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ABSTRACT

In this work, we study the k-labeled spanning forest problem (KLSF). The input of the

KLSF is an undirected graph with labeled edges and a positive integer k. The goal is

to find a spanning forest of the graph with at most k different labels associated with the

edges, that minimizes the number of components. KLSF finds practical applications in

different scenarios related to networks design and telecommunications. Its solutions may

help to reduce the negative impact of electromagnetic fields exposure on the population

health or to increase profits of internet management companies, among others. The in-

terest in the KLSF problem is not only practical but also theoretical since the problem

generalizes the best-known NP-hard minimum labeling spanning tree problem (MLST).

This work reinforces the NP-hardness of the KLSF and ensures that, even for the simple

instances where the components of the original graph are only triangles and edges, the

problem is NP-hard. Also as a theoretical result, an inapproximability proof is presented

for it, ensuring that unless P = NP there is no polynomial time algorithm with approxi-

mation factor polynomial in the number of the labels. To complete the theoretical results

a trivial 3-approximation result is presented for the particular case where the input graph

components are edges or triangles. From the application side, to approach KLSF, we

propose a fix-and-optimize matheuristic that was tested over several instances, achieving

high-quality solutions in reasonable computational time. When compared to the best-

known algorithms in the literature, our matheuristic outperformed the other proposals in

most cases, finding better solutions in less computational time for the most challenging

instances.

Keywords: K-Labeled Spanning Forest. NP-hardness. Inapproximability. Metaheuristic.

Matheuristic. Integer Linear Program. Fix-and-optimize.



9

1 INTRODUCTION

Globalization has increasingly demanded the need to keep people connected. This

demand for connectivity has been satisfied by computer networks and their technologies

which are constantly evolving. This evolution creates the need to find solutions for new

problems that end up emerging. One example occurs when studying strategies to reduce

the impact in the population health of continuous electromagnetic field exposures. Nowa-

days, the emergence of wireless networks such as Wifi and cell phone networks have been

increasingly exposed the population to electromagnetic fields, which can bring possible

negative effects on people’s health [Wiart et al. 2019].

This problem of exposure can be modeled as the k-labeled spanning forest (KLSF).

The KLSF is defined over the class of graphs labeled on edges, that is, graphs with each

edge mapped to one label. The objective is to obtain a spanning forest of the graph with

the smallest number of trees (components), such that the number of labels associated to

the forest’s edges is upper-bounded by an integer k. One example for the KLSF is illus-

trated by Figure 1.1.
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Figure 1.1 – The graph in the left represents an input of the KLSF with set of labels {a, b, c, d, e},
and considering k = 2, the graph in the right is an optimal solution for that instance maintaining

only the labels {a, b}.

In the context of the exposure to electromagnetic fields mentioned before, the

nodes of the graph represent the network’s devices and the edges the connections between

them, being the labels the frequencies of such connections. Guaranteeing that the number

of different frequencies is less than or equal to a value k may reduce such a population

exposure. To augment the quality of the services, the disconnected coverage areas should

be as few as possible, being this the objective of the KLSF.
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Another network problem that can be modeled as KLSF is related to business

and financial issues of network services. The decentralization of network administration

between different types of companies and agencies involves the negotiation of paths to

keep the internet connection [Tanenbaum, Wetherall et al. 1996]. In this scenario the

topology of graphs can be built, defining again as nodes the devices of the network and as

edges the connections between the devices. In this case, the different network providers

would be the labels. When planning its network, a company will try to limit the number

of connections not managed by it. Thus, considering the usage of at most k different

network providers would bring financial and administrative benefits when negotiating and

planning the connections.

In the context of routing, we can model a multimodal transport system [Miller et

al. 2005] as the KLSF. On this scenario, the different companies of transporting can be

represented by labels, while the locals and the paths between them can be, respectively,

nodes and edges. In this case, minimizing the number of companies would reduce the

service’s costs, then limiting the labels to at most k may bring financial and logistical

benefits.

Motivated by the practical applicability of the KLSF and by its theoretical cha-

llenge this work aims to explore this problem in different ways, approaching it both theo-

retically and in an applicable way. But first it is necessary to define the problem formally.

1.1 Graphs definitions and notations

The KLSF is defined over simple undirected graphs (or simply graphs), where a

graph G consists of two sets: a set of nodes denoted by VG, and a set of edges (unordered

pairs of nodes) denoted by EG. We use V and E instead of VG and EG whenever G is

apparent from context.

Besides the graph definition, other graph concepts are required before defining

KLSF. Below we define the subgraph relation and some special classes of graphs such as

paths, cycles, connected graphs, trees, and forests.

Given two graphs G and H , we say that H is subgraph of G (denoted by H ⊆ G)

if the set of nodes of H is a subset of the set of nodes of G (i.e., VH ⊆ VG) and the set of

edges of H is a subset of the set of edges of G (i.e., EH ⊆ EG). If H ⊆ G and VH = VG,

then H is a spanning subgraph of G.

A graph G is a path if there exists a sorting u1, u2, . . . , u|VG| of the nodes, such that
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the edges of G are defined by each pair of consecutive nodes (i.e., EG = {(ui, ui+1)}|VG|−1
i=1 ).

In such cases it is said that G is a path connecting u1 to u|VG|.

G is a connected graph if for every pair of nodes u, v ∈ VG there exists a path

P ⊆ G connecting u to v. Any maximal connected subgraph H ⊆ G is a component of

G (i.e., for each G′ ⊆ G if G′ is connected and H ⊆ G′, then H = G′). Given a graph G,

the set of its components is denoted by C(G).

A graph G is a cycle if contains at least three nodes (i.e., |VG| ≥ 3) that can

be ordered as u1, u2, . . . , u|VG|, u1, such that there exists an edge between each pair of

consecutive nodes (i.e., EG = {(u|VG|, u1)} ∪ {(ui, ui+1)}|VG|−1
i=1 ). If no subgraph H ⊆ G

is a cycle, then G is acyclic.

Any connected and acyclic graph is a tree, and a forest is a graph whose compo-

nents are trees. H is a spanning tree (spanning forest) of a graph G iff H is tree (forest)

and H is a spanning subgraph of G.

With the graph notations well defined, we can now formally introduce the KLSF:

Problem 1. The k-labeled spanning forest (KLSF).

Input: A tuple I = ⟨G,L, ℓ, k⟩, where:

• G is a graph.

• L is a set of labels.

• ℓ : EG → L is a function that maps each edge to a label.

• k ∈ N is an integer value such that 1 ≤ k ≤ |L|, representing an upper bound for

the number of labels in a solution.

Output: A spanning forest F ⊆ G with minimum number of components, which

satisfies |ℓ(EF )| ≤ k. 1

Given an instance I = ⟨G,L, ℓ, k⟩ of the KLSF, and a subset of labels S ⊆ L,

the graph G [S] denotes the spanning subgraph of G containing all edges of G with labels

in S (i.e., VG[S] = VG and EG[S] = {e|e ∈ EG and ℓ(e) ∈ S}). Also, given X ⊆ VG, its

labeled cut is the function ℓ(X) that returns the set of labels associated to every edge with

exactly one endpoint in X (i.e., ℓG(X) = {ℓ ((u, v)) |(u, v) ∈ E, u ∈ X and v ∈ V \X}).

1Given a function f and a subset S of the domain of f , we define f(S) = {f(s)|∀s ∈ S}
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1.2 A summary of this work’s results

Our main contributions to the KLSF are listed below.

• Proof of NP-hardness for the problem even when the input instance is a graph where

the components are only triangles and edges (triangles-edges graph).

• Proof of inapproximability that ensures there are no polynomial approximation for

the problem in relation to the set of labels unless P = NP.

• A new mathematical model for the problem,

• A competitive matheuristic to approach the problem.

1.3 Organization of the work

The remainder of this document is organized as follows. First, it is presented a

literature review with the main proposals for KLSF in Chapter 2, followed by the theoret-

ical results given by Chapter 3. Chapter 4 presents the description of the fix-and-optimize

matheuristic proposed on this work. Finally, Chapter 5 presents a conclusion about the

results of the work, and indicates possible future research directions.
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2 LITERATURE REVIEW

In this chapter we review the main literature results related to the KLSF. Section

2.1 presents the works developed for the particular case MLST, while Section 2.2 presents

the studies for the KLSF.

2.1 Bibliographical review on the minimum labeling spanning tree problem

The MLST is particular case of the KLSF problem, that given a connected graph

labelled in the edges, the objective of the problem is find a spanning tree, with the mini-

mum number of labels. The first study for the MLST was proposed by [Chang and Shing-

Jiuan 1997], presenting a proof for the problem’s NP-hardness and three algorithms. One

of these algorithms was a heuristic that starts with a spanning tree and makes swaps of

edges, with the objective of reducing the number of labels. The second algorithm was

a greedy heuristic named Maximum Vertex Covering Algorithm (MVCA), which starts

with a spanning forest containing only the graph’s nodes and iteratively chooses a label

that ensures the greater reduction in the number of components when the associated edges

are included to the solution being constructed. This procedure is executed until the so-

lution has only one component. The last proposal was an exponential-time A∗-algorithm

developed for computing an optimal solution of the problem.

