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Abstract. In this work, a first-order upwind and a high-order
flux-limiter schemes for solving the advection–diffusion
equation on unstructured grids were evaluated. The numer-
ical schemes were implemented as a module of an unstruc-
tured two-dimensional depth-averaged circulation model for
shallow lakes (IPH-UnTRIM2D), and they were applied to
the Guaíba River in Brazil. Their performances were eval-
uated by comparing mass conservation balance errors for
two scenarios of a passive tracer released into the Guaíba
River. The circulation model showed good agreement with
observed data collected at four water level stations along the
Guaíba River, where correlation coefficients achieved val-
ues up to 0.93. In addition, volume conservation errors were
lower than 1 % of the total volume of the Guaíba River. For
all scenarios, the higher order flux-limiter scheme has been
shown to be less diffusive than a first-order upwind scheme.
Accumulated conservation mass balance errors calculated for
the flux limiter reached 8 %, whereas for a first-order upwind
scheme, they were close to 18 % over a 15-day period. Al-
though both schemes have presented mass conservation er-
rors, these errors are assumed negligible compared with ki-
netic processes such as erosion, sedimentation or decay rates.

1 Introduction

Ecology of lakes and ponds is closely linked to physical fac-
tors, especially to hydrodynamic variables such as velocity,
turbulence, and diffusion/convection of suspended material
(Brönmark and Hansson, 2005). These aquatic ecosystems

present complex circulation patterns which vary over time
and space depending on density, temperature, wind among
others (Reynolds, 1984). Fragoso Jr. et al.(2008), for exam-
ple, revealed a close relationship between spatial heterogene-
ity of phytoplankton and water circulation patterns – driven
by gradients in viscosity and diffusivity, wind stress and bot-
tom friction – in a shallow lake. In addition,Hodges and
Dallimore(2013) showed that upward and downward fluxes
of water in lakes and/or ponds are associated with vertical
heat exchange throughout the water column. Thus, hydrody-
namic processes affect transport of substances to, from and
within lakes and ponds. The spatial variance of suspended
particle concentrations may be great in shallow ecosystems
once their distribution can be influenced by short-term physi-
cal factors (e.g. sediment resuspension) (Carrick et al., 1993).
Thus, a better understanding of the water circulation of these
ecosystems plays an important role in their water quality dy-
namics (Chapra, 2005).

Several studies have presented numerical models which
are able to represent velocity field and water level by solv-
ing the shallow water equations. Some of these models
use finite difference scheme in a horizontal plane formed
by uniform rectangular grids (Casulli, 1990; Cheng et al.,
1993). However, occasionally uniform grids are not flex-
ible enough to represent complex geometries. Therefore,
some numerical models use finite difference schemes on non-
orthogonal curvilinear grids to allow greater flexibility (Ye
and McCorquodale, 1997; Zhou, 1995). On the other hand,
an disadvantage of using curvilinear grids lies in approximat-
ing oblique boundaries along the simulation domain which
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introduces errors to the numerical solution (Margolin and
Shashkov, 1999). Moreover, additional terms derived from
curvilinear transformation are also sources of errors arising
from a numerical approach using curvilinear grids (Hirsch,
1988).

A detailed study on the effects of grid non-orthogonality
carried bySankaranarayanan and Spaulding(2003) reveals
that truncation error terms due to first and second deriva-
tive terms are functions of grid angle and aspect ratio in
a way that root-mean-square (rms) errors in surface eleva-
tion and velocities sharply increase as the grid resolution de-
creases for curvilinear grids with a grid angle less than 45◦

(Thompson et al., 1985; Nielsen and Skovgaard, 2005).
In this sense, hydrodynamics models using orthogonal un-

structured grids are considered an efficient tool to describe
the dynamics of rivers, lakes and estuaries as they have high
capacity of representing geometries and optimizing compu-
tational efforts with grid refinement in regions of interest
(Casulli and Walters, 2000; Cheng and Casulli, 2001).

Once conservation of volume is assured by an efficient hy-
drodynamic solution, a numerical solution for the advection–
diffusion equation is needed to characterize the transport of
a scalar variable such as salinity, temperature or any passive
constituent that may represent sediment or biological com-
munities. Analytical methodologies to solve the advection–
diffusion equation by mathematical substitutions and trans-
formations (Mikhailov and Ozisik, 1984; Cotta, 2005) are
widely applied to many experimental applications in heat
and mass diffusion (Leij and van Genuchten, 2000; Guerrero
et al., 2009). Nevertheless, a large number of parameters, co-
efficients, constants and functions are used in such method-
ologies, which may reduce their range of applications to sys-
tems under strictly controlled external conditions.

Several numerical models use a first-order upwind scheme
to solve explicitly the advection–diffusion equation (Gross
et al., 2002, 1999; Hetch et al., 1995). However, first-order
upwind schemes are only effective in regions with low advec-
tion and low scalar concentration gradients (Le Veque, 1996).
Greater accuracy may be achieved in first-order upwind
schemes employing refined grids, which implies a higher
computational effort. An alternative approach is to use high
resolution schemes with flux-limiter functions. The high-
resolution scheme developed bySweby(1984) has been suc-
cessfully applied and improved over the past years (Casulli
and Zanolli, 2005; Wang et al., 2008; Wood et al., 2008).

