 0.8/0.941 12/14.0 4 0.961
0.001 1.0/0.2571 0.8/0.942 11/12.6 4 1.03
0.001 1.0/0.2547 0.8/0.943 10/11.1 4 1.22
0.001 1.0/0.2509 0.8/0.944 9/10.0 4 1.31
0.001 1.0/0.2476 0.8/0.945 8/9.00 4 1.39
0.001 1.0/0.2453 0.8/0.946 7/7.97 4 1.62
0.001 1.0/0.2412 0.8/0.947 6/7.21 4 1.48
0.001 1.0/0.2397 0.8/0.948 5/6.34 4 1.88
0.001 1.0/0.2343 0.8/0.949 4/5.77 4 1.64
0.001 1.0/0.2323 0.8/0.949 3/5.00 4 1.95
0.001 1.0/0.2273 0.8/0.951 2/4.10 4 2.25
0.001 1.0/0.2103 0.8/0.955 1/1.75 0 3.33



187

APPENDIX D – Main publication

Title: Convection and rotation boosted prescription of magnetic braking: application
to the formation of extremely low-mass white dwarfs (Soethe; Kepler, 2021).

Journal: Monthly Notices of the Royal Astronomical Society

Volume 506, Issue 3, September 2021, Pages 3266–3281.

DOI: 10.1093/mnras/stab1916

Received: 16 April 2021. Revision received: 29 May 2021. Accepted: 28 June 2021.
Published: 09 July 2021.

arXiv: arXiv:2107.03952

adsabs: 2021MNRAS.506.3266S

https://doi.org/10.1093/mnras/stab1916
https://arxiv.org/abs/2107.03952
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.3266S/abstract


MNRAS 506, 3266–3281 (2021) https://doi.org/10.1093/mnras/stab1916
Advance Access publication 2021 July 9

Convection and rotation boosted prescription of magnetic braking:
application to the formation of extremely low-mass white dwarfs

L. T. T. Soethe‹ and S. O. Kepler
Instituto de Fı́sica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970 RS, Brazil
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ABSTRACT
Extremely low-mass white dwarfs (ELM WDs) are the result of binary evolution in which a low-mass donor star is stripped
by its companion leaving behind a helium-core white dwarf (WD). We explore the formation of ELM WDs in binary systems
considering the Convection And Rotation Boosted magnetic braking treatment. Our evolutionary sequences were calculated
using the Modules for Experiments in Stellar Astrophysics code, with initial masses of 1.0 and 1.2 M� (donor), and 1.4 (accretor),
compatible with low-mass X-ray binary (LMXB) systems. We obtain ELM models in the range 0.15–0.27 M� from a broad
range of initial orbital periods, 1–25 d. The bifurcation period, where the initial period is equal to the final period, ranges from 20
to 25 d. In addition to LMXBs, we show that ultracompact X-ray binaries (UCXBs) and wide-orbit binary millisecond pulsars
can also be formed. The relation between mass and orbital period obtained is compatible with the observational data from He
WD companions to pulsars.

Key words: binaries: close – stars: low-mass – white dwarfs.

1 IN T RO D U C T I O N

Extremely low-mass (ELM) white dwarfs (WD) are helium-core
WDs with masses M ≤ 0.3 M�, most likely formed through binary
interactions, since they would take more than the age of the Universe
to evolve out of the main sequence as single stars. There are several
definitions for the upper mass limit for the class in the literature,
e.g. 0.18 M� (Sun & Arras 2018), 0.20 M� (Kawka & Vennes
2009; Althaus, Miller Bertolami & Córsico 2013; Chen et al. 2017),
0.25 M� (Hermes et al. 2013a,b) 0.30 M� (Li et al. 2019; Pelisoli
& Vos 2019). In the most common binary evolution scenario, a
main-sequence star reaches the red giant branch, fills its Roche lobe,
and then starts stable mass transfer through Roche lobe overflow
(RLOF) to the accretor companion – either a WD (Kilic et al. 2007;
Kulkarni & van Kerkwijk 2010; Tauris, Langer & Kramer 2012; Sun
& Arras 2018; Li et al. 2019) or a neutron star (NS; Bhattacharya
& van den Heuvel 1991; Podsiadlowski, Rappaport & Pfahl 2002;
van Kerkwijk et al. 2005; Shao & Li 2015; Cadelano et al. 2019;
Mata Sánchez et al. 2020). These systems are then associated with
the cataclysmic variables (CV) and low-mass X-ray binary (LMXB)
systems, respectively.

Most known ELMs will merge in less than a Hubble time resulting
in new exotic objects such as R Corona Borealis stars (Webbink 1984;
Zhang et al. 2014), underluminous supernovae (Bildsten et al. 2007;
Brown et al. 2011), Type Ia supernovae (Iben & Tutukov 1984),
and AM CVn systems (Breedt et al. 2012; Brown et al. 2016b). The
shortest period extremely low-mass white dwarf (ELM WD) binaries
will serve as multimessenger laboratories (Korol et al. 2017; Kupfer
et al. 2018). In particular, Brown et al. (2020b) discovered the first

� E-mail: tayno32@gmail.com

He+He WD LISA verification binary, a dominant LISA source along
with He–CO double WDs (Lamberts et al. 2019). Furthermore, it is
expected that compact post-LMXB/pre-UCXB systems can provide a
very accurate measurement for the mass of NSs, imposing restrictions
on their state equation (Tauris 2018).

In the past decade, more than a hundred systems containing ELMs
have been discovered by several surveys. For example, the ELM
Survey (Brown et al. 2010, 2012, 2013, 2016a, 2020a; Kilic et al.
2011, 2012; Gianninas et al. 2015) now counts 62 ELMs in the
clean sample,1 where 65 per cent were identified as Galactic Disc
objects and 35 per cent as halo objects at distances up to 3.752 kpc.
Orbital periods were measured as 12.8 min ≤ P ≤ 1.48567 d and
estimated ELMs masses are in the range 0.15 ≤ M/M� ≤ 0.30. In
the ELM Survey, mass estimates are obtained spectroscopically by
fitting log (g) and Teff to a set of atmospheric models, without a proper
accounting of metallicity difference or envelope mass differences.
Therefore, these masses are not precise estimates. The ELM Survey
has started the search for ELM WDs in the southern sky (Kosakowski
et al. 2020), identifying ELMs in systems with periods as short as
2 h and also the second closest (72 pc) known ELM to date.2

Chen et al. (2017) and Sun & Arras (2018) concluded that the
formation of an ELM WD with M � 0.18–0.20 M� by unstable
mass transfer or a common envelope (CE) event is unlikely. Also,
Li et al. (2019) found that ELM WDs with M � 0.3 M� in double-
degenerate systems may be formed either from a stable mass transfer

1They define the clean ELM WD sample as ELM WDs in the dereddened
magnitude range 15 < g0 < 20, located in the SDSS footprint, with 8800 <

Teff/K < 22, 000 and 5.5 ≤ log (g) ≤ 7.1.
2The nearest ELM WD position was recently overtaken by an ≈0.17 M�
ELM and ≈71 pc away (Kawka et al. 2020).

C© 2021 The Author(s)
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process or CE ejection, although the Roche lobe formation channel
has a greater contribution to the formation of He WD with mass
�0.22 M�, and the CE channel for higher masses. The currently
observed binarity rate of known ELM WDs – close to 100 per cent
– supports both channels. Their companions include millisecond
pulsars, main-sequence stars (the so-called EL CVns, Maxted et al.
2014; Chen et al. 2017), hot subdwarf B stars (Kupfer et al. 2015),
and more commonly canonical mass WDs (e.g. Kilic et al. 2007;
Kulkarni & van Kerkwijk 2010; Tauris et al. 2012; Brown, Kilic
& Gianninas 2017). However, observations are likely to be biased
considering current optical spectroscopy is more sensitive to short
orbital period systems (Brown et al. 2010; Kilic et al. 2012; Toloza
et al. 2019). In addition, failure to observe isolated ELM WDs does
not necessarily mean that they do not exist.

The formation and the evolution of ELM WDs through the
LMXB and CV channels were studied extensively in the literature,
although the input physics – e.g. donor and accretor masses, accretion
efficiency, metallicity, use of rotation and diffusion, mechanisms
of angular momentum loss, mass transfer formalism – considered
in each of them is widely varied (e.g. Podsiadlowski et al. 2002;
Serenelli et al. 2002; Panei et al. 2007; Althaus et al. 2009; Lin et al.
2011; Althaus et al. 2013; Istrate, Tauris & Langer 2014; Istrate et al.
2016).

In general, theoretical models are able to reproduce with good
accuracy the physical parameters observed in ELM WDs, such as
chemical abundance, final mass, effective temperature, and surface
gravity. Despite these successes, there are still open questions. For
instance, a severe fine-tuning – of the order of a dozen minutes –
in the initial orbital period was necessary to reproduce the observed
millisecond pulsars in compact (2 h ≤P ≤ 9 h) binaries with He WD
companions of mass �0.20 M� (Istrate et al. 2014). This extreme
fine-tuning in the initial orbital period suggests that something is
missing in the standard input physics of LMXB modelling. As most
angular momentum loss mechanisms are reasonably well understood,
the problem seems to fall on the magnetic braking. In addition,
irreconcilable discrepancies are found in some systems where it is
possible to obtain the mass of the components with good precision
and independently of the evolutionary ELM WDs models (Liu et al.
2020; Mata Sánchez et al. 2020).

The most used empirical torque formula for magnetic braking
of Rappaport, Verbunt & Joss (1983, hereafter R83) was derived
from observations of solar-mass main-sequence stars that exhibit
a strong correlation between equatorial rotation velocity and age
(Skumanich 1972; Smith 1979). R83 formula has been used and
discussed extensively in the literature in calculations of the evolution
and the formation of binary systems, including low and intermediate-
mass X-ray binaries, millisecond radio pulsars, cataclysmic binaries,
and subdwarf B stars (Patterson 1984; Bhattacharya & van den
Heuvel 1991; Podsiadlowski et al. 2002; Han et al. 2003; Knigge,
Baraffe & Patterson 2011). Van, Ivanova & Heinke (2018, hereafter
V18) and Van & Ivanova (2019, hereafter V19) proposed a physi-
cally motivated magnetic braking prescription. In their formalism,
the magnetic braking of the system is calculated from a rotating
spherically symmetric star, considering a radial magnetic field in the
dipole approximation. The mass lost by winds – assumed isotropic –
corotates with the star up to a distance that depends on the size of the
convective zone, rotation velocity, and the magnitude of the surface
magnetic field. V18 showed that the braking law from R83 is not
suitable to explain most of the observed persistent LMXBs, specially
the observed mass transfer rates. Instead, the V19 prescription
was successful in reproducing the observed mass transfer rates of
persistent LMXB for all observed mass ratio and orbital periods.

Furthermore, Deng et al. (2021) studied the LMXB evolution with
five proposed magnetic braking laws and found that both the V18
and the V19 laws are more preferred in reproducing the properties
of persistent and transient LMXBs systems.

Although the formulations V18 and V19 have very similar physical
motivations, the formula presented in V18 has three free parameters.
This makes the results depend on the chosen parameters. On the other
hand, the V19 formulation has a more consistent deduction and does
not have any free parameters.

Chen et al. (2021) used the V18 formulation to study the evolution-
ary link from low-mass X-ray binaries (LMXBs) to binary millisec-
ond pulsars (BMSPs) and ultracompact X-ray binaries (UCXBs).
Although Chen et al. (2021) focused on the parameter space for
the formation of UCXBs, they found that the V18 prescription
fails to form wide-orbit BMSPs. In addition, both V18 and Chen
et al. (2021) made it clear that the issue of free parameters gave
significantly different outcomes, making it more difficult to draw
general conclusions.

In this work, we apply the Convection And Rotation Boosted
(CARB) prescription for the magnetic braking presented by V19 to
study the formation and evolution of low-mass and ELM WDs. We
show that the use of CARB magnetic braking reproduces the LMXB
phase as well as being able to form UCXBs and wide BMSPs systems.

The layout of this paper is as follows. In Section 2, we describe the
physical ingredients considered in computing the grid of models; in
Section 3, we present the results obtained from the fully evolutionary
computations and compare with observational data. Concluding
remarks are presented in Section 4.

2 N U M E R I C A L M E T H O D S A N D S I M U L AT I O N S

The model grid presented in this work is computed using Modules for
Experiments in Stellar Astrophysics code (MESA Paxton et al. 2011,
2013, 2015, 2018, 2019), release 11701. We compute the binary
evolution of the system following the evolution of the donor star
from the zero-age main sequence (ZAMS) until it reached a model
age of 14 Gyr. The accretor is treated as a point mass. For the rest of
the manuscript, we adopt the nomenclature ‘d’ for the donor and ‘a’
for the accretor. Initial and final ages will be indicated by ‘i’ and ‘f’,
respectively.

Below, we describe the input physics and the computational details
used to calculate the evolutionary sequences.

2.1 Stellar evolution input

The equation of state (EoS) is a blend of the OPAL (Rogers &
Nayfonov 2002), SCVH (Saumon, Chabrier & van Horn 1995),
PTEH (Pols et al. 1995), HELM (Timmes & Swesty 2000), and PC
(Potekhin & Chabrier 2010) EoSs. A smooth transition between the
EoSs guarantees the appropriate usage across the entire required
range of density and temperature. Radiative opacities are primarily
from OPAL (Iglesias & Rogers 1993, 1996), with low-temperature
data from Ferguson et al. (2005) and the high-temperature, Compton-
scattering-dominated regime by Buchler & Yueh (1976). Electron
conduction opacities are from Cassisi et al. (2007).

Nuclear reaction rates are from JINA REACLIB (Cyburt et al.
2010) plus additional weak reaction rates (Fuller, Fowler & Newman
1985; Oda et al. 1994; Langanke & Martı́nez-Pinedo 2000). Screen-
ing is included via the prescription of Chugunov, Dewitt & Yakovlev
(2007). Thermal neutrino loss rates are from Itoh et al. (1996).
Hydrogen burning (p-p chain and CNO cycle) are computed by using
the cno extras.net network that accounts for the following 21
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isotopes: 1H, 3He, 4He, 12C, 13C, 13N, 14N, 15N, 14O, 15O, 16O, 17O,
18O, 17F, 18F, 19F, 18Ne, 19Ne, 20Ne, 22Mg, and 24Mg. As calcium is
one of the easiest elements to be detected in the spectra of a WD, we
also include the 40Ca isotope in our models.

Convection is treated using the simple local formulation of
the mixing-length theory (Böhm-Vitense 1958) in the variation of
Henyey, Vardya & Bodenheimer (1965) allowing the convective
efficiency to vary with the opacity. Following Istrate et al. (2016),
αMLT = 2 is adopted as the mixing-length parameter. We consider the
Ledoux criterion of stability, which takes into account the influence
of composition gradients on mixing. Semiconvection is considered
in the regions unstable with respect to the Schwarzschild criterion
but stable to Ledoux, with an efficiency parameter αsc = 0.001.
Thermohaline mixing is included during all the evolution with
efficiency αth = 1.

Following Istrate et al. (2016), for each burning/non-burning
core/shell region we include an exponential overshooting below and
above the interface limit with f = 0.01 and f0 = 0.005. An extra step
overshooting of f = 0.25 and f0 = 0.05 above the burning H core is
also included.

For comparison, we calculated models with and without diffusion.
For the models with diffusion, element diffusion and gravitational
settling is included by solving Burger’s equations and using the
method of Thoul, Bahcall & Loeb (1994) with diffusion coefficients
similar to Iben & MacDonald (1985). Unlike Istrate et al. (2016)
who clumps elements into classes, we treat each isotope as a separate
class. This treatment does not affect the results, as we will discuss in
Section 3.

The effects of rotation may become important near the rotation
limit and are included by following Heger, Langer & Woosley (2000)
and Heger, Woosley & Spruit (2005), where we include the effects
for four different rotationally induced mixing processes: Goldreich–
Schubert–Fricke instability, Eddington–Sweet circulation, secular
shear instability, and dynamical shear instability. More details about
rotation and rotational element transport mechanisms can be found
in the review of Salaris & Cassisi (2017). The Spruit–Tayler dynamo
transports angular momentum and chemicals by magnetic fields.
Here, we must set two efficiency factors to calibrate the diffusion
coefficients: the contribution of the rotationally induced instabilities
to the diffusion coefficient is reduced by the factor fc = 1/30, and
the sensitivity of the rotationally induced mixing is fμ = 0.05. These
values follow Istrate et al. (2016). See Heger et al. (2000) for a
discussion of these calibration parameters.

For the atmosphere boundary conditions, we consider the simple
photosphere option for the pre-WD phase and the hydrogen atmo-
sphere tables for cool WDs from Rohrmann, Althaus & Kepler (2011)
for Teff < 10, 000 K and log10(L/L�) < −2.

2.2 Binary evolution input

Given the initial donor (Md, i) and accretor (Ma, i) masses, each
system starts with both stars in a circular orbit with separation

a, and initial orbital period Pi = 2π
[
a3/G(Md,i + Ma,i)

] 1
2 . At the

beginning of evolution, the rotation of the donor star is relaxed to the
orbital period of the system by applying tidal torque considering the
synchronization time-scale for convective envelopes (Hurley, Tout &
Pols 2002).

The rate of change of the angular momentum of the system is com-
puted considering contributions from gravitational wave radiation,
mass-loss, magnetic braking, and spin−orbit coupling as follows:

J̇orb = J̇gr + J̇ml + J̇mb + J̇ls. (1)

In the absence of outer convective zones, the gravitational wave
radiation term dominates in very compact orbits (P � 3 d) and is
given by (see e.g. Landau & Lifshitz 1975)

J̇gr = − 32

5c5

(
2πG

P

)7/3 (MdMa)2

(Md + Ma)2/3
, (2)

where G is the gravitational constant and c is the speed of light in
vacuum.

The mass transfer stability criteria is given by Soberman, Phinney
& van den Heuvel (1997). We calculated models with βmt = 0.3
and 0.8 for the fraction of mass lost from the vicinity of the
accretor as fast wind, implying a mass transfer efficiency of 70 and
20 per cent, respectively. The former value is for better comparison
with models in the literature, and the latter was chosen given that
there is observational evidence that mass transfer during the LMXB
phase is extremely inefficient, corresponding to accretion efficiencies
of only ∼5–40 per cent (Antoniadis et al. 2012, 2013, 2016).

Roche lobe radii in binary systems are computed using the fit of
Eggleton (1983), while mass transfer rates are determined following
the prescription of Kolb & Ritter (1990). We consider the RLOF to
take place when the mass transfer rate exceeds the value of Ṁ =
10−10 M� yr−1. We stress that this is just an arbitrary limit that has
no effect in our results.