Over the years many other approaches were proposed for MLST and related prob-

lems [Silva 2018]. In [Consoli et al. 2009], the minimum labeling Steiner tree problem

was studied. In that study some heuristic approaches were presented. One of those heuris-

tics is a variable neighborhood algorithm, for it are presented one evolution, that uses the

idea of complementary solution. The idea of a complementary solution consists of: con-

struct a new solution before a new exploration of the neighborhood. Such that this the

new solution does not use any edge labelled by the current solution explored. In [Xiong,

Golden and Wasil 2006], a genetic algorithm and four adaptations of the MVCA was

proposed for MLST, and, in [Vaisman 2022], a cross-entropy approach was developed

similarly to an evolutionary algorithm that considers static proprieties of the solutions’

set.
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2.2 Bibliographical review on the k-labeled spanning forest

This section presents a bibliographical review of the main results of the literature

for the KLSF. Three main works were reviewed: the presentation of the problem by

[Cerulli et al. 2014] where six heuristics were proposed, the work of [Consoli, Perez and

Mladenović 2017] were four other heuristics were developed, and the work of [Figueredo

2020] where a study on mathematical models and techniques for solving the problem

were conducted. Each of the following subsections presents a review of these studies.

2.2.1 Main algorithmic proposals for the k-labelled spanning forest

In the work of [Cerulli et al. 2014] the KLSF was introduced and a proof of NP-

hardness was presented. This proof was obtained by a trivial reduction from the particular

case MLST to the KLSF. Additionally, in the same study some heuristics were applied

for solving the problem:

1. Maximum Vertex Cover Algorithm (MVCA): Inspired by the heuristic MVCA pro-

posed by [Chang and Shing-Jiuan 1997] for the MLST, this algorithm was modified

by [Cerulli et al. 2014] to limit the process of choice of labels to at most k labels.

A step-by-step description of this procedure is presented in Algorithm 1.

Algorithm 1 Maximum Vertex Cover Algorithm (MVCA)

Input: An input for KLSF I = ⟨G,L, ℓ, k⟩
Output: A forest F with at most k labels

1: F ← (V = VG, E = {})
2: while |ℓ(EF )| < k do
3: l← argmin∀c∈L\ℓ(EF )|C(G [ℓ(EF ) ∪ {c}])|
4: F ← Spanning forest from G[ℓ(EF ) ∪ {l}]
5: end while
6: return F

2. Pilot method (PILOT): Also a constructive heuristic, the PILOT approach uses the

MVCA as a look-ahead mechanism. At each step of the algorithm, each label

not present in the solution yet is evaluated with the already chosen labels. Such

evaluation is computed by applying a MVCA with the remaining labels. Then,

the label tested with the best result of the objective function after the MVCA is

selected to compose the solution. This sequence of steps is executed until k labels
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are chosen.

3. Local Search Heuristic (LSH): This heuristic defines a neighborhood for the so-

lutions of the KLSF. This neighborhood was defined by all possible exchanges

between a label that was in the solution and one that was not. If a change gives a

better objective value, then the solution is updated, otherwise the new solution is

discarded and the previous one is kept.

4. Reactive Tabu Search (RTS): This heuristic keeps a reactive tabu list that forbids the

algorithm from doing some steps in the neighborhood’s exploration. This list has

a dynamic size, growing up whenever the algorithm tries to reevaluate a movement

to a neighborhood already present in the tabu list. If the algorithm does some steps

without hitting the list, then the list’s size decreases. This list allows the algorithm

to do movements worse than the actual explored since the best movements could be

a tabu movement. As the algorithm can get stuck with the tabu list of moves, the

author proposed a sequence of random moves as a solution to avoid such a problem.

The stopping criterion of the algorithm is given by an input parameter.

5. Simulated Anealing (SA): Also using the idea of neighborhood’s exploration, this

algorithm keeps a temperature parameter that defines the possibility of a solution

being accepted. This temperature allows the algorithm to accept a solution even if

it is worse than the current one. This tolerance of acceptance was defined by the

Boltzmanm function [Landau 1980] that decays as the iterations occur.

6. Genetic Algorithm (GA): In the genetic algorithm proposed for KLSF a population

was initialized with random feasible solutions, let us refer such population as P ={
p1, p2, ..., p|P |

}
. The fitness function used was the number of components of the

solution. The parents of the next generation were defined through the sequence

1 ≤ i ≤ |P | of individuals, that is, the individuals pi and p((i+1) mod(|P |)) generate

the individual ti with the crossover procedure. The crossover was made by applying

an MVCA with the set of labels of the parent solutions. After the crossover, the

mutation procedure in the new individual was applied, this procedure was made

by adding one more label to the new individual and executing the MVCA with the

k + 1 labels. From 1 ≤ i ≤ P , the next generation was generated by keeping in

the population the individual with the best fitness between the generated ti and the

previews one pi.

In addition to these heuristics, a branch and bound algorithm was presented by
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[Cerulli et al. 2014] that exactly solved small instances. The work also proposed a set of

random instances for testing the algorithm. This set was provided by the authors and was

used for our computational experiments in Chapter 4.

2.2.2 Comparison of metaheuristics for the k-labeled spanning forest problem

The proposal of [Consoli, Perez and Mladenović 2017] consisted of four different

metaheuristics for the KLSF:

1. Greedy randomized adaptive search procedure (GRASP): The GRASP proposed

for the KLSF starts with a solution with only one random label and creates a set of

candidate labels to be included in the solution. The candidates are defined by all the

labels that offer the greater reduction for the number of components considering the

labels already in the solution. One random label is picked from the candidates. This

procedure of choosing labels is executed until k labels have been chosen. After the

choice of the k labels, a local search is executed, which consists of removing one

label of the solution and adding the label that guarantees the best objective value.

2. Variable neighborhood search (VNS): The VNS defines neighborhoods for the so-

lutions, which in this work were based on the hamming distance. Let q ≥ 1 be

an integer value, and S be a feasible solution, the neighborhood Nq(S) represents

all solutions of the space of solutions, such that the hamming distance to S is less

than q. The exploration of solutions is made in 2 phases, the shaking phase, that

from q = 1 to q = k + k/3 constructed a new solution of Nq(S). Such construct

consists in: remove labels until q if q ≤ k, and when q > k after make the solution

empty removing labels, start to add labels to it until q − k. After this procedure the

solution has less labels than k, than the algorithm complete such solution applying

a MVCA with the labels that are not in the it. To finish the algorithm, it was applied

an improvement phase where a LSH is applied in the final solution of the shaking

phase.

3. Complementary variable neighborhood search (COVNS): As an update of the above

VNS, to ensure a better exploration of the solutions’ space, before the construction

of the neighbor, the COVNS constructs a complementary solution for exploring the

neighborhood. This complementary solution is computed by an MVCA with the

labels that were not in the final solution of the LSH (in the complementary space of



17

labels).

4. Intelligent variable neighborhood search (IVNS): The IVNS was an evolution of

COVNS, where instead of using the MVCA to generate the new solution, a prob-

abilistic construction was used. This construction considered an evaluation of the

labels of the complementary set and the Boltzmanm function.

2.2.3 The k-labelled spanning forest - Theoretical results and Mixed integer pro-

gramming study for the problem

Different from the others studies proposed for the KLSF in [Figueredo 2020], the

focus were the presentation of theoretical results and exact methods for it. [Figueredo

2020] showed particular cases that admit polynomial time solutions, gave integer pro-

gramming formulations and applied techniques within mixed integer programming solvers

for solving the problem. These techniques included cutting planes, lazy constraints, and

bender decomposition. Also, the authors presented a parallel implementation for the

branch and bound proposed in [Cerulli et al. 2014]. For testing the techniques devel-

oped, more instances were generated following the construction proposed by [Cerulli et

al. 2014].

In [Figueredo 2020], three different mathematical models for KLSF were intro-

duced, tested over several instances within a mixed integer programming solver, and

ranked by their performance. The formulation with overall better results was the “la-

beled Cut Model”.

The “labeled Cut Model” requires the concept of extended instance, which con-

sists of adding an extra node s to the graph, and for each node u ∈ V an extra edge is also

included between s and u with a new label lu. Figure 2.1 illustrates the construction of an

extended instance.

Formally, given an instance I = ⟨G,L, ℓ, k⟩ of KLSF, the extended instance I ′ =

⟨G′, L′, ℓ′, k′⟩ of I is:
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Figure 2.1 – The graph on the left is an input graph for KLSF, on the right the extended graph is
illustrated, with the new node s and the edges between s and the rest of the nodes. Notice that

different new labels (l1, l2, l3 and l4) were defined for the edges incident in s.

VG′ = {s} ∪ VG

EG′ = {(s, u) |u ∈ VG} ∪ EG

L′ = {lu|u ∈ VG} ∪ L

ℓ′ ((u, v)) =

 lu, if v = s

ℓ ((u, v)) , otherwise

k′ = k.

Let Q = L′ \ L. Finding an optimal solution for an instance I of KLSF is equiv-

alent to finding a connected graph G′ [L∗ ∪Q∗], where L∗ ⊆ L and Q∗ ⊆ Q, respecting

|L∗| ≤ k and with the objective of minimize |Q∗|.