Therefore, this work presents the formulation and appli-
cation of a two-dimensional depth-averaged circulation and
scalar transport model for shallow aquatic ecosystems based
on unstructured orthogonal grids. It has been developed to
maximize flexibility in grid specification, ensuring a sta-
ble and robust numerical solution. A high-resolution scalar
transport scheme using a flux-limiter function developed by
Sweby(1984) was implemented and its results were com-
pared with a first-order upwind scheme. The model was ap-
plied to the Guaíba River to test its scalar transport schemes

in solving realistic problems. Their numerical solutions were
compared with estimates and measurements of sedimenta-
tion and erosion rates, whereas their performances were eval-
uated using conservation of mass for the entire simulation
domain.

2 Material and methods

2.1 Model description

IPH-UnTRIM2D is a finite-volume numerical representation
of the two-dimensional depth-integrated continuity and mo-
mentum equations of water motion developed at the Insti-
tuto de Pesquisas Hidráulicas (IPH), and conceptually based
on the unstructured version of the Tidal, Residual, and In-
tertidal Mudflat (TRIM) model proposed byCasulli and
Walters (2000). It also represents integrated scalar trans-
port (e.g. salinity, heat, suspended sediment) through the
advection–diffusion equation. The governing equations and
finite-volume numerical approximations are described here.

2.2 Hydrodynamic module

IPH-UnTRIM2D uses a finite-volume approach to solve the
shallow water equations on unstructured grids. While it cal-
culates values of free surface at the centres of each computa-
tional cell of the grid, values of velocity are estimated at the
half length of their sides. As the shallow water equations are
derived from depth-integrating the Navier–Stokes equations
– under the assumption that horizontal flow components are
much greater than vertical ones – the hydrodynamic module
of IPH-UnTRIM2D expresses the principle of conservation
of mass and momentum.

To integrate the Navier–Stokes equation over the water
column, IPH-UnTRIM2D assumes two boundary conditions
corresponding to effects of wind stresses and bottom friction.
From the momentum equations for an incompressible fluid
(Fox et al., 2009), the boundary conditions due to effects of
wind stresses at free surface and bottom friction at bed are
given by prescribing the term that represents the divergence
of stress along the water column as:

Av
∂u

∂z
= τx − γ u and Av

∂v

∂z
= τy − γ v, (1)

whereAv denotes the vertical coefficient of kinematic eddy
viscosity, ∂u

∂z
and ∂v

∂z
represent the gradient of the horizontal

components of velocity along the water column,τx andτy

are the horizontal components of wind shear stresses andγ

indicates the bottom friction.
Another assumption used in the hydrodynamic module

of IPH-UnTRIM2D is related to the term of pressure gra-
dient force in the momentum equations. Theoretically, the
pressure gradient force can be divided into barotropic and
baroclinic components by using the Leibniz integration rule
(Blaise et al., 2010). And, since the baroclinic components
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are driven by vertical gradients of density and/or tempera-
ture over the water column, IPH-UnTRIM2D includes only
barotropic components of pressure in the calculations as part
of its depth-integrated approach (i.e. well mixed water col-
umn). This assumption reduces the term of pressure gradient
force in the momentum equations to the following form:

∇p(x, y, z, t) = g∇η(x, y, z, t) , (2)

wherep(x, y, z, t) is the pressure gradient force,g is the
gravitational acceleration constant andη(x, y, z, t) means
the free surface from an undisturbed reference level.

The hydrodynamic module of IPH-UnTRIM2D also incor-
porates the continuity equation. Similarly to the momentum
equations, the continuity equation is integrated over the wa-
ter column – from bed to free surface – and, along with the
shallow water equations, is used by IPH-UnTRIM2D to de-
scribe free surface flows. Thus, the momentum and continu-
ity equations for two-dimensional circulation solved by IPH-
UnTRIM2D can be written as:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂η

∂x
+ . . .

Ah

[
∂2u

∂x2
+

∂2u

∂y2

]
+ τx − γ u + f v (3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂η

∂y
+ . . .

Ah

[
∂2v

∂x2
+

∂2v

∂y2

]
+ τy − γ v − f u (4)

∂η

∂t
+

∂

∂x

η∫
−h

udz +
∂

∂y

η∫
−h

vdz = 0, (5)

whereu(x, y, t) and v(x, y, t) are the horizontal velocity
components inx andy directions in m s−1, t is time in sec-
onds,h(x, y) is water depth relative to an undisturbed refer-
ence level inm, f is the Coriolis parameter in s−1 assumed
as constant andAh is the horizontal eddy viscosity coefficient
in m2 s−1.

Wind shear stresses (τx, τy) and bottom-friction (γ ) for-
mulations are also calculated in this module. The wind shear
stresses at free surface are proportional to the wind speed and
they were calculated as follows:

τx = CD Wx‖W‖ (6)

τy = CD Wy‖W‖, (7)

whereCD is the wind stress coefficient,Wx andWy the hor-
izontal components of wind speed at the surface level in
m s−1, and ‖W‖ is the norm of the wind speed vector in
m s−1.