2.3 Magnetic braking prescription

Magnetic braking plays an important role, specially in the early
stages of evolution in interacting binary systems. Considering that
stars of different spectral types on the main sequence have dif-
ferent rotational speeds, Schatzman (1962) was the first to sug-
gest that the convective envelope could be the reason for some
stars to have low rotation velocities. He suggested that in con-
vective stars the high magnetic field forces that ejected matter
spinning along with the star, even at very high distances, carries
a large amount of angular momentum per unit mass. The first
numerical estimate came from Skumanich (1972), who showed
that the equatorial rotation velocities of G-type main-sequence
stars decrease with time, suggesting the empirical dependence �

∝ t−1/2. A more elaborate expression appeared in the seminal
work of Rappaport et al. (1983), where the mass and radius of
the star are time-dependent quantities. The MESA implementation
follows

J̇mb = −6.82 × 1034

(
Md

M�

) (
Rd

R�

)γ (
1 d

P

)3

, (3)

where Rd is the radius of the donor and γ = 4 is adopted for the
magnetic braking index.

Van & Ivanova (2019) alternative formulation for the mag-
netic braking is called the CARB magnetic braking. CARB mag-
netic braking considers the dependence of the Alfvén radius
(RA) on the rotation rate of the donor, and the dependence of
the magnetic field strength on the outer convective zone. The
Alfvén surface is the surface where the ram pressure is equal
to the magnetic pressure (Mestel & Spruit 1987), marking the
maximum distance at which the stellar wind is still in corota-
tion with the star. At larger distances, the mass is assumed to
be lost from the star. Spherical symmetry is assumed, which
results in the angular momentum lost by magnetic breaking
through an Alfvén surface to be (Weber & Davis 1967; Mestel
1968)

J̇mb = −2

3
�ṀW R2

A, (4)
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where � is the rotation rate and ṀW is the wind mass-loss rate.
The wind mass-loss is assumed to be isotropic, and depends on the
density and the velocity of the mass flux through the Alfvén surface.
Including the effects of rotation in the expression for the Alfvén
radius, the CARB magnetic braking then reads3

J̇mb,CARB = −2

3
�Ṁ

−1/3
W R

14/3
d

(
v2

esc + 2�R2
d

K2
2

)−2/3

× ��B
8/3
�

(
�

��

)11/3 (
τconv

τ�,conv

)8/3

, (5)

where vesc = √
2GM/R is the escape velocity, K2 = 0.07 is a

constant obtained via simulations (Réville et al. 2015). τ conv is the
turnover time of convective eddies, given by

τconv =
∫ Rtop

Rbot

dr

vconv
, (6)

where vconv is the local convective velocity and the integration limits,
Rbot and Rtop, are the bottom and the top of the outer convective
zone, respectively. Thus, this description assumes the total magnetic
field is generated by the convection eddies, i.e. no fossil fields. The
surface magnetic field is given by Bs = τ conv�, as in Ivanova (2006)
and Van et al. (2018). The last terms of equation (5) are normalized
according to a solar calibration, resulting in �� ≈ 3 × 10−6 s−1

and τ�, conv = 2.8 × 106 s. We adopt the Reimers (1975) wind
mass-loss scheme, as it was done in Van & Ivanova (2019). The
prescriptions of Rappaport et al. (1983) and Van & Ivanova (2019)
differ essentially by the fact that the former is an empirical fit, and
the latter is obtained through a self-consistent deduction considering
wind mass-loss, rotation, and that the magnetic field is generated
due to motions in the convective zone. The main limitations of this
model will be addressed in the conclusion (Section 4).

2.4 Model grid

We consider initial donor masses of 1.0 and 1.2 M� with initial
metallicity of Z = 0.02. The initial accretor mass is 1.4 M�, consistent
with NS companions. Systems are initialized with orbital periods
between 1 and 300 d. The exact minimum initial orbital period for
each configuration is defined so that the systems are completely
detached at the end of the evolution. The step in the initial orbital
period varies between 1 and 100 d, for the short and long initial orbital
periods, respectively. Rotation is considered in all configurations,
and element diffusion is also included in some configurations, as
listed in Table 1. For brevity, the general discussion of the effect
of the CARB magnetic braking on the formation of binary systems
containing ELM WDs will be done with a single initial configuration,
facilitating the comparison with the models of Istrate et al. (2016,
Sections 3.1 and 3.2). More detailed discussions on different initial
masses, accretion efficiencies, and diffusion of elements will be
presented on Section 3.3, where we show the Pi–Pf and the Mf–Pf

relations. The main properties – i.e. initial and final masses of both
components, initial and final orbital period, number of hydrogen shell
flashes – of our model grid can be found in Appendix A. For quick
use of our results, in Appendix B we provide polynomial fits to the

3We note that there is a missing minus factor in the exponential argument
of the wind mass-loss rate in equation (5) of Van & Ivanova (2019). Also,
in the code made available online by the authors, the argument 2/3 of the
exponential in line 320 should be 1/3 in order to make it correctly fit in the
corresponding equations in the paper.

Table 1. Summary of the three different initial set-ups studied in
this work. The second and third columns are the initial masses of
the donor and the accretor, respectively. The fourth column is the
initial metallicity. The fifth column is the fraction of mass lost from
the vicinity of the accretor. The last column indicates whether the
diffusion of elements was considered.

# Mi, d/M� Mi, a/M� Z βmt rot/dif

1 1.0 1.4 0.02 0.3 rot
2 1.2 1.4 0.02 0.3 rot
3 1.0 1.4 0.02 0.8 rot+dif

Figure 1. The evolution of orbital period as a function of decreasing
donor resulting mass. Two prescriptions for magnetic braking are compared:
Rappaport et al. (1983; the dashed lines) and Van & Ivanova (2019; the
solid lines). For each prescription, three initial orbital periods are analysed: 3
(green), 20 (red), and 100 (blue) days. Initial masses are Md, i = 1.2 M� and
Ma, i = 1.4 M� for all sequences.

final ELM WD mass (Md, f) as a function of the initial orbital period
(Pi). We also present a simple estimate of the gravitational wave
strain and the merging time for our most compact binary models, as
detailed in Appendix C.

3 R ESULTS AND D I SCUSSION

3.1 Effects of the magnetic braking

We first show how each of the two prescriptions for magnetic
braking differ in the formation of LMXBs systems. We start with
one single initial set-up and vary the initial orbital period searching
for representative cases of different evolutionary scenarios.

Fig. 1 shows the orbital period evolution as a function of the
resulting donor mass for three systems, with Md, i = 1.2 M� and
Ma, i = 1.4 M�, and for three different initial orbital periods, Pi

= 3 (green), 20 (red), and 100 (blue) days. Each configuration
is shown for both R83 (the dashed lines) and CARB (V19, the
solid lines) magnetic braking, totalizing six evolutionary sequences.
The evolution of the main physical quantities that govern magnetic
braking are shown in Fig. 2 for the cases of Pi = 3 and 100 d.
All other parameters are identical for all sequences. All sequences
produce detached He–COre ELM WD + NS binaries as output.

From short to long initial orbital periods, the final masses for
CARB (R83) sequences are 0.173 (0.205), 0.263 (0.325), and 0.371
(0.377) solar masses, respectively. In the same way, the final orbital
periods are 0.64 (2.55), 22 (152), and 424 (481) days, respectively.
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3270 L. T. T. Soethe and S. O. Kepler

Figure 2. The evolution of key parameters during the mass transfer epoch.
Two prescriptions for magnetic braking are compared: Rappaport et al.
(1983, the dashed lines) and Van & Ivanova (2019, the solid lines). For
each prescription, two initial orbital periods are analysed: 3 (green) and 100
(blue) days. Initial masses are Md, i = 1.2 M� and Ma, i = 1.4 M� for all
sequences. Magnetic braking (first panel), mass transfer rate (second panel),
surface rotational velocity at equator (third panel), wind mass-loss (fourth
panel), and radius of the donor star (fifth panel) are shown.

Fig. 1 shows the existence of two different evolutionary scenarios
when we compare the prescriptions of R83 and CARB for magnetic
braking. The first scenario corresponds to intermediate and long
initial orbital periods (∼20–100 d), where the evolution of the donor
mass star has similar shapes for the two prescriptions of magnetic
braking. The orbital period increases as the donor star loses mass,
regardless of the adopted magnetic braking. The second scenario
corresponds to the case of short initial orbital periods (∼3 d), and
is characterized by a decrease in the orbital period at the end of the
evolution of the sequences that consider the CARB formula.

Also, for intermediate and long initial orbital periods, the binary
components do not come closer before RLOF begins if the R83
magnetic braking is considered. For the case in which the CARB
magnetic braking is considered, the components get closer before
the beginning of the RLOF, and the difference in relation to the
prescription of R83 is as large as the shorter the Pi. Finally, in the
case of short initial orbital periods, both prescriptions for magnetic
braking (R83 and CARB) considerably decrease the separation of
the binary components before the RLOF begins. In summary, the
effect of magnetic braking increases with the decreasing of orbital
periods for both prescriptions, but it alters differently along initial
orbital periods for each prescription.

For Pi = 100 d, both R83 and CARB prescriptions results in
diverging systems; and for Pi = 3 d, they both converge (see Fig. 1 and
Section 3.2). The relation between the initial and final orbital periods
for each magnetic braking prescription is, however, completely
different. Looking for the limit that separates the converging from the
diverging systems (i.e, Pi = Pf), we find ∼3 d for the R83 magnetic
braking but 20 d if the CARB prescription is used. With the only
exception of the Pi = 100 d models, in all other cases the use of
the CARB prescription causes the mass transfer to start earlier when
compared to the R83 prescription (second panel in Fig. 2). Also, the
duration of the mass transfer is longer for shorter Pi. In fact, for Pi =
100 d the mass transfer phase is so fast that we can barely distinguish
it in the figure.

We now examine how the variables that determine the intensity
of magnetic braking evolve. During most of the evolution, the R83
prescription results in stronger magnetic braking than the CARB
prescription (first panel in Fig. 2). The exception occurs during
mass transfer, where the CARB braking prescription becomes more
intense. This inversion can occur up to about 500 Myr before the
mass transfer begins. Although these two prescriptions for magnetic
braking differ for systems of any initial orbital period, their effects
are much more intense in systems of short and intermediate orbital
periods (Pi ∼ 3–50 d) than in long orbital periods (Pi ∼ 100 d).

The Pi = 100 d sequences show minimal differences in the
evolution of the orbital period and donor mass (Fig. 1). This occurs
because the rotation rate, the radius of the donor, and the the donor
mass evolve in a very similar way in both prescriptions, for this
initial orbital period (third and fifth panels in Fig. 2; the evolution
of the mass of the donor is not show, for simplicity). The small
difference in the orbital period behaviour during the evolution of
these sequences is due to the role of the size of the convective
zone in the CARB prescription, which, in turn, affects the magnetic
braking (first panel in Fig. 2). For the Pi = 100 d sequence with
the CARB formula, the convective zone at the beginning of the
RLOF accounts for ∼0.82 M� of the model. Finally, the angular
momentum loss from magnetic braking has a very limited impact
on the evolution of binaries with long orbital periods. During the
pre-RLOF evolution of the Pi = 100 d systems, magnetic braking
has an almost null contribution in both prescriptions. On the other
hand, for Pi = 3 d, magnetic braking is the dominant mecha-
nism in the R83 prescription; and has an increasing contribution
in the CARB prescription, dominating from 2 Gyr before RLOF
onwards.

In the second scenario, Pi = 3 d, the mass transfer begins when
the donor star has just left the main sequence and the convective
zone is not extended enough (∼0.25 M� in the CARB sequence)
to contribute significantly with magnetic braking. Thus, the consid-
eration of the size of the convective zone foreseen by the CARB
prescription has little effect. Until the beginning of the RLOF, the
wind mass-loss and the radius of the donor star behave similarly in
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both prescriptions, assuming values of 10−11.5 M� yr−1 and 2 R�
immediately before the beginning of the mass transfer, respectively
(fourth and fifth panels in Fig. 2). On the other hand, the rotation
rate in the CARB (R83) prescription is 32 km s−1 (59 km s−1) at age
5.2 Gyr (third panel in Fig. 2). Since the donor mass and the donor
radius behave similarly in this case, contributions are limited to the
rotation rate, the wind mass-loss, and the convection turnover time
in this case. These are the contributions that make the mass transfer
start when the system has an orbital period of 1.1 d (CARB) and 0.9 d
(R83). When the R83 prescription is used in the Pi = 3 d system,
the rotation rate, the radius of the donor star, and the donor mass
react smoothly to the mass-loss (third and fifth panels in Fig. 2).
Thus, the magnetic braking in this case also remains approximately
constant log10(|J̇mb|) = 35 during a few Gyr after the mass transfer
(first panel in Fig. 2). On the other hand, when the CARB prescription
is considered, the donor star contracts, and the wind mass-loss decays
after the end of the RLOF, causing the magnetic braking to be
reduced to log10(|J̇mb|) = 28. In the case where Pi = 3 d, although
the R83 prescription results in a considerably longer RLOF, the
CARB prescription reaches Ṁ = 10−7 M� yr−1, while the previous
one only Ṁ = 10−8.2 M� yr−1. In addition, the moment the mass
transfer ends, the system using the R83 prescription has an increasing
orbital period, while the CARB prescription has a decreasing orbital
period. At this point, the contributions of magnetic braking and
mass-loss to the total angular momentum loss are around 88 (98)
and 12 (2) per cent for R83 (CARB), respectively. Gravitational
radiation will dominate the angular momentum loss only about 2 Gyr
after the RLOF terminates. Furthermore, at this point, the donor
star has a radius about 2.3 times larger for R83 than for CARB.
In both cases, the donor radius remains close to the Roche lobe
after the end of the mass transfer, but for R83 these two quantities
are increasing, and for CARB they are decreasing. The analysis
of these factors makes it clear that the evolution of the donor star
and the binary system combine differently for each prescription of
magnetic braking, which will be presented in more detail in the next
section.

Although the Pi = 20 d sequences behave similarly to the Pi

= 100 d sequences, they differ in the evolution of the orbital
period before the RLOF. For Pi = 20 d, the RLOF starts when
P = 18 d in the case of R83 magnetic braking and when P =
5.7 d in the case of the CARB prescription (see Fig. 1). This
means that the entire mass transfer takes place with the stars much
closer together when CARB magnetic braking is considered. This
reinforces the fact that each magnetic braking prescription leads
to a different shrinkage of the orbit, and therefore to a different
evolutionary stage of the donor and orbital separation at the onset
of the mass transfer. Both the radius of the donor star and the
loss of mass by winds reach higher values (around 60 R� and
10−8 M� yr−1, respectively) during mass transfer when R83 braking
is considered. On the other hand, when CARB braking is considered,
the radius of the donor star remains stable around 9 R� during mass
transfer. In addition, the loss of mass by winds intensifies in this
case and remains around 10−9.5 M� yr−1 for about 1.5 Gyr. For
both braking prescriptions, these two variables drop dramatically
as soon as the RLOF ends. The consequence is that the mass
transfer lasts about three times longer when the CARB prescription
is considered.

For any Pi, the CARB magnetic braking is more intense than the
R83 prescription at a time when the mass transfer rate is maximum
(first panel in Fig. 2). In addition, for any initial orbital period, the
CARB magnetic braking is less intense than the R83 prescription
braking after mass transfer.

Figure 3. The evolution of the orbital period as a function of age for selected
models between 2.7 ≤ Pi/d ≤ 300. Initial orbital periods, from top to bottom:
300, 200, 150, 100, 70, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3.5,
3.25, 3.2, 3, and 2.7 d. The bifurcation period occurs between 20 and 25 d.
The extra thick line marks the first convergent system. Above it, all systems
are divergent. The beginning and end of the mass transfer are indicated by
the green triangles and the pink squares, respectively. The colour of each
line indicates the mass of the donor at the end of the mass transfer. The
sequence shown in grey never becomes detached. The initial configuration is
Md, i = 1.0 M� and Ma, i = 1.4 M� for all sequences. The enhanced CARB
magnetic braking is considered. Convergent binaries will continue to contract
their orbits, forming a cataclysmic variable or an ultracompact X-ray binary
system. Divergent binaries will become relatively wide systems containing a
recycled NS and a He or CO WD.

3.2 Orbital period evolution and period bifurcation

There is a critical initial orbital period – called the bifurcation period
– that separates the systems in converging (Pf < Pi) and diverging
(Pf > Pi). The converging systems are the ones that, after the RLOF,
evolve with decreasing orbital period until the donor star becomes
degenerate and an ultracompact binary is formed. The diverging
systems are the ones that, after the RLOF, evolve with increasing
orbital period and a wide detached binary is formed (Pylyser &
Savonije 1988, 1989). In theoretical models, the bifurcation period
depends on the strength of the magnetic braking (e.g. Tauris & van
den Heuvel 2006). A systematic study made by Ma & Li (2009)
considering systems with a 1.4 M� NS and a 0.5–2 M� donor star
found that the strength of the magnetic braking is the dominant factor
in determining the value of bifurcation period compared with mass-
loss.

In this section, we expand our model grid using the CARB
prescription of the magnetic braking into the initial orbital period
parameter space. Fig. 3 shows the evolution of the orbital period as
a function of age for the CARB prescription, for initial masses Md, i

= 1.0 M� and Ma, i = 1.4 M�. The initial orbital periods range from
2.7 to 300 d. Because of the initial donor mass and metallicity, no
model shows a significant orbital period variation before a model
age of 10 Gyr. The shorter the Pi, the sooner the systems starts mass
transfer. Up to this point, we are only discussing models without
element diffusion. However, we draw attention to the fact that this
does not affect the main results discussed so far, as diffusion has a
small effect on the quantities studied. The effects of diffusion will be
discussed from Section 3.3.1 onwards.

Using the Rappaport et al. (1983, R83) magnetic braking, Istrate
et al. (2016) found that the bifurcation period that separates the
converging systems from the diverging ones occurs between 2.75 and
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2.8 d if Md, i = 1.0 M� and Ma, i = 1.4 M�. Considering the CARB
magnetic braking prescription of V19, a Pi = 20 d system with the
same initial masses is still a convergent system. This corresponds to
a 0.255 M� ELM WD – the thickest line in Fig. 3.

We should emphasize that even in the lower limit of orbital period,
our models (as shown in Appendix A) are completely detached at a
model age of 14 Gyr. Simulations considering shorter initial orbital
periods still have a small rate of mass transfer (Ṁ > 10−10 M� yr−1)
at the final computed age and therefore are not part of our model grid.
In such cases, the donor star is expected to be completely consumed,
i.e. transfer all its mass to the NS within a few billion years – or they
may merge due to emission of gravitational radiation, similar to the
known ultracompact binaries (bottom three sequences in Fig. 3).

The bifurcation period is shifted to longer ones (from 2.75–2.8 to
20–25 d) when the CARB magnetic braking is considered, i.e. the
CARB magnetic braking allows us to get ELM WDs models with
masses as low as 0.26 M� in converging binary systems even with
initial orbital periods as long as 20 d, which is not possible with the
magnetic braking of R83. This is important because it shows that
the entire extension of low-mass and ELM WDs in systems with
pulsars can be obtained via RLOF evolution from a more uniform
distribution of initial orbital periods (on a logarithmic scale), without
favouring only the most massive ones.

Although not the focus of this work, the upper and lower sequences
in Fig. 3 show that the use of CARB magnetic braking makes it
possible to form UCXB systems and wide-orbit binary millisecond
pulsars, which is not possible with the V18 prescription.