The “labeled Cut Model” defines a binary variable zl for each l ∈ L′ to decide

whether the label l belongs to ℓ(EF ) , where F is a solution for I ′:

zl =

 1, if l is in the solution

0, if l not in the solution

Since the problem seeks to minimize the cardinality of Q∗, the objective function

can be written as:

min
∑
l∈Q

zl
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To ensure that G′[L∗ ∪ Q∗] is connected, for each nonempty proper subset S of

nodes of G′, there must be an edge connecting S to the nodes in VG′ \ S. The following

set of constraints guarantee that condition:

∑
l∈ℓ(S)

zl ≥ 1 ∀ ∅ ≠ S ⊂ VG′

Finally, the number of labels of L∗ cannot be larger than k. This condition can be

ensured by the constraint below:

∑
l∈L

zl ≤ k

From the above discussion, the “labeled Cut Model” of [Figueredo 2020] for

KLSF is modeled as follows:

min
∑

l∈Q zl (2.1)

s.t. : ∑
l∈ℓ(S) zl ≥ 1 ∀ ∅ ≠ S ⊂ VG′ (2.2)∑
l∈L zl ≤ k (2.3)

zl ∈ {0, 1} ∀l ∈ L′ (2.4)

The cardinality of the constraints’ set 2.2 is exponential, since there exists a con-

straint for each nonempty proper subset of VG′ (i.e., 2|VG′ |−2 constraints). Hence, writing

the complete model is inefficient even for small instances. Therefore, strategies to in-

teractively add those constraints are required, such as the callback functions and lazy

constraints mechanisms used in [Figueredo 2020].

Callback functions are used by solvers to avoid writing the complete model and

iteratively including unsatisfied constraints. That is, given a relaxed solution explored

by the solver, the cut callbacks proposed by [Figueredo 2020] consisted of rounding to 1

every variable with non-zero and non-integer value of this solution, and from this rounding

execute a Depth First Search (DFS) procedure to verify which constraints were violated.

Another callback strategy of [Figueredo 2020] was the use of Lazy Constraints

callbacks. These callbacks are used when the solution explored is an integer solution for

the model, but infeasible by a restriction not added yet in the solver execution. In this
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case, the constraint is added, but the addiction of it is only propagated to the branches

they were violated. Similar to the cut callback functions, these constraints are identified

by a DFS algorithm.
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3 NP-HARDNESS AND APPROXIMABILITY

Although the KLSF problem has already been proved to be NP-hard, in this chap-

ter a new proof regarding its NP-hardness is presented. This proof ensures that even in the

simplest instances where the components of the input graph are triangles and edges, the

problem remains NP-hard. Following the chapter results, it is presented an inapproxima-

bility threshold for the problem in terms of the cardinality of labels. Such a result ensures

that, unless P = NP, there is no polynomial time |L|O(1)-approximation algorithm for the

problem. To finish the chapter it is presented a trivial approximation for the NP-hard case

where the graphs’ components are triangles and edges. Our proofs of NP-hardness and

inapproximability for KLSF use reductions from the 3 Exact Cover problem (X3C).

The X3C receives a set of elements and a set of triples over the elements, being

the objective to answer if there exists a set cover of the elements such that each element is

contained in exactly one set of the solution. The X3C can be formally defined as follows:

Problem 2. 3 Exact Cover (X3C).

Input: A tuple I = ⟨X, T ⟩, where:

• X is a set of elements.

• T ⊆

 X

3

1 is a set of triples over X .

Output: A set T ⊆ T , such that each element of X is contained in exactly one

element of T (i.e., T is an exact cover of X), or to answer that such a set T does not exist.

For the reductions we will disregard trivial cases of the problem such as, the set

of elements is not divisible by 3, or cases where there is at least one element that is not

covered by any triple.

3.1 NP-Hardness

In this section it is proved that the KLSF belongs to the NP-hard complexity class

of problems even when the input graph is a triangles-edges graph (i.e., a graph where

each component is an isolated triangle or edge). This result is given by the following

theorem, which considers a reduction from X3C.

1Given a set S and a value n ∈ N∗, the
(

S
n

)
notation represents the possible combinations of n

elements of the set S
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Theorem 1. KLSF is NP-hard even when restricted to triangles-edges graphs.

Proof. Let I = ⟨X, T ⟩ be an instance of X3C, we construct an instance I ′ = ⟨G,L, ℓ, k⟩

of KLSF as described by the following steps (considering the triples are given in some

order and t < t′ is true if triple t appears before triple t′):

1. We start the label set L with a single special label lβ , and for each triple t ∈ T we

include in L a new label lt.

2. For each element x ∈ X , we denote by Tx ⊆ T the set of triples containing x, and

by Dx = {⟨t, t′⟩ |t, t′ ∈ Tx, t < t′} the set of pairs of triples in Tx. Then, for each

x ∈ X and each pair of triples ⟨t, t′⟩ ∈ Dx, we construct a triangle, including in VG

the nodes ux
tt′ , v

x
tt′ and wx

tt′ , and in EG the edges (ux
tt′ , v

x
tt′), (u

x
tt′ , w

x
tt′) and (vxtt′ , w

x
tt′),

respectively, with labels lt, lt′ , and lβ (i.e., ℓ(ux
tt′ , v

x
tt′) = lt, ℓ(ux

tt′ , w
x
tt′) = lt′ , and

ℓ(vxtt′ , w
x
tt′) = lβ).

3. Considering the construction so far, we define the value m = maxt∈T
{∣∣EG[{lt}]

∣∣},

and for each triple t ∈ T and from i = 1 to i = m−
∣∣EG[{lt}]

∣∣, we construct a new

isolated edge by adding the nodes ait and bit to VG, connected by the edge (ait, b
i
t)

added to EG with label lt (i.e., ℓ(ait, b
i
t) = lt).

4. Also, we construct an isolated extra edge with the special label lβ , by adding

to VG the nodes aβ and bβ , and defining the edge connecting them in EG (i.e.,

ℓ(aβ, bβ) = lβ).

5. Finally, we set k = |X|
3

+ 1.

Figure 3.1 illustrates an example of the above construction, and f Formally, we

define the elements of I ′ as follows:

k =
|X|
3

+ 1.

VG = {ux
tt′ , v

x
tt′ , w

x
tt′|x ∈ X, and ⟨t, t′⟩ ∈ Dx}

∪
{
ait, b

i
t|t ∈ T , and from i = 1 to i = m−

∣∣EG[{lt}]
∣∣} ∪ {aβ, bβ} ,

EG = {(ux
tt′ , v

x
tt′), (u

x
tt′ , w

x
tt′), (v

x
tt′ , w

x
tt′)| x ∈ X, and ⟨t, t′⟩ ∈ Dx}

∪
{
(ait, b

i
t)|t ∈ T , and from i = 1 to i = m−

∣∣EG[{lt}]
∣∣} ∪ {(aβ, bβ)},
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L = {lβ} ∪ {lt| t ∈ T } ,

ℓ(e) =


lt, if e ∈ {(ux

tt′ , v
x
tt′)| x ∈ X, ⟨t, t′⟩ ∈ Dx} ,

lt′ , if e ∈ {(vxtt′ , wx
tt′)| x ∈ X, ⟨t, t′⟩ ∈ Dx} ,

lt, if e ∈
{
(ait, b

i
t)| t ∈ T , and from i = 1 to i = m−

∣∣EG[{lt}]
∣∣} ,

lβ, if e ∈ {(ux
tt′ , w

x
tt′)| x ∈ X, ⟨t, t′⟩ ∈ Dx} ∪ {(aβ, bβ)},

cba e f

triple 1 triple 3

d

triple 2

aß bß

Figure 3.1 – Example of construction of an input from X3C to one input for KLSF. The 3 triples
define the labels l1, l2, and l3. For each element that is contained in two triples, one triangle is
constructed. The first triangle refers to the element c that is contained in the triples 1 and 2 and
the other two are related to the elements d and e that share the triples 2 and 3. The edges bellow

the triangles are the edges defined in the step 3 of the construction, that considers m = 3, the
maximum number of edges with the same label, defined from the label l2.

Trivially I ′ is a valid instance for KLSF, where the input graph G is a triangles-

edges graph. Moreover, since there are at most |T | triples containing a same element

x ∈ X , the number of triangles associated with x is O(|T |2), hence there are no more

than O(|X| · |T |2) triangles in G. Also, each triple t ∈ T can share a same element with

at most |T | − 1 other triples, thus for any triple
∣∣EG[{lt}]

∣∣ = O(|T |) and m = O(|T |),

implying that the number of isolated edges associated with any triple is upper bounded

by O(|T |). Therefore, G has O(|X| · |T |2) nodes and edges, and L has O(|T |) labels.

Consequently I ′ is polynomial on the size of I .

Below we prove that there exists an exact cover T ⊆ T for X3C with instance I

iff there exists a solution S for KLSF with instance I ′, such that |C (S) | ≤ |VG| − ( |X|
3
·

m+ |EG[{lβ}]|).

Given an exact cover T ⊆ T for X3C with instance I , we construct a solution F

for KLSF with instance I ′ by selecting all edges labeled with lβ or with lt for any triple
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t ∈ T (i.e., F = G[{lt| t ∈ T} ∪ {lβ}]). First, we check the properties that F must satisfy

to be a feasible solution for KLSF with instance I:

• F must be a spanning forest of G. Since the labels {lt|∀t ∈ T} are labels from an

exact cover, that is no element of X belongs by more than one triple in T . Hence,

the edges labeled by T do not form cycles, therefore, F is a forest.