The bottom-friction coefficient is calculated by:

γ =
g

√
u2 + v2

C2
v H

(8)

Here H(x, y, t) =h(h, y) + η(x, y, t) is total water depth
andCv is the Chezy coefficient. Coriolis acceleration in the
x and y directions used in the momentum equations are
given byf v andf u, respectively, withf = 2ω sinφ whereω
means angular speed of rotation of the Earth about its axis in
rad s−1 andφ is geographic latitude in degrees. As part of the
assumptions for depth-averaged circulation models (e.g. AD-
CIRC,Westerink et al., 1994; TRIM, Casulli, 1990; River2D,
Heniche et al., 2000), both the effects of wind stresses and
bottom friction are included at the same layer in the momen-
tum equations.

2.3 Scalar transport module

The scalar transport module in IPH-UnTRIM2D calculates
the concentration field of a tracer by means of the advection–
diffusion equation deduced from the law of conservation of
mass for incompressible fluid, and is expressed as:
∂H C

∂t
+

∂uH C

∂x
+

∂vH C

∂y
= . . .

. . .
∂

∂x

(
Kh

∂H C

∂x

)
+

∂

∂y

(
Kh

∂H C

∂y

)
+ sources, (9)

where C is the mean concentration in the water column
in mg L−1, H is total depth inm and Kh is horizon-
tal eddy viscosity in m2 s−1. Considering a conservative
tracer, sources/sinks and reaction terms are assumed to be
negligible.

2.4 Unstructured grid

IPH-UnTRIM2D calculates free surface, velocity and tracer
distribution at the centres and sides of computational cells
on an unstructured orthogonal grid. An unstructured grid is
a set of non-overlapping computational cells over a simula-
tion domain. Each of these computational cells is composed
of Np sides,Nv vertices and only one centre, which is lo-
cated neither at its centroid nor geometric centre but at the
intersection point of the perpendicular bisectors ofNp sides
of the computational cell. Since the segment that joins the
centres of two adjacent computational cells are orthogonal to
each other, this set of non-overlapping computational cells is
known as unstructured orthogonal grid (Fig.1).

MTOOL (Two-dimensional Mesh Tool) has been used as a
grid generation package in order to generate the unstructured
orthogonal grids used in this study. It is an interactive graphic
program for two-dimensional finite element mesh genera-
tion developed byTeCGraf (1992). It allows one to com-
bine coarser and finer triangular and/or quadrilateral compu-
tational cells on the same grid to represent transitions from
broad and open regions and to regions of interest.

Figure 1 illustrates an unstructured orthogonal grid. For
an unstructured orthogonal grid ofNp computational cells,
which i = , 2, 3 . . .Np, eachith computational cell has area
denoted byPi and 3 or 4 sides represented byj = 1, 2, 3–
4. And, for each sidej , λj indicates its length, whereasδj
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means the distance between the centres of two adjacent com-
putational cells that share the same sidej .

2.5 Numerical approximation

A semi-implicit finite-volume scheme was used to obtain an
efficient numerical algorithm where its stability is indepen-
dent of free-surface gravity waves, wind stress, vertical vis-
cosity and bottom friction. In contrast to circulation models
based on structured grids which numerically solve the mo-
mentum equations for each computational polygon on the
Cartesian axes, IPH-UnTRIM2D differentiates the momen-
tum equations for each sidej of a computational polygoni
with respect to its normal and tangential axes. Normal and
tangential components of bottom friction and wind stresses
are calculated by rotating their horizontal and vertical com-
ponents. The bottom friction, wind stresses, Coriolis accel-
eration and horizontal viscosity are treated fully explicitly.
Thus, the conservation of normal and tangential momentum
for a sidej takes the following forms:

un+1
j = F un

j − g
1t

δj

(1 − θ)
(
ηn

i(j,2) − ηn
i(j,1)

)
. . .

−g
1t

δj

θ
(
ηn+1

i(j,2) − ηn+1
i(j,1)

)
(10)

vn+1
j = F vn

j − g
1t

λj

(1 − θ)
(
ηn

v(j,2) − ηn
v(j,1)

)
. . .

−g
1t

λj

θ
(
ηn+1

v(j,2) − ηn+1
v(j,1)

)
, (11)

whereu andv are the normal and tangential components of
velocity at time stepn + 1 andF is an explicit operator which
combines all explicit terms with the backtracked velocity at
time stepn. The implicitness factor for temporal discretiza-
tion (θ ) may vary from 0 to 1, given that values ofθ equal to 0
indicate a fully explicit scheme, whereas values ofθ equal
to 1 mean that an implicit scheme is being used. For semi-
implicit schemes, the implicitness factor is in the range of
1/2≤ θ < 1 (Casulli, 1990; Casulli and Cheng, 1992; Zhang
and Baptista, 2007). Stability numerical analysis for semi-
implicit schemes carried out byCasulli and Cattani(1994)
indicated highest accuracy and efficiency for an implicitness
factor equal to 0.5, the same value ofθ used in this study.

Regarding the grid connectivity,i(j, 1) andi(j,2) repre-
sent neighbouring polygons of thej th side, whereasv(j, 1)

andv(j, 2) indicate its vertices. Water-surface elevations are
computed for all polygons and vertices on the grid. At a
generic vertex, the water-surface elevation (ηv) is estimated
by area-weighted average using elevations at its surrounding
polygons. On the other hand, a set of equations comes from
the continuity equation in order to calculate the elevations at
all polygons. Thus, the continuity equation can numerically
be written for each polygon as:

P n+1
i = P n

i − θ 1t

Nij∑
i=1

(
S(i,l) λ(i,l) H(i,l) u

n+1
(i,l)

)
. . .