At this point, we should consider whether there are new problems
appearing with the use of CARB, since even the binaries with Pi

= 20 d can produce ELM WDs in millisecond pulsar systems. In
fact, the analysis of Istrate et al. (2014) indicates with a high level
of confidence that the distribution of orbital periods of observed
recycled pulsars with He WD companions in the Galactic Field is not
compatible with the simulations that use the R83 prescription. They
pointed out that the range of initial orbital periods that lead to the
formation of this type of system must be expanded. In addition, the
Pi–Md, f relation we found is much closer to the expected lognormal
orbital period distribution (see e.g. Duchêne & Kraus 2013; Tutukov
& Cherepashchuk 2020) than when using the R83 prescription. Thus,
the results we found using the CARB prescription are encouraging
and a study comparing these results with simulations of binary
population synthesis looks promising.

3.3 ELM with neutron stars

In this subsection, we expand our study of systems with point mass
accretors of 1.4 M�.

3.3.1 Initial orbital period and final mass

In this section, we show how the relation between the initial orbital
period and the final WD mass is modified when we change the
initial mass of the donor star and the NS mass accretion efficiency.
In Fig. 4, we depict the relation between the initial orbital period
(y-axis) and the low-mass/ELM final mass (x-axis). The red triangles
correspond to models with Md, i = 1.0 M�, 70 per cent accretion
efficiency (i.e. βmt = 0.3), and that take into account rotation only.
Blue circles are for Md, i = 1.2 M�; and the green squares are for
20 per cent accretion efficiency (i.e. βmt = 0.8) with both rotation
and diffusion. For comparison, Istrate et al. (2016) LMXB models
using the Rappaport et al. (1983) magnetic braking prescription are
shown in black ‘∗’ signs.

Figure 4. The relation between the initial orbital period and the ELM
WD mass at the end of 14 Gyr evolution for different set-ups. Istrate et al.
(2016) LMXB models using the Rappaport et al. (1983) magnetic braking
prescription are shown in black ‘∗’ signs. Green ‘�’ signs: Md, i = 1.0 M�,
20 per cent accretion efficiency, rotation plus diffusion. Red ‘
’ signs: Md, i

= 1.0 M�, 70 per cent accretion efficiency, rotation only. Blue ‘◦’ signs: Md, i

= 1.2 M�, 20 per cent accretion efficiency, rotation only. All configurations
have Ma, i = 1.4 M�.

As we already mentioned in Section 1, the empirical treatment
of the magnetic braking by Rappaport et al. (1983) leads to a fine-
tuning of the order of a dozen minutes in the initial orbital period
to reproduce the observed orbital periods of millisecond pulsars in
compact (2 < P/h < 9) binaries with He WD companions of mass �
0.20 M� (Istrate et al. 2014).

It is notable that each prescription for magnetic braking has a
completely different pattern in the Pi–Md, f plane. For final donor
masses between 0.17 and 0.25 M�, we can see in Fig. 4 that the
range of corresponding initial orbital periods is extremely narrow
(between 2 and 4 d) for the prescription of R83. On the other hand,
when the CARB (V19) formulation is considered, the same range
of final masses is obtained for initial orbital periods between 3 and
20 d. Thus, the use of the CARB prescription does not require a
fine-tuning of initial periods for the formation of ELM WDs. Using
initial masses Md, i = 1.0 M� and Ma, i = 1.4 M�, we were able to
produce detached WD systems within the range 3.25 ≤ Pi/d ≤ 300
(see Fig. 5), which corresponds to ELM and low-mass WDs with
masses in the range 0.1456 ≤ Md, f/M� ≤ 0.4067.

We will now consider only the sequences that use CARB (V19)
magnetic braking. In Fig. 4, the set-up discussed in the previous
subsection (Md, i = 1.0 M�, βmt = 0.3) is shown in the red triangles.
The first comparison concerns an initially more massive donor, with
1.2 M� (the blue circles in Fig. 4). There is a systematic shift of the
final mass towards larger masses, for the same initial period Pi, in
comparison to the case when the donor mass is Md, i = 1.0 M�. The
difference in final masses increases for shorter initial orbital periods.
For example, we find the final donor mass to be 0.1790 M� if Md, i

= 1.2 M�, but 0.1636 M� if Md, i = 1.0 M�. For Pi ≤ 11 d, no
sequence undergoes hydrogen shell flashes, regardless of the initial
mass of the donor. The configuration with Md, i = 1.2 M� is the only
one where it is possible to obtain detached systems for Pi < 3 d.

Using a Md, i = 1.2 M� donor instead of 1.0 M� does not
significantly affect the binary evolution. The difference in the ELMs
final mass is due to the more massive model being able to burn more H
into He before mass transfer begins. For example, for the Pi = 20 d
case, this is reflected in the He core to be 0.0054 M� more massive
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Figure 5. The relation between the final (Pf) and the initial orbital period
(Pi). Each initial configuration is as follows. Green ‘�’ signs: initial donor
mass Md, i = 1.0 M�, 70 per cent accretion efficiency, rotation plus diffusion.
Red ‘
’ signs: Md, i = 1.0 M�, 20 per cent accretion efficiency, rotation only.
Blue ‘◦’ signs: Md, i = 1.2 M�, 20 per cent accretion efficiency, rotation only.
All configurations have Ma, i = 1.4 M�. The purple dot–dashed line serves
as an indicator to distinguish between convergent and divergent systems.

for the initially more massive donor. This difference increases to
0.015 M� for Pi = 300 d. Note that for this metallicity (Z = 0.02)
and Md, i = 1.0 M�, because of the long main sequence lifetime,
it is difficult to produce (pre-)ELMs in less than 10–11 Gyr. Thus,
younger (pre-)ELMs require either lower metallicity or initially more
massive donors.

The next comparison concerns the accretion efficiency to the NS
and the use of diffusion (green squares in Fig. 4). The effect of
diffusion on the relation shown in Fig. 4 is negligible for Md, f �
0.3 M�. For Md, f � 0.3 M�, the diffusion of elements leads to slightly
smaller final masses, given a Pi, because diffusion brings more fuel
to the burning zone, in addition to leading to more hydrogen shell
flashes.

On the other hand, different accretion efficiencies have a signif-
icant effect only for Md, f � 0.3 M�. In this case, low accretion
efficiency results in low-mass/ELM WDs with a slightly higher
final mass, for a given Pi. This is because the mass transfer rate
reaches slightly higher values as the accretion efficiency to the point-
like NS is higher. Another consequence is that, for a given Pi, the
orbital separation after the mass transfer is shorter when the accretion
efficiency is higher.

The occurrence of different numbers of hydrogen shell flashes can
also be noted in Fig. 4 when looking at the systems with diffusion
(the green squares). In this case, the Pi = 7 and 6 d systems have
practically the same donor final mass (0.1698 and 0.1697 M�,
respectively), but the Pi = 7 d sequence undergoes one hydrogen
shell flash more than the other. This causes a discontinuity in the
form of a step in the curve formed by the models in this figure.
In summary, the variation of the initial mass of the donor stars and
efficiency rate to the accreting star, and the consideration of diffusion
of elements cause significant effects in the Pi–Md, f plane for Pi �
10 d or, equivalently, Md, f � 0.2 M�.

3.3.2 Initial and final orbital period

In this section, we show how the initial–final orbital period relation
is modified when we change the initial mass of the donor star and the
mass accretion efficiency to the NS. In Fig. 5, we show the final orbital

period (y-axis) as a function of the initial orbital period (x-axis). The
red triangles are for sequences with Md, i = 1.0 M�, 70 per cent
accretion efficiency (i.e. βmt = 0.3), and that takes into account
rotation only. Similarly, the blue circles are for Md, i = 1.2 M�;
and the green squares are for 20 per cent accretion efficiency (i.e.
βmt = 0.8) with both rotation and diffusion. The purple dot–dashed
line serves as an indicator to distinguish between convergent and
divergent systems.

Fig. 5 shows that the division between convergent and divergent
systems is around Pi = 20 d, regardless of the initial configuration.
Therefore, the pattern of orbital evolution shown in Fig. 3 for that
specific initial configuration is similar also for the other configura-
tions presented here.

For any initial orbital period, an initially more massive donor
always leads to a wider binary, regardless of the accretion efficiency
to the NS. In fact, it is possible to identify a tendency for initially
short (Pi < 10 d) and long (Pi > 40 d) orbital period systems. In these
cases, we find that, for a given initial orbital period, higher accretion
efficiency leads to shorter final orbital periods; and an initially more
massive donor leads to longer final orbital periods. For orbital periods
closer to the bifurcation period, however, there is no clear trend, and
the Pi–Pf relations are quite similar for each configuration studied.

These results can be understood as the mass transfer begins earlier
for systems that have a donor with a 1.2 M� (5–6 Gyr) compared to a
1.0 M� donor (11–12 Gyr) due to their main-sequence lifetimes.
Angular momentum loss mechanisms have more time to act on
systems with less-massive donors, leading to mass transfer beginning
when the components of the binary system are closer.

In Fig. 5, we compare models with diffusion and low accretion
efficiency (the green squares) against models without diffusion
and high accretion efficiency (the red triangles). We found that
diffusion of elements and accretion rate efficiency affect evolution at
different times. Until the beginning of the mass transfer, neither the
inclusion of diffusion or different accretion rates affect significantly
the evolution. At the end of mass transfer, low accretion efficiency
to the NS makes sequences with βmt = 0.8 with their components
closer together. Still, for a given Pi, the masses of each configuration
are similar at that time. What happens next for sequences of Md, f �
0.3 M� depends on the inclusion or not of the diffusion of elements.
For most non-diffusing sequences, none or one hydrogen shell flashes
occurs. On the contrary, in most sequences with diffusion, there
are two or three hydrogen shell flashes. As the loss of angular
momentum during hydrogen shell flashes is dominated by mass-
loss for a more massive accretor, each hydrogen shell flash increases
orbital separation. Thus, the inclusion of diffusion of elements tends
to decrease the final donor mass and increase the orbital separation
of the components.

We also found a clear relation between the final orbital period and
the rotation rate of the WD. For models with diffusion, systems with a
short initial orbital period (Pi � 15 d) present greater synchronization
with the orbit, at the end of the evolution. In such cases, the ratio
between the rotation rate of the ELM WD and the orbital period of
the system assumes values between 1 and 0.1. On the other hand,
this ratio in Pi � 20 d systems is Prot/Pf � 0.1–10−3, indicating
WDs rotating more slowly than the orbital period. Looking at the
Pi–Pf diagram in Fig. 5, we notice that this value of the initial orbital
period (20 d) coincides with the bifurcation period. Thus, convergent
systems are more likely to have synchronization between the rotation
of the WD and the orbit. This occurrence might be a tool to obser-
vationally estimate the convergence period. Even for systems with a
shorter initial orbital period, we find that from ∼1 Gyr after the end
of RLOF onwards, the time needed for synchronization exceeds the
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age of the Universe. This means that we should not expect tidal forces
to change the rotation of the newly formed low-mass/ELM WDs.

Note that the bottom left-hand corner of Fig. 5 is dominated by
systems with P < 1 d. Such close systems are strong candidates to
be observable in gravitational waves (e.g. Chen et al. 2021). Simple
estimates of the amplitude, the characteristic strain, and the frequency
of the gravitational waves emitted by our models at final age are
described in Appendix C and presented in Appendix A.

3.3.3 Final mass–orbital period relation

The determination of relations between the orbital period and the
mass of low-mass and ELM WDs in systems with NSs is of great
interest because this relation can be used to examine the evolutionary
channel for such a binary. These relations allow the estimation of the
masses of ELM WDs from the orbital period of the binary system,
which is, in general, easier to measure and independent of the Teff

and log (g) determinations.
The cores masses and radii of low-mass stars in the red giant

branch follow a tight, well-known relation (Refsdal & Weigert
1971; Webbink, Rappaport & Savonije 1983; Joss, Rappaport &
Lewis 1987). For a red giant donor in a binary system, its radius
is approximately equal to its Roche lobe radius during the mass
transfer phase. The latter, in turn, depends on the binary separation
and on the mass ratio. At the end of the mass transfer phase, the H-
rich envelope is almost completely removed, and the final mass of
the donor star is approximately the mass of its He core. Therefore,
the final mass of a degenerate-core donor and the orbital period are
correlated quantities.

Fig. 6 shows the final mass of donor versus period (Md, f–Pf)
relation for all computed models with a 1.4 M� point mass accretor.
Although the CARB (V19) prescription for the magnetic braking
completely changes the relation between Pi and Md, f, the relation
between the final period (Pf) and final donor mass (Md, f) is much less
affected in relation to the models calculated with the Rappaport et al.
(1983, R83) magnetic braking formalism (Istrate et al. 2016). The use
of the CARB prescription produces models that maintain agreement
with other theoretical adjustments and also with observational data.

Our results are in good agreement with the Lin et al. (2011)
theoretical fit, which is based on low and intermediate-mass X-ray
binaries models computed with gravitational radiation, mass-loss,
and R83 magnetic braking contributions to the angular momentum
loss. In particular, our models for Md, f � 0.30 M� and βmt = 0.3 are
in excellent agreement with the Lin et al. (2011) fit. For βmt = 0.8,
although the agreement with the fit is good for Md, f � 0.23 M�, we
found orbital periods slightly longer than Lin et al. (2011) if Md, f �
0.23 M�, for a given mass. Between Md, f = 0.23 and 0.26 M�, our
models are in good agreement with both Lin et al. (2011) and Tauris
& Savonije (1999, Pop. I) fits. It is important to note that these fits
were made based on a broader initial donor masses distribution than
we are considering here.

Although the angular momentum losses of the systems are cal-
culated differently in each work, the Md, f–Pf relation is determined
by the state of the He cores therefore it should not be changed
with the angular momentum loss. In fact, Chen et al. (2013) have
shown that the mass transfer efficiency and the way that angular
momentum is lost impose only a small influence on the Md, f–Pf

relations. On the other hand, the mixing-length and the metallicity
affect this relation (e.g. Rappaport et al. 1995; Tauris & Savonije
1999). Also, the calibration of other internal processes – such as the
opacity and the convective overshooting – can influence the radius of

red giant stars and hence the Md, f–Pf relation. As already mentioned,
we found that the inclusion of diffusion of elements leads to less-
massive donors, given an initial orbital period. Analysing the effects
of including diffusion and low accretion efficiency separately, we
find that both decrease the final mass of the donor, for a given initial
orbital period, although the former has a more pronounced effect
than the latter. Thus, in Fig. 6 we attribute the discrepancy between
the green squares and the fit of Lin et al. (2011) primarily to the
effects of diffusion.

An important result is that the relation between the orbital period
and the final mass of ELM WDs is not significantly affected when we
consider different initial donor masses (1.0 and 1.2 M�), although
considerable differences are expected for donors of initial masses
1.3–1.6 M� (Istrate et al. 2014). On the other hand, for Md, f �
0.23 M�, low accretion efficiencies always lead to more compact
systems, for a given mass.

Fig. 6 also shows observational data, which include 16 systems of
(millisecond) pulsar plus He WDs with individual component mass
measurements.4 Each pulsar companion is shown with a black dot
and an ±1σ uncertainty bar in the mass measurement. The dots
without an uncertainty bar have uncertainty in the measure of mass
smaller than the dots size. This list contains only systems in which
there is no mass transfer nor significant mass-loss observed.

Instead of commenting on each of the pulsars separately, we
highlight some systems that deviate most from the theoretical
estimates of Tauris & Savonije (1999) and Lin et al. (2011). It is
well known that, for a given final mass, lower metallicities lead to
shorter final orbital periods (TS99 Pop. II curve in Fig. 6). Therefore,
most of the observational points shown in Fig. 6 can be reached by
modifying the metallicity of the models. Still, some observational
points are located above the theoretical adjustments, not finding
agreement even considering the uncertainty in the measured masses.

The He WD in the PSR J2043+1711 system (P = 1.48 d) has
a mass estimate of 0.173 M�. Our model for Md, i = 1.0 M�, β

= 0.8 (the green squares in Fig. 6) of Pi = 7 d has Pf = 1.40 d
and Md, f = 0.1689 M�, far from the theoretical fits from Lin et al.
(2011) and Tauris & Savonije (1999), but in great agreement with
the observation.

For PSR J1713+0747 (P = 67.8 d), the millisecond pulsar has
1.35 M� and the He WD companion has 0.292 M�. PSR J1713+0747
is one of the most precisely timed pulsars and provides one of
the best pulsar limit on the variation of the gravitational constant,
on violations of the universality of free-fall, and post-Newtonian
parameters measurements (Desvignes et al. 2016; Zhu et al. 2019).
Our model for Md, i = 1.2 M�, β = 0.8 (the blue circles in Fig. 6)
of Pi = 30 d has Pf = 63.1 d and Md, f = 0.2932 M�, but Ma, f =
1.98 M�, not matching the mass of the pulsar. However, for a rotation
plus diffusion sequence with Md, i = 1.0 M�, Ma, i = 1.3 M�, Pi =
32 d and βmt = 0.9 we find Ma, f = 1.36 M�, Pf = 64.7 d, and Md, f

= 0.2918 M�, in much better agreement with the three measured
parameters.

PSR J1946+3417 (P = 27.0 d) hosts the fourth most massive
millisecond pulsar (1.828 M�), and its He WD companion has
0.2656 M� (Barr et al. 2017). In this case, taking a rotation plus
diffusion sequence with Md, i = 1.0 M�, Ma, i = 1.7 M�, Pi = 21 d,

4Observational data of pulsars were taken from https://www3.mpifr-bonn.mp
g.de/staff/pfreire/NS masses.html (see also Özel & Freire 2016; Antoniadis
et al. 2016), Barr et al. (2017, PSR J1946+3417), and Fonseca et al. (2021,
PSR J0740+6620).
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Figure 6. The relation between the low-mass/ELM WD final mass and the orbital period. Each initial configuration is as follows. Green ‘�’ signs: Md, i =
1.0 M�, 70 per cent accretion efficiency, rotation plus diffusion. Red ‘
’ signs: Md, i = 1.0 M�, 20 per cent accretion efficiency, rotation only. Blue ‘◦’ signs:
Md, i = 1.2 M�, 20 per cent accretion efficiency, rotation only. All configurations have Ma, i = 1.4 M�. The dash–dotted curves represent the theoretical relations
from Tauris & Savonije (1999, TS99) and the dotted curve from Lin et al. (2011, Lin+11). Observational data (the black dots) are from pulsar + He WD
systems, with 16 systems in total. The dots without an uncertainty bar mean that the uncertainty is less than the dot size.

and βmt = 0.8, we find Ma, f = 1.836 M�, Pf = 26.8 d, and Md, f =
0.2664 M�, in excellent agreement with the measured parameters.

In summary, the CARB magnetic braking seems to be compatible
with the formation of ELM WDs in systems with millisecond
pulsars. The use of low accretion efficiency to the neutrons stars,
between 5 and 20 per cent, revealed to be appropriate, as suggested
by Antoniadis et al. (2012, 2013, 2016). Even in cases where
the pulsars have masses far from the canonical value (1.4 M�), a
simple adjustment of the initial masses has considerably improved
possible matchings of the masses. Still, we emphasize that different
metallicities were not considered up to now.