• F cannot use more than k labels. Since T is an exact cover, it follows |T | = |X|
3

,

and the number of labels used by F is equal to |X|
3

plus one (the special label lβ),

hence F does not use more than k = |X|
3

+ 1 labels.

Item 3 of the reduction ensures that, for each triple t ∈ T , there are exactly m

edges of G with label lt. Since the edges labelled by {lt|∀t ∈ T} ∪ {lβ} do not form

cycles, then the the number of components of F satisfies:

|C(F )| = |VF | − |EF | = |VG| −

(∑
t∈T

m+ |EG[lβ ]|

)
= |VG| −

(
|X|
3
·m+ |EG[lβ ]|

)
.

In the other direction, consider a feasible solution F for KLSF with instance I ′,

such that |C(F )| ≤ |VG| −
(

|X|
3
·m+ |EG[lβ ]|

)
. If the special label lβ is not associated

with any edge of F , then F contains at most m edges for any used label, and since there

are at most |X|
3

+ 1 labels, it follows:

|C(F )| = |VF | − |EF | ≥ |VG| −
(
|X|
3

+ 1

)
·m > |VG| −

(
|X|
3
·m+ |EG[lβ ]|

)
.

The last inequality is given by the fact that |EG[lβ ]| > m, because m is upper

bounded by the number of triangles and lβ appears on each triangle plus one extra edge

added by Item 4. The above result denies our assumption on |C(F )|, hence F must con-

tain edges labeled with lβ . Moreover, for each triple t ∈ T , there are m edges constructed

with label lt in G, implying that |C(F )| ≤ |VG| −
(

|X|
3
·m+ |EG[lβ ]|

)
only if F contains

all edges with label lβ and all m · |X|
3

edges with labels associated to |X|
3

different triples of

T . As F is acyclic, the |X|
3

triples whose labels are associated with edges of F are disjoint

and form an exact cover for I .

Since X3C is an NP-complete problem [Garey and Johnson 1979], it follows that

KLSF is NP-hard even when the input graph is a triangles-edges graph.
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3.2 Inapproximability

In this section we present a strong inapproximability result for KLSF. We give a

reduction from X3C to KLSF establishing that, unless P = NP, there does not exists a

|L|O(1)-approximation algorithm for the KLSF.

The reduction uses the Walecki decomposition concept [Alspach 2008] to create

disjoint Hamiltonian paths. Given a complete graph Kn with n nodes, this decomposition

partitions the edges in ⌊n
2
⌋ edge-disjoint paths (Hamiltonian paths). In Figure 3.2 a visu-

alization of the Walecki construction can be seen, and the Algorithm 2 describes the steps

of this construction.

Algorithm 2 Walecki Decomposition

Input: A complete graph Kn with nodes VKn = {v0, v1, . . . , vn−1}
Output: A set of Hamiltonian disjoint paths P from Kn.

1: P ← {}
2: for root = n/2 to n− 1 do
3: E ← {}
4: right← (root+ 1)(mod n)
5: E ← E ∪ {vroot, vright}
6: left← root− 1
7: for i from 0 to n/2 do
8: E ← E ∪ {vright, vleft}
9: right← (right+ 1)(mod n)

10: E ← E ∪ {vleft, vright}
11: left← left− 1
12: end for
13: Add E to P
14: end for

The following theorem not only shows that KLSF is an NP-hard problem, but

also proves that it cannot be approximated with a ratio less than or equal to a polynomial

function on the number of labels.

Theorem 2. Unless P = NP, KLSF does not admit a polynomial time |L|O(1)-approximation

algorithm for every instance I = ⟨G,L, ℓ, k⟩.

Proof. Let us take an integer θ ≥ 1 and define the value α = 2 × |T |θ × |X|. Given

I = ⟨X, T ⟩ an instance for X3C, it is constructed an instance I ′ = ⟨G,L, ℓ, k⟩ for KLSF

as follows:
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Figure 3.2 – An example of all 3 paths generated by the Walecki construction with K6.

1. For each element the nodes of a different Kα complete graph are added to VG. Let

us reference these nodes as vxi for each pair of element x ∈ X and 0 ≤ i ≤ α− 1.

2. A total of |X| Walecki decompositions are applied to the complete graph Kα

defined for each element. Denote the set of Hamiltonian paths constructed for each

element x ∈ X as Px. For each triple t ∈ T there exists at least one Hamiltonian

path in Px, since the Walecki decomposition ensures ⌊α
2
⌋ = |T |× |X| Hamiltonian

paths disjoint, considering this, for each triple t ∈ T a disjoint path in Px is mapped

to t. Denote such a path by pxt ∈ Px.

3. For each triple t ∈ T we define a label lt ∈ L which we name by triple-label of t.

4. For each triple t = {x, y, z} ∈ T the paths pxt, pyt, and pzt of the Walecki

decompositions are added to EG. The edges of each of these paths are labeled with

label lt. (i.e., ℓ(e) = lt for all e ∈ pxt ∪ pyt ∪ pzt).

5. Finally, it is defined k = |X|
3

Formally the construction of I ′ is:

V = {vxi | ∀x ∈ X and 1 ≤ i ≤ α}

L = {lt | ∀t ∈ T }

E = {e | ∀e ∈ pxt ∪ pyt ∪ pzt, ∀t = {x, y, z} ∈ T }

ℓ(e) = lt | if e ∈ pxt ∪ pyt ∪ pzt, for some t = {x, y, z} ∈ T

k =
|X|
3
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a b c d e

Set = 1 Set = 2

Walecki ConstructionWalecki ConstructionWalecki Construction Walecki Construction Walecki Construction

Figure 3.3 – An example of the construction from an instance of X3C to an instance of KLSF,
where |T | = 2, |X| = 5 and θ = 1.

In Figure 3.3 is presented an example of this construction.

Trivially I ′ is a graph labeled on edges and a valid instance for KLSF. The com-

plexity of addition of nodes of the complete graph Kα for each element is O(α · |X|) of

time and space. Since each Hamiltonian has α − 1 edges, adding the edges of the 3 · |T |

paths to E use O(α · |T |) also for time and space. Since α is polynomial in function of

|T |θ · |X|, the whole construction uses O(|T |θ · |X|2 + |T |2θ · |X|).

Now we prove that a solution T ⊆ T for X3C with instance I exists iff there

exists a solution F for KLSF with instance I ′ such that the number of components of the

solution is |C(F )| ≤ |X|.

Given an exact cover T ⊆ T for X3C, a forest F for KLSF is constructed using

the edges of the referent triple labels in L (i.e., F = G [{lt|t ∈ T}]). To validate this

solution we check two properties that F must satisfy.

• F must be a spanning forest of G. Since the labels {lt|∀t ∈ T} are from an

exactly cover, that is no one element in X is shared for more than one triple in T .

This means that for each element exists only one path along its nodes mapped for a

label in this set, therefore the edges of F do not form any cycle, thus F is a forest.

• F cannot use more than k labels. Since the labels used are defined from T and

|T | = |X|/3 ≤ k this property is trivially satisfied.

Proved that F is a valid solution for KLSF, now we prove that the cardinality of

the components that compose F satisfies |C(F )| = |X|. For each element x ∈ X , all of

its α nodes will be connected in F with the edges labeled by at least one triple label in
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{lt|∀t ∈ T} (i.e. for each x ∈ X exist a t ∈ T such that p(x, t) ∈ EF ). Since the sets

of nodes defined for the elements in X are disconnected from each other, the number of

components of F will be:

|C(F )| = |X|

For the other direction, let F be a feasible solution for KLSF with I ′ such that

|C(F )| ≤ |X|. Suppose that there are two different labels whose edges in F connect the

nodes of a same element in X . This means that these edges will connect at most a set

of nodes corresponding to 5 elements. Consequently, there are at most k − 2 = |X|
3
− 2

remaining labels to connect all |X| − 5 remaining sets for |C(F )| ≤ |X|. However, the

edges associated with |X|
3
−2 labels can connect at most the nodes of ( |X|

3
−2)·3 = |X|−6

sets of elements, hence at least the nodes of one of the elements of X will be disconnected.

Therefore, F would have more than (|X| − 1) + α components.

The above discussion proves that the edges of two labels of ℓ(F ) cannot connect

the nodes of a same element. Thus, the triples associated to the labels of ℓ(F ) are disjoint.

Furthermore, since |C(F )| ≤ |X|, the nodes of each element set are connected and the

triples to the labels of ℓ(F ) form an exact cover of X .

For the inapproximability result, suppose that KLSF admits a polynomial time

|L|β-approximation algorithm, for some constant β > 0. Considering θ = ⌈β⌉, such an

algorithm computes a solution S for KLSF with instance I ′, satisfying:

|C(S)| ≤ |L|β × |C(F )| = |T |β × |C(F )|

If there exists an exact cover for X3C with instance I ′, then |C(F )| ≤ |X|, im-

plying that:

|C(S)| ≤ |T |β × |C(F )| ≤ |T |β × |X|

If the nodes of an element are not connected by the edges of a triple label in S,

then each of the α = 2× |T |θ × |X| nodes in that set will form a single component and:

|C(S)| ≥ α + (|X| − 1) = 2× |T |θ × |X|+ (|X| − 1) > |T |β × |X|

Consequently, for |C(S)| ≤ |T |β × |X| to be satisfied, for each element the set of
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nodes must be connected by the edges associated with one triple in ℓ(S). Thus, the triples

related to ℓ(S) form a cover for X3C with instance I . This implies that a polynomial

time |L|β-approximation algorithm for KLSF would be a polynomial time algorithm for

X3C since the reduction would be solved by this algorithm when considered θ = ⌈β⌉.