−(1 − θ)1t

Nij∑
i=1

(
S(i,l) λ(i,l) H(i,l) u

n
(i,l)

)
, (12)

whereNij represents the number of sides of the polygoni

andS(i,l) is a function related to flow direction through the
lth side of the polygoni, and its value may be equal to 1
or −1. S(i,l) takes the following form:

S(i,l) =
i[j (i, l), 2] + i[j (i, l), 1] − 2i

i[j (i, l),2] − i[j (i, l), 1]
, (13)

where everyj th side of the grid presents neighbouring poly-
gons of indexes[j (i, l), 1] and[j (i, l), 2].

Substituting Eq. (10) into Eq. (12), a linear system ofNp
equations with a symmetric and positive definite matrix can
be composed and takes the following form:

A ηn+1
i = Gn

i (14)

from which,

A =



P1 −

Nj∑
j=1

Cj (1,l)

...

Pi −

Nj∑
j=1

Cj (i,l)

...

PNp −

Nj∑
j=1

Cj(Np, l)


,

where

Cj (i,l) =
−g θ21t2λj (i,l) Hj (i,l)

δj (i,l) (1 + γj (i, l))
(15)

and

G =

K1 . . . 0
... Ki 0
0 . . . KNp

 ,

being that

Ki = Pi η
n
i − θ 1t

Nj∑
l=1

S(i,l) λj (i,l) Hj (i,l)

1 + γj (i,l)

. . .

(
F n

j − g
1t

δj (i,l)

(1 − θ)
(
ηn

i(j,2) − ηn
i(j,1)

)
+ 1t τn

j (i,l)

)
− . . .

(1 − θ)1t

Nj∑
l=1

S(i,l) λj (i,l) Hj (i,l) u
n
j (i,l), (16)
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whereNj denotes the number of sides in computational celli

andNp is the total number of computational cells in the grid.
The numerical solution of this linear system can be efficiently
determined by the conjugate gradient (Press et al., 1992).

This numerical approach enables the hydrodynamic mod-
ule included in IPH-UnTRIM2D to simulate unsteady flow
under the effects of external flow disturbances caused by tidal
forces and river inflows/outflows, for example. Such external
forcings are interpreted by the hydrodynamic module as lat-
eral boundaries, which are assumed strictly vertical. Theoret-
ically, lateral boundary conditions are provided to the hydro-
dynamic module as described thereafter.

Lateral land boundaries are set at all sides along the land-
water interface. For these sides of the grid, normal flow and
drag on tangential flow are equal to 0. For open sea bound-
aries, boundary conditions are assumed at the centre of com-
putational cells as water surface elevation. River boundaries
are set at both sides and centres of computational cells by
prescribing normal flow (i.e. discharge) and water elevation
respectively.

Once the elevation field at time stepn + 1 is known, nor-
mal and tangential velocities are also updated at time step
n + 1 by using Eqs. (10) and (11). Elevations and velocities
computed in the hydrodynamic module are used to calculate
the numerical solution of the advection–diffusion equation.

Currently, IPH-UnTRIM2D presents two numerical
schemes for solving the advection–diffusion equation. In
the first one, IPH-UnTRIM2D employs a first-order upwind
scheme to numerically discretize the advection–diffusion
equation over the simulation domain based on geometric fea-
tures of the computational cells, their connectivity with each
other as well as elevation and water velocity fields from the
hydrodynamic module. The second one appears as an alter-
native to the first-order upwind scheme, and includes a flux-
limiter function that aggregates a higher-order term over re-
gions of high-velocity gradients to reduce numerical diffu-
sion in the solution of the advection–diffusion equation given
by the first-order upwind scheme (Casulli and Zanolli, 2005).

The first-order upwind scheme solves temporal and spa-
tial partial derivatives from the advection–diffusion equation
using simple backward differences as shown in Eq. (17).

Pi H
n+1
i Cn+1

i = Pi H
n
i Cn

i . . .

−1t

∑
j∈S+

i

|Qn+θ
j |Cn

i −

∑
j∈S−

i

|Qn+θ
j |Cn

m(i,j)

 . . .

+1t
∑

j∈S+

i ∪S−

i

Dn
j

(
Cn

m(i,j) − Cn
i

)
, (17)

wherem(i, j) is the index of the polygon that shares thej th

edge withith polygon,Qn
j =λj H n

i un
i and Dn

j =λj H n
i

Kh
j

δj

are advective and diffusive fluxes, respectively. SinceS func-
tion returns either 1 or−1, S+ denotes only grid sizes ofS
function equals to 1, whereasS− indicates the negative ones.

Similarly to the upwind scheme, the higher-order flux-
limiter scheme also uses backward differences to numerically
represent the advection–diffusion equation. However, the
higher-order flux-limiter scheme incorporates a high-order
term, which depends on a function (8) that returns 0 (first-
order scheme), 1 (second-order scheme) or 2 (first-order but
less diffusive scheme). As proposed bySweby(1984), the
higher-order flux-limiter scheme takes the following form:

Pi H
n+1
i Cn+1

i = Pi H
n
i Cn

i . . .

−1t

∑
j∈S+

i

|Qn+θ
j |Cn

i −

∑
j∈S−

i

|Qn+θ
j |Cn

m(i,j)

 . . .