3.3.4 Impact of the CARB magnetic braking on the formation of
ELM WDs in double degenerates

Although most of the first ELMs discovered had NSs as companions
(e.g. van Kerkwijk, Bergeron & Kulkarni 1996; van Kerkwijk et al.
2005), none of the ELMs in the clean sample of the ELM Survey
was proven to have an NS as a companion (Brown et al. 2020a).
Thus, we present preliminary results for models of ELM WDs
formed in companion to other WDs. For WD accretors with Ma, i

= 0.8 M�, we find that there is a systematic shift towards lower

final masses, for each given initial period Pi, when compared to the
1.4 M� NS accretor case. This result can be easily understood since
the evolution of the orbital separation depends on the mass ratio.
Even so, the general behaviour and trends of the Md, f–Pi, Pi–Pf,
and Md, f–Pf relations are similar to what we found for NS accretors.
None the less, observational data of ELM WDs in double-degenerate
systems (e.g. Pelisoli & Vos 2019; Brown et al. 2020a) are widely
dispersed in the Md, f–Pf plane, moving away from the theoretical
low-mass/ELM WDs RLOF models. This seems to indicate that
objects that are not in the region of the quoted theoretical models
should have been formed via evolutionary channels other than stable
mass transfer, such as CE, mergers, triple systems, etc. Thus, this
topic requires further study to say to what extent the disagreement
has to do with the quality of the data or with the differences
between the parameters of the observed system and the input of
the simulations.

4 C O N C L U S I O N S

We first investigated the formation of ELM WDs in binary systems
with millisecond pulsars with the proposed CARB prescription for
magnetic braking of Van & Ivanova (2019) and compared their effects

MNRAS 506, 3266–3281 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/3/3266/6318381 by U
niversidade Federal do R

io G
rande do Sul,  tayno32@

gm
ail.com

 on 28 July 2021

197



3276 L. T. T. Soethe and S. O. Kepler

on the evolution of LMXB systems with the classic prescription of
Rappaport et al. (1983).

We also computed a grid of models of ELM WDs from de ZAMS
until a model age of 14 Gyr. We have considered canonical NSs as the
accretor, compatible with milliseconds pulsars in LMXBs systems.
Different accretion efficiencies (βmt = 0.3 and 0.8), and donor
initial masses (1.0 and 1.2 M�) were considered. The parameter
space of the initial orbital period (Pi) was explored between 1
and 300 d, which corresponds to low mass or extremely low mass
WD models of final masses between 0.15 and 0.40 M�. For the
evolution of the binary system, we take into account energy loss
as gravitational waves, mass-loss, spin-orbit coupling, and magnetic
braking. Magnetic braking follows the CARB prescription (V19),
which was obtained through a self-consistent deduction considering
wind mass-loss, rotation, and that the magnetic field is generated due
to motions in the convective zone. Although the CARB model is still
considerably simplified – only radial magnetic fields are considered
and the dipole approximation is used, the Alfvenic surface estimated
does not depend on the polar angle, the wind considered is isotropic
and the rotation axis is assumed aligned to the magnetic field axis
– it has a consistent physical deduction and presents more plausible
results when modelling ELM WDs in binary systems.

The use of the CARB magnetic braking prescription by V19
strongly modifies the loss of the total angular momentum of the
binary systems and, as a natural consequence, also the relation
between the orbital period and the WD becomes completely different.
In particular, fine-tuning the initial orbital period is not required. A
range of final masses for the ELM WDs (0.15–0.27 M�) can be
obtained from a large range of initial orbital periods (1–25 d), and
up to 0.40 M� for initial orbital periods up to 300 d. The bifurcation
period (Pi = Pf) is shifted to longer ones (from 2.75–2.8 to 20–25 d)
when the CARB magnetic braking is considered, i.e. the CARB
magnetic braking allows us to get ELM WDs models as light as
0.26 M� in converging binary systems even with initial orbital
periods as long as 20 d, which is not possible with the empirical
magnetic braking prescription of R83. Else, in addition to the LMXB
systems, the use of CARB magnetic braking makes it possible to
form UCXB systems and also wide-orbit binary millisecond pulsars,
which is not possible with the V18 prescription.

The orbital period is one of the main factors that relate an ELM
WDs as we observe it today with its progenitor system since the initial
orbital period is directly linked with the final orbital period and the
final mass. Comparing our models with observational data from He
WDs in binary systems with millisecond pulsars, the use of CARB
magnetic braking is shown to be compatible with the formation of
ELM WDs in LMXBs.

The main properties of our model grid can be found in Appendix A.
In Appendix B, we provide polynomial fits to the final ELM WD mass
(Md, f) as a function of the initial orbital period (Pi).
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Garcı́a-Berro E., Miller Bertolami M. M., 2009, A&A, 502, 207

Althaus L. G., Miller Bertolami M. M., Córsico A. H., 2013, A&A, 557, A19
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APPENDIX A : C O M P U T E D MO D E L S

In Tables A1–A3, we present the properties of the computed models at final age (14 Gyr). These three tables correspond to the initial set-ups #
1, 2, and 3 in Table 1, respectively. The CARB magnetic braking prescription (Van & Ivanova 2019) is considered in all cases. For each model
we show the initial and final orbital periods, the final masses of the donor and the accreting stars, and the number of hydrogen shell flashes
that occurred during evolution. More details are given in the caption of each table.

Table A1. Grid of ELM WDs models considering the use of the enhanced CARB magnetic braking prescription proposed by Van
& Ivanova (2019) in the angular momentum evolution of the LMXB systems for various initial orbital periods (third column). The
first and second columns show the final donor and accretor masses for each simulation after 14 Gyr, respectively. The fourth column
indicates the number of hydrogen shell flashes (#HSF). The fifth column is the frequency of the gravitational wave emitted by
the binaries. The sixth and the seventh columns are the dimensionless gravitational wave amplitude and the characteristic strain,
respectively. The last column is the merging time due to gravitational radiation. Details on how we calculate the values on the last
four columns are provided in the Appendix C. Md, i = 1.0 M�, Ma, i = 1.4 M�, Z = 0.02, and βmt = 0.3 for all models. Rotation is
taking into account in all models.

Md, f (M�) Ma, f (M�) Pi/Pf (d) #HSF fGW (Hz) A hc τGW (Myr)

0.4067 1.594 300/809 0
0.3894 1.645 200/609 0
0.3775 1.677 150/492 0
0.3609 1.716 100/355 0
0.3455 1.749 70/254 0
0.3286 1.783 50/169 0
0.3146 1.808 40/116 0
0.2886 1.850 30/55.3 1
0.2730 1.873 25/32.1 1
0.2577 1.891 20/18.2 1
0.2530 1.896 19/15.2 1
0.2482 1.902 18/12.6 1
0.2433 1.907 17/10.4 1
0.2383 1.913 16/8.62 1
0.2290 1.923 15/7.58 2
0.2218 1.931 14/6.28 2
0.2145 1.938 13/5.10 2
0.2090 1.943 12/4.01 0
0.2032 1.948 11/3.18 0
0.1979 1.952 10/2.50 0
0.1933 1.956 9/1.92 0 1.21 × 10−5 9.15 × 10−24 3.57 × 10−22 9.15 × 105

0.1883 1.960 8/1.50 0 1.54 × 10−5 1.05 × 10−23 4.65 × 10−22 4.86 × 105

0.1834 1.964 7/1.17 0 1.98 × 10−5 1.21 × 10−23 6.06 × 10−22 2.56 × 105

0.1783 1.968 6/0.90 0 2.57 × 10−5 1.41 × 10−23 8.02 × 10−22 1.31 × 105

0.1725 1.973 5/0.66 0 3.51 × 10−5 1.68 × 10−23 1.12 × 10−21 5.89 × 104

0.1636 1.980 4/0.41 0 5.65 × 10−5 2.20 × 10−23 1.85 × 10−21 1.74 × 104

0.1547 1.986 3.5/0.24 0 9.65 × 10−5 2.98 × 10−23 3.29 × 10−21 4.40 × 103

0.1456 1.993 3.25/0.082 0 2.82 × 10−4 5.76 × 10−23 1.09 × 10−20 2.65 × 102
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Table A3. Grid of ELM WDs models considering the use of the enhanced CARB magnetic braking prescription proposed by Van
& Ivanova (2019), as in Table A1 but for βmt = 0.8, element diffusion and rotation is taking into account in all models.

Md, f (M�) Ma, f (M�) Pi/Pf (d) #HSF fGW (Hz) A hc τGW (Myr)

0.4102 1.451 300/847 1
0.3936 1.465 200/648 1
0.3648 1.486 100/386 1
0.3492 1.496 70/277 1
0.3312 1.507 50/183 1
0.3165 1.515 40/124 1
0.2876 1.528 30/56.2 2
0.2706 1.535 25/31.3 2
0.2550 1.541 20/17.6 2
0.2502 1.542 19/14.7 2
0.2454 1.544 18/12.1 2
0.2405 1.545 17/10.0 2
0.2341 1.548 16/8.60 2
0.2219 1.551 15/7.73 3
0.2151 1.553 14/6.31 3
0.2082 1.555 13/5.09 3
0.2020 1.556 12/4.06 3
0.2967 1.558 11/3.19 3
0.1914 1.559 10/2.53 3
0.1852 1.560 9/2.03 3 1.14 × 10−5 7.22 × 10−24 2.74 × 10−22 1.30 × 106

0.1809 1.561 8/1.59 3 1.46 × 10−5 8.31 × 10−24 3.56 × 10−22 6.91 × 105

0.1698 1.564 7/1.40 4 1.65 × 10−5 8.53 × 10−24 3.89 × 10−22 5.23 × 105

0.1697 1.564 6/1.00 3 2.31 × 10−5 1.07 × 10−23 5.76 × 10−22 2.13 × 105

0.1586 1.566 5/0.815 3 2.84 × 10−5 1.15 × 10−23 6.86 × 10−22 1.32 × 105

0.1504 1.568 4/0.489 2 4.73 × 10−5 1.53 × 10−23 1.18 × 10−21 3.55 × 104

Table A2. Grid of ELM WDs models considering the use of the enhanced CARB magnetic braking prescription proposed by Van
& Ivanova (2019), as in Table A1 but for Md, i = 1.2 M�.

Md, f (M�) Ma, f (M�) Pi/Pf (d) #HSF fGW (Hz) A hc τGW (Myr)

0.4212 1.716 300/994 0
0.4016 1.769 200/737 0
0.3885 1.802 150/591 0
0.3705 1.842 100/424 0
0.3538 1.877 70/301 0
0.3357 1.913 50/198 0
0.3209 1.940 40/135 0
0.2932 1.984 30/63.1 1
0.2629 2.024 20/22.0 1
0.2581 2.030 19/18.5 1
0.2532 2.036 18/15.3 1
0.2482 2.042 17/12.6 1
0.2432 2.048 16/10.3 1
0.2378 2.054 15/8.60 1
0.2289 2.063 14/7.49 2
0.2224 2.070 13/6.18 2
0.2160 2.076 12/5.04 2
0.2111 2.081 11/4.05 0
0.2062 2.085 10/3.25 0
0.2014 2.090 9/2.60 0
0.1969 2.093 8/2.10 0 1.10 × 10−5 9.20 × 10−24 3.43 × 10−22 1.09 × 106

0.1925 2.097 7/1.70 0 1.36 × 10−5 1.04 × 10−23 4.30 × 10−22 6.33 × 105

0.1882 2.101 6/1.37 0 1.69 × 10−5 1.17 × 10−23 5.42 × 10−22 3.63 × 105

0.1839 2.104 5/1.10 0 2.10 × 10−5 1.33 × 10−23 6.85 × 10−22 2.07 × 105

0.1790 2.108 4/0.870 0 2.66 × 10−5 1.52 × 10−23 8.79 × 10−22 1.13 × 105

0.1730 2.112 3/0.636 0 3.64 × 10−5 1.81 × 10−23 1.23 × 10−21 5.08 × 104

0.1609 2.121 2/0.278 0 8.33 × 10−5 2.94 × 10−23 3.01 × 10−21 5.98 × 103
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A P P E N D I X B: PO LY N O M I A L F I T S

In Table B1, we show polynomial fits to the final ELM WD mass (Md, f) as a function of the initial orbital period (Pi) for our models in the
form of y = A + Bx + Cx2 + Dx3 + Ex4. The quality of the fits is indicated by the coefficient of determination (R2).

Table B1. Coefficients for the third degree polynomials that best fit the final ELM WD mass (Md, f) as a function of the initial orbital
period (Pi), i.e. Md, f(Pi). The fits are only valid for Md, f < 0.35 M�. The first column shows the set-up, as in Table 1. Columns
two to six shows the coefficients in the form y = A + Bx + Cx2 + Dx3 + Ex4, as discussed in the text. The last column shows the
coefficient of determination (R2).

# A B C D E R2

1 1.3209 × 10−1 7.9247 × 10−3 −1.0617 × 10−4 6.2084 × 10−7 − 1.2798 × 10−9 0.9977
2 1.4805 × 10−1 7.0866 × 10−3 −8.8185 × 10−5 4.9107 × 10−7 − 9.7816 × 10−10 0.9980
3 1.1415 × 10−1 9.2348 × 10−3 −1.3749 × 10−4 9.0360 × 10−7 − 2.0138 × 10−9 0.9972
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A PPEND IX C : G RAV ITATI ONA L WAV ES

The LISA sensitivity band frequency is from 10−1 to 10−5 Hz, with a peak around 4 mHz. We can approximate the frequency of the gravitational
wave emitted by the binary systems as fGW = 2/Pf, indicating that systems of ELM WDs with lower mass will populate the region of greatest
sensitivity.

In order to estimate the gravitational radiation emitted by our models, we adopt the same approach as in Kupfer et al. (2018), Li et al. (2020),
and Korol et al. (2020). We choose to present our estimates in terms of the characteristic strain since the difference between the source signal
and the sensitivity of the detector is directly related to the signal-to-noise ratio (Moore, Cole & Berry 2015). Thus, with the data available in
Appendix A, it is immediate to obtain estimates for other values of observation time, distance, and also to calculate the signal-to-noise ratio
for specific configurations of the detectors.

The signal-to-noise ratio is directly proportional to the dimensionless gravitational wave amplitude, which after averaging over inclination,
sky-location, and amplitude reads

A = 2π2/3 G5/3

c4

M5/3f
2/3
GW

d
, (C1)

where M = (Md,fMa,f)3/5(Md,f + Ma,f)−1/5 is the chirp mass and d is the distance of the binary system to the Sun.
For an inspiralling binary system that emits monochromatic radiation, the characteristic strain is

hc = √
NcycleA, (C2)

where Ncycle = fGWTobs give us the total orbital periods observed over the detector’s operation time. For the purpose of facilitating comparisons
and conversions, in this work we fix the distances to d = 1 kpc and adopt the nominal LISA mission duration time of Tobs = 4 yr.

When compared to the equation (2) of Brown et al. (2020a) in the case of inclination i = 90◦, our calculated characteristic strain is 1.42 times
larger; or, alternatively, equivalent to i ≈ 66◦.

Finally, starting from equation (2) in Kraft, Mathews & Greenstein (1962), we obtained the following expression for the merging time due
to gravitational radiation5

τGW = 47100M−5/3P
8/3
f Myr, (C3)

where again the chirp mass and the orbital period should be given in solar masses and days, respectively. Since the expression above accounts
only for the angular momentum loss due to the gravitational radiation (J̇gr), the merging time should be greater in models that may have
significant contributions from other processes of loss of angular momentum (see equation 1). In our models, this is the case when Pi � 25 d,
where J̇ml is the term that has the greatest contribution at the end of evolution.

5We would like to point out that the multiplicative constant that we found is slightly different from that found by Brown et al. (2020a).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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In this paper, we review the most common descriptions for the first-order phase tran-
sition to deconfined quark matter in the core of neutron stars. We also present a new
description of these phase transitions in the core of proto-neutron stars, in which more
constraints are enforced so as to include trapped neutrinos. Finally, we calculate the
emission of gravitational waves associated with deconfinement phase transitions, discuss
the possibility of their detection, and how this would provide information about the
equation of state of dense matter.

Keywords: Neutron star; quark deconfinement; gravitational waves.

PACS Number(s): 26.60.Dd, 25.75.Nq, 26.60.Kp, 97.10.Nf, 97.10.Pg, 04.30.Db

1. Introduction

Neutron stars (NSs) are a natural laboratory for the study of dense matter. Their

interiors cover a large range of densities going from about 1 g/cm3 in the atmosphere

to about 1015 g/cm3 — a number density of about 1 baryon per fm3 — in the stellar

core. The latter value corresponds to a volume per baryon less than the size of a

nucleon, implying that at such densities baryons overlap. This can be understood

as a strong indication of deconfined quark matter in the interior of NSs. From a

stability point of view, it was long ago established that 3-flavored quark matter

could be more energetically stable than hadronic matter1,2 and, more recently, the

same was shown for 2-flavored quark matter.3

1830008-1
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After the first work proposing pure quark stars in 1970,4 Glendenning started

the discussion of conserved charges in hybrid hadronic-quark stars in 1992. He

highlighted the fact that, if allowed, a mixture of phases will take place when first-

order phase transitions take place.5 Consequently, the pressure is not constant in the

extended mixture, as the concentrations of the substances change together with the

chemical potentials associated with the constraints (two in this case, global baryon

number and global electric charge). This became known as Gibbs construction, as

equilibrium conditions require the Gibbs free energy per particle (i.e., the baryon

chemical potential), temperature and pressure to be equal in both phases within the

mixture. Finally, a volume fraction of each substance can be calculated at any point

in the mixture which fulfills the globally required constraints. Note that previous

works had studied mixtures of hadronic and quark phases, although not in the

context of astrophysics.5–7

If charge neutrality is imposed locally in each phase, there is no mixture of

phases. The pressure is constant, in the sense that it relates to the value of the

chemical potential associated with the conserved quantity (which is different in

each phase). The Gibbs free energy per particle, temperature, and pressure are

still equal in both phases. This is known as Maxwell construction, as it does not

allow the pressure to change as a function of number density. But, as a result,

constant pressure means that this region does not occupy a physical space under

the influence of gravity in a star (unlike the mixture of phases). More recently, this

discussion appeared again in the literature in a more general form and using the

terms congruent and noncongruent referring to Maxwell and Gibbs constructions,

including two or more constraints in the context of astrophysics and heavy-ion

collision physics.8–10

The determination of the way phase transitions take place in nature, with local

or global charge neutrality (and in the latter also the extent of mixed phase),

depends directly on the surface tension between the two phases. For deconfinement

phase transitions, surface tension has been calculated, but shown to be model depen-

dent.11–20 The description of hybrid stars under both scenarios of global and local

charge neutrality has been studied in many works in the past, and also recently

used to constrain even further the equation of state (EoS) of nuclear matter in

attempts to reproduce tidal deformability measurements from neutron star merg-

ers.21–28 In this paper, we review some of the points related to phase transitions

already raised in our previous works, but focusing on their relation with the pos-

sibility of identifying such phase transitions through the detection of gravitational

waves (GW’s).