Therefore, unless P = NP, the KLSF does not admit a polynomial time algorithm with

approximation ratio less than or equal to |L|β , for any constant β > 0.

3.3 Approximation for triangle and edges graph cases

In this section a trivial approximation is given for triangles-edges graphs.

Theorem 3. Any solution for the KLSF over triangles-edges graphs is a 3-approximation

of the optimal value.

Proof. Let I = ⟨G,L, ℓ, k⟩ be an instance of KLSF and F ∗ an optimal solution for KLSF

with I . A lower bound for the number of components of F ∗ is the number of components

of G:

|C(F ∗)| ≥ |C(G)|

Considering that the input graph G for KLSF is a triangles-edges graph, each

component of G has at most three nodes and:

|C(F ∗)| ≥ |C(G)| ≥ |VG|
3

The number of components of any feasible solution F of KLSF with I is bounded

by the number of nodes of G:

|C(F )| ≤ |VG|

Hence,

|C(F ∗)| ≥ |C(F )|
3

Concluding that any solution of KLSF is a 3-approximation of the optimal value.
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4 FIX-AND-OPTIMIZE PROPOSAL

Heuristics and metaheuristics offer practical strategies for dealing with the sca-

lability of difficult problems. However, for simpler instances and subproblems, the exact

methods are capable of reaching optimal solutions in short time. Hence, several examples

in the literature used the combination of exact methods with the capability of heuristics

to explore the solution space. Among these strategies, the fix-and-optimize matheuristics

emerged as a highly competitive approach.

A fix-and-optimize algorithm iteratively fixes the values of some variables by

heuristic decisions, generating subproblems that can be exactly solved by mixed-integer

linear programming tools. Some examples are fix-and-optimize approaches for a pro-

duction chain problem [Pochet and Wolsey 2006], a multi-level capacitated lot-sizing

problem [Helber and Sahling 2010, Li, Song and Wu 2015], and a school timetabling

problem [Dorneles, de Araújo and Buriol 2014, Lindahl, Sørensen and Stidsen 2018].

Those results motivated us to explore the applicability of a fix-and-optimize strategy for

the KLSF.

Our fix-and-optimize matheuristic consists of fixing some variables associated

with labels through heuristics decisions, in order to generate a simpler subproblem that

can be exactly solved by a mixed-integer linear programming solver (e.g., CPLEX [Cplex

2009], Gurobi [Gurobi Optimization, LLC 2021], GLPK [Makhorin]). This process of

fixing variables and solving subproblems is done iteratively with the objective of explo-

ring the solution space.

This chapter is divided in four sections. Section 4.1 presents a model for the

problem that we proposed for being inserted in the matheuristic. Section 4.2 presents

the description of the fix-and-optimize proposal for the KLSF followed by Section 4.3

that describes the experimental results obtained by our algorithm and Section 4.7 that

compares the results with other algorithms from the literature.

4.1 Component model

The model here proposed is a binary model with three sets of variables. The first

set of variables are the variables zl, defined for each l ∈ L and representing if the label l

is in the solution.
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zl =

 1, if l is in the solution

0, if l not in the solution

The second set contains the variables xuw, defined for all combinations (u,w) ∈

V 2
G and representing if the node u is in the component constructed from the node w.

xuw =

 1, if the node u is in the component w

0, if u is not in the component w

The last set of binary variables are defined over each component w and consists of

the variables yw, representing if the component is empty or not.

yw =

 1, if the component w has node

0, if w is a empty component

The objective of the problem is to minimize the number of trees (components) in

the forest, then, by using the above variables the objective function can be written as:

min
∑
w∈V

yw

The first set of constrains of the model ensures that if a subset of nodes X ⊆ VG

belong to the same component w ∈ VG, then there exist a label in the colored cut of ℓ(X)

in the solution:

∑
u∈V

xuw −
∑
v∈X

xvw ≤ |V |
∑

l∈ℓ(X)

zl ∀w ∈ VG and ∀X ⊂ VG

The second set of constraints ensures that if a component w ∈ VG has nodes then

yw is equal to 1:

yw|V | ≥
∑
u∈V

xuw ∀w ∈ VG

The last constraints’ set of the problem limits the number of labels in the solution

to the upper bound value k:

∑
l∈L

zl ≤ k

From the above discussion, the “Component Model” for KLSF is formulated as
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follows:

min
∑

w∈V yw (4.1)

s.t. : ∑
u∈V xuw −

∑
v∈X xvw ≤ |V |

∑
l∈ℓ(X) zl ∀w ∈ VG and ∀X ⊂ VG (4.2)

yw|V | ≥
∑

u∈V xuw ∀w ∈ VG (4.3)∑
l∈L zl ≤ k (4.4)

zl ∈ {0, 1} ∀l ∈ L (4.5)

xuw ∈ {0, 1} ∀u,w ∈ VG (4.6)

yw ∈ {0, 1} ∀w ∈ VG (4.7)

Since the above model has many symmetries, we also consider the following set

of constraints:

yw > yc ∀w, c ∈ VG and w < c

In those constraints, w < c represents the precedence between two components

on a sorted set, and ensures a component will only exist if the previous one already have

nodes (avoiding solutions with empty components at the beginning).

The “Component Model” was tested with the matheuristic, but it did not present

good results, so it was discarded and replaced by the labelled cut model proposed by

[Figueredo 2020] (see Section 2.2.3).

4.2 Fix-and-optimize matheuristic

In this section we describe our fix-and-optimize proposal for the KLSF and in

Algorithm 3 it is presented each step of this proposal.

Algorithm 3 receives as input an instance I = ⟨G,L, ℓ, k⟩ of KLSF, returning at

line 26 a feasible solution F ∗ with the least number of components among the explored

solutions. The strategy to explore the solution space consists of constructing a subprob-

lem from a current solution F . This solution is initialized at line 1 through the greedy

algorithm MVCA. After the initialization, the value of F is only updated at line 17 if

a new solution with fewer components is found or if the number of iterations without
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Algorithm 3 Fix-and-optimize

Input: I = ⟨G,L, ℓ, k⟩ 55555
Output: Feasible solution F ∗ for KLSF with instance I

1: F ← solution of MVCA with I .
2: F ∗ ← F
3: i← 0
4: for j from 0 to MAX_ITER and while |C(F ∗)| > 1 do
5: Lα ← ⌊α · |ℓ(F )|⌋ random labels of ℓ(F )
6: Gcon ← contract in G the edges of E [Lα]
7: Lβ ← ⌊β · |ℓ(F ) \ Lα|⌋ random labels of ℓ(F ) \ Lα

8: Lθ ← ⌊θ · |L \ ℓ(F )|⌋ random labels of L \ ℓ(F )
9: Lcon ← {Lβ ∪ Lθ}

10: Gcon ← remove from Gcon the edges of E [L \ Lcon]
11: kcon ← k − |Lα|
12: Icon ← ⟨Gcon, Lcon, ℓ, kcon⟩
13: I ′ ← extended instance of Icon
14: L′ ← solver’s solution for I ′

15: Faux ← spanning forest of G[Lα ∪ L′]
16: if |C(Faux)| < |C(F )| or i = IN_SOL then
17: F ← Faux

18: i← 0
19: else
20: i← i+ 1
21: end if
22: if |C(Faux)| < |C(F ∗)| then
23: F ∗ ← Faux

24: end if
25: end for
26: return F ∗
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changing its value reaches the given boundary parameter IN_SOL (see line 16).

At each iteration of the main loop (between lines 5-15), a new feasible solution

Faux is constructed. The computation of Faux depends on solving a subproblem obtained

from the current solution F and the input instance I . The construction of the subproblem

starts with a random selection of the labels to be fixed, which depends on a rational pa-

rameter of the algorithm α ∈ [0, 1). At line 5, the subset Lα (with the labels to be fixed)

is obtained by randomly choosing ⌊α · |ℓ(F )|⌋ labels of ℓ(F ) (the labels in the current

solution F ). Fixing a label l consists of contracting the edges in EG associated with l

(line 6). An edge contraction is the operation of merging its endpoints in a single node

and removing the edge. This operation generates parallel edges whenever the two merged

nodes share common neighbors. Hence, the generated subproblem considers multigraphs

(i.e., graphs with parallel edges). Figure 4.1 illustrates an example of a sequence of con-

tractions.
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Figure 4.1 – Example of how a sequence of labels is fixed. In the first step, the label b is chosen
to be fixed, contracting the edges (2, 6) and (3, 4) and producing two merged nodes. In the

second step the label c is chosen to be fixed, and the edge between the two previously merged
nodes is contracted.

Despite reducing the complexity after the graph compression at line 6, the sub-

problem may still be hard to solve. Thus, we apply a second reduction, involving the

removal of a set of labels from the instance and the corresponding edges from the graph.

Instead of selecting the labels to remove, we define (at line 9) the set Lcon = Lβ ∪ Lθ

containing the labels that will be maintained in the subproblem. Notice that Lcon depends

on the sets Lβ and Lθ which, respectively, contain the labels of ℓ(F )\Lα and L\ℓ(F ) that

will not be removed from Gcon and their computation size is analogous to the set Lα, but

depending on the rational algorithm’s parameters β, θ ∈ [0, 1) (lines 7 and 8). Following
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the construction of Lcon, the second reduction is applied at line 10, removing every edge

of the compressed graph with labels outside Lcon.