−
1t

2

 ∑
j∈S+

i ∪S−

i

8n
j |Q

n+θ
j |

(
Cn

m(i,j) − Cn
i

) . . .

+1t
∑

j∈S+

i ∪S−

i

Dn
j

(
Cn

m(i,j) − Cn
i

)
. (18)

8n
j is a flux-limiter function which can be written as:

8(r, φ) = max[φ, min(1, 2r), min(2, r)], (19)

wherer is the ratio of consecutive gradients andφ is chosen
when second-order accuracy for the flux limiter is sought.
Thus,r andφ are calculated according to:

φn
j = min

(
1,

2Dn
j

|Qn+θ
j |

)
(20)

rn
j =

1

Cn
m(i,j) − Cn

i

. . .

∑
j∈S+

i

[
|Qn+θ

j |

(
Cn

m(i,j) − Cn
i

)]
∑

j∈S+

i

|Qn+θ
j |

. (21)

Although the higher-order flux-limiter scheme uses a few
more functions than the upwind scheme, both schemes are
fully explicit. It means that in terms of computational effi-
ciency, they are equally efficient. However, finer grids may
impose severe numerical constraints on these explicit time-
stepping schemes (Chapra, 2005).

Regarding computational costs, numerical analysis per-
formed by Pereira(2010) on a Pentium® 4 revealed that
IPH-UnTRIM2D requires 5 min to complete a 24-h period
simulation run for a grid composed of 293 computational
cells of 100× 100 km. Over a larger simulation domain of
7527 computational cells, IPH-UnTRIM2D needed a little
over 40 min to complete the same 24-h simulation run. For
both runs, IPH-UnTRIM2D presented the same CPU time
when running with the upwind and flux-limiter schemes.

In the next section, IPH-UnTRIM2D is applied to the
Guaíba River. Thereafter, its capability in predicting circu-
lation and scalar transport patterns is discussed.
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Table 1.Streamflow and water level gauging stations of the Guaíba River and its tributaries used in this study.

Status
Station Position Station

River
Available

number Lat Long name data

86720000 −29◦14′04′′
−51◦51′18′′ Encantado Jacuí Discharge

Boundary 85900000 −29◦59′41′′
−52◦22′38′′ Rio Pardo Taquari Discharge

condition 87382000 −29◦45′32′′
−51◦09′02′′ São Leopoldo Sinos Discharge

upstream 87170000 −29◦35′19′′
−51◦22′56′′ Barca do Caí Caí Discharge

87399000 −29◦57′52′′
−50◦58′40′′ Passo das Canoas Gravataí Discharge

87450005 −30◦01′50′′
−51◦15′07′′ Ilha da Pintada Guaíba Water level

87460120 −30◦08′02′′
−51◦14′02′′ Ipanema Guaíba Water level

Control points 87450100 −30◦02′56′′
−51◦11′48′′ Ipiranga Guaíba Water level

87460007 −30◦05′32′′
−51◦15′01′′ Cristal Guaíba Water level

87460220 −30◦11′19′′
−51◦14′33′′ Ponta Grossa Guaíba Water level

Boundary
condition 87500020 −30◦15′32′′

−51◦09′20′′ Ponta dos Coatis Guaíba Water level
downstream

16
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Fig. 1: Illustration of an unstructured orthogonal grid (solid lines). An auxiliary grid (dashed lines) composed of segments that join the centres of each
computational cell is also shown to highlight geometric variables used in the section 2.9Fig. 1. Illustration of an unstructured orthogonal grid (solid lines).
An auxiliary grid (dashed lines) composed of segments that join
the centres of each computational cell is also shown to highlight
geometric variables used in Sect.2.9.

2.6 Study area

The Guaíba River is a large (surface area 436 km2) and shal-
low (mean depth 6.0 m at full pool) water body that runs
through Porto Alegre in the south of Brazil. It plays a fun-
damental role in transport, irrigation, drinking water supply
and wastewater discharge for the region. Its length measures
50 km, whereas its width at certain points has a cross section
of up to 15 km. Moreover, the Guaíba River comprises one
of the most important freshwater systems in Rio Grande do
Sul (Fig.2).

According to the Guaíba directive plan, its major environ-
mental problems are domestic sewage and industrial waste
effluents from urban areas. In addition, rural areas present
water pollution by pesticides. Therefore, the Guaíba River is

often subjected to eutrophication processes due to the nutri-
ent enrichment. It becomes more evident during the summer
once high levels of temperature and sunlight provide optimal
conditions for phytoplankton blooms.

2.7 Input data

The IPH-UnTRIM2D model requires multiple input data sets
which are collected from different databases. All time series
data should match the time period for which calibration and
predictions are being made. Thus, input data sets were ob-
tained for 1991 due to their consistency over the entire year.

Hourly wind speed and direction data were recorded by
the Instituto Nacional de Meteorologia (INMET) at a mete-
orological station located in Porto Alegre. Daily water level
and discharge data were provided by Agência Nacional de
Águas, Brazil (ANA). The water level stations are situated at
five sites along the Guaíba River: Ilha da Pintada, Ipanema,
Cristal, Ponta dos Coatis and Ponta Grossa (Table1).