We have recently and definitively entered the age of gravitational wave astro-

physics with the discoveries of black hole and NS mergers made by the LIGO and

Virgo collaborations.29,30 The next runs of the interferometers will be able to detect

GW’s of smaller and smaller amplitudes, raising the possibility of detecting even

more subtle events,31 such as the ones described in Sec. 4 of this work. This requires

prior knowledge of the signal waveform, making the identification of possible sources

1830008-2
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and wave frequencies a relevant problem in the detection strategy. Using the EoS’s

presented in this paper, we estimate the initial amplitude and frequency of the grav-

itational waves (GW’s) emitted by a NS that undergoes a phase transition going

from a purely hadronic star to a hybrid one with the same number of baryons. Note

that this is different from what has been recently presented in Ref. 32 or previously

in Ref. 33, where different EoS’s were used to generate purely hadronic and purely

quark branches. Finally, we estimate the decay of GW amplitudes with time for

some selected pulsars.

2. Microscopic Description

As matter in the inner core of NS’s is very dense but strongly interacting, it cannot

be currently described by first principle theories. Alternatively, we can rely on effec-

tive models, which after being calibrated to work in the desired regime of energies,

can produce reliable results concerning the matter EoS and associated particle pop-

ulation. For this purpose, we choose the Chiral Mean Field (CMF) model, which

is based on a nonlinear realization of the SU(3) sigma model.34 It is an quantum

relativistic model that describes hadrons (nucleons and hyperons) and 3 light fla-

vors of quarks interacting via meson exchange, as a way to describe the attractive

and repulsive components of the strong force.9,35 The model is constructed to be

chirally-invariant, in a manner similar to the linear-sigma model, as the particle

masses originate from (instead of being modified by) interactions with the medium

and, therefore, decrease at high densities/temperatures. The nonlinear realization

refers to the kind of chiral transformation imposed, which has the pseudo-scalar

mesons as parameters. This setup results in a framework in which there is no dis-

tinction between left- and right-handed space and, therefore, in a larger freedom

in the calculation of the mesonic couplings. The mesons included are the lowest

mass ones that are scalar iso-scalar, vector iso-scalar, scalar iso-vector, and vector

iso-vector (with and without hidden strangeness).

After applying the mean-field theory approximation, the hadronic coupling con-

stants of the model were calibrated to reproduce the vacuum masses of baryons and

mesons, and were fitted to reproduce nuclear constraints for isospin symmetric mat-

ter (together with the symmetry energy) at saturation with reasonable values for

the hyperon potentials. The quark coupling constants were constrained using lattice

QCD data at zero baryon chemical potential,36,37 as well as information about the

the remaining QCD phase diagram for isospin asymmetric and symmetric matter.

The latter include the point where the coexistence line ends at the zero-temperature

axis and the position of the critical point,38 among others. As a consequence, this

formalism reproduces the nuclear liquid-gas phase transition as well as the decon-

finement/chiral symmetry restoration phase transitions expected to be found in the

QCD phase diagram, as shown in Fig. 1. As a final test, we have used perturba-

tive QCD (PQCD) results, calculated by taking into account beta equilibrium and

charge neutrality,39 in order to determine until which density/chemical potential
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Fig. 1. QCD phase diagram (temperature versus baryon chemical potential) resulting from the
CMF model with lines indicating first-order phase transition coexisting lines. The line on the
bottom stands for the nuclear liquid-gas transition, while the lines on the top-right stand for
the chiral-symmetry restoration/quark deconfinement transitions. The dots mark the respective
critical end-points. The shaded regions exemplify relevant scenarios.

our model is valid. We found that our model is fully consistent with PQCD in the

whole regime of densities achieved inside NS’s and proto-neutron stars (PNS’s).10,39

The lines in Fig. 1 represent first-order transitions and the dots mark the critical

end-points. Isospin-symmetric matter refers to zero-isospin matter with zero net

strangeness, as the one created in heavy-ions collisions or any nuclear experiment

performed in the laboratory. NS matter stands for charged neutral matter in chemi-

cal equilibrium, such as the one inside the core of neutron stars. The shaded regions

exemplify in which regimes these kinds of matter can exist. Other scenarios showed

in the figure (and colored accordingly) correspond to matter created in the early

universe, also isospin symmetric with zero net strangeness, and matter created in

supernova explosions and neutron star mergers, also charge neutral. Chemical equi-

librium is not establish immediately in supernovae and stellar mergers, but instead

these events present a temporary large lepton fraction. For the case of proto-neutron

star matter, a fixed lepton fraction discussion will be presented in the following.

We model PNS matter by imposing another constraint to characterize the neu-

trinos trapped by the dense and hot medium, lepton fraction. This is the ratio of

the amount of electrons/electron neutrinos to the amount of baryons and it is fixed

according to supernova simulations to be Yl = 0.4.40,41 The extra constraint has

the effect of suppressing the hyperons (due to the presence of negatively charged

electrons) and pushing the phase transition to higher chemical potentials (as it

makes the quark matter EoS softer than the hadronic one), with respect to the NS

case. The results from this description can be seen in the left panel of Fig. 2 for the
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Fig. 2. QCD phase diagrams, as in Fig. 1, but including one extra constraint to describe proto-
neutron stars. In the left panel, electric charge neutrality and lepton fraction are enforced locally.
In the right panel one or both constraints are enforced globally, creating regions with mixtures of
phases.

case that all constraints (except baryon number) are enforced locally in each phase.

Although, this locally enforced condition might be the case for electric charge if the

surface tension is large,18,19 it is not the case for lepton fraction. This is because

there is no long range force associated with this quantity (such as Coulomb’s force

for electric charge),8 what leads us to refer to this case as “forced-congruent”, in

which case the Gibbs free energy μ̃ is not the baryon chemical potential, but a

function of the lepton chemical potential μ̃ = μB + Ylμl.

The right panel of Fig. 2 illustrates what happens if one or two constraints (in

addition to baryon number) are allowed to be conserved globally. In this description,

mixtures of phases appear, although PNS matter possess much smaller mixtures

of phases than those of NS matter (i.e., they extend through much smaller ranges

of chemical potentials and smaller ranges of densities). In the case of global lep-

ton fraction conservation, specially when electric charge neutrality is constrained

locally, the mixtures of phases become so narrow at large temperatures that it

become numerically impossible to find them. In practice, this would mean that

these mixtures of phases would not impact significantly any stellar properties.

Note that finite size effects tend to shrink the size of mixtures of phases even

further.42,43

3. Macroscopic Description

Although thermal energy is negligible in NS’s, this is not the case for PNS’s, as

they can reach tens of MeV temperature in their centers.44,45 To simulate that, we

add the additional (local) constraint of fixed entropy density per baryon density

SB = 2 in our PNS EoS’s. It results in a temperature gradient in stars that, as

a consequence of fixing entropy per baryon locally and not globally, has a small

(practically negligible) jump across the phase transition, as discussed in detail in

Ref. 46.
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Fig. 3. Solution of TOV equations showing stellar masses and radii for neutron stars (left panel)
and proto-neutron stars with fixed entropy density per baryon density (right panel). The following
cases are shown: when quark matter is artificially suppressed (H), when quark matter is allowed
and electric charge neutrality is constrained locally (LCN) or globally (GCN) and lepton fraction
is constrained locally (LCN) or globally (GCN).

Next, we use our different NS and PNS EoS’s in the Tolman–Oppenheimer–

Volkoff (TOV) equations to find a family of stellar solutions for each EoS, as shown

in Fig. 3. For NS’s, we show three curves, for hadronic matter only (H) and with

a first order phase transition assuming local charge neutrality (LCN) or global

charge neutrality (GCN). In the case with the local constraint, stars that reach the

threshold central density for the phase transition are unstable but, in the case with

the global constraint, there is an extended mixture of phases that reaches about

2 km of radius in the most massive stable star. For PNS’s, we show again three

curves, for hadronic matter only (H), with a first order phase transition assuming

local charge neutrality and lepton fraction (LCN LGYl), and with a first order

phase transition assuming local charge neutrality and global lepton fraction (LCN

GYl). In the case with both local constraints, stars that reach the threshold central

density for the phase transition are unstable but, as before, in the case with the

global constraint, there is an extended mixture of phases that reaches about 1 km

of radius in the most massive stable star. The case in which all constraints are

conserved globally for PNS’s is not shown in the figure, as it is very demanding

numerically and does not differentiate dramatically from the LCN GYl case.

It is important to note that, in all hybrid PNS cases, there are quarks present

in stable stars. This is because the CMF model allows for the existence of soluted

quarks in the hadronic phase and soluted hadrons in the quark phase at finite tem-

perature. This is discussed in detail in Ref. 46. Regardless, quarks will always give

the dominant contribution in the quark phase, and hadrons in the hadronic phase

and the phases can be distinguished from one another though their order parame-

ters. We assume that this inter-penetration of quarks and hadrons (that increases

with temperature) is indeed physical, and is required to achieve the crossover tran-

sition known to take place at small chemical potential values.47
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4. Gravitational Wave Emission Due to Phase Transition

Even though only GW’s from NS’s in a binary system have been detected until

2018,29,30 it is predicted that isolated NS’s could also irradiate detectable GW’s

through different processes. In particular, newly formed neutron stars that reach

high enough central densities in their cores could undergo a phase transition to

deconfined quark matter. In this case, the new hybrid configurations would be more

compact (than their purely hadronic counterparts) but have the same number of

baryons. Such dense metastable hadronic stars could be formed, for example, by

the merging of two low mass neutron stars, two white dwarfs, or a combination of

both.48–50

The conversion from a purely hadronic to a hybrid star would decrease the

star’s gravitational mass ΔMG and, therefore, also gravitational energy ΔMGc
2 =

(MHyb
G −MHad

G )c2 = ΔET . Among other things, this energy can excite pulsating

modes of the star. NS’s have a large number of distinct vibrational modes, being

the fundamental (f) mode, in general, the one that radiates most mechani-

cal energy.51,52 A star of mass M and size R has a natural GW frequency of

f = (1/4π)
√
3GM/R3.53 So, considering typical NS values, we expect to detect

waves in the range of 1–3 kHz when using the prescription from Ref. 54 and consid-

ering that a deconfinement phase transition occurs. Because it is a sudden event,

this phenomenon is usually classified as a burst, although the damping of the oscil-

lation of the star’s surface may in some cases last for years, as we shall discuss

later.

Assuming the quadrupole moment of an arbitrary mass distribution Qij , the

energy lost via gravitational radiation is given by the time derivative of the energy

(see, e.g., Ref. 55):

−dE

dt
=

G

45c2

(
∂3Qij

∂t3

)2

, (1)

which provides the mean luminosity of the gravitational wave emitted LGW. We

are interested in the fundamental mode, which is characterized by being a surface

mode between the star interface and its surroundings.51 Then, by conceiving a

nonradial axisymmetric oscillation in a sphere of a given radius, we can express an

oscillation at its surface by describing an expansion of r(θ) Ref. 56. If only linear

terms are considered, the expansion is reduced to its first two terms, leading up to

the relation:

LGW =
2E2

τ
, (2)

where E2 represents the approximation in the energy and τ is the damping time

scale, which is expected to be relatively large for the f mode, indicating a slow

damping. Then, if we consider that most of the mechanical energy is in the f
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mode, the gravitational strain amplitude can be written as57:

h0 =
4

2πf0r

(
GΔE

τc3

)1/2

, (3)

where r is the distance to the source and h0 the amplitude measured at distance r.

The frequency of the fundamental mode (in kHz), is well fitted by58:

f0 ≈ 0.17 + 2.30

√(
10 km

R

)3 (
M

1.4M�

)
(4)

and the damping time scale by GW emission is56:

τ = 1.8

(
M�
M

)(
P 4

R2

)
, (5)

where P is the period of rotation of the star (in ms).

Before using the change in gravitational stellar mass due to the deconfinement

phase transition ΔMG as available energy as in Eq. (3), we must keep in mind that

not all the energy released in the transition is converted into mechanical energy.

Instead, some of it is dissipated into thermal, shear and bulk viscosity processes.

Thus, we must introduce an efficiency term η in this relation. Early works59–61

suggest 10−3 � η � 0.5, while more recent calculations62 estimate 10−7 � η � 10−5,

depending on the model used. Given the large uncertainty in this parameter and

the difficulty of evaluating the best value, we scale our relation with an intermediate

value η = 10−4.

In our setup, the initial amplitude of the measured GW depends on mass, radius,

and rotation period of the star; the distance between the star and Earth; and also

of the energy released via the phase transition. Although the TOV equations only

describe spherical stars, any corrections to that due to rotation and magnetic fields

would deform further the star and, therefore, cause a larger emission of GWs. For

each star (calculated with a given EoS and central density), rotation period and

distance of the source are additional parameters that will differentiate the initial

amplitude of the GW. Here, we use data from 2572 pulsars cataloged in Ref. 63.

The previous equations also allow us to describe the wave oscillation behavior

in time, which is given by56,61:

h(t) = h0e
−(1/τ−i2πf0)t. (6)

In the case of an interferometric detector with an arm of length L, h = ΔL/L is

measured, where ΔL is a small change in the length L caused by the GW. Using

this framework, we estimate the GW amplitude when metastable hadronic stars

go through deconfinement phase transitions in two cases, first, assuming stars that

are cold and in chemical equilibrium (previously referred to as NSs) and, second,

assuming stars to be hot and with trapped neutrinos (previously referred to as

PNSs).
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Fig. 4. Initial amplitude of GW’s and respective frequencies when phase transitions take place
in NS’s allowing the existence of a mixed phase and in PNS’s allowing for the existence of a mixed
phase, or not. Different lines show the sensitivity of several gravitational-wave detectors.64,65

Figure 4 shows the results of our estimates of h0 in comparison with the sen-

sitivity of different GW detectors. Note that the GW amplitude h0 ∝ ΔE1/2,

1/r,R5/2, 1/P 2. The quantities ΔE and R vary considering all the possible NS’s

that can undergo a deconfinement phase transition (from the hadronic to the hybrid

branch with a mixed phase in the left panel in Fig. 3) at fixed baryon number. They

generate very similar results. The case without a mixed phase is not considered as

it does not produce stable hybrid NS’s. For PNSs or, to be more specific, stars that

follow more closely PNS conditions such as finite temperature and fixed lepton frac-

tion effects, the quantities ΔE and R vary considering only massive stars from the

hadronic to the hybrid branch with and without a mixed phase (see right panel in

Fig. 3) that can go through a deconfinement phase transition at fixed baryon num-

ber. The case without a mixed phase produces stable stars with quarks only due to

the finite temperature assumed in PNSs. Less massive stars are not considered, as

they generate lower energy release upon transitioning.

As explained above, the distance r and the pulsar period P are varied according

to available pulsar data. As a result, the pulsars with the largest h0 are the ones

with smallest periods and/or which are closest to Earth. We estimate that h0 varies

from 2.2 × 10−31 to 5.9 × 10−22 (η/10−4) and the frequency is around 2.0 kHz for

NSs. For PNS’s, h0 varies from 8.0×10−30 to 2.4×10−20 (η/10−4) and the frequency

is around 1.3 kHz. In the case of PNSs, the estimated initial signal for more than

two thousand (83%) pulsars are above the sensitivity limit of the LIGO and Virgo

detectors, and more than one thousand (54%) for KAGRA detector, depending on

η/10−4. For NS, there are six hundred (25%) for LIGO and Virgo, and four hundred

(17%) for KAGRA. Note that the GW frequency f ∝ 1/R3/2 and M1/2 only, so

this results could be in principle used to distinguish among different EoS’s and, in
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Fig. 5. Decay of GW amplitude with time for three selected pulsars for NS H-LCN (left panel)
and PNS H-LCN LYl (right panel) conditions, the one with the highest estimated amplitude
(h0 = 1.9 × 10−21), the one with the shortest rotation period (P = 1.396ms), and the closest to
the Earth (r = 90 pc).

the case that the stellar mass is known, the stellar radius of neutron stars. This in

return could provide information about the interior of the stars.

Another point that must be highlighted is the order of magnitude of the damp-

ing time scale τ , as it is proportional to the fourth power of P . Typical pulsars

period values can lead to a τ of some milliseconds or several years, making the

detection in the latter case very difficult, given the time of operation of the detec-

tors. This becomes clear in Fig. 5, where we present the wave pattern for three

pulsars selected from the catalog: the one with the highest estimated amplitude

(h0 = 1.9 × 10−21), the one with the shortest rotation period (P = 1.396ms) and

the closest to the Earth (r = 90 pc). Here, both r and P are very important, but it is

their combination that determines the highest amplitude of the GW signal. Pulsars

with slow rotation rate, in addition to tending to decrease the amplitude of the GW,

have a very long damping time and would require a very extensive operating time

for the detectors. This is also the case with the pulsar with smaller distance. The

left and right figure panels of Fig. 5 show results for NS H-LCN and PNS H-LCN

LYl conditions, respectively. In the case of PNS’s with global Yl, the results are

similar to what is presented in the right panel of Fig. 5, but with slightly reduced

overall amplitude magnitude. Note that although pulsars with large damping time

are not of interest for detection, they are of great importance for the establishment

of background noise, since their signal remains practically constant for a long time.

5. Conclusions

In this work, we have revisited the topic of phase transitions in the interior of

neutron and proto-neutron stars making use of a realistic equation of state that

accounts for hadronic and quark degrees of freedom. Different possible scenarios,

in which global and local charge neutrality and lepton fraction constraints were

imposed. The possibility of deconfinement to quark matter in the core different

stars was investigated. Although mixtures of phases extend through larger portions
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of cold deleptonized neutron stars, in our framework, quarks are present in hot stars

even outside these mixtures. As a consequence, stars at all stages of evolution can

present quarks in extended portions (if they possess large enough central density).

When we compared massive but purely hadronic stars (that had the quarks sup-

pressed artificially), and respective hybrid stars (with same number of baryons),

they presented distinguished compactnesses, for all the conditions analyzed.

We then investigated the possibility of detecting GWs emitted in the case of

metastable hadronic stars undergoing a deconfinement phase transition and con-

verting to hybrid stars. This could be the case of isolated newly formed massive

neutron stars formed, for example, by the merger of low mass stars. In this case,

the phase transition from a hadronic star to a more compact hybrid star with the

same number of baryons would release gravitational energy and excite pulsation

modes that could eventually be detected. Most of the uncertainties in our predic-

tions refer more to the amplitude of the detected GWs and less to their frequency,

which is mainly equation of state dependent. In this way, a possible detection will

be able to provide solutions to outstanding issues regarding dense matter, such as

which degrees of freedom exist in the center of neutron stars, in addition to an

alternative way to measure stellar radii, complimentary to electromagnetic wave

measurements.