To ensure that the number of labels in a subproblem’s solution joined to those in

Lα do not exceed the input value k, a new upper bound for the cardinality of the labels in a

feasible solution of the subproblem is defined at line 11. After defining all the subproblem

parameters, a new simpler instance Icon and its extended counterpart I ′ are defined at lines

12 and 13. To obtain the solution L′, the extended instance I ′ is solved exactly at line 14

by using the model and techniques mentioned in Section 4.2.

Since the algorithm accepts only a better solution than the current F in the steps

where i < IN_SOL, for these steps we add the following extra constraint to the model:

∑
l∈Q

zl ≤ |C(F )|

The above constraint addition refines the feasible solutions’ space, considering

only those solutions capable of improving the current one. Consequently, the space search

is reduced and the solver gains efficiency. Finally, at line 15, the resulting forest of a DFS

on G [L′ ∪ Lα] is computed and assigned to the new solution Faux.

The stop criteria for the main loop of the algorithm (at line 4) considers a max-

imum number of iterations (given by the algorithm’s parameter MAX_ITER) and a

lower bound for the number of components in the best solution found (where any solution

must have at least one component).

4.3 Computational experiments

To assess our fix-and-optimize proposal, this section presents computational ex-

periments over instances from the literature, comparing the results with previous algorith-

mic approaches for the KLSF. In the following subsections we describe the computing

environment, the instances, and the choice of parameters. Finally, we present and analyze

the results of our tests.

All our implementations and the tests results are available at a repository in the

GitHub platform [Github].



36

4.4 Computing environment and library

The proposed fix-and-optimize method was implemented in the C programming

language using the compiler g++ 9.3.0, and all tests were executed in a processor AMD

Ryzen 9 3900X with 12 cores of 3.8 GHz each, and 32 GB of RAM, under Ubuntu Linux

20.04 LTS 64 bits. To generate pseudo-random values we used the default C function

rand(). Despite the machine having 12 cores, only one core was used to run the proposed

algorithm for each test.

To generate a comparative result with the algorithms proposed by [Cerulli et al.

2014] in their machine, we adjusted the running times. For this purpose, we used the Pass-

Mark Benchmark dataset [PassMark CPU benchmark dataset] that allows us to estimate

and compare the running times on different machines. The machine specified by [Cerulli

et al. 2014] was an Intel Xeon 2.8 GHz processor, which can be compared with our ma-

chine based on the values in Table 4.1, available at [PassMark CPU benchmark dataset].

Table 4.1 – Result of the comparison between the machine of [Cerulli et al. 2014] and the
machine used in this work. The column "PassMark Score" is the value of the machine in
the [PassMark CPU benchmark dataset], while the column "Factor" represents the factor

difference between the two machines
Machine PassMark Score Factor
Intel Xeon 2.8 GHz 2727 7.1015625
AMD Ryzen 9 3900X 384 1.0000000

Since our algorithm uses pseudo-random generation, for each instance we exe-

cuted each algorithm 30 times, with different integer seeds from 1 to 30.

4.5 Instances

For the experiments, we considered the dataset from [Cerulli et al. 2014] with

200 instances organized in five groups. The groups were identified by the number of

nodes |V | ∈ {100, 150, 200, 400, 500} and divided in four subsets, each one with 10

instances. Each subset was identified by their group (|V |) and the number of labels (|L| ∈{
|V |
4
, |V |

2
, |V |, 1.25|V |

}
). The instances’ generation was finalized by adding (|V |−1)|V |

10

edges to their graphs and setting k equal to ⌊|V |/2i⌋, where i represents the smallest

value such that the MVCA’s solution for the instance is greater than 1.
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4.6 Parameters

Our fix-and-optimize algorithm requires the setting of five correlated parameters:

2 integer parameters (MAX_ITER and IN_SOL), and 3 rational parameters (α, β, and

θ).

The MAX_ITER and IN_SOL parameters determine, respectively, the algo-

rithm’s maximum number of iterations and maximum number of iterations with the same

current solution. Since instances with lower values of k (usually easier to solve) require

fewer iterations to achieve good enough solutions, we defined these parameters to be di-

rectly proportional to the value of k, depending on a sixth and seventh parameters (M1

and M2) as follows:

MAX_ITER = k ·M1

IN_SOL = k ·M2

The value of θ defines the number of new labels (not used in the current solution)

added to the subproblem, whose complexity depends on the graph’s edge density. There-

fore, for a solver to find a subproblem’s solution within reasonable time, the value of θ

should guarantee to generate graphs with low density. For dense graphs |E| = O(|V |2),

hence by setting θ = |L|
|V | , there will be selected at most |L|2

|V | labels, and assuming an uni-

form distribution of edges per labels, the average number of edges in the subproblems

will be bounded by O(|V | · |L|). To ensure the low density of the subproblem’s graphs,

we set the value of θ = 0.8 for larger values of |L| (|L| > 0.8 · |V |):

θ =


|L|
|V | , if |L|

|V | < 0.8

0.8, otherwise.

To define the parameters α and β we executed several tests with manual and au-

tomatic values selection. The automatic tests were run with the Irace package [López-

Ibáñez et al. 2016], and both parameters values were selected from the set {0.1, 0.2, ..., 0.8, 0.9}.

All the experiments showed that the algorithm achieved better results when both parame-

ters’ values were equal to 0.8 (α = β = 0.8).

Finally, we used the Irace package for defining the two remaining parameters M1

and M2. Table 4.2 shows the results of these tests, highlighting on gray background the
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chosen configuration for the computational experiments we discuss in the next section.

Table 4.2 – Result of combination of parameters for the fix-and-optimize algorithm, in gray
background the configuration chosen to represent in Section 4.7

M1 M2 sol. time(s)
75 2.0 11.99 9.53
80 2.0 11.98 10.26
80 3.0 12.01 9.16
70 1.5 11.99 10.44

100 1.5 11.91 14.53
200 1.5 11.80 27.47

4.7 Results and analysis

This section presents and analyzes the experimental results generated by our fix-

and-optimize algorithm, as well as it presents results of other algorithms from the liter-

ature that used the same set of instances. Table 4.3 summarizes these results. The first

set of columns (|V |, |E|, |L|, and k) presents characteristics of the instances. The next

four groups of columns, named SA, RTS, GA and PILOT, present average solution values

(sol.) and computational time (time (s)) for the algorithms from [Cerulli et al. 2014]. Our

results are under the column FO, which presents the average solution value (sol.) and

the computational time in seconds (time (s)) of the the executions with all seeds, and the

average solution value with the seed with best average values (seed=1, sol.(1)).

Table 4.3 – Results of the 5 algorithms developed for the KLSF.
Dataset SA RTS GA PILOT FO

|V | |E| |L| k sol. time (s) sol. time (s) sol. time (s) sol. time (s) sol. time (s) sol. (1)
100 990 25 3 6.30 0.08 6.30 0.08 6.30 0.25 6.30 0.00 6.30 0.18 6.30
100 990 50 6 2.70 0.16 2.90 0.11 2.60 0.42 2.70 0.08 2.66 0.65 2.60
100 990 100 6 15.00 0.38 15.00 0.39 15.00 0.67 15.60 0.31 15.12 8.12 15.00
100 990 125 7 15.70 0.53 15.70 0.54 15.70 0.87 15.70 0.59 15.76 7.07 15.70
150 2235 37 4 3.50 0.19 3.50 0.13 3.50 0.52 3.50 0.04 3.58 0.12 3.60
150 2235 75 4 22.30 0.40 22.30 0.40 22.30 0.80 22.30 0.13 22.32 1.07 22.30
150 2235 150 9 7.70 0.97 7.30 0.84 8.10 2.93 8.30 1.31 7.42 3.18 7.50
150 2235 187 11 6.10 1.31 6.20 1.10 6.20 3.28 6.10 1.86 5.78 5.73 5.70
200 3980 50 3 17.00 0.37 17.00 0.37 17.20 0.93 17.00 0.05 17.22 0.52 17.20
200 3980 100 6 9.30 0.84 9.30 0.84 9.60 2.56 9.60 0.87 9.42 5.01 9.40
200 3980 200 12 2.60 1.56 3.10 1.07 3.10 5.03 3.00 2.72 2.48 3.09 2.40
200 3980 250 15 1.80 1.66 1.60 1.20 1.50 4.87 1.20 5.35 1.27 1.46 1.30
400 15960 100 3 35.60 5.15 35.60 5.17 35.60 4.47 35.60 1.38 35.75 1.85 35.60
400 15960 200 6 24.40 11.25 23.70 11.35 25.10 12.32 24.00 16.55 23.87 34.73 23.70
400 15960 400 12 12.10 25.42 11.40 21.66 12.50 37.47 11.10 81.83 10.60 33.55 10.60
400 15960 500 15 8.70 34.22 8.20 21.24 8.90 48.92 7.70 163.04 7.28 13.84 7.00
500 24950 125 4 22.70 13.11 22.70 13.18 22.90 10.66 22.70 8.34 23.41 1.12 23.00
500 24950 250 7 22.40 27.54 21.50 27.75 22.80 24.75 21.90 33.10 21.84 28.15 21.70
500 24950 500 15 6.30 47.23 5.30 42.05 6.60 75.62 5.00 251.83 5.36 19.10 4.90
500 24950 625 19 3.40 52.67 3.00 38.56 3.40 111.03 2.10 214.08 2.43 22.06 2.10

average 12.28 11.25 12.08 9.40 12.45 17.42 12.07 39.17 11.99 9.53 11.88
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For a fair comparison of the results, the original times from [Cerulli et al. 2014]

for algorithms SA, RTS, GA, and PILOT were divided by 7.11 (see Table 4.1). Hence,

the computational times in Table 4.3 for those algorithms are much smaller than those

reported in [Cerulli et al. 2014]. After normalizing times it is still clear that the results

found by FO are promising. Next we analyse and discuss these results in details.