The discharge stations at the Jacuí, Sinos, Caí and Gravataí
rivers were used as upstream boundary conditions, whereas
the water level station at Ponta dos Coatis was assumed as
the downstream boundary condition. Since there are no dis-
charge stations at the interface of the Jacuí and Guaíba rivers,
continuous discharge values for the Jacuí River were esti-
mated based on a regionalization method (Tucci et al., 1995;
Samuel et al., 2011). The regionalization method involved
transferring discharge data from subsidiaries of the Jacuí
River to its outlet by using interpolation techniques that de-
pend on geographic location. The discharge stations used as
input to the flow regionalization method are located 20 km
upstream from the interface of the Jacuí and Guaíba rivers,
as shown in Fig.2.

Once the critical flow conditions were reached in the
main channel, a gradual variation of element size from the
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Fig. 2: Location of the River Guaı́ba and municipalities on its banks. It also shows the composed of a group of 5 water level stations (circles) and 2
discharge stations (triangles).Fig. 2. Location of the Guaíba River and municipalities on its banks. It also shows the composition of a group of 5 water level stations

(circles) and 2 discharge stations (triangles).

shoreline to the main channel was used, where larger el-
ements were placed along the main channel. MTOOL has
therefore created a triangular grid composed of 4622 nodes,
7527 sides and 12 156 triangles (Fig.3).

A bathymetric survey of the Guaíba River was carried out
by the Diretoria de Hidrografia e Navegação do Ministério da
Marinha in 1964 (Fig.3). Therefore, average depths at each
element were estimated by a linear interpolation.

2.8 Hydrodynamic module calibration

The numerical approximation of the momentum equations
provided parameters related to fluid viscosity and diffusiv-
ity, wind stress, bottom friction and implicitness for the
temporal discretization. Many of these parameters have al-
ready been tested and calibrated for rivers and open-channels
(i.e. Chezy’s roughness and wind drag coefficients) (French,
1986). Therefore, Chezy’s coefficient (Cz) was adopted to
be constant and equals to 44.7 m1/2 s−1 over the entire do-
main. A calibration of wind drag coefficient (CD) for hy-
drodynamic models was carried outEscalante Estrada et al.
(2010). According to their numerical experiments, the wind
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Fig. 3: Spatial discretization of the river Guaı́ba using an orthogonal triangular grid (a) and its bathymetry (b).
Fig. 3. Spatial discretization of the Guaíba River using an orthogo-
nal triangular grid(a) and its bathymetry(b).
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drag coefficient was assumed to be 0.016. Regarding the
eddy horizontal viscosity (Ah) and diffusivity (Kh), Fragoso
Jr. et al.(2008) has successfully used 5 and 10 m2 s−1, re-
spectively, for modeling spatial heterogeneity of phytoplank-
ton in a shallow lake at South Brazil. For practical applica-
tions, the implicitness factor (θ ) is recommended to be in the
range 0.5≤ θ ≤ 1 (Cheng et al., 1993; Zhang and Baptista,
2007). However, numerical analysis performed byCasulli
and Cattani(1994) has shown that theθ method was stable
and presented the highest efficiency and accuracy for a value
of θ equals to 0.50.

For calibration, the IPH-UnTRIM2D model used a data
network composed of a precipitation station, five water level
stations and a meteorological station. A 150 day-period from
1 January to 1 June in 1991 was chosen in order to repre-
sent a wide range of hydrologic events (i.e. daily floods and
droughts).

The hydrodynamic module was calibrated by reproduc-
ing water level observations at the Ilha da Pintada, Ipanema,
Cristal and Ponta Grossa stations (Fig.2). Afterwards, the
conservation of volume was also tested where the balance be-
tween incoming and outgoing water fluxes must be equal to
the volume due to water level variations in the Guaíba River.

2.9 Assessment of advection–diffusion numerical
schemes

The water quality module was tested based on the conser-
vation of mass for both numerical schemes to solve the
advection–diffusion equation. The efficiency of the higher-
order flux-limiter scheme was compared with a first-order
upwind scheme by their conservation of mass for the Guaíba
River. In order to perform these comparisons, two scenarios
were considered for development of numerical analysis. The
mass balance computations for the higher-order flux-limiter
and first-order upwind schemes were compared with each
other at every time step.

The first scenario reproduces a deliberate release of a
tracer at a steady rate of 5 mg L−1 into the Guaíba River
over 15 days. The tracer is released at all interfaces of the
Guaíba River and its subsidiaries. As an initial condition, the
Guaíba River is assumed to be spatially homogeneous and
well-mixed, with a tracer concentration equal to 1 mg L−1

over its entire domain.
In the second scenario, the same initial conditions of tracer

concentration are adopted over the Guaíba River. However,
the release of a tracer remains at a constant rate of 5 mg L−1

only over the first 10 simulation hours. After the first 10 sim-
ulation hours, the tracer concentration released at the inter-
faces of the Guaíba River and its subsidiaries is instanta-
neously reduced to 1 mg L−1.

Errors due to numerical diffusion were assessed by moni-
toring the tracer concentration of a computational cell located
in the Delta of the Jacuí River.

Table 2. Comparisons between observed and simulated water ele-
vation data at the gauging stations (R-squared).