Although not unique, our scenario predicts gravitational waves that could be

measured in the near future. Our results are consistent for example with the ones

from Ref. 66, which uses simple equations of state but a very sophisticated treat-

ment of the oscillations including simulations performed using a code that solves

the general relativistic hydrodynamic equations and includes rotation. We must

emphasize that we used in our work an integration time of 1 month for the GW

detectors and an efficiency of η/10−4 for the relation between released gravita-

tional energy and available energy for GW emission. Modifying η will modify our

results for the amplitudes by a factor η1/2. Moreover, for simplicity we consider

only the fundamental mode of oscillation, but we point out that the addition of

other vibrational modes can increase the values of GWs amplitude. Ref. 67, for

example, assesses the gravitational waveform that would result from r-mode driven

spindown of magnetized neutron stars.
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APPENDIX F – MESA inlist and extras files

Below we present an example of inlist and extras files used in our work.

inlist1:

1 ! Soethe , L.T.T. & Kepler , S.O., 2021.
2 ! Convection and rotation boosted prescription of magnetic braking :

application to the formation of extremely low -mass white dwarfs
3 ! Monthly Notices of the Royal Astronomical Society
4 ! Volume 506, Issue 3, September 2021 , Pages 3266 - -3281.
5 ! DOI: https :// doi.org /10.1093/ mnras/ stab1916
6 ! arXiv: https :// arxiv.org/abs /2107.03952
7 ! adsabs : https :// ui. adsabs . harvard .edu/abs /2021 MNRAS .506.3266 S/ abstract
8 !
9 ! Before using , please read also:
10 ! https :// arxiv.org/abs /1911.05790
11 ! https :// arxiv.org/abs /1606.04947
12 ! and its respective inlist files.
13 !
14 ! Files intended to be used with: MESA r11701 and SDK 20190503.
15 !
16 ! This is a BETA version of the files.
17 ! The final version will be made public in the future .
18

19 & star_job
20

21 !## VAN/ IVANOVA OTHER PARAMETERS ####################
22 ! start a run from a saved model
23 load_saved_model = .false.
24

25 ! setting intial model number
26 set_initial_model_number = .true.
27 initial_model_number = 0
28

29 ! setting initial age
30 set_initial_age = .false.
31

32 ! set_initial_dt = .true.
33 ! years_for_initial_dt = 1d5
34

35 ! change whether MESA evolves a ( radial ) velocity variable , v,
36 ! defined at cell boundaries
37 ! change_v_flag = .true. !def=F
38 ! new_v_flag = .true. !def=F
39
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40 ! change_rotation_flag = .true.
41 ! new_rotation_flag = .true.
42

43 ! lnPgas variables
44 ! ‘lnPgas_flag ‘ is true if we are using lnPgas variables in place of

lnd
45 ! change_lnPgas_flag = .true. !def=F
46 ! new_lnPgas_flag = .true. !def=F
47

48 ! Due to changing the ‘run_star_extras ‘ functions to hooks
49 warn_run_star_extras = .false.
50 ! ####################################################
51

52 ! ####################################################
53 !## output
54 show_log_description_at_start = .true.
55 show_net_species_info = .true. !list of the species in the current

net
56 show_net_reactions_info = .true. ! information about the reactions in

the current net
57 list_net_reactions = .true. !list of the reactions in the current net
58 save_model_when_terminate = .true.
59 save_model_filename = "final.mod"
60 write_profile_when_terminate = .true.
61 filename_for_profile_when_terminate = " final_profile .data"
62 pgstar_flag = .true. !if true , activates pgplot output
63

64 !## rotation controls
65 new_rotation_flag = .true.
66 change_rotation_flag = .true.
67 set_initial_surface_rotation_v = .true.
68 new_surface_rotation_v = 10 !1 10 100
69 num_steps_to_relax_rotation = 100
70

71 !## nuclear reactions
72 change_net = .true.
73 new_net_name = " my_cno_extras .net" !same as cno_extras but with "

add_isos (ca40)"
74 ! new_net_name = " cno_extras .net" !use this if you do not need Ca40.
75

76 !## modifications to model
77 relax_initial_Z = .true.
78 new_Z = 0.02 !0.01 0.001
79

80 ! ####################################################
81

82 / !end of star_job namelist
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83

84 & controls
85

86 !## CARB VAN/ IVANOVA PARAMETERS ####################
87 x_ctrl (1) = 1d-4 ! velocity ratio
88 x_ctrl (2) = 1.0 ! tau limit
89 ! velocity ratio ! need to ensure that the convective velocity is

within our defined limits
90 ! tau/ opacity limit ! opacity of the given cell. If the cell isn ’t

near the surface (low tau)
91 ! then include it in our integration !if (s% tau(

k) .gt. tau_lim ) then ...
92 ! ####################################################
93

94 ! ####################################################
95 !## controls for output
96 extra_terminal_output_file = "log1"
97 photo_directory = " photos1 "
98 log_directory = "LOGS1"
99

100 photo_interval = 100
101 profile_interval = 100
102 history_interval = 1
103 terminal_interval = 1
104 write_header_frequency = 10
105

106 ! num_trace_history_values = 6
107 ! trace_history_value_name (1) = " surface ca40"
108 ! trace_history_value_name (2) = " total_mass_h1 "
109 ! trace_history_value_name (3) = " surf_v_rot "
110 ! trace_history_value_name (4) = " surface h1"
111 ! trace_history_value_name (5) = " surf_omega_div_omega_crit "
112 ! trace_history_value_name (6) = " log_total_angular_momentum "
113

114 !## when to stop
115 max_age =1.4 d10
116 ! max_model_number = 10000
117 min_timestep_limit = 1d -15
118

119 !## timestep controls
120 delta_HR_limit = 0.005 d0
121 delta_HR_hard_limit = 0.02 d0
122 delta_lgL_H_limit = 0.01 !0.001
123 delta_lgL_H_hard_limit = 0.1 !0.01 0.02
124 lgL_H_burn_min = -1.0d0
125 delta_lg_XH_cntr_limit = 0.05 d0
126 delta_lg_XH_cntr_max = -3
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127 delta_lg_XH_cntr_min = -6.0d0
128 delta_lg_XH_cntr_hard_limit = -1
129 report_why_dt_limits = .true. !If true , produce terminal output about

choice of timestep .
130 varcontrol_target = 5d-4 !def =1d-4
131 report_hydro_solver_progress = .true.
132 limit_for_rel_error_in_energy_conservation = 5d-4
133 hard_limit_for_rel_error_in_energy_conservation = 5d-2
134

135 ! dt_div_dt_thermal_limit = 0.05
136 ! dt_div_dt_thermal_hard_limit = 0.5
137

138 !## mesh adjustment
139 max_allowed_nz = 30000 ! Maximum number of grid points allowed .
140 min_dq_for_xa = 1d-5 ! default 1d -14
141 max_dq = 1d-3 !0.001 ! 1d-2 (max size cell as fraction total mass)
142

143 xa_function_species (1) = "he4"
144 xa_function_weight (1) = 10 !
145 xa_function_param (1) = 1d-2 !
146 xa_function_species (2) = "h1"
147 xa_function_weight (2) = 10 !def =30
148 xa_function_param (2) = 1d-2 !def =1d-2
149

150 mesh_dlog_pp_dlogP_extra = 0.2 d0
151 mesh_dlog_cno_dlogP_extra = 0.2 d0
152

153 xtra_coef_above_xtrans = 0.1 !1
154 xtra_coef_below_xtrans = 0.1 !1
155 ! xtra_dist_above_xtrans = 2d0 !0.2 d0
156 ! xtra_dist_below_xtrans = 2d0 !0.2 d0
157

158 ! log_tau_function_weight = 20
159 ! log_kap_function_weight = 20
160

161 ! max_num_subcells = 2 ! Limits number of new cells from 1 old one.
162

163 !## mixing parameters
164 mixing_length_alpha = 2.0
165 MLT_option = " Henyey " !def =" Cox"
166 use_Ledoux_criterion = .true.
167 alpha_semiconvection = 1d-3 !only applies if Ledoux is true.
168 thermohaline_coeff = 1d0 !only applies if Ledoux is true.
169 smooth_convective_bdy = .false. !def=T
170

171 do_conv_premix = .true.
172 conv_premix_avoid_increase = .false.
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173 conv_premix_time_factor = 0.0
174

175 !## step overshooting
176 step_overshoot_f_above_burn_h_core = 0.25
177 overshoot_f0_above_burn_h_core = 0.05
178 step_overshoot_D0_coeff = 1.0 !def =1
179

180 !## exponential overshooting ! we only include a bit of exponential
overshooting to smooth things out

181 overshoot_f0_above_nonburn_core = 0.005
182 ! overshoot_f0_above_burn_h_core = 0.005
183 overshoot_f0_above_burn_he_core = 0.005
184 overshoot_f0_above_burn_z_core = 0.005
185

186 overshoot_f_above_nonburn_core = 0.01
187 ! overshoot_f_above_burn_h_core = 0.01
188 overshoot_f_above_burn_he_core = 0.01
189 overshoot_f_above_burn_z_core = 0.01
190

191 overshoot_f0_above_nonburn_shell = 0.005
192 overshoot_f0_above_burn_h_shell = 0.005
193 overshoot_f0_above_burn_he_shell = 0.005
194 overshoot_f0_above_burn_z_shell = 0.005
195

196 overshoot_f_above_nonburn_shell = 0.01
197 overshoot_f_above_burn_h_shell = 0.01
198 overshoot_f_above_burn_he_shell = 0.01
199 overshoot_f_above_burn_z_shell = 0.01
200

201 overshoot_f0_below_nonburn_shell = 0.005
202 overshoot_f0_below_burn_h_shell = 0.005
203 overshoot_f0_below_burn_he_shell = 0.005
204 overshoot_f0_below_burn_z_shell = 0.005
205

206 overshoot_f_below_nonburn_shell = 0.01
207 overshoot_f_below_burn_h_shell = 0.01
208 overshoot_f_below_burn_he_shell = 0.01
209 overshoot_f_below_burn_z_shell = 0.01
210

211 ! limit_mixing_length_by_dist_to_bdy = 1
212 ! conv_bdy_mix_softening_f = 0.001 !def =0
213 ! conv_bdy_mix_softening_f0 = 0.003 !def =0
214 ! conv_bdy_mix_softening_min_D_mix = 1d-3 !def =0
215 xtra_coef_czb_full_on = 1.0 d0 !def =1d-4
216 xtra_coef_czb_full_off = 1.0 d0 !def =0.1 d0
217 xtra_coef_a_l_nb_czb = 0.5 d0 !def =1
218 xtra_coef_b_l_nb_czb = 0.5 d0 !def =1
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219 xtra_dist_a_l_nb_czb = 2d0 !def =0.2 d0
220 xtra_dist_b_l_nb_czb = 2d0 !def =0.2 d0
221

222 !## rotation controls
223 am_nu_ST_factor = 1.0 ! < 0 means use D_ST_factor
224 D_visc_factor = 0.0 ! Should be = 0 because viscosity doesn ’t mix

chemical elements .
225 am_nu_SH_factor = 0.0 !def =-1 ! < 0 means use D_SH_factor
226 D_ST_factor = 0.0 !Spruit - Tayler dynamo
227 D_SH_factor = 0.0 !Solberg - Hoiland
228 D_GSF_factor = 1.0 !Goldreich -Schubert - Fricke
229 D_ES_factor = 1.0 !Eddington -Sweet circulation
230 D_SSI_factor = 1.0 ! secular shear instability
231 D_DSI_factor = 1.0 ! dynamical shear instability
232 am_D_mix_factor = 0.0333333333333333
233 am_nu_factor = 1.0
234 am_gradmu_factor = 0.05
235

236 !## atmosphere boundary conditions ! See run_star_extras .f
237 ! which_atm_option = " WD_tau_25_tables " !def =" simple_photosphere "
238

239 !## structure equations
240 ! use_dedt_form_of_energy_eqn = .true.
241 ! min_cell_energy_fraction_for_dedt_form = 0
242 ! use_eps_correction_for_KE_plus_PE_in_dLdm_eqn = .true.
243

244 !## miscellaneous controls
245 ! use_eps_mdot = .true
246

247 !## element diffusion
248 show_diffusion_info = .true. ! terminal output for diffusion
249 ! show_diffusion_substep_info = .true. ! terminal output for diffusion
250 ! show_diffusion_timing = .true.
251

252 ! Diffusion is ON! See run_star_extras .f
253 do_element_diffusion = .false. ! determines whether or not we do

diffusion
254 diffusion_dt_limit = 3.15 d7 !def =3.15 d7
255

256 diffusion_use_iben_macdonald = .true. !def=F !true=Iben & MacDonald
1985 / false= Stanton & Murillo 2016

257 diffusion_use_cgs_solver = .false. !def=T !false=Thoul et al. 1994 /
true= Burgers

258

259 ! Diffusion is ON! See run_star_extras .f
260 diffusion_use_full_net = .false. ! Bypasses the need to set up

diffusion classes .
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261

262 ! solver controls .
263 diffusion_use_isolve = .true. !def=F
264 diffusion_rtol_for_isolve = 1d-4 !def =1d-4
265 diffusion_atol_for_isolve = 1d-5 !def =1d-5
266 diffusion_maxsteps_for_isolve = 1000 !def =1000
267 diffusion_isolve_solver = " ros2_solver " !def =" ros2_solver "
268

269 ! diffusion_steps_limit = 20 !def =500 !If diffusion solver uses more
steps than this , reduce the next timestep .

270 ! diffusion_steps_hard_limit = 50 !def =700 !If diffusion solver uses
more steps than this , retry.

271 ! diffusion_iters_limit = 50 !def =600 !If use a total number of iters
> this , reduce the next timestep .

272 ! diffusion_iters_hard_limit = 100 !def =800 !If use a total number of
iters > this , retry.

273

274 ignore_species_in_max_correction = .true.
275 scale_max_correction = 0.05 d0
276

277 !## solver controls
278 newton_iterations_limit =25
279 newton_itermin = 6
280 tol_residual_norm1 = 1d-9!1d -10
281 tol_max_residual1 = 1d-8!1d-9
282

283 ! iter_for_resid_tol2 = 6
284 ! tol_residual_norm2 = 1d-7
285 ! tol_max_residual2 = 1d-5
286 ! iter_for_resid_tol3 = 15
287

288 ! if solver mass fraction < limit , reject
289 ! min_xa_hard_limit = -1d-4
290 ! min_xa_hard_limit_for_highT = -3d-4
291 tiny_corr_coeff_limit = 999999 !def =5
292

293 report_why_dt_limits = .true.
294 timestep_factor_for_retries = 0.7
295 timestep_factor_for_backups = 0.7
296 min_timestep_factor = 0.9
297 max_timestep_factor = 1.05
298 backup_hold = 10
299 retry_hold = 5 !def =1
300 redo_limit = -1 !100
301 newton_iterations_limit = 20 !def =7
302 use_gold_tolerances = .false.
303
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304 ! ####################################################
305

306 !## VAN/ IVANOVA OTHER PARAMETERS ####################
307 ! maximum number of profiles
308 ! Less than zero means no limit.
309 ! max_num_profile_models = -1
310

311 !## mass gain or loss
312 hot_wind_scheme = " Reimers " !def =""
313 cool_wind_RGB_scheme = " Reimers " !def =""
314 Reimers_scaling_factor = 1.0 !def =0
315 mass_change_full_on_dt = 1d -99 !def =1d -99
316 mass_change_full_off_dt = 1d -99 !def =1d -99
317 wind_boost_full_off_L_div_Ledd = 1d99 !def =1.5 d0
318 wind_boost_full_on_L_div_Ledd = 1d99 !def =5
319

320 !## mixing parameters
321 ! smooth_convective_bdy = .true. !def=T
322 ! alt_scale_height_flag = .true. !def=T
323

324 !## structure equations
325 ! min_dxm_Eulerian_div_dxm_removed = -1 !def =2
326

327 ! max_age = 1d10
328

329 ! ####################################################
330

331 /! end of controls namelist
332

333 & pgstar
334

335 !### ADD
336 read_extra_pgstar_inlist1 = .true.
337 extra_pgstar_inlist1_name = " inlist_pgstar1 "
338 !###
339

340 / ! end of pgstar namelist

inlist_project:

1 ! Soethe , L.T.T. & Kepler , S.O., 2021.
2 ! Convection and rotation boosted prescription of magnetic braking :

application to the formation of extremely low -mass white dwarfs
3 ! Monthly Notices of the Royal Astronomical Society
4 ! Volume 506, Issue 3, September 2021 , Pages 3266 - -3281.
5 ! DOI: https :// doi.org /10.1093/ mnras/ stab1916
6 ! arXiv: https :// arxiv.org/abs /2107.03952
7 ! adsabs : https :// ui. adsabs . harvard .edu/abs /2021 MNRAS .506.3266 S/ abstract
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8 !
9 ! Before using , please read also:
10 ! https :// arxiv.org/abs /1911.05790
11 ! https :// arxiv.org/abs /1606.04947
12 ! and its respective inlist files.
13 !
14 ! Files intended to be used with: MESA r11701 and SDK 20190503.
15 !
16 ! This is a BETA version of the files.
17 ! The final version will be made public in the future .
18

19 & binary_job
20

21 inlist_names (1) = " inlist1 "
22 ! inlist_names (2) = " inlist2 "
23

24 ! evolve_both_stars = .false.
25

26 ! which_for_pgstar = 0 ! 0 means none; < 0 means all; i > 0 means
stari

27 evolve_both_stars = .false.
28 warn_binary_extra = .false.
29

30 / ! end of binary_job namelist
31

32 & binary_controls
33

34 ! ####################################################
35

36 !## specifications for starting model
37 m1 = 1.0 !1.2 1.4 !donor mass in Msun
38 m2 = 1.4 !0.8 1.2 ! companion mass in Msun
39 initial_period_in_days = 20d0 ! initial orbital period in days
40 ! terminal_interval = 100000
41

42 !## controls for output
43 ! append_to_star_history = .true.
44 log_directory = "."
45 history_name = " binary_history .data"
46 history_interval = 1
47 append_to_star_history = .true. !def =. true.
48 extra_binary_terminal_output_file = "log -bin" !def =""
49

50 !## timestep controls : fr: change in (r-rl)/rl
51 fr = 0.01
52 fr_limit = 1d-2
53 varcontrol_case_a = 5d-4
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54 varcontrol_case_b = 5d-4
55 varcontrol_ms = 5d-4
56 varcontrol_post_ms = 5d-4
57

58 !## orbital jdot controls :
59 do_jdot_gr = .true.
60 do_jdot_ml = .true.
61 do_jdot_ls = .true.
62 do_jdot_missing_wind = .false.
63 ! do_jdot_mb = .true.
64 ! keep_mb_on = .false. !def=F
65 ! magnetic_braking_gamma = 4.0 d0 !def =3.0 d0
66

67 !## mass transfer controls
68 mass_transfer_alpha = 0.0 d0
69 mass_transfer_beta = 0.8 d0 !0.3 d0
70 mass_transfer_delta = 0.0 d0
71 mass_transfer_gamma = 0.0 d0
72

73 mdot_scheme = "Kolb" !def= Ritter
74 ! limit_retention_by_mdot_edd = .true. !def=F
75 max_change_factor = 1.25 d0 !def =1.5 d0
76 min_change_factor = 1.01 d0 !def =1.05 d0
77 max_tries_to_achieve = 100 !def =20
78 implicit_scheme_tolerance = 0.01 !def =5d-2
79

80 report_rlo_solver_progress = .true. !def =. false.
81

82 !## rotation and sync controls
83 do_tidal_sync = .true. !def=F
84 do_initial_orbit_sync_1 = .true. !def=F
85 sync_mode_1 = " Uniform "
86 sync_type_1 = " Hut_conv " !def= Hut_conv
87 Ftid_1 = 1 !def =1 !Tidal strength factor . Synchronisation and

circularisation timescales are divided by this.
88

89 ! ####################################################
90

91 !## VAN/ IVANOVA OTHER PARAMETERS ####################
92 ! terminal_interval = 10
93 ! write_header_frequency = 5
94

95 ! photo_interval = 100
96 ! profile_interval = 100
97 ! history_interval = 1
98 terminal_interval = 1
99 write_header_frequency = 10
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100

101 ! initial_period_in_days = 10d0 ! period
102

103 use_other_jdot_mb = .true. ! Logicals to deploy the use_other
routines .