Regarding the execution times, unlike the algorithms from [Cerulli et al. 2014]

whose running times grow with the value of k, FO running times do not exhibit the same

behavior. This can be seen in all instance groups. Also, when |V | ≥ 150, |L| ≥ 100 and

k ≥ 11, at least in 85% of the occasions (6 of 7 subsets), Table 4.3 reports better average

solution values from our fix-and-optimize matheuristic than those proposed by [Cerulli et

al. 2014], except for the PILOT method. Thus, for the large instances, FO shows a better

compromise between solution quality and running times when comparing with [Cerulli et

al. 2014].

Table 4.4 – Percentage of tests where the fix-and-optimize found a better solution for all seeds in
relation to the results of [Cerulli et al. 2014].

|V | |E| |L| k SA(%) RTS(%) GA(%) PILOT(%)
100 990 25 3 100.00 100.00 100.00 100.00
100 990 50 6 86.21 100.00 51.72 86.21
100 990 100 6 72.41 72.41 72.41 89.66
100 990 125 7 79.31 79.31 79.31 79.31
150 2235 37 4 51.72 51.72 51.72 51.72
150 2235 75 4 79.31 79.31 79.31 79.31
150 2235 150 9 100.00 17.24 100.00 100.00
150 2235 187 11 93.10 93.10 93.10 93.10
200 3980 50 3 10.34 10.34 51.72 10.34
200 3980 100 6 34.48 34.48 96.55 96.55
200 3980 200 12 82.76 100.00 100.00 100.00
200 3980 250 15 100.00 100.00 100.00 44.83
400 15960 100 3 55.17 55.17 55.17 55.17
400 15960 200 6 96.55 31.03 100.00 82.76
400 15960 400 12 100.00 96.55 100.00 86.21
400 15960 500 15 100.00 100.00 100.00 89.66
500 24950 125 4 0.00 0.00 0.00 0.00
500 24950 250 7 100.00 3.45 100.00 68.97
500 24950 500 15 100.00 48.28 100.00 13.79
500 24950 625 19 100.00 100.00 100.00 3.45

average 77.07 63.62 81.55 66.55

Table 4.4 shows the percentage of executions in which our algorithm found a solu-

tion with value better than or equal to those obtained by the other algorithms. According

to the average value shown in the last row of the table, our FO outperformed all other
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algorithms in more than 60% of the tests. That percentage increases above 90% when

considering k > 10 and the algorithms SA, RTS and GA. These gains can be justified by

our choice of α = 0.8, guaranteeing that at most 20% of k labels will be chosen by a sub-

problem solution. This gains in relation to the growth of k can be justified by the fact that

for smaller instances (e.g., k < 10) only 1 or 2 labels would be chosen by the subproblem,

while for the larger values of k the subproblems complexity increase choosing from 3 to

5 labels.

In Table 4.5 we report the best known solution (BK) for each subset of 10 in-

stances, the average solution value (sol.) and standard deviation (σ) for the 30 execu-

tion of our fix-and-optimize algorithm, besides the percentage of runs FO found the best

known solution (FBK).

Table 4.5 – Best known combination of solutions for each group of instances (BK), average of the
30 runs (sol.) and the mean standard deviation of the 30 runs (σ) of the fix-and-optimize

algorithm. The percentage of different seeds that FO found the best known combination of
solutions is presented in column FBK(%).

|V | |E| |L| k BK sol. σ FBK(%)
100 990 25 3 6.30 6.30 0.00 100.00
100 990 50 6 2.60 2.66 0.11 51.72
100 990 100 6 15.00 15.12 0.47 72.41
100 990 125 7 15.70 15.76 0.28 79.31
150 2235 37 4 3.50 3.58 0.14 51.72
150 2235 75 4 22.30 22.32 0.08 79.31
150 2235 150 9 7.10 7.42 0.39 0.00
150 2235 187 11 5.70 5.78 0.31 65.52
200 3980 50 3 17.00 17.22 0.34 10.34
200 3980 100 6 9.30 9.42 0.22 34.48
200 3980 200 12 2.10 2.48 0.39 3.45
200 3980 250 15 1.20 1.27 0.15 44.83
400 15960 100 3 35.60 35.75 0.45 55.17
400 15960 200 6 23.30 23.87 0.73 0.00
400 15960 400 12 9.60 10.60 1.03 0.00
400 15960 500 15 6.20 7.28 0.76 0.00
500 24950 125 4 22.40 23.41 0.76 0.00
500 24950 250 7 21.10 21.84 0.67 0.00
500 24950 500 15 4.00 5.36 0.70 0.00
500 24950 625 19 1.80 2.43 0.39 0.00

average 11.59 11.99 0.42 32.41

From the percentages in Table 4.5 we conclude that our FO matheuristic is con-

sistent with an average standard deviation below 0.5 for more than 6000 executions. Fur-

thermore, FO improved the best known solution for some sets of instances, and even in

the executions where the best known values were not reached, the found solutions were
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extremely close of the best known values. This analysis reinforces the consistency of our

proposal, and these results are also illustrated by Figure 4.2. A consistency comparison

with [Cerulli et al. 2014] was not possible, because the authors only reported results of a

single seed execution for each instance.
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Figure 4.2 – In this image, the x-axis represents the set of instances defined for each combination
of |X| and |L| from the data set. The red squares in the image represent the average of the best

known value of each subset of instances, and the blue dots represent the overall average (consider
the average value of each subset and compute the average value among them). The lines that

extend the blue dots represent the standard deviation of the results.
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5 CONCLUSION AND FUTURE WORKS

Problems related to labelled graphs have been present in some studies over the

last few years [Silva 2018] what motivates the study of the the k labelled spanning forest.

The KLSF has a lot of real world applicability from the network context to the routing

context. In the literature, there are few studies in relation to it, which leaves open many

possibilities to be explored.

From the theoretical part, two strong results were given: the NP-hardness of the

problem even for simple instances and the inapproximability in relation to the number of

labels. Additionally, a trivial approximation result was also presented for the triangles-

edges graphs. As future plannings for the theoretical part, we intend to conclude some

studies that include:

• A parameterized algorithm.

• A better approximation factor for triangles-edges graphs, and the possibility of ap-

proximating more general classes such as forests of cacti.

From the results obtained for the fix-and-optimize implementation it was possible

to conclude that the combination of heuristic exploration and exact solutions of subprob-

lems should be carefully analyzed. Some tests for applying such a combination of solver

and heuristic during our study that were discarded for their low performance or solution

quality include:

• A genetic algorithm for the heuristic part with an embedded formulation for the

genetic operators.

• A branch and bound for solving the subproblem as part of the matheuristic here

proposed.

• Probabilistic odds in the choice of labels that go to the subproblem or that are fixed.

• The idea of complementary solution proposed in [Consoli, Perez and Mladenović

2017].

Furthermore, the final version of the algorithm was tested with different seeds over

200 instances (more than 6,000 computational experiments). With these tests we empiri-

cally verified our proposal consistency, Although our fix-and-optimize was outperformed

by previous approaches in some of the smaller instances, the algorithm presented a good

scalability, since for the large tested instances our algorithm presented better solutions in

shorter computational times.
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For future works we consider to hybridize our fix-and-optimize matheuristic with

other strategies, such the RTS, since it was the algorithm with better relation between

execution time and solution quality proposed by [Cerulli et al. 2014]. Besides studying

improvements for the heuristic part of the algorithm through hybridizations, exploring the

exact part may bring benefits. In that direction, we will propose new mathematical formu-

lations attempting to obtain more suitable models for solving the subproblems generated

during the search process, also we consider developing an exact algorithm for computing

optimal solutions of these subproblems. Nevertheless, we also intend to test our algo-

rithm on real-world instances extracted from large computer networks applications, and

on other datasets from the literature such as the ones in [Figueredo 2020] and [Consoli,

Perez and Mladenović 2017].
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APPENDIX A — RESUMO ESTENDIDO

Neste trabalho foi estudado o problema da floresta geradora k-rotulada (KLSF).

Este problema recebe como entrada um grafo simples não direcionado com arestas ro-

tuladas e um número inteiro k. O objetivo do problema consiste em encontrar uma flo-

resta geradora com no máximo k rótulos, tal que esta floresta possua o menor número de

árvores (componentes). O KLSF pertence à classe de problemas de complexidade NP-

completos e generaliza o problema mais conhecido da Árvore Geradora Minimamente

Rotulada (MLST) [Cerulli et al. 2014].