Station name R-squared

Ilha da Pintada 0.85
Ipanema 0.89
Cristal 0.93
Ponta Grossa 0.90

3 Results

3.1 Hydrodynamic module

In general, the hydrodynamic module of the IPH-
UnTRIM2D model successfully reproduced water level ob-
servations in response to tidal and runoff daily inflows. Com-
parisons between observed and calculated elevations showed
that IPH-UnTRIM2D model captured the trends of peaks and
valleys throughout 150-day period (Fig.4).

Of all the water level stations, Cristal and Ponta Grossa
presented better agreement with the observed water levels
once they were influenced by the downstream boundary con-
dition. To measure the agreement between observed and cal-
culated elevations, the Pearson correlation coefficient was
calculated for each water level station, as given by Eq. (22).

r =

n∑
i=1

(
Xi − X

) (
Yi − Y

)
√(

Xi − X
)2√(

Yi − Y
)2 , (22)

whereX andY denotes the time series of observed and sim-
ulated water level of length sizen, respectively.X andY are
the series averages. Table2 shows the Pearson correlation
coefficient computed at each gauging station.

The accuracy of the numerical approximation given by
the hydrodynamic module was compared with the continu-
ity equation for the water budget of the Guaíba River. Since
the hydrodynamic module calculates free surface variations
at every time step, the incremental volume at time stept + 1
is estimated as the differences between free surface varia-
tions betweent andt + 1. Theoretically, the incremental vol-
ume must be equal to the differences between incoming and
outgoing water fluxes into the Guaíba River.

Results obtained from the simulations indicated that per-
centage differences between the incremental volume and
incoming/outgoing water fluxes in the Guaíba River were
lower than 1 % of the total volume of the system. As this
error in volume conservation is lower than uncertainties asso-
ciated with data collection procedures (Moradkhani and Hsu,
2005), it suggests that global (and also local) volume conser-
vation was achieved.

According to the velocity fields (Fig.5), the hydrodynamic
behaviour of the Guaíba River was characterized by higher
current velocities in the main channel (ca. 0.1 m s−1) and
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Fig. 4: Calculated and observed elevation of water surface at four control points along the River Guaı́ba: (a) Ilha da Pintada; (b) Ipanema; (c) Cristal and
(d) Ponta Grossa.
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Fig. 4: Calculated and observed elevation of water surface at four control points along the River Guaı́ba: (a) Ilha da Pintada; (b) Ipanema; (c) Cristal and
(d) Ponta Grossa.
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Fig. 4: Calculated and observed elevation of water surface at four control points along the River Guaı́ba: (a) Ilha da Pintada; (b) Ipanema; (c) Cristal and
(d) Ponta Grossa.

(c)

F.F.Pereira
etal.:A

ssessm
entofN

um
ericalSchem

es
19

Fig. 4: Calculated and observed elevation of water surface at four control points along the River Guaı́ba: (a) Ilha da Pintada; (b) Ipanema; (c) Cristal and
(d) Ponta Grossa.

(d)

Fig. 4. Calculated and observed elevation of water surface at four control points along the Guaíba River:(a) Ilha da Pintada;(b) Ipanema;
(c) Cristal and(d) Ponta Grossa.

lower values along its shorelines (ca. 0.005 m s−1). On the
other hand, at the Delta of the Jacuí River, velocities and
free surface elevations varied depending on the narrowing
and widening effects of its set of stream channels. Although
the hydrodynamic solution reproduced wetting and drying
zones, these processes were not considered during the sim-
ulations due to the lack of topographic data along the shore-
lines of the Guaíba River and the Delta of the Jacuí River.

3.2 Numerical schemes for the advection–diffusion
transport equation

Once the hydrodynamic solution was calculated, its ve-
locities and elevations field were employed to solve the
advection–diffusion equation using the higher-order flux-
limiter scheme. In the first scenario, accumulated mass bal-
ance errors for both first-order upwind and higher-order flux-
limiter schemes were computed at every time step of the sim-
ulation (Fig.6).

Both schemes have showed that their accumulated mass
balance errors were lower than 20 % over a period of 15 days
after tracer was released. However, the higher-order flux-
limiter scheme used by IPH-UnTRIM2D led to a less diffu-
sive approach compared with a first-order upwind scheme. At
the end of the simulation, accumulated mass balance errors

reached 18 % for a first-order upwind scheme, whereas the
higher-order flux-limiter scheme yielded errors below 8 %.

In terms of tracer concentration, 1-day accumulated er-
ror in mass balance generated by the first-order upwind
scheme ranged from−0.12 to 0.18 mg L−1 over the entire
ecosystem. When derived from the higher-order flux-limiter
scheme, these values fluctuated within a range of−0.11 and
0.13 mg L−1. Since suspended sediment behaves as a passive
tracer, the magnitude of these errors in mass balance is com-
pared with estimates of daily sedimentation rates performed
by Stevenson et al.(1985) andOgston et al.(2004); Ogston
and Field(2010), as well as measurements of sediment re-
suspension in estuaries (Bokuniewicz et al., 1991; Hill et al.,
2003).