104 use_other_mdot_edd = .true.
105 ! terminate_if_initial_overflow = .false. !def=T ! terminate

evolution if first model of run is overflowing
106 ! limit_retention_by_mdot_edd = .true.
107 ! use_es_opacity_for_mdot_edd = .true. !def=T !If .true., then the

opacity for ‘mdot_edd ‘ is computed as 0.2*(1+ X)
108

109 ! max_explicit_abs_mdot = 1d100 ! Limit the explicit mass transfer
rate to ‘max_explicit_abs_mdot ‘, in Msun/ secyer

110 ! def =1d-7
111 fm = 0.01 d0 ! b_envelope
112 fa = 0.01 d0 ! b_separation
113 ! fr = 0.10 d0 !b_RL
114 fj = 0.001 d0 ! b_jorb
115

116 ! m1 = 1.2 !2.0 ! donor mass
117 ! m2 = 1.4 !0.6 ! accretor mass
118 ! max_tries_to_achieve = 50 ! The implicit method will modify the

mass transfer rate and redo the step
119 magnetic_braking_gamma = 4.0 ! gamma exponent for magnetic braking .
120

121 / ! end of binary_controls namelist

run_binary_extras.f:

1 ! Soethe , L.T.T. & Kepler , S.O., 2021.
2 ! Convection and rotation boosted prescription of magnetic braking :

application to the formation of extremely low -mass white dwarfs
3 ! Monthly Notices of the Royal Astronomical Society
4 ! Volume 506, Issue 3, September 2021 , Pages 3266 - -3281.
5 ! DOI: https :// doi.org /10.1093/ mnras/ stab1916
6 ! arXiv: https :// arxiv.org/abs /2107.03952
7 ! adsabs : https :// ui. adsabs . harvard .edu/abs /2021 MNRAS .506.3266 S/ abstract
8 !
9 ! Before using , please read also:
10 ! https :// arxiv.org/abs /1911.05790
11 ! https :// arxiv.org/abs /1606.04947
12 ! and its respective inlist files.
13 !
14 ! Files intended to be used with: MESA r11701 and SDK 20190503.
15 !
16 ! This is a BETA version of the files.
17 ! The final version will be made public in the future .
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18

19 module run_binary_extras
20

21 use star_lib
22 use star_def
23 use const_def
24 use const_def
25 use chem_def
26 use num_lib
27 use binary_def
28 use crlibm_lib
29

30 implicit none
31

32 contains
33

34 subroutine extras_binary_controls (binary_id , ierr)
35 integer :: binary_id
36 integer , intent (out) :: ierr
37 type ( binary_info ), pointer :: b
38 ierr = 0
39 call binary_ptr (binary_id , b, ierr)
40 if (ierr .ne. 0) then
41 write (* ,*) " failed in binary_ptr "
42 return
43 end if
44 ! write (* ,*) "hello from extra_binary_controls "
45 b% other_mdot_edd => mdot_edd_routine
46 b% other_jdot_mb => jdot_mb_routine
47

48 b% how_many_extra_binary_history_columns =>
how_many_extra_binary_history_columns

49 b% data_for_extra_binary_history_columns =>
data_for_extra_binary_history_columns

50

51 b% extras_binary_startup => extras_binary_startup
52 b% extras_binary_check_model => extras_binary_check_model
53 b% extras_binary_finish_step => extras_binary_finish_step
54 b% extras_binary_after_evolve => extras_binary_after_evolve
55 b% warn_binary_extra =. false.
56 end subroutine extras_binary_controls
57

58 subroutine mdot_edd_routine (binary_id , mdot_edd , ierr)
59 use const_def , only: dp
60 integer , intent (in) :: binary_id
61 real(dp), intent (out) :: mdot_edd
62 integer , intent (out) :: ierr
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63 type ( binary_info ), pointer :: b
64 ierr = 0
65 call binary_ptr (binary_id , b, ierr)
66 if (ierr .ne. 0) then
67 write (* ,*) " failed in binary_ptr "
68 return
69 end if
70

71 ! changing mdot_edd from default MESA from BH to NS
72

73 ! mdot_edd = 4*pi* clight *b% s1% x_ctrl (5) /(0.2*(1+ b% s1% surface_h1 ))
74 ! hard coding in the radius of 11.5 km into the equation results in the

next line.
75 mdot_edd = 2.1666 d18 / ((1. d0 + b% s1% surface_h1 ))
76 ! write (* ,*) " Modified Mdot_edd = ", mdot_edd
77 ! write (* ,*) " mdot_system_transfer = ", b% mdot_system_transfer (b% a_i)
78 ! write (* ,*) " "
79 end subroutine mdot_edd_routine
80

81 subroutine check_radiative_core (b)
82 type ( binary_info ), pointer :: b
83 type ( star_info ), pointer :: s
84

85 real(dp) :: sum_conv , q_loc , sum_div_qloc
86 integer :: i, k, id
87

88 include " formats .inc"
89

90 do i=1,2
91 if (i == 1) then
92 s => b% s_donor
93 id = b% d_i
94 else if (b% point_mass_i == 0 .and. b%

include_accretor_mb ) then
95 s => b% s_accretor
96 id = b% a_i
97 else
98 exit
99 end if
100

101 ! calculate how much of inner region is convective
102 sum_conv = 0; q_loc = 0
103 do k = s% nz , 1, -1
104 q_loc = s% q(k)
105 if (q_loc > 0.5 d0) exit
106 if (s% mixing_type (k) == convective_mixing ) &
107 sum_conv = sum_conv + s% dq(k)
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108 end do
109

110 sum_div_qloc = (b% sum_div_qloc (id) + sum_conv /q_loc)/2
111 b% sum_div_qloc (id) = sum_div_qloc
112

113 if (b% have_radiative_core (id)) then ! check if still
have rad core

114 if ( sum_div_qloc > 0.75 d0) then
115 b% have_radiative_core (id) = .false.
116 write (* ,*)
117 write (* ,*) "turn off magnetic braking because

radiative core has gone away"
118 write (* ,*)
119 ! required mdot for the implicit scheme may drop drastically ,
120 ! so its neccesary to increase change factor to avoid implicit
121 ! scheme from getting stuck
122 b% change_factor = b% max_change_factor
123 end if
124 else if ( sum_div_qloc < 0.25 d0) then ! check if now have

rad core
125 if (. not. b% have_radiative_core (id)) then
126 write (* ,*)
127 write (* ,*) "turn on magnetic braking "
128 write (* ,*)
129 end if
130 b% have_radiative_core (id) = .true.
131 end if
132 end do
133 end subroutine check_radiative_core
134

135 subroutine jdot_mb_routine (binary_id , ierr)
136 integer , intent (in) :: binary_id
137 integer , intent (out) :: ierr
138 integer :: k, nz
139 type ( binary_info ), pointer :: b
140 type ( star_info ), pointer :: s
141 real(dp) :: turnover_time , tt_temp , tt_temp_scaled , tt_old ,

tt_diff
142 real(dp) :: vel , vel_ratio , vel_diff , upper_lim , lower_lim ,

scaled_vel
143 real(dp) :: eps_nuc_lim , eps_nuc
144 real(dp) :: dr , tau_lim , delta_mag_chk
145 real(dp) :: rsun4 , two_pi_div_p3 , two_pi_div_p2 , K2
146 real(dp) :: tt_ratio , tt4
147 real(dp) :: rot_ratio , rot4
148 real(dp) :: rad4
149 real(dp) :: v_esc2 , v_mod2
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150 real(dp) :: alfven_no_R , R_alfven
151 real(dp) :: jdot_mb_old , jdot_mb_new
152 real(dp) :: conv_env_r , conv_env_m , sonic_cross_time ,

mag_field
153 real(dp) :: Bs ! surface magnetic field
154 common / old_var / tt_old
155 common / mycommonblock / jdot_mb_old , jdot_mb_new ! add
156 logical :: conv_env_found
157 ierr = 0
158 call binary_ptr (binary_id , b, ierr)
159 if (ierr .ne. 0) then
160 write (* ,*) " failed in binary_ptr "
161 return
162 end if
163

164 ! INITIALIZE THE VARIABLES
165

166 s => b% s_donor
167 nz = s% nz
168 vel_ratio = s% x_ctrl (1) ! originally x_ctrl (3)
169 tau_lim = s% x_ctrl (2) ! originally x_ctrl (4)
170

171 conv_env_found = .false.
172

173 turnover_time = 0.0
174 tt_temp = 0.0
175 tt_temp_scaled = 0.0
176

177 eps_nuc_lim = 1.0d-2
178 vel_diff = 0.0
179 scaled_vel = 0.0
180

181 ! INITIAL TURNOVER TIME CALCULATION
182

183 do k = nz , 1, -1 ! beginning of do loop to calculate
convective turnover time

184

185 eps_nuc = s% eps_nuc (k)
186 ! check if the cell we are looping through satisfies our convection

criteria
187 if ((s% gradr(k) .gt. s% grada(k)) .and. ( eps_nuc .lt.

eps_nuc_lim )) then
188 ! toggle the boolean to begin integration
189 conv_env_found = .true.
190 end if
191

192 ! only enter this portion if the convective boolean is true
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193 ! this loop will go from the innermost cell that is convective to
194 ! the surface . This is to try and smooth through any numeric issues
195 ! with convective zones appearing and disappearing in MESA.
196 if ( conv_env_found ) then
197

198 ! loop to calculate the size of the cell , the innermost cell
199 ! needs special consideration as it is above the core
200 if (k .lt. s% nz) then
201 dr = (s% r(k) - s% r(k + 1))
202 else
203 dr = (s% r(k) - s% R_center )
204 end if
205

206 ! determine the convective velocity inside each given cell
207 if (s% mixing_type (k) == convective_mixing ) then
208

209 ! need to ensure that the convective velocity is within
210 ! our defined limits , if they are outside of these limits
211 ! set them to be the max/min value allowed .
212 vel = s% conv_vel (k)
213 lower_lim = vel_ratio * s% csound (k)
214 upper_lim = 1.0 * s% csound (k)
215

216 if (vel .lt. lower_lim ) then
217 vel = lower_lim
218 else if (vel .gt. upper_lim ) then
219 vel = upper_lim
220 end if
221

222 ! if the cell isnt defined by MESA to be convective take the
223 ! convective velocity to be equal to sound speed
224 else
225 vel = s% csound (k)
226 end if
227

228 ! Final check involving the opacity of the given cell. If the
229 ! cell isn ’t near the surface (low tau) then include it in our

integration
230 if (s% tau(k) .gt. tau_lim ) then
231 sonic_cross_time = sonic_cross_time + (dr / s%

csound (k))
232 conv_env_r = conv_env_r + dr
233 conv_env_m = conv_env_m + s% dm(k)
234 tt_temp = tt_temp + (dr / vel)
235 end if
236 end if
237
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238 end do ! end of do loop to calculate convective turnover
time

239

240 ! reset the boolean just in case
241 conv_env_found = .false.
242

243 ! TURNOVER TIME CHECK , THIS IS TO TRY AND AVOID LARGE CHANGES
244

245 ! simply set the turnover time to the internal variable calculated above
246 turnover_time = tt_temp
247

248 if (s% model_number .gt. 1) then
249 ! calculate the variables used to check if our system is rapidly

evolving
250 tt_diff = abs( tt_old - tt_temp ) / tt_old
251 delta_mag_chk = s% dt / tt_old
252

253 write (* ,*) " tt_diff = ", tt_diff
254 write (* ,*) " delta_mag = ", delta_mag_chk
255 write (* ,*) " turnover_time = ", turnover_time
256 write (* ,*) " tt_old = ", tt_old
257

258 ! check if timesteps are very small or if the relative change is very
large

259 if ( tt_diff .gt. delta_mag_chk ) then
260 write (* ,*) "large change , adjusting accordingly "
261 turnover_time = tt_old + ( tt_temp - tt_old ) * min ((s

% dt / tt_old ), 0.5)
262 mag_field = ( turnover_time / 2.8 d6) * (2073600. / b%

period )
263 write (* ,*) " mag_field = ", mag_field
264

265 end if ! end of timestep / relative change check
266 end if
267

268 ! remember the current values to be used as comparison in the next step
269

270 tt_old = turnover_time
271

272 ! MAGNETIC BRAKING CALCULATION
273

274 b% jdot_mb = 0
275 rsun4 = pow4(rsun)
276

277 call check_radiative_core (b)
278

279 two_pi_div_p3 = (2.0* pi/b% period ) *(2.0* pi/b% period ) *(2.0*
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pi/b% period )
280 two_pi_div_p2 = (2.0* pi/b% period ) *(2.0* pi/b% period )
281

282 K2 = 0.07 * 0.07
283

284 ! use the formula from rappaport , verbunt , and joss. apj , 275, 713 -731.
1983.

285 !### IN
286 if (b% have_radiative_core (b% d_i) .or. b% keep_mb_on ) then
287

288 jdot_mb_old = -3.8d -30*b% m(b% d_i)*rsun4* &
289 pow_cr (min(b% r(b% d_i),b% rl(b% d_i))/rsun ,b%

magnetic_braking_gamma )* &
290 two_pi_div_p3
291

292 tt_ratio = turnover_time / 2.8 d6
293 tt4 = pow4( tt_ratio )
294 ! write (* ,*) "tt4 = ", tt4
295

296 rot_ratio = (2073600. / b% period )
297 rot4 = pow4( rot_ratio )
298 ! write (* ,*) "rot4 = ", rot4
299

300 rad4 = pow4(b% r(b% d_i))
301 ! write (* ,*) "rad4 = ", rad4
302

303 v_esc2 = 2.0 * standard_cgrav * b% m(b% d_i) / b% r(b%
d_i)

304 v_mod2 = v_esc2 + 2.0 * two_pi_div_p2 * b% r(b% d_i) * b
% r(b% d_i) / K2

305

306 alfven_no_R = rad4 * rot4 * tt4 / (b% mdot_system_wind (b
% d_i) * b% mdot_system_wind (b% d_i)) * (1.0 / v_mod2 )

307

308 Bs = (( rot4 * tt4)**(1. d0 /4. d0)) ! surface magnetic
field. ADD

309

310 R_alfven = b% r(b% d_i) * alfven_no_R **(1. d0 /3. d0) ! was
wrong in the original file. I changed from 2/3 to 1/3.

311

312 jdot_mb_new = (2.0/3.0) * (2.0* pi/b% period ) * b%
mdot_system_wind (b% d_i) * R_alfven * R_alfven

313 write (* ,*) "Bs = ", Bs ! ADD
314 write (* ,*) " jdot_mb_old = ", jdot_mb_old
315 write (* ,*) " jdot_mb_new = ", jdot_mb_new
316

317 b% jdot_mb = jdot_mb_new



237

318

319 end if
320 !### OUT
321

322 if (b% point_mass_i == 0 .and. b% include_accretor_mb .and.
&

323 (b% have_radiative_core (b% a_i) .or. b% keep_mb_on ))
then

324 b% jdot_mb = b% jdot_mb - &
325 3.8d -30*b% m(b% a_i)*rsun4* &
326 pow_cr (min(b% r(b% a_i),b% rl(b% a_i

))/rsun ,b% magnetic_braking_gamma )* &
327 two_pi_div_p3
328 end if
329

330 s% xtra1 = turnover_time
331 s% xtra2 = mag_field
332 s% xtra3 = conv_env_r
333 s% xtra4 = conv_env_m
334 s% xtra5 = sonic_cross_time
335 s% xtra6 = Bs ! ADD
336 s% xtra7 = jdot_mb_old ! ADD
337 s% xtra8 = jdot_mb_new ! ADD
338 end subroutine jdot_mb_routine
339

340 integer function how_many_extra_binary_history_columns ( binary_id )
341 use binary_def , only: binary_info
342 integer , intent (in) :: binary_id
343 how_many_extra_binary_history_columns = 8 !7 !5 !7
344 end function how_many_extra_binary_history_columns
345

346 subroutine data_for_extra_binary_history_columns (binary_id , n, names ,
vals , ierr)

347 use const_def , only: dp
348 type ( binary_info ), pointer :: b
349 type ( star_info ), pointer :: s
350 integer , intent (in) :: binary_id
351 integer , intent (in) :: n
352 character (len= maxlen_binary_history_column_name ) :: names(n

)
353 real(dp) :: vals(n)
354 integer , intent (out) :: ierr
355 real(dp) :: beta
356 ierr = 0
357 call binary_ptr (binary_id , b, ierr)
358 if (ierr .ne. 0) then
359 write (* ,*) " failed in binary_ptr "
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360 return
361 end if
362

363 s => b% s_donor
364

365 names (1) = " turnover_time "
366 vals (1) = s% xtra1
367

368 names (2) = " mag_field "
369 vals (2) = s% xtra2
370

371 names (3) = " conv_env_r "
372 vals (3) = s% xtra3
373

374 names (4) = " conv_env_m "
375 vals (4) = s% xtra4
376

377 names (5) = " sonic_cross_time "
378 vals (5) = s% xtra5
379

380 names (6) = "Bs" ! ADD
381 vals (6) = s% xtra6 ! ADD
382

383 names (7) = " jdot_mb_old " ! ADD
384 vals (7) = s% xtra7 ! ADD
385

386 names (8) = " jdot_mb_new " ! ADD
387 vals (8) = s% xtra8 ! ADD
388 end subroutine data_for_extra_binary_history_columns
389

390

391 integer function extras_binary_startup (binary_id ,restart ,ierr)
392 type ( binary_info ), pointer :: b
393 integer , intent (in) :: binary_id
394 integer , intent (out) :: ierr
395 logical , intent (in) :: restart
396 call binary_ptr (binary_id , b, ierr)
397 if (ierr .ne. 0) then ! failure in binary_ptr
398 return
399 end if
400

401 ! b% s1% job% warn_run_star_extras = .false.
402 ! extras_binary_startup = keep_going
403

404 write (* ,*) " starting modified MB"
405 if (b% angular_momentum_j <= 0) then
406 write (* ,*) " angular_momentum_j <= 0", b%
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angular_momentum_j
407 b% s1% dt_next = min(b% s1% dt * 0.50 , b% s1% dt_next )
408 extras_binary_startup = retry
409 end if
410 end function extras_binary_startup
411

412 ! Return either retry ,backup , keep_going or terminate
413 integer function extras_binary_check_model ( binary_id )
414 type ( binary_info ), pointer :: b
415 integer , intent (in) :: binary_id
416 integer :: ierr
417 real(dp) :: j_check1
418 call binary_ptr (binary_id , b, ierr)
419 if (ierr .ne. 0) then ! failure in binary_ptr
420 return
421 end if
422