O interesse em estudar o KLSF não se justifica apenas por sua dificuldade teórica,

mas também pelos cenários práticos onde o problema encontra aplicações. Um exemplo

ocorre ao estudar estratégias para reduzir o impacto na saúde da população em relação

a exposições contínuas a campos eletromagnéticos. Atualmente, o surgimento de redes

sem fio, como Wifi e redes de telefonia celular, vem expondo cada vez mais a população a

campos eletromagnéticos, com possíveis efeitos negativos na saúde das pessoas [Wiart et

al. 2019]. Uma abordagem para reduzir a exposição ao campo eletromagnético é limitar

o número de frequências possíveis a um número máximo k. No entanto, para aumentar a

qualidade dos serviços, as áreas de cobertura desconectadas devem ser o menor possível.

Esse problema pode ser modelado como o KLSF definindo-se um nó para cada dispositivo

da rede e uma aresta para cada par de conexões de nós, sendo os rótulos as frequências de

tais conexões.

Outra aplicação de rede para o KLSF surge de empresas que gerenciam conexões

de internet, onde muitas vezes são utilizados serviços de diferentes provedores para man-

ter a conectividade dos clientes [Tanenbaum, Wetherall et al. 1996]. Neste cenário,

para obter alguns benefícios em termos de negociação e custos, o número de diferentes

fornecedores de aluguel é geralmente limitado por um valor k, selecionando os fornece-

dores que garantem menor número de áreas desconectadas. Analogamente ao exemplo

anterior, os dispositivos e as conexões podem ser representados por nós e arestas de um

grafo, enquanto para cada provedor pode ser definido um rótulo e associado às arestas

correspondentes, sendo possível resolver este problema através de técnicas para o KLSF.

Ao longo do estudo feito neste trabalho, o problema KLSF foi abordado tanto

de forma teórica quanto na parte aplicável. Das provas da parte teórica é reforçado a

NP-dificuldade do problema não só para os casos mais gerais mas como também para

instâncias mais simples. Isto é, no trabalho é provado que o problema é NP-dificil mesmo
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para as instâncias em que o grafo de entrada são apenas triângulos e arestas. Esta prova

é feita através da redução do problema NP-completo da 3-cobertura exata (X3C) para

o KLSF tal que a não ser que P = NP não existe algoritmo de tempo polinomial que re-

solva estas instâncias. Outra prova teórica apresentada no trabalho é a inaproximabilidade

do problema em relação ao conjunto de rótulos L, tal que novamente a não ser que P =

NP não existe um algoritmo que garanta uma |L|O(1)-aproximação para o problema. Esta

prova é feita também através da redução do problema X3C para os casos gerais do KLSF,

tal que esta redução se existe uma |L|O(1)-aproximação para o problema então esta aprox-

imação resultaria em uma solução ótima para o KLSF e consequentemente solucionaria

o problema NP-completo X3C. Para finalizar os resultados teóricos, é apresentada uma

3-aproximação trivial para o problema, quando o grafo de entrada é um grafo em que suas

componentes são apenas triângulos e arestas.

Seguindo o trabalho para a parte de aplicação uma matheurística é apresentada

para solucionar as instâncias da literatura. Para esta matheuristica inicialmente um novo

modelo matemático de programação linear inteira foi apresentado. Como este modelo não

apresentou bons resultados foi logo descartado, e através de uma revisão bibliográfica foi

encontrado o trabalho de [Figueredo 2020] que apresentou diferentes modelos matemáti-

cos e técnicas de programação linear inteira para serem usadas. Deste trabalho foi usado

o modelo do “corte colorido” e as técnicas de cut callbacks e lazzy constraints foram

usadas na matheuristica.

A matheuristica desenvolvida, considera o uso de atalhos através de decisões

heurísticas para reduzir o problema original e construir subproblemas que podem ser re-

solvidos de maneira eficiente por solvers de programação linear inteira. Esta matheuris-

tica consiste em interativamente explorar o espaço de soluções do problema, tal que nestas

interações é mantida uma solução corrente. A partir desta solução corrente e através de

decisões heurística é feita a escolha de rótulos para serem fixados e rótulos para per-

tencerem ao subproblema. Tal que estas decisões reduzem a complexidade do grafo,

permitindo então que o solver resolva o subproblema de maneira mais eficiente. A partir

da solução do solver e os rótulos fixados é construído uma solução para o grafo original e

feito um teste para aceitação da mesma para a atualização da solução corrente. Claro que,

este processo iterativo sempre mantém a melhor solução explorada para ser o resultado

final do algoritmo.

Esta matheuristica foi aplicada às instâncias propostas por [Cerulli et al. 2014] a

fim de gerar resultados comparativos com os demais algoritmos propostos para o prob-
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lema. Nestas instâncias foram feitos mais de 6000 testes do algoritmo. Os resultados apre-

sentados demonstraram a escalabilidade que o algoritmo apresenta, obtendo uma solução

melhor para as instâncias mais complexas da base de dados do que os demais algoritmos.

Além disso foi feito uma análise da consistência do algoritmo sendo o primeiro a apresen-

tar um estudo sobre esse tema para o KLSF na literatura. Esta análise consistiu em rodar

com 30 sementes diferentes, e verificar quão variado ficaram os resultados. Os resultados

destes testes mostraram que o algoritmo tem consistência, apresentando um desvio padrão

menor que 0.5 em média.

Na tabela A.1 é possível encontrar os resultados obtidos para o algoritmo em re-

lação aos propostos por [Cerulli et al. 2014]. Dividia em 6 colunas principais, a tabela

apresenta na primeira coluna as caracteristicas do conjunto de instâncias tal que |V | rep-

resenta a quantidade de nós, |E| a quantidade de arestas, |L| a quantidade de rótulos e k

o valor inteiro que limita o número de rótulos na solução final. Cada linha destas combi-

nações representa um conjunto de 10 instâncias. Seguindo as colunas são apresentados os

resultados obtidos pelos algoritmo desenvolvido por [Cerulli et al. 2014] (SA, RTS, GA

e PILOT), no qual a baixo deles se tem duas coluna representando a média do resultado

obtido (sol.) para as 10 instâncias de cada conjunto e o tempo médio da execução (tempo

(s)). Na última coluna é apresentado os resultados do algoritmo fix-and-optimize, onde tal

coluna está dividida em 3 sub colunas que definem a solução média das 30 execução do

algoritmo (sol.), o tempo médio destas execuções (tempo (s)) e a solução que apresentou

a melhor média de resultados (sol. (1)).

Table A.1 – Resultados dos 5 algoritmos testado para o KLSF
Dataset SA RTS GA PILOT FO

|V | |E| |L| k sol. time (s) sol. time (s) sol. time (s) sol. time (s) sol. time (s) sol. (1)
100 990 25 3 6.30 0.08 6.30 0.08 6.30 0.25 6.30 0.00 6.30 0.18 6.30
100 990 50 6 2.70 0.16 2.90 0.11 2.60 0.42 2.70 0.08 2.66 0.65 2.60
100 990 100 6 15.00 0.38 15.00 0.39 15.00 0.67 15.60 0.31 15.12 8.12 15.00
100 990 125 7 15.70 0.53 15.70 0.54 15.70 0.87 15.70 0.59 15.76 7.07 15.70
150 2235 37 4 3.50 0.19 3.50 0.13 3.50 0.52 3.50 0.04 3.58 0.12 3.60
150 2235 75 4 22.30 0.40 22.30 0.40 22.30 0.80 22.30 0.13 22.32 1.07 22.30
150 2235 150 9 7.70 0.97 7.30 0.84 8.10 2.93 8.30 1.31 7.42 3.18 7.50
150 2235 187 11 6.10 1.31 6.20 1.10 6.20 3.28 6.10 1.86 5.78 5.73 5.70
200 3980 50 3 17.00 0.37 17.00 0.37 17.20 0.93 17.00 0.05 17.22 0.52 17.20
200 3980 100 6 9.30 0.84 9.30 0.84 9.60 2.56 9.60 0.87 9.42 5.01 9.40
200 3980 200 12 2.60 1.56 3.10 1.07 3.10 5.03 3.00 2.72 2.48 3.09 2.40
200 3980 250 15 1.80 1.66 1.60 1.20 1.50 4.87 1.20 5.35 1.27 1.46 1.30
400 15960 100 3 35.60 5.15 35.60 5.17 35.60 4.47 35.60 1.38 35.75 1.85 35.60
400 15960 200 6 24.40 11.25 23.70 11.35 25.10 12.32 24.00 16.55 23.87 34.73 23.70
400 15960 400 12 12.10 25.42 11.40 21.66 12.50 37.47 11.10 81.83 10.60 33.55 10.60
400 15960 500 15 8.70 34.22 8.20 21.24 8.90 48.92 7.70 163.04 7.28 13.84 7.00
500 24950 125 4 22.70 13.11 22.70 13.18 22.90 10.66 22.70 8.34 23.41 1.12 23.00
500 24950 250 7 22.40 27.54 21.50 27.75 22.80 24.75 21.90 33.10 21.84 28.15 21.70
500 24950 500 15 6.30 47.23 5.30 42.05 6.60 75.62 5.00 251.83 5.36 19.10 4.90
500 24950 625 19 3.40 52.67 3.00 38.56 3.40 111.03 2.10 214.08 2.43 22.06 2.10

average 12.28 11.25 12.08 9.40 12.45 17.42 12.07 39.17 11.99 9.53 11.88
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