Sediment fluxes measured 0.3 m above the bottom in Long
Island Sound (Bokuniewicz et al., 1991), the Mersey estu-
ary and Dover Straits (Hill et al., 2003) (i.e. estuaries lo-
cated along the shore, like the Guaíba River) varied from
0.00063 to 0.00100 mg cm−2 s−1. Under the same sediment
resuspension or sedimentation rates, the total particle gain or
loss due to resuspension or sedimentation over a 1-day period
in the Guaíba River may achieve up to 144 mg L−1. Estimates
of sediment resuspension and sedimentation in bays and es-
tuaries (Stevenson et al., 1985; Ogston et al., 2004; Ogston
and Field, 2010) showed that sediment resuspension and
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Fig. 5: Two dimensional surface velocity field over the
River Guaı́ba.Fig. 5. Two-dimensional surface velocity field over the Guaíba

River.

sedimentation rates can fluctuate from 50 to 80 mg cm−2 d−1

throughout the year that leads to minimum and maximum
daily deposition rates of 83 and 133 mg L−1, respectively.
Therefore, both measured and estimated particle gain or loss
due to sediment resuspension or sedimentation were by far
larger than error in mass balance generated by the numerical
schemes.

Differences between the diffusion of higher-order flux-
limiter scheme and first-order upwind scheme were evalu-
ated by plotting the evolution of tracer concentration fields
over 26, 130 and 312 h (Fig.7). Although both numerical
solutions are similar after the first 130 h of simulation, the
higher-order flux-limiter scheme presented faster spreading
of tracer concentration over pelagic zones (open water). Af-
ter 312 h, tracer concentrations reached Patos Lagoon, which
indicates that the Guaíba River has a residence time approxi-
mately equal to 13 days, in accordance with (Rosauro, 1982;
Silveira, 1986).

In the second scenario, after 15 days, accumulated mass
balance errors do not exceed 3 % for both schemes (Fig.8).
Moreover, a slight and constant difference between their
mass balance errors was lower than 0.5 % for whole simu-
lation, where the higher-order flux-limiter scheme proved to
be more conservative than a first-order upwind scheme.
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Fig. 6: Accumulated mass balance errors for the flux limiter and upwind schemes over 15 days of simulation.

Fig. 6. Accumulated mass balance errors for the flux-limiter and
upwind schemes over 15 days of simulation.

As the higher-order flux-limiter scheme may employ ei-
ther first- or second-order approaches, it leads to a less dif-
fusive solution compared with the solution calculated using
a first-order upwind scheme. By analysing the pulse tracer
shapes, the higher-order flux-limiter scheme showed slight
spreading of tracer and peak tracer concentrations of close
to 5 mg L−1, whereas a first-order upwind scheme presented
a higher diffusing capacity that smoothes gradients of tracer
concentration (Fig.9).

4 Conclusions

This paper presented comparisons between two different nu-
merical schemes for solving advection–diffusion equations
on unstructured grids using IPH-UnTRIM2D. As shown
in previous applications of unstructured grid hydrodynamic
models (Casulli and Walters, 2000; Zhang and Baptista,
2007), IPH-UnTRIM2D was willing to represent the time
series of water level observations and the movement of sus-
pended material throughout the Guaíba River. Its application
to the Guaíba River showed that unstructured grids presented
higher flexibility in representing the shape of the Guaíba
River than previous studies on uniform grids (Rosauro, 1982;
Silveira, 1986) once unstructured computational cells var-
ied depending on bathymetry, geometry and shoreline-fitting
boundary of the Guaíba River.

The efficiency of the higher-order flux-limiter scheme
was tested by comparing its solution with a first-order up-
wind scheme solution for two scenarios in the Guaíba River.
According to comparisons, the higher-order flux-limiter
scheme was more mass-conservative than a first-order up-
wind scheme once accumulated mass balance errors achieved
18 % after a 15-day period for a first-order upwind scheme
while flux-limiter errors were below 8 % in accordance with
with numerical analysis performed byCasulli and Zanolli
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Fig. 7: Concentration field of a tracer plume calculated using the flux limiter and upwind schemes for 26, 130 and 312 hours in the River Guaı́ba where
red computational cells denote values of concentration higher than 4.5 mgL−1 while blue cells mean values of concentration lower than 2.0 mgL−1.

Fig. 7.Concentration field of a tracer plume calculated using the flux-limiter and upwind schemes for 26, 130 and 312 h in the Guaíba River,
where red computational cells denote values of concentration higher than 4.5 mg L−1, while blue cells mean values of concentration lower
than 2.0 mg L−1.
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Fig. 8: Comparisons between accumulated mass balance errors considering a pulse input of tracer concentration into River Guaı́ba during 10 hours for the
flux limiter and upwind schemes.Fig. 8.Comparisons between accumulated mass balance errors con-
sidering a pulse input of tracer concentration into the Guaíba River
during 10 h for the flux-limiter and upwind schemes.

(2005) in a curved channel under controlled boundary con-
ditions. Moreover, accumulated mass balance errors showed
that, independently of the numerical scheme employed, mass
conservation was proportional to the total amount of mass re-
leased in the system. Although both schemes have presented
mass conservation errors, these errors are assumed negligible
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Fig. 9: Pulse of a passive tracer at the Delta of the River Jacuı́.

Fig. 9.Pulse of a passive tracer at the Delta of the Jacuí River.

compared with losses due to erosion, sedimentation or decay
of a substance in estuaries (Stevenson et al., 1985).

Ongoing studies have been developed to include the
higher-order flux-limiter scheme on a three-dimensional
complex dynamic model for aquatic ecosystems (Fragoso Jr.
et al., 2008; Fragoso Jr et al., 2009) in order to create an ef-
ficient and capable tool for performing analysis of long-term
ecosystem dynamics.
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