423 if (b% angular_momentum_j <= 0) then
424 write (* ,*) "bad angular momentum "
425 b% s1% dt_next = min(b% s1% dt * 0.50 , b% s1% dt_next )
426 extras_binary_check_model = retry
427 end if
428

429 extras_binary_check_model = keep_going
430 end function extras_binary_check_model
431

432

433 ! returns either keep_going or terminate .
434 ! note: cannot request retry or backup ; extras_check_model can do that.
435 integer function extras_binary_finish_step ( binary_id )
436 type ( binary_info ), pointer :: b
437 integer , intent (in) :: binary_id
438 integer :: ierr
439 call binary_ptr (binary_id , b, ierr)
440 if (ierr .ne. 0) then ! failure in binary_ptr
441 return
442 end if
443 extras_binary_finish_step = keep_going
444 end function extras_binary_finish_step
445

446 subroutine extras_binary_after_evolve (binary_id , ierr)
447 type ( binary_info ), pointer :: b
448 integer , intent (in) :: binary_id
449 integer , intent (out) :: ierr
450 call binary_ptr (binary_id , b, ierr)
451 if (ierr .ne. 0) then ! failure in binary_ptr
452 return
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453 end if
454 end subroutine extras_binary_after_evolve
455

456 end module run_binary_extras

run_star_extras.f:

1 ! Soethe , L.T.T. & Kepler , S.O., 2021.
2 ! Convection and rotation boosted prescription of magnetic braking :

application to the formation of extremely low -mass white dwarfs
3 ! Monthly Notices of the Royal Astronomical Society
4 ! Volume 506, Issue 3, September 2021 , Pages 3266 - -3281.
5 ! DOI: https :// doi.org /10.1093/ mnras/ stab1916
6 ! arXiv: https :// arxiv.org/abs /2107.03952
7 ! adsabs : https :// ui. adsabs . harvard .edu/abs /2021 MNRAS .506.3266 S/ abstract
8 !
9 ! Before using , please read also:

10 ! https :// arxiv.org/abs /1911.05790
11 ! https :// arxiv.org/abs /1606.04947
12 ! and its respective inlist files.
13 !
14 ! Files intended to be used with: MESA r11701 and SDK 20190503.
15 !
16 ! This is a BETA version of the files.
17 ! The final version will be made public in the future .
18

19 module run_star_extras
20

21 use star_lib
22 use star_def
23 use const_def
24 use const_def
25 use chem_def
26 use binary_def
27 use utils_lib , only: mesa_error
28

29 implicit none
30

31 integer :: time0 , time1 , clock_rate
32 real(dp), parameter :: expected_runtime = 1 ! minutes
33

34 integer , parameter :: restart_info_alloc = 1
35 integer , parameter :: restart_info_get = 2
36 integer , parameter :: restart_info_put = 3
37

38 contains
39

40 subroutine extras_controls (id , ierr)
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41 integer , intent (in) :: id
42 integer , intent (out) :: ierr
43 type ( star_info ), pointer :: s
44

45 ierr = 0
46 call star_ptr (id , s, ierr)
47 if (ierr /= 0) return
48

49 s% extras_startup => extras_startup
50 s% extras_check_model => extras_check_model
51 s% extras_finish_step => extras_finish_step
52 s% extras_after_evolve => extras_after_evolve
53 s% how_many_extra_history_columns => how_many_extra_history_columns
54 s% data_for_extra_history_columns => data_for_extra_history_columns
55 s% how_many_extra_profile_columns => how_many_extra_profile_columns
56 s% data_for_extra_profile_columns => data_for_extra_profile_columns
57 end subroutine extras_controls
58

59 integer function extras_startup (id , restart , ierr)
60 use crlibm_lib , only: safe_log10_cr
61 integer , intent (in) :: id
62 logical , intent (in) :: restart
63 integer , intent (out) :: ierr
64 type ( star_info ), pointer :: s
65 type ( binary_info ), pointer :: b
66 integer :: restart_time , prev_time_used
67 ierr = 0
68 call star_ptr (id , s, ierr)
69 if (ierr /= 0) return
70 call binary_ptr (s% binary_id , b, ierr)
71 if (ierr /= 0) return
72

73 if (. not. restart ) then
74 call system_clock (time0 , clock_rate )
75 call alloc_restart_info (s)
76 else
77 call unpack_restart_info (s)
78 call system_clock ( restart_time , clock_rate )
79 prev_time_used = time1 - time0
80 time1 = restart_time
81 time0 = time1 - prev_time_used
82 end if
83

84 s% xtra1 = log10(abs(b% mtransfer_rate /( Msun/ secyer )))
85 write (* ,*) " central hydrogen ", s% center_h1
86 if (s% center_h1 >0.25) then
87 s% lxtra2 =. false.
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88 else
89 s% lxtra2 =. true.
90 end if
91 if (s% center_h1 > 0.0001) then
92 s% lxtra1 = .false.
93 else
94 s% lxtra1 = .true.
95 end if
96

97 if ( safe_log10_cr (s% L(1)/Lsun) < -2.5) then
98 s% lxtra3 = .true.
99 else
100 s% lxtra3 = .false.
101

102 end if
103 extras_startup = keep_going
104 end function extras_startup
105

106 integer function extras_check_model (id , id_extra )
107 use crlibm_lib , only: safe_log10_cr !# ADD
108 type ( star_info ), pointer :: s
109 type ( binary_info ), pointer :: b
110 integer , intent (in) :: id , id_extra
111 integer :: ierr
112 ierr = 0
113 call star_ptr (id , s, ierr)
114 if (ierr /= 0) return
115 call binary_ptr (s% binary_id , b, ierr)
116 if (ierr /= 0) return
117 if (s% model_number > 1 ) then
118 s% do_element_diffusion = .true.
119 s% diffusion_use_full_net = .true.
120 write (* ,*) " element diffusion is ON" ! DIF is on!
121 ! write (* ,*) "IS WORKING "
122 end if
123

124 if ((s% Teff < 10000) .and. ( safe_log10_cr (s% L(1)/Lsun) < -2)
) then

125 s% which_atm_option = " WD_tau_25_tables "
126 write (* ,*) "Teff < 10000 and log10(L(1)/Lsun) < -2, so using

WD_tau_25_tables atmosphere boundary conditions "
127 end if
128

129 extras_check_model = keep_going
130 end function extras_check_model
131

132 integer function how_many_extra_history_columns (id , id_extra )
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133 integer , intent (in) :: id , id_extra
134 how_many_extra_history_columns = 1
135 end function how_many_extra_history_columns
136

137 subroutine data_for_extra_history_columns (id , id_extra , n, names , vals ,
ierr)

138 integer , intent (in) :: id , id_extra , n
139 character (len= maxlen_history_column_name ) :: names(n)
140 real(dp) :: vals(n)
141 integer , intent (out) :: ierr
142 real(dp) :: dt
143 ierr = 0
144 if (n /= 1) then
145 stop "bad n for data_for_extra_history_columns "
146 end if
147 dt = dble(time1 - time0) / clock_rate / 60
148 names (1) = " runtime_minutes "
149 vals (1) = dt
150 end subroutine data_for_extra_history_columns
151

152 integer function how_many_extra_profile_columns (id , id_extra )
153 integer , intent (in) :: id , id_extra
154 how_many_extra_profile_columns = 3
155 end function how_many_extra_profile_columns
156

157 subroutine data_for_extra_profile_columns (id , id_extra , n, nz , names ,
vals , ierr)

158 integer , intent (in) :: id , id_extra , n, nz
159 character (len= maxlen_profile_column_name ) :: names(n)
160 real(dp) :: vals(nz ,n)
161 integer , intent (out) :: ierr
162 integer :: k
163 type ( star_info ), pointer :: s
164 type ( binary_info ), pointer :: b
165 call star_ptr (id , s, ierr)
166 if (ierr /= 0) return
167 call binary_ptr (s% binary_id , b, ierr)
168 if (ierr /= 0) return
169

170 !ierr = 0
171 names (1) = " d_Lrad_dlnR "
172 names (2) = " lrad_extra "
173 names (3)= "dL_dm"
174 do k=1, s% nz
175

176 if (s% gradT(k) < s% gradr(k)) then
177 vals(k ,1) = s % L(k)*( &
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178 s% d_gradT_dlnR (k)/s% gradr(k) &
179 -s% gradT(k)*s% d_gradr_dlnR (k)/(s%

gradr(k)*s% gradr(k)))
180 else
181 vals(k ,1) = 0d0
182 end if
183 vals(k ,2) = s% L(k)*s% gradT(k)/s% gradr(k)
184 vals(k ,3)= s% dL_dm_expected (k)
185 end do
186 ierr = 0
187

188 end subroutine data_for_extra_profile_columns
189

190 integer function extras_finish_step (id , id_extra )
191 use crlibm_lib , only: safe_log10_cr
192 integer , intent (in) :: id , id_extra
193 integer :: ierr
194 type ( star_info ), pointer :: s
195 type ( binary_info ), pointer :: b
196

197 ierr = 0
198

199 call star_ptr (id , s, ierr)
200 if (ierr /= 0) return
201 call binary_ptr (s% binary_id , b, ierr)
202 if (ierr /= 0) return
203

204

205 extras_finish_step = keep_going
206 call system_clock (time1 , clock_rate )
207 call store_restart_info (s)
208

209 if (log10(abs(b% mtransfer_rate /( Msun/ secyer ))) >-15.0 .and. &
210 log10(abs(b% mtransfer_rate_older /( Msun/ secyer ))) < -15.0)

then
211 write (* ,*) " begining of mass transfer "
212 s% need_to_save_profiles_now = .true.
213 s% save_profiles_model_priority = 6
214 end if
215

216 if (log10(abs(b% mtransfer_rate )/( Msun/ secyer )) <-12.0 .and.
log10(abs(b% mtransfer_rate_older )/( Msun/ secyer )) > -12.0) then

217 write (* ,*) "end of mass transfer "
218 s% need_to_save_profiles_now = .true.
219 s% lxtra4 =. true.
220 !s% xtra1=s %xtra1 +1
221 s% save_profiles_model_priority = 7
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222 end if
223

224 if ((s% center_h1 < 0.0001) .and. (s% lxtra1 .eqv .. false .)) then
225 write (* ,*) "end of main sequence "
226 s% need_to_save_profiles_now = .true.
227 s% save_profiles_model_priority = 5
228 s% lxtra1 =. true.
229 end if
230

231 if ((s% center_h1 < 0.25) .and .(s% lxtra2 .eqv .. false .)) then
232 write (* ,*) "0.25 hydrogen main sequence "
233 s% need_to_save_profiles_now = .true.
234 s% save_profiles_model_priority = 4
235 s% lxtra2 =. true.
236 end if
237

238 if (( safe_log10_cr (s% L(1)/Lsun) < -2.5) .and .(s% lxtra3 .eqv ..
false .)) then

239 write (* ,*) " cooling track : log L =2.5"
240 s% need_to_save_profiles_now = .true.
241 s% save_profiles_model_priority = 8
242 s% lxtra3 =. true.
243 end if
244

245 if ( safe_log10_cr (s% power_h_burn ) > 1.7) then
246 s% tol_correction_norm =
247 s% tol_max_correction =
248 write (* ,*) "relax tolerance "
249 else
250 s% tol_correction_norm = 3d-5
251 s% tol_max_correction = 3d-3
252 write (* ,*) " normal tolerance "
253 end if
254

255 call store_restart_info (s)
256 end function extras_finish_step
257

258 subroutine extras_after_evolve (id , id_extra , ierr)
259 integer , intent (in) :: id , id_extra
260 integer , intent (out) :: ierr
261 type ( star_info ), pointer :: s
262 real(dp) :: dt
263 ierr = 0
264 call star_ptr (id , s, ierr)
265 if (ierr /= 0) return
266 dt = dble(time1 - time0) / clock_rate / 60
267 if (dt > 10* expected_runtime ) then
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268 write (*,’(/,a30 ,2 f18 .6,a ,/) ’) ’>>>>>>> EXCESSIVE runtime ’, &
269 dt , expected_runtime , ’ <<<<<<<<< ERROR ’
270 else
271 write (*,’(/,a50 ,2 f18 .6 ,99 i10 /)’) ’runtime , retries , backups ,

steps ’, &
272 dt , expected_runtime , s% num_retries , s% num_backups , s%

model_number
273 end if
274 end subroutine extras_after_evolve
275

276 ! routines for saving and restoring data so can do restarts
277

278 subroutine alloc_restart_info (s)
279 type ( star_info ), pointer :: s
280 call move_restart_info (s, restart_info_alloc )
281 end subroutine alloc_restart_info
282

283 subroutine unpack_restart_info (s)
284 type ( star_info ), pointer :: s
285 call move_restart_info (s, restart_info_get )
286 end subroutine unpack_restart_info
287

288

289 subroutine store_restart_info (s)
290 type ( star_info ), pointer :: s
291 call move_restart_info (s, restart_info_put )
292 end subroutine store_restart_info
293

294 subroutine move_restart_info (s,op)
295 type ( star_info ), pointer :: s
296 integer , intent (in) :: op
297

298 integer :: i, j, num_ints , num_dbls , ierr
299

300 i = 0
301 ! call move_int or move_flg
302 call move_int (time0)
303 call move_int (time1)
304

305 num_ints = i
306

307 i = 0
308 ! call move_dbl
309

310 num_dbls = i
311

312 if (op /= restart_info_alloc ) return
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313 if ( num_ints == 0 .and. num_dbls == 0) return
314

315 ierr = 0
316 call star_alloc_extras (s% id , num_ints , num_dbls , ierr)
317 if (ierr /= 0) then
318 write (* ,*) " failed in star_alloc_extras "
319 write (* ,*) " alloc_extras num_ints ", num_ints
320 write (* ,*) " alloc_extras num_dbls ", num_dbls
321 call mesa_error (__FILE__ , __LINE__ )
322 end if
323

324 contains
325

326 subroutine move_dbl (dbl)
327 real(dp) :: dbl
328 i = i+1
329 select case (op)
330 case ( restart_info_get )
331 dbl = s% extra_work (i)
332 case ( restart_info_put )
333 s% extra_work (i) = dbl
334 end select
335 end subroutine move_dbl
336

337 subroutine move_int (int)
338 integer :: int
339 include " formats "
340 i = i+1
341 select case (op)
342 case ( restart_info_get )
343 !write (* ,3) " restore int", i, s% extra_iwork (i)
344 int = s% extra_iwork (i)
345 case ( restart_info_put )
346 !write (* ,3) "save int", i, int
347 s% extra_iwork (i) = int
348 end select
349 end subroutine move_int
350

351 subroutine move_flg (flg)
352 logical :: flg
353 i = i+1
354 select case (op)
355 case ( restart_info_get )
356 flg = (s% extra_iwork (i) /= 0)
357 case ( restart_info_put )
358 if (flg) then
359 s% extra_iwork (i) = 1
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360 else
361 s% extra_iwork (i) = 0
362 end if
363 end select
364 end subroutine move_flg
365

366 end subroutine move_restart_info
367

368 end module run_star_extras
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APPENDIX G – Nota de imprensa (press
release)

O freamento magnético e a misteriosa dança das estrelas duplas
Porto Alegre, 6 de janeiro de 2022 — Aluno de doutorado do Curso de

Astrofísica do Instituto de Física da UFRGS dá passo importante no entendi-
mento da formação de estrelas duplas e estudo é publicado na revista Monthly
Notices of the Royal Astronomical Society.

Certamente o que mais chama a atenção de todos ao observarmos o céu noturno são
as estrelas. A maioria das estrelas nascem com massa de até 10 vezes a massa do Sol. Isso
implica que, ao final da evolução, mais de 95% delas se tornarão anãs brancas canônicas,
com cerca de 0,6 vezes a massa do Sol. Ao contrário da crença popular, entretanto, a
maioria delas não são estrelas isoladas, mas sim duplas. Assim como os planetas orbitam
o Sol devido à atração gravitacional, estrelas binárias são sistemas de duas estrelas que
se orbitam devido à essa força. Em sistemas binários, cada estrela se forma afastada da
companheira, mas elas vão se aproximando ao longo da evolução. Diversos mecanismos
colaboram para a perda de energia do sistema. Por exemplo, a perda de massa e a
emissão de radiação gravitacional fazem com que os componentes estelares se aproximem.
Durante meu doutorado na UFRGS, investiguei o freamento magnético, um poderoso
mecanismo que consome grande quantidade de energia orbital do sistema logo nos estágios
iniciais da evolução. O freamento magnético ocorre quando o alto campo magnético de
uma estrela aprisiona grande quantidade de matéria ao seu redor, podendo alcançar
dezenas de vezes o raio solar. Isso faz com que as estrelas componentes de um sistema
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binário se aproximem rapidamente, levando à transferência de matéria entre uma estrela
e outra. Um exemplo é mostrado na figura, que traz a interpretação artística de uma
estrela semelhante ao Sol perdendo massa para uma estrela de nêutrons. Ao perder a
maior parte de sua massa, a estrela que se tornaria uma anã branca canônica acaba
por se tornar uma anã branca de massa extremamente baixa, até quatro vezes menos
massiva. A receita para quantificar o freamento magnético, no entanto, nunca foi bem
estabelecida. Mesmo trabalhos recentes consideram aproximações empíricas feitas nas
décadas de 60 a 80, encontrando grandes dificuldades para conciliar as previsões teóricas
com as observações astronômicas que medem o período orbital desses sistemas. Tomando
como ponto de partida uma nova proposta para o freamento magnético recentemente
publicada, utilizei um código computacional de evolução estelar para fazer centenas de
simulações computacionais da evolução de sistemas binários que contém estrelas de baixa
massa em companhia de estrelas de nêutrons. Essa nova fórmula inclui detalhes sobre
a intensidade do campo magnético, a rotação, o raio, a estrutura interna, e a massa da
estrela que perde matéria, apresentando resultados teóricos em muito melhor acordo com
o que é observado nas anãs brancas de massa extremamente baixa em sistemas binários e
seus períodos orbitais. Dessa forma, contribuímos com um pequeno, mas importante passo
no entendimento da evolução de sistemas de estrelas duplas e na formação de anãs brancas
de baixa massa. O trabalho foi realizado juntamente com o Prof. Dr. S. O. Kepler, líder
do grupo de Anãs Brancas do Departamento de Astronomia, e foi publicado na edição de
setembro de 2021 na Monthly Notices of the Royal Astronomical Society.

Link para o artigo: 10.1093/mnras/stab1916

Palavras-chave: anãs brancas, estrelas binárias, freamento magnético.

Imagem: <http://www.novacelestia.com/images/binary_starsystems_lowmass_
xray_binary.html>. Crédito: Fahad Sulehria, Nova Celestia.

Contato: tayno32@gmail.com, +55 (51) 995726234

https://doi.org/10.1093/mnras/stab1916
http://www.novacelestia.com/images/binary_starsystems_lowmass_xray_binary.html
http://www.novacelestia.com/images/binary_starsystems_lowmass_xray_binary.html